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on the Nozieres and Schmitt-Rink formalism
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The crossover between the Cooper-pair condensation and the Bose-Einstein condensation of "di-
electronic" molecules in two-dimensional superconductors is investigated in detail on the basis of the
Nozieres and Schmitt-Rink formalism. It is shown that temperature dependence of the chemical poten-
tial p so calculated is classified into two classes as decreasing temperatures; i.e., class (a) where p ap-
proaches the point of Bose-Einstein condensation of two-dimensional ideal Bose gas of "di-electronic"
molecules, and class (b) where p diverges positively along the line of BCS-type mean-field pair condensa-
tion. This feature is rather universal irrespective of strength V of the attractive interaction of the s-wave

type. While the former class (a) has been found by Schmitt-Rink, Varma, and Ruckenstein, existence of
the latter class (b) is recognized here. In the case where Vis fixed, class (a) is realized for electron num-
ber density N smaller than N„, which is an increasing function of V, and class (b) is realized for X larger
than N„. If N ))Ncr in particular, there exists a regime, where the Fermi-liquid-like description is val-

id, between the BCS-type mean-field transition temperature and the Fermi temperature. In the situation
where V is changed with N being fixed, low-temperature states for the strong-coupling case belong to
class (a) while those for the weak-coupling case belong to class (b). Therefore, with decreasing V, the
chemical potential p( T), at temperatures far below the Fermi temperature, shows a discontinuous jump
at V = V„(Ã) corresponding to the transition from class (a) to (b). However, this is in contradiction to a
physical picture that the chemical potential should smoothly cross over between the above two limits un-
less the liquid-gas transition occurs. This shows in turn a necessity of improving the Nozieres and
Schmitt-Rink formalism itself especially in two dimensions. A preliminary approach beyond their for-
malism is briefly discussed.

I. INTRODUCTION

The BCS theory describes the Bose condensation of
Cooper pairs and the superconductivity of electrons. It is
regarded as the weak limit of attractive force among elec-
trons. In this case, the formation of Cooper pairs and
their Bose condensation occurs at the same temperature.
If the strength of the attractive force V is increased, elec-
trons will first form "di-electronic" molecules around the
temperature corresponding to its binding energy. The
system will show the Bose-Einstein condensation of di-
electronic molecules at some lower transition tempera-
ture. Since it is the gauge symmetry that is broken both
in the weak and strong attractive limits, the states in the
two limits must cross over smoothly in regard to the
strength of the attractive force unless the liquid-gas phase
separation occurs.

This crossover problem of the Bose condensation is one
of the most fundamental problems of superconductivity, '

and has been discussed extensively in a variety of physical
contexts, e.g. , nuclear matter, superAuid He, ' excitons
in semiconductors, ' and so on. In recent years, it has
been revived in connection with the problem of oxide su-
perconductors, which have very short coherence lengths
comparable to a few times of the lattice constant.
Since the coherence length represents the size of a "mole-

cule, "oxide superconductors can be regarded as being lo-
cated around the crossover region.

Leggett proposed a general formalism for treating the
crossover problem at zero temperature. The key idea is
that not only the gap 6 at T =0 but also the chemical po-
tential IM of fermions must be determined self-
consistently, which is similar in its spirit to that proposed
by Eagles. ' This idea was extended to determine the
transition temperature T, in the three-dimensional (3D)
case by Nozieres and Schmitt-Rink, ' who reported that
the transition temperature crosses over smoothly between
the weak and strong attraction limits. Recently Schmitt-
Rink, Varma, and Ruckenstein have investigated two-
dimensional (2D) pairing on the basis of the Nozieres and
Schmitt-Rink formalism and concluded that in a 2D sys-
tem, T, is equal to zero and p is given by half the energy
of the di-electronic bound state even in the weak attrac-
tion limit.

It is somewhat surprising that even in the weak attrac-
tion limit the fixed point is the Bose condensed state of
di-electronic molecules. In such a case, the molecules
overlap each other so that the exchange efFect among
constituent electrons is expected to work to push up the
chemical potential towards the Fermi energy of the sys-
tem. While importance of such an e6'ect has been recog-
nized also by Schmitt-Rink et al. , it is still open whether
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such an effect is beyond scope of the Nozieres and
Schmitt-Rink formalism. ' Schmitt-Rink et al. have in-
vestigated only the case of dilute Fermi gas and the limit-
ed, though rather wide, range of parameters of the prob-
lem. A purpose of this paper is to investigate the prob-
lem more extensively and to assess a range of applicabili-
ty of the Nozieres and Schmitt-Rink formalism.

Main results are summarized as follows: As ternpera-
ture decreases, the chemical potential p of the system
shows two distinct behaviors, depending on the electron
number density N or the strength V of the attraction.
With fixed V, p approaches half the binding energy of a
di-electronic molecule as T—+0 when X is less than some
critical value N„. The system is said to belong to class
(a) in this case. This class has been found by Schmitt-
Rink, Varma, and Ruckenstein. When N)N„, p be-
comes large as the temperature approaches the transition
temperature T, " given by the BCS-type mean-field
theory, and tends to positive infinite as T~O along the
line of pairing instability. The system is said to belong to
class (b) in this case. In particular, when N)&N„, the
system behaves as the Fermi liquid in the regime
T, "&T « Tz. In the case, where iV is fixed, the system
belongs to class (a) when V) V„, and to class (b) when
V& V„. Here V„ is determined by the condition that
the critical electron number density N„, which is an in-
creasing function of V, is equal to the electron number
density N. As N increases or V decreases, the system
changes its class from (a) to (b) at N=N„or V= V„.
These results indicate the Nozieres and Schmitt-Rink s
formalism is not sufficient for a low-dimensional system.
However, judging by the results for 2D, the formalism
seems to be applicable to a three-dimensional system.
For a 2D system, it is necessary to take into account the
effect of fluctuations.

The organization of this paper is as follows. In Sec. II,
the Nozieres and Schmitt-Rink formalism is reviewed. In
Sec. III, a 2D version of the Norieres and Schmitt-Rink
formalism is investigated in detail. In Sec. III A, the so-
called Thouless condition is investigated. In Sec. III B,
the thermodynamic relation among p, T, and N, is inves-
tigated for two cases, T « —p and p&0, which reveal
the existence of two classes in flow patterns of p-T rela-
tions as decreasing temperatures. In Sec. III C, the rela-
tion between X„and V is discussed, and the behavior of
the system as changing X or V is described. In Sec. IV,
the relationship between the results obtained here and
those by Schmitt-Rink, Varma, and Ruckenstein is dis-
cussed. The range of applicability of the Nozieres and
Schmitt-Rink formalism is discussed and how to include
the effect beyond their formalism is briefly described.

V

[(1+k /ko)(1+ k Iko ) ]'
(2)

The Thouless condition (1) is given by the condition for
divergence of the pair susceptibility

y „.,(T)= g g d~(e' c„&c &e
' c .ic~ &

)~H —~a g

P P

calculated in the ladder-diagram approximation as shown
in Fig. 1.

The chemical potential p in (1) is determined by the re-
lation N= —(BQ/Bp) where the thermodynamic poten-
tial fL is calculated in the ring-diagram approximation as
shown in Fig. 2. Analytic expression for 0 is given as
(see also Appendix A)

Q=Q/(p, T)+T g g in[1 —Vgo(q, ice )]e
~m

where Q/(p, T) is the thermodynamic potential for the
free fermions with the chemical potential p at the tem-
perature T, and yo(q, ice ) is defined as

f(eq/2+k p) f(eq/2 —k p)
yo(q, ice ) = g

k (1+k /ko)(eq/2+k+eq/2 k iso~ —2p—)

where ek=k /2m is the kinetic energy of an electron and
f(e)=(e'/ +1) ' is the Fermi factor. Thus, the relation
among N, p, and T is obtained from (4) as follows:

based on the assumption that the transition temperature
is given by the so-called Thouless condition, which corre-
sponds to divergence of the pair susceptibility calculated
by the ladder-diagram approximation, with the chemical
potential p being determined self-consistently by taking
the process of free propagation of the pair of two elec-
trons into account, which corresponds to the ring-
diagram approximation for the thermodynamic potential.
This appears to be in some sense a natural extension of
Leggett's theory, which treats the problem of the cross-
over of the ground-state properties, so as to include the
degrees of freedom describing the center-of-mass motions
of pairs of electrons.

The Thouless condition is expressed as

tanh[(k /m 2p)/4—T]
k /m —2p,

The pairing interaction Vkk. is assumed to be separable
and of s-wave type:

II. OUTLINE OF THE NOZIERES
AND SCHMITT-RINK FORMALISM

N =NI(p, , T )
— T g g in[1 —Vyo(q, ice ) ]

Bp
(6)

Let us first recapitulate the Nozieres and Schmitt-Rink
formalism' which tries to describe how the crossover of
the superconducting transition temperature occurs be-
tween the Cooper pairing and the Bose-Einstein conden-
sation of di-electronic molecules as the strength of the s-
wave attractive interactions is increased. Their theory is

where N&(p, T)—:—(BQ//Bp) is the free-fermion part of
the electron number. Relation (6) is reduced to a more
compact form with use of the phase shift 5(q, co) for the
particle-particle scattering channel as follows:

N=NI(p, T)+ g P f g(co) 5(q, co), (7)
q Bp
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+ ~ ~ ~

FIG. 1. The ladder-diagram approximation for the pair sus-
ceptibility g„„„(3),which is represented by the wavy line. The
solid and dashed lines represent the one-body Green function of
noninteracting electrons and the s-wave-type attractive interac-
tion of Eq. (2), respectively.

III. PAIRING IN TWO DIMENSIONS

In the two-dimensional case, the existence of a two-
particle bound state is a necessary condition for many-
body s-wave pairing. ' Indeed the two-particle bound
state of s-wave type always exists for the model pairing
interaction (2) so long as V) 0. This makes an analysis
simpler than the three-dimensional case where the
strength of attraction must exceed a threshold value in
order to form the two-particle bound state.

where g(cp)=(e ~ —1) ' is the Bose function, and the
phase shift 6(q, co) is defined as

V Imago(q, co+ i 0+ )
5(q, co) =tan

1 —V Reyo(q, co+ iO+ )

It should be remarked that the principal part is taken for
the co integration in (7).

The transition temperature T, is given by the solution
of simultaneous equations (1) and (7) as a function of X
and V. By analytic calculations Nozieres and Schmitt-
Rink have shown that, in the three-dimensional case, the
chemical potential p( T, ) is given in the two extreme lim-

its as

1 —V Reyo(0, i0+ ) =0 . (10)

Calculation of Reyp(q, rp+iO+) is performed in Appen-
dix B. In the low-temperature regions T « lpl irnpor-
tant in the following discussions, Reyp(O, iO ) is given by
(B3) for T « —p or by (B5) for T «p:

m 1 —Xe '" lplReyp(O, iO+)= » «r T « p4~ —1+ l pl /ep eo

A. Thouless condition

Given a pairing potential Vkk. as (2), condition (1) is
written as

eF for Vig/e~ &(1,
—

l Ep l
/2 for VX/eF ))1,

or

p(@+co) e

4~ 1+p/eo 4T
where eF(—:vrX/m ) is the Fermi energy for noninteract-
ing electrons and Eo is the binding energy of the di-
electronic molecule, and that the transition temperature
T, corresponds to the onset of the BCS-type mean-field
pair condensation in the weak-coupling limit
( VN/eF (& 1) and the onset of the Bose-Einstein conden-
sation of di-electronic molecules in the strong-coupling
limit ( VX/eF ))1), respectively. Then they interpolated
numerically between both limits by a Pade-type treat-
ment. ' Schmitt-Rink, Varma, and Ruckenstein have in-
vestigated the two-dimensional case and emphasized that
the chemical potential p at T =0 is given by —lEo /2,
i.e., one for the Bose-Einstein condensation of the two-
dimensional ideal gas of di-electronic molecules, for arbi-
trary strength of attractive interaction V, and that the
transition temperature always remains zero.

e(@+co) 2~(p+ep)
Qp/e exp

2 m Veo
for T(&p

(13)

Eo 4~X1— 1—
2

I
mV

IEo I
—E, ii2T

26O

for T (& lEp I
(14)

for T«p, (12)

where ep: k o /2m. Substituting these expressions into
(10), one obtains the relation between p and T for
varieties of values of the coupling constant m V/4m.
Both in the weak- (m V/4' « 1) and strong-
(m V/4n)) 1) coupling limits, it is written as

where Eo is the binding energy of the di-electronic mole-
cule. It should be remarked that in the two-dimensional
case the bound-state solutions (p &0 and T=O) of (10) is
always possible for the arbitrary strength V of the attrac-
tive interaction (2). The binding energy Ep is given as a
bound-state solution of the Schrodinger equation

FIG. 2. The ring-diagram approximation for the thermo-
dynamic potential Q. This represents the contribution from the
free propagation of pair Auctuations given by Fig. 1.

(2ek —Eo)q'a X Vkt'q't' .
k'

With use of (C3) in Appendix C, Ep is expressed in the
weak-coupling limit (m V/4m « 1) as
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—4'/m V
$ + —4'/m vee mv'

and in the strong-coupling limit (m V/4'� ))1) as

Eo — 2eo g( V)
IV
4m

where g( V) satisfies the relation

em Vg=ln
4~

(16)

(17)

(18)

dp 8 mV ~ tanh(e —p)/2T
d T Bp 4m o ( I+e/eo)(e —p)

m V 1 cosh (e—p)/2Tde )0.
4m T2 p (1+e/eo)

(22)

[ V Redo( 0, i 0+ ) ]
Bp

Here the coefficient of dp/dT is 8[ VRego(O, iO+)]/t3p.
At T=To on the Taxis (p=O), this is reduced to

Qualitative behavior of the p vs T curve for the Thou-
less condition (10) is drawn in Fig. 3. For p=0, the con-
dition (10) is written with use of (B1) as

mV

4m'

tanh( e/2 To ) +
o (1+e/eo) e 2To

(23)

m V ~
d

tanhe/2T
4m. o (1+e/eo)e

—4~/rn VEp
p 2

(20)

and in the strong-coupling limit,

which gives the temperature Tp crossing the T axis
(p=O) in the p Tplane. -In the weak-coupling limit, To
is given by

m V ~ tanh[(e —p)/2T]
4~ o (1+e/eo)(e —p)

(24)

and

which is positive for arbitrary value of ep/Tp) 0. Then,
the derivative dp/dT at T= Tp and p=0 is always posi-
tive. The right extreme point of the Thouless condition
curve, shown as a solid circle in Fig. 3, corresponds to
the condition 8 Redo(O, iO+)/Op=0, where we denote
p=p~ and T= T~. The explicit forms of the two condi-
tions, 1 —V Redo(0, 0;p, T) =0 and 8Reyo(0, 0;p, T)/
Bp =0, which are satisfied by p~ and T~ are

&p mV
To ——— g(V) .

2 4m
(21) tanh(p/2T) 1

y
tanh[(e p)/2T—]

p eo o (1+e/eo) (e—p)
(25)

The derivative dp/dT on the curve of the Thouless con-
dition, (10), is given as

respectively. It is remarked that always p~ )0 because
dp/dT is positive at p=0 and T=Tp and because the
Thouless condition curve finally approaches the p axis as

p increases following (13).

e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ' ~I Q

0
B T

—,'Eo—

FIG. 3. Behavior of the relation between the chemical poten-
tial p and the temperature T, given by the Thouless condition
(10). Its qualitative behavior in (a) the weak-coupling case
(m V/4~ && 1) and (b) the strong-coupling case (m V/4m ))1) is
the same. The behavior at the low-temperature region is given
by (13) and (14) with (17) in case (a) and with (18) in case (b).
The p- T curve crosses the T axis at T= To given by (19) with
(20) in case (a) and with (21) in case (b), and takes right extreme
at p=p& and T= T&, which is a solution of Eqs. (24) and (25).

Qqp+
2

q' Eo 4~X ~Eo ~ ~E, lnr1— 1— e
8m 2 ~ V 2ep

(26)

B. Chemical potential p as a function of T and N

Another ingredient of the Nozieres and Schmitt-Rink
formalism is the relation between p and T obtained from
(7), which has a quite different structure for two cases:
(1) T« —p, and (2) p) 0. In any case, the structure of
the phase shift 5(q, co), (8), determines its relation.

Case (1): T « —p. The real and imaginary parts of
(qo, co i+0+) are given by (B3) and (B4), respectively.

Their characteristics are the logarithmic divergence in
Redo around co-2~p +q /4m and vanishing Imago for
co &2~p~+q /4m. Schematic behaviors of 1 —V Redo
and Imago are shown in Fig. 4(a), from which one can ob-
tain the behavior of the phase shift 6(q, co), (8), as shown
in Fig. 4(b). It is noted that the discontinuity (by ~) in
5(q, co) at ro=rl~ implies the existence of a di-electronic
molecule with momentum q, whose energy gq is deter-
mined by the relation 1 —V Redo(q, gz + iO+ ) =0.

In a way quite similar to obtaining (14), g is shown to
satisfy the following relation:
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1-V Re go(q, co~ )
I

(c()
I

-2p, + q 14IYl

I

~~xo(q ~~'&

(b)

~ r o

l

I

-2p, +q f'4m

I

I

FIG. 4. (a) Schematic behaviors of
1 —V Rey0(q, co+iO+) and Imy0(q, co+iO+ ) as
a function of m for the case T« —p. (b)

Schematic behavior of the phase shift 5(q, co),

(8), for the case T« —p. A discontinuity of
5(q, ~) at co=q~ implies existence of the di-
electronic molecule with the momentum q and
the energy g which is given by the relation
1 —V Rey0(q, g, +i0+)=0. The chemical po-
tential p is determined a posteriori so as to
satisfy the condition q~ )0.

I

2&+q /'~

2

=go+ (27)

where Eo is given by (16) or (17). Therefore, neglecting
the q dependence of O(e ~"~ ), rj is written as

dependent of p.
Substituting (30), relation (7) is expressed in the form of

the state equation of the ideal Bose gas:

where p and go satisfy the relation

2

%=2+g go+ q
4m

+O(e ~" ~r) (31)

rlo Eo 4~x IEo I
—~F. ~nrp+ = 1 — 1 — e

2 2 m V 2eo
(28) This determines go as a function of T and X as usual and,

in turn, p via relation (28):

As discussed by Nozieres and Schmitt-Rink, of the con-
tributions to (7), the part arising from the jump in 5(q, co)
dominates in the low-temperature region T &( —p.
Indeed, Xf(p, T) and the contributions from the scatter-
ing state of co) 2IpI+q /4m are, at most, of O(e ~~~~ ).
Around co —g, the phase shift 5(q, co) is approximated as

T
p = ——exp

2 2P7l T

E, 4~g+ 1— 1—
2 m V 2eo

-)E )/2V.0 (32)

5(q, co) =pro(co riq ) . —

Then c)5(q, co)/c)p is given as follows:

c)5(q, co) =2' 5( co g), —
Bp

(29)

where the derivative Bq /Bp has been substituted by —2
with use of (27) and (28), and due to the fact that Eo is in-

It is noted that go should remain positive and approaches
zero as T~O corresponding to the onset of the Bose-
Einstein condensation of di-electronic molecules at T =O.

Case (2): p)0. Let us denote the solution of the
Thouless condition, (10), as T=T, "(p), whose explicit
form is given by (13) or (14). On the high-temperature
side of the Thouless condition, relation (7) is valid and
the p derivative of the phase shift is written as follows:

[1—V Redo(q, co)](c)/c)p)[ V Imago(q, co)]+ V lmyo(q, co)(B/Bp)[ V Redo(q, co)]
5(q, co) =

Bp [1—VReyo(q, co)] +[ V Imago(q, co)]
(33)

where (8) has been used. A problem is investigating properties of (33) which determine the p Trelation through -(7). An
analysis is simpler in the weak-coupling case (mV/4' «1) than the strong-coupling one (mV/47r))1). So let us in-
vestigate the former case first and argue the latter case later on.

In the weak-coupling case, if there were no singularity in (33), the last term of (7) would be small of the order of
Nf(p, T) XO(m V/4') so that the chemical potential would be given essentially by that of noninteracting electrons.
However, when T~ T, "(p), there must arise the logarithmic divergence in the last term of (7). Such singularity is ex-
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pected to appear as an infrared divergence associated with virtual formation of Cooper pairs. This is indeed the case as
shown shortly. With use of (86) for the imaginary part of yo(O, co+iO ), (33) for q =0, and co-0 is estimated as

IV ~ —[1—V Redo(0, co )]+[1+(p+ co/2)/Eo] V(B/Bp)Reyo(0, co)
5(O, co) = tanh

&p 4~O 4T [1+(@+co/2)/eo] [1—VRego(O, co)] +[(mV/4)tanh(co/4T)]
(34)

where 8(co+ 2p ) in (86) is replaced by 1. Since
1 —VReyo(0, 0)~0 as T +T, —"(p)+0+,

lim lim g(co) $(0,~)a
~~0 'r~ Z

MF Qp
C

rri V [ I+(@+co/2)/eo] V(&/Bp)Redo(0, 0)
16eo [(m V/4')(co/2p)] + [(m V/4)(co/4T, ")]2

(35)

where we have used (85) for Redo(O, co+iO+). Therefore,
owing to the I /co dependence of g (co )B5(0,co ) /Bp
around co-O, the co integration with q =0 (7) diverges as
T~T, "(p)+0+. For finite but small q, the co integra-
tion results in

lim f g(co) $(q, co)
dc' 8

~MF a Bp
C

the condition

N„=Nf(p, ii, Tii )

+ oo de+ g P g(co) 6(q, co;p~, T~),
q

oo 77 Bp

where pz and T~ are the solution of simultaneous equa-
tions (24) and (25). For class (a), where N(N„and
8 Redo(0, 0)/Bp) 0, the fiow line approaches the point
p, = —,'

~ Eo ~
and T=0 along the Thouless condition

curve. For class (b), where N )N„and
8 Redo(0, 0)/Bp &0, it approaches p = ~ and T =0 again
along the Thouless condition line. In the high-density
limit, X))1V'„, the Aow line first approaches from the
Boltzmann gas regime to a region where the Fermi-liquid
description is valid. In this region, the second term of
Eq. (7) can be neglected compared to the first term except

( TMF)2= C Redo(0, 0),
6'o q Bp

(36)

where C is a positive constant of 0 (1). This is seen from
the inspection of the structure of (Bl) and (82) where co

appears pairwise with q /4m in its denominator and an
argument of the 5 function. Then, for co-O, q-O, and
T T, "~0, 1 ——V Redo(q, co+iO+) in the denominator
of (33) is proportional to max[q /4m, ~co~, (T T, ")] so-
that the last term of (7) shows logarithmic divergence like
BReyo(0, 0)/Bpln[p/(T T, ")]. It sh—ould be remarked
that the sign of its divergence changes at the right ex-
treme point on the Thouless condition curve, at the solid
circle in Fig. 3, where 8 Redo(0, 0)/By=0.

Thus, if there is no other singular contribution to the q
and co integrations in the last term of (7), relation (7) is re-
duced to

( TMF)2
N=Nf (p, , T) 1+Co . +C, Redo(0, 0)

4& I6'o Bp

0
I—E2

mann
gas

N& Ncr

(b)

=N.

Xln
T—T

(37)

where Co and Ci are positive constants of O(1). Then, in
the weak-coupling case, the p-T curves for different elec-
tron number behave as Fig. 5. The right extreme point
on the Thouless condition curve, which we denote 8, is a
branch point which divides the p-T curves for a variety
of electron numbers into two classes (a) and (b). It is
remarked that on point B there is no logarithmic diver-
gence because 8 Reyo(0, 0)/r)p=0 there. The critical
electron number %„,for which the Aow line approaches
the branch point 8 as temperatures decrease, is given by

FIG. 5. Chemical potential p as a function of temperature T
for different electron number N. They are schematic curves of
solutions of Eqs. (32) and (37) for the weak-coupling case. The
shaded part surrounded by the line satisfying the Thouless con-
dition (24) cannot be reached as decreasing temperature. Pat-
terns of the p-T curve (dashed line) are divided into two classes
(a) and (b) by the critical line approaching the branch point 8
which is given by a solution of Eqs. (24) and (25). Its critical
line corresponds to a critical electron number X„determined
by (38). In class (a), where 1V(1V„, "Aow lines" approach a
point of Bose condensation of di-electronic molecules. In class
(b), where X)X„,they approach p= ~ and T=0 along the
Thouless condition line. In case 1V ))X„,there exists a Fermi-
liquid region.
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for case T is extremely (exponentially) close to T, " be-
cause it depends logarithmically on T—T, ". Such a
behavior of the How line is physically expected because
the binding energy of the two-electron bound state (which
always exists for a 2D attractively interacting system)
measured from the bottom of the continuum of the
scattering is much smaller than the mean energy of the
scattering state which is comparable to eF. As a result,
the scattering state is expected to dominate the bound
state here. The Qow line deviates from the Fermi liquid
around the temperature T& T, ", and finally goes up
along the Thouless condition curve. While the former
branch (N & N„) has been found by Schmitt-Rink, Var-
ma, and Ruckenstein on the basis of numerical study of
the relation (7), the latter one (N&N„) has not been
recognized yet. It is shown in Appendix D that there is
no divergent contributions to the q and co integrations of
(7) other than the last term in the square bracket of (37).

Also in the strong-coupling case, analysis about the
divergent contribution to q and co integrations of (7) can
be performed in a way quite similar to that leading to
Eqs. (34)—(36). Other contributions to q and co integra-
tions of (7) are estimated in Appendix D for the region
p ))T. Then, with use of (D16), relation (7) is reduced to

in~ [1+y(1+z)][1—y(1+z)]~
mV 1+z

1+y(1+z )+yz ln
1 —y(1+z )

=ln(y z) (42)

and

tanhy = +
2 in~ [1+y(1+z)][1—y(l+z)]/z~1+z (1+z)

1=—ln(y z)
z

when y )&1. So the right-hand side of (40) is large when
0& 1/z «1 and y )&1, and is small when 1 «1/z and
y «1.

First we discuss the weak-coupling case (m V/4m. « 1).
Since the left-hand side of (40) is large in the weak-
coupling limit, y »1 and z »1 in order to keep relation
(40). To obtain the relation between V, y, and z,
tanh [y (zx —1)] is approximated as —1 for
y(zx —1) & —1, as y(zx —1) for y(zx —1)~ & 1, and as 1

for y(zx —1)) 1. It is noted that such an approximation
gives upper bounds of the integrations in (40) and (41).
With this approximation, (40) and (41) are evaluated as

N=Nf(p, T) g( V)

( TMF )2

+Cz Redo(0, 0)ln F Nf(p, T),
m e Bp T—TMF

(39)

4m 1

mV z
respectively. Here we have used the fact y »1 and z »1
to derive the second equations in (42) and (43), and (42) to
derive the last equation in (43). Equation (42) is rewritten
as

where g( V) is a solution of (18) and C2 is a positive con-
stant of O(1). Analysis of the region around p, —T is
difficult to perform analytically. However, qualitative be-
havior of the p-T curve with fixed 1V is expected to be the
same as Fig. 5 because existence of the branch point B is
only due to that of the divergent contribution like
8 Rey o( 0, 0)/B pin[ p/T —T, ")] both in (37) and (39).

C. Equations of state on the p-T plane

As shown in Sec. III 8, the behavior of the system at
low temperature depends on its electron number density
N: the system belongs to class (a) when N &N„, and it
belongs to class (b) when N & N„. It is crucial to see the
V dependence of N„. Since N„ is defined by (38) with p~
and TB, we first examine the V dependence of pB and TB
which is given by (24) and (25). They are rewritten as

PB
2TB

2TB

Ep
(44)

2m 6'p

N„=Nf(p~, Tii) = pii = V .
4m.

(45)

Next we discuss the strong-coupling limit
(m V/4m ))1). In this case, y and z must be much small-
er than unity in order to keep relation (40). With the
same approximation for tanh[y(zx —1)] as used in the
weak-coupling case, (40) and (41) are evaluated as

Since y )) 1 (pii ))2Tii ), pii =eo/z is evaluated as
p~ =(m V/4~)eo from (43). In the definition of N„(38),
the integral part is of the order of
Nf (pii Tii ) X 0 ( m V/4m ) in the weak-coupling limit, as
in (37). Therefore, in the weak-coupling limit,

4~ tanh[y(zx —1)]=z dx
m V o (1+x )(zx —1)

(40) =yz lnI [1+y(1+z ) ]/yz ] + ln[1+y(1+z ) ]mV 1+z
=yz [ 1 —ln(yz) ] (46)

tanh [y (zx —1 ) ]tanhy = dx
o (1+x) (zx —1)

(41)

respectively. Here we put y =—pB/2TB and z =—ep/pB.
Both y and z are positive since pB & 0 as discussed in Sec.
III A. The main contribution to the integration in (40)
comes from the regions x —1/z and x &1. The factor
tanh[y(zx —1)]/(zx —1) has a large peak around x —1/z

tanhy = + ln[1+y(1+z)]1+y (1+z )'

=y —
—,'y z+ —,'y z(1+z)

respectively. Second relations in (46) and (47) have been
derived on the fact y «1 and z «1. As mentioned
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To see the order of magnitude of the second term in (38),
we examine (33), (Bl), and (B2). Both (Bl) and (B2) con-
tain a factor 1 —f(eq&2+z —p) —f(eqzz k

—p), which is

equal to (eq&z+z+eq&2 i, 2p)I4—T at high temperatures.
Therefore, Reyo(q, co) and Imyo(q, co) are of the order of
( m eo Igni TIi )ln( T~ leo) and corn e012vrp~ T~, respectively.
Since T~ is of the order of V within logarithmic accuracy
as shown above, both VReyo(q, co) and Vlmyo(q, co) are
O(mV/4m. ) . Substituting these relations into (33),
B5/Bp is O(mV/4m), and so is the integral part. Hence
the first term in (38) is dominant compared with the
second one:

cr

Ul Tg pg + ln(1+ e )
7T TB

Pl EO
2

Vg(V) .
8m

(48)

N„ increases in proportion to V within logarithmic accu-
racy both in the strong- and weak-coupling limits as
shown in (45) and (48). Therefore, we can expect that N„
is a smoothly increasing function of V over the whole
range of V connecting the two limits. Schematic behav-
ior of N„as a function of V can be drawn as in Fig. 6.

V„

FICx. 6. Critical electron number N„as a function of
strength V of attractive interaction.

above, the approximation we used gives upper bounds of
the integrations. The term —y z/2 in (47) indicates that
the right-hand side of (41) is smaller than tanhy if
0 &y « 1. For y ))1, the right-hand side of (41) diverges
as lny. So there exists a solution y for (41). From numer-
ical calculation of (41), y is approximately given as

y =2.4z+0. 25 in the range 0.02 & z & 0. 1, which is some-
what larger than the solution of (47), y —3z/2«1, and
crosses over to y —3z/2 around z-0.02. Though the
right-hand side of (46) is the upper bound of the integra-
tion in (40), it is confirmed with numerical calculation
that (46) gives an approximate value of the integration in
(40) with enough accuracy for 0. 1 &y & 1.0 and
0.001&z &0. 1. Since eo«pz &2Tii (or z «1 and

y & 1), Tii is expressed with use of (46) as

Ted =me„V((V)/8', where g(V) is determined by (18).
In the 2D system, the first term N&(pj's, T~) in (38) is
evaluated as

NI= [p,ii+ Tiiln(1+e ) j .

0---- 'V.

FIG. 7. Chemical potential p(T) at temperature T, low
enough compared to the Fermi temperature TF, as a function of
strength t/" of attractive interaction.

From these observations, we can describe the behavior
of p as a function of the strength of the attraction V. In
the case where the electron number density N is fixed, the
critical value V„of the attraction is determined by the
condition that N=N„( V). When V& V„, the system be-
longs to class (b) because N„( V) &N; p tends to positive
infinite as T~O. Beyond V„, the system belongs to class
(a); p approaches half the binding energy of a di-
electronic molecule as T~O. As V decreases, the system
changes its class from (a) to (b) at V= V„, where p at
T & TIi ( V„) changes its value discontinuously. The
chemical potential p as a function of V at finite tempera-
ture but much lower than TF is shown in Fig. 7.

The transition temperature T, and the chemical poten-
tial at T=T, are given by the coincident point of the
curves of conditions (1) and (7). When the system belongs
to class (a), they coincide at the point p=EO/2 & 0 and
T=O, so that the transition temperature is zero in this
case. When the system belongs to class (b), the p Tcurve-
of condition (7) goes up along the Thouless condition
curve as the temperature decreases. Therefore, the two
conditions cannot be satisfied simultaneously even at
T =0, indicating that there is no phase transition even at
T =0 in this case.

IV. DISCUSSIONS

As seen in Sec. III, there exists a branch point B on the
Thouless conditions curve (Fig. 5), so that the curves
representing (37) or (39) are divided into two classes (a)
and (b). To which class the system belongs depends on
the electron number density N or the strength V of the at-
traction. When the system belongs to class (a), i.e.,
X&N„or V) V„, the Bose-Einstein condensation of
bound pairs is realized at T=O. When the system be-
longs to class (b), i.e., N )N„or V & V„,p becomes posi-
tive infinite as T—+0. When N))N„or V«V„, the
system behaves as the Fermi liquid in the region
T, "~T && TF. As increasing N or decreasing V, the sys-
tem changes its class from (a) to (b) at N =N„or V= V„.

Schmitt-Rink, Varma, and Ruckenstein have used the
Nozieres and Schmitt-Rink formalism on the assumption
that the range of the interaction, l 0( —I /+2m eo), is
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much shorter than both the size of a molecule
g( —1/+2m

~ ED ~ ) and the interparticle distance
r0(=1/VN ). Such an assumption makes it possible to
eliminate the interaction V from the formalism in favor
of corresponding binding energy. They have performed
numerical calculations with electron number density up
to N=2m ~ED~, where r0-(, i.e., up to the crossover re-
gion. In the weak-coupling limit (m V/4m. « 1),

~ E0 ~

=2e0exp( —4m /m V), (16), and N„—m e0 V/4m,
(45). When N =2m ED ~,

N/N„—Sm. ~ED~/meDV-4'(4~/mV)exp( —4m/m V),
which is much smaller than unity. When N/N„—1,
l0/r0-mV/8~ &&1 and

N-(I/2~)(mV/4m. )exp(4m/mV)m ~E0~ )&2m ED~,

so that g»r0 ))10. Hence a change of the class from (a)
to (b) should have been observed even on the assumption
l0((g, r0, if higher density cases were investigated. In
the intermediate case (m V/4vr- 1 ), ~E0~ =2@0 from (C3).
Hence l0-g and the assumption l0 «g, r0 is not applica-
ble. In the strong-coupling limit ( m V /4~ ))1),
~E0~ =2e0(m V/4vr)g( V). Hence l0 ))g (m V/4~)g( V)))g, i.e., the assumption is not applicable in this case ei-
ther. Therefore, the region Schmitt-Rink et al. have in-
vestigated is the low-density limit for the weak-coupling
case. So, their results cannot be applied to the intermedi-
ate or more strong-coupling case.

Within the framework of the Nozieres and Schmitt-
Rink formalism, ' when applied to the 2D problem, the
system changes its class from one to the other as X or V
changes. However, p must be a finite and continuous
function of the number density. The reason p tends to
infinite or half the binding energy is existence of the loga-
rithmic divergence in (37) or (39) near the Thouless con-
dition. This divergence rejects the two-dimensionality of
the system. To avoid the unphysical divergence it seems
necessary to include the effect of Auctuations around the
mean-field treatment. Preliminary results along such
direction have already been reported. ' The effect of
fluctuation is to press the Thouless condition curve
against the p axis in the case p))T. In the weak-
coupling case, the chemical potential p is expected to
reach the Fermi energy corresponding to its number den-
sity at T=O. This is indeed the case at least in the high-
density limit. Detailed calculation will be reported else-
where. At present, however, it is still open whether the
system crosses over between two classes continuously
within the method we employed. A possibility of phase
separation of the gas-liquid should also be explored.

Nozieres and Schmitt-Rink's work was for a 3D sys-
tem. ' In such a case there is no divergence: the line of
conditions (7) reaches that of the Thouless condition safe-
ly, so that there is no branch point separating the solu-
tions into two classes. Therefore, the Nozieres and
Schmitt-Rink formalism is considered to be applicable to
3D systems, but it cannot be applied in its original form
to 2D systems where Auctuation effect is dominant.
Difficulty of the results by Schmitt-Rink et al. , and of the
Nozieres and Schmitt-Rink formalism, has been pointed

out by Serene' in a somewhat different point of view
from ours.

The crossover problem in Bose condensation has inti-
mate connection with that in magnetism, i.e., the cross-
over between the itinerant-electron magnetism and local-
ized spin magnetism. ' As is well known, the negative-U
Hubbard model can be mapped onto the positive-U Hub-
bard model with magnetic field by means of the canonical
transformation. ' ' The superconducting order in the
former corresponds to the transverse magnetic order in
the latter. The weak and strong attraction limits in the
former correspond to the itinerant and the localized spin
limits in the latter, respectively. A gas-liquid transition
in the former, which must be always paid attention to
when the strength of the attraction increases, can be ob-
served as a metamagnetic transition in the latter. These
relations show that making clear how the system crosses
over in the case of superconductivity is equivalent to
making clear the crossover problem in magnetism, and
vice versa.

In conclusion we have discussed the crossover between
the Cooper-pair and the Bose-Einstein condensation in a
2D system, on the basis of the Nozieres and Schmitt-
Rink formalism. The systems are separated into two
classes, (a) and (b), depending on their electron number
density N or the strength of the attraction V. When the
system belongs to class (a) where N & N„, Bose-Einstein
condensation of di-electronic rnolecules is set in at zero
temperature. When the system belongs to class (b) where
1V & X„, the chemical potential p tends to positive
infinite as temperature decreases along the line of pairing
instability. When N )&N„ in particular, p is of O(e~ ) in
the temperature region T, "~T&&Tz. As N or V is
changed, the system changes its class abruptly. Then a
discontinuous change of the chemical potential p occurs
below Tz. Such an abrupt change of the system indicates
that the Nozieres and Schmitt-Rink formalism cannot be
applied to a system with strong Auctuations. It seems
necessary to include the effect of fluctuations in order to
construct a smooth crossover formalism for low-
dimensional systems.
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APPENDIX A

Instead of (4), some use a different form for the ther-
modynamic potential

Q=Q/(p, T)+ T g g [In[1—Vy0(q, ice )]
~m

+ Vy0( q, i co ) ) .

This form does not contain the first-order perturbation
term. Two reasons can be imagined for the use of this
form: to avoid the discontinuity of the thermodynamic
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potential originating from the discontinuity of Green s
function at t =0; disappearance of the electron-phonon
interaction with carrying no momentum. The discon-
tinuity does not appear if the logarithmic term in (4) is
calculated without expanding it in powers of Vyo(q, i co ),
as Nozieres and Schmitt-Rink showed, and we also
showed it in the text. It can be avoided, as shown below,
even when the logarithmic term is expanded if the con-
vention for the Green's function at t =0 is used. The
second reason does not fit for the case considered in this

paper since we do not restrict the interaction to the
electron-phonon case. With use of the postulated Hamil-
tonian (1), the matrix element of the interaction Vkk
does not vanish even at k=k'.

Here we show that the first-order term of the expanded
logarithmic term in (4) is equivalent to the Hartree term.
Adding positive infinitesimal 5 according to the conven-
tion of the Green's function at t =0, the Hartree term is
transformed as follows:

~ I

hm g g Vk kT g G( —k+q/2, ie„)e " T g G(k+q/2, ie'„)e
6 0 I

n ~n

=ljmT2 g g g g Vk kG( —k+q/2, ie—„)G(k+q/2, ice +ie„)e™~
5 0

~m n

d~ 1 f &q/2+k
—P f eq/2 kP e'—

=lim Vk k
o

q k
' 277 eq/2+k+ q/2 —k ci7 2p, e~ —1

=Tggg Vk
~m

f(e /2qk+p) f(eq/2 —k p) Io
e

q//2+ k + ~q//2 —k l co~ 2P
(A2)

l 0 co
It is clear from (5) that this is equivalent to T Q„gqVyo(q, ice )e

m

APPENDIX B

In this appendix the properties of yo(q, co+iO ) are investigated. From (5) the real and imaginary parts of
yo(q, co+iO+) are written as follows:

and

dk k 2~ d~ [1 f (eq/2+k p—) f(eq/2
—

k p—)]-
Redo(q, co+i 0+ ) =I'

o 2' o 2m (1+k lko)(k lm+q /4m —co —2p)
(B1)

~ dk k 2~ dp [I—f(~q/2+@ P) f(eq/2 —k V)]
Imago(q, co+iO )= I J vr5(k /m +q2/4m —co —2p),0 27T 0 2' (1+k /k )

(B2)

where q& is the angle between k and q. Integrations in (Bl) and (B2) are complicated in general. However, it is relative-
ly easy to perform the integrations in the low-temperature regions T (( l pl important for the discussions in the text.

Furthermore, the calculations in the case p, (0 can be simply performed. In the region T ((—p, (Bl) and (B2) are
calculated up to the terms of O(e I"I/ ) as

and

+ m 1 —A, (q, co,p, T)e I@I

Redo(q, co+iO+)= ' ' ' inl(lp +q /Sm —co/2)/col4~ —1+(li l+q'/gm —~/2)/e,

m I;1 —v(q, co,p, T)e IP'I/

Iso(q, co+iO+) = ' ' ' ' 8(co—2lpl —
q /4m ),4 1 —(lpl+q /Bm —co/2)/eo

(B3)

(B4)

where eo—=ko/2m, and A, and v are of O(1) and complicated functions of q, co, p, and T. It is noted that
Redo(q, co+i 0+ ) shows logarithmic divergence around co-2

l p l
+q l4m and Iso(q, co+i 0 ) is vanishing for

co(2lpl+q /4m.
In the case p) 0, the integrations in (Bl) and (B2) are cumbersome even in the low-temperature region T ((p. So we

present the results for special values of parameters q and T. Then we interpolate among them by physical arguments.
yo(O, co+iO ) in the region T ((p is calculated analytically up to the terms of O(T/p, T/eo):
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and

Redo(0, co+ i0 ) = I [1—(p+ Eo)/2T ]in[1+(p —2T ) /eo]
4m I+(@+co/2)/eo

+ [ 1+(p+ eo) /2T)in[ 1+(p+ 2T) /eo]+ lni(p+ co /2) /eo~

—(1+co/4T)lni(2T +co/2)/eo~ —(1—co/4T)lni(2T —co/2)/eo~ I (B5)

4 1+(@+co/2)/eo (B6)

It is remarked that (B6) is always valid as long as p )0.
At T =0, yo(q, co+0+ ) can be calculated analytically. The expressions are different for two cases: (i) q /Bm & p, and

(ii) q /Bm )p, .
Case (i), q /Bm &p:

Redo( q, co+ i0+ ) =+ m 1

4~ I+(p+co/2 —
q /Bm )/eo

X 1n p+ ——
2 Sm

Ep

+1n .

—1n.

2

q
Sm

2

p+ ——
4m 2 8m

2

+2pEp+Ep + p + cp
q
8m

2 2 j/2
Ep

2m
1/2-

q p
2m

p +Epq
8m

2

q
2 4m

(B7)

and

m 1I my (0q, co+i 0+) =
4 I+(p+co/2 —

q /Bm )/eo

0, p+ —— &0,
2 Sm

—1, 0&p+ ——co q (&2m p —
q /2)

2 8m 2m

(&2m p —
q /2) co q q

2m
&p+ —— &p—

2 Sm 8m

q co q (&2m@,+q/2)
p — &p+ ——

Sm 2 8m 2m

(&2mp+q/2) co q
2m 2 Sm

(BB)

where A is defined as

A—:—sin
2 . i co

i

7T 2 2m 2
p+ ——q

Sm
(B9)

Case (ii), q'/Bm )p:

m 1
Redo(q, co+i 0+ ) = 4~ I+(p+ co/2 q /Bm )/—eo

CO
~ —1n p+ ——

2
q
Sm

Cp

m/2 dg [e+(9) +& ]0[ e (8) (p+ co2/q—/Bm )]-
+ ln

oo ~/2 [e (8)+co][e+(8)—(@+co/2 —
q /Bm )]

(B10)
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m 1
Imago( q, co+ i 0+ ) =

4 I+(@+co/2—
q /Sm )/eo

0, p+ —— &0,
2 Sm

co q (q /2 —&2m p )2
1, 0(p+ ——

2 8m 2m

(&2m p —q/2) co q (q /2+ &2m p)
2m

"+
2 Sm 2m

(&2mp+q/2) co q
2m 2 Sm

(B1 1)

where Oo=—cos '}/Sm p/q and e+(8) is defined as Thus, Ep is given by a solution of the following algebraic
equation:

e+(8}= — cos28+ pg
Sm

2

+ — sinO p — cos O
V2m Sm

' 1/2

(B12)

Ep = eo p
IEol

2&p

APPENDIX D

(C3}

1 —2f(e i2 p, )=t ahn(e i2
——p)/T .

Then, in general, the singular behavior of
Redo(q, co+iO+) around co- —2p+q /4m is written as

Ul 1
Redo(q, co+ iO ) = 4~ 1+(@+co/2—

q /8m )/eo

h (p, —q /Sm)X tanh
2T

Xln p+ ——
2 Sm

Ep (B13}

APPENDIX C

It is noted that the term lnl(lu+co/2 —
q /Sm )/col,

singular around co- —2p+q /4m, appears both in (B7)
and (B10), and the last term of (B7) shows singularity like
—inlcol around co-O, while the remaining terms in (B7)
and (B10) are regular. The singularity of the term
inl(@+co/2 —

q /8m)/col arises from the integration of
(Bl) near k —0. So this singular term can be calculated
also at T )0 by approximating the numerator of (Bl) as

In this appendix, we show that there is no divergence
in the last term of (7) other than the one associated with
virtual formation of the Cooper pairs as discussed in Sec.
IIIB.' Structures of the real and imaginary part of
yo(q, co+i 0+ ) are qualitatively different for the two cases,
(i) q /Sm (p and (ii) q /8m )p, as discussed in Appen-
dix B. So, we have to discuss these two cases separately.

For case (i), q /8m (p, schematic behaviors of
1 —VReyo and Imago are shown in Fig. 8(a), from which
one can see the behavior of the phase shift 5(q, co), (8), as
shown in Fig. 8(b). Although Redo, (B7), contains the
logarithmic divergence around co ——2p+ q /4m, it
causes no singularity in 5(q, co). This is in contrast to
class (a) where the logarithmic divergence in Redo(q, co)

gives the discontinuity in 5(q, co) corresponding to the ex-
istence of the di-electronic bound state. The difference
arises from that of the sign of the singularity
ln (@+co/2 —

q /Sm)/col in Redo.
The analytic form of the integrand B5(q, co)/Bp in (7) is

still complicated. So here we show the calculation of
05(O, co)/Bp and argue the case for finite q ( & v'Smp).
The real part of limT ohio(O, co+iO ) is obtained from
(B5) or (B7) as

The s-wave bound-state solution (Eo (0) of the
Schrodinger equation (15}is discussed. For the separable
s-wave interaction (2), Eq. (15) is transformed to

lim Redo(0, co+i 0+ )
T~p

m &p (eo+p) (p+co/2)
ln

4K Ep+ p+ 6) /2 (co/2) eo
(D 1)

1 —Vg 1 =0.
( 1+k /k )(2&1, + IEo I )

(Cl) The imaginary part of limT ohio(O, co+iO ) is given by
(B6) or (BS) as

This has the same structure as (10) with T =0 and p be-
ing substituted by —IEo I /2; so that (Cl) is reduced to

m eosgn I co J
lim Imago(0, co+i 0 ) = 8(co+2@) . (D2)

p 4 Ep+p+co/2

mV IEo I

1 ln =0 .
4~ —1+ IEo I /2&o 2&o

(C2) Substituting (D 1) and (D2) into (8), the phase shift
limz o5(O, co) is expressed as
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I

I

1-V Re&0(Q ~~')
I

I

I

-2p ~q /4m

Im Xp(a, u)~')

I

- 2p + q2/4m

I

FIG. 8. (a) Schematic behaviors of
1 —V Reg (q, co+iO+) and Imp (q, co+iO ) as
a function of co for the case p)) T~O and
q /Sm (p. (b) Schematic behavior of the
phase shift 6(q, co), (8), for the case p)) T—+0
and q /8m (p. Solid and dashed lines
represent two different typical cases, respec-
tively.

m V e'osgn[coI
lim 5(O, co) = tan 0(co+2p)
T o 4 Ep+ p+ co/2

mV ~o (eo+p) (p+co/2)1— 1n4' co+p+ co/2 (co/2)'e'o
(D3)

Differentiating this by p, limz oc)5(O, co)/Bp is written as allows:

B5(0,co)
11IIl
T~o Bp

mV &o 2&p1— —+
I
co

I
4~ p+ co/2 p+ eo

9(co+2p )4'
1

P+ co/2

Ep

(&o+p)'(p+ co/2)

( co /2)'eo
+ 0(co+2p)

2

The apparent divergence in (D4) around co ——2p is smeared out by the co integration in (7) to give the term

2

P f g(co) 5(O, co)=P f dco—
2)(L 'TT Bp —2p 4'

1

p+ co/2

(mV/4~)lnII(eo+p) (p+co/2)/p eo]I —1 + mV/4
2

, in[(eo+p) /pro] 4~/m V—
=—' m+ tan

1 mV
m V/471-«1 2 4W

(D5)

w»c»s of O(m V/4') in the weak-coupling limit. It is noted that the singularity around co-0 due to the Bose factor
gives no divergence to the co integration in (7) because the integration fdc' I/IcoI(lnco)~ converges around co-0. For a
general value V of the strength of the attractive interaction, the co integration in (7) with (D4) is difficu]t to perform
analytically. However, in the weak-coupling limit (m V/4~ && 1), (D4) is reduced to

B5(0 co) w co p+co/2 m V (Eo+p)'(p+co/2)
lim- 1n

cp 4m (co/2) eo
(D6)

excePt for the term leading to (D5). In deriving (D6), the formula ~5(x)=lim, oa/(x~+a2) has been used. The 5
function in (D6) is further transformed to
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B5(0,ro )
hm
T~O Bp

2' CO 1

eo ~ro~ e'o

—1
mV 1 +mV1 5( )
2& 2p+ co K co

(D7)

where coo is given by the condition that the argument in the 5 function in (D6) is zero:

i +~o/2 m V (~o+i )'(u+~o/2)
1+ ln

e0 4m (coo/2) eo

Since p, is of O(eF ) or larger a posteriori, coo is obtained as

2'(1+p, /eo)
ci)o —+2(p +6o )Qp/Eoexp

mV

(D8)

(D9)

Thus, with use of (D7) and (D9), the q =0 term in (7) is given as

4~ (i+&o) 2'(1+p/eo)
p/eoexp

mV eo mV
(D10)

which is exponentially small in the weak-coupling limit (m V/4m « 1). Therefore, in the weak-coupling limit, the main
contribution (except for the divergent one discussed in Sec. III B) to the co integration for the q =0 term in (7) is given
by (D5).

For finite q ( & &8mfM), the expression for B5(q, co)/Bp becomes far more complicated. However, it is seen that the
main contribution to the co integration in (7) comes from the singular term (around co- —2p+q /4m ) stemmed from
the p derivative of ln (@+co/2 —

q /8m )/eo~ in (B7) which gave the term of O(m V/4m. ) just as (D5).
For case (ii), q /8m )p, the schematic behaviors of 1 —V Redo and Imago are shown in Fig. 9 (a), from which one can

see the behavior of the phase shift 5(q, co), (8), as shown in Fig. 9(b). It is noted that the phase shift has the discontinui-
ty (by m. ) at co=g &q /4m —2p corresponding to the existence of the bound state, where g satisfies the relation
1 —V Redo(q, g +i 0 ) =0. This was recognized in the work of Schmitt-Rink, Varma, and Ruckenstein. The energy

q of the bound state can be either positive or negative depending on the value of q. Indeed in the weak-coupling limit
(m V/4' « 1), with use of (B10)qz is given as

2
q g~ —47' jmV
4m

(D 1 1)

where B is a positive constant of O(1).
Here one might suspect that such a bound state gives a divergent contribution to (7) from the Bose condensation of

the bound state as in the case T « —p, i.e., p & 0. However, as discussed shortly, this is not the case. The crucial point
is that the principal part is taken in the ro integration in (7). So, the bound-state contribution to the second part of (7) is
calculated using a relation the same as (29) and (30):

Irn y, (q, (gm')

g + q~/4m

I (d

I

-2p+q /4m

I

I

FIG. 9. (a) Schematic behaviors of
1 —V Reg0(q, co+iO+) and Imya(q, ~+iO+) as
a function of co for the case p»T~O and

q /8m & p. (b) Schematic behavior of the
phase shift 5(q, co), (8), for the case p » T~O
and q /8m &p. A discontinuity of 5(q, co) at
co =g~ represents the existence of the di-
electronic molecule with the momentum

q( & &8m @) and the energy q~ which is given
by the relation 1 —V Rema(q, g~+iO ) =0.
The value of pq, (D11), can be either positive
or negative, which is in marked contrast with
Fig. 4. Solid and dashed lines represent two
different typical cases, respectively.

I

2p + q~/4m
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c)6b(q, co)
g(~)

q &&smp Bp X g(nq)
q &&smp

P dg /T4& q(+sm p)

e~e —4m/m V

o 4~
(D12)

where the lower bound of the i) integration i)(i/8mp) = —eQ exp( 47r/m—V) from (Dl 1). The scattering-state contri-
bution to the same term of (7) should be calculated carefully as follows. Just as the singularity around co ——2p in (D4),
c)6(q, co)/Bp has an apparently diverging term around co ——2p+q /4m like

2
a p —

q /8m
Bp 2T

tanh lnl(p —
q /8m +co/2)/eo 8(co+2p —q2/4m )

X .
2

lnl(p —
q /8m+co/2)/col —1 +

4m 4

2 —1

(D13)

p dco

q &&smp
—2p+q /4m 7T

2

which can be derived from (8) with use of (810), (811),and (813) as in the case deriving (D4). Therefore,

a|,(q, ~)
g(~)

Bp

P
q&&smp 4' —2p+ q /4m

dm tanh lnl(p q /8m+co/2)/col
—1 0 p —

q /8m
e co/T ] Qp 2T

2 —1

ln (p —
q /8m+co/2)/col —1 +

4~ 4

q & v'smp

2mV p —
q /8m

tanh dco
4~ 2T o

2X—
CO

—1

exp[(q /4m —2p+co)/T j
—1

2

ln
l
co/2eo

l

—1 +
4~

2 —1

(D14)

This integral is convergent and gives a positive constant
of O(m V/4m) in the weak-coupling limit as in (D5) be-
cause the singular behavior around q ) i/8mp cancels
out after the co integration. ' Except for the above two
contributions, (D12) and (D14), to the second term of (7),
only an exponentially small one like (D10) is expected to
remain in the weak-coupling limit (mV/4m«1). Thus,
in the weak-coupling limit, relation (37) is valid.

Next let us discuss how the above discussions are
modified as the strength of attractive interaction V in-
creases.

For case (i), q /8m &p, one can see by inspection of
(87) and (88) that limz. Oc)5(q, co)/c)p is regular except
for a term like (D13). Then the contributions to the
second term of (7) are given in a way quite similar to
(D14) but with the q summation being taken in the region
q & i/8mp, which tends to a finite and positive constant
as the coupling constant m V/4m grows up as can be seen
in the calculation of (D5).

For case (ii), q /8m )p, the scattering-state contribu-
tion to the second term of (7) is given by (D14) which is
also positive and of O(1) as in case (i). On the other
hand, the bound-state contribution to (7) is given by the

same expression as (D12). However, the lower bound of
il integration, il(i/8mp), is not determined by (Dl 1), the
expression for the weak-coupling limit. In the strong-
coupling limit, the bound-state energy g is given, with
use of (810), (C2), and (17), as

= —2p+ —2eo g( V) .
4m 4~ (D15)

So, the bound-state contribution is calculated just as in
(D12):

d~ ~&b(q ~)
g(~)

q & v'smp Bp

mEo

(D16)

where g( V) satisfies relation (18).
Therefore, in the strong-coupling limit (m V/4m ))1),

contribution (D16) is a dominant one to the second term
of (7), except for the logarithmically divergent term asso-
ciated with virtual formation of the Cooper pairs dis-
cussed in Sec. III B. Thus, in the strong-coupling limit,
relation (39) is valid as long as p ))T.
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