

Title	芽胞形成菌における強酸性ニンヒドリン陽性物質の挙 動
Author(s)	中塩, 哲士
Citation	大阪大学, 1980, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/32904
rights	
Note	著者からインターネット公開の許諾が得られていない ため、論文の要旨のみを公開しています。全文のご利 用をご希望の場合は、 大阪大学の博士論文につい てをご参照ください。</a

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

	/01	
氏 名・(本籍)		
学 位 の 種 類	薬 学 博 士	
学位記番号	第 5050 号	
学位授与の日付	昭和55年8月6日	
学位授与の要件	学位規則第5条第2項該当	
学 位 論 文 題 目	芽胞形成菌における強酸性ニンヒド	リン陽性物質の挙動
論文審査委員	^(主査) 教授近藤 雅臣 ^(副査) 教授岩田平太郎教授青沼	繁教授北川 勲

論文内容の要旨

緒論

Bacillus 属および Clostridium 属の細菌は、その生活環において栄養型増殖期の細胞と、生化学 的、形態学的にまったく異なる芽胞を形成する(1,2.3.4)。 この芽胞形成機序の解明は、単 に特定の菌属の生理現象の領域を越えて、形質発現と生体制御、形態形成と細胞分化の諸領域に連な る重要な問題と考えられる。そのためには、真に芽胞形成と密接に関連した現象を起点に解析されな ければならず、芽胞形成により分化した形態、機能ないし特性は、それらを生み出すに至った物質

(5.6) およびその産生調節機構に置き換えることにより因果関係が理解できると考えられる。芽胞形成期の細胞中では、栄養型細胞の構成成分が解体され、芽胞の特異性の発揮に必要な諸成分が生合成され、芽胞固有の構造成分、その前駆体、さらにそれらの生合成系に関与した調節因子が多種存在することが予想される(7,8,9,10)。 芽胞形成期細胞の原形質可溶性画分には、芽胞固有のcortex および spore coat の前駆体やその構成成分となるアミノ酸、アミノ糖が含まれている。本研究においては、Bacillus subtilis NRRL B 558菌はじめ多くの芽胞形成菌の芽胞形成期細胞の原形質可溶性画分、とくにニンヒドリン反応陽性物質に着目して検索を試み、強酸性含硫アミノ酸タウリンを見い出すとともに、従来微生物ではほとんど知られていないスルホン酸化合物の動態を究明した。

本 論

第1章 枯草菌栄養型細胞の強酸性 Glucosamine 含有物質の存在および同定

B. subtilis NRRL B 558菌の栄養型細胞および芽胞形成期細胞を冷10%トリクロル酢酸(TCA)

-293-

で抽出し、抽出液をアミノ酸アナライザーで比較分析した結果を Fig. 1, Table 1に示す。栄養型 細胞では、酸性アミノ酸 Asparatic acid に先行して溶出される物質の存在が認められ、その画分を 酸加水分解した場合、消失し、Glucosamine および Alanine のみが認められた。一方、芽胞形成期 細胞においては、同様に強酸性物質の溶出が認められ、本画分を酸加水分解した場合にもアミノ酸ア ナライザーの溶出位置は同様であり、未同定の物質(Gompound I、II)を含む各種アミノ酸がかな りの量存在し、Glucosamine 量は、栄養型細胞と比較し顕著に減少していた。そこで、まず栄養型 細胞のGlucosamine 含有物質を精製した。すなわち、TCA 抽出液を Amberlite CG120 Column Chromatography, Sephadex G-25 Gel Filtration, Paper Electrophoresis により単一に精 製した。口紙に展開された Glucosamine 含有物質に各種の検出試薬を噴霧した結果をFig. 2に示し たが、これらの試薬により発色した Spot は完全に一致したことから、還元糖として Glucosamine リン酸および未知の非還元性糖からなるオリゴサッカライドであることが判明した。Glucosamine を含む分画を4N-Hcl, 105C、4時間加水分解した結果、非還元性糖として Ribitol を含むこと、 および非環元糖:リン酸:Glucosamine=1:2:1のモル比で存在することが判明したことから、 Glucosamine、リン酸、Ribitol の結合したポリマーすなわち Teichoic Acid 様物質であることが 判明した。

本物質の生活環各時期の含量を検討した結果 (Fig. 3), 栄養型細胞では Glucosamine 量で 1.0 μmole/ 1.5g dry weight 存在するが, 静止期から芽胞形成期にかけて顕著に減少した。 機械的に 細胞を破砕後 TCA 抽出を行なった場合も同様の成績を示したことから, TCA 抽出効率の差による

Sporulating Cell

20 40 Elution time (min)

Aso

Table 1 Amino Acid Composition of Fract R-1 Obtained from Vegetative Cells and Sporulating Cells

r -	0	
Component	Vegetative Cell	Sporulating cell
Compound I	0 *	3.500****
Compound 👖	trace	0.345
Asp	trace	0.020
Thr	trace	0.030
Ser	trace	0.024
Glu	trace	0.106
Gly	trace	0.036
Ala	0. 113	0.024
Dap*	0	0.040
Mur**	0	0.194
GlcN***	0.677	0.174

* Dap; Diaminopimelic acid

****** Mur ; Muramic acid

*** * *** GlcN ; Glucosamine

***** *** *µ*mole/ g cells dry weight

-294-

現象ではないと思われる。 なお,本物質は,栄養型細胞の Cell Wall に局在することが判明した。 本物質は,リン酸基,水酸基,アミノ基等の荷電基を多数有することから,細胞壁を通過する荷電し た物質の透過,保持,輸送等に関連しているものと推察される。

* Detecting reagents used were as follows:

A; Ninhydrin reagent

- B; Diphenylamine aniline reagent
- C; AgNO₃ reagent
- D; Potassium periodate reagent
- E; Hanes's reagent
- F; Sharon & Seifter's reagent

Experimental condition:

Voltage; 50 V/cm, Time ; 2 hrs,

Buffer; Pyridine-Acetate-Water(1:10:89)

Paper; Toyo No. 51

第2章 枯草菌芽胞形成期細胞の TCA 可溶性画分の強酸性ニンヒドリン反応陽性物質の存在と精製 について

前章の Fig. 1, Table 1に示したように、Compound Ⅰ, Ⅱは栄養型細胞には存在せず、芽胞形 成期細胞に存在する物質であり、Compound Iについては Cysteic Acid であることをすでに明らか にしたので、Compound Ⅱについて検討を加えた。芽胞形成期の細胞の T CA 抽出液を Amberlite CG120 Column Chromatography, 酸加水分解, Amberlite CG120 Column Chromatography, および活性炭処理をおこない, 2、4-Dinitrophenyl 誘導体にEcteola Cellulose Column Chromatography, Sephadex G-10 Gel Filtration で単一に精製し、融点209-210 Cを示す黄色 針状結晶 DNP-Compound Ⅱを得た。この物質を、薄層およびペーパークロマト(Table 2)、口紙 電気泳動(Fig. 4),高速液体クロマトグラフイー(Fig. 5)により既知物質と比較した結果, Taurine と推定された。

	System A	System B
DNP-Compound II	0.60	0.55
DNP-Taurine	0.60	0.55
DNP-Compound I	0.31	0.53
DNP-Cysteic Acid	0.81	0.53
DNP-Phosphorylserine	0.72	0.57
DNP-Homocysteic Acid	0.55	0.90
System A : Thin Layer (Gel ; Silica Solvent ; 1.	Chromatography 1gel 60 PF ₂₅₄ 5 M Levy's Pho	sphate Buffer
System B : Paper Chroma	tography	
Paper ; Toyo	No.51	
Solvent · n-	BuOH-AcOH-H.O.	(4 · 1 · 5)

Table 2.	Rf Values of DNP-Compound II and other DNP-Derivatives
	in Thin Layer and Paper Chromatography

-296-

Fig. 4. Identification of DNP-Compound II by High Pressure Liquid Chromatography

第3章 枯草菌芽胞形成期細胞の TCA 可溶性画分の強酸性ニンヒドリン反応陽性物質の機器分析に よる構造決定

第2章で Compound Ⅱ は Taurine と推定されたが微生物においてはアミノスルホン酸の報告は 極めてまれであり,かつこれらの数少ない報告における存在の確認は極めて不十分であることから, 機器分析による構造決定を試みた。 DNP-Compound II は第2章の成績から DNP-Taurine と類 似の化合物であろうと推定される。Table 3に、DNP-Taurine の、Table 4にDNP-Compound II の PNR (200MHz, CDOD)の成績を示したが、両者は一致しなかった。しかしながら、Table 4 および decoupling 実験から, DNP- Compound II には, Pyridine が含まれることが推定され た。また、DNP-Compound II の赤外吸収スペクトルから、NH- の吸収 (3300cm⁻¹)が明らかなこ とより, 上述の Pyridine はNH 基には結合していないと考えられ, DNP-Compound II は DNP-Taurine の Pyridine 塩と推定された。この推定は FD- Mass Spectrum の測定 (Fig. 6) によ り確証された。すなわち, m/e 371 (5.9%) にM⁺ + 1のionと, m/e 292に100%の fragment ion peak を与える。 m/e 292は DNP-Taurine (m/e=291)+1のイオンで, m/e(371-292)=79は Pyridine 分子 (C₅H₅N) に相当する。以上のことから, DNP-Compound II は DNP-Taurine-Pyridine 塩と確認された。市販の Taurine から別途 DNP-Taurine-Pyridine 塩を合成し, DNP-Compound II と混融 (mixed m. p. 209-210 C), IR (Fig. 7), PMR (Table 5), FD- Mass, UV(Fig. 8)の比較の結果、両者は完全に一致した。Pyridine は、分離精製の過程で使用しており 組みこまれる可能性は十分あるが,Taurine の生体内での存在様式は不明で,その構造から, 金属

t * 6.4	
• 5 [°] 4	
6 0.4	
d ** 8.0	
d,d 8.0,	2.4
d 2.4	
	d ** 8.0 d,d 8.0, d 2.4

Table 3. Proton Magnetic Resonance Data on DNP-Taurine

-

Table 4. Proton Magnetic Resonance Data on DNP-Copmound II

Chemical shift (S)	Proton	Signal	Coupling constant J (Hz)
3.18	2 H	t' *	6.4
3.90	2 Н	t	6.4
7.24	1 н	d **	8.0
8.16	2 H	t	5.6
8.35	1 н	d,d	8.0, 2.4
8.71	1 н	t	5.6
8.92	2 H	d	5.6
9.08	1 н	d	2.4
*; triplet, **;	doublet.		(CD ₃ 0D, 200 MHz

Table 5. Proton Magnetic Resonance Data on DNP-Taurine-Pyridine Salt

Chemical shift (උ)	Proton	Signal	Coupling constant J (Hz)
3.17	2 H	t *	6.4
3.87	2 H	t	6.4
7.24	1 н	d **	8.0
8.15	2 H	t	5.6
8.34	ТН	d,d	8.0, 2.4
8.71	1 н	t	5.6
8.92	2 H	đ	5.6
9.08	1 н	d	2.4

*; triplet, **; doublet. (CD₃OD, 200 MHz)

Fig. 6. MASS SPECTRLM (68 TO 39) SAMPLE. DNP-COMPOUND [] (TAURINE LIKE SUBSTANCE) NOTE. 1980. 2. 8. FD MODE BASE PEAK. M/E 292.8INT. 57.1

MASS SPECTRUM: (96 TO 118) SAMPLE. DNP-TAURINE NOTE. 1980. 2. 8. FD MOOE BASE PEAK: M/E 292.8 INT. 69.4

Fig. 7. Infrared Spectrum of DNP-Compound II and DNP-Taurine-Pyridine-Salt

Fig. 8. Ultraviolet Spectrum of DNP-Compound II and DNP-Taurine-Pyridine-Salt

イオンそのほかとの錯体を形成することが予想され,芽胞固有の Dipicolinic Acid(2,6,dicarboxylic_pyridine)の生合成系になんらかの関与も考えられる。

第4章 Taurine の定量法の検討と菌体内 Taurine 含量

芽胞形成期細胞中に Taurine の存在が明らかとなったので, Taurine の高速液体クロマトグラフ イーによる定量法を検討した。種々検討した結果, 試料の調製は, 細胞の TCA 抽出液を Amberlite CG120 column に吸着させ脱イオン水で溶出した画分を DNP 化すること, および高速液体クロマ トグラフイーの分離条件は Zorbax カラム, 溶出液 0.01 M酢酸ナトリウム溶液, 温度50C, 圧力 1 0kg/cm² が最適であることが判明した。本法により, 50pmole から 1,000pmole の範囲で直線の検 量線(Fig. 9)が得られ, 添加回収実験(Table 6)により86-94%の回収率を示したことから Taurine の定量法として用いられることを確認した。生活環各時期の細胞の, 乾燥菌体100mg あた

-300-

りの Taurine 量を測定した結果, 栄養型細胞では 7.2nmole, 芽胞形成期細胞では34.5nmole 存在 し, 芽胞中にはまったく存在しないことが明らかとなった。

Fig. 9. Calibration Curve of DNP-Taurine

Taurine Added (nmol)	Found (nmol)	Recovered Taurine (nmol)	Recovery (%)
0	30.4	-	
25	52.0	21.6	86.4
50	75.5	45.1	90.2
100	122.4	92.0	92.0
150	171.9	141.5	94.3
200	218.0	187.6	93.8

Table 6. Recovery of Taurine in TCA Extract

第5章 芽胞形成期細胞における Taurine の動態

芽胞形成期における Taurine の挙動をFig. 10に示した。細胞内 Taurine 含量は,前駆芽胞の出現, Dipicolinic Acid 生合成に先行して芽胞形成初期から増加しはじめ,Dipicolinic Acid 生合成の 最も活発な時期に最高にたっし,以後芽胞の成熟につれて減少した。なお,TCA 抽出法による成績と, 細胞菌体を 6 N-HCI, 106 C, 16時間加水分解後に定量した成績はほとんど一致した。芽胞形成初 期の Taurine 含量の急速な増加について,³⁵S-Methionine,³⁵S-Cysteine,³⁵S-SO₄²⁻を用いて検 討したが新たな生合成の可能性を示す直接的証拠は得られず,むしろ³⁵S-Taurine を用いた検討によ り,この時期の著しい Taurine 取り込能の増大によるものと考えられた (Fig. 11)。さらに,芽胞の 成熟につれて減少する理由として,取り込まれた Taurine が,一部代謝され,一部そのまま培地中

-301-

Cel	l Phase	Content*
1.	Vegetative Cell	7.2
	Sporulating Cell	34.5
	Spore	0
11.	Spore	
	Supernatant Fraction	0
	Precipitate Fraction	0

Table 7. Contents of Taurine in Cells at Various Stages

* : nmol/ 100 mg cells.

I : Cells were extracted with 10% TCA.

II : Spores were disrupted with Cell Mill and were centrifuged at 10,000 rpm for 15 min to separate the "Supernatant" and the "Precipitate Fraction". Then the "Precipitate Fraction" was

hydrolyzed by 6N-HCl at 105 C for 16 hrs.

Fig. 10. Appearance of Taurine during Growth and Sporulation

Fig. 11. Incorporation of ³⁵S-Taurine into Cells of B. subtilis NRRL B 558 at Various Stages

Fig. 13. Analysis of ³⁵S-Compounds in Culture Medium

へ遊離することが判明した。すなわち、³⁵S-Taurine 含有培地で芽胞形成初期まで培養した菌体を洗 浄後,併行して培養した³⁵S-Taurine 非含有培地の培養液上清に加え,培地転換後の,培地および菌 体内の³⁵S標識化合物の分布を検討した結果,Fig. 12に示すように,急速に培地中へ遊離することが 明らかとなった。しかしながら,培地中の³⁵S標識化合物を検討した結果,Fig 13に示すように, DNP-Taurine 以外にもかなりの放射活性が認められることから一部代謝されているものと推察さ. れた。

結 論

Ο

Bacillus subtilis NRRL B 558菌の栄養型および芽胞形成期細胞の TCA 可溶性画分のニンヒド リン反応陽性物質について、その同定および定量法、さらに生活環における動態について検討した。

- 1. 栄養型細胞に, Glucosamine, リン酸, Ribitol から構成されるTeichoic Acid 様物質の存 在を明らかにした。本物質は芽胞形成期に著しく減少し,芽胞中には認められなかった。
- 2. 芽胞形成期細胞中に、Taurine が存在することを明らかにした。
- 3. Taurine の高速液体クロマトグラフィーによる定量法を確立し、生活環での含量を測定し、芽胞形成期に多く存在し、芽胞中には存在しないことを明らかにした。
- 4. Taurine は、芽胞形成期に取り込まれ、芽胞形成後期には、一部代謝されて、培地中へ遊離することが明らかとなった、

引用文献

- 1. 蜂須賀養悦, 堀越弘毅: (1976): 耐久型細胞, 岩波書店
- 2. Hanson, S., Peterson, J. A. & Youtten, A.A. (1970): Ann. Rev. Microbiol, 24:23.
- 3. Bernlohr, R. W. & Leightzman, C. (1969) : The Bacterial Spore. Academic Press, New York
- 4. Murrel, W. G. (1967) : Adv. in Microbial Physiol, 1:133.
- 5. Powell, J. & Strange, R. E. (1959) : Nature, 184:878.
- 6. Spudich, J. A. & Kornderg, A (1968) : J. Biol. Chem. 243: 4600.
- 7. Sano, K., Ichikawa, T. & Kondo, M. (1975) : Microbios, 12:67
- 8. 中塩, 佐野, 市川, 近藤(1974)日本細菌学雑誌, 29:105.
- 9. Kondo, M., Sano, K., Nakashio, S. & Ichikawa, T. (1975) : Spores VI, p397, Edited by P. Gerhardt, American Society for Microbiology
- Koshikawa, T., Nakashio, S., Kusuyama, K., Ichikawa, T. & Kondo, M.: (1980).
 Bacteriol, in press

論文の審査結果の要旨

枯草菌芽胞形成期細胞の TCA 可溶性画分中ニンヒドリン陽性物質について検討し, とくに芽胞形 成期においてこれまで見出されてなかったタウリンが細胞内に蓄積されることを発見した。ついで, タウリンの高速液体クロマトグラフィーによる定量法を確立し, 生活環におけるタウリンの動態を検 討したところ, 芽胞形成初期にタウリン量が細胞内に蓄積されはじめ芽胞形成が完了すると細胞内か ら検出されなくなることを見出し,³⁵S-タウリンを用いた実験から芽胞形成末期に細胞外へ放出され ることを明らかにした。これらの知見は芽胞形成菌の生活環における強酸性含硫アミノ酸の動態なら びに作用を追求する上で意義ある研究といえ, 薬学博士を授与するに値する研究と判定した。