
Title
Spin separation and spin Hall effect in quantum
wires due to lateral-confinement-induced spin-
orbit-coupling

Author(s) Hattori, Kiminori; Okamoto, Hiroaki

Citation PHYSICAL REVIEW B. 2006, 74(15), p. 155321-1-
155321-6

Version Type VoR

URL https://hdl.handle.net/11094/3376

rights
Hattori, Kiminori, Okamoto, Hiroaki, Physical
Review B, 74, 15, 155321, 2006-10-25. "Copyright
2006 by the American Physical Society."

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Spin separation and spin Hall effect in quantum wires due to lateral-confinement-induced
spin-orbit-coupling

Kiminori Hattori and Hiroaki Okamoto
Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan

�Received 1 June 2006; revised manuscript received 26 September 2006; published 25 October 2006�

We show that the spin-orbit coupling in two-dimensional �2D� electron systems with a potential gradient
parallel to the 2D plane exerts a spin-dependent transverse force on moving electrons while conserving their
spins. Due to the spin conservation, the standard continuity equation holds between spin density and spin
current. Using numerical calculations based on the nonequilibrium Green’s function formalism, we demon-
strate for crossed quantum wires with a harmonic confining potential in the ballistic limit that transverse spin
separation and spin Hall current are generated in response to a longitudinal charge current.
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Spin-orbit �SO� coupling brings about a number of in-
triguing phenomena,1 one of which is the spin Hall effect,
i.e., the generation of a transverse spin flux due to the electric
field applied to an infinitely-large homogeneous system or
the electrochemical potential difference between the elec-
trodes attached to a finite-size mesoscopic system.2–13 The
possibility to manipulate spin current by a purely electrical
means attracts a great deal of interest in the field of spintron-
ics since it enables spin injection to and spin polarization in
conventional semiconductors without ferromagnetic materi-
als and magnetic fields. To date, various classes of spin Hall
effects have been discovered in different physical systems
and studied extensively. In the case of quantum heterostruc-
tures of narrow gap semiconductors, a major contribution to
the SO coupling may originate intrinsically from its confin-
ing potential.14 The spin Hall effect in two-dimensional �2D�
electron systems exploits the Rashba SO coupling due to an
asymmetry in quantum well potential that confines the elec-
tron gas.6 As an extension of Ehrenfest’s theorem in quantum
mechanics, the SO coupling may generate a spin-dependent
transverse force on moving electrons.15–19 This force tends to
separate different spins in the transverse direction as a re-
sponse to the longitudinal charge current, giving a qualitative
explanation for the Rashba spin Hall effect. In the presence
of Rashba SO coupling, however, electron spin �particularly
its out-of-plane projection� is not conserved and, hence, the
usual continuity equation fails to describe the spin transport.
This makes the spin transport phenomena in this system
rather complicated.

In this paper, we discuss the possibility of spin Hall effect
in quantum wires �QWs� through the analysis of the SO cou-
pling in a 2D electron system with an in-plane potential gra-
dient. A SO coupling of this kind generates a spin-dependent
force on moving electrons while conserving their spins. The
standard continuity equation for spin density and spin current
is naturally established because of spin conservation. We in-
vestigate the spin distribution and the spin transport in the
ballistic QWs with a harmonic confining potential, and dem-
onstrate the existence of a spin Hall current in the crossed
QW geometry, using numerical calculations based on non-
equilibrium Green’s function formalism.20,21 The occurrence
of a spin Hall effect in a harmonic QW system was suggested
previously.22 The four-terminal junction considered in this

study differs from the previous model assuming weakly-
coupled spin current probes.

The SO interaction is generally described by the Hamil-
tonian HSO= �� / � ��U · ���p�, where p is the momentum
operator, � is the vector of Pauli matrices, and � is the SO
coupling parameter having a dimension of length squared.
We adapt the general form to the strictly 2D case, where the
degree of freedom of motion in the z direction is frozen out,
and the potential energy U�r� depends only on x and y coor-
dinates. Then HSO takes the following form:

HSO =
�

�
�uypx − uxpy��z, �1�

where ux,y =ex,y ·�U with the unit vectors ex,y on the xy
plane. The reduced Hamiltonian commutes with the spin op-
erator Sz= �� /2��z, and, hence, conserves spin. This crucially
differs from the Rashba SO coupling associated with uz,

14 for
which HSO= �� / � �uz��xpy −�ypx�, so that �Sz ,HSO��0 un-
less p=0 and spin precession takes place around the vector
p�ez in the course of electron transport. It may be worth
mentioning that the spin-conserving SO interactions are also
the basis of the quantum spin Hall effects discovered
recently.11–13 Specifically, one of them, which stems from a
strain gradient formed in conventional semiconductors,13 is
apparently similar to Eq. �1�.

The total Hamiltonian can be written as

H =
p2

2m
+ U +

�

�
�uypx − uxpy��z, �2�

including the kinetic energy term p2 /2m with the electron
mass m. Using the Heisenberg equation, the kinetic
velocity operator is formulated as v= �r ,H� / i� =v0+vSO,
where v0=p /m is the canonical velocity and vSO
= �� / � ��exuy −eyux��z is the spin-dependent anomalous ve-
locity due to the SO coupling. The same procedure also ap-
plies to introducing the force operator F as the time deriva-
tive of kinetic momentum operator mv. For instance, a
harmonic potential U�x�=m�2x2 /2 gives the operator
F=F0+FSO consisting of two components, F0=−m�2xex and
FSO= �� / l2��p�ez�z, where l=�� /m� is the characteristic
length scale of the confinement. The second term, FSO, cor-
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responds to the spin-dependent SO coupling force, which is a
purely quantum quantity and has no classical counterpart.
This force acts on moving electrons and tends to deflect a
spin-↑ electron to the right and a spin-↓ electron to the left.
For simplicity, the present analysis neglects the anomalous
contribution to the position operator due to the Berry gauge
potential A= �� /�2����p� in the momentum space.18,19

Taking this contribution into account to first order in � de-
rives the anomalous velocity exactly twice as large as the vSO
written above, as well as the additional term −�� / l2��px�zey

in the expression of the SO coupling force for U�x�
=m�2x2 /2. However, the correction is not substantial for the
spin Hall effect in harmonic QWs discussed below, since the
extra force is parallel to the wire orientation.

The Schrödinger equation i��� /�t=H� in terms of the
fermion field operator � leads to the standard sourceless con-
tinuity equation

�

�t
�s + � · Js = 0, �3�

relating the spin density operator �s=�†Sz� and the spin cur-
rent density operator Js=Re �†Szv�, where Re A is defined
as �A+A†� /2. The absence of the spin torque contribution,
which appears inevitably as a source �or sink� term in the
case of the Rashba SO coupling,23–25 is simply due to the fact
that the Hamiltonian considered here is diagonal in the spin
basis. Actually, the standard continuity equation holds with
respect to individual spinor components.

A typical physical system described by Eq. �2� is a QW.26

We consider the quasi-1D system formed when a 2D electron
gas confined in the z direction by a square potential is further
subject to lateral confinement. When the lateral confining
potential is parabolic, U�x�=m�2x2 /2,27–29 the effective
Hamiltonian in each spin state can be expressed for a weak
SO coupling such that �2 / l4�1 as

H� =
p2

2m
+

1

2
m�2�x −

�

�
py��2

, �4�

where �= ±1 for spin-↑ and ↓ states, respectively. This sys-
tem makes up 1D subbands with the energy

�nk = � ��n +
1

2
� +

�2k2

2m
�5�

for both spins, where n �=0,1 ,2 , . . . � represents the subband
index, and k stands for the propagation wave vector along y.
The corresponding eigenfunction for spin �,

	nk��x,y� =
1
�L

exp�iky�
n�x − �k�� , �6�

is spatially shifted by an amount �k�, where 
n�x� is the nth
eigenfunction of the 1D harmonic oscillator. The displace-
ment is quantitatively interpreted in terms of the SO coupling
force. Thus, moving electrons with opposite spins experience
opposite SO coupling forces, yielding opposite signs of dis-
placements. A nonequilibrium spin separation in the trans-
verse direction will therefore be generated inside the QW in
the presence of a charge current in the longitudinal

direction.30 What is also suggested is that the transverse spin
current flows as a response to the longitudinal charge current,
when spin current probes are properly attached to the system.

In this study the spin Hall effect has been examined for a
four-terminal junction of harmonic QWs by means of nu-
merical calculations. The model system is shown in the inset
of Fig. 1. Four semi-infinite QWs with an equal width W
labeled by �=1,2 ,3 ,4 join at right angles. The confining
potential in the interior of QWs running along the x and y
axes was chosen as U�r�=m�2x2 /2 for y2�x2 and m�2y2 /2
for x2�y2.31 Note that the model potential U�r� produces the
SO coupling force expressed as FSO= �� / l2��p�ez�z every-
where, except on diagonal lines x= ±y. For computational
convenience, the hard wall potentials that define the finite
width W are also assumed outside the crossed QWs. In the
tight-binding approximation on a square lattice with lattice
spacing a, the Hamiltonian of each spin subsystem is formu-
lated as

H� = �
r,r�

trr�
� cr�

† cr��, �7�

trr�
� = 	4t + U�r� , r = r�

− t ± i���/2a�uy��r + r��/2� , r = r� ± aex

− t  i���/2a�ux��r + r��/2� , r = r� ± aey ,

�8�

where cr� is the annihilation operator of an electron at posi-
tion r with spin �, and t=�2 /2ma2 is the hopping energy. In
what follows we regard each arm of the cross as the lead
maintained at a different chemical potential �� and the cen-
tral square intersection of the cross as the sample region
being in a nonequilibrium steady-state.

FIG. 1. Longitudinal charge conductance GC and spin Hall con-
ductance GSH calculated as a function of Fermi energy E. In the
calculation, the system size, and the SO coupling strength were set
at W=60a and � / l2=0.1, respectively. Inset is a schematic view of
the four-terminal junction of QWs.

KIMINORI HATTORI AND HIROAKI OKAMOTO PHYSICAL REVIEW B 74, 155321 �2006�

155321-2



The retarded �advanced� Green’s function for the sample
region is expressed as

G�
R�A� = �E − H� − ��

���
R�A��−1

, �9�

with ���
R�A� being the retarded �advanced� self-energy due to

lead �. The self-energy is generally represented in the form
�=VGV†, where G is the surface Green’s function of the
isolated semi-infinite lead, and V is the hopping matrix that
connects two neighboring transverse slices. The surface
Green’s function is obtained by numerically solving the qua-
dratic matrix equation G=G0+G0VGV†G with the Green’s
function of the single slice G0.32–34 In the nonequilibrium
Green’s function formalism,20,21 the density matrix for the
sample region is expressed with the spectral function
A�����=G�

R���������G�
A��� as

nrr�
� = 
cr��

† cr�� =
1

2�
�
�
�

−�

�

d�f�� − ����A������rr�,

�10�

where ���= i����
R −���

A �, and f��−��� is the Fermi-Dirac
distribution function in lead � through which the chemical
potential �� relates to the density matrix.4,35–39 For a small
variation of chemical potential ���, the deviation of nrr�

�

from its equilibrium value at zero temperature is simply
given by �nrr�

� = �1/2��������A���E��rr�, where E is the
equilibrium Fermi energy. The density matrix is directly used
to evaluate the nonequilibrium distributions of spin density
as well as spin current density whose operators are written in
the bilinear form.4,35,37 In our lattice model they are explic-
itly represented as

�s�r� =
�

2a2�
�

�nrr
� ,

Js�r� =
t

2a
�
�

�
±

��±Im nr±a,r
� ex ± Im nr±b,r

� ey�

+
�

4a2�
�

�
±

uy�r ± a/2�Re nr±a,r
� ex

− ux�r ± b/2�Re nr±b,r
� ey� ,

with a=aex and b=aey. These expressions also describe
��s�r� and �Js�r� by simply replacing nrr�

� with �nrr�
� . The

local continuity of spin current � ·Js�r�=0 in the steady-state
is ensured at the operator level by the Heisenberg equation
for spin density. The spin-resolved current flowing through
the lead into the sample region is described by the linearized
Landauer-Büttiker formula

I�� =
e2

h
�
��

T���
� �V� − V��� , �11�

where T���
� =Tr����A���� is the transmission coefficient from

lead �� to lead �, and V� is the voltage of lead �.20 The
charge current and the spin current are expressed as I�

c

=��I�� and I�
s = �� /2e����I��, respectively. It is shown from

time-reversal and geometrical symmetries of the present sys-
tem that I2

c = I4
c =0 and I1

s = I3
s =0 when V2=V4= �V1+V3� /2.

The longitudinal charge conductance is then defined as GC
= I1

c / �V1−V3� for a pure charge current I1
c =−I3

c, and simulta-
neously the spin Hall conductance as GSH= I4

s / �V1−V3� for a
pure spin current I4

s =−I2
s .

In our calculations, the energy �� is taken as the energy
unit. The hopping energy is normally set at t=10��, which
corresponds to the length scale of the confinement l�5a,
permitting our tight-binding model to reasonably simulate a
continuum system. This has been ensured from the calcula-
tions with varying the ratio l /a. Figure 1 shows the longitu-
dinal charge conductance GC and the spin Hall conductance
GSH calculated as a function of the Fermi energy E ranging
from 0 to 10�� for the normalized SO coupling strength
� / l2=0.1 and a system size W=60a. The charge conductance

FIG. 2. �Color online� Local density-of-states N�r ,E� calculated
for W=80a at the Fermi energies E=0.619�� �a� and E=1.18��
�b�, which correspond to the first peak and valley of spin Hall
conductance GSH, respectively.
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GC is not fully quantized but exhibits a series of steps that
are characteristic of ballistic 1D quantum channels. The on-
set of GC steps is very close to the bottom of the 1D subband
�n+1/2��� for a single QW, particularly in the low energy
region. A sharp dip just below the onset accompanies the GC
steps. The spin conductance GSH oscillates with the Fermi
energy. The GSH peak appears above the onset of GC steps
while the valley below the GC dips. For V1�V3, electrons
travel from the right lead to the left lead and then the SO
coupling force pushes a spin-↑ electron upward and a spin-↓
electron downward. The positive sign of GSH agrees with this
interpretation. No significant system-size dependencies of
GC and GSH are expected as long as the Fermi energy is
sufficiently low that the relevant current-carrying states are
hardly affected by the surrounding hard wall boundaries. The
result presented in Fig. 1, for which the value of the confin-

ing potential U exceeds 20�� at the borders, is essentially
the same as those calculated for larger systems. The SO cou-
pling strength is thought to be the most fundamental param-
eter for the spin Hall effect. We have also investigated the
variation of GSH with the SO coupling strength in the range
0�� / l2�1. The results of the calculations show that GSH
increases linearly with � / l2 up to � / l2�0.2 and then tends
to saturate.

The quenching of longitudinal charge current through the
QW junction is due to the presence of a virtual or resonant
state that is localized near the center of the junction and
extends its wave function towards all four arms of the
cross.31,40,41 The resonant states bring about an enhanced
scattering of electrons at the junction and, hence, generate
the dips in GC. Such a resonant electron scattering may
largely diminish the SO coupling force as well as the spin
Hall current. Figure 2 compares the spatial profiles of local
density-of-states N�r ,E�=−�1/�a2�Im ���G�

R�E��rr calcu-
lated for W=80a at the first peak �E=0.619��� and valley

FIG. 3. �Color online� Normalized spin density ��s�r� /�� for
W=80a. In the calculation, the deviations of chemical potentials
were assumed to be �� /2=��3=−��1�0 and ��2=��4=0 for
four leads. The Fermi energies are E=0.619�� �a� and
E=1.18�� �b�.

FIG. 4. Normalized spin current density �Js�r� /�� for W=40a.
The set of chemical potentials is the same as that in Fig. 3. The
Fermi energies are E=0.619�� �a� and E=1.18�� �b�.
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�E=1.18��� of GSH. The formation of a resonant state is
inferred from four bumps gathering near the center observed
for the valley, which are distinct from a hollow observed for
the peak. In the calculation, we have observed that these four
bumps are merged into a single dominant peak at the subse-
quent GC dip. �This dip lies at E=1.49�� but is too small to
be seen in Fig. 1.� It is therefore plausible that the junction
resonance causes the disappearance of spin Hall current
around the specific Fermi energies.

The nonequilibrium distributions of spin density ��s and
the spin current density �Js are displayed in Figs. 3 and 4,
respectively. In the calculation, the deviations of chemical
potentials are chosen as ��3=−��1�0 and ��2=��4=0.
The transverse spin separation driven by the longitudinal
charge current is clearly visible in the figure. It is notable that
the spin accumulation occurs uniformly, reflecting spin con-
servation during transport. For the GSH peak, the spin popu-
lation extending toward the top lead with a positive sign and
the bottom lead with a negative sign is produced by the spin
Hall current flowing upward. The spin current circulating
near contacts with the right and the left leads occurs to sat-
isfy the condition I1

s = I3
s =0. On the other hand, for the GSH

valley, the spin polarization disappears locally around the
center of the sample and the uniform vertical flow of spin
current is strongly suppressed. They are ascribed to the junc-
tion resonance discussed above.

Finally, we consider the magnitude of spin Hall conduc-
tance in realistic systems. The SO coupling strengths have
been theoretically evaluated for some III–V semiconductor
compounds.42 For example, �=4.4 Å2 for GaAs, 110 Å2 for
InAs, and 500 Å2 for InSb. Assuming a QW formed with ��
of a few meV,27–29 the present calculation gives the estimates
for GSH�10−4−10−2 in units of �e � /4� for these materials,
which is rather small as compared with GSH�10−1 expected
for the Rashba spin Hall effect in mesoscopic finite-size
systems.8,34 Nevertheless, a unique property should be em-
phasized, namely that spin conservation is preserved in a
QW system where the spin Hall effect exists, exemplifying
the possibility of spin manipulation without spin-mixing pro-
cesses in conventional semiconductors.

In summary, we studied the SO coupling in 2D electron
systems with an in-plane potential gradient and its applica-
tion to spin Hall effect. In such systems, electron spin is
conserved whereas a SO coupling force exists that tends to
separate electrons with different spins when they are moving.
The existence of transverse spin separation and the spin Hall
current in response to the longitudinal charge current are
confirmed by numerical calculation for a four-terminal junc-
tion of harmonic QWs in the clean limit. The calculation also
reveals the oscillation of spin Hall current with Fermi energy,
which is accounted for by the junction resonance.
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