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Inference engine for expert system by using
optical array logic

Masaya Iwata, Jun Tanida, and Yoshiki Ichioka

A method of implementing an inference engine for an expert system by using optical array logic is
presented. Optical array logic is a technique for parallel neighborhood operations based on spatial coding
and two-dimensional correlation. The processing capability of optical array logic is useful for the
efficient execution of an inference operation in artificial intelligence problems. Inference proceeds with
the help of a token propagation technique in which the knowledge is expressed as spatial patterns and
processed collectively with parallel neighborhood operations in optical array logic. With several
additional functions, an expert system can be constructed by using the inference technique.

Key words: Digital optical computing, optical array logic, artificial intelligence, inference engine,
expert system.

1. Introduction
Optical parallel computing systems are capable of
massive parallel processing and of making good use of
the inherent parallelism and the high speed of light
propagation. The systems are expected to solve prob-
lems in massive information processing. Therefore
various studies on system architecture and computa-
tional algorithms in optical computing have been
reported.l-3

Optical array logic (OAL) is proposed as a tech-
nique for achieving a parallel neighborhood operation
for two binary images.4 5 The advantages of OAL are
its capability of parallel logic operations, its program-
mability with an operation kernel, and its suitability
for optical parallel processing. Several optical sys-
tems have been developed to implement OAL. 6' 7 On
these optical systems, various single-instruction
stream-multiple-data stream (SIMD) types of paral-
lel processing can be achieved with OAL. Therefore
studies of parallel processing with OAL programming
are important subjects for exploring the capability of
OAL processors. Image and numerical processing
have been studied- 8 on the basis of this principle.

Artificial intelligence9 (AI) is one of the research
fields in which massive parallel processing is strongly
desired. The main process in the AI problem is
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inference. Inference is an operation that searches
specific data from a knowledge base, and usually it
must handle a large amount of data. In a practical
system, such as an expert system,10 this inference
operation determines the total performance of the
system. Thus it is important to develop an efficient
searching method for AI problems.

Recently several methods have been proposed for a
data search that utilize the parallelism in optics."1-' 5

In some methods, knowledge data are represented in
an image, and inference is achieved by SIMD types of
parallel operation such as matrix operations' 2 and
matched filtering.13 Since these operations are effec-
tively executed by optical systems, a high throughput
of inference can be expected. We also found that
OAL is useful for parallel data search in inference.
In Ref. 14 we reported an inference engine that uses a
template matching technique based on OAL. How-
ever, these methods lack flexibility and, hence, cannot
achieve minute operations for data. To overcome
these shortcomings, there is an approach to map
knowledge data directly onto an optoelectronic multi-
processor system.'5 In this method, inference is
executed by marker propagation among processing
elements with an optical interconnection. However,
the parallelism of light is not fully utilized in this
method.

In this paper we present a method of implementing
an inference engine with a token propagation tech-
nique that is a useful technique in OAL programming.
This method can fully extract parallelism in optical
processing and can be executed by an OAL processor.
The flexibility of this method is demonstrated by an
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expert system that uses the inference engine. In
Section 2 we briefly explain OAL and a specific
operation used in an inference process. In Section 3
we describe an inference process based on a semantic
network as knowledge representation. In Section 4
we explain the concept of token propagation and we
discuss a method of implementing a primitive infer-
ence engine by using the technique. In Section 5 we
describe an inference engine for an expert system,
and in Section 6 we estimate the processing efficiency
of the presented inference engine.

2. Optical Array Logic and Template Matching for
Two Images
OAL is a technique for executing logic operations for
a pixel and their neighboring pixels on two-dimen-
sional (2-D) binary images in parallel. The process-
ing procedure of OAL is shown in Fig. 1. Two binary
images are inputs on which all pair of pixels at the
same location are converted into spatial patterns by
the coding rule, which is shown in the Fig. 1. The
resultant image, which is called a coded image, is
correlated with an operation kernel configuring oper-
ation of OAL. The operation kernel is a set of delta
functions positioned at some grid points in which the
interval of the grid is equal to the cell size of the coded
image. Therefore the correlation is regarded as a
sequence of operations: duplicating the coded im-
age, and then shifting and overlapping these images.

The correlated image is spatially sampled at the
upper left pixels of cells on the input images. As a
decoding process, the collection of the sampled pixels
is dilated and inverted. By the above sequence, we
can execute a product term operation that is a range
of logic operations expressed by the logic product of
pixel values. To extend the flexibility of the opera-
tion, multiple product term operations are executed
with different operation kernels, and their results are
combined by a logic sum. As a result, OAL is capable
of executing an arbitrary neighborhood logic opera-
tion with a combination of operation kernels used in
correlation. These operations are executed in paral-
lel with a simple optical correlator, as shown in Fig. 2.
Thus an SIMD-type of parallel neighborhood opera-
tion can be achieved by OAL.

Parallel processing, as described by OAL, can be
optically executed on a general-purpose optical pro-
cessing system called an OPALS (optical parallel
array logic system). Figure 3 shows a block diagram
of a hybrid version of the OPALS.8 OAL is consid-
ered as software (program) for controlling such an
OPALS system. The following is addressed to pro-
gramming techniques for the OPALS.

Programming OAL is achieved by specifying a set
of operation kernels used in correlation. For pro-
gramming convenience, we have developed kernel
expressions6 7 that can denote a sequence of operation
kernels. A kernel expression is an intuitive expres-
sion of logic operations for 2-D images. Thus, if a
problem is given as a logic relation between spatial
patterns, it can be easily described by a kernel
expression. Once a kernel expression is determined,
we can convert it into operation kernels used in OAL
and execute on the OPALS. The notation of the
kernel expression is summarized briefly in appendix
A. The operation kernels designed in this study are
listed in appendix B.

As an example of OAL, we explain a useful opera-
tion in data search for an inference operation. The
operation is basically logic template matching, but it
operates the patterns in images A and B at the same
time. In this operation, specific positions in which
the combination of the pixels in two images are
identical to the predetermined patterns are detected.

The operation is achieved by a parallel AND opera-
tion for neighborhood pixels in the two images. For
example, to detect occurrences in which pixels with 1
and 0 are arranged side by side in the corresponding
position of images A and B, the following operation is
used:

cij = adjj+jbjjbjj+j, (1)

where a, b, and c mean pixel data in images A, B, and
C, respectively; subscripts denote the location of the
data in the image. A kernel expression of Eq. (1) is
shown in appendix B. Figure 4 shows the flow of the
operation.

In OAL, one input image can be assigned to control
signals for the data primitives located in the other

Fig. 1. Processing procedure of OAL.
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input image. For this technique, template matching
on two images is frequently used to select specific
data. This template matching plays an important
role in the inference operation by OAL.

3. Inference
In a practical AI system, such as an expert system,
inference is a process for answering given queries
with a knowledge base that consists of data that
represents various knowledge.' 0 An inference engine
is a mechanism for finding a solution for queries by
searching data related to the queries with a knowl-
edge base. To execute humanlike intelligent infer-
ence, the knowledge base must contain a huge amount
of data. Thus searching data in inference must be
executed efficiently by fast processing.

There are several methods for knowledge represen-
tation in computer science, for example, a production
rule, a frame, a semantic network, and so on.'0 We use
a semantic network as a knowledge representation
because it is suitable for SIMD-type processing in
OAL. A semantic network is a diagrammatic knowl-
edge representation that is described by a directed
graph consisting of nodes and links [Fig. 5(a)]. A node
describes a concept, and a link represents a relation

I- Optical Shuttersg

: X B f .:.g.. .g..D..:.,,0EE-vC ,, Ad DERE .0 .i!.E .Z. A ,. .lg . .......

1 'iS' s'i''4ErD C oeret'''g'

2-D Correlator 

L~~~Feed~bcki

Process Control Proa
ComputerProcess Control

Kernel Specification
SLM Control

Fig. 3. Block diagram of a hybrid version of the OPALS. SLM,
spatial light modulator; LED, light-emitting diode; PD, photo-
detector,

Fig. 4. Processing flow of template matching for two images.

between two concepts. Inference with a semantic
network is achieved by tracking links from a node to
the connected nodes. For example, when a query
"What is a cat?" is given, the answer "An animal" is
obtained by reversely tracking the ISA link from the
Cat node to the Animal node.

The process of tracking links is executed by a
method called marker propagation.' 6 A marker is an
information primitive that propagates on links to
help the inference process. Parallelism in inference
with a semantic network is obtained mainly by the
marker propagation algorithm.

For example, when a query "What animal has
whiskers?" is given, as shown in Fig. 5(b), two
markers (marker #1 propagating along the HAS link
in the reverse direction and marker #2 propagating
along the ISA link in the reverse direction) are
prepared and set on Whiskers and Animal nodes,
respectively. These markers propagate simulta-
neously along the specified links. The node to which
both markers reach indicates the answer Cat [Fig.
5(c)].

The process of the inference engine with marker
propagation is as follows: (1) searching nodes appear-
ing in a given query, (2) setting markers on the
searched nodes, (3) propagating the markers along
the specified links to the next nodes, and (4) repeating
step (3) until all markers come to the end of the
propagation paths.

Fortunately the above process can be executed for
all markers with a SIMD type of parallel processing.
In our method, a token propagation technique is used
to implement the markers. The direction and type of
links are encoded into pixel patterns on an image
plane. As a result the capability of parallel processing
in OAL is quite useful for an inference process to use
to increase processing efficiency.

Cat
HA//\S

Whiskers Mammal
j ISA

Animal

(a)

HS~~~~A SAS

Hy N ~~s Whiskrs ml
Whiskers Animal I ISA

Animal
(b) (C)

Fig. 5. Semantic network and inference based on the semantic
network: (a) an example of a semantic network, (b) a query, (c)
inference based on the semantic network with marker propagation,
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4. Primitives for Inference Engine in Optical
Array Logic

A. Encoding of a Knowledge Base

To implement an inference process by using OAL, a
semantic network must be represented by pixel pat-
terns on an image plane. A semantic network in Fig.
5(a) is converted into a spatial representation by the
following procedures, as shown in Fig. 6.

First, the target semantic network is divided into
multiple subnetworks with a one-to-many structure.
In an individual subnetwork one node is connected to
several nodes through different links [Fig. 6(a)].
The assembly of the subnetworks is coded into a table
format in which the rows and the columns are
assigned to each subnetwork and to an individual
node, respectively [Fig. 6(b)].

In the table format, the direction and the type of
link must be stored at each cell. The type of link is
set at the terminating cell of the link. The direction
and type of link are coded into spatial patterns, called
node patterns, and set at the cells [Fig. 6(c)]. An
area for setting a marker in inference is also prepared
to the cell. Code patterns are assigned to each
meaning, as shown in Fig. 6(d). In the explanation
of the link direction pixels, a small dot indicates a
node. The code patterns for the link type are the
specified ones for this example. By setting the code
patterns to the appropriate position in Fig. 6(b), we
can obtain a spatial representation of a semantic
network for OAL [Fig. 6(e)].

In addition, to identify the individual cells in the
spatial representation, anchor tags are set on the
other image [Fig. 6(f)]. This technique is often used
in OAL to increase processing flexibility. The im-
ages containing the data and the anchor tags are

Cats Mammal
HASWhiskers

Mammal-l-U4-Animal

(a)

G0¢g131s1v@X>'5 Node Pattern
[ = Link Direction Pixels

_ ISA4HAS _ Link Type Pixels

_J_ I I Marker Number Pixels

(b)

Link Direction Pixels
EQ: 0-- E:

Link Type Pixels
EM: ISA AQ: HAS

(d)

(c)

Marker Number Pixels

W:#1 :#2

W:#3 :#4

called data and attribute planes of a knowledge base,
respectively. Template matching for the both planes
enables us to access an arbitrary part of the knowl-
edge base.

A query is represented with a subset of a semantic
network, as shown in Fig. 5(b). It can be encoded in
the same way as the knowledge base. That is, the
query is represented by the table format and coded
into spatial patterns. Usually each condition in a
query is assigned to an individual marker for inference.
Thus markers #1 and #2 are set in the appropriate
positions in the cells [Fig. 6(g)].

B. Token Propagation

To implement parallel inference by using OAL, we
develop a token propagation technique. The basic
ideas of the token propagation are (1) setting some
tokens on a 2-D image to indicate interested objects
and (2) transferring the tokens concurrently to exe-
cute desire operations with parallel neighborhood
logic operations in OAL. Since individual tokens are
transferred independently, great flexibility and pro-
cessing capability can be attained even on a SIMD
processor.

To implement token propagation with OAL, pat-
tern expansion and template matching are employed.
Figure 7 indicates a procedure for propagating a
token to a desired destination. First, a token to be
propagated is duplicated over a specific area. This
operation is called pattern expansion and is achieved
by the logical sum of variables a and b at the
neighborhood location on which the target pattern is
to be expanded. Correlation in the procedure of
OAL provides this pattern expansion. The expanded
tokens are selected by template matching; the tem-
plate is specified by an image called a condition image.
As a result, the initial token is transferred to the
destination that satisfies a given condition. This
procedure is executed by SIMD operations so that
OAL can be used to implement it.

In token propagation, the area of pattern expansion
and the condition image are used to specify the
contents of the processing. As shown in Fig. 8, if
tokens are expanded in the horizontal (or vertical)
direction, multiple tokens can be transferred indepen-

Pattern
Expansion

Go gK<A<SsN5>tSXxwx5

_ g g _ g g E _
0,.,|, ls)sEl'$: llE ll:>.gg E g

0Ncit, .0.SS _ MlSg _ 1W g

g g W g _ g 1 g
g g g g g X E g
MW10W 'ESS'HaM ,lWo.g E g

(e)

Template
Matching

(t) (g)

Fig. 6. Encoding of knowledge base by using a semantic network:
(a) assembly of semantic subnetworks; (b) table format represent-
ing the subnetworks in (a); (c) node pattern used in the table in (b);
(d) example of pixel assignment for the node pattern; (e), (f) data
and attribute planes of the knowledge base, respectively, (g) a
coded query.

Condition Image
Fig. 7. Procedure for propagating a token to a desired destination.
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Pattern
Expansion

Template
Matching

Condition Image
Fig. 8. Procedure for propagating multiple tokens to desired
destinations.

Pattern
Expansion

Template
Matching

Knowledge Condition.
Base Image (1)

(a)

dently. In addition, appropriate patterns are set on
the condition image so that the behavior of each
token can be controlled. Although the destination of
tokens is limited by the area of pattern expansion,
multiple processes are handled in OAL with this
technique.

C. Inference with Token Propagation
With the token propagation technique on a spatially
encoded knowledge base, inference processing is exe-
cuted efficiently by OAL. For example, a problem in
Fig. 5(b), or a query, "What animal has whiskers?," is
solved by OAL. As described in Section 3, markers
propagating from the Whiskers and the Animal nodes
are used for this problem. In our method, tokens on
an image are assigned to the markers and propagated
by OAL operations.

The basic procedure for executing the inference is
(1) searching subnetworks corresponding to given
queries, which are assigned to the rows in the knowl-
edge base; (2) setting tokens at the searched cells; (3)
propagating the tokens in the same rows to track
reversely the specified links; and (4) repeating steps
(1)-(3) until all tokens reach an identical node or the
same column.

Figures 9-11 show practical processing for the
inference. Steps (1) and (2) from above are executed
by vertical token propagation, shown in Fig. 9, in
which the condition image is created from the knowl-
edge base to select the terminating nodes of the ISA
and HAS links. In this case, a pattern consisting of
4 x 2 pixels for a cell is assigned as a token. To
identify the region of the individual cell, anchor tags
in the attribute plane of the knowledge base are used.
As a preparation of step (3), the link direction pixels
on the tokens are changed to indicate an initiating
node, as shown in Fig. 10. The modified tokens are
propagated horizontally to execute step (3), as shown
in Fig. 11. The transferred token is again changed
to indicate an initiating node. The obtained token
has the same format of the query, so that the above
processing is repeated until the final result is ob-
tained, as shown in Fig. 12. The operation kernels
used in the operations are shown in Appendix B.

Query (1) Query (1')

(b)
Fig. 9. Processing sequence of vertical token propagation: (a)
images, (b) semantic representation.

5. Inference Engine for an Expert System by Using OAL

A. Required Functions for an Inference Engine

An expert system stores the knowledge of experts of a
specific field in a knowledge base and efficiently offers
the knowledge for nonexperts. To extend a primi-
tive inference engine to an expert system, three
functions must be added: (1) inheritance, (2) the
detection of propagated markers, and (3) the detec-
tion of the termination of marker propagation.

We explain function (1) with an example in Fig. 13.
We assume a query "What has whiskers and skin?"
[Fig. 13(b)] on the semantic network shown in Fig.

Query (2)
(a)

HAS0

Query (1')

- aN I
Query (2)

(b)
Fig. 10. Changing of link direction pixels on the tokens:
imagos, (b) semantic representation.

(a)
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, o Noe k\

I J]
Query (2)

Quer 11
Query (2')

(b)
Fig. 11. Processing sequence of horizontal token propagation:
(a) images, (b) semantic representation.

13(a). As shown in the semantic network, Cat is a
member of Animal. Since characteristics of Animal
must be held by its member Cat, the property Has
Skin should be inherited from the Animal to the Cat
node. The function is achieved by propagating mark-
ers along both a specified link (in this example, the
HAS link) and along the ISA link [Fig. 13(c)].

To execute function (2), markers must be recorded
on all the propagated nodes. After propagation, we
can find the node that satisfies specific conditions by
detecting the corresponding recorded markers. In
the example of Fig. 13, by detecting a marker pair of
#1 and #2 the Cat node is derived as the answer.

Before detection of the nodes with the desired
markers, the marker propagation process must be
terminated [function (3)]. This function is achieved
by detecting whether any marker is propagated from
the current node. Since these functions can be
executed for all data at a time, parallelism in OAL is
utilized.

Query (1)

(1)

Query (2)

-I-
Query (3)

l

1 1HE 1 
Query (4)

* f

Query (5) Query (5)

(a) (b)
Fig. 12. Processing sequence of token propagation in query
image: (a) images, (b) semantic representation.

ISA links, are reversely tracked and then the same
operation is executed for the ISA links. As a result,
inheritance can be utilized in a kind of inference, such
as "What has skin?" Although this restricts the
functions of an expert system, a more complicated
sequence by OAL enables us to extend the function.

Recording of the propagated markers is achieved by
copying the marker number pixels in the query to the
corresponding pixels on the knowledge base. Figure
15 shows an example of the knowledge base before

B. Inference Engine for Expert System by Using OAL

The processing flow of inference for an expert system
is shown in Fig. 14. The main part of the processing
is identical to the marker propagation process de-
scribed in Section 4. Thus we explain additional
functions for an expert system.

To simplify the sequence, the inheritance process is
assumed to be executed only by tracking reversely.
In this case, all links in the given query, except the

Cat

Whiskers Mammal~I5A
Skin, HAS Animal

(a)

HAes 1Whiskers Mammal
Whiskers Skin Skin HAS Animal

(b) (c)

Fig. 13. Implementation of inheritance based on a semantic
network: (a) an example of a semantic network, (b) a query, (c)
inheritance based on the semantic network with marker propaga-
tion.
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Fig. 14. Processing flow of the inference engine for an expert
system with marker propagation.

and after recording markers. This operation can be
executed by simple logic operations.

To detect whether any marker is propagated from
the current node, we introduce conditional variables
as an extension of OAL. Conditional variables indi-
cate conditions of the processed image, like condi-
tional flags in a microprocessor. For this case, a
ZERO variable is prepared, whose value is 1 if all
pixels in the output image are 0 and is 0 for the other
case. Although the same function is implemented
by a sequence of logic operations in OAL, conditional
variables can greatly improve processing efficiency
through the use of specific optical hardware. For
example, a ZERO variable is simply implemented
with a condenser lens and a photodetector, as shown
in Fig. 16. As a result, a conditional test for termina-
tion is achieved by referring to the ZERO variable.

(a)

GS\¢we~r\5S~S\N

ISA HAS

I I A HAS

(b)

31C2 HAS
1 ISA 4 

(c) (d)
Fig. 15. Recording of the propagated markers on the knowledge
base: (a) and (c), knowledge base before and after recording
markers, respectively; (b) and (d), locations of the semantic subnet-
works and nodes of (a) and (c), respectively.

Fig. 16. Optical system for the conditional variable ZERO.

The nodes with the desired markers are detected by
template matching. In Fig. 15, the marker pair of
#1 and #2 is detected by testing the third column of
each cell. As a result, the upper left cell is detected,
and Cat is derived as the answer.

C. Simulation Result

With the above process, a simple expert system is
implemented for a knowledge base, as shown in Fig.
17(a). On the expert system, a query in Fig. 17(b) is
asked as an example: "What cat has short hair and
no tail?" Figure 18 shows a simulated result of the
expert system. Figures 18(a) and 18(b) are the
attribute and the data planes of the knowledge base,
respectively, and Fig. 18(c) indicates the query image.
Figure 18(d) is the data plane of the knowledge base
on which markers are recorded after the marker
propagation process. Figure 18(e) shows the de-
tected result of the node on which all used markers
are recorded. The node is the answer of the query.
The vertical and the horizontal scales around the
images indicate the borders of the subnetworks and
the individual nodes, respectively. The horizontal
scale numbers correspond to the identifiers of the

Cat 1)
Long Hair (4) A is ISA Short Hair (5)

Longhair Division (2) Shorthair Division (3)

is ~~~~~~~ISA AS
Persian (6)t A IS I AH SHsAn Siamese (7) Burmese (9) aex (2S

CobbyBody (13) Abyssinian (8) HA| Russian Blue (10) Hv\ (vy Coat

Points (Face, Ears, H HAS/ No Tail (18)
Feet ,Tail) All the / Sable-Brown NoTi I8
Same Color Color(16)

Bright Blue Gray
Ticked Body (15) Color (17)

(a)

Cat (1) S

Short Hair (5) ?

No Tail (18) 

(b)

Fig. 17. Semantic network for an expert system: (a) an example
of a knowledge base, (b) a query. The numbers in parentheses are
the identifiers of the nodes.
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(e)

Fig. 18. Simulation result of the expert system with OAL: (a)
and (b), data and attribute planes of the knowledge base, respec-
tively; (c) the query image; (d) the data plane of the knowledge base
that is recording marker numbers after marker propagation pro-
cess; (e) detected result of the nodes that are recording all marker
numbers. The vertical and the horizontal scales around the
images indicate the borders of the subnetworks and the individual
nodes, respectively. The horizontal scale numbers correspond to
the identifiers of the nodes shown in Fig. 17.

nodes shown in Fig. 17. Consequently the final
result, Manx, is obtained.

6. Performance Estimation
The processing performance of the programs de-
scribed in OAL can be estimated by three factors:
the total number of product terms required in the
processing, the spatial size of the operation kernels
used in correlation, and the spatial size of the images
to be processed. The first determines the system
cycles, and the others state necessary hardware speci-
fications for the processing. The total number of
product terms corresponds to the total number of
system cycles required in processing. Actual process-
ing time is obtained by the product of the total
number of product terms and the processing time for
one system cycle, which depends on the response time
of the devices used, such as spatial light modulators.

Table 1 tabulates these values of the inference
engine and the expert system by using the token
propagation. As Table 1 shows, these values are

Table 1. Performance Estimation of the Inference Engine and Expert
System by Using Token Propagationa

Inference Engine Expert System
Number of

Product Terms 12i + 1 21i + 17 + 2MH

Size of operation
kernel (unit number)

x (2S - 1)V (2S - 1)V
y (2N - 1)H (2N - 1)H

Size of Images
x SV SV
y NH NH

aN, number of nodes; S, number of subnetworks; V, vertical pixel
number of a node pattern; H, horizontal pixel number of a node
pattern; M, vertical pixel number of marker number pixels; i, cycle
number of inference sequence.

greatly affected by the size of the semantic network.
For a practical expert system, at least a few hundred
nodes are required. If 500 nodes are required, im-
ages that consist of 1000 x 1000 pixels and operation
kernels with 2000 x 2000 units must be handled in
an optical system.

The processing speed is estimated by the total
number of product terms in the processing. Note
that this value is independent of the size of the
semantic network in one cycle of the inference se-
quence. Consequently, if a large size of images can
be processed, the inference engine with OAL has the
capability of executing one cycle of the inference
sequence in a constant time, regardless of the size of
the semantic network.

However, to accomplish an inference process, one
step of inference described here must be iterated by
the number of the maximum depth of a hierarchy in a
semantic network. If the average of the division
number of node information is m, the maximum
depth of hierarchy is considered to be logmn, where
n is the number of nodes. This value depends on the
character of a semantic network.

If an image representing a semantic network is
larger than that handled by a system, the image must
be separated and processed page by page. However,
this method needs additional tasks for managing
continuity of adjacent pages. Since this process re-
duces the performance, an efficient processing method
of the overlapped pages should be considered.

7. Conclusion

We have presented an implementation method of an
inference engine that utilizes the parallelism of OAL.
The token propagation technique that was proposed
as an OAL programming technique is useful for
parallel inference. By using this technique, we have
developed OAL programs for an inference engine and
an expert system. As a result of the performance
estimation, we have found that if a large size of
images is handled on an optical system, the inference
engine by OAL has the capability of executing one

10 September 1992 / Vol. 31, No. 26 / APPLIED OPTICS 5611

1

1-1

inv in0,

I



step of the inference sequence in a constant time
regardless of the size of the semantic network.

Appendix A
An operation kernel explicitly corresponds to logical
meanings. Thus it can be expressed by symbolic
notation for intuitive expression. We call the native
notation for OAL kernel expression. The essential
components of the kernel expression are as follows:

Product Term Block: PTB
Since an operation kernel specifies a product term
operation, it is reasonable to introduce a functional
block that corresponds to an operation kernel. The
functional block is called the product term block, or
PTB. It is indicated by a set of brackets.

Function Symbols
Elements in a PTB are two-letter symbols that indi-
cate any one of two-variable binary logic functions.
The symbols are tabulated in Table 2. The first and
second letters assign functions for inputs A and B,
respectively. To handle both the logic product and
the sum, two series of letter sets are used. 1, 0, and.
are for products, whereas P and N are for sums;
symbols UU, EE, and DD are special symbols for
specific functions.

Neighborhood Mapping and the Origin Marker
Operands of the target logic neighborhood operation
are specified by the location of function symbols set in
a PTB. That is, a PTB directly corresponds to a
neighborhood area. The origin of a PTB is indicated
by an underscore. If a PTB has only one symbol, the
underscore can be omitted. The axes or the neighbor-
hood area are set vertically downward and horizon-
tally rightward, respectively.

Shift Suffix
There is a case in which operands of the target
operation localize in the neighborhood area. For
convenient notation, a PTB may have shift suffix
indicating the amount of the origin offset. The shift
suffix can be regarded as the address of the under-
scored position.

Sum and Product of PTB's
In OAL, multiple results of product term operations
are logically summed. This procedure is expressed

by the sum of the PTB's that correspond to the
product term operations. The product of PTB's is
identical to a PTB whose elements are composed of
the result of the logic product of individual functions
at the corresponding position in the PTB's. The
product of PTB's can be used for separating operands
in a PTB.

For example, the following kernel expression speci-
fies a logic expression, which is indicated by Eq. (A2).

[10 0.] + 0,

cij= aij lbijjlaj, + aij+lbi+,,j+,.

(Al)

(A2)

Appendix B

A kernel expression of template matching for two
images (Section 2) is

[11 00]. (Bi)

Kernel expressions of inference with token propaga-
tion (Subsection 4.C) are as follows:

1. Horizontal marker propagation (see Fig. 9).
Step (1) Vertical pattern expansion (input A, query

(1); input B, don't care):

S-1
H [114i,o;

i=Us+ 1
[0.]. (B2)

Step (2) Creation of the condition image from the
knowledge base (input A, knowledge base; input B,
attribute plane of knowledge base):

(B3)

Step (3) Template matching [input
image (1); input B, condition image (1)]:

A, expanded

3 00 111 00 11]
~I I + II
ito EE EEJ 0,-i LEE EE 0,-i /

(B4)

2. Change in the link direction pixels on the tokens
[see Fig. 10; input A, query (1'); input B, don't care]:

[11 00]. (B5)

Table 2. Symbols for Specifying Kernel Units

Function Symbol Function Symbol

1 *- a+b PP
a + ~ NN afflb UI
ii + b NP b .1

a 0. ab 01
a+b PN a 1.

b .0 ab 10
aeb EE ab 11

b 00 0 DD

3. Horizontal token propagation (see Fig. 11).
Step (1) Horizontal pattern expansion [input A,

query (2); input B, don't care]:

N-1

rl: [l ]0,2i; [O.].
i= -N+l1

(B6)

Step (2) Creation of the condition image from the
knowledge base (input A, knowledge base; input B,
attribute plane of knowledge base):

[11] + [.1 10].
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.1 . 1 ..
[11] + [.1 10] + 10 + .. 10



Step (3) Template matching [input A, expanded
image (2); input B, condition image (2)]:

O]o,-i + [11 O]o,i)- (B8)

4. Change in the link direction pixels on the tokens
[input A, query (2'); input B, attribute plane of
knowledge base):

[01 10]. (B9)

In the above expressions and equations, X and I
denote sum and product operations in kernel expres-
sions, respectively; S is the number of subnetworks,
and N is the number of nodes. The input images A
and B in expressions (B2)-(B9) are represented by the
image names in Figs. 9-12. The attribute plane of
the knowledge base is shown in Fig. 6(f ). In expres-
sions (B2) and (B6), the symbol ; means that the
following operation is executed after the previous
operation has been done.
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