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ミニ・マックス型ロバスト最適設計の適切化変換を用いた高精度化法 ∗

廣 川 敬 康 ∗1, 藤田 喜久雄 ∗2, Chiou Tzi FAM∗3

Enhancement of Mini-Max Type Robust Optimal Design
using Function Regularization∗

Noriyasu HIROKAWA∗4, Kikuo FUJITA and Chiou Tzi FAM

∗4 Department of Mechanical Engineering and Biomimetics, Kinki University,
930 Nishi-mitani, Uchita, Wakayama 649-6493, Japan

This paper proposes a method for enhancing the quality of mini-max type robust optimal design
by using the concept of function regularization. Since robust optimal design considers variations under
various noises, the quality of a solution is affected by the intermediate model for considering variations of
the objective function and constraints within a distribution region. The mini-max type robust optimal design
has been proposed by the authors for considering the bounding points of the objective and constraints within
the distribution region as a definition of robust optimality. The function regularization proposed in this
paper enhances its accuracy by filtering the functions so as to improve fidelity of quadratic approximation,
which is used for obtaining the bounding points. The filter is formulated as the form of Fourier series and is
implemented for the mini-max type robust optimal design scheme. Then, numerical experiments, in which
second-order Fourier series is used as the filter, are demonstrated with two numerical sample problems; a
two-dimensional algebraic problem and a simple structural optimal design problem.

Key Words: Robust Optimal Design, Function Regularization, Design Optimization, Mini-Max Type
Formulation, Quadratic Response Surface.

1 緒　言

ロバスト最適設計とは，製品の製造誤差や使用環境

の変動などに伴い設計変数や設計パラメータが確率

的に分布し，それによって目的関数や制約条件が変動

する場合において安定した性能を示す設計解を求め

るための方法である．その元来の意味は確率的な最

適性を取り扱うものであるが，数理的な枠組みのも

とで合理的な設計解を求めるためには計算可能なモ

デルを導入する必要があり，種々の見地から様々な代

替モデルが提案されてきている(1)(2)．当初，提案さ

れたモデルは，比較的単純な構成でロバスト最適性の

意味も精度の低いものであったが，徐々に，近似関数

の構成方法の改善，変動領域における連成項の考慮，

ロバスト性の直接的な評価などを組み込みながら，高

精度なものへと展開してきており，より厳密な意味で

のロバスト最適設計解を求めることができるように

なっている(3)．一連の展開を踏まえつつ，著者らは，
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連成を伴った変動領域において目的関数と制約条件が

最悪値を取る限界点に着目することによって設計解の

ロバスト性をより厳密に評価するミニ・マックス型ロ

バスト最適設計法を構成し，変数変動領域の超球体表

現(2)(4)(5)のもとで目的関数と制約条件の両方を 2次

応答曲面近似(6)することによって各関数の限界的な値

を厳密かつ効率的に求めることによる解法を提案して

いる(3)．

本論文では，上記のミニ・マックス型ロバスト最適

設計法に対して，非線形性が強いために限界点を求め

るための 2次応答曲面近似の精度がそのままでは不

十分であるような場合においてもその有効性が達成で

きるよう，対象関数に対するフィルターとしての適切

化変換を組み合わせる高精度化法を提案する．あわせ

て，その効果をいくつかの数値的例題における比較実

験を通じて検証する．なお，適切化変換に至る着想は

既報(3)において例題として用いた構造設計問題にお

いて応力やたわみに関する制約条件式を逆数変換(7)

した方が精度の高いロバスト最適解を得ることができ

たという事実に基づいたものであり，逆数変換に類す

る何らかの変換を対象問題の内容に応じて自動的に合

成することを目指したものである．



ミニ・マックス型ロバスト最適設計の適切化変換を用いた高精度化法 1622

2 適切化変換を用いたロバスト最適設計

2.1 ロバスト最適設計の形式 本研究では，ロ

バスト最適設計を論じるにあたり，ノミナルな最適設

計問題として以下の形式のものを想定する．

find x =
[

x1, x2, · · · , xnx

]T

that minimizes f (x, p)
subject to gk(x, p) ≤ 0 (k = 1, 2, · · · ,ng )




(1)

ここで， x =
[

x1, x2, · · · , xnx

]T は設計変数， p =[
p1, p2, · · · , pnp

]T は設計パラメータであり，nx と

npはそれぞれ，設計変数と設計パラメータの個数で

ある．ロバスト最適設計においては，設計変数 xと設

計パラメータ pがともに変化する場合を想定する必

要があるため，以下では，両者を区別せずに扱う場合

には，v =
[

xT , pT
]T =

[
v1, v2, · · · , vnv

]T を用いる．

ただし，nv = nx +npである．

ロバスト最適設計は様々な形式で定めることができ

るが，例えば，変数の変動領域における全ての設計解

が全ての制約条件を満足する確率を Pf 以上としつつ，

目的関数の期待値を最小化するロバスト最適設計問題

は以下のように記述される．

find x

that minimizes Exp[ f (v) ] =
∫

v
Φ(v) f (v) dv

subject to Probability
[

g1(v)≤ 0 ∩ g2(v)≤ 0∩
·· · ∩ gng(v)≤ 0

] ≥ Pf





(2)

ここで，Φ(v)はベクトル vの確率密度関数である．こ

のように，ロバスト最適設計の定義には変数の変動領

域全体における目的関数の積分計算や制約条件を満足

する確率の計算あるいは最大値探索などを含む形式

となる．その種の演算はそのままでは実施不可能であ

り，各関数から算出される何らかの特徴量に基づいて

式 (2)や式 (3)のような定義を置き換えるための代替

モデルが種々に提案されてきている(1)(2)．本研究で取

り上げるミニ・マックス型ロバスト最適設計の意味は

以下の形式により記述される(3)．

find x

that minimizes max
v∈ R

f (v)

subject to max
v∈ R

gk(v) ≤ 0

(k = 1, 2, · · · ,ng )





(3)

ここで，Rは上式中の max処理を考えるにあたり想

定する変数やパラメータの変動領域である．

Nominal
optimal design:

(a)

Robust optimal
design:

(c)

Imaginary and
unrealistic
robust optimal
design:

(b)
v �

Φ(v)h(v)dv

h
x h(x)

Robust optimal
design with
function
regularization:

(d)

f(x)f(x)
v

h ~
ζh 

h(v)
hζ

f(x)f(x)
v

h
h(v)
~

h
~h(v)

h  (h(v))ζ
~
h  (v)ζ

Fig. 1 Evaluation model in optimal design

2.2 適切化変換による高精度化 ロバスト最適

設計法において，設計解のロバスト性を評価するため

に何らかの統計量を算出する際の基本は変数の変動領

域における各関数の近似関数を構成することになる．

したがって，高精度の解を得るためには，高精度の近

似関数を構成することが重要である．本論文では，著

者らによるミニ・マックス型ロバスト最適設計法(3)に

対して緒言で述べた目的のために導入する変換を，逆

問題(8)における類似の操作の名称を借りて，「適切化

変換 (Regularization)」と呼ぶこととし，その一構成法

を提案する．

図 1はロバスト最適設計における代替モデルでの解

の評価の枠組みを示したものである．図中，h(v)は
目的関数 f (v)や制約条件 gk(v) (k = 1, 2, · · · ,ng )の
一般的表記である．ロバスト性を考慮しないノミナル

最適設計では，設計変数 xにおける関数値 h(v)に基
づいて最適化計算が行われる (図 1 (a))．これに対し

て，ロバスト最適設計とは元来の意味としては変数変

動の分布上の積分計算により得られる指標の最適化を

行うものである (図 1 (b))．しかしながら，その種の

計算は実行不可能であるため，一般には，一連のサン

プル点での関数値 h(v)に基づいて何らかの近似関数
h̃(v)を構成して最適化計算が行われる (図 1 (c))．適切

化変換とは，事前に各サンプル点での関数値 h(v)を
フィルター hζ によって hζ (h(v))に変換しておくこと
を通じて，上記において用いる近似関数の精度をより

高いもの h̃ζ (v)として構成するものである (図 1 (d))．

次に，ミニ・マックス型ロバスト最適設計の解法を

念頭において，近似関数が 2次応答曲面である場合

を想定し，適切化変換の役割を図 2に概説する．同

図 (a)は原関数 h(v)とその 2次応答曲面 h̃(v)である．
図の場合のように，原関数の非線形性が強い場合，2
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Boundary of feasible region

h(v)
~

O v

Quadratic approximation
of original function

h(v)

True bounding point

Sample point

Original function

h(v)

h(v)
~

Approximated bounding point Approximated bounding pointO v

Quadratic approximation
of regularized function

Original function

hζ(h(v))

h(v)

hζ(v)
~

Sample point
Regularized sample point

Regularized
function

hζ(v)
~

h(v)
hζ(h(v))

True bounding point

Boundary of feasible region

(a) Intermediate model of original function (b) Intermediate model of regularized function

Fig. 2 Effect of function regularization

次応答曲面 h̃(v)の精度は低くなることが避けられな
い．特に，近似する関数が制約条件の場合には，実行

可能領域の境界 (図中の “Boundary of feasible region”)

近傍において近似関数の精度が悪いと，真の限界点

(図中の “True bounding point”)と得られた限界点 (図

中の “Approximated bounding point”)が乖離し，結果

として得られるロバスト最適設計解の精度が低くな

る．これに対して，同図 (b)に示すように，妥当な適

切化変換フィルター hζ を構成し，サンプル点での原

関数値 h(v)に対してそれを施して得られる hζ (h(v))
についてのより精度の高い 2次応答曲面 h̃ζ (v)を構成
すれば，実行可能領域の境界近傍においても高精度の

近似関数を構成することが期待でき，それによって，

高精度の解を得ることも期待できる．

2.3 適切化変換フィルターの要件 式 (3)の定

式化に対する適切化変換フィルターは前項の内容に従

い対象関数の 2次近似の精度を高めることを目的とし

て設定する．その際，対象関数の非線形性が著しく強

い場合には，フィルターによって 2次近似の精度は高

まるものの，元々の対象関数の原型を留めず，限界点

が全く異なった箇所に再現される可能性も存在する．

対象範囲内で凹凸を繰り返す場合などは，それに該当

する極端な事例である．その種の可能性の多くは，適

切化変換フィルター hζ が想定された範囲内で単調増

加であれば，打ち消すことができる．つまり，フィル

ターの単調増加性は適切化変換を有効に機能させる上

で要件となる．この単調増加性は，想定する変動領域

内において関数 h(v)が取り得る最小値を hmin，最大

値を hmaxとするとき，hmin≤ h1 < h2≤ hmaxを満たす

すべての h1, h2に対して hζ (h1) < hζ (h2)が成り立つ
ことを意味する．本研究では，そもそもの 2次近似の

精度を論じる上での参照領域において，ここでの hmin

と hmaxを設定することとし，その変動領域のことを

適切化対象領域と呼ぶことにする．

適切化対象領域の設定方法については，その大き

さは関心となっている領域を含むものである必要があ

る．最適化計算の初期段階では，暫定解が最終的な解

から離れていることが予想されることから，そのサイ

ズはある程度大きなものである必要があるが，最終的

には，式 (3)での Rを含み，かつ，できるだけ小さい

ものとすることによって，適切化変換の効果は最大と

なる．そこで，最適化計算の進行に伴って適切化対象

領域のサイズを段階的に縮小していくものとし，適切

化対象領域を更新するたびに，領域内に設定したサン

プル点での関数値に基づいて適切化変換フィルターを

逐次的に構成することとする．

3 ミニ・マックス型ロバスト最適設計の
適切化変換による高精度化

3.1 ミニ・マックス型ロバスト最適設計法

(1) 定式化 ミニ・マックス型のロバスト最適

設計法は，変数変動領域における全ての設計の実行可

能性と最適性を保証するために，おのおのを制約条件

と目的関数の限界点での値により評価するものであ

り，式 (3)に示したように形式化され，設計変数と設

計パラメータの変動領域を表す v ∈ Rを以下のよう

に定めることにより定式化される(3)．

( v−vo )T Σ−1 ( v−vo ) ≤ χ2(nv, α) (4)

ここで，voは変動の中心となる平均値，Σは変数の分
散共分散行列，χ2(nv, α)は正規分布にしたがって分
布する nv個の変数についてのパラメータ α によって
規定される χ2分布である．なお，以下では，上式を

v ∈ R(vo, Σ, α )と記す．
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(2) 限界点探索 上式は，ロバス

ト最適化問題の中に目的関数 f (v)や制
約条件 gk(v) (k = 1,2, · · · ,ng)に関する
限界点探索問題を含む形式となってい

る．この限界点探索問題は，関数を一

般的に h(v)と表記した場合，以下のよ
うに定式化できる．

find v

that maximizes h(v)
subject to v ∈ R(vo, Σ, α )




(5)

本研究では，限界点探索問題の解を

効率的に求めつつロバスト最適化計算

を行うために，変数の変動領域を超球

体により表現するとともに，関数を 2次

応答曲面近似する(3)．そのために，式

(5)の限界点探索問題を次式のように再

定式化する．

find v′′

that maximizes

h̃(v′′) = h(v′′o) +
nv

∑
i=1

βiv
′′
i

+
nv

∑
i=1

nv

∑
j=i

βi j v
′′
i v′′j

subject to v′′T v′′ ≤ χ2(nv,α )




(6)

ここで，v′′ は v′′oを原点とし連成変動領域が超球体に
なるように変数変換を施した座標系における設計変

数ベクトルである．また，式 (6)の 2次応答曲面の係

数 βi , βi j (i = 1,2, · · · ,nv, j = 1,2, · · · ,nv) に関して
は，変動領域の中心 v′′o において近似関数値が真の値
と一致するようにした上で，ロバスト最適設計で考え

るべき変動領域のサイズを踏まえれば，限界点は超球

体面上に存在する可能性が高いことを考慮して，超球

体面上にサンプル点を等方的に配置し，最小 2乗法を

用いて決定する(3)．

3.2 全体構成 本研究で提案する適切化変換を

用いたミニ・マックス型ロバスト最適設計法の全体構

成を図 3に示す．提案する方法は，ミニ・マックス型

ロバスト最適設計(3)の過程において，想定された領域

において目的関数と制約条件の適切化変換フィルター

を構成する過程 (図 3 (a)～(d))と，構成した適切化変

換フィルターを利用してサンプル点における各関数の

値を変換して高精度の 2次応答曲面を構成し，限界点

を精度よく求めつつ最適化計算を行う過程 (図 3 (e)～

Search the extremes of functions
within a distribution region

Discriminate the type of an ex-
treme in the distribution region

Search the 
boundary
extreme

Calculate the
inner extreme
analytically

The feasibility of a distribution
region and the inferior extreme of

the nominal objective within it

 (j) 

 (k)  (l) 

Initialize or shrink
 suitabilization region

Execute sampling over
suitabilization region

 (d) 

 (b) 

 (c) 

Determine filter parameters

Converged?

Build quadratic poly-
nomial approximations

Calculate its optimality

 (e) 
Generate a tentative design

 (f) 
Test the tentative design

Regularize a region

Start

End

 (a) 
Build suitabilization filters

Satisfy terminal condition?

 (i) 

 (h) 

 (g) 

Optimize the critical optimality
over the design space

Build regularization filters
over regularization region

 (m) 

Fig. 3 Mini-max type robust optimal design by

regularization

(l)) とから構成されており，両者による操作を適切化

変換領域を縮小しながら繰り返すというものである．

以下に，適切化変換フィルターについての操作の詳細

を示す．

3.3 適切化対象領域の設定 適切化変換フィル

ターを定める際には，そのフィルターが適用される

対象領域を設定する．具体的には，初期解もしくは

暫定解を xとするとき，v =
[

xT , pT
]T を中心とし

た上下限が vi ±C(k)σi (i = 1, 2, · · · , nv)の超直方体
領域を適切化対象領域として設定する．ここで，σi

は vi の変動の標準偏差であり，kは適切化対象領域の

設定回数である．適切化対象領域は，初期の C(0) に

対し，変数の変動領域に接するまで K 回にわたって

C(k+1) =C(k)/
K
√

C(0)により，徐々に縮小していくもの

とする．

3.4 適切化変換フィルターの形式 適切化変換

フィルター hζ ( · ) には，本研究では，2次近似の精

度を高めるフィルターの構成問題を比較的少数のパラ

メータにより調整可能な形式として定義すべく，フィ
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ルターとしては作用のない等価変換に相当する 1次関

数に対して，適切化対象領域に周期を合わせたフーリ

エ級数の形式に準じて sin関数群を重ね合わせて，以

下の関係式のものを導入する．

hζ S

(
αζ ,hS(h(v))

)

= hS(h(v))+
N

∑
n=1

bn sinnπ hS(h(v)) (7)

ここで，hS( · )は適切化対象領域内での h(v)の最小値
hminを 0，最大値 hmaxを 1にスケーリングする 1次関

数であり，αζ = [ b1, b2, · · · ,bN ]T は各 sin関数の係数

ベクトルである．ただし，この係数ベクトルの値は，

2.3項で述べた単調増加性を保証するために，後出の

条件を満たすものである必要がある．適切化変換フィ

ルターは，この関係式のもと，αζ を調整パラメータ

として，hζ

(
αζ ,h(v)

)
= h−1

S

(
hζ S

(
αζ ,hS(h(v))

))
に

より定義する．

3.5 適切化変換フィルターの調整 適切化フィ

ルターの調整パラメータ αζ は，適切化変換後の関数

に対して高精度の 2次応答曲面 h̃ζ (αζ ,v)が構成でき
るように，フィルターの単調増加性を保証しつつ，変

換後の関数とその 2次応答曲面との差が最小になる

ようにして決定する．この αζ の決定問題は以下の最

適化問題として定式化することができる．

find αζ = [ b1, b2, · · · , bN ]T

that minimizes

Eζ =
1
nζ

nζ

∑
k=1

[
hζ

(
αζ ,h(v)

)
− h̃ζ (αζ ,vk)

]2

subject to
∂hζ S

(αζ ,hS(h(v)))

∂hS(h(v))
≥ 0

over 0≤ hS(h(v))≤ 1





(8)

ここで，nζ は，適切化対象領域内でランダムに設定

するサンプル点の個数である．

式 (8)中の制約条件は上述のようにフィルターの

単調増加性を確保するためのものであり，実際には，

上式のような微分計算式ではなく，それに相当する

代数的な制約条件式を用いる．その N = 2 の場合

の実行可能領域を，付録 A に示す．なお，一連の

操作を行うには前出の hmaxと hminの値が前提とな

るが，それらを厳密に求めることは困難であり，全

サンプル点についての h(v) の最大値 hs
maxと最小値

hs
minをもとに，∆h (0 < ∆h < 0.5)により定めるマージ

ンを加味して，hmax = hs
max+ ∆h (hs

max−hs
min), hmin =

hs
min−∆h (hs

max−hs
min)として定まる値で代替する．

3.6 制約条件式に対するフィルターの設定　　

対象関数 h(v) が制約条件の場合，適切化変換の
前後で関数値が 0 となる点が厳密に一致する必要

がある．そのための補正を加えて前出のフィルター

hζ

(
αζ ,h(v)

)
を以下のように再定義する．

hζ

(
αζ ,h0,h(v)

)
= h−1

S

(
hζ S

(
αζ ,hS(h(v))

))
−h0

(9)

ここで，h0は補正のための定数であり，hs
min≤ 0≤ hs

max

の場合には，変換の前後で関数値が 0となる点が変

化しないように，hs
min > 0の場合には，変換の前後で

関数値が hs
minとなる点が変化しないように，hs

max< 0

の場合には，変換の前後で関数値が hs
maxとなる点が

変化しないように定める．

4 数値計算例

提案手法を具体的な 2つの数値計算例に適用した

例を示す．以下では，適切化変換フィルターの構成回

数 K = 5，処理適切化変換フィルターのサイズに関

するパラメータ C(0) = 3.0，適切化変換フィルター

におけるフーリエ級数の次数 N = 2，サンプル点数

nζ = 400，適切化変換フィルターの補正のためのマー

ジンに関するパラメータ ∆h = 0.33 とした．

4.1 2変数関数のロバスト最適化問題への適用

(1) 最適化問題の定式化 提案手法の有効性を

視覚的に確認するために，まず，2変数の設計問題に

ついてのロバスト最適設計を考える．対象問題のノミ

ナル最適化問題は以下のように定式化される．

find x =
[

x1, x2

]T

that minimizes

f (x) = 2− 40

(x1−3)2 +(3−x2)
2

subject to

g1(x) =
−50

(x1−1.75)2(x2−5)
−4≤ 0

g2(x) = log(0.1x1 +0.41)

+x2e(x1
2+3x2−4)−x2−1≤ 0





(10)

この最適化問題に対し，設計変数の分布の標準偏

差を σ = [ 0.13, 0.13 ]T，分散共分散行列を Σ =[
1.690×10−2 8.450×10−3

8.450×10−3 1.690×10−2

]
とする．

図 4は以上の問題における目的関数と制約条件の

等高線を表しており，制約条件式 g2(x) の実行可能
領域境界近傍での非線形性が強いことが確認できる．

(2) 数値計算結果 上記の問題に対して，適切

化変換を用いない場合と用いた場合のロバスト最適
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Fig. 4 Contour plot of two-dimensional sample problem

Table 1 Result of two-dimensional sample problem

Robust optimum on
original functions

Robust optimum on
regularized function

Vaules
in for-
mulated
model

Vaules
in real
behav-
ior

Vaules
in for-
mulated
model

Vaules
in real
behav-
ior

x1 −0.3945 ←− −0.3943 ←−
x2 1.1139 ←− 1.1003 ←−

g1(x
∗) 0.0000 0.0148 0.0000 0.0023

g2(x
∗) 0.0000 0.1835 0.0000 0.0139

f (x∗) −0.2903 −0.2874 −0.3201 −0.2818

設計の結果を表 1に示す．表中，第 2列，第 4列は

2次応答曲面を用いて求めた限界点での近似関数値で

ある．また，第 3列，第 5列は，得られたロバスト最

適設計解において 2次応答曲面を用いずに求めた限

界点での関数値である．適切化変換を用いて得られた

解の実際の限界点での制約条件値 (第 5列)は，適切

化変換を用いずに得られた解のもの (第 3列)よりも，

一桁，小さいことが確認できる．これは，適切化変換

によって非線形性が強い制約条件式 g2(x) に関して
も高精度の近似関数が構成されているためである．な

お，反面において，目的関数が若干大きくなっている

ものの，それ自体は制約条件の評価がより正確にな

り，計算上の実行可能領域が後退したことによるもの

である．

(3) 適切化変換フィルターとその効果 上記の

結果における適切化変換の効果を確認するために，実

行可能領域境界条件近傍での非線形性が強い制約条件

式 g2(x) の 2次応答曲面が，適切化変換フィルターを

用いることによって高精度化されている様子を検討す
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Fig. 5 Regularization filter for g2(v) at the final

iteration (b1 =−0.128, b2 = 0.076)
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る．図 5は，最終の繰返し ( k = 5 )において制約条件

式 g2(x) に対して構成した適切化変換フィルターで
あり，単調増加関数であることが確認できる．また，

原関数 g2(x) と適切化変換フィルターを介して適切
化対象領域において原関数を変換して得られた適切
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Fig. 7 Optimal design problem of welded beam

化関数 g2ζ (αζ ,g20
,g2(v)) を図 6 (a)に示す．さらに，

原関数から適切化変換フィルターを介さずに構成した

2次応答曲面の等高線とその原関数と比較を同図 (b)

に，適切化変換フィルターを介した場合のそれらを同

図 (c)に示す．同図の (b)と (c)中，g2 = 0で指示され

た曲線が原制約条件 g2 ≤ 0の境界，点線が適切化対

象領域，楕円が変数の変動領域，×印が得られた解で
ある．同図 (b)では，2次応答曲面による g̃2 = 0の等

高線が原関数のものとずれており，境界近傍での精度

が悪いことが確認できる．これに対して，同図 (c)で

は，適切化変換を実施したことにより g̃2ζ
= 0として

得られる境界の精度向上を確認できる．

4.2 溶接はりのロバスト最適設計問題への適用

(1) 最適化問題の定式化 次に，溶接はりの設

計問題への適用例を示す．この問題は図 7に示す片持

ちはりの先端に作用する荷重により生じる曲げ応力や

せん断応力，座屈，たわみ等に関する制約のもとで，

材料と溶接のコストを最小化するように，はりの断面

形状や溶接部の寸法を決定する問題であり，そのノミ

ナルな最適設計問題は次式のように定式化される(9)．

find x = [h, l , t, b]T =
[
x1, x2, x3, x4

]T

that minimizes

f (x) = c1 x1
2 x2 + c2 x3 x4 (L+x2)

Subject to

g1(x) = τ (x)− τmax ≤ 0

g2(x) = σ (x)−σmax ≤ 0

g3(x) = x1−x4 ≤ 0

g4(x) = 3.18×10−3−x1 ≤ 0

g5(x) = δ (x)−δmax ≤ 0

g6(x) = P−Pc (x) ≤ 0

2.54×10−3 ≤ x1 , x4 ≤ 5.08×10−2

2.54×10−3 ≤ x2 , x3 ≤ 2.54×10−1





(11)

ここで， τ はせん断応力，σ は曲げ応力，δ はたわ
みであり，·maxはおのおのの許容値である．また，Pc

は座屈応力， c1 は材料コストについての係数， c2

は加工コストについての係数である．本設計問題で

は， L = 355.6 (mm), P = 26.7 (kN), τmax = 93.9

(MPa), σmax = 207.0 (MPa), δmax = 6.350 (mm),

c1 = 67.414 ($/m3), c2 = 2.936×103 ($/m3)とし，縦

弾性係数を E = 207.0 (GPa)，横弾性係数を G= 82.8

(GPa)とした．また，各設計変数の変動の標準偏差

を σ = [ 0.5 , 0.5 , 0.17 , 0.17 ]T (mm)とし，分散共

分散行列を対角行列 diag( 0.25, 0.25, 0.0289, 0.0289)
(mm2)とした．

(2) 検討ケース 上記の設計問題に対する検討

ケースとして，(a)：原関数に対して直接的にミニ・マッ

クス型ロバスト最適設計を行った場合，(b)：本論文

で提案する適切化変換を用いた場合の結果である．さ

らに，(c)：制約条件式 g1(x)，g2(x)，g5(x)には設計
変数が分母に含まれることから，構成する 2次応答曲

面の精度を向上させるために，設計変数が分母に含ま

れない形式(7)で次式に示すように再定式化を行った上

で，ミニ・マックス型ロバスト最適設計を行った場合

(適切化変換は行わない)(3)の三つの場合を考えること

にする．

find x = [h, l , t, b]T =
[
x1, x2, x3, x4

]T

that minimizes

f (x) = c1 x1
2 x2 + c2 x3 x4 (L+x2)

Subject to

g1
′(x) =

1
τmax

− 1
τ
≤ 0

g2
′(x) =

1
σmax

− 1
σ

≤ 0

g3(x) = x1−x4 ≤ 0

g4(x) = 3.18×10−3−x1 ≤ 0

g5
′(x) =

1
δmax

− 1
δ

≤ 0

g6(x) = P−Pc (x) ≤ 0

2.54×10−3 ≤ x1 , x4 ≤ 5.08×10−2

2.54×10−3 ≤ x2 , x3 ≤ 2.54×10−1





(12)

ここで，g1
′(x)，g2

′(x)，g5
′(x)はそれぞれ，式 (11)中

の g1(x)，g2(x)，g5(x)を変換したものである．
(3) 数値計算結果と考察 表 2は上記の三つの

場合のロバスト最適設計の結果を比較したものである．

表中第 6列の “∗” を記した値は，(c)の効果を (a)や

(b)と比較するために，最適解を g1(x)，g2(x)，g5(x)
に代入して求めた値である．同表より，適切化変換を

施した場合 (表 2 (b))の方が，原関数を直接的に使用

する場合 (表 2 (a))よりも，より制約条件違反が小さ

な解が得られていることが確認できる．また，適切化

変換を行って得られる解 (表 2 (b))は，原関数に対し

て直接的にミニ・マックス型ロバスト最適設計を行っ
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Table 2 Robust optimal design result of welded beam

(a) Robust optimum over
original functions

(b) Robust optimum over
regularized functions

(c) Robust optimum by
manual reformulation

Values in
formulated
model

Values
in real
behavior

Values in
formulated
model

Values
in real
behavior

Values in
formulated
model

Values
in real
behavior

x1 = h [mm] 6.276 ←− 6.373 ←− 6.381 ←−
x2 = l [mm] 247.367 ←− 244.019 ←− 244.185 ←−
x3 = t [mm] 193.444 ←− 192.195 ←− 192.095 ←−
x4 = b [mm] 7.858 ←− 7.954 ←− 7.962 ←−
g1(x

∗) [MPa] 0.000 0.567 0.000 0.159 0.000(∗) 0.000

g2(x
∗) [MPa] 0.000 0.033 0.000 0.008 0.000(∗) 0.000

g3(x
∗) [mm] 0.000 0.000 0.000 0.000 0.000 0.000

g4(x
∗) [mm] −1.601 −1.601 −1.697 −1.698 −1.705 −1.705

g5(x
∗) [mm] −5.914 −5.913 −5.914 −5.913 −5.911(∗) −5.910

g6(x
∗) [kN] −15.177 −15.166 −16.642 −16.638 −16.768 −16.757

f (x∗) [$] 3.736 3.736 3.751 3.746 3.751 3.751

た場合 (表 2 (a))と，関数の形式を考慮して 2次近似し

やすいようにあらかじめ再定式化を行ってミニ・マッ

クス型ロバスト最適設計を行った場合 (表 2 (c))との

中間的な性能を示していることも確認できる．以上よ

り，関数の非線形性が強く 2次近似しにくい関数に対

しても，適切化変換を用いることによって高精度の 2

次応答曲面を適応的に構成することができることが確

認できる．

4.3 計算コストに関する検討 適切化変換を行

う場合には，適切化変換を行わない場合に比べ，適切

化関数を構成するためのサンプリングを実施する必

要があるため，余分な計算コストを必要とする．例え

ば，4.1項に示した 2変数関数のロバスト最適化問題

においては，適切化変換を行わない場合には約 500回

の関数評価を行うのに対し，適切化変換を行う場合

には約 3,800回の関数評価を行った．また，4.1項に

示した溶接はりのロバスト最適設計においては，適切

化変換を行わない場合には約 2,700回の関数評価を行

うのに対し，適切化変換を行う場合には約 8,000回の

関数評価を行った．ロバスト最適設計を実施する際に

は，サンプリングを行って関数の変動を推定するため

の応答曲面を構成する必要があるが，適切化変換を用

いる場合には，それに加えて，適切化関数を構成する

ためのサンプリングが必要となっている．

上記のことは，元来，従来からの方法に比べて計算

コストのかさむミニ・マックス型ロバスト最適設計法

における計算コストの問題とともに，実用上の弊害と

なる．しかしながら，ロバスト最適設計において質の

高い設計解を得ようとすればそれに伴って計算コスト

がかさむことは構造的な問題である．それらの状況に

限らず，ロバスト最適設計における計算コストを改善

するための方法を構築することは今後の課題である

と言え，そのことに対応することができれば，適切化

変換を行うことによる計算コストの増加についても，

同様に対応できるものと考えられる．

5 結　言

本論文では，ミニ・マックス型ロバスト最適設計法

に対する関数の適切化変換を用いた高精度化法を提案

し，1次関数に sin関数群を重ねた適切化変換フィル

ターの形式とその基での具体的な数値計算例を示し

て，それらの有効性を検証した．ロバスト最適設計に

おいては，解のロバスト性を厳密に考慮するために，

変動領域における関数の変動を高精度で近似すること

が重要であるが，提案手法では，関数の適切化変換を

行うことにより，非線形性が強い関数に対しても高精

度の 2次近似関数を構成することができるようになっ

ており，これによって得られるロバスト最適解の精度

を向上させることが可能となっている．

なお，本研究の一部は文部科学省科学研究費若手研

究 B 13750119の援助によるものである．
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A 2次の適切化変換フィルターが
単調増加関数であるための条件

式 (7)における適切化変換フィルターとして 2次の

フーリエ級数を利用する場合 (N = 2)，係数 b1, b2に

ついての式 (8)における実行可能領域は図 8に示すよ

うな形となる．具体的には，点C

(
0,

1
4π

)
を中心と

する楕円 b2
1+32

(
b2− 1

4π
)2 = 2

π2 の境界と内部および，

b2 ≤ 1
2b1− 1

2π , b2 ≤ −1
2b1− 1

2π , b2 ≤ 1
8b1, b2 ≤ −1

8b1

を満足する領域の和となる．計算過程でこの和の条

件を判定する際には，点 C と解 P の距離 d1 なら

びに，半直線 CP と実行可能領域の境界との交点 Q

との距離 d2 を用いて，
d1

d2
≤ 1により評価する．な

お，式 (8)に示した適切化フィルターの決定問題では，

[ b1, b2 ]T = [ 0, 0 ]T が実行可能解であることから，こ
の点を初期解としてペナルティ法の内点法により解く

ようにする．
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