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Wavelet Packet Transform for RMS
Values and Power Measurements

Effrina Yanti Hamid, Zen-Ichiro Kawasaki

Author Affiliation: Department of Electrical Engineering, Gradu-
ate School of Engineering, Osaka University, Osaka, Japan.

Abstract: This letter proposes an approach based on wavelet packet
transform (WPT) for root mean square (rms) values of voltage and
power measurements. The algorithm can simultaneously measure the
distribution of the rms of voltage or current and power with respect to
individual frequency bands from the wavelet coefficients associated
with each voltage current pair. The advantage of the WPT is that it can
decompose a power system waveform into uniform frequency bands,
which are important for identification of harmonic components and
measurement of harmonic parameters. The algorithm is validated using
simulated waveforms.

Keywords: Power, rms value, harmonic, wavelets, wavelet packet.
Introduction: Power quality is an issue of increasing concern to

utilities and their customers. One of the major power system problems
is steady-state waveform distortion due to harmonics. Harmonics are
produced by variable speed drives, arc furnaces, personal computers,
and other nonlinear devices. Since harmonics can severely degrade the
performance of power supplies and their connected equipment, it is
necessary to always monitor harmonic parameters such as voltage, cur-
rent, and power [1]-[2].

There has not been much work on applying wavelet transform for
rms voltage and power measurements. The discrete wavelet transform
(DWT) algorithm for rms value of voltage or current and active power
measurements has first been introduced in the literature [3]. The results
show that the discrete wavelet-based algorithm could quantify the rms
value of voltage or current and power of several harmonics within each
frequency band. The waveform decomposition results using the DWT
provide nonuniform frequency bands, however. For instance, at a
higher level of decomposition, the frequency band becomes wider. As a
result, frequency bands at the higher levels cover more harmonic com-
ponents than those at lower levels. Therefore, the discrete wave-
let-based algorithm cannot be used to measure the rms value of voltage
or current and power of individual harmonic components [3]. In prac-
tice, it is important to be able to identify the rms value of voltage or cur-
rent and power of individual harmonic components in order to know the
sources and thus to eliminate their effects [1]-[2].

To overcome the limitation, the DWT algorithm is expanded to
WPT algorithm in this study. Similar to the DWT algorithm, in the
WPT algorithm the input waveform is decomposed into wavelet coeffi-
cients, and frequency separation is achieved using a wavelet filter. The
advantage of the WPT is that it can decompose a waveform into uni-
form frequency bands, so that this WPT algorithm has a capability to
measure the rms value of voltage or current and power of individual
harmonic components. In the wavelet transform, there are many types
of wavelet filters. Here, we simply select the Vaidyanathan filter be-
cause of its good frequency selectivity [4].

WPT: While a detailed mathematical background of WPT can be
found in [4], a brief summary is given in this section. The WPT is a direct
expansion from the pyramid tree (or DWT) algorithm to a full binary tree.
In the DWT algorithm the detail coefficients (or the output from high-pass
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filtering) are not used for further decomposition, only the approximation
coefficients (or the output from low-pass filtering) at each level are treated
to yield further approximation and detail coefficients. In the WPT algo-
rithm, both the detail and approximation coefficients are decomposed into
lower levels to produce further coefficients (hereafter, both detail and ap-
proximation coefficients are called wavelet coefficients).

Wavelet packet decomposition is depicted in Figure 1. Let the origi-
nal waveform contain 2N sampling points. The wavelet coefficient at
the level jth, kth sampling point, and node ith, where i N j= −−0 2 2 2, ,...,
(even) and j N=1 2, ,..., , is dj k

i
, . This coefficient is obtained by

convolving the sequence dj k
i

+ 1
2

,
/ with low-pass filter h k− , and then

down-sampling by a factor of two. Similarly, the wavelet coefficient at
node i N j= −−1 3 2 1, ,..., (odd) is obtained by convolving the sequence
dj k

i
+
−
1
1 2
,

( ) / with high-pass filter g k− and down-sampling by a factor of two.
The number of nodes at level j is 2N j− , and the node at level N is the
original waveform. The filters h k− and g k− are a pair of conjugate mirror
filters (QMF), meaning that both filters use the same set of coefficients,
but with alternating signs and in reverse order. The Vaidyanathan filter
is used in this study and the filter coefficients can be found in [4].

The time resolution of dj k
i
, is half that of dj k

i
+ 1, due to the

down-sampling. As a result, if dj k
i

+ 1, has 2 1j + sampling points
( , , ..., )k j= −+0 1 2 11 for the entire observation period, then dj k

i
, will have

2 j sampling points ( , , ..., )k j= −0 1 2 1 for the same observation period.
Each node at level j has 2 j sampling points or wavelet coefficients.

RMS Values and Power Measurements: The derivation of both
the rms values of voltage or current and power equations using the dis-
crete wavelet-based algorithm can be found in [3]. The following equa-
tions are extended forms from the DWT algorithm. The measurements
consist of I rms , Vrms , and active power (P). The definitions of these pa-
rameters are as follows (IEEE Std. 100-88):

I
T

i dt V
T

v dt P
T

i v dtt

T

t

T

t t

T

rms rms= = =∫ ∫ ∫
1 1 12

0

2

0 0

, , ,

where it and vt are, respectively, the analog current and voltage wave-
forms, which are periodic during the observation period T. In practice,
the analog waveforms are digitized. Here, in and vn will be the digitized
waveforms of it and vt , respectively, with n N= −0 1 2 1, ,..., .

RMS Calculations: rms of current or voltage in wavelet domain
can be written as follows:
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where dj k
i
, and dj k

i
,

* are the wavelet coefficients of in andvn , respectively. I j
i

and Vj
i are, respectively, the rms values of current and voltage for the fre-

quency band at node i and level j. In the WPT algorithm, only the wavelet
coefficients at a certain level j are used for the rms and power calculations.

Power Calculation: The power calculation in wavelet domain is
done simply by multiplying the wavelet coefficients of current to those
of voltage for every node at the same level, as follows:
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where Pj
i is the power for frequency band at node i and level j.

Evaluation: To test the performance of rms values of voltage and
current power measurements using the WPT algorithm, simulated cur-
rent and voltage waveforms will be analyzed. Each waveform has
128 7( )N = sampling points per 60-Hz fundamental cycle and contains
first, third, fifth, seventh, eleventh, thirteenth, and seventeenth harmon-
ics (odd integer harmonics), as follows:
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All calculations in this algorithm use Matlab and WaveLab v.802 soft-
ware package [5].

First, both current and voltage waveforms are decomposed via the
WPT algorithm as described in the section “WPT.” Next, only the
wavelet coefficients at level 2 are used to calculate rms values of volt-
age, current, and power because each frequency band (or each node) at
level 2 completely covers a respective harmonic component. Figure 2
shows the wavelet coefficients of current, voltage, and power for se-
lected nodes. Level 2 has 32 nodes and each node has four coefficients.
The wavelet coefficients at all nodes are then fed into (1) and (2) to
compute the rms values and power, respectively.
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Figure 1. Wavelet packet decomposition with successive filterings and
downsamplings

Figure 2. Wavelet coefficients of the current, voltage, and power at level 2 for
the first eleven nodes. The rest of the nodes have very small or zero coeffi-
cients. (The ratios of node 0 and the other nodes are, respectively, 1:5, 1:5, and
1:50 for current, voltage, and power.)



Table 1 shows the calculation results based on using the WPT algo-
rithm along with the true rms and power values. The true values are de-
rived from analytical calculations. The table shows that the WPT
algorithm can compute the rms values and power of each harmonic
component. The total results of rms values and power are the same in all
cases. This proves that rms values and power measurements using the
WPT algorithm are valid. Leakage occurs to the measurement results at
some frequency bands, however. These errors are due to the roll-off
characteristics of the low-pass and high-pass filter pairs.

Conclusions: A WPT-based approach has been proposed to im-
prove the DWT-based approach for the rms values and power measure-
ments. The algorithm can separate harmonic components of power
system waveforms and measure the rms values and power of each har-
monic component. The test using a simulated current voltage pair
shows that the total results of rms values and power are the same as
those derived from analytical calculations. The leakage occurs to the
rms values and power at some frequency bands due to the roll-off char-
acteristics of the wavelet filter, however. Hence, further study will be
intended to find a suitable wavelet filter, which is able to minimize the
error of rms values and power for all frequency bands.
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Finite Elements for Electric Power Engineers

O.W. Andersen

Author Affiliation: Norwegian Institute of Technology,
Trondheim, Norway.

Abstract: Finite element analysis of electric and magnetic fields is
becoming more and more of an indispensable tool for power engineers.
The necessary equations are derived here in an unconventional way,
which is intended to be easy to follow and give students and users of
commercial computer programs a better understanding of how the
method works.

Keywords: Finite elements, electric fields, magnetic fields.
Introduction: Commercially available computer programs provide

solutions, but in order to use them confidently and intelligently, it is
highly desirable that the users understand how the field problems are
solved by using the finite element method.

Unfortunately, textbooks on this subject are not easily accessible.
They either explain the finite element method based on variational cal-
culus or on the Galerkin weighted residual approach. Both are highly
mathematical. They also generally describe calculations both in two
and three dimensions, elements of different types, and not only linear
variation of potentials within elements.

For two-dimensional fields (flat or axisymmetric) and linear varia-
tion of potentials within triangular elements, which cover most of the
applications in power engineering, it will be shown here how the same
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Figure 1. Cylinder over plane

Table 1. Comparison results between calculated and true values of rms and power measurements;
values of rms and power for the rest of nodes are very small or zero)

Node
Frequency
Band (Hz)

Harmonic
Component True Irms True Vrms True Power

Calculated
Irms

Calculated
Vrms

Calculated
Power

0 DC-120 1st 1.0000 1.0000 0.9848 1.0000 1.0000 0.9848

1 120-240 3rd 0.1000 0.2000 0.0197 0.0941 0.2130 0.0197

2 240-360 5th 0.0800 0.2000 -0.0139 0.0870 0.1858 -0.0139

3 360-480 7th 0.0800 0.1000 0.0069 0.0756 0.0945 0.0062

4 480-600 9th 0 0 0 0.0263 0.0329 0.0008

5 600-720 11th 0.0700 0.1000 0.0063 0.0691 0.1050 0.0069

6 720-840 13th 0.0800 0.1000 -0.0040 0.0795 0.0935 -0.0044

7 840-960 15th 0 0 0 0.0260 0.0417 0.0011

8 960-1080 17th 0.0500 0.0800 0.0040 0.0427 0.0683 0.0029

9 1080-1200 19th 0 0 0 0.0138 0.0173 -0.0001

10 1200-1320 21st 0 0 0 0.0019 0.0013 0

11 1320-1440 23rd 0 0 0 0 0 0

12 1440-1560 25th 0 0 0 0 0 0

Total 1.0181 1.0566 1.0039 1.0181 1.0566 1.0039


