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Abstract. We experimentally implement a new method for high-
accuracy optical computing using interval arithmetic and the fixed-point
theorem. In the implementation, a fixed point of an affine transformation
is calculated by a TV feedback system. Employing interval arithmetic, the
errors associated with an optical setup can be ignored. We evaluate two
constraints on the optical system that seriously affect computing effi-
ciency. The minimum value of computational accuracy achieved is
1073, which is determined by the contro! accuracy of the required affine
transformation coefficients. © 1999 Society of Photo-Optical Instrumentation Engi-
neers. [S0091-3286(99)00703-5]
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1 Introduction

Analog optical computing is an attractive field in which to
explore the potential capabilities of optics.! Various optical
information processing techniques, such as the Fourier
transform and optical maiched filtering, indicate the poten-
tial capability of analog optical computing. However, many
inberent drawbacks also exist. A typical analog optical
computing system exploits the intensity or locations of
bright points as processed information. Therefore, the ac-
curacy and dynamic range of the optical system are limited
by the accuracy of quantization or the space-bandwidth
product. For example, the dynamic range of typical optical
systems dealing with light intensity is about 200, which is
obtained by 8 bit quantization.! To overcome this problem,
various optical computing algorithms, such as residue
arithmetic'? and neural networks,"> have been considered.
As one of the approaches to solve the problem, a method
Wwas proposed for high-accuracy optical computing based
on interval arithmetic and the fixed-point theorem? Refer-
ence 2 describes the solution of a simultaneous equation
with the proposed method. Using the fixed-point theorem,
the procedure to solve a simultaneous equation is changed
10 an iterative process of an affine transformation, which is
Implemented easily by an optical fractal synthesizer. Al-
though the accuracy and dynamic range are limited when
the optical fractal synthesizer is used, interval arithmetic
&larantees computational accuracy, and a coordinate con-
Version provides a wide dynamic range. The effectiveness
Qf the proposed method is verified by a computer simula-
“01}- However, the proposed method is not carried out ex-
Perimentally and several constraints on the optical system
$hould be considered to obviate the errors associated with
& optical setup.
. In this paper, the proposed high-accuracy computing is
Mplemented by an optical system and its operation is veri-
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fied. For this purpose, a plane of attention width and a
display plane width are defined as constraints to resolve the
computational accuracy of the optical system with mis-
alignment. Section 2 explains interval arithmetic and the
fixed-point theorem as a mathematical basis of the method.
Section 3 describes a procedure to implement interval arith-
metic using an optical fractal synthesizer. Section 4 de-
scribes an optical implementation method, and the compu-
tational accuracy obtained by the optical experiment is
evaluated.

2 Computational Algorithm

Interval arithmetic is a computational scheme in which a
number is represented by an interval that includes the ob-
ject number.’ S For example, a real number x is represented
by a close interval [a,b], where {x|a<x<b}. Four funda-
mental rules are described for the intervals as follows:

[a,b]+[c.d]=[a+c,b+d], (1)
[a,b]—[c.d]=[a—d,b~c], 2)
[a,b]*[c,d]=[min(ac,ad,bc,bd),max(ac,ad,bc,bd)],
3)
fa,bl/[c,d]=[a,b]*[1/d,1/c]. 4)

Using intervals with the preceding rules, we can exactly
trace the behavior of calculations in spite of errors associ-
ated with rounding and quantization. We use interval arith-
metic to calculate while ignoring the errors caused by op-
tical setup.

The fixed point x* of a mapping f:X—X is the point
that satisfies f(x*)=x" and its existence is proved if
F(X)CX, where X is a space R (Refs. 6 and 7). The fixed
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Fig. 1 lterative transformation on a 2-D interval X.

point x* is calculated with a sequence of iterative opera-
tions x;.1=/(x;). After a sufficient number of iterations, x;
goes to the fixed point x*.

Various computing algorithms have been developed
with interval arithmetic and the fixed-point theorem.® As an
instance of these algorithms, we explain a solution for a
simultaneous linear equation. The target equation is ex-
pressed as

Ax=a, (5)

where A is an n X7 matrix and x and a are unknown and
known n vectors, respectively. First, an approximate in-
verse matrix of A (denoted by K) and an approximate so-
lution (denoted by X) are calculated. Equation (5) can be
rewritten as the following form:

K(a— AX)+ (I- KA)x*=x", (6)

where | is a unit matrix and X+ x* gives the correct solution
of Eq. (5).

Referring to Eq. (6), if the right-hand side is considered
as a mapping of a space R", x* can be regarded as the fixed
point of the mapping. Namely,

g(x")=K(a— AX)+ (I-KA)x*=x" (7)

indicates that x* is the fixed point of the mapping g.

Although Eq. (7) describes the mapping of the conven-
tional number representation system, the mapping can also
be applied to interval arithmetic:

g(X)=K(a—AX) + (I-KA)X, 8)

where X is an n vector whose elements are intervals that
represent the range of individual elements of the vector x*.
According to the fixed-point theorem, if g(X)CX, the ex-
istence of the fixed point x* € X is guaranteed.

To ensure convergence of the mapping, the following
iterative calculation is applied:

X(i):g[X(i*l)]mx(i—l)’

9
X(0) = X, ©)

where the superscript indicates the iteration number. As i is
increased, X converges to the fixed point x*. Conse-
quently, the solution of Eq. (5) is given by X+ X for
sufficiently large i. When X@ consists of two intervals,
X is represented as a rectangular area and is transferred,
as shown in Fig. 1. In this case, the iterative calculation is
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Fig. 2 Schematic diagram of the optical fractal synthesizer,

implemented easily by an optical TV feedback system
called the optical fractal synthesizer, described in the next |

section.

3 Optical Implementation

Figure 2 shows the setup of the optical fractal synthesizer.”
In the experimental system, two affine transformations con-

necting a 2-D plane are implemented by dove prisms, mir-

rors, and a zoom lens. An affine transformation is writtenas

follows:

e i

In the experimental system, the matrix in Eq. (10) is repre-
sented as a product of a reduction, a rotation, and a reflec-

tion matrix. Rotation and translation are performed by a

dove prism and a tilted mirror. Reduction is carried out
with a zoom lens. The dove prism and the mirror are con-
trolled electrically. The CCD camera is employed to cap-
ture the transformation and to transfer it to the computer

and the CRT display. One cycle of the iterative transforma- -

tions expends about 30 ms, which is limited by the transfer
rate of the CCD camera.

To precisely set the coefficients a to f, we develop a ‘

technique called the three points method. In the three points
method, three different bright spots at (x1,y), (x2,Y2)
and (x5,y;) are sequentially displayed on the CRT moni-
tor, and we capture the locations of the points, (X1
(x5,y5), and (x3,y3), by the CCD camera. Then we can
calculate the coefficients as follows:

[a b}_ 1
¢ d|l (xi—x) (2= y3)— (x2—=x3)(y1—¥2)

!

! ! !
X1 7 X xz_x3H Y27 Y3

YI—Ys Yo~ Y3l TXaTXx3

—yity2

’

X

xl_xz

11)

(e)z_ a b (x1)+<x§>. (12)
f ¢ dj\yi/ \»n

To compensate differences between the target and the ob-
tained coefficients, the parameters of the optical fractal SY%=
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ig.3 Conceptual diagram for iterative transformation using the op-
iical fractal synthesizer.

thesizer are controlled. By repeating these procedures, a
system configuration with high precision is achieved.

Figure 3 shows a conceptual diagram of the iterative
calculation shown in Eq. (9) using the optical fractal syn-
thesizer. Here X' is displayed on the CRT display and is
transferred to X¢* 1D by an affine transformation; XUt D is
captured by the CCD camera, which is directly returned to
the CRT display. To execute interval arithmetic, many
points in the interval must be calculated efficiently. In the
optical fractal synthesizer, all points in the input plane are
transformed simultaneously. Therefore, high computational
capability is expected.

To guarantee computational precision and to extend the
dynamic range, the following procedure is carried out.

1. Configure the optical fractal synthesizer for a given
problem. The orientation of the dove prism, the tilt
angle of the reflection mirror, and the magnification
of the zoom lens are adjusted to achieve the required
affine transformation.

2. Apply the affine transformation to the input image
and repeat it iteratively. Figure 1 shows the transition
of the input plane during the iteration. Observe the
location of a bright spot after a sufficient number of
iterations. Then the transferred point is represented as
(%50, where k is O at the initial state.

3. Generate a rectangle area around the obtained point
(%,5,). The area is called the plane of attention
(POA). Figure 4(a) depicts the POA. The POA is
defined as {(x,);%;— eSx<T+€,7,— es<y<y,
+ €}, where € is an estimated error caused by the
optical setup. In the following, we refer to € as the
POA width.

4. Convert the coordinate system of the POA for the
feedback process. Figure 4(b) shows the relationship
between the coordinate system (x,y) and the display
Coordinate system (i,j). In the display coordinate
System, the POA is represented as {(i,j); —s<i<s,
TS<j<s}, where s is called the display plane
Wwidth. As a result of the coordinate conversion, the
POA is enlarged and is ready for the next transfor-
mation. The affine transformation for the calculation

LY\
Ukt e
U
I~
5 / fixed point
Y — €
Tp € Zr oz te T
a)
YA
1
Uk + € 3
Yr — >
ljk —€ —8
Gh—e  dp By te z
b)

Fig. 4 Procedure for POA generation and coordinate system con-
version.

is also modified as follows:
Y
= +al |+

g] c d\J af Mo (d-1)

where a=s/€.

b o

5. Calculate the boundary of the resultant area repre-
sented by Eq. (14), which includes the correct solu-
tion of the problem.

> o,k = —k_ — .,k
{(x’y)’xcenter @ Esxsxcenler_l_a e’ycenter a €

pe ~k
Y<TcenerT @ e},

<
k k
(fcenter sycenter)z ( EO flaﬁlal_zo jCﬁla—l) . (14)

i

6. If the result has acceptable precision, terminate the
process; otherwise, increment k by 1 and return to
step 2.

4 Experimental Verification

To verify the principle of the method, we executed an op-
tical experiment. We consider the following two-variable
simultaneous linear equation:

Optical Engineering, Vol. 38 No. 3, March 1999 487
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— S

Fig. 5 Relationship between display plane width s and maximum
value of translation 7. The large circular area is transformed to the
shadowed area by the affine transformation.

i)

According to the algorithm, an approximate solution
(X,¥) =(—81.25,54.6875) and an approximate inverse ma-
trix K,

064 0
{ (15)

0 0.64

-15v3
12v3 |-

1 { 0.7 —0.3\/3}
, (16)

K=0%4l—03v3 13

were used. From Eq. (7), the mapping for the given prob-

lem is as follows:

x x 40
g(y)z (y>+(—50)' 17

In the proposed method, the POA width € and the dis-
play plane width s should be determined a priori. Because
these constants are seriously affected by the system setup,
such as optical aberration and the setting accuracy of the
parameter, we determine them experimentally. The proce-
dure for determining € and s is as follows. First, we evalu-
ate an error distribution function &(e,f ), where e and f are
the translation parameters that appear in the affine transfor-
mation; &(e,f) indicates the distance between the fixed
point and the transferred (¥,,5,) for specific values of e
and f. If €is set so as to be larger than the maximum value
of 8(e,f), € is expressed as

03 0.3v3
03v3 —03

e=sup{d(e.f);—T<esTt,—T1Sf<T}, (18)

where 7is selected to satisfy the constraint that € is smaller
than half of the CRT size.

Second, the display plane width s is determined from 7.
Figure 5 shows the geometrical relationship between s and
7. Using a contraction factor & defined as £€=|ad —bc| 12 ¢
is written as follows:
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Fig. 6 Error distribution function for the experimental setup.

pe
S=1_§. (19)

In this case, s is chosen to be smaller than half of the CRT
size.

We examine the error distribution function (e,f) for
the following affine transformation,

S)+L5)
y) \fl 0

In the experimental system, the display plane consists of
512X 485 pixels. The origin of the coordinate system is set
at the center of the display plane. We change e and f every
10 pixels from —70 to 70, discretely. Although &(e,f)
should be examined for arbitrary transformation, we just
tested a given transformation for simplicity. Figure 6 shows
the obtained &(e,f ). From the result, we set €=25 ands
=175. Therefore, « is determined as 7. As seen from Eq.
(14), o~ *e determines computational accuracy. When a is
small, the parameter k is forced to be large to achieve high
precision. To increase computational efficiency, we must
adjust the optical system strictly.

The fixed point for the case of e=40 and f=—50 is
obtained by the experimental system using the constants
already obtained. Figure 7 shows the change of the display
plane during the iterative transformation. Many points in
the rectangular area at the initial stage converge in a bright
spot after a sufficient number of iterations. Table 1 shows
the transition of the intervals associated with k. In this
case, {(x,y);40.6550591976043Sx$40.6550591976045,
—22.2115473580836=<y< —22.2115473580834} is ob-
tained at the 17th stage, where a*e=~1.07x10" from
Eq. (14). Consequently, the solution of Eg. (15) 18
{(x,y); —40.5949408023957 <x <— 40.59494080239?1
32.4759526419164<y<32.4759526419166}. Comparing

- HHE

Fig. 7 Transition of 2-D interval during iterative transformation:

<x1>:[ 03 03v3

y') 103v3 —03




qable 1 T ransition of the resultant area {(X,¥); XminSX<Xmay »Viin
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éyéymax} associated with k.

k Xrmin Xmax

0 26 76

3 40.6 40.7

6 40.654 40.655

9 40.65505 40.65506
12 40.6550591 40.6550592
5 40.65505919760 40.65505919761
17 40.6550591976043 40.6550591976045
k Ymin Ymax

o —a7 —13

3 —-22.2 —22.1

6 —22.2116 —22.2112

9 —22.211547 —22.211546
12 —22.211547359 —22.211547355
15 —22.21154735808 —22.21154735807
17 —22.2115473580836 —22.2115473580834

the optically obtained result with a solution
(—40.5949408023955, 32.4759526419164) calculated by a
workstation,™ we can confirm that the computational accu-
racy of the optical implementation is of the order of 10713
This accuracy is limited by the control accuracy of the co-
efficients of the required affine transformation of the optical
system. Although the accuracy of the result is limited by
the setting accuracy of the coefficients of the affine trans-
form, the proposed method was executed with high accu-
1acy.

5 Conclusion

A method for high-accuracy analog optical computing
based on interval arithmetic and the fixed-point theorem
was implemented by the optical fractal synthesizer. By in-
vestigating the error distribution function, the computa-
tional efficiency was estimated. The accuracy of an ex-
ample calculation using the experimental system was
107, which is equal to the accuracy of the required affine
transformation coefficients. The effectiveness of the inter-

val arithmetic for high-accuracy optical computing was
verified.

—_——

X, . .

This solution was calculated with Ref. 10, a library that supports the
¢xtended precision arithmetic whose maximum number of decimal digits
'a conversion is 104.
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