

Title	VUV/XUV領域の高次高調波計測のための蛍光体発光特 性評価		
Author(s)	山本, 雅史; 羽原, 英明; 堀邊, 英夫 他		
Citation	電子情報通信学会論文誌 C, エレクトロニクス. 2008, J91-C(7), p. 370-377		
Version Type	VoR		
URL	https://hdl.handle.net/11094/3336		
rights	copyright©2008 IEICE		
Note			

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

VUV/XUV 領域の高次高調波計測のための蛍光体発光特性評価

山本 雅史^{†a)} 羽原 英明^{††} 堀邊 英夫[†] 田中 和夫^{††} 草野 英二[†]

Evaluatation of Photoluminescent Properties on Phosphors for Measuring High-Order Harmonics in Vacuum Ultra-Violet and Extreme Ultra-Violet Region

Masashi YAMAMOTO^{†a)}, Hideaki HABARA^{††}, Hideo HORIBE[†], Kazuo A. TANAKA^{††}, and Eiji KUSANO[†]

あらまし 本論文では、VUV (Vacuum ultraviolet)/XUV (Extreme ultraviolet)領域の光に対する蛍光体の光変換素子性能について報告する、VUV/XUV 光のイメージング素子には、XUV 用 CCD カメラや MCP (Micro-Channel Plate)などがあるが、これらは一般に非常に高価である。これに変わるイメージング素子として、VUV/XUV 光を可視光に光変換する蛍光体を可視用 CCD カメラと組み合わせることを考え、蛍光体の発光特性を評価した、蛍光体を VUV/XUV 光のイメージング素子とした場合、Zn₂SiO₄:Mn²⁺ (1.8 mg/cm²)を用いると 12 μ m 以下のにじみで VUV/XUV 光をイメージングできることが分かった。また、蛍光発光量は、励起光量が約 5 × 10¹³ 個/s cm² 以上になると線形な増加を示すことが分かった。この線形領域において、蛍光体を VUV/XUV 光の光量計測素子とした場合、蛍光発光量を 1%の精度で計測することで励起光量を約 0.5%の精度で求めることができる。更に、30~117 nm の励起波長域における蛍光発光の量子効率は、Zn₂SiO₄:Mn²⁺の方が BaMgAl₁₀O₁₇:Eu²⁺ より約 2 倍高く、蛍光発光量としては、BaMgAl₁₀O₁₇:Eu²⁺ の方が BaMgAl₁₀O₁₇:Eu²⁺ より約 100 倍多くなると見積もられた。

キーワード VUV/XUV,高次高調波,蛍光体,Zn₂SiO₄:Mn²⁺,BaMgAl₁₀O₁₇:Eu²⁺

1. まえがき

G. Mourou によってチャープパルス増幅技術 [1] が確 立されたことにより,レーザ強度は飛躍的に向上した. 核融合用のシングルショット Nd:glass レーザではパルス 幅数 100 fs (1 fs = 10^{15} s)で PW(1 PW = 10^{15} W) クラスの出力 [2],実験室レベルで使用される 10 Hz の Ti:sapphire レーザでもパルス幅数 10 fs で 100 TW (1 TW = 10^{12} W)[3] が達成されている.このような 超高強度レーザを物質に照射すると,非常に高次の高 調波が発生し [4]~[8],これまでに 109 次までの高調 波が計測されている[8].このような高次高調波は,基 本波と同程度の極短パルスであり,ある程度時間的・ 空間的コヒーレンスをもっている.また,波長が短い ためフォトンエネルギーが高く,集光性も優れている ことから,産業分野や医療分野など幅広い分野への応 用が期待される.とりわけ,炭素の吸収端(4.37 nm) と酸素の吸収端 (2.33 nm) の間の "水の窓" と呼ばれ る領域では,水の吸収が炭素の吸収より小さくなるた め, ウェットな生体細胞の分析が可能となる [9], [10]. 更に,高調波はその次数が高い(波長が短い)ほど高 密度なプラズマ中を伝搬することができるため,高速 点火核融合[11]における高密度プラズマ診断のための ツールとしての応用も考えられる[12]~[16]. 高速点 火核融合では,超高強度レーザ照射によって発生する 高速電子が高密度プラズマ中を伝搬してコアを加熱・ 点火する.高速電子の高密度プラズマ中での伝搬につ いて,シミュレーションでは数多く研究がなされてい るが[17]~[19],実験的には計測されていない.高次

370

[†] 金沢工業大学大学院工学研究科材料設計工学専攻,白山市 Department of Material Design Engineering, Graduate School of Engineering, Kanazawa Institute of Technology, 3-1 Yatsukaho, Hakusan-shi, 924-0838 Japan

^{††} 大阪大学大学院工学研究科電気電子情報工学専攻, 吹田市 Department of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, 2–6 Yamadaoka, Suita-shi, 565–0871 Japan

a) E-mail: m-yamamoto@venus.kanazawa-it.ac.jp

高調波をプローブ光として用いて高密度プラズマ中を 流れる高速電子流を調べることで,高速電子の高密度 プラズマ中での挙動やコアの加熱機構の解明に貢献で きると期待される.これは,プラズマ中を伝搬した高 調波を分光して計測することで調べる.一方,高次高 調波の光量は高次になるほど減少するため[20],[21], バックグラウンドの光(制動放射,プラズマ自発光 など)に埋もれてしまう.このため,比較的光量が多 く,固体密度相当のプラズマ中を伝搬できるような VUV/XUV領域の高次高調波が注目されている.

VUV/XUV 領域の光の検出器には,ホトダイオー ド,光電子増倍管, VUV/XUV 用 CCD や MCP など が挙げられる、超高強度レーザによって発生する高次 高調波の分光計測では,その発生時間が非常に短いた め,回折格子を用いて高調波を波長ごとに空間的に分 離することにより高調波の分光像を得る.また,プラ ズマ観測や生体細胞の分析などのように VUV/XUV 光のイメージングのニーズもある.したがって,画像 計測ができる VUV/XUV 用 CCD や MCP などが必 要とされるが,これらは非常に高価な計測器である. 我々は,これに代わって安価に VUV/XUV 領域の光 の画像計測をするために, VUV/XUV 光を可視光に 光変換して,可視用 CCD で計測することを考えた. 光変換素子として, UV/VUV 領域の光を可視光に変 換する蛍光体に注目した. VUV/XUV 領域の光は大 気の吸収が大きいため真空中でなければほとんど伝搬 できない.したがって,実際の高調波計測では,真空-大気窓の真空側に蛍光体を堆積させ,窓を通して蛍光 体裏面からの発光を大気側から可視用 CCD で計測す る.しかしながら, VUV/XUV 領域の光に対する蛍 光体膜の裏面からの発光特性については,ほとんど明 らかにされていない.そこで, VUV/XUV 領域の光 が照射されたときの蛍光体裏面からの発光特性を実験 的に調べた.

2. 実 験

2.1 蛍光体サンプルの準備

UV/VUV 領域の光で励起させるプラズマディスプ レイ (PDP)用蛍光体として一般によく知られてい る Zn₂SiO₄:Mn²⁺ (緑色発光),BaMgAl₁₀O₁₇:Eu²⁺ (青紫色発光)を用いた.Zn₂SiO₄:Mn²⁺の平均粒径 は 1.5 μm,BaMgAl₁₀O₁₇:Eu²⁺の平均粒径は 3.7 μm である.蛍光体膜は,凝集沈降法によりガラス基板上 に堆積させた.このガラス基板により VUV/XUV 領

表 1 蛍光体膜の厚みと面密度	
-----------------	--

 Table 1
 Thickness and screen density of phosphor films.

	Dhaalaan	Thickness	Screen density
	Pnosnors	$[\mu m]$	$[mg/cm^2]$
	$\rm Zn_2SiO_4:Mn^{2+}$	30	1.8
		40	3.6
		60	7.2
	$\mathrm{BaMgAl_{10}O_{17}:}\mathrm{Eu^{2+}}$	50	1.5
		80	3.2
		120	7.2

域の照射光を遮断することで,蛍光体裏面側へ照射光 が透過しないようにしている.各蛍光体サンプルの膜 厚及び面密度を表1に示す.蛍光体膜の表面状態は peak-valley で 10 μ m 程度の平たん性をもっている. 蛍光体の発光効率に大きく影響する発光中心イオン 濃度に関して,最適な濃度は 10~20%程度 [22]~[26] と報告されているが,今回の方法で作成した各蛍光体 膜のイオン濃度は,それぞれ Zn₂SiO₄:Mn²⁺では約 18±2%,BaMgAl₁₀O₁₇:Eu²⁺では約8±2%である. また,作製した各蛍光体膜と母結晶(発光イオンのな い結晶)[27]~[29] の結晶性はほぼ同じであったため, イオンがそれぞれ固溶置換されていると考えられる.

2.2 蛍光発光特性の評価

2.2.1 蛍光体裏面からの蛍光発光像の解像度評価 蛍光体を用いて VUV/XUV 光のイメージを得ると き,蛍光発光像の解像度は重要なパラメータとなる. とりわけ,高調波の分光計測では分光像が得られるた め,その像の解像度が高調波の波長分解の精度とな る.励起光源には9次高調波(@117 nm)に近い波長 の光が得られる D₂ ランプ(ACTON DS-775)を用 いた.D₂ ランプの波長帯域はブロードであるが,大 気中を伝搬させることで波長 121 nm 近傍の光が得ら れるようにした.これをピンホールを通して蛍光体に 照射したときの蛍光体裏面からの発光像を,可視用 CCD カメラ(ToshibaTeli Cs3950DiF)を用いて解 像度 12 µm/pixel の光学系により計測した.ピンホー ル像に対する蛍光体裏面からの発光像のにじみを調べ, 解像度を評価した.

2.2.2 蛍光発光量の励起光量依存性

励起光量と蛍光発光量の間の相関が分かれば, 蛍光 発光量から励起光量を知ることができる.そこで, 励 起光量を変化させたときの蛍光体からの発光量の変化 を調べた.図1に実験配置を示す.光源には,前述と 同様に D₂ ランプ(@121 nm)を用いた.これを球面 ミラーで集光し,ピンホール(直径 1 mm)を通して 蛍光体面上に照射した.ピンホールは,照射面積を一 定にするために配置した.このときの蛍光体裏面から の発光を立体角 0.2 sr のレンズで集光し,冷却式高感 度可視用 CCD カメラ(Apogee AP260Ep)で計測し た.照射強度の調整は集光位置を変えることで行った. 照射光量はホトダイオード(IRD AXUV-100)で計 測した.

2.2.3 蛍光発光量の励起波長依存性

高調波で励起したときの蛍光発光量は, 蛍光発光効 率と高調波光量との積で求められる.超高強度レー ザとプラズマとの相互作用で発生する高調波光量に ついては,これまでの研究[20],[21]からある程度見 積もることができる.そこで,高調波が蛍光体に照 射されたときの蛍光発光量を評価するために,9次 (@117 nm)から 35 次(@30 nm)までの高次高調波 に相当する VUV/XUV 領域の光に対する蛍光体膜の 裏面からの発光量を計測した、励起光源としては、自 然科学研究機構分子科学研究所極端紫外光実験施設 (UVSOR)のビームライン BL-5B を利用した.この ビームラインでは,波長10~117nmの光を波長分解 能 $\lambda/\Delta\lambda = 500$, 光子数 $10^8 \sim 10^{11}$ 個/s で得られる. パルス幅及び周波数はそれぞれ 400 ps, 90.1 MHz で ある.照射光は, 偏光依存性がないようにするために, 蛍光体に垂直入射させた.照射光量及び蛍光発光量を ホトダイオード (AXUV100, 受光立体角 12 msr)を 用いて計測した.ホトダイオードは,蛍光発光領域か ら裏面垂直及び裏面 45° に 80 mm 離れたところに配 置し,発光量計測により蛍光発光がほぼ等方的に放射 されていることをモニタリングした.ホトダイオード の光電流値から励起光子数及び発光光子数を算出し、 ホトダイオードの感度及び受光立体角を補正すること で単位立体当りの量子効率を求めた.

図 1 励起光強度を変えたときの蛍光発光量を計測する実 験セットアップ

Fig. 1 Experimental set-up for measurement of photoluminescent fluence at varying pump light intensity.

3. 結果と考察

3.1 蛍光体裏面からの蛍光発光像の観測結果図 2 に, CCD カメラで観察したピンホール像及

び蛍光体裏面からの蛍光発光像を示す.面密度が 増加するほどピンホール像に比べ発光像が広がる ことが分かった.ピンホール像が2×2pixel であ るのに対し, Zn₂SiO₄:Mn²⁺ (1.8 mg/cm²)の発光 像は 3×3 pixel, BaMgAl₁₀O₁₇:Eu²⁺(1.5 mg/cm²) の発光像は 6×6 pixel となった.このことから, Zn₂SiO₄:Mn²⁺ で 1.5 倍, BaMgAl₁₀O₁₇:Eu²⁺ で 3 倍まで,ピンホール像に対して蛍光発光像が広がって しまうことが明らかとなった.ほぼ同様な面密度にも かかわらず像の広がりが異なることから,像のにじみ は厚みによる影響が大きいと考えられる. 蛍光発光を 裏面から観察することは,真空中でなければ減衰が 大きい VUV/XUV 光を, ガラス基板上に成膜した蛍 光体膜からの発光を介して大気側から計測できる利 点がある. $Zn_2SiO_4:Mn^{2+}$ ($1.8\,mg/cm^2$)を用いると 12 µm のにじみで VUV/XUV 光をイメージングでき ることが分かった.また,このにじみ量は,10次高調 波(@105 nm)を波長分解能 $\lambda/\Delta\lambda = 300$ で分光計 測できる分光光学系があるとき, 蛍光体の発光像のに じみにより実際の波長分解能が $\lambda/\Delta\lambda = 260$ まで低 下することを意味する.したがって,10次高調波を約 0.4 nm の波長分解能で分光計測できると考えられる.

3.2 励起光量に対する蛍光発光量の依存性

励起光量と蛍光発光量との間の相関を図3に示す. この図において,用いた蛍光体の蛍光発光波長(光 子エネルギー)がそれぞれ異なることから,比較の ためにそれぞれの蛍光発光量を光子数で表している.

この結果から,蛍光発光量は,励起光量が約 $10^{13.7}$ (5× 10^{13})個/s cm²以上になると線形な増加を示す ことが分かった.それぞれの傾きは,Zn₂SiO₄:Mn²⁺ では1.70,BaMgAl₁₀O₁₇:Eu²⁺では1.76であった. この線形領域において,励起光量が26%(対数値で 0.1)増加すると,蛍光発光量はZn₂SiO₄:Mn²⁺で 48%,BaMgAl₁₀O₁₇:Eu²⁺で50%増加する.このこ とから,蛍光発光量を1%の精度で計測することで, Zn₂SiO₄:Mn²⁺では0.54%BaMgAl₁₀O₁₇:Eu²⁺で は0.52%の精度で励起光量を求めることができると考 えられる.

3.3 蛍光発光の量子効率の励起波長依存性

VUV/XUV 領域のような波長の短い光で蛍光体 を励起すると, Interband Auger-Multiphoton Emission により蛍光体からの発光の量子効率が1以上にな るといわれている[30]. $Zn_2SiO_4:Mn^{2+}$ に関しては, VUV/XUV 光で励起したとき発光効率が上昇するこ とが調べられているが[22], BaMgAl₁₀O₁₇:Eu²⁺に 関するデータはない.また,蛍光発光量を知るために 必要な受光立体角に関しては明記されていない.そこ で,ホトダイオードの受光立体角12 msr を考慮した 励起光及び蛍光発光の光子数を求め,量子効率を算出 した.まず,励起光のホトダイオード電流値 I_{pump} [A] と単位時間当りの入射励起光子数 N_{pump} [s⁻¹] の関係 を次式に示す.

$$I_{\text{pump}} = e \, Q E(\lambda_{\text{pump}}) \, N_{\text{pump}} \tag{1}$$

ここで, e は電荷素量, $QE(\lambda_{pump})$ は励起光に対する ホトダイオードの感度を示す.次に, 蛍光発光のホトダ イオード電流値 I_{lumi} [A] と蛍光発光光子数 N_{lumi} [s⁻¹] の関係を次式に示す.

$$I_{\text{lumi}} = \int_{\lambda_{\min}}^{\lambda_{\max}} e \, QE(\lambda) \, N(\lambda) \, d\lambda$$
$$= \int_{\lambda_{\min}}^{\lambda_{\max}} e \, QE(\lambda) \, SP(\lambda) \cdot N_{\text{lumi}} \, d\lambda$$
$$= e \, N_{\text{lumi}} \int_{\lambda_{\min}}^{\lambda_{\max}} QE(\lambda) \, SP(\lambda) \, d\lambda \qquad (2)$$

ここで, λ_{\max} 及び λ_{\min} はそれぞれ蛍光発光スペクト ルの長波長端及び短波長端を示す.また, $SP(\lambda)$ は蛍 光発光スペクトル強度であり,次のように規格化する.

$$\int_{-\infty}^{\infty} SP(\lambda) \, d\lambda = 1 \tag{3}$$

373

式 (1) 及び式 (2) より , 量子効率 η を求めた .

$$\eta = \frac{N_{\text{lumi}}}{N_{\text{pump}}}$$

$$= \frac{\frac{I_{\text{lumi}}}{e \int_{\lambda_{\min}}^{\lambda_{\max}} QE(\lambda) SP(\lambda) d\lambda}}{\frac{I_{\text{pump}}}{e QE(\lambda_{\text{pump}})}}$$

$$= \frac{I_{\text{lumi}}}{I_{\text{pump}}} \frac{QE(\lambda_{\text{pump}})}{\int_{\lambda_{\min}}^{\lambda_{\max}} QE(\lambda) SP(\lambda) d\lambda}$$
(4)

この式を用いて,9次高調波(@117 nm)から35次 高調波(@30 nm)に相当する VUV/XUV 光を蛍光 体に照射したときの裏面方向への単位立体角当りの 量子効率を求めた.量子効率の波長依存性を図4に 示す.蛍光発光の量子効率は,Zn₂SiO₄:Mn²⁺の方 がBaMgAl₁₀O₁₇:Eu²⁺より約2倍高くなることが分 かった.

この量子効率の結果と P. Gibbon の式 [20] より求 められる高次高調波の光量から蛍光発光量を見積もっ た.ここで,UVSOR では周波数 90.1 MHz,パルス 幅 400 ps の励起光を照射しており,蛍光体の発光寿 命 [31],[32] に比べて周期が非常に短い.高次高調波 は1パルスで得られるため,このときの蛍光発光量は UVSOR 実験における1パルス当りの蛍光発光量から 校正して求めた.式 (5) に P. Gibbon の式を示す.

$$\eta_n \sim 9 \times 10^{-5} \left(\frac{I\lambda^2}{10^{18} [\text{Wcm}^{-2} \mu \text{m}^{-2}]} \right)^2 \left(\frac{n}{10} \right)^{-5}$$
(5)

この式は,レーザと固体ターゲットとの相互作用によ

図 4 VUV/XUV 領域における蛍光発光量子効率の励起 波長依存性

Fig. 4 Dependences of photoluminescent quantum efficiency on pump wavelength in VUV/XUV region.

リ発生する高次高調波の変換効率を示しており,実験 結果を PIC シュミレーションで検証したものである. η_n は n 次高調波の変換効率,I はレーザ強度, λ は レーザ波長(@1053 nm)を表している.レーザエネ ルギー E [J] 及び高調波変換効率より励起光量(光子 数)が求まり,式(4) 及び式(5)より蛍光発光光量(光 子数)が見積もられる(式(6)).蛍光発光の減衰を指 数関数で近似し,蛍光発光量が1/100 に減衰するまで の時間 τ_{lumi} を, Zn_2SiO_4 : Mn^{2+} では約40 ms[31], BaMgAl₁₀O₁₇:Eu²⁺では約0.1 ms[32] とした.実際 は,レーザ条件によって決まる η_n に加え,光計測条 件(受光立体角,光学的損失など)を考慮する必要が ある.

$$N_{\text{lumi0}} = \int_0^\infty N_{\text{lumi}}(\lambda) \ e^{-\frac{1}{\tau_{\text{lumi}}t}t} \ dt$$
$$= \eta \int N_{\text{pump}} \ dt = \eta \left(\frac{\eta_n E}{h\nu_n}\right) \tag{6}$$

蛍光発光を一般的な可視用 CCD カメラで計測する とき,発光量を光子数で表すよりも照度 Lx(単位: $lx = lm/m^2$)の方が扱いやすい.照度は次式で表さ れる.

$$Lx = \frac{683}{S} \int_{\lambda_{\min}}^{\lambda_{\max}} \Phi_{\text{lumi}}(\lambda) \times V(\lambda) \, d\lambda \tag{7}$$

ここで,Sは照射面積,683(単位:lm/W)は最大視 感効果度を示す定数である. $\Phi_{lumi}(\lambda)$ は波長 λ の光 放射束(単位時間当りの光量:W)であり,

$$\Phi_{\text{lumi}}(\lambda) = \frac{N_{\text{lumi0}} SP(\lambda) \cdot h\nu(\lambda)}{\tau_{\text{lumi}}}$$
(8)

Fig. 5 Relative photoluminescent (PL) illuminance excited by high-order harmonics.

Fig. 6 Relative photoluminescent (PL) intensity excited by high-order harmonics.

で表される . $V(\lambda)$ は標準視準感度係数であり,波長 555 nm を最大 (1) とする正規分布関数で表される. 式 (8) を式 (7) に代入することによって求めた高調波 励起による相対蛍光発光照度を図 5 に示す.この図か ら, BaMgAl₁₀O₁₇:Eu²⁺の方が Zn₂SiO₄:Mn²⁺より 約 3 倍の照度を得られることが分かった.

これに対して, 蛍光発光時間(τ_{1umi})を考慮するこ とで求めた相対的な蛍光発光量を図 6 に示す. CCD カメラのシャッター時間が蛍光発光寿命より長けれ ば, Zn₂SiO₄:Mn²⁺の方が BaMgAl₁₀O₁₇:Eu²⁺より 約 100 倍の光量を得られることが見積もられた.

4. む す び

PDP 用蛍光体を VUV/XUV 領域の光で励起したときの蛍光発光特性について評価した.

蛍光体を VUV/XUV 光のイメージング素子として 考えたとき、その蛍光発光像は、用いたピンホール像 に対して Zn₂SiO₄:Mn²⁺ (1.8 mg/cm^2)を用いるこ とで 1.5 倍、BaMgAl₁₀O₁₇:Eu²⁺ (1.5 mg/cm^2)を 用いることで 3 倍にまで広がることが明らかとなった . Zn₂SiO₄:Mn²⁺ (1.8 mg/cm^2)を用いて 12 μ m のに じみで VUV/XUV 光をイメージングできることが分 かった、蛍光発光量は、励起光量が約 5×¹³ 個/s cm² 以 上になると線形な増加を示すことが分かった.この線形 領域において、蛍光体を VUV/XUV 光の光量計測素 子とした場合、蛍光発光量を 1%の精度で計測すること で Zn₂SiO₄:Mn²⁺ では 0.54%、BaMgAl₁₀O₁₇:Eu²⁺ では 0.52%の精度で励起光量を求めることができると 考えられる.

30~117 nm の励起波長域における蛍光発光の量子

効率は, $Zn_2SiO_4:Mn^{2+}$ の方が $BaMgAl_{10}O_{17}:Eu^{2+}$ より約2倍高くなることが分かった. 蛍光発光の照度としては, $BaMgAl_{10}O_{17}:Eu^{2+}$ の方が $Zn_2SiO_4:Mn^{2+}$ より約3倍多くなることが予想された. 一方, 蛍光発光量としては, $Zn_2SiO_4:Mn^{2+}$ の方が $BaMgAl_{10}O_{17}:Eu^{2+}$ より約100倍多くなると見積 もられた.

謝辞 本実験は自然科学研究機構分子科学研究所極 端紫外光実験施設(UVSOR)において行われた.本 研究の実施にあたり,御指導及び御助力を賜りました 繁政英治准教授,蓮本正美氏,中村永研氏に感謝の意 を表します.実験結果を考察するにあたり,御討論及 び御助言賜りました大阪市立工業研究所の松川公洋博 士,渡瀬星児博士に厚く感謝致します.

文 献

- D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun., vol.56, pp.219–221, 1985.
- [2] M.D. Perry, D. Pennington, B.C. Stuart, G. Tietbohl, J.A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H.T. Powell, M. Vergino, and V. Yanovsky, "Petawatt laser pulses," Opt. Lett., vol.24, pp.160–162, 1999.
- [3] K. Yamakawa, M. Aoyama, S. Matsuoka, T. Kase, Y. Akahane, and H. Takuma, "100-TW sub-20-fs Ti:sapphire laser system operating at a 10-Hz repetition rate," Opt. Lett., vol.23, pp.1468–1470, 1998.
- [4] D. von der Linde, T. Engers, G. Jenke, P. Agostini, G. Grillon, E. Nibbering, A. Mysyrowicz, and A. Antonetti, "Generation of high-order harmonics from solid surfaces by intense femtosecond laser pulses," Phys. Rev. A, vol.52, pp.R25–R27, 1995.
- [5] D. von der Linde, "Generation of high order optical harmonics from solid surfaces," Appl. Phys. B, vol.63, pp.499–506, 1996.
- [6] S. Banerjee, A.R. Valenzuela, R.C. Shah, A. Maksimchuk, and D. Umstadter, "High harmonic generation in relativistic laser-plasma interaction," Physics of Plasmas, vol.9, pp.2393–2398, 2002.
- [7] U. Teubner, K. Eidmann, U. Wagner, U. Andiel, F. Pisani, G.D. Tsakiris, K. Witte, J. Meyer-ter-Vehn, T. Schlege, and E. Forster, "Harmonic emission from the rear side of thin overdense foils irradiated with intense ultrashort laser pulses," Phys. Rev. Lett., vol.92, p.185001, 2004.
- [8] J.J. Macklin, J.D. Kmetec, and C.L. Gordon, III, "High-order harmonic generation using intense femtosecond pulses," Phys. Rev. Lett., vol.70, pp.766– 769, 1993.
- [9] Ch. Spielmann, N.H. Burnett, S. Sartania, R. Koppitsch, M. Schnurer, C. Kan, M. Lenzner, P.

Wobrauschek, and F. Krausz, "Generation of coherent x-rays in the water window using 5-femtosecond laser pulses," Science, vol.278, pp.661–664, 1997.

- [10] E.A. Gibson, A. Paul, N. Wagner, R. Tobey, D. Gaudiosi, S. Backus, I.P. Christov, A. Aquila, E.M. Gullikson, D.T. Attwood, M.M. Murnane, and H.C. Kapteyn, "Coherent soft x-ray generation in the water window with quasi-phase matching," Science, vol.302, pp.95–98, 2003.
- [11] M. Tabak, J. Hammer, M.E. Glisky, W.L. Kruer, W.C. Wilks, and R.J. Mason, "Ignition and high gain with ultrapowerful lasers," Physics of Plasmas, vol.1, pp.1626-1634, 1994.
- [12] W.E. Gordon, "Incoherent scattering of radio waves by free electrons with applications to space exploration by radar," Proc. IRE, vol.46, pp.1824–1829, 1958.
- [13] T. Laaspere, "On the effect of a magnetic field on the spectrum of incoherent scattering," J. Geophysical Research, vol.65, pp.3955–3959, 1960.
- [14] D.E. Evans and P.G. Carolan, "Measurement of magnetic field in a laboratory plasma by Thomson scattering of laser light," Phys. Rev. Lett., vol.25, pp.1605–1608, 1970.
- [15] K. Krushelnick, I. Watts, M. Tatarakis, A. Gopal, U. Wagner, F.N. Beg, E.L. Clark, R.J. Clarke, A.E. Dangor, P.A. Norreys, M.S. Wei, and M. Zepf, "Using self-generated harmonics as a diagnostic of high intensity laser-produced plasmas," Plasma Physics and Controlled Fusion, vol.44, pp.B233–B245, 2002.
- [16] A.S. Sandhu, A.K. Dharmadhikari, P.P. Rajeev, G.R. Kumar, S. Sengupta, A. Das, and P.K. Kaw, "Lasergenerated ultrashort multimegagauss magnetic pulses in plasmas," Phys. Rev. Lett., vol.89, p.225002, 2002.
- [17] A. Pukhov and J. Meyer-ter-Vehn, "Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation," Phys. Rev. Lett., vol.76, pp.3975–3798, 1996.
- [18] F.A. Bibi, J.P. Matte, and J.C. Kieffer, "Fokker-Planck simulations of hot electron transport in solid density plasma," Laser and Particle Beams, vol.22, pp.97–102, 2004.
- [19] T. Matsumoto, T. Taguchi, and K. Mima, "Simulation of the nonlinear evolution of large scale relativistic electron flow in dense plasmas," Phys. Plasma, vol.13, p.052701, 2006.
- [20] P. Gibbon, "Harmonic generation by femtosecond laser-solid interaction: A coherent "water-window" light source?," Phys. Rev. Lett., vol.76, pp.50–53, 1996.
- [21] T.J.M. Boyd and R. Ondarza-Rovira, "Plasma modulation of harmonic emission spectra from laserplasma interactions," Phys. Rev. Lett., vol.98, p.105001, 2007.
- [22] J.K. Berkowitz and J.A. Olsen, "Investigation of lu-

minescent materials under ultraviolet excitation energies from 5 to 25 eV," J. Luminescence, vol.50, pp.111–121, 1991.

- [23] T. Justel, H. Lade, W. Mayr, A. Meijerink, and D.U. Wiechert, "Thermoluminescence spectroscopy of Eu²⁺ and Mn²⁺ doped BaMgAl₁₀O₁₇," J. Luminescence, vol.101, pp.195–210, 2003.
- [24] E. van der Kolk, P. Dorenbos, C.W.E. van Eijk, H. Bechtel, T. Justel, H. Nikol, C.R. Ronda, and D.U. Wiechert, "Optimised co-activated willemite phosphors for application in plasma display panels," J. Luminescence, vol.87-89, pp.1246-1249, 2000.
- [25] C. Barthou, J. Benoit, P. Benalloul, and A. Morell, "Mn concentration effect on the optical properties of Zn₂SiO₄:Mn phosphors," J. Electrochemical Society, vol.141, pp.524–528, 1994.
- [26] A. Morell and N. El Khiati, "Green phosphors for large plasma TV screens," J. Electrochemical Society, vol.140, pp.2019–2022, 1993.
- [27] Z.T. Kang, Y. Liu, B.K. Wagner, R. Gilstrap, M. Liu, and C.J. Summers, "Luminescence properties of Mn²⁺ doped Zn₂SiO₄ phosphor films synthesized by combustion CVD," J. Luminescence, vol.121, pp.595– 600, 2006.
- [28] M. Astier, E. Garbowski, and M. Primet, "BaMg-Al₁₀O₁₇ as host matrix for Mn in the catalytic combustion of methane," Catalysis Letters, vol.95, pp.31–37, 2004.
- [29] H.K. Jung, D.W. Lee, K.Y. Jung, and J.H. Boo, "Fabrication of dense BaMgAl₁₀O₁₇:Eu⁺² phosphor particles by spray pyrolysis," J. Alloys and Compounds, vol.390, pp.189–193, 2005.
- [30] E.R. Ilmas and T.I. Savikhina, "Investigation of luminescence excitation processes in some oxygendominated compounds by 3 to 21 eV photons," J. Luminescence, vol.1-2, pp.702-715, 1970.
- [31] J. Lin, D.U. Sanger, M. Mennig, and K. Barner, "Solgel deposition and characterization of Mn²⁺-doped silicate phosphor films," Thin Solid Films, vol.360, pp.39–45, 2000.
- [32] K.B. Kim, Y.I. Kim, H.G. Chun, T.Y. Cho, J.S. Jung, and J.G. Kang, "Structural and optical properties of BaMgAl₁₀O₁₇:Eu²⁺ phosphor," Chemistry of Materials, vol.14, pp.5045–5052, 2002.

(平成 19 年 8 月 2 日受付, 10 月 23 日再受付)

山本 雅史

平 18 大阪大学大学院工学研究科電気電 子情報卒.現在,金沢工業大学工学研究科 博士後期課程在学中.主として環境負荷/ コスト低減に向けたイオン注入レジストの 除去技術,またイオン注入レジストの解明 に関する研究に従事.

羽原 英明

平7阪大・理・物理卒.平12同大大学 院理学研究科博士課程了.理博.同年4月 ドイツ・マックスプランク光量子研究所博 士研究員,平13年7月英国ラザフォード アップルトン研究所博士研究員.平16年 9月より大阪大学大学院工学研究科助手と

なり現在に至る(現在助教).レーザ核融合における高速点火 基礎研究に従事し,高強度レーザによる電子,イオン加速,そ れら高エネルギー密度粒子の高密度プラズマ中でのエネルギー 輸送の研究及び CPA 法による高強度レーザの開発に従事.米 国物理学会,プラズマ・核融合学会及びレーザー学会各会員.

堀邊 英夫 (正員)

1985 京大・工・合成化学卒.同年,三菱 電機(株)材料研究所(現先端技術総合研 究所)入社.研究員,主任研究員,主席研 究員.1997 博士(工学)(大阪大学).2003 国立高知工業高等専門学校物質工学科助教 授.2004 平成16 年度 NEDO 産業技術研

究助成事業(環境分野)採択.2004 高知大学医学部医学科非 常勤講師兼任.2007 金沢工業大学環境・建築学部環境化学科, ものづくり研究所兼任教授.大阪大学招聘教授兼任.専門は高 分子材料化学(特にレジスト).

田中 和夫

昭 57 年 5 月米国ロチェスター大学大学 院博士課程了.昭 58 年 3 月大阪大学大 学院工学研究科電気工学専攻後期課程退学 (単位修得).昭 58 年 10 月同上了.同年 4 月米国ロチェスター大学レーザエネルギー 研究所研究員(昭 59 年 5 月まで).昭 59

年 6 月大阪大学助手(工学部). 平元 5 月大阪大学講師(工学部). 平3 年 8 月大阪大学助教授(工学部). 平 10 年 4 月大 阪大学助教授(大学院工学研究科). 平 13 年 12 月大阪大学教 授(大学院工学研究科).

草野 英二

昭 58 神戸大学大学院工学研究科工業化 学専攻了.昭 58 日本板硝子(株)入社.こ の間,昭 61 年 8 月~昭 63 年 3 月米国イ リノイ大学研究員.平7年 3 月同社を退 社.平7年4月金沢工業大学工学部物質 応用工学科助教授.平13年4月金沢工業

大学工学部先端材料工学科教授,兼高度材料科学研究開発セン ター教授.平18年4月金沢工業大学環境・建築学部環境化学 科教授,兼高度材料科学研究開発センター教授.専門は無機物 質化学.