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A novel method of optically implementing parallel neighborhood operations for two-dimensional discrete binary
objects is presented. The operations are executed by the optical-array-logic processor (OLAP) based on tech-
niques of imaging coding and optical correlation. The analogy between the mechanism of the OLAP and that of
the array logic is efficiently utilized for the method. Any neighborhood operation is easily executed by the OLAP
with the help of the concept of array logic. An architecture of an optical parallel digital-computing system is also
presented. The system consists of parallel-processing units using the OLAP’s, which execute neighborhood opera-
tions for image data in parallel. This proposed system is expected to be a prototype of optical digital-computing

systems.

1. INTRODUCTION

The capability of optical parallel information processing and
optical parallel data transmission at ultrahigh speed is con-
sidered by computer and optics researchers to be one of the
fundamentals for the realization of high-speed computing
systems in the next generation. An optical parallel computing
system utilizing the feature of light has the capabilities to
break through on the problems that digital electronics now
faces in the course of the development of parallel computing
systems. The main problem appears to be that of system
architecture caused by complexity of data-flow control and
interconnection.

To realize an optical parallel digital-computing system,
however, we must consider a number of problems. The fun-
damental problem to be solved most urgently is what kind of
architecture is suitable for an optical computing system.
Although a few architectures of general-purpose optical
computing systems have been presented,'-® no specific con-
cept has been generally accepted.

One of the most desirable directions in the development of
an optical parallel digital computing system is that aimed at
digital image processing. If such an optical computing system
is developed, it would serve for a wide variety of applications
in image processing. From this point of view, investigations
on methods of logical operations for a pixel and its neighboring
pixels in two dimensional (2-D) objects in parallel seems to
be worthwhile for determining an architecture of an optical
parallel computing system. The logical operations for
neighboring pixels are called logical neighborhood operations.®
If an efficient method capable of implementing parallel logical
neighborhood operations is developed as well as logical ones,
the basis in development of optical digital-computing system
can be secured.

The authors presented an optical parallel processor using
a lensless shadow-casting system called the optical-logic-array
processor (OLAP).” This processor can operate not only as
a parallel logic gate but also as a parallel-processing unit,
is capable of dynamically controlling the operations.
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In this paper, we present a novel method of optically
implementing parallel logical neighborhood operations. To
develop this method, we take note the analogy of the mecha-

‘nism of the OLAP and that of the array logic® Then we

propose an architecture of an optical parallel digital-com-
puting system consisting of the OLAP. This system can ex-
ecute various logical neighborhood operations in parallel as
well as logical ones.

In Section 2, we briefly summarize array logic in digital
electronics. In Section 3, the mechanism of the OLAP is
compared with the array logic, and the procedures required
for optically implementing array logic are described. In
Section 4, we describe an operation of a parallel 2-bit adder
to clarify the concept of optical array logic. And in Section
5, we propose an architecture of an optical digital-computing
system making good use of the optical array logic. The pro-
posed optical digital-computing system is called optical par-
allel array-logic system, or OPALS. This system can execute
any logical neighborhood operation in parallel, and it may
become a prototype of optical digital-computing systems.

2. ARRAY LOGIC

Array logic8 is a technique to construct any logical circuit by
using a circuit element with an array structure such as an
electronic memory device. This circuit element is called a
logic array. Figure 1 shows schematic diagrams of an elec-
tronic memory device and a logic array. Array logic is easy
to understand by comparing the mechanism of a memory
device with that of a logic array.

In a memory device, bit signals describing an address are
read in, and then one address number is selected by an address
decoder. Assuming that bit-signal data are stored in a data
array with individual address numbers beforehand, a set of
bit signals in the selected address is read out in return. Thus
a stored data signal designated by an address is obtained.

In a logic array, a set of input bit signals corresponds to an
address signal in the memory device, and a set of output sig-

© 1985 Optical Society of America
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Fig.1. Schematic diagrams of (a) electronic memory device and (b)
logic array.

nals corresponds to a data signal. So any logic circuit is
realizable by characterizing the personality of an AND array
corresponding to the address decoder and that of an OR array
corresponding to the data array. To characterize the per-
sonality of two arrays to obtain output signals with values of
1 for a specific set of input signals is nothing but to define a
logical function describing the relation between the input and
the output signals.

Procedures of implementing any logic by using the AND and
the OR arrays are summarized as follows. For illustration, we
consider the case of a half-adder. Figures 2(a) and 2(b) are
expressions of a half-adder circuit by random logic and array
logic, respectively. As is shown in Fig. 2(a), the random-logic
circuit is composed of various kinds of logic-gate elements.
Therefore, for constructing a complicated logic circuit, a
number of circuit elements are needed. As a result, signal flow
among them becomes complicated. On the other hand, if
array logic is utilized, any logic circuit can be constructed
merely by characterizing the personality of the logic array,
even for a complicated logic circuit.

Referring to Fig. 2(b), we explain operations of a logic array.
First, each of the input signals is decoded into a pair of in-
verted and noninverted signals. AND operations are executed
for preset signals among the decoded signals in the AND array,
that is, a specific product term is selected in the AND array.
A product term is defined as a logical function expressed by
a logical product of logical variables P; and their negation P;
suchasa X 5.2 The operation of selecting a specific product
term is called a product-term operation.

Product terms to be selected are defined by designating
decoded signals for AND operations. These signals are ex-
pressed by crossing points (circles) on a vertical line (called
a product-term line) in the AND array. If a preset product
term is selected, signal 1 is fed to the OR array through the
product-term line. Inthe AND array, several product terms
to be selected are stored, and several product-term operations
are executed simultaneously. Then the resultant signals
obtained in the multiple product-term lines are fed to the OR
array.

OR operations are executed for preset signals in the prod-
uct-term lines in the OR array. Signals in the product-term
lines for OR operations are indicated by crossing points (cir-
cles) in the OR array. In general, any logical function can be
developed into a logical sum of product terms. Thus any
logical function can be implemented by combining both AND
and OR operations described above.

Figure 2(c) shows another expression of the same circuit by
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a logic array using a 2-bit decoder. The advantage of using
this logic array is to be able to reduce the number of prod-
uct-term lines, as compared with the logic array using 1-bit
decoders in Fig. 2(b). As is shown in Fig. 3(a), three output
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Fig. 2. Expressions of a half-adder circuit by (a) random logic, (b)
array logic using 1-bit decoders, and (c) array logic using a 2-bit de-
coder.
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Fig. 3. Output signals of a 2-bit decoder. (a) Truth table of the
signals and (b) logical functions obtained by combination of the sig-
nals.
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Fig. 4. Schematic diagram of the OLAP.

signals of 1 and one output signal of 0 are produced by a 2-bit
decoder for any pair of input binary signals. Figure 3(b) in-
dicates the function obtained by a logical product of the out-
puts from a 2-bit decoder. The figure shows that combination
of the output signals for a 2-bit decoder can realize all com-
binations of those from two 1-bit decoders. Thus array logic
with 2-bit decoders can also implement any logical opération
for the input signals by using the AND and the OR arrays as
well as that with 1-bit decoders.

3. IMPLEMENTATION OF OPTICAL ARRAY
LOGIC -

The OLAP is a processor executing any combinational logic
for two binary objects in parallel by changing the radiating
configuration of light sources (called a source pattern).”
Figure 4 is a schematic diagram of the OLAP. Although the
OLAP can execute any logical operation for pixels at the same

SOURCE

CODED
INPUT

SCREEN

(a)
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location in two input objects, i.e., a;; and b;j, operations for
those at different locations, such as a;; and b;j+1, have not been
clarified. It is shown that such neighborhood logical opera-
tions can be performed by referring to the concept of array
logic. Thus any parallel neighborhood logical operation can
be executed on the OLAP. ) ;

The operational mechanism of the OLAP corresponds to
that of array logic except for parallelism. The OLAP operates
in a single-instruction-stream multidata-flow (SIMD) ar-
chitecture, and it processes whole-pixel data in input objects
inparallel. It can be pointed out that the operation for data
in a pixel by the OLAP corresponds to the operation by a logic
array with a 2-bit decoder. That is, replacement of input
pixels by code patterns corresponds to a decoding operation
by a 2-bit decoder in a logic array, and a source pattern cor-
responds to a combinational pattern of crossing points (circles)
on one product-term line in the AND array.

The OLAP is capable of executing a shift operation in
parallel. This operation serves to transmit data between a
pixel and neighboring ones. Using this property and intro-
ducing the concept of array logic, logical neighborhood oper-
ations by the OLAP can be generalized. Inthisidea, data of
a specific pixel and those of the neighbors are used as input
signals to a logic array for a pixel.

The OLAP operates in a SIMD architecture, so that logical
operations for all pixels in input objects can be executed in
parallel, maintaining the structure of the data arrangement.
That is, the value c;; of the ij pixel in output image Cis ex-
pressed by

¢y =R, by)  Gj=1,...,N), §)

where R( ) is the logical function, a;; and b;; are values of the
ij pixel and their neighbobrs in input objects A and B, respec-
tively, and N is the pixel size of both sides of the object. In
this case, N2 logical neighborhood operations are executed
simultaneously on the OLAP. In what follows, we call a
processing unit for one pixel a processing element.

In order to implement array logic optically, however, the
following three problems must be considered. The first
problem is how to execute AND operations in product-term
operations, the second one is how to implement multiple
product-term operations to realize combinational logic con-
sisting of several product terms, and the third one is how to
implement OR operations for the results of product-term
operations.

1 2 3
a =
i ] a+b
@ I 2-bit : a+b
by —| D.C. s ::E
> Cy)
{b)

Fig.5. Conceptual diagram of optical array logic. (a) Optical system and (b) corresponding logic array.
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Table 1. Source Patterns for Logiéal Functions Obtained by Combination of Output Signals of a 2-Bit Decoder

Source Pattern Function Symbol Source Pattern Function Symbol
0
( O) DON'T CARE (1 O) A+B PP
0 0 (V)
(O 0) A+B NN (1 0) AeB uuU
0 1 0 1
0 0 -
LY w Lo 5 :
1 0 1 0
(0 0) A 0 (1 0) AXB 01
1 1 1 1
01 —
( ) A+B PN (1 1) A 1
0 0 0 0
0 1 — 1 —
e 5 ; L B
0 1 0o 1
(0 1) AeB EE (1 1) AXB 11
1 0 1 0
01 — =
( ) AXB 00 (1 1) FALSE DD
1 1 1 1

The first problem is caused by the operational mechanism
of the OLAP. The OLAP achieves logical operations by
overlapping multiple projections of code patterns with one
other. Figure 5(a) shows this situation. For simplicity, we
consider the case in which four point sources are used. In the
OLAP, operations executed on the screen are OR operations,
judging whether light comes to boxed area on the screen or not.
That is, the output signal ¢;; of the ij processing element ob-
tained in the boxed area is expressed by

cij=aX (a,-j X bij) + X (a,-j X Eijl
+ v X (@ X bij) + 6 X (@; X bj), 2)

where a;; and b;; are input signals of the ij pixels in two input
objects, &, 3, v, and 6 are logical variables that correspond to
switching modes of individual point sources, and X, +, and —
show AND, OR, and NOT operators, respectively.

Of course, an AND operation can be implemented by
thresholding light intensity on the screen. In this case, output
value 1 is assigned to the brightest light signal projected onto
the screen. However, this processing is heavily affected by
shading caused by the optical setup of the OLAP. Therefore
another method is desirable for executing AND operations.

This problem can be solved by adopting dark true logic3 for
light signals projected on the screen. Dark true logic is logic
that a dark light signal designates logical value 1. According
to De Morgan’s theorem, negation of c;; becomes

Gj=[a+ (@;+ Bij_)_] X [B + (@ + byj)]
XY+ (a;j + b))l X [0+ (aij + b;p)].  (3)
Note that the term a;+ Eij, a;j + byj, a5+ Eij, or a;; + b in Eq.
(3) expresses any one of four output signals of a 2-bit decoder.
A specific combination of the values of ¢, 8, v, and §, which

is realizable by defining a source pattern, determines the
combination mode of decoded signals for the AND operation

in Eq. (8). For example, when « = 0, that is, the source a is
in the off state, the value of [& + (a;; + b;;)] becomes 1 re-
gardless of the value of @;; + b;;. Therefore the decoded signal
a; + 3,-,- is deleted from the operands of the AND operation of
Eq. (3). Inthe same manner, when the source 8, v, or 6 is in
the off state, the decoded signal @;; + byj, a;; + byj, or a;; + b
is deleted from the operands of the AND operation. Figure
5(b) indicates the logic array realized by the optical setup of
Fig. 5(a). Asis shown in the figure, a specific product term
is designated by a source pattern.

Table 1 shows the relation between source patterns and
logical operations realizable by the output signals of a 2-bit
decoder. By referring to Figs. 3(b) and 5, these relations can
be well understood. In the table, symbols identifying the
product-term operations are also tabulated; these will be used
in Section 4 for a description of programming for operation
of the OLAP.

The second problem is caused by the restriction that only
one or two product-term operations shown in Table 1 are ex-
ecuted at a time by the OLAP. This problem can be solved
by changing source patterns sequentially. That is, when a
desired logical operation is expressed by a logical sum of sev-
eral product terms, the source pattern is changed sequentially
so as to obtain results for individual product-term opera-
tions.

For example, a logical operation

cij =a; X b,'j 4)

can be implemented by using one source patgarn. However,
a logical operation consisting of more than one product term,
such as

¢ij = aij X byj + ayj41 X byja, (5)

is executed by sequential calculations of product terms. The
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Fig. 6. Schematic diagram of the OLAP using two wavelengths of
light. :
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Fig. 7. Method of separation of multiple color signals on the
screen.

logical sum of the two product-term operations gives the result
of the logical operation of Eq. (5).

Here, we comment on another technique to solve the second
problem. Although time-sequential control of source patterns
is attained easily, it wastes processing time. Thus use of a
method without loss of processing time is desirable. For this
purpose, a multiwavelength technique can be efficiently uti-
lized.

Figure 6 shows the schematic diagram of an optical
shadow-casting system using two different wavelengths of
light. The optical system is slightly different from the basic
type of OLAP in the arrangement of point sources and that
of the square windows of the decoding mask.

Implementation of array logic by using this optical system
is as follows: Multiple source patterns illuminate a coded
input object simultaneously. Individual source patterns
consist of point light sources radiating different wavelengths
of light. Although signals projected by multiple wavelengths
of light superpose one another on the screen, as is shown in Fig.
7, they can be separated through bandpass filters, which can
transmit light with a specific region of spectra. Thus multiple
product-term operations can be executed simultaneously, so
that high throughput of processing is expected in this system.
The number of product-term operations executed at a time
depends on the spectral resolution of light sources and
bandpass filters. The more product-term operations that can
be executed concurrently, the higher the capability of the
system can be.

The third problem arises from the technique for solving the
first problem that output signals must be treated by dark true
logic. When using dark true logic, we have to detect dark
signals of each product-term operation by checking its result.
Since individual signals are acquired time sequentially, a
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proper memory device must be used to record the sequentially
varying status.

Unfortunately, so far as we use conventional optical tech-
niques, real-time processing for this purpose cannot be real-
ized. To do so, a memory device, such as a spatial-light
modulator or a parallel electronic memory circuit, must be
used. That is, output signals in the intermediate stages are
obtained time sequentially. Thus these signals must be stored
in the memory device step by step. After all product-term
operations are completed, the status of the memory device
gives the result of the OR operation or that of the desired op-
eration. Output value 1 is assigned to the pixel that has re-
corded at least one dark signal during the product-term op-
erations. If we can use parallel memory elements, this pro-
cedure can be executed for all pixels in the object in parallel.
As a result, any parallel combinational logical operation can
be achieved.

By using the three techniques presented above, we can
optically implement array logic on the OLAP. The above

.explanation of array logic is concerned with an operation of

a single processing element. In practice, the same kind of
array logic is constructed for all processing elements; thus
parallel array logic is implemented on the OLAP. The con-
cept of this parallel array logic is rather different from that
of array logic in electronics, so that we call it optical array logic.
The optical array logic is parallel logic implemented optically,
in which operations for one pixel and its neighbors in input
objects are defined by using array logic.

The most worthwhile advantage of the use of optical array
logic is that any logical neighborhood operation can be defined
and executed by the OLAP in parallel. For example, if an
operation for a pixel and its neighbors is expressed in array
logic, the same operations are executable for all pixels in input
objects by controlling source patterns of the OLAP. Thus
parallel neighborhood logical operations are performed
easily.

4. PARALLEL 2-BIT ADDER BY OPTICAL
ARRAY LOGIC

To clarify the concept of optical array logic, we construct a
parallel 2-bit adder by using the OLAP as an example. Op-
erations of a 2-bit adder are expressed by the following three
logical equations:

S0 =ao ® by, . 6
s1= (a1 ® by) X @o + bo) + (a1 ® by) Xag X by, (7)
82=01Xb1+(a1+b1)xao)<b0, (8)

where a,, and b, are two input binary signals and s, are output
signals. Subscripts indicate their bit positions, and & denotes
the XOR operator.

To handle multibit signals by the OLAP, a procedure of
converting an original gray-level object into a bit-sliced version
is needed, in which bit signals of a pixel datum are arranged
so as to adjoin each other.l® Any bit signal can be accessed
by using a shift operation of the OLAP. Figure 8 shows an
optical system used for executing parallel 2-bit addition for
bit-sliced data.

Now, we consider the case in which the 2-bit signal of a
specific pixel consists of two code patterns shown at the bot-
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Fig. 8. OLAP for handling 2-bit signals.

tom of Fi:g. 8. Coded 2°- and 21-bit signals are set on the
right-hand and the left-hand sides of the pixel location, re-
spectively. By use of these data encoding and arrangement,
logical operations expressed by Eqgs. (6)-(8) can be executed
for bit signals adjoined in neighboring cells. (Here, a cell is
defined as one binary signal that describes a specific bit signal
of one pixel datum in the coded object.) That is, bit signals
for a;; and b;; are rearranged in the manner described by
relations

(k=0,1), (9)
(k=0,1), (10)

where (a;,);; and (by);; mean 2%-hit signals of the ij pixels in
objects A and B, respectively. Using the relations of Eqgs. (9)
and (10), Eqs. (6)~(8) are rewritten as

(s0)ij = aij ® byj, (11)

a;25+k = (ap)ij

bigj+r = (br)ij

(s1)ij = (@ij+1 ® bije1) X (@ + byj)
+ (@ij+1 ® bjjr1) X a;; X byj, (12)
(s2)ij = @ije1 Xbija1 + (@ije1 + bije1) X aij X by, (13)

where (s;);j means the output signal of the ij pixels in the 2%
bit. Operations described by Eqs. (11)-(13) can be imple-
mented for any pixel datum in the object when optical array
logic is utilized. Thus a parallel 2-bit adder can be easily
constructed by the OLAP with optical array logic.

To help programming with optical array logic, we introduce
a new notation shown in Table 1 in which product-term op-
erations for the outputs of one 2-bit decoder are indicated by
symbols, and the relative position of the operands of the op-
eration is expressed by the position of the symbol in brackets.
By using this notation, Eqs. (11)-(13) can be rewritten as

So=[..uu], (14)
81 = [UUNN] + [EE 11], (15)
Se=[11..] + [pP 11], (16)

where ..., PP, NN, 11, UU, and EE are symbols that mean
logical operations of DON'T CARE, A+ B,A+B,AXB,A ®
B,and A @ B. These are tabulated in the farthest-right col-
umn in Table 1; + means an OR operation for the results of the
bracketed operations or product-term operations. In addi-
tion, the bracketed symbols on the right-hand side are con-
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cerned with the ij pixels, and those on left-hand side are
concerned with the i, j + 1 pixels.

It should be noted that one bracketed symbol, such as
[. . UU], represents a source pattern used in the OLAP, as is
shown in Fig. 8. Thus, by using this notation, logical neigh-
borhood operations can be simply described and implemented
with the help of the concept of optical array logic. When a
desired operation is described by more than one pair of
brackets, it is executed by sequentially changing the source
patterns of the OLAP or by use of the wavelength-multi-
plexing technique: To obtain the final result, an OR operation
for the output signals acquired by all source patterns is
needed.

Figure 9 shows experimental results obtained by a parallel
2-bit addition by the OLAP. Figure 9(a) shows.the binary
representations of two 2-bit objects, which consist of 4 X 4
pixels. Figures 9(b), 9(c), and 9(d) are the results of opera-
tions of S, S1, and Sy, respectively. The numbers on right-
hand sides of Figs. 9(b)-9(d) are logical values to be ob-
tained.

To obtain a result of either S; or Sy, an OR operation for two
output signals projected by the stated source patterns is re-
quired. In the preliminary experiment, a photographic
technique is used for the OR operations. Two output signals

00 01 10 11 00 00 00 00
00 01 10 11 01 01 01 01
060 01 10 11 10 10 10 10

00 01 10 11 1 11 11 1

(a) INPUT A, B

0 1 0 1
1 0 1 0
0 1 o0 1
1 0 1 o0
(b) OUTPUT S
0 0 1 1
0 1 1 o0
1 1 0 o0
1 0 o0 1
(c) OUTPUT §;
0 0 o0 0
0 0 o0 1
0 0 1 1
0 1 1 1

(d) OouTePUT 8,

Fig.9. Experimental results of parallel 2-bit adder with optical array
logic. (a) Input objects expressed by binary codes; (b), (c), (d) results
of 20-,21-, and 22-bit signals. Right-hand sides of (b)~(d) show logical
values to be obtained. In dark true logic, dark signal corresponds to
logical value 1.
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Table 2. Some Examples of Processing Executable by
Optical-Logic-Array Processor?®

Source Pattern Operation
[EE EE] 2-bit COMPARATOR: A=B
[10..]
+
2-bit COMPARATOR: A>B
[pN 10]
[o1..]
+
2-bit COMPARATOR: A<B
e 01]
0. b c) abc
d e f. TEMPLATING with d e f for OBJECT A
Lg. h. i -] ghi
Ca b . abc
d e f TEMPLATING with.d e f for OBJECT B
g b Y ghi

%q,...,i: Oorl.

are recorded on negative films and printed on lithographic
films. Then they are overlaid upon each other. Hence pixels
of value 1 in the output image are obtained as dark points.
Comparison of the logical values indicated on the right-hand
side with the experimental results verifies the appropriateness
of the operations of parallel 2-bit addition by using optical
array logic.

Table 2 shows examples of operations executable on the
OLAP that are programmed with optical array logic. Other
kinds of logical neighborhood operations can be implemented
if proper data arrangements are devised. Logical pattern
matching presented in Ref. 10 can be also described by this
notation. ‘

It should be noted that the number of data points in the
input object placed in the optical system determines that of
processing elements. To execute a specific operation, the
corresponding source pattern is used, regardless of the number
of data points and their arrangement, even for the object with
4 X 4 pixels or 1000 X 200 pixels. Thus large amounts of data
can be processed in parallel by an optical system with a simple
architecture, which is the most salient feature of optical array
logic.

5. OPTICAL PARALLEL ARRAY-LOGIC SYSTEM

The most primitive architecture of an optical parallel digital
processing system is that composed of many 2-D parallel
logical-gate devices shown in Fig. 10(a).! We call this type
of system a parallel random-logic system. The feature of this
system is that the theory and the techniques used in the field
of electronics can be directly applied. Unfortunately, the
optical computing system with this architecture requires a
large number of parallel logical-gate devices if we construct
a practical system. Therefore, in such a system, problems of
light attenuation and time delay resulting from light trans-
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mission through those devices must be fully considered. In
addition, such a system shows poor cost performance.

Of course, the parallel random-logic system can be con-
structed by using the OLAP’s. If we utilize the concept of
optical array logic, a more efficient system than the parallel
random-logic system can be constructed by the OLAP. In
this system, the OLAP would operate merely not as a parallel
logical-gate device but as a parallel-processing unit that can
dynamically execute various operations shown in Fig.
10(b).

The OLAP can achieve any parallel logical operation based
on the concept of optical array logic. When we construct a
parallel-processing unit by the OLAP, one source pattern
plays a role of one microinstruction in an electronic computer,
and hence macro operations are executed by controlling source
patterns. Thus, if we adopt the architecture of optical par-
allel-processing systems based on the concept of optical array
logic, the number of parallel logical-gate devices used can be
extremely reduced. As a result, the signal flow of a large
amount of data can be greatly simplified as compared with
that in the parallel random-logic system.

We call the system with the architecture based on the
concept of optical array logic OPALS. OPALS is an optical
digital-computing system composed of parallel-processing
units that are implemented by the OLAP with the concept of
optical array logic. Figure 11 shows a diagram of one version
of OPALS executable for any logical operation for 8 neighbor
pixels in parallel. For simplicity, one processing element for
the ij pixels is depicted in the figure. In the system of Fig. 11,
we assume that encoding of input signals and processing of
output signals are performed by electronic techniques.
Further, four kinds of wavelengths of light are used in the
system, so that four independent product-term operations are
executed simultaneously.

Procedures of processing by the OPALS are as follows:
Two input objects A and B are coded into the transparent
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Fig. 10. Illustrating diagrams of two optical parallel digital-pro-

cessing systems. (a) Parallel random-logic system and (b) parallel
array-logic system based on variable parallel-processing units.



1252 dJ. Opt. Soc. Am. A/Vol. 2, No. 8/August 1985
INPUT OUTPUT
OBJECT IMAGE

dJ. Tanida and Y. Ichioka

FILTER
A2,
W

MEMORY OuTPUT

|
| et

Fig. 11. Schematic diagram of
OPALS. For simplicity, one pro-
cessing element for the ij pixels is
depicted.

Mizl3ls
READ OUT
SOURCE ENCODER
CONTROLL! i)
T DELAY
I 't [ t b|jt:= cut"
PROGRAM ay) by
INPUT
N L S T
a..t S a+b
1) g+
bt D.C 0+B
ij a+b
t
Oijn —
o D.C
ij+ L
t
Oisyg —
b D.C
i-13+1 L
t .
(URTE I
byt —
i-1§ L
t
G ———————
i-14-1
o D.C
i-1§-1 T
t
05 _—
i1
o D.C
ij-1
t
Uy ———]
1+13-1
b t D.c.
i41§-1 T ]
t
Oiyy  —
o D.C
TS A —
t
Qi g —
o D.C
i1+
vt
cij = bij

Fig.12. Expression of OPALS with the help of a concept of optical
array logic. For simplicity, processing for the ij pixels is depicted.
This processing is for detecting 4-neighbor points around a pixel.

coded version by the encoder. The coded object is illuminated
by source patterns controlled by the program with optical
array logic, as was described in Section 3. Four different
source patterns radiating different wavelengths of light exe-
cute four independent product-term operations simulta-

neously. For logical operations consisting of more than four
product terms, intermediate output signals are stored in the
memory device. The final result is obtained from the memory
device after all product-term operations are completed. This
result can also be used as one of the input signals for the next
step of operation. Thus iterative processing can be executed
on this system.

Figure 12 indicates one example of optical array logic im-
plemented on the OPALS in Fig. 11. The input signals for
the ij processing element consist of 18 values on the ij pixels
and their 8 neighbors in objects A and B. Each of four source
patterns radiating different wavelengths of light executes an
independent product-term operation. The logic array in Fig.
12 can detect all pixels of value 1 in parallel that connect with
at least a neighbor of value 1.

It should be noted that, although Figs. 11 and 12 are drawn
only for the ij processing element in the OPALS, the same
types of processing element are arranged for all pixels in input
objects in parallel and operate in a SIMD architecture. If two
input objects consist of 64 X 64 pixels, 16384 (= 64 X 64 X 4)
product-term operations for 18 variables are achieved by this
system at a time.

6. DISCUSSIONS AND SUMMARY

We have presented a novel control method for parallel logical
neighborhood operations by the OLAP. This method is based
on the analogy between the mechanism of the OLAP and that
of array logic. Any logical neighborhood operation for all
pixels in input objects that are directly executed by the OLAP
can be simply described by using the concept of array logic.
We named the optically implemented parallel logic the optical
array logic.

We proposed an architecture of an optical parallel com-
puting system consisting of parallel-processing units based
on the concept of optical array logic. This system is called
OPALS. Advantages of the OPALS compared with the op-
tical computing systems based on parallel random logic are
as follows:
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(1) Efficient use of features of light in information pro-
cessing.

(2) Reduction of the number of optical devices and elec-
tronic circuits.

(3) Simplification of data flow.

Other versions of the OPALS can be also constructed if we
devise the optical systems to be utilized.

Unfortunately the optical array logic presented in this paper
cannot implement multiple processing simultaneously. In
the electronic array logic of Fig. 2(b), signals s and ¢ are cal-
culated at one time. On the other hand, the optical array logic
in Fig. 5 provides output signals in parallel, but s and ¢ cannot
be obtained simultaneously. The reason is that multiple OR
operations on the OR array cannot be implemented by optical
array logic, and hence multiple product-term operations must

be carried out sequentially. Consequently, this incurs loss .

of processing time. However, considering the capability for
parallel processing in a SIMD architecture by the OPALS, this
does not seem to be a serious problem. Multiple processing
can be realized if the manner of data handling in the detecting
system is improved.

It is still difficult to solve the coding problem for input
objects of the OLAP. It becomes a serious problem especially
when iterative processing is required. The coding problem
was already discussed in other papers, and two useful optical
coding methods were presented.!:12 However, considering
the performance of optoelectronic devices available at present,
it is still better to use the electronic technique for encoding
and signal detection. Fortunately, the electronic circuit for
such purposes can be constructed for pixel by pixel and driven
in parallel. Thus the necessary circuits are easily fabricated
by using large-scale integrated-circuit technology.

The most salient feature of the OLAP is that it has pro-
grammability with optical array logic. Although the OLAP
can make both digital and analog processing, from a practical
point of view a digital operation is more desirable than an
analog one because the former requires a less-delicate optical
setup than the latter. In addition, in digital operation we need
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not consider the effect of shading caused by a shadow-casting
system.

The OPALS described in this paper is a kind of optoelec-
tronic processing system. At present, a few kinds of spatial- -
light modulators can be used to execute desired processing,
so that this type of OPALS seems to be one of most realizable
systems. If the electronic part of the system can be replaced
by efficient optical devices, the OPALS would become one of
the powerful digital optical computing systems.
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