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Abstract 
 

     Since the first discovery of hydrothermal systems in 1979, it has been suggested 

that hydrothermal systems are one of the suitable environments for the chemical 

evolution of life in the primitive earth. The most notable advantage of hydrothermal 

systems is that both of synthesis of organics and ecosystems can be supported in the 

hydrothermal systems. In the past, synthesis and polymerization of organics under the 

conditions simulating hydrothermal systems were actively studied. Typically, 

hydrothermal fluids are hot (< 400 °C), acidic (pH 2-4) and rich in metal ions. 

Experimental conditions of previous studies of chemical evolution of organics were 

only acidic or neutral condition. Recently, a new type of hydrothermal systems, Lost 

City hydrothermal system and south Chamorro sea mount, were discovered. This new 

type of hydrothermal systems eructs relatively cold (< 90°C) and basic (pH <12) fluids 

and attracts attention as a new environmental model for chemical evolution of organics. 

It is necessary to study about chemical evolution of organics under various physical and 

chemical conditions of hydrothermal fluids. 

    As well as hydrothermal systems, oceanic crust has been noticed as one of the 

possible environments supporting the earliest ecosystems in the earth. The uppermost 

about 500 m of basaltic ocean crust is permeable. In these areas, sea water oxidizes 

young basaltic crust (< 10 Ma) and the chemical reaction between basalt and sea water 

release energy for supporting chemosynthetic microbes. These water-rock reactions 

widely occur in the oceanic crust, as well as hydrothermal systems, and support a 

significant fraction of total biomass. Understanding about ecosystems in the basaltic 

oceanic crust, such as metabolic systems, activity, abundance, derivation of microbes 

living there, leads to revealing habitability in the primitive terrestrial deep biosphere.  

     In this Ph.D. thesis research, the authour noted the hydrothermal conditions such 

as pH, temperature, dissolved metal ions, basalt, and pressure to evaluate the effects of 

these parameters on the reaction rate constants of amino acids. The author also detected 

of organic carbon and analyzed carbon isotopes of basalt and sediments collected from 

North Pond located in the western flank of the Mid-Atlantic Ridge for understanding 

the origin of carbon compounds in relation to possible microbial activity in the basaltic 

crust. 

     In Chapter 2, the author analyzed the effects of pH and temperature on the 



 

 
 

2 

dimerization rate of glycine (Gly: NH2-CH2-COOH), one of the simplest amino acids. 

Gly dimerizes to form glycylglycine (GlyGly), and GlyGly further reacts to form 

diketopiperazine (DKP). Gly solutions with pH ranging from 3.1 to 10.9 were heated 

for 1–14 days at 140 °C, and changes in concentrations of Gly, GlyGly, and DKP were 

evaluated. At pH 9.8, the experiments were conducted at 120, 140, 160, and 180 °C. 

The dimerization rate of Gly was nearly constant at pH 3−7 and increased with 

increasing pH from 7 to 9.8 and then decreased with further increases in pH. To 

elucidate the reason for this pH dependency, we evaluated the role of the three 

dissociation states of Gly (cationic state: Gly+, zwitterionic state: Gly±, and anionic 

state: Gly−). For pH > 6, the dominant forms are Gly± and Gly−, and the molar fraction 

of Gly± decreases and that of Gly− increases with increasing pH. The dimerization rate 

was determined for each dissociation state. The reaction between Gly± and Gly− was 

found to be the fastest; the rate constant of the reaction between Gly± and Gly− was 10 

times the size of that between Gly− and Gly− and 98 times that between Gly± and Gly±. 

The dimerization rate became greatest at pH 9.8 because the molar fractions of Gly± and 

Gly− are approximately equal at this pH. The dimerization rate increased with 

temperature, and an activation energy of 88 kJ mol−1 was obtained. Based on these 

results and previous reports on the stability of amino acids under hydrothermal 

conditions, we determined that Gly dimerizes most efficiently under alkaline pH (~9.8) 

at about 150 °C. 

 In Chapter 3, the authour analyzed the effects of metal ions (Ca2+, Mg2+, Fe2+, 

Mn2+, Zn2+ and Cu2+) on the reaction rates of amino aicds at pH 2.2-9.9 and 140°C. the 

effect of metal ions (Ca2+, Mg2+, Zn2+, Fe2+, Mn2+, and Cu2+) and pH on the formation 

and decomposition rates of glycylglycine (GlyGly), glycylglycylglycine (GlyGlyGly), 

and diketopiperazine (DKP) in aqueous solutions was investigated. Glycine (Gly) 

solutions with metal ions were heated for 1–74 days at 140°C at different pH conditions. 

GlyGly and DKP were produced from all the sample solutions, and were not affected by 

the presence or absence of metal ions. The GlyGly yields were higher under basic 

conditions (pH 9.8–9.9) than those under acidic and neutral conditions. Moreover, the 

GlyGly yields in the presence of Cu2+ and Zn2+ were higher compared to those in the 

absence of Cu2+ and Zn2+, and in the presence of metal ions other than Cu2+ and Zn2+ 

the GlyGly yields were lower. The dimerization rate constant of Gly (k1) increased in 

the presence of Cu2+.	
 GlyGlyGly was only produced in samples with Cu2+, and the 
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yield was five times higher under basic condition (pH 9.8) than that under acidic (pH 

3.4) and neutral (pH 7.1) condition. On the other hand, the other metal ions inhibited 

prebiotic peptide synthesis by catalyzing the hydrolysis or chelation with amino acids. 

Thus, the results reflect the high stability of Cu2+ complexes with amino acids or 

peptides in the salt-induced peptide formation reaction, particularly at high pH. 

Although the elongation of oligopeptides was not favored, the formation of metal–

amino acid or metal–short peptide chelates might have facilitated primitive biological 

functions and expanded prebiotic reaction fields because of their mobility in the Earth's 

early oceans. 

    In Chapter 4, the authour analyzed the effects of basalt, pressure, and temperature 

on the reaction of glycine at pH 6.0. Gly solutions having pH 6.0 were heated within 12 

hours at 100-200°C and 10-35 MPa with basalt. Gly solutions without basalt were also 

heated for 6 hours at 200 °C and 35 MPa. GlyGly and DKP were produced from all the 

sample solutions, and the yields of GlyGly and DKP were almost constant for 10-35 

MPa. While, the both yields of GlyGly and DKP increased as temperature increased. 

Basalt promoted formation of GlyGly. The yields of GlyGly from the solutions 

containing basalt were 2.6 times higher than those without basalt. The yields of DKP 

from the solutions containing basalt were 0.86 times lower than those without basalt. 

The dimerization rate constant of Gly (k1) was 13 times higher with basalt than that 

without basalt. These catalytic effects of basalt result from the removal of 

intramolecular interaction between –COO- and –NH3
+ groups within amino acid 

molecules and increasing of the electrophilicity of carbonyl carbon in the amino acids.       

    In Appendix, the authour detected organic carbon and examined carbon isotopic 

ratio of sediments and basaltic samples obtained from North Pond, the western flank of 

the mid-Atlantic Ridge. Total carbon (TC) value ranged 6 ~ 11 % for whole sediment 

samples. Depth profiles of δ13C (bulk) of sediments (−0.04 ~ +1.93 ‰) were similar to 

those of TC. These depth profiles of TC and δ13C (bulk) of sediements appear to have 

inverse relation with the distributions of O2 concentration. Organic carbon (TOC) of the 

sediments had the same depth profiles to those of NO3
− and had the opposite depth 

profiles to those of oxygen. Organic carbon was detected from basaltic samples above 

310 meter below sea floor (mbsf) and its carbon isotopic ratio may be reflected 

coexistence of methane- and sulfur-cycling microbes. TC (0.01 ~ 0.37 %) and TOC 

(0.01 ~ 0.03%) values of basalts were almost constant over the depth, while sediment 
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breccias and carbonates contained more carbon than basalts (3.56 ~ 11.9 %). δ13C (bulk) 

of basalts ranged −21.8 ~ +2.69 ‰. Sediment breccias and carbonates had larger δ13C 

(bulk), ranging −18.6 ~ +2.82 ‰. δ13C (org) of hard rocks were lower as depth is deeper. 

δ13C (kerogen) were slighty smaller than those of δ13C (org). 

     Based on these results, the authour proposed that one of the most suitable 

hydrothermal environments for polymerization of amino acids is flow paths or voids of 

chimneys flowing basic and relatively cold hydrothermal fluids (~ pH 9.8 and 

150-200 °C) containing Cu2+. In recent earth, flow paths of south Chammoto sea mount 

are the best hydrothermal environments to fulfiil all the conditions.  
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The earth was formed about 4.6 billion years ago through the collision and 

coalescence of planetestimals in the early solar system and subsequently the ocean was 

formed about 4.3 billion years ago (Mojzsis et al., 2001). After that, the first life 

probably had appeared about 3.8 billion years ago (Mojzsis et al., 1996). Since then, the 

lives in the earth have survived as adapting many changes of environments and climates 

in the earth. And now, various lives flourish at wide variety of environments, even at 

the extreme environmental conditions, such as deep ocean floor, hydrothermal system, 

salty lake, ice and so on (Barros et al., 2007). However, it has not been resolved about 

when, where and how the first life which had metabolic, multiplication or 

self-replicating systems was born. To make clear these questions, it is essential to 

understand the chemical evolution of precursor materials for life. Chemical evolution of 

organics is processes by which complex organic molecules were formed from simpler 

organic and inorganic molecules through abiotic chemical reactions and finally these 

complex organic molecules have some biological functions as life. At 1953, Miller 

formed amino acids, acetic acids, urea from a mixture gas of methan, ammonia, 

hydrogen and water by spark discharge (Miller, 1953). Miller’s study firstly showed 

that it is possible to form biological relevant molecules though abiotic chemical reaction. 

After this study, so many experiments were conducted to form biological relevant 

molecules such as amino acids, sugars and nucleotides under the conditions simulating 

prebiotic environments (e.g, Fox and Harada, 1958; Oró and Guidry, 1960; Oró, 1960; 

Oró and Kimball, 1961; Oró and Kimball, 1962; Sanchez et al., 1967; Lahav et al., 

1978; Marshall, 1994; Shapiro, 1995, Ferris et al., 1996; Imai et al., 1999, Cody et al., 

2000; Lemke et al., 2009; Furukawa et al., 2009).  

In addition to the possibility that the primary materials were formed in the early 

earth, it has been proposed that meteorites are a potential source of organic matters 

(Chyba and Sagan, 1992; Pizzarello, 2004). These organic molecules probably built up 

in the early earth after simple organic molecules formed in the space and the earth. Both 

of terrestrial and universal environments are important as resources of organic 

molecules for chemical evolutions. These organic molecules must have participated in 

chemical evolutions of organics, for example, low moleculae-weight compounds might 

have polymerized to macro molecules or macro molecules might have hydrolyzed to 

smaller molecules to have biological functions. 

Hydrothermal systems have been suggested as one of the suitable environment 
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where chemical evolutions presumably have occurred in the early Earth (e.g., Corliss, 

1990; Holm, 1992; Yanagawa and Kobayashi, 1992; Macleod et al., 1994; Russell and 

Hall, 1997; Russell, 2003; Holm and Andersson, 2005; Martin et al., 2008). In primitive 

earth, several environmental conditions has been proposed for the chemical evolution of 

organics, such as meteorite impacts (Furukawa et al., 2009), diagenesis in deep 

sediments (Ohara et al., 2007), or lagoon and tidal pool (Rode, 1999). The most notable 

advantage of hydrothermal systems is that both of synthesis of organics and ecosystems 

can be supported in the hydrothermal systems. Obtainments of materials for synthesis 

organics, chemical evolutions of organics, and primitive microbial ecosystems can be 

supported in the hydrothermal systems. Hydrothermal activity has also been discussed 

in the concept of abiotic chemistry on Europa (McCollom 1999; Chyba and Hand, 

2001; Chyba and Phillips, 2007; Irwin and Schulze-Makuch, 2011). Chemical evolution 

of organics also may occur in extraterrestrial planets. 

In the terrestrial hydrothermal systems, seawater percolates into oceanic crusts 

and is heated, reacts with surrounding rocks and the resultant hot reductive fluids issues 

from the seafloor (Tivey, 2007). The temperatures of the hydrothermal fluids can reach 

about 400 °C, in contrast to a typical temperature of 2 °C for deep seawater (Tivey et al., 

1995). The pH of the hydrothermal fluids have wide range and heavy metal ions, for 

example Fe, Mn, Zn, Cu, are rich and Mg is poor in these fluids. The pH values of 2−4 

are most common (Fisher et al., 2007; Tivey, 2007), but values as high as 10−11 have 

been reported at the Lost City site (Kelley et al., 2001, 2005). South Chamorro 

seamount erupt the fluids having highest pH value (pH <12.5) and cold water (~2°C) 

(Mottl et al., 2003). Based on the petrological analysis of Archean basalt (Shibuya et al., 

2010), it was proposed that the Archean subseafloor hydrothermal systems were 

characterized by high-pH fluids. The basic hydrothermal systems are new 

environmental models for chemical evolutions of organics (Russell, 2003).  

In the hydrothermal systems, ecosystem in which chemoautotrophic 

microorganisms are as primary producers is prevailed. This ecosystem is totally 

different from an ecosystem based on photosynthesis. Chemoautotrophic 

microorganisms product chemical energy using reductive molecules in the fluids 

eructed from hydrothermal systems. At present, all the known reductive molecules used 

for redox reactions of metabolitic reaction of microbes in the hydrothermal conditions 

are hydrogen, sulfur, methane and iron (Fisher et al., 2007). It is the most primitive 
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microorganism that can be able to use hydrogen among these four reductive molecules 

(Takai et al., 2008). Therefore, the first life in the early earth might be able to use 

hydrogen for metabolism. Both of Lost City and south Chamorro seamount have sea 

floor bases that contain ultramafic rocks and produce hydrogen through serpentinization 

of olivine (Kelley et al., 2001; Kelley et al., 2005; Hulme et al., 2010; Wheat et al., 

2010). Serpnetinization products hydrogen, methane and hydrogen sulfide that are 

energy source for lives under subsurface. Serpentinization also products highly basic 

(pH ~ 10) fluids at low temperature (~ 100°C) (McCollomn and Bach, 2009). These 

systems that eruct the fluids containing highly concentration of hydrogen and having 

relatively low temperature and high pH value are desirable for the birth of first life from 

the view of microbiological study.  

At hydrothermal vents, organics such as aliphatic hydrocarbon, aromatic carbon, 

carboxylic acids (Konn et al., 2009), formate, and acetate (Lang et al., 2010), which 

might act as primary materials of life, have been found. Experimental studies that 

address the syntheses of amino acids, carboxylic acids and hydrocarbons and the 

polymerization of amino acids under hydrothermal conditions have also been conducted 

(e.g., Oró and Guidry, 1960; Ferris 1992; Marshall, 1994; Huber and Wächtershäuser, 

1998; Imai et al., 1999; Cody et al., 2000; Kawamura et al., 2004; Lemke et al., 2009). 

A lot of experiments for abiotic synthesis of various organic molecules under the 

simulating hydrothermal conditions have been conducted (e.g., Ferris et al., 1978; 

Yanagawa et al., 1984; Harada and Fox, 1964; Imai et al., 1999; Rode, 1999; Huber and 

Wächetershäuser, 2003; Lambert, 2008; Lemke et al., 2009). Most of previous studies 

about polymerization of amino acids have been focused on elongation of peptide bonds 

(e.g., Lahav et al., 1978; Lawless and Lavi, 1979; Bujdák and Rode, 1997; Rode et al., 

1999; Bujdák and Rode, 2003). However, it is still unclear that oligomers are main 

products and directly support the chemical evolutions of organics because degrees of 

polymerization of polymers abiotically formed are much lower than those of proteins. In 

primitive earth, many organics other than amino acids coexisted (Konn et al., 2009; 

Lang et al., 2010). The possibility of formation of oligomers under such primitive 

encironments has not been evaluated. Previous experiments have not attempted to 

control or measure such as oxidation state, pH, fugacities of dissolved gas species or 

major and trace element compositions of experimental systems (Holm and Andersson, 

2005). To find the suitable environments for chemical evolution of organics, evaluation 
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of these parameters on formation of simple organics and revealing reaction mechanisms 

are more important. In hydrothermal systems, equilibrium conditions are not kept 

because mixing of hydrothermal fluids and sea water occur. Reaction rates for synthesis 

organics are also important as well as yields of orgnics. We think it is a sure and steady 

method to conduct kinetic studies about simple synthesis or polymerization of organics 

in order to reveal the reaction mechanisms and refine quantitatively effects of physical 

and chemical conditions of hydrothermal fluids.  

It has been proposed that the effects of catalysis of minerals to synthesis and 

polymerization of amino acids (e.g., Lahav et al., 1978; Ponnamperuma et al., 1982; 

Bujdák and Rode, 2003; Lambert, 2008). Surfaces of minerals are elementally charged 

in aqueous solution. As a result, amino acids are adsorbed on the surface of minerals 

and polymerization reactions are promoted. The adsorption effects of minerals are also 

studied actively (Meng et al., 2004; Parbhakar et al., 2007; Stievano et al., 2007; Gao et 

al., 2008; Kitadai et al., 2009). Akabori et al. (1956) proposed the polyglycine 

hypothesis. In this paper, he confirmed that polymers of glycine are formed after 

heating experiments of amino acetonitrile and kaolinite. The polyglycine hypothesis 

suggests the possibility that prebiotic proteins are formed in the primitive hydrothermal 

systems. Reactions of organics with clay minerals are one of the attractive 

envirnemental models to form prebiotic organics having biofunctions. Although the 

effects of minerals on the polymerization of amino acids have been actively studied, the 

effects of basalt have not been studied yet. Basalt composes the oceanic crust and is 

widely prevailed in the subseafloor. It is more realistic environmental conditions to use 

basalt for the hydrothermal reactions of amino acids.  

Typical acidic hydrothermal systems erupt fluids that are rich in heavy metal ions, 

(Tivey, 2007). On the other hand, Lost City hydrothermal field has characteristic 

conditions that differ from the typical hydrothermal vents, such as basic pH, low 

temperature (> ~90°C) and low metal ion compositions (Kelley et al., 2001, 2005). 

South Chamorro seamount eructs high basic (pH < 12), metal ions enrichment (Ca2+, K+, 

Mn2+, Fe2+, Cu2+ and Zn2+) and low temperature (~4°C) fluids (Mottl et al., 2003; 

Hulme et al., 2010). Such divalent metal ions have known as effective catalysts for 

polymerization reaction of amino acids (e.g., Rode and Schwendinger, 1990; Saetia et 

al., 1993; Eder and Rode, 1994; Rode, 1999; Remko and Rode, 2000; Plankensteiner et 

al., 2002). Especially, Cu2+ has been studied the most actively under aqueous condition 
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(Schwendinger and Rode, 1991; Schwendinger and Rode, 1992; Suwannachot and Rode, 

1999) and evaporation cycle experiments (Saetia et al., 1993; Son et al., 1998). Cu2+ is 

the most effective on the polymerization of amino acids under the acidic aqueous 

condition because copper ions and amino acids make complexes (Eder and Rode, 1994; 

Schwendinger and Rode, 1989; Tauler and Rode, 1990; Schwendinger and Rode, 1992; 

Suwannachot and Rode, 1999; Rode and Schwendinger, 1990). However, previous 

studies were conducted under acidic or neutral conditions simulating typical 

hydrothermal systems and no study has shown the effects of metal ions on 

polymerization reaction of amino acids under basic conditions. It is important to make 

clear the effects of metal ions on the polymerization of amino acids in basic conditions.  

There are also fewer reports about polymerization rate constants of amino acids 

(Mitsuzawa and Yukawa, 2004; Cox and Seward, 2007; Sakata et al., 2010; Sakata et al., 

in press) than that about decomposition reaction (e.g., Lawrence and Moore, 1951; Qian 

et al., 1993; Radzicka and Wolfenden, 1996; Li and Brill, 2003). It is because numbers 

of products and reaction rate constants increase and numerical analysis becomes more 

difficult. The physical and chemical conditions in hydrothermal systems have various 

variations depending on geological setting. Therefore it is necessary to examine reaction 

rate constants including polymerization reactions under the various conditions such as 

pH, temperature, dissolved matter, oxygen fugacity, pressure and so on, in order to 

identify suitable conditions for chemical evolution of life. Most of experiments of 

synthesis and polymerization of amino acids have been conducted under acidic 

conditions because typical hydrothermal systems erupt acidic and high temperature 

solutions. Now basic hydrothermal systems are focused as one of a plausible condition 

for chemical evolution of life. Therefore, it is important to make clear the reaction rate 

constants of amino acids under the basic solutions containing metal ions.  

It is also important pathway for revealing “origin of life” to investigate 

ecosystems of microbes in hydrothermal systems and subsurface biosphere. The 

majority of habitable environments in the earth are dark biosphere separated from 

sunlight. It is estimated that about one third of all biomass, and about three forth of all 

prokaryotic cells on the earth are in the sediments buried in oceanic subsurface 

(Whitman et al., 1998). In 1994, it was first proposed that microorganisms exist in deep 

sea sediment cores from several hundreds of meters obtained during the Ocean Drilling 

Program (Parkes et al., 1994).  



Chapter 1. General Introduction 

 
 

15 

Basaltic oceanic crust has been focused as a new deep submarine biosphere (Bach 

and Edwards, 2003). The uppermost about 500 m of basaltic oceanic crust is permeable 

and fluid flow is focused in specific areas at the contacts of lava flows or in brecciated 

zones (Fisher 2005). In these areas, chemical reaction between basalts and sea water 

release energy for supporting chemosynthetic microbes. Oceanic crust has been widely 

spread from the formation of the earth and has been noticed as one of the possible 

environments including the earliest ecosystems in the earth (Edwards et al., 2012). 

However the biosphere of basaltic oceanic crust has been poorly understood because of 

difficulty to access and return the samples. Understanding about ecosystems in the 

basaltic oceanic crust, such as metabolic systems, activity, abundance, derivation of 

microbes living there, leads to revealing habitability in the primitive terrestrial and 

extraterrestrial deep biosphere. In the past, Juan de Fuca Ridge in the eastern Pacific has 

been mainly studied because Juan de Fuca Ridge was an only site to observe clearly the 

water-rock reactions in basaltic crusts (e.g., Wheat et al., 2000; Fisher et al., 2003). In 

these basaltic oceanic crust, iron cycling, both oxidation and reduction of iron, supports 

metabolic activity in basalt, however, the microorganisms responsible for Fe oxidation 

on basalt are not clear (Orcutt et al., 2011). The colonization of basalt collected from 

subseafloor pillow basalt achieved detection of iron oxidation bacteria (Edwards et al., 

2003; Mason et al., 2007; Singer et al., 2011). Fisk et al (1998) proposed that microbes 

promote the weathering of basaltic glass by morphologic observation and chemical 

analysis in the microscopic region of basaltic glass collected from Atlantic, Pacific and 

Indian Oceans. Lever et al. (2013) first measured carbon isotope of organic carbon of 

basalt collected from the eastern flank of the Juan de Fuca Ridge and confirmed the 

coexistence of methane- and sulfur-cycling microbes in the basalt. These studies have 

shown that microbes probably prevail in the oceanic crust and promote weathering of 

basaltic crust. However, it is unclear where deep-seated microbial communities come 

from, what the nature of the microbial communities harbored in young ridge flanks is, 

and what their role in the ocean crust weathering is (Edwards et al., 2012). Therefore, it 

is attractive studies to examine microbial activity in the hydrologically active, young 

ridge-flank crust being undergoing progressive oxidative alteration. 

Scope of this study is to evaluate the possibility of a new type of hydrothermal 

systems eructing basic fluids, catalytic effects of natural basalt on the polymeriztion of 

organics. In this Ph.D. thesis research, the autour have examined (1) the effects of pH 
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and temperature on the products and reaction rates of Gly, (2) the effects of metal ions 

on the products and reaction rates of Gly under various pH conditions, (3) the effects of 

basalt and pressure. In Appendix, the author studied subsurface biosphere through 

carbon isotopic analysis of basaltic and sediment samples collected from North Pond on 

the western flank of the Mid-Atlantic Ridge 
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2.1. Introduction 

Chemical evolution of life is the process by which complex organic molecules were 

formed from simpler organic and inorganic molecules through chemical reactions in 

Earth’s early history. Hydrothermal vents have been suggested as an environment where 

chemical evolution may have occurred (e.g., Corliss, 1990; Holm, 1992; Macleod et al., 

1994; Russell and Hall, 1997; Russell, 2003; Martin et al., 2008). A hydrothermal vent 

was first discovered at Galapagos Rift in 1977 (Corliss et al., 1979), and to date, about 

150 hydrothermal activities have been found at various locations on the seafloor. In 

many cases seawater percolates into oceanic crust in these hydrothermal vents and is 

heated, reacts with surrounding rocks, and the resultant hot reductive fluid issues from 

the seafloor (Tivey, 2007). The temperatures of the hydrothermal fluids can reach about 

400 °C, in contrast to a typical temperature of 2 °C for deep seawater (Tivey et al., 

1995). The pH of the hydrothermal fluids ranges from less than 1 to 11. pH values of 

2−4 are most common (Fisher et al., 2007; Tivey, 2007), but values as high as 10−11 

have been reported at the Lost City site (Kelley et al., 2001, 2005). At hydrothermal 

vents, organic matter such as aliphatic hydrocarbon, aromatic carbon, carboxylic acids 

(Konn et al., 2009), formate, and acetate (Lang et al., 2010), which might act as primary 

materials of life, have been found. In addition to the possibility that the primary 

materials were formed by hydrothermal activities, it has been proposed that meteorites 

are a potential source of organic matters (Chyba and Sagan, 1992; Pizzarello, 2004). 

Experimental studies that address the syntheses of amino acids and carboxylic acid and 

the polymerization of amino acids under hydrothermal conditions have also been 

conducted (e.g., Oró and Guidry, 1960; Ferris 1992; Marshall, 1994; Imai et al., 1999; 

Cody et al., 2000; Lemke et al., 2009).  

    Among various reactions that might occur during the chemical evolution of life, 

polymerization of amino acids (formation of peptide bonds) is one of the most 

important reactions because amino acids are essential components of proteins, which 

are fundamental to life. An amino acid consists of a basic amino group, an acidic 

carboxyl group, and a characteristic side chain. The degree of protonation of these 

functional groups changes depending on solution pH (−NH3
+ ↔ −NH2 + H+, −COOH 

↔ −COO− + H+), and accordingly, the net charge of the amino acid molecule changes. 

Fig. 2.1 shows the changes in the dissociation states of glycine (Gly: NH2-CH2-COOH) 

as a function of pH. Amino acids generally show the highest polymerization reactivity 
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under an anionic state (Zamaraev et al., 1997; Bujdák and Rode, 1999a). Because the 

molar fraction of the anionic state increases with pH, the polymerization rates of amino 

acids are expected to be higher at higher pH. On the other hand, the hydrolysis of 

peptide bonds is also accelerated at higher pH because OH− catalyzes the hydrolysis 

(Smith and Hansen, 1998; Zahn, 2004). As a result of these conflicting mechanisms, it 

is likely that an optimum pH for polymerization exists. Although experiments on the 

polymerization of amino acids have been conducted under several different pH (e.g., 

Rode and Schwendinger, 1990; Zamaraev et al., 1997; Huber and Wächtershäuser, 

1998), the pH range was limited and experimental conditions differed. Given that there 

are large variations in pH and temperature in natural environments, it is important to 

examine the polymerization rates of amino acids under a wide range of pH and 

temperature to consider favorable environments for the chemical evolution of life. 

 
Fig. 2.1. Changes in the molar fractions of different dissociation states of Gly as 

function of pH at 25 °C, determined on the basis of published dissociation constants 

(Marshall and Franck, 1981; Goldberg et al., 2002; Clarke et al., 2005). 

 

    In this study, hydrothermal experiments were conducted at 140 °C for pH values 

ranging from 3.1 to 10.9. At pH 9.8, the experiments were also performed at 
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temperatures ranging from 120 to 180 °C. Gly was used because it is the simplest amino 

acid, and it is often the most abundant product in hydrothermal synthesis experiments of 

amino acids (Yanagawa and Kobayashi, 1992; Marshall, 1994). Fig. 2.2 shows the 

reaction pathways for the dimerization of Gly, which dimerizes to glycilglycine 

(GlyGly) and GlyGly further reversibly changes to diketopiperazine (DKP) (Qian et al., 

1993). First, we determined the pH dependences of the reaction rates of Gly to GlyGly 

(k1), GlyGly to Gly (k−1), GlyGly to DKP (k2), and DKP to GlyGly (k−2). The 

dimerization rate of Gly significantly changed with pH. Since Gly has three dissociation 

states (Gly+, Gly±, and Gly−) and the molar fraction of each dissociation state changes 

with pH, the dimerization rates were also evaluated for each dissociation state. We show 

that the pH dependence of the dimerization rate of Gly can be explained by the change 

in dissociation states of Gly and discuss favorable pH and temperature values for the 

dimerization of Gly. 

 
Fig. 2.2. Reaction pathways between Gly, GlyGly, and DKP and relevant rate 

equations. k1, k−1, k2 and k−2 are the rate constants for the polymerization of Gly, 

decomposition of GlyGly, formation of DKP, and decomposition of DKP, respectively. 

 

2.2. Methods 

Powdered Gly (99.9%; Peptide Institute) was dissolved in deionized water (18.2 

MΩ) to prepare solutions having Gly concentrations of 100 mM and 200 mM. The 100 

mM Gly solution had pH 6.0. NaOH was added to the 200 mM Gly solutions to make 

100 mM Gly solutions having pH 7.1, 8.4, 9.0, 9.4, 9.8, 10.2, 10.4, and 10.9. For the 

acid pH range, HCl was added to the 200 mM Gly solutions to make 100 mM Gly 

solutions having pH 5.0, 3.9, and 3.1. Then 8.0 ml of each solution was inserted into a 

10-ml Teflon vessel and shielded in a screw-capped stainless steel outer vessel. The 

solutions were then heated in an electric oven at 140 °C for 1–14 days. The pH 9.8 

solutions were also heated at 120, 160, and 180 °C for 1–5 days to evaluate the 

temperature dependence of the reaction rates. Before and after the experiment, the pH of 
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the solutions was measured at 25 °C by a pH meter (B-212; HORIBA). Changes in the 

pH values before and after the heating were small (<5.0% increase).  

The concentrations of Gly, GlyGly, and DKP were determined by a liquid 

chromatograph (ICA-2000; TOA DKK) equipped with a UV detector (UV-2075; Jasco) 

operated at a wavelength of 200 nm. In the chromatograph measurement, a 

reverse-phase type column (Hydrosphere C18; YMC; Ohara et al., 2007) was used at 

37 °C. A 10 mM C6H13SO3Na solution with pH 2.5 was used as an eluent (adjusted by 

H3PO4; Bujdák and Rode, 1999b), at a flow rate of 1.0 ml min−1. Measurement errors in 

the concentrations of Gly, GlyGly, and DKP were estimated to be less than 3.0%. 

 

2.3. Results and Discussion 

2.3.1. Reaction rate constants without considering dissociation states 

Fig. 2.3 shows a chromatogram of the solution obtained after heating at 140 °C 

for 3 days at pH 9.8. The signals of Gly, GlyGly, and DKP are apparent. A trimer of 

Gly and potential decomposition components of Gly including formic acid, acetic acid, 

and glycolic acid can be detected in a chromatogram, but they were not. Fig. 2.4 shows 

changes in the amount of GlyGly under pH 3.1−10.9 with experimental time. With 

increasing pH, the rate of the formation of GlyGly increased from pH 5.0 to 9.8 and 

then decreased from pH 9.8 to 10.9. Note that the heating time at the highest pH values 

(Fig. 2.4c) is shorter than that of the lower ones (Figs. 2.4a and 2.4b). Fig. 2.5 shows 

changes in the amount of DKP under pH 3.1−10.9 with time. With increasing pH, the 

rate of the formation of DKP increased from pH 5.0 to 8.4 and then decreased as pH 

increased. 

 
Fig. 2.3. A chromatogram obtained after heating the Gly solution at pH 9.8 for 2 days at 

140 °C. 
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Fig. 2.4. Changes in the concentration of GlyGly with time in the hydrothermal reaction 

of Gly at 140 °C under (a) pH 3.1-5.0, (b) pH 6.0-9.4, and (c) pH 9.8-10.9. Solid lines 

are the results of fitting to determine the rate constants of the formation of GlyGly.  

 

 
Fig. 2.5. Changes in the concentration of DKP with time in the hydrothermal reaction of 

Gly at 140 °C under (a) pH 3.1-5.0, (b) pH 6.0-9.4, and (c) pH 9.8-10.9. Solid lines are 

the results of fitting to determine the rate constants of the formation of DKP.  

 

    To analyze the experimental results, we need to consider the following reactions 

(Fig. 2.2): Gly to GlyGly (second-order reaction; k1), GlyGly to DKP (first-order 

reaction; k2), GlyGly to Gly (first-order reaction; k–1), and DKP to GlyGly (first-order 

reaction; k–2) (Qian et al., 1993; Li and Brill, 2003), where k1, k−1, k2 and k−2 are the rate 

constants. The rate equations for these reactions can be written as (Fig. 2.2): 

2
11 [Gly]2[GlyGly]2[Gly] kk

dt
d

−= −   (1) 
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]GlyGly)[([DKP]]Gly[[GlyGly] 212
2

1 kkkk
dt
d

+−+= −−   (2) 

]DKP[]GlyGly[[DKP] 22 −−= kk
dt
d   (3) 

To obtain the rate constants, the above rate equations were fitted to the experimental 

results by the least-squares method using the numerical software Scilab. The results of 

fitting for the formation of GlyGly and DKP are shown in Figs. 2.4 and 2.5, 

respectively, and the rate constants obtained are plotted against pH in Fig. 2.6. Errors 

were estimated from the maximum error in concentration measurements (3%), and the 

adjusted fitting results were evaluated. All of the rate constants changed with pH, and 

the rate constant of the polymerization of Gly (k1) reached a maximum at about pH 9.8 

(Fig. 2.6a). 

 

Fig. 2.6. Rate constants as function of pH (25 °C) for the reactions of (a) Gly to GlyGly 

(k1), (b) GlyGly to DKP (k2), (c) GlyGly to Gly (k–1), and DKP to GlyGly (k–2). 
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    Figs. 2.7a, 2.7b, 2.7c, and 2.7d are Arrhenius plots of k1, k–1, k2, and k–2 at pH 9.8, 

respectively. The activation energies obtained were 88, 93, 82, and 134 kJ mol-1 for the 

reactions of Gly to GlyGly, GlyGly to DKP, GlyGly to Gly, and DKP to GlyGly, 

respectively. 

 

Fig. 2.7. Arrhenius plots for the reactions of (a) Gly to GlyGly (k1), (b) GlyGly to DKP 

(k2), (c) GlyGly to Gly (k–1), (d) DKP to GlyGly (k–2). 

 

2.3.2. Reaction rate constants considering dissociation states 

Gly has three dissociation states (Gly+, Gly±, and Gly−), and GlyGly also has three 

dissociation states (GlyGly±, GlyGly−, and GlyGly+). This means that the reaction of 

Gly + Gly → GlyGly can be separated into several reactions, such as Gly+ + Gly− → 

GlyGly± and Gly± + Gly− → GlyGly−. To evaluate the rates of individual reactions, the 
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molar fractions of each dissociation state during the experiment need to be known. In 

our experiment, pH was adjusted at 25 °C and the solution was heated to 140 °C. The 

pH dependence of the molar fractions of each dissociation state of Gly at 140 °C can be 

evaluated from the following equations: 

w]OH][H[ K=−+    (4) 

Gly][]Gly[]Gly[]Gly[ =++ ±−+   (5) 

]Gly[
]H][Gly[

a +

+±

=K    (6) 

]Gly[
]H][Gly[

a ±

+−

" =K    (7) 

Kw in Eq. (4) is the dissociation constant of water at 140 °C, determined from the 

known temperature dependence of Kw (Marshall and Franck, 1981). Eq. (5) indicates 

that the sum of each dissociation state of Gly is equal to total concentration of Gly (= 

100 mM). The total concentration of Gly was approximately constant during the 

hydrothermal experiment because the amounts of GlyGly and DKP formed in the 

experiment were very small as compared with that of Gly. Eqs. (6) and (7) are related to 

the reactions of Gly+ ↔ Gly± + H+ and Gly± ↔ Gly− + H+, respectively. Ka and Ka′ at 

140 °C were calculated by the van’t Hoff model using the standard partial molar heat 

capacity (−120.9 J K−
1 mol−1 for Eq. (6) and −172.9 J K−

1 mol−1 for Eq. (7)), enthalpy at 

25 °C (4.54 kJ mol−1 for Eq. (6) and 44.4 kJ mol−1 for Eq. (7)), and dissociation constant 

at 25 °C (10−
2.35 for Eq. (6) and 10−

9.78 for Eq. (7)) (Clarke et al., 2005). The pH 

dependence of the dissociation states of Gly at 140 °C calculated from Eqs. (4)–(7) 

differs from that at 25 °C (Fig. 2.8). The conservation of charge equation can be used to 

evaluate how the pH, which was adjusted at 25 °C, changes as the temperature increases 

to 140 °C: 
]OH[]Gly[]H[]Na[]Gly[ −−+++ +=++  (8) 

Because the amount of NaOH added to the solution is known, the concentration of Na+ 

is known. By combining Eqs. (4)–(8), the changes in pH and the dissociation states of 

Gly with increasing temperature could be evaluated, and some examples are shown in 

Fig. 2.8 (arrows). The molar fractions of each dissociation state of GlyGly at 140 °C 

were determined in the same manner. Dissociation constants for the reactions of 

GlyGly+ → GlyGly± + H+ and GlyGly± → GlyGly− + H+ at 140 °C were calculated by 

the van’t Hoff model using the standard partial molar heat capacities (−128 J K−
1 mol−1 
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and −16 J K−
1 mol−1), enthalpies at 25 °C (0.11 kJ mol−1 and 43.4 kJ mol−1), and 

dissociation constants at 25 °C (10−
3.140 and 10−

8.265) (Goldberg et al., 2002). The molar 
fractions of each dissociation state of Gly and GlyGly determined in this manner are 

used in the following discussion. 

 
Fig. 2.8. Comparison of the pH dependences of the molar fractions of different 

dissociation states of Gly at (a) 25 °C and (b) 140 °C. 

 

The rate of dimerization of Gly reached a maximum at about pH 9.8 (Fig. 2.6a). In 

alkaline pH, Gly is mainly present as Gly± and Gly−, and the amount of Gly+ is 

approximately zero (<0.1%) (Fig. 2.8b). Likewise, GlyGly is mainly present as GlyGly± 

and GlyGly−, and the amount of GlyGly+ is approximately zero. DKP does not change 

its protonation state depending on pH. Therefore, in alkaline solution, the reaction 



Chapter 2. Effects of pH and temperature on dimerization rate of glycine:  
Evaluation of favorable environmental conditions for chemical evolution of life 

 
 

37 

pathways involving Gly, GlyGly, and DKP can be reasonably written by the 

combination of Gly±, Gly−, GlyGly±, GlyGly−, and DKP. We focused on the reactivity 

of these chemical species to evaluate the fast dimerization of Gly at about pH 9.8. 

First, we examined the reaction of Gly + Gly → GlyGly. The overall dimerization 

of Gly can be separated into the following three reactions: Gly± + Gly± → GlyGly± + 

H2O (k1,a), Gly± + Gly− → GlyGly– + H2O (k1,b), and Gly− + Gly− → GlyGly– + OH− 

(k1,c), where k1,a, k1,b, and k1,c are the rate constants (Fig. 2.9a). The change in total 

concentration of GlyGly with time can be expressed as: 

!
!"
GlyGly = k! Gly± ! + k! Gly± Gly-­‐ + k! Gly-­‐

!
           (9) 

The sum of [Gly–] and [Gly±] should be equal to [Gly], and if the molar fractions of 

Gly– and Gly± are expressed as α1 and β1, respectively (i.e., [Gly−] = α1[Gly] and [Gly±] 

= β1[Gly]), α1 + β1 = 1. Eq. (9) can then be rewritten as: 
!
!"
GlyGly = k!-­‐k! + k! α! + -­‐2k!-­‐2k! α + k! Gly !         (10) 

This means that: 

k! = k!-­‐k! + k! α! + -­‐2k! + k! α + k!             (11) 

Fig. 2.9b shows k1 plotted against the molar fraction of Gly– (=α1). Note that k1 was 

determined for each pH and the molar fraction of Gly– at the pH is known. By fitting Eq. 

(11) to the data (the solid curve in Fig. 2.9b), k1,a, k1,b, and k1,c can be evaluated. The 

result of the fitting revealed that k1 has a maximum value of 1.55×10−9 l mmol−1 s−1 at a 

Gly– fraction of 0.55. Table 1 shows the values of k1,a, k1,b, and k1,c obtained by this 

method. The rate constant of the fastest reaction Gly± + Gly– → GlyGly (k1,a) is about 

98 times the size of the slowest reaction Gly± + Gly± → GlyGly (k1,b). The kinetically 

most advantageous condition for the dimerization of Gly is therefore that Gly± and Gly– 

exist in approximately equal amounts. This condition is achieved at about pH 9.8 at 

25 °C. These results clearly show that Gly± and Gly– have different reactivities. Since 

Gly– has an uncharged amino group (NH2) with nucleophilicity, Gly– is advantageous to 

attack the charged carboxylic group of other molecules (Bujdák and Rode, 2001). 

Reactivity between Gly– and Gly– is less than that between Gly– and Gly± because 

coulombic repulsion works between Gly– and Gly–. Reactivity of Gly± and Gly± is much 

lower because Gly± has an intramolecular electrical interaction between a charged 

amino group and a charged carboxyl group and this leads to low reactivity to other Gly± 

molecules. 
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The reaction of GlyGly to DKP can be separated into the following two reactions: 

GlyGly± → DKP + H2O (k2,a) and GlyGly− → DKP + OH− (k2,b) (Fig. 2.9c). The change 

in total concentration of DKP with time can be expressed as: 
!
!"
DKP = k! GlyGly± + k! GlyGly-­‐               (12) 

By expressing the molar fractions of GlyGly– and GlyGly± as α2 and β2, respectively 

(thus, α2 + β2 = 1), Eq. (12) can be rewritten as: 
!
!"
DKP = {(-­‐k! + k!)α + k!} GlyGly              (13) 

Thus, 
k! = -­‐k! + k! α + k!                          (14) 

Fig. 2.9d shows k2 plotted against α2. By fitting Eq. (14) to the data (the solid line in Fig. 

2.9d), k2,a and k2,b were estimated to be similar (Table 2.1). The data in Fig. 2.9d do not 

lie along the fitted line. It appears that k2,a and k2,b are almost equal and k2 is 

independent of α2, and the dispersion of measurement points reflects the variation of k2,a. 

Although the variation of k2,a looks large, k2,a ranges from 8 × 10–6 s−1 to 7 × 10–5 s−1. 

The similarity between k2,a and k2,b indicates that GlyGly– and GlyGly± have similar 

reactivities. 

The reaction of GlyGly to Gly can be separated into the following three reactions: 

GlyGly± + H2O → 2Gly± (k–1,a), GlyGly– + H2O → Gly± + Gly– (k–1,b), and GlyGly– + 

OH– → 2Gly– (k–1,c) (Fig. 2.9e). The change in overall concentration of Gly with time 

can be expressed as: 
!
!"
Gly = 2 k! GlyGly± + k! GlyGly-­‐ + k! GlyGly-­‐ OH-­‐  (15) 

By expressing the molar fraction of GlyGly– and GlyGly± as α3 and β3, respectively 

(thus, α3 + β3 = 1), Eq. (15) can be rewritten as 
!
!"
Gly = 2 -­‐k! + k! + k! OH-­‐ α + k! GlyGly           (16) 

Since the dissociation constant of the reaction of GlyGly± → GlyGly– + H+ is known,  

K! =
!"#!"#-­‐ !!

!"#!"#±
   (17) 

Also, from the definition of α3 and β3, GlyGly-­‐ + GlyGly± = α GlyGly + β GlyGly =

GlyGly   (18) 

From Eqs. (4), (17), and (18), the concentration of OH– can be expressed as:Fig.  

3

3

a

w

1
][OH

α
α
−

=−

K
K

  (19) 

Then, Eq. (16) can be rewritten as: 
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k−1 GlyGly[ ] = {(−k−1,a + k−1,b )α3 + k−1,c
Kw

Ka

α3
2

1−α3
+ k−1,a}[GlyGly]	
 	
 	
 	
 (20) 

Thus, 

k! = 2 -­‐k! + k! α + k!
!!
!!

!!

!-­‐!
+ k!                       (21) 

Fig. 2.9f shows k−1 plotted against α3. By fitting Eq. (21) to the data (the solid curve in 

Fig. 2.9f), k−1,a, k−1,b, and k−1,c can be evaluated (Table 2.1). The reaction rate of GlyGly– 

+ OH– → 2Gly– (k−1,c) is faster than those of GlyGly± + H2O → 2Gly± (k−1,a) and 

GlyGly– + H2O → Gly± + Gly– (k−1,b), which appears to indicate that OH– is more 

reactive than H2O, probably because OH– has nucleophilicity owing to its negative 

charge. Similar values were obtained for k−1,a and k−1,b, and GlyGly reacts with H2O in 

both reactions. This result again indicates that GlyGly± and GlyGly– have similar 

reactivities. 

The reaction of DKP to GlyGly can be separated into the following two reactions: 

DKP + H2O → GlyGly± (k−2,a) and DKP + OH– → GlyGly– (k−2,b) (Fig. 2.9g). The 

change in overall concentration of GlyGly with time can be expressed as: 
!
!"
GlyGly = k! + k! OH-­‐ DKP                     (22) 

Thus, 
]OH[b2,a2,2

−
−−− += kkk                     (23) 

Fig. 2.9h shows k−2 plotted against [OH–]. By fitting Eq. (23) to the data (the solid curve 

in Fig. 2.9h), k−2,a and k−2,b can be estimated. The reaction of DKP + OH– → GlyGly– 

(k−2,b) is faster than that of DKP + H2O → GlyGly± (k−2,a) (Table 2.1), ensuring again 

that OH– is more reactive than H2O.  
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Fig. 2.9. Reaction pathways taking account of the dissociation states of Gly and GlyGly 

at 140 °C for the reactions of (a) Gly to GlyGly, (c) GlyGly to DKP, (e) GlyGly to Gly, 

and (g) DKP to GlyGly. Plots of (b) rate constant of Gly to GlyGly (k1) vs. molar 

fraction of Gly– with a fitted curve for determining k1,a, k1,b, and k1,c; (d) rate constant of 

GlyGly to DKP (k2) vs. molar fraction of GlyGly– with a fitted line for determining k2,a 

and k2,b; (f) rate constant of GlyGly to Gly (k−1) vs. molar fraction of GlyGly– with a 

fitted curve for determining k−1,a, k−1,b, and k−1,c; and (h) rate constant of DKP to GlyGly 

(k−2) vs. molar fraction of OH– with a fitted line for determining k−2,a and k−2,b. 
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Table 2.1. Rate constants for the reactions of Gly to GlyGly, GlyGly to DKP, GlyGly to 

Gly, and DKP to GlyGly at 140 °C. Reference rate constants correspond to values at 

140 °C, which were estimated from the reported temperature dependences of the 

reaction rates. 
Reaction Rate constant (this study) Reference rate constant 

Gly± +Gly- → 

GlyGly- +H2O 

4.1 (± 0.11) × 10-9  

(l mmol-1 s-1) (k1,b) 

 

Gly- +Gly- → 

GlyGly- +OH- 

4.3 (± 0.30) × 10-10  

(l mmol-1 s-1) (k1,c) 

 

Gly± +Gly± → 

GlyGly± +H2O 

4.2 (± 2.0) × 10-11   

(l mmol-1 s-1) (k1,a) 

 

GlyGly- → DKP 

+OH- 

4.0 (± 0.96) × 10-5  

(s-1) (k2,b) 

 

GlyGly± → DKP 

+H2O 

2.5 (± 2.0) × 10-5   

(s-1) (k2,a) 

4.6 × 10-5 (s-1)  (Radzicka and Wolfenden, 1996) 

GlyGly- + OH- → 

2Gly- 

5.3 (± 1.2) × 10-3 

 (mmol l-1 s-1) (k-1,c) 

1.4 × 10-2 (mmol l-1 s-1)  (Lawrence and Moore, 1951) 

GlyGly- + H2O → 

Gly± + Gly- 

1.5 (± 0.15) × 10-5  

(mmol l-1 s-1) (k-1,b) 

 

GlyGly± + H2O→ 

2Gly± 

3.0 (± 2.6) × 10-6  

(mmol l-1 s-1) (k-1,a) 

1.5 × 10-6 (mmol l-1 s-1)  (Qian et al., 1993) 

6.1 × 10-6 (mmol l-1 s-1]  (Radzicka and Wolfenden, 1996) 

DKP + OH- → 

GlyGly- 

2.6 (± 0.14)  

(s-1) (k-2,b) 

 

DKP + H2O → 

GlyGly± 

1.5 (± 2.2) × 10-4  

(s-1) (k-2,a) 

1.2 × 10-4 (s-1)  (Radzicka and Wolfenden, 1996) 
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2.3.3. Comparison with other rate constants 

The rate constants obtained in this study can be compared with the results of 

several previous studies. Lawrence and Moore (1951) conducted a heating experiment 

of solutions containing 0.05 mol l−1 GlyGly and 0.21 mol l−1 NaOH at 54.4, 70.2, and 

87.2 °C and evaluated the rate of reaction of GlyGly to Gly. Under the alkaline solution, 

GlyGly is present as GlyGly−. Qian et al. (1993) evaluated the rate of reaction of 

GlyGly to Gly under unbuffered conditions (pH 5.6−7.9) at 120, 160, and 220 °C; under 

these conditions we estimate that the main existence forms of Gly and GyGly were Gly± 

and GlyGly±. Radzicka and Wolfenden (1996) studied the reaction between GlyGly and 

DKP under hydrothermal conditions at pH 7 at 84−160 °C and evaluated the rate and 

equilibrium constant for the reaction. They also evaluated the rate of reaction of GlyGly 

to Gly under hydrothermal conditions at pH 4.2−7.8 and 120−200 °C. Under the 

experimental conditions of Radzicka and Wolfenden (1996), we presume that Gly and 

GlyGly mainly existed as Gly± and GlyGly±. Table 1 shows the rate constants at 140 °C 

estimated from the temperature dependences of the reaction rates reported in the above 

studies. The rate constants in the current study differ from the values of previous studies 

by factors of 0.5–3. Thus, the reproducibility of the experiment is reasonably good, 

although previous studies have not taken the dissociation states of Gly and GlyGly into 

consideration.  

 

2.3.4. Dimerization rates in hydrothermal environments 

The above analyses can be used to estimate a dimerization rate under given pH 

and temperature conditions. Fig. 2.10 shows the estimated dimerization rates under 

several hydrothermal environments for which pH and temperature have been reported. 

The conditions for each hydrothermal environment are as follows: Lost City (pH 10−11, 

< 91 °C: Kelley et al., 2005), Rainbow (pH 2.8, 365 °C: Douville et al., 2002), 

Sediment Hosted (pH 5.1−5.9, 100−315 °C: Tivey, 2007), Mid Ocean Ridge (pH 

2.8−4.5, < 405 °C: Ding et al., 2005; Tivey, 2007), back arc basins (pH <1−5.0, 

278−334 °C: Fouquest et al., 1991; Tivey, 2007), and sea-water (pH 8, 2 °C: Tivey, 

2007), where all pH values are those at 25 °C. Since activation energies are assumed to 

be equal at all pH (88 kJ mol-1 at pH 9.8, derived from Fig. 7a), lines for each pH in Fig. 

10 have the same slope. The dimerization rate increases with rising temperature in an 

Arrhenius plot. However, Shock (1990) conducted the thermodynamic calculation on 



Chapter 2. Effects of pH and temperature on dimerization rate of glycine:  
Evaluation of favorable environmental conditions for chemical evolution of life 

 
 

43 

synthesis of organic materials that are important for the origin of life and showed that 

the amounts of production of amino acids became greatest at about 150 °C. In addition, 

according to Ito et al. (2006), when amino acids contained in submarine sediments from 

Hawaii (depth 3438 m) were heated in NaCl solution with sediments, the amounts of 

degraded amino acids were 90% at 200 °C, 60% at 150 °C, and 25% at 100 °C. Thus, 

amino acids are unstable at > 200 °C. Our results in combination with those from other 

studies indicate therefore that Gly dimerizes most efficiently under alkaline pH (~9.8) at 

about 150°C. Although the ranges of pH and temperature on the early Earth are unclear, 

among the hydrothermal vents presented in Fig. 2.10, Lost City has the most favorable 

condition for the dimerization of Gly.  

 

 

Fig. 2.10. Dimerization rate constants estimated for several hydrothermal vents. 

 

Amino acids have different polar side chain characteristics and different numbers 

of amino and carboxylic groups. Despite the variation, all amino acids have at least one 

amino group and one carboxylic group whose protonation states change with pH. It is 

thus presumed that the polymerization rates of amino acids other than Gly are also 

affected by pH, although the degree to which pH affects the rate of polymerization may 

change depending on the amino acid. Because the amino acid concentration is also 

important for polymerization in addition to pH and temperature, it is difficult to specify 
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where the polymerization of amino acids actually occurred from our results alone. 

Although our experiment was performed taking hydrothermal conditions in 

consideration, the dissociation states of amino acids may also play important roles in the 

reactions not necessarily related to hydrothermal conditions, such as at the surfaces of 

minerals or salt-induced peptide formation (e.g., Eder and Rode, 1994; Rode, 1999; 

Bujdák and Rode, 1999a; Bujdák and Rode, 1999b; Bujdák and Rode, 2001). For 

example, in the case of the reaction between Gly and CuCl2, it has been suggested that 

peptide formation is promoted because Gly+ and Gly− bind to Cu2+ (Eder and Rode, 

1994). Such a reaction may be affected by the molar fractions of each of Gly’s 

dissociation states. Thus, the effect of the dissociation state of Gly on polymerization 

rate revealed in this study seems to be useful to evaluate a suitable environment for the 

chemical evolution of life under various conditions. 

 

2.4. Conclusion 

We studied the effects of pH and temperature on the dimerization rate of Gly. The 

rate significantly changed with pH and reached a maximum at about pH 9.8. Since Gly 

has three dissociation states (Gly+, Gly±, and Gly−), the dimerization of Gly can be 

separated into reactions for each dissociation state. The rates decreased in the order of 

Gly± + Gly− → GlyGly (fast), Gly− + Gly− → GlyGly (medium), and Gly± + Gly± → 

GlyGly (slow), and the rate constants differed by as much as a factor of 98. Thus, each 

dissociation state of Gly has a different reactivity, and the pH dependence of the 

dimerization rate can be explained by the change of the dissociation states of Gly with 

pH. The dimerization rate became greatest at pH 9.8 because the fractions of Gly± and 

Gly– are approximately equal at this pH. The revealed relationship between pH, 

dissociation state, polymerization rate, and temperature seems to be useful for the 

evaluation of favorable conditions for chemical evolution of life. 
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3.1. Introduction 

Deep-sea hydrothermal systems have been suggested as a suitable environment 

for chemical evolution in the early Earth (e.g., Corliss, 1990; Holm, 1992; Yanagawa 

and Kobayashi, 1992; Macleod et al., 1994; Russell and Hall, 1997; Russell, 2003; 

Holm and Andersson, 2005; Martin et al., 2008). In terrestrial hydrothermal systems, 

seawater percolates into the deep oceanic crust; reacts with the surrounding rocks at 

high temperatures; and changes into hot, reduced fluids (up to 400°C) (Tivey et al., 

1995; Tivey, 2007). Water–rock interaction produces a broad range of pH and redox 

conditions in seafloor hydrothermal fluids (e.g., East Pacific Rise, Lucky Strike 

hydrothermal field, Rainbow plume, and Trans-Atlantic Geotraverse area), and might 

have controlled the prebiotic chemistry. 

Recently, hydrothermal systems eructing basic and low-temperature fluids were 

discovered in the south Chamorro seamount (Mottl et al., 2003) and Lost City 

hydrothermal field (Kelley et al., 2001). The high pH values of the fluids at these sites 

have been attributed to the serpentinization of olivine (Kelley et al., 2001; Kelley et al., 

2005; Hulme et al., 2010; Wheat et al., 2010). Serpentinization yields H2-rich fluids that 

can facilitate organic chemical synthesis (Horita and Berndt, 1999; McCollom and 

Seewald, 2007; McCollom and Bach, 2009). Therefore, basic hydrothermal systems are 

regarded as suitable environments for the origin of life (Russell, 2003; Holm et al., 

2006; Holm and Neubeck, 2009). Based on the petrological analysis of Archean basalt 

(Shibuya et al., 2010), it was proposed that the Archean subseafloor hydrothermal 

systems were characterized by high-pH fluids. In addition, there have been several 

studies that experimentally demonstrate prebiotic chemistry at high pH (e.g., Huber and 

Wächtershäuser, 1998; Russell, 2003; Holm et al., 2006; Sakata et al., 2010). For 

example, in a previous study, we reported a maximum dimerization rate for glycine 

(Gly) in aqueous solution at 150°C and pH 9.8 (Sakata et al., 2010). 

The metal ions produced by the hydrothermal alteration of rocks are also 

important in prebiotic chemistry. Typical hydrothermal systems, including south 

Chamorro, release fluids that are enriched in a variety of metal ions such as Ca2+, K+, 

Ba2+, Fe2+, Mn2+, Cu2+, Zn2+, and Pb2+ (Mottl et al., 2003; Tivey, 2007; Hulme et al., 

2010). Although the concentrations of the metal ions in the Lost City hydrothermal field 

are low, enrichment in Ca2+ characterizes this system (Kelley et al., 2001, 2005). 

Recently, it has been suggested that the fluxes of organo–metal complexes of organic 
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carbon and metal ions (e.g., Cu2+, Fe2+) are more abundant in hydrothermal plumes than 

previously assumed (Sander and Koschinsky, 2011). Toner et al. (2009) has also shown 

that organic carbon is associated with Fe in hydrothermal plume particles. These reports 

have forced the revision of the notion that most of the metals released from 

hydrothermal vents are incorporated in minerals. Fe2+ and Mn2+ were probably more 

abundant in ancient oceans than in modern oceans (Anbar, 2008). Thus, the interactions 

between organic molecules and dissolved metal ions could have been more important in 

prebiotic chemistry, whereas mineral surface catalysis might have been of lesser 

importance around hydrothermal vents in the early Earth. In fact, most of the 

present-day living organisms contain metalloproteins, which may have been derived 

from the interactions of organic molecules and metal ions in the early terrestrial oceans. 

It is well known that divalent metal ions, especially Cu2+, can catalyze the 

oligomerization of amino acids in acidic and neutral aqueous solutions (e.g., 

Schwendinger and Rode, 1989; Eder and Rode, 1994; Imai et al., 1999; Rode, 1999; Li 

et al., 2010). This reaction is called the “salt-induced peptide formation (SIPF)” reaction 

(Schwendinger and Rode, 1989), and the monochlorocuprate complex is assumed to be 

the reactive species that leads to the linking of the two amino acids to a peptide (Rode, 

1999). The monochlorocuprate complex is very stable and partially charged, causing the 

nucleophilic attack of the amino group of the chelated amino acid at the protonated 

carboxyl group of the other amino acids (Rode, 1999). On the other hand, it was 

reported that other divalent cations such as Mg2+, Ca2+, Mn2+, Co2+, Ni2+, Fe2+, Zn2+, 

and Cd2+ have little effect on the polymerization of Gly (Schwendinger and Rode, 1989; 

Rode and Schwendinger, 1990). Zn2+ catalyzes the formation and hydrolysis of 

diketopiperazines (DKP) (Cronin et al., 1971) and the hydrolysis of Glycylglycine 

(GlyGly) (Long et al., 1971). 

To date, most of the prebiotic peptide synthesis have been conducted under acidic 

and neutral conditions to simulate the typical hydrothermal environment. However, 

because of the recent discovery of basic hydrothermal systems, greater chemical 

diversity in the hydrothermal systems of the early Earth is expected. Therefore, in this 

study, systematic heating experiments of Gly with various metal ions (Ca2+, Mg2+, Zn2+, 

Fe2+, Mn2+, and Cu2+) in aqueous solution under a broad range of pH conditions were 

conducted to determine the most favorable conditions for the formation of peptides. 

Variations in the reaction rate constants of the formation and decomposition of 
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dipeptides, tripeptides, and DKP under different conditions were studied with respect to 

the glycine–metal complexation mechanism. 

 

3.2. Methods 

Analytical grade Gly, GlyGly, and Glycylglycylglycine (GlyGlyGly) were 

obtained from the Peptide Institute. DKP was obtained from Tokyo Chemical Industry. 

HCl, NaOH, CaCl2, ZnCl2, MnCl2, and FeCl2 were obtained from Wako Pure Chemical 

Industries. MgCl2 and CuCl2 were obtained from Kanto Chemical. 

Solutions of 100 mM Gly with pH 2.1–3.4, 100 mM Gly with pH 4.5–6.0, and 5 

mM metal chloride (MCl2, M = Ca, Mg, Cu, Fe, Mn, and Zn) with pH 9.8–9.9 were 

prepared. The pH of the Gly solutions was adjusted to pH 2.1–2.3 and pH 9.8–9.9 by 

using HCl and NaOH, respectively. The pH of the solution of Gly and CuCl2 was 3.4, 

and NaOH was used to adjust the pH of the solutions to 7.1 and 9.8, respectively. The 

pH of the solutions of Gly and the metal chlorides ranged from 4.5 to 6.0. Each solution 

(0.5–1.0 ml) was placed in a pyrex glass tube and vacuumed; subsequently, the tube was 

filled with Ar gas and sealed. To prevent contamination, the pyrex glass tubes were 

heated at 500°C for 4.5 h before inserting the samples. Finally, the solutions were 

heated in an electric oven at 140°C from 1 to 74 days. Before and after the experiment, 

the pH of the solutions was measured at 25°C with a pH meter (B-212; HORIBA). The 

changes in the pH before and after the experiments were <1.7 (Table 3.1). In the 

solution of Gly and FeCl2 at pH 2.3 and 5.0, red iron oxides precipitated after heating, 

and the precipitation was more pronounced at pH 2.3 than at pH 5.0.
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Table 3.1. The changes in the pH before and after heating experiments at 140°C. 

 pH (before experiments) pH (after experiments) 

No metal ion 2.3 1.8 ~ 2.6 

6.0 7.3 ~ 7.7 

9.8 8.9 ~ 9.6 

Ca2+ 2.3 2.5 ~ 2.8 

5.7 6.7 ~ 7.4 

9.9 9.6 ~ 9.9 

Mg2+ 2.3 2.5 ~ 2.6 

5.7 6.7 ~ 7.3 

9.9 8.8 ~ 9.2 

Zn2+ 2.3 2.6 ~ 2.9 

4.5 4.9 ~ 5.4 

9.8 8.7 ~ 9.8 

Fe2+ 2.3 1.7 ~ 1.9 

5.0 3.3 ~ 4.3 

Mn2+ 2.2 1.9 ~ 2.3 

5.7 6.2 ~ 6.8 

Cu2+ 3.4 3.8 ~ 4.1 

7.1 7.3 ~ 7.7 

9.8 8.7 ~ 9.1 

 

Each sample was diluted 10 or 20 times and analyzed by using a 

high-performance liquid chromatography (HPLC) system (ICA-2000; TOA DKK) 

equipped with a Jasco UV-2075 detector at a wavelength of 200 nm. A reversed 

phase-type HPLC column (Hydrosphere C18; YMC) was used at 37°C. A 10 mM 

C6H13SO3Na solution with pH 2.5 was used as eluent and adjusted using H3PO4 (Bujdák 

and Rode, 1999) at a flow rate of 1.0 ml min−1. Gly, GlyGly, GlyGlyGly, and DKP 

were identified and quantified by comparing the observed peak retention times and peak 

areas, respectively, with those of standard compounds. The errors in the concentrations 

of Gly, GlyGly, GlyGlyGly, and DKP were estimated to be <3.0%. 
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3.3. Results and Discussion 

3.3.1. Yields of GlyGly, DKP, and GlyGlyGly 

Figure 3.1 shows the chromatograms of the products obtained from the solutions 

after the hydrothermal reactions at 140°C under the respective conditions. GlyGly and 

DKP were produced under all conditions (Fig. 3.1), and GlyGlyGly was only produced 

from solutions containing Cu2+ (Figs. 3.1h, 1p, and 1v). The relative abundances of 

DKP and GlyGly increased with increasing heating time. Table 3.2 and Fig. 3.2 

summarize the GlyGly and DKP yields. The GlyGly, DKP, and GlyGlyGly yields were 

0.05%–0.68%, 0.001%–0.11%, and 0.01%–0.05%, respectively (Table 3.2). In this 

study, the GlyGly yields (0.06%) from the solution containing Cu2+ (pH 3.4) are four 

times lower than the yield (0.25%) reported by Rode and Schwendinger (1990) who 

heated a solution of 800 mM Gly and 400 mM CuCl2 (pH 2.5) at 80–90°C for 10 days. 

In this study, the GlyGly yields (0.12%) from the solution containing Fe2+ (pH 5.0) are 

2–4 times higher than those (0.03%–0.06%) reported by Rode and Schwendinger 

(1990) who heated a solution of 900 mM Gly and 500 mM FeCl2 (pH 5.0) at 75°C for 

11 days. However, GlyGlyGly was not detected in the Rode and Schwendinger (1990) 

experiments. Thus, these differences observed are attributed to the differences in the 

concentration, time, and temperature, which are the factors that Cleaves et al. (2009) 

regard as the major limiting parameters of peptide synthesis under deep-sea 

hydrothermal conditions. 
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Fig. 3.1. HPLC chromatograms before and after the hydrothermal reactions of glycine 

in aqueous solution at (a–h) pH 2.2–3.4, (i–p) pH 4.5–7.1, and (q–v) pH 9.8–9.9. (a, i, 

and q) No metal ions were present, (b, j, and r) with Ca2+, (c, k, and s) with Mg2+, (d, l, 

and t) with Zn2+, (e and m) with Fe2+, (f and n) with Mn2+, and (g, h, o, p, u, and v) with 

Cu2+. Individual salts were also added to the standard solutions to inhibit the relative 

retention time shifts of the components because of the salt effects. Ratios of 

concentrations of Gly: GlyGly: DKP in the standards were 200: 1: 1 for no metal ions 

(pH 2.3, pH 9.8) and with Fe2+ (pH 2.3 and pH 5.0), 100: 1: 1 for Mn2+ (pH 2.2), 40: 1: 

1 for Mn2+ (pH 5.7), and 20: 1: 1 for no metal ions (pH 6.0), Ca2+ (pH 2.3, 5.7, 9.9), 

Mg2+ (pH 2.3, 5.7, 9.9), Zn2+ (pH 2.3, 4.5, 9.8), Cu2+ (pH 3.4, 7.1, 9.8). The 

concentrations of GlyGlyGly for the dtandards with Cu2+ were 0.01 (pH 3.4 and pH 9.8) 

or 0.05 mM (pH 7.1). 
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Table 3.2. Yields of GlyGly, DKP, and GlyGlyGly from solutions without and with 

metal ions (Ca2+, Mg2+, Zn2+, Fe2+, Mn2+, and Cu2+) at different pH conditions and 

heating times at 140°C . 

 

 Heating time 

(days) 

GlyGly 

(%) 

DKP 

(%) 

GlyGlyGly 

(%) 

No metal ion (pH 2.3) 74 0.17 0.03 -  

Ca2+ (pH 2.3) 14 0.15 0.05 - 

Mg2+ (pH 2.3) 14 0.18 0.07 - 

Zn2+ (pH 2.3) 14 0.14 0.04 - 

Fe2+ (pH 2.3) 36 0.15 0.04 - 

Mn2+ (pH 2.2) 37 0.17 0.06 - 

Cu2+ (pH 3.4) 45 0.06 0.11 0.01 

     

No metal ion (pH 6.0) 42 0.10 0.10 - 

Ca2+ (pH 5.7) 15 0.07 0.08 - 

Mg2+ (pH 5.7) 14 0.05 0.07 - 

Zn2+ (pH 4.5) 14 0.05 0.07 - 

Fe2+ (pH 5.0) 30 0.12 0.11 - 

Mn2+ (pH 5.7) 43 0.06 0.09 - 

Cu2+ (pH 7.1) 21 0.09 0.09 0.01 

     

No metal ion (pH 9.8) 74 0.62 0.01 - 

Ca2+ (pH 9.8) 3 0.45 - - 

Mg2+ (pH 9.9) 3 0.48 0.001 - 

Zn2+ (pH 9.8) 37 0.68 0.014 - 

Cu2+ (pH 9.8) 74 0.62 0.004 0.05 
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The GlyGly yields from basic solutions (pH 9.8–9.9) are the highest, regardless of 

the presence or absence of any metal ion (Fig. 3.2a). The yields are 3–10 times higher 

than those from acidic and neutral solutions. The GlyGly yields from the highly acidic 

solutions (pH 2.2–3.4) are 2–3 times higher than those from the mildly acidic and 

neutral solutions (pH 4.3–7.1) except for solutions containing Fe2+ and Cu2+. At pH 9.8–

9.9, the GlyGly yields from solutions containing Ca2+ and Mg2+ are 0.7–0.8 times lower 

than those without metal ions, whereas the GlyGly yields from solutions containing 

Zn2+ and Cu2+ are nearly similar to those without metal ions (Fig. 3.2a). At pH 4.3–7.1, 

the GlyGly yields from solutions containing Fe2+ and Cu2+ are similar to those without 

metal ions, whereas the GlyGly yield from solutions containing Ca2+, Mg2+, Zn2+, and 

Mn2+ was nearly two times lower than that without metal ions (Fig. 3.2a). At pH 2.2–

3.4, the GlyGly yields from solutions containing Ca2+, Mg2+, Zn2+, Fe2+, and Mn2+ are 

similar to those without metal ions, whereas the GlyGly yield from the solution 

containing Cu2+ was three times lower than that without metal ions (Fig. 3.2a). 

In contrast, the DKP yields from basic solutions are much lower than those from 

acidic and neutral solutions, regardless of the presence or absence of any metal ion (Fig. 

3.2b). In most cases, the DKP yields from mildly acidic and neutral solutions (pH 4.3–

7.1) are higher than those from highly acidic solutions (pH 2.2–3.4), except for 

solutions with Mg2+ and Cu2+. At pH 2.2–3.4, the DKP yields from solutions with metal 

ions were 1.2–3.5 times higher than solutions without metal ions (Fig. 3.2b). At pH 4.3–

7.1, the DKP yields from solutions with metal ions were slightly smaller than solutions 

without metal ions (Fig. 3.2b). 

GlyGlyGly, which was only produced from the solutions containing Cu2+, is five 

times more abundant under basic conditions than under acidic and neutral conditions. 
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Fig. 3.2. Comparison of the yields of (a) GlyGly and (b) DKP obtained by heating of 

Gly solutions with or without metal ions at different pH conditions (see Table 3.1). Bar 

graphs: blue (pH 2.2–3.4), green (pH 4.3–7.1), and red (pH 9.8–9.9). 

 

3.3.2. Estimation of the reaction rate constants 

Time profiles of the concentrations of Gly, GlyGly, DKP, and GlyGlyGly are 

shown in Fig. 3.3. Under all experimental conditions, the reaction rates of GlyGly and 
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DKP are in the following order of pH 4.3–7.1 < pH 2.2–3.4 < pH 9.8–9.9. To estimate 

the reaction rates, we considered the following reactions, where kn is the reaction rate 

constant, (Fig. 3.4): 1) the formation of GlyGly from Gly (second-order reaction, k1), 2) 

the formation of DKP from GlyGly (first-order reaction, k2), 3) the hydrolysis of 

GlyGly to produce Gly (first-order reaction, k−1), 4) the hydrolysis of DKP to produce 

GlyGly (first-order reaction, k−2) (Qian et al., 1993; Li and Brill, 2003), 5) the formation 

of GlyGlyGly from Gly and GlyGly (second-order reaction, k3), and 6) the hydrolysis of 

GlyGlyGly to produce Gly and GlyGly (first-order reaction, k−3). 

Except for Cu2+, the rate equations for these reactions can be written as, 

!
!"
𝐺𝑙𝑦 = 2𝑘!! 𝐺𝑙𝑦𝐺𝑙𝑦 − 2𝑘! 𝐺𝑙𝑦 !          (1) 

!
!"
𝐺𝑙𝑦𝐺𝑙𝑦 = 𝑘! 𝐺𝑙𝑦 ! + 𝑘!! 𝐷𝐾𝑃 − 𝑘!! + 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦             (2) 

!
!"
𝐷𝐾𝑃 = 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦 − 𝑘!! 𝐷𝐾𝑃         (3) 

At equilibrium, the rate equations for these reactions can be expressed as a function of 

the equilibrium constant En 

𝑘!! = 𝑘!
!"# !"#$%$&'$#(

!

!"#!"# !"#$%$&'$#(
= 𝐸!𝑘!         (4) 

𝑘!! = 𝑘!
!"#!"# !"#$%$&'$#(

!"# !"#$%$&'$#(
= 𝐸!𝑘!           (5) 

Equations (1), (2), and (3) can be rewritten by using E1 and E2, as follows: 

!
!"
𝐺𝑙𝑦 = 2𝐸!𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦 − 2𝑘! 𝐺𝑙𝑦 !          (6) 

!
!"
𝐺𝑙𝑦𝐺𝑙𝑦 = 𝑘! 𝐺𝑙𝑦 ! + 𝐸!𝑘! 𝐷𝐾𝑃 − 𝐸!𝑘! + 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦             (7) 

!
!"
𝐷𝐾𝑃 = 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦 − 𝐸!𝑘! 𝐷𝐾𝑃         (8) 

Similarly, for the solution of Gly and Cu2+, the rate equations are as follows: 

!
!"
𝐺𝑙𝑦 = 2𝑘!! 𝐺𝑙𝑦𝐺𝑙𝑦 + 𝑘!! 𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦 − 2𝑘! 𝐺𝑙𝑦 ! − 𝑘! 𝐺𝑙𝑦 𝐺𝑙𝑦𝐺𝑙𝑦          

(9) 
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!
!"
𝐺𝑙𝑦𝐺𝑙𝑦 = 𝑘! 𝐺𝑙𝑦 ! + 𝑘!! 𝐷𝐾𝑃 + 𝑘!! 𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦 − 𝑘!! + 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦 −

𝑘! 𝐺𝑙𝑦 𝐺𝑙𝑦𝐺𝑙𝑦             (10) 

!
!"
𝐷𝐾𝑃 = 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦 − 𝑘!! 𝐷𝐾𝑃         (11) 

!
!"
𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦 = 𝑘! 𝐺𝑙𝑦 𝐺𝑙𝑦𝐺𝑙𝑦 − 𝑘!! 𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦        (12) 

At equilibrium, the rate equations for these reactions can be written as, 

𝑘!! = 𝑘!
!"#!"# !"#$%$!"#$%

!"# !"#$%$&'$#(
= 𝐸!𝑘!           (13) 

𝑘!! = 𝑘!
!"# !"#$%$&'$#( !"#!"# !"#$%$&'$#(

!"#!"#!"# !"#$%$&'$#(
= 𝐸!𝑘!      (14) 

Equations (9), (10), and (11) can be rewritten by E2 and E3, as follows: 

!
!"
𝐺𝑙𝑦 = 2𝑘!! 𝐺𝑙𝑦𝐺𝑙𝑦 + 𝐸!𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦 − 2𝑘! 𝐺𝑙𝑦 ! − 𝑘! 𝐺𝑙𝑦 𝐺𝑙𝑦𝐺𝑙𝑦        

(15) 

!
!"
𝐺𝑙𝑦𝐺𝑙𝑦 = 𝑘! 𝐺𝑙𝑦 ! + 𝐸!𝑘! 𝐷𝐾𝑃 + 𝐸!𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦 − 𝑘!! + 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦 −

𝑘! 𝐺𝑙𝑦 𝐺𝑙𝑦𝐺𝑙𝑦             (16) 

!
!"
𝐷𝐾𝑃 = 𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦 − 𝐸!𝑘! 𝐷𝐾𝑃         (17) 

!
!"
𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦 = 𝑘! 𝐺𝑙𝑦 𝐺𝑙𝑦𝐺𝑙𝑦 − 𝐸!𝑘! 𝐺𝑙𝑦𝐺𝑙𝑦𝐺𝑙𝑦        (18) 

Equations (6)–(8) or (15)–(18) were fitted to the experimental results to estimate the 

rate constants using least squares method and the numerical software Scilab (Fig. 3.3). 

The chelation species were not considered in the calculations, and the dominant fitting 

parameters were k1 and k−1, which were determined within two significant figures. 
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Fig. 3.3. Time profiles of the concentrations of Gly, GlyGly, and DKP in the solutions 

during heating at 140°C. (a) No metal ions were present, (b) with Ca2+, (c) with Mg2+, 

(d) with Zn2+, (e) with Fe2+, and (f) with Mn2+. (g) Time profiles of the concentrations 

of Gly, GlyGly, DKP, and GlyGlyGly in the solutions during heating at 140°C with 

Cu2+. Blue simboles: pH 2.2–3.4, green simboles: pH 4.3–7.1, and red simbols: pH 9.8–

9.9. Solid lines represent the peak fittings for determining the rate constants. 
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Fig. 3.4. Reaction pathways between Gly, GlyGly, GlyGlyGly, and DKP. The reaction 

rate constants (kn) are as follows: dimerization of Gly (k1), hydrolysis of GlyGly (k−1), 

formation of DKP (k2), hydrolysis of DKP (k−2), formation of GlyGlyGly (k3), and 

hydrolysis of GlyGlyGly (k−3). 

 

Table 3.3 and Fig. 3.5 summarize the reaction rates (k1, k−1, k2, and k−2) for the 

various conditions. The dimerization rate constants of Gly (k1) at pH 9.8–9.9 are one 

order of magnitude higher than those under acidic and neutral conditions, regardless of 

the presence or absence of metal ions (Table 3.3). This is consistent with the conclusion 

of Sakata et al. (2010) that the dimerization rate of Gly is the greatest at pH 9.8 because 

of the presence of a Gly zwitterion and anion in equal molar fractions (Fig. 3.6). 

Generally, for similar pH ranges, the k1 values are lower for reactions with metal ions 

than those without metal ions (Fig. 3.5a). However, the values for reactions with Cu2+ 

(pH 9.8) are 1.2 times higher than those without metal ions (Fig. 3.5a). 

The hydrolysis rate constants of GlyGly (k−1) have similar values in most cases 

(Table 3.3), and the formation rate constants of DKP from GlyGly (k2) are roughly 

similar for the different pH values (Table 3.3). On the other hand, the k2 values for the 

reactions with metal ions are one order of magnitude lower than those without metal 

ions (Fig. 3.5c). Hydrolysis rate constants of DKP (k−2) with metal ions are one to three 

orders of magnitude lower than those without metal ions (Table 3.3). However, the k−2 

values for reactions with metal ions under basic conditions (pH 9.8–9.9) are not 

estimated because of the very low yields of DKP and the large calculation errors. Thus, 

the k2 and k−2 values for reactions with Ca2+ under basic conditions (pH 9.8–9.9) were 

not estimated, because the concentration of DKP was below the detection limit. The 

formation rate constant of GlyGlyGly (k3) was only calculated from the reactions with 
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Cu2+. The value of k3 in neutral conditions (pH 7.1) is 1.5–2 times higher than that in 

acidic (pH 3.4) and basic (pH 9.8) conditions. 

 

Table 3.3. Rate constants (k1, k2, k−1, k−2, k3, and k−3) for solutions without and with 

metal ions (Ca2+, Mg2+, Zn2+, Fe2+, Mn2+, and Cu2+) at different pH conditions and 

heating times at 140°C. 

 k1 (l mol−1 

s−1) 

k−1 (s−1) k2 (s−1) k−2 (s−1) k3 (l mol−1 

s−1) 

k−3 (s−1) 

No metal ion (pH 2.3) 6.2 × 10−8 3.8 × 10−6 2.7 × 10−4 1.3 × 10−3 - - 

Ca2+ (pH 2.3) 5.5 × 10−8 3.7 × 10−6 5.5 × 10−5 1.8 × 10−4 - - 

Mg2+ (pH 2.3) 4.9 × 10−8 2.8 × 10−6 6.3 × 10−6 1.5 × 10−5 - - 

Zn2+ (pH 2.3) 6.4 × 10−8 5.3 × 10−6 2.9 × 10−5 9.9 × 10−5 - - 

Fe2+ (pH 2.3) 7.2 × 10−8 4.7 × 10−6 2.8 × 10−7 1.1 × 10−6 - - 

Mn2+ (pH 2.2) 4.1 × 10−8 2.7 × 10−6 1.4 × 10−6 3.8 × 10−6 - - 

Cu2+ (pH 3.4) 6.6 × 10−8 9.3 × 10−6 4.2 × 10−6 9.6 × 10−7 6.7 × 10−7 3.5 × 10−8 

       

No metal ion (pH 6.0) 4.3 × 10−8 4.0 × 10−6 1.3 × 10−3 1.0 × 10−3 - - 

Ca2+ (pH 5.7) 1.7 × 10−8 2.4 × 10−6 6.2 × 10−5 5.9 × 10−5 - - 

Mg2+ (pH 5.7) 2.9 × 10−8 6.1 × 10−6 4.8 × 10−5 3.4 × 10−5 - - 

Zn2+ (pH 4.5) 3.7 × 10−8 7.9 × 10−6 1.3 × 10−5 9.8 × 10−6 - - 

Fe2+ (pH 5.0) 2.0 × 10−8 1.9 × 10−6 4.1 × 10−5 4.6 × 10−5 - - 

Mn2+ (pH 5.7) 1.4 × 10−8 2.5 × 10−6 8.1 × 10−6 5.9 × 10−6 - - 

Cu2+ (pH 7.1) 5.5 × 10−8 7.1 × 10−6 9.3 × 10−5 9.0 × 10−5 1.4 × 10−6 1.3 × 10−7 

       

No metal ion (pH 9.8) 8.3 × 10−7 1.4 × 10−5 4.1 × 10−4 4.5 × 10−2 - - 

Ca2+ (pH 9.8) 6.2 × 10−7 1.4 × 10−5 - - - - 

Mg2+ (pH 9.9) 6.2 × 10−7 1.4 × 10−5 3.8 × 10−6 1.3 × 10−3 - - 

Zn2+ (pH 9.8) 4.8 × 10−7 7.3 × 10−6 2.0 × 10−7 9.8 × 10−6 - - 

Cu2+ (pH 9.8) 9.7 × 10−7 1.7 × 10−5 8.3 × 10−5 3.9 × 10−2 8.8 × 10−7 1.5 × 10−5 

 

 



Chapter 3. Effects of metal ions and pH on the formation and decomposition  
rates of di- and tri-peptides in aqueous solution 

 
 

69 

 

Fig. 3.5. Comparison of the rate constants (a) k1, (b) k−1, (c) k2, and (d) k−2 for solutions 

with or without metal ions at different pH conditions. 
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3.3.3. Stability of the Cu2+ complex and the SIPF reaction 

Eder and Rode (1994) proposed a scheme for the catalysis of the Salt Induced 

Peptide Fromation (SIPF) reaction by CuCl2. In this scheme, the hydrated CuCl2 binds 

one amino acid in the chelate form as well as a second amino acid in its protonated form 

only through the carbonyl oxygen. In the complex, the amino acids facilitate the 

nucleophilic attack of the chelated amino group nitrogen to the carboxyl carbon to form 

peptides (Eder and Rode, 1994). The Cu2+ complex is very stable compared to Ca2+, 

Mg2+, and Zn2+ complexes, as verified by Gibbs free energies; the distances between 

metal ions and the carbonyl oxygen of Gly; and ionic radii (Remko and Rode, 2006). 

Thus, the higher k1 values for Cu2+ under basic and neutral conditions in this study can 

be explained by the higher stability of the Cu2+ complex with Gly in the SIPF reaction. 

The Zn2+ complex is the second most stable, reflecting the relatively high yields of 

GlyGly (Fig. 3.2a). 

The lower k1 values for acidic and neutral conditions can be explained by the 

difference of chemical species of Gly at different pH conditions (Fig. 3.6; Sakata et al., 

2010). The dissociation of Gly in the aqueous solutions is independent of temperature 

(Sakata et al., 2010). For the chelation of the Cu2+ complex with Gly, a carboxylate 

anion and a lone pair of amino nitrogen of one Gly molecule need to bind with Cu2+. 

Basic conditions are ideal for chelation, because an anionic state of Gly (Gly−: NH2–

CH2–COO−) is present as well as a zwitterionic state (Gly±: NH3
+–CH2–COO−). Thus, 

the value of k1 for basic conditions with Cu2+ is very high. Although the chelation is 

possible because Gly± binds with Cu2+, in neutral conditions it is less effective because 

of the lack of Gly−. However, chelation is difficult under acidic conditions, because Gly 

is positively charged (Gly+: NH3
+–CH2–COOH), lowering the k1 value for acidic 

conditions with Cu2+ compared to conditions without metal ions. 
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Fig. 3.6. Molar fractions of different dissociation states of Gly as a function of pH at 25 

and 140°C. They were determined based on published dissociation constants (Sakata et 

al., 2010; on the basis of Marshall and Franck, 1981; Goldberg et al., 2002; Clarke et al., 

2005). 

 

Similarly, the formation of GlyGlyGly under conditions containing Cu2+ (Fig. 3.4) 

seems to be related to the steric structure of Cu2+ complexes with GlyGly (Kaneda and 

Martell, 1975; Gergely and Nagypál, 1976; Kittl and Rode, 1981; Eder and Rode, 1994; 

Remko and Rode, 2006). Figure 3.7 shows the molar fractions of the seven chemical 

species of Cu2+ complexes with GlyGly with respect to pH (Kittl and Rode, 1981). Kittl 

and Rode (1981) determined the formation constants for complexes between Cu2+ and 

GlyGly using potentiometric titration. The concentration of Cu2+ and GlyGly were 1 

and 5 mM, respectively. The systems were titrated with a 50 mM NaOH solution. All 

investigations were carried under nitrogen atmosphere at 20ºC and an ionic strength of 

200 mM KCl. The systems contained all theoretically possible chemical species of the 

1:1 and 1:2 complexes with Cu2+ and GlyGly. For the calculation of the formation 

constants, a Fortran computer program was used. At pH >7.5, the most abundant 

species is a Cu2+ complex with two GlyGly with which another Gly molecule can easily 

react to yield GlyGlyGly. It is proposed that NaCl also promotes the polymerization of 

amino acids with Cu2+ and increases the formation of di- and tri-peptides (Eder and 

Rode, 1994; Rode and Schwendinger 1990). Therefore, the yields of di- and tri-peptides 
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could be higher under subseafloor conditions because of the high concentration of NaCl. 

 

 
Fig. 3.7. Molar fractions of different Cu2+-chelates to GlyGly as a function of pH at a 

metal–peptide ratio of 1:5 at 20°C. “L” indicates a ligand of GlyGly (revised Kittl and 

Rode, 1981). 

 

Hydrothermal fluids are highly reduced and mainly contain Cu+ species. Sander 

and Koschinsky (2011) indicated that dissolved copper species bind as Cu2+ with 

organic compounds in hydrothermal fluids once the redox conditions become oxic 

because of the mixing of hydrothermal fluids and seawater. Cu+ may be less active to 
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form complexes with amino acids than Cu2+, because the electrons in Cu+ occupy all the 

d orbitals unlike Cu2+. However, Leal and van den Berg (1998) proposed that Cu+ forms 

strong complexes with thiols such as glutathione. Cu+ may also effectively polymerize 

amino acids by forming complexes with amino acids. Mixing of hydrothermal fluids 

and seawater inevitably occurs; therefore, it is important to consider the effect of Cu2+. 

 

3.3.4. Inhibition of peptide formation by metal ions 

This study has demonstrated that most of the metal ions decrease the dimerization 

rates of Gly and GlyGly yields, except for Cu2+ and Zn2+ in basic solutions (Figs. 3.2 

and 3.5a). In the solutions containing Fe2+ that had precipitate of red iron oxides after 

heating, the oxidation of iron may affect the Gly reactions. Apparently, most of the 

metal ions promote the hydrolysis of peptides rather than the synthesis. The results are 

consistent with previous studies (Cronin et al., 1971). 

In addition, metal ions may inhibit peptide synthesis by chelation with Gly and 

GlyGly molecules. The lower formation rates of DKP (k2) with metal ions than those 

without metal ions are attributed to the stabilization by chelation with GlyGly (Cronin 

et al., 1971; Kittl and Rode, 1981; Rainer and Rode, 1982). In a metal–GlyGly complex, 

the amino or carboxylic group is bound to the metal ion; however, the nucleophilic 

attack to form DKP is inhibited, although DKP has C=O bonds that can coordinate with 

metal ions. Complexes with DKP and metal ions have positive charge regardless of pH, 

because DKP does not dissociate in aqueous solution. Therefore, the hydration of DKP 

by H+ is not favored in acidic (pH 2.2–3.4) and mildly acidic or neutral (pH 4.3–7.1) 

conditions because of the Coulomb repulsion between the complexes and H+, which is 

consistent with our results (Fig. 3.2 and Table 3.2). Consequently, prebiotic elongation 

of peptides is not expected under the experimental conditions of this study. Our 

conclusion that deep-sea hydrothermal systems are not favorable environments for even 

simple peptides is in good agreement with Cleaves et al. (2009).  

Most previous studies focused on the degree of elongation of the peptide bonds 

(e.g., Lahav et al., 1978; Lawless and Levi, 1979; Rode, 1999; Bujdák and Rode, 2003). 

However, it is unclear whether the elongation of the peptide bonds is critical to 

origin-of-life reactions (Cleaves et al., 2009). Nonetheless, it was proposed that GlyGly 

promotes the polymerization of amino acids (Plankensteiner et al., 2002). Metal–amino 

acid or metal–short peptide complexes have various functions, such as self-organization 
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(e.g., Ohata et al., 1995; 1996), self-recombination (e.g., Mizutani et al., 1998), and 

catalysis (e.g., Weckhuysen et al., 1996), which could contribute to origin-of-life 

reactions. In addition, the complexes have high mobility in the oceans without 

precipitation of metallic ions as minerals (e.g., Toner et al., 2009; Sander and 

Koschinsky, 2011) and might have facilitated primitive biological functions in the 

Earth's early oceans. 

 

3.4. Conclusions 

In this study, the formation and decomposition rates of diglycine (GlyGly and 

DKP) and triglycine (GlyGlyGly) were estimated by heating aqueous solutions of 

glycine at 140°C in the presence of metal ions (Ca2+, Mg2+, Zn2+, Fe2+, Mn2+, and Cu2+) 

under various pH conditions. High-pH aqueous solutions with Cu2+ are the most 

favorable for prebiotic peptide formation, and triglycine is only produced under these 

conditions. This observation expands the potential for chemical evolution to new types 

of deep-sea hydrothermal environments such as the Lost City or south Chamorro sea 

mount that eruct low-temperature, high-pH fluids because of serpentinization. On the 

other hand, the other metal ions that we examined promote the hydrolysis rather than 

the oligomerization of peptides. The metal ions have different effects because of the 

stability of the complexes (Irving–Williams series) and the pH-dependent dissociation 

of the chelating amino acid ligands. The results do not support the traditional chemical 

evolution hypothesis that the oligomerization of amino acids led to the synthesis of 

proto-proteins (long peptides); however, the formation of short peptides is sufficient to 

achieve biofunctionality, the next step in prebiotic chemistry. Finally, metal complexes 

with Cu2+ and amino acids or short peptides may have contributed in enzyme catalysis 

in the early oceans because of higher metal ion concentration. 
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4.1. Introduction 

Deep-sea hydrothermal systems have attracted attention of many scientists as a 

suitable environment for chemical evolution in the early Earth (e.g., Corliss, 1990; 

Holm, 1992; Yanagawa and Kobayashi, 1992; Macleod et al., 1994; Russell and Hall, 

1997; Russell, 2003; Holm and Andersson, 2005; Martin et al., 2008). A lot of 

experiments for abiotic synthesis of various organic molecules under the simulating 

hydrothermal conditions have been conducted (e.g., Ferris et al., 1978; Yanagawa et al., 

1984; Harada and Fox, 1964; Imai et al., 1999; Rode, 1999; Huber and Wächetershäuser, 

2003; Lambert, 2008; Lemke et al., 2009). In hydrothermal systems, seawater 

percolates into the deep oceanic crust and reacts with the surrounding rocks at high 

temperatures. As a result, hot and reduced fluids were eructed from hydrothermal vents 

(up to 400°C) (Tivey et al., 1995; Tivey, 2007). Water–rock interaction produces a 

broad range of pH and redox conditions in seafloor hydrothermal fluids (e.g., East 

Pacific Rise, Lucky Strike hydrothermal field, Rainbow plume, and Trans-Atlantic 

Geotraverse area), and might have controlled the prebiotic chemistry. In our previous 

studies, we evaluated the effects of pH and metal ions on polymerization of glycine in 

aqueous conditions without minerals or rocks. We proposed that basic solutions 

containing Cu2+ at 150°C is the best condition to polymerize amino acids (Sakata et al., 

2010; Sakata et al., in press). Effects of metal ions were less than those of pH and pH 

condition is critical aqueous condition for polymerization of amino acids. However, the 

yields of GlyGly and GlyGlyGly were 0.62 and 0.05 % after heating at 140°C and pH 

9.8 with Cu2+ (Sakata et al., in press). The other catalyst activations, such as pressure, 

condensation or presence of minerals and rocks, are necessary to promote 

polymerization of amino acids. 

It has proposed that the effects of catalysis of clay minerals to synthesis and 

polymerization of amino acids (e.g., Lahav et al., 1978; Lahav and White 1978; 

Ponnamperuma et al., 1982; Bujdák and Rode, 2003; Lambert, 2008; Marshall-Bowman 

et al., 2010). Surfaces of clay minerals are elementally charged in aqueous solution. As 

a result, amino acids are adsorbed on the surface of clay minerals and polymerization 

reactions are promoted. To date, the effects of silica, alumina, hectorite, and 

montmorillonite on the polymerization of amino acids were actively studied (e.g., 

Yoshino et al., 1971; Bujdák et al., 1997; Bujdák and Rode, 1999a; Bujdák and Rode, 

1999b; Bujdák and Rode, 2001; Bujdák and Rode, 2002; Bujdák and Rode, 2003). The 
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adsorption mechanisms of amino acids and clay minerals are also studied (Meng et al., 

2004; Parbhakar et al., 2007; Stievano et al., 2007; Gao et al., 2008; Lambert 2008; 

Kitadai et al., 2009). While, oceanic crust are mainly composed basalts and has been 

widely spread from the formation of the earth and has been noticed as one of the 

possible environments including the earliest ecosystems in the earth (Edwards et al., 

2012). Basalt might have catalyzed polymerization of amino acids. However, to date, 

the effects of basalt on the polymerization of amino acids have not been studied yet. 

High-pressure (~10-30 MPa) is also one of the most important environmental 

conditions under hydrothermal systems. To date, polymerization of amino acids 

simulating hydrothermal systems have been studied (e.g., Imai et al., 1999; Mitsuzawa 

and Yukawa, 2004). Imai et al. (1999) heated 100 mM Gly solution containing 10 mM 

CuCl2 at 250°C and 24.0 MPa using flow reactor and obtained hexa-glycine. Mitsuzawa 

and Yukawa (2004) heated 100 mM Gly solution at 200°C and 25.0 MPa for 25 minutes 

using flow reactor and obtained di-glycine. Polymerization of powdered amino acids 

under high-pressure conditions have been also studied (Ohara et al., 2007; Otake et al., 

2011). Ohara et al (2007) heated powdered glycine at 150°C and 100 MPa for 8 days 

and obtained hexa-glycine. Otake et al (2011) heated powdered glycine and alanine at 

250°C and 2.5-5.5 GPa for 24 hours and obtained hexa-glycine. Otake et al (2011) also 

proposed that stability of amino acids at 5.5 GPa are higher than those at 2.5GPa. It is 

prospect that pressure also catalyzes polymerization of amino acids in the aqueous 

conditions. However, the effects of pressure on polymerization of amino acids have not 

been studied systematically under the aqueous solution. 

In this study, systematic heating experiments of Gly solution containing powdered 

basalts under various pressure (10-35 MPa) to determine the effects of pressure and 

basalt on the formation of peptides.  

 

4.2. Methods 

Analytical grade Gly, GlyGly, and Glycylglycylglycine (GlyGlyGly) were 

obtained from the Peptide Institute. DKP was obtained from Tokyo Chemical Industry. 

We used mid ocean ridge basalt collected from North Pond at the 184.2 meter below sea 

floor (mbsf) on the western flank of the Mid-Ocean Ridge that composed relatively 

young (~8 Ma) subseafloor (~ 4000 meter water depth) basaltic crust. The basaltic 

sample was fresh basalt altered only by low-temperature (<20 °C) alteration by seawater 
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(Expedition 336 Scientists 2012).  

    Solutions of 100 mM Gly with pH 6.0 were prepared. Basaltic samples were 

poedered by stainless mortar. The surface areas of basaltic powder were measured by 

BET multipoint isotherm analysis (Flow Sorb III; Shimadzu) and the value was 0.33 ± 

0.01 (m2/g). Each Gly solution (~ 0.7-0.9 ml) and powdered basalt was placed in a 

heat-shrinkable teflon tube (~ 40 mm length and 8 mm in diameter) and sealed the sides 

with teflon rods (~ 10 mm length and 8 mm in diameter). The ratio by weight of Gly 

solution and basalt in the tubes was 10:1 and tubes were filled with samples. To seal the 

sides of heat-shrinkable tubes, heat gun were used with careful heating only sides of 

tubes and teflon rods. Finally, the solutions were inserted by high-pressure container 

heated in an electric oven at 100-200°C and 10-35 MPa within 12 hours (Fig. 3.1). For 

comparison, Gly solutions without basalts were heated at 200 °C, 35 MPa and 6 hours. 

Maximum temperature of this methods is 200 °C. Most samples were heated at 200 °C 

because except for basic fluids, hydrothermal fluids are < 400 °C. Temperature and 

pressure were contained within an accuracy of 3°C and 0.34 MPa. Heating experiments 

were run twice at each experimental condition. Before and after the experiment, the pH 

of the solutions was measured at 25°C with a pH meter (B-212; HORIBA). The changes 

in the pH before and after the experiments were <2.7.  

Each sample filtrated by filter syringe (0.2 µm) was diluted 10 times and analyzed 

by using a high-performance liquid chromatography (HPLC) system (ICA-2000; TOA 

DKK) equipped with a Jasco UV-2075 detector at a wavelength of 200 nm. A reversed 

phase-type HPLC column (Hydrosphere C18; YMC) was used at 37°C. A 10 mM 

C6H13SO3Na solution with pH 2.5 was used as eluent and adjusted using H3PO4 (Bujdák 

and Rode, 1999a) at a flow rate of 1.0 ml min−1. Gly, GlyGly, GlyGlyGly, and DKP 

were identified and quantified by comparing the observed peak retention times and peak 

areas, respectively, with those of standard compounds. The errors in the concentrations 

of Gly, GlyGly, GlyGlyGly, and DKP were estimated to be <3.0%. 
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Fig. 4.1. (a) Scheme of experimental apparatus for heating experiments. (b) Scheme of a 

high-pressure container. 

 

4.3. Results and Discussion 

4.3.1. Yields of GlyGly, DKP, and GlyGlyGly 

Figure 4.2 shows the chromatograms of the products obtained from the solutions 

after the hydrothermal reactions under the respective conditions. GlyGly, DKP and 

GlyGlyGly were produced under all conditions (Fig. 4.2), however GlyGlyGly detected 

after only first heating experiments. The relative abundances of GlyGly, DKP, and 

GlyGly increased with increasing heating time, while those of Gly were almost constant 

(Fig. 4.2).  
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Fig. 4.2. HPLC chromatograms before and after the hydrothermal reactions of glycine 

in aqueous solution at (a) 200°C and 35 MPa with basalts (b) 35 MPa for 6 hours with 

basalts (c) 200°C for 6 hours with basalts, and (d) 200°C, 35 MPa for 6 hours with or 

without basalts. STD shows standards for Gly, GlyGly, GlyGlyGly, and DKP. 

 

Fig. 4.3 and Table 4.1 summarize the yields of GlyGly and DKP. We conducted 

twice experiments for each experimental condition. Plots mean average values and 

maximum and minimum values are evaluated as errors. The concentrations of GlyGly 

and DKP increased with increasing heating time (Fig. 4.3 (a)). The concentration of 

GlyGly and DKP heated for 12 hours were slightly smaller than those heated for 6 

hours. Adsorption of Gly, GlyGly, DKP may be actively occur in the samples heated for 

12 hours. The yields of GlyGly and DKP was depend on temperature and those 

increased as temperature increased within 100-200 °C (Fig. 4.3 (b)). While, the yields 

of GlyGly and DKP did not depend on pressure and those were almost similar within 

10-35 MPa (Fig. 4.3 (c)). Phase transition of water does not occur under the 

experimental conditions in this study, therefore physical properties of water are constant 

and yields of GlyGly and DKP were not depend on pressure. The yield of GlyGly from 



Chapter 4. Effects of basalt, pressure, and temperature  
on the reactions of glycine in aqueous solution 

 

 
 

88 

solutions containing basalts was 2.6 times higher than those from solutions without 

basalts, while the yield of DKP from solutions containing basalts was 0.84 times lower 

than those without basalts (Table 4.1).  

 
Fig. 4.3. Concentrations of GlyGly, and DKP in the solutions during heating at (a) 

200°C and 35 MPa (b) 35 MPa for 6 hours, and (c) 200°C for 6 hours with basalt, 

respectively. Solid lines in (a) are the results of fitting to determine the rate constants. 
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Table 4.1. Yields of GlyGly and DKP in the solution during heating at 200°C and 35 

MPa for 6 hours with and without basalt, respectively. 

 GlyGly (mM) DKP (mM) 

Without basalt 0.25 (±0.02) 0.62 (±0.01) 

With Basalt 0.66 (±0.06) 0.52 (±0.04) 

 

4.3.2. Estimation of the reaction rate constants 

To analyze the experimental results, we need to consider the following reactions: 

Gly to GlyGly (second-order reaction; k1), GlyGly to DKP (first-order reaction; k2), 

GlyGly to Gly (first-order reaction; k–1), and DKP to GlyGly (first-order reaction; k–2) 

(Qian et al., 1993; Li and Brill, 2003), where k1, k−1, k2 and k−2 are the rate constants. 

The rate equations for these reactions can be written as: 

2
11 [Gly]2[GlyGly]2[Gly] kk

dt
d

−= −   (1) 

]GlyGly)[([DKP]]Gly[[GlyGly] 212
2

1 kkkk
dt
d

+−+= −−   (2) 

]DKP[]GlyGly[[DKP] 22 −−= kk
dt
d   (3) 

To obtain the rate constants, the above rate equations were fitted to the experimental 

results by the least-squares method using the numerical software Scilab. The results of 

fitting for the formation of GlyGly and DKP are shown in Figs. 4.3(a). The rate 

constants obtained in this study and the dimerization rate constant determined on the 

published Arrenius plots of k1 (Sakata et al., 2010) are shown in Table 4.2. The 

dimerization rate with basalt was 13 times higher than that without basalt. 

 

Table 4.2. Rate constants (k1, k2, k−1 and k−2) for solutions with basalt and dimerization 

reaction rate determined on the published Arrenius plots of k1 (Sakata et al., 2010) at at 

200 °C. 

 k1 (l mol−1 s−1) k−1 (s−1) k2 (s−1) k−2 (s−1) 

Without basalt 1.1 × 10-6 - - - 

With Basalt 1.4 × 10-5 3.8 × 10-3 2.1 × 10-4 4.8 × 10-3 
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4.3.3. Promotion of peptide bond formation by basalt 

Formation of GlyGly from solutions containing basalt was higher than those 

without basalt, while formation of DKP was similar regardless of presence of basalt 

(Table 4.1). Metal ions dissolved from basalts after heating experiments are low, for 

example, concentration of Na, K, Ca, Fe and Al after heating experiments of basalt 

glass and seawater (initial seawater/rock mass ratio was 10) at 150°C and 500 bars (50 

MPa) were 5, 1200, 0.35, 0.06 ppm (Seyfried and Bisschoff, 1979). The catalyzing 

effects of basalt on polymerization of amino acids are caused by adsorption between 

basaltic surface and Gly.  

It was proposed that alumina is the most actively promote polymerization of 

glycine among alumina, silica, and hectorite (Bujdák and Rode, 1999b). The 

mechanisms of polymerization of amino acids by alumina were following (Fig. 4.4); the 

catalytically active sites are formed through the condensation reactions of hydroxyl 

groups bound to the neighboring aluminum atoms (Fig. 4.4 (a)), carboxylic groups are 

attracted to surface of alumina and form Al-OCO bonds (Fig. 4.4 (b)), and finally 

peptide bonds are formed through nucleophilic reaction by positively charged amino 

groups (NH3
+) (Fig. 4.4 (c)) (Bujdák and Rode, 1999d). The catalytic effects of alumina 

are (1) the removal of intramolecular interaction between –COO- and –NH3
+ groups 

within amino acid molecules (2) increasing of the electrophilicity of carbonyl carbon in 

the amino acids (Bujdák and Rode, 1999b).  
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Fig. 4.4. Interaction of alumina and amino acids (zwitterions) leading to peptide bond 

formation. (a) The formation of catalytically active sited on alumina surface. (b) The 

activation of functional groups of amino acids at alumina surface. (c) Assumed 

mechanism of peptide bond formation on alumina surface. (Modified from Bujdák and 

Rode, 1999b). 

 

In addition to alumina surface, the surface of silica, titania (TiO2), and kaolinite 

surface also adsorb carboxylic groups of amino acids through the interaction between 

Si-O-, Ti4+, and S-OH2 (Collins et al., 1988; Ikhsan et al., 2004; Qiu and Barteau, 2007; 

Lambert 2008). Basalt also contain silica, alumina, and TiO2, therefore these adsorption 

between amino acids and these minerals probably catalyze polymerization of amino 

acids. Chimneys at hydrothermal systems contain much of sulfur oxide and this sulfur 

also may promote polymerization of amino acids. Basalt composes the oceanic crusts 

and widely prevails under the subseafloor. The uppermost about 500 m of basaltic 
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oceanic crust is permeable and fluid flow is focused in specific areas at the contacts of 

lava flows or in brecciated zones (Fisher 2005). The flow paths beneath the 

hydrothermal vents are probably one of the most suitable environments for 

polymerization of amino acids. In these flow paths, the amino acids can adsorb to the 

surface of basalts and prevent dilution until hydrothermal fluids eruct at hydrothermal 

vents. In addition to amino acids, hydrogen cyanide (HCN) can be formed from CO and 

NH3 in the basement environments (Holm and Neubeck, 2009). HCN is suspected 

precursor for abiotic synthesis of organic matters. HCN are reactive and easily react to 

formamide (Saladino et al., 2012). Silica, TiO2, iron sulfur minerals also promotes 

synthesis of amino acids and nucleobases from formamide (Saladino et al., 2012). Both 

of amino acids and nucleobases might have been syntheszed and polymerized in the 

basement environments. At the present days, in these areas, sea water oxidizes basaltic 

crust and it has been estimated that these interaction effects on the microbial ecosystems 

(Bach and Edwards, 2003; Edwards et al., 2005). Chemical reaction between basalts 

and sea water release energy for supporting chemosynthetic microbes. Oceanic crust is 

the largest potential habitat in the earth and may support a significant fraction of total 

biomass (Edwards et al., 2005). In the primitive earth, abundant ecosystems might have 

prevailed under the hydrothermal systems. 

 

4.4. Conclusion 

We studied the effects of basalts, pressure, and temperature on the reaction of Gly. 

The yields of GlyGly and DKP was depend on temperature and those increased as 

temperature increased within 100-200 °C. The yields of GlyGly and DKP were similar 

at 10-35 MPa and formation of GlyGly and DKP did not depend on pressure. While, 

basalts promoted the formation of GlyGly and the yields of GlyGly with basalt were 2.6 

times larger than those without basalt. The dimerization rate with basalt was 13 times 

higher than that without basalt. These catalytic effects of basalts result from the removal 

of intramolecular interaction between –COO- and –NH3
+ groups within amino acid 

molecules and increasing of the electrophilicity of carbonyl carbon in the amino acids. 

It is difficult to promote the polymerization of amino acids in the aqueous solution and 

interaction of amino acids and surface of solids are one of the prospective catalysts. The 

flow paths beneath the hydrothermal vents flowing hydrothermal fluids around 200°C 

are probably one of the most suitable environments for polymerization of amino acids.  
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A.1. Introduction 

The majority of habitable environments in the earth are dark biosphere separated 

from sunlight. It is estimated that about one third of all biomass, and about three forth of 

all prokaryotic cells on the earth are in the sediments buried in oceanic subsurface 

(Whitman et al., 1998). In 1979, the hydrothermal system and the ecosystems supported 

by hydrothermal fluids were discovered around Galapagos Rift (Corliss et al., 1979). In 

1994, it was first proposed that microorganisms exist in deep sea sediment cores from 

several hundreds of meters obtained during the Ocean Drilling Program (Parkes et al., 

1994). In addition, basaltic ocean crust has been focused as a new deep submarine 

biosphere (Edwards and Bach, 2003). The uppermost about 500 m of basaltic oceanic 

crust is permeable and fluid flow is focused in specific areas at the contacts of lava 

flows or in brecciated zones (Fisher 2005). In these areas, sea water oxidizes young 

basaltic crust (< 10 Ma) and it has been estimated that this interaction effects on the 

microbial ecosystems (Edwards and Bach 2003; Edwards et al., 2005).  

Chemical reaction between basalts and sea water release energy for supporting 

chemosynthetic microbes. Oceanic crust beneath the sediment is the largest potential 

habitat in the earth and may support a significant fraction of total biomass (Edwards et 

al., 2005). However the biosphere of basaltic oceanic crust has been poorly understood 

because of difficulty to access and return the samples.  

Oceanic crust has been widely spread from the formation of the earth and has 

been noticed as one of the possible environments including the earliest ecosystems in 

the earth (Edwards et al., 2012). Understanding about ecosystems in the basaltic oceanic 

crust, such as metabolic systems, activity, abundance, derivation of microbes living 

there, leads to understanding origin of life or habitability in the primitive terrestrial and 

extraterrestrial deep biosphere.  

In the past, Juan de Fuca Ridge in the eastern Pacific has been mainly studied 

because Juan de Fuca Ridge was an only site to observe clearly the water-rock reactions 

in basaltic crusts (e.g., Wheat et al., 2000; Fisher et al., 2003). In these basaltic oceanic 

crust, iron cycling, both oxidation and reduction of iron, supports metabolic activity in 

basalts, however, the microorganisms responsible for Fe oxidation on basalts are not 

clear (Orcutt et al., 2011). The colonization of basalts collected from subseafloor pillow 

basalts achieved detection of iron oxidation bacteria (Edwards et al., 2003; Mason et al., 

2007; Singer et al., 2011). Edwards et al. (2003) isolated and cultured iron-oxidizing 
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bacteria from the surfaces of weathered rock and sediments collected in the Juan de 

Fuca area. Fisk et al (1998) proposed that microbes promote the weathering of basaltic 

glass by morphologic observation and chemical analysis in the microscopic region of 

basaltic glass collected from Atlantic, Pacific and Indian Oceans. In addition, Fisk et al., 

(1998) estimated that bacteria have colonized much of the upper oceanic crust, which 

has a volume estimated at 1018 cubic meters. Lever et al. (2013) first measured carbon 

isotope of organic carbon of basalts collected from the eastern flank of the Juan de Fuca 

Ridge and confirmed the coexistence of methane- and sulfur-cycling microbes in the 

basalts. These studies have shown that microbes probably prevail in the oceanic crust 

and promote weathering of basaltic crust. However, it is not unclear where deep-seated 

microbial communities come from, what the nature of the microbial communities 

harbored in young ridge flanks is, and what their role in the ocean crust weathering is 

(Modified from Edwards et al., 2012). It is attractive study to examine microbial 

activity in the hydrologically active, young ridge-flank crust being undergoing 

progressive oxidative alteration. 

On September to November 2011, North Pond on the western flank of the 

Mid-Atlantic Ridge was explored for revealing the deep biosphere by JOIDES 

Resolution during Integrated Ocean Drilling Program Expedition 336. The 

characteristics of North Pond are oligotrophic, low-temperature (10-15°C), and fast 

seawater circulation (2-3 m/hr) (Langseth et al., 1984). North Pond is a good target for 

comparison to Juan de Fuca, which is high-temperature (~60°C), and slow seawater 

circulation (1400 ~ 1500 kg/day) (Wheat et al., 2003). In this study, detection of organic 

carbon and carbon isotopic analyses of basalts and sediments collected from North Pond 

were conducted for understanding the origin and formation of carbon compounds in 

relation to possible microbial activity in the basaltic crust. 

 

A.2. Methods 

A.2.1. Sampling site 

Sediment and basaltic samples were collected from North Pond on the western 

flank of the Mid-Atlantic Ridge that composed relatively young (~ 8 Ma) basaltic crust 

and has sediment accumulation (50-300 m) in the valley between step rocky outcrops of 

oceanic crust (Fig. A.1). North Pond was investigated for several decades (e.g., 

Hyndman et al., 1984; Detrick et al., 1988; Becker et al., 1998; Gable et al., 1992). 
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Langseth et al. (1984) reported the sea water circulation from southeast to northwest in 

the basaltic crust at North Pond (Fig. A.2). We analyzed 29 basaltic samples and 47 

sediment samples from several depth at each cores collected by Integrated Ocean 

Drilling Program (IODP) Expedition 336.  

 
Fig. A.1. (a) Location map of North Pond on the western flank of the Mid-Atlantic 

Ridge. (b) Bathymetric map of North Pond. DSDP Hole 395A, ODP Hole 1074A, and 

Sites U1382, U1383, and U1384 are shown (Modified from Edwards et al., 2012). 
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Fig. A.2. Pore-water flow and isotherms below North Pond, assuming laminar flow at a 

rate of about 1m/hr. (Langseth et al., 1984). 

 

A.2.2. Site summary 

Site U1382 

Hole U1382A was drilled at 22°45.353´N, 46°04.891´W in 4483 m water depth. 

The basement was recovered from 110 to 210 mbsf. In total, 32 m of core was 

recovered and recovery rates were form 15 to 63 %. The cores obtained from U1382A 

were divided into 8 lithologic units comprising numerous subunits. Major unit 

boundaries are defined by contacts between massive flows, pillow flows, and 

interlayered sedimentary units. Basalts are either aphyric or plagioclase-olivine-phyric 

and have < 3% vesicles. All of the volcanic rocks recovered from Hole U1382A are 

affected only by low-temperature alteration by seawater, manifesting as replacement of 

groundmass and phenocrysts, vesicle filling, glassy margin replacement, and vein 

formation with adjacent brown alteration halos. The extent alteration ranges up to 20%, 

with clay (smectite and celadonite) being the most abundant secondary phase, followed 

by Fe oxyhydrroxides and minor zeolites and carbonates. The recovered section has 

13-20 veins/m, with vein thickness being usually <0.2 mm. A sedimentary unit in 8R 

and 9R features a variety of clasts, including plutonic and mantle rocks. The peridotites 

are weakly serpentinized harzburgites and lherzolites with a protogranular texture. 
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Fig. A.3. Hole U1382A lithologic summary. Broad changes in lithology or primary 

igneous structure are illustrated with different colors in the sequence column (Modified 

from Edwards et al., 2012). 

 

Site U1383 

Hole U1383C was drilled at 22°48.1241´N, 46°03.1662´W in 4414 m water depth. 

The basement was recovered from 69.5 to 331.5 mbsf. In total, 50.3 m of core was 

recovered and recovery rates were 19.2%. Three major lithologic units were 

distinguished on the basis of primary texture and phenocryst abundance. From 69.5 to 

127 mbsf, the core consists of microcrystalline to fine-grained, sparsely 

plagioclase-phyric basalt with abundant glassy margins and numerous intervals of hard 

interflow limestone. From 127 to 164 mbsf, massive plagioclase-olivine-phyric basalts 

occur, occasionally hosting limestone (with and without basalt clasts) as fracture fill. 

Below 164 mbsf, glassy to variolitic to cryptocrystalline basalts (most likely pillow 

flows) predominate, and limestone is largely missing. Each of these three main 

lithologic units is divided into numerous subunits on the basis of hyaloclastite layers 
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and rare tectonic breccias. The overall abundance of glass is noticeably greater than that 

in Hole U1382A, and the extent of palagonization ranges from weak to moderate. 

Basalts are avesicular to sparsely vesicular and show vesicle fills of clay, zeolite 

(mainly phillipsite), calcium carbonate, and Fe oxyhydroxide. Brownish alteration halos 

commonly track veins filled with clay or carbonate and zeolite. Within unit 3, a 

gradational change from glassy to variolitic with abundant hyaloclastite layers, to more 

massive microcrystalline, and to fine-grained basalt with rare glassy margins can be 

observed. Althogh the hyaloclatites are noticeably palagonitized throughout the hole, 

the extent of background alteration appears to decrease downsection. Vein densities 

average 33 veins/m and increase somewhat downsection to 50 veins/m. Zeolite veins 

are abundant in the upper section, whereas carbonate veins predominate in the 

lowermost part. Sparse vesicles are filled with zeolite and clay. 

 

Fig. A.4. Hole U1383C lithologic summary, including major basalt lithologies, lava 

flows, and abundance of chilled margins, interflow sediments, hyaloclastites, and 

tectonic breccia, Broad changes in lithology or primary igneous structure are illustrated 

with different colors in the sequence column (Modified from Edwards et al., 2012). 
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Sediment and basement contact coring (Holes U1383D, U1383E, U1382B, and 

U1384A) 

In Hole U1383D, 44.3 m of sediments was cored and the lowermost 1 m was 

cored through basalt and limestone-cemented breccia (0.76 m of basement was 

recovered). At nearby Hole U1383E, 44.2 m of sediment and 1 m of basaltic basement 

was cored (0.3 m of basement was recovered). The basalts are aphyric and slightly to 

moderately altered. They are distinct from the uppermost basaltic flow that was cored in 

Hole U1383C and hence represent a different lithologic unit.  

In Hole U1382B, 90.0 m of sediments was cored and another 8.8 m was cored 

recovering a piece of basalt and countless millimeter to centimeter-sized pebbles of 

completely altered plutonic and ultramafic rocks at the basement/sediment interface. 

The rocks are interpreted to be part of the sedimentary breccia overlying the massive 

basalt of Unit 1 cored in Hole U1382A. 

In Hole U1384A, 93.5 m of sediments was cored and 0.58 m of basalt and 

limestone-cemented breccia was recovered. The basalt are aphyric and sparsely 

vesicular with glassy to variolitic to microcrystalline groundmass. They are between 3 

and 10 % altered and display brown alteration halos along clay veins and fractures. 

The sediments at all sites consistent of foraminifer nanofossil ooze with layers of 

foraminiferal sand. The bottom several meters of the sediments are brown and appear 

rich in clay. Sediments from Hole U1382B show moderately rounded rock fragments 

concentrated in layers or dispersed n the ooze. These fragments range from coarse sand 

to pebble in grain size and consist of serpentinized mantle peridotite, gabbro, troctolite, 

and basalt. The basement/sediment interface of U1382B also contains coarse sediment 

with predominantly serpentinite clasts, including soapstone and talc-tremolite schist. 

The occurrence of these rock fragments is consistent with the polymict sedimentary 

breccia recovered during basement drilling Hole U1382A. The deformed and 

metasomatized lithologies encountered in Hole U1382B corroborate the hypothesis that 

this material was transported to the Site U1382 area in North Pond by mass wasting 

events and that its source is an oceanic core complex, probably in the southern rift 

mountains. Layers of foraminiferal sand are abundant in all holes and many show 

erosional bases and normal-granded bedding, suggesting that they represent deposits of 

turbidity currents. 
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A.2.3. Sample preparation 

Site location 

At all Expedition 336 sites, GPS coordinates from a precruise site survey 

(Schmidt-Schierhorn et al., 2012) were used to position the R/V JOIDES Resolution on 

site. The only seismic system used during the cruise was the Syquest Bathy 2010 

CHIRP subbottom profiler, which was monitored on the approach to each site to 

confirm the seafloor depth. Once the vessel was positioned at a site, the thrusters were 

lowered and a positioning beacon was dropped to the seafloor. The dynamic positioning 

control of the vessel uses navigational input from the GPS and triangulation to the 

seafloor beacon, weighted by the estimated positional accuracy. The final hole position 

was the mean position calculated from the GPS data collected over the time that the 

hole was occupied. 

 

Drilling Operation 

The advanced position corer (APC), extended core barrel (XCB), and rotary core 

barrel (RCB) systems were used during Expedition 336. The APC system cuts soft 

sediment cores with minimal coring disturbance relative to other IODP coring systems. 

After the APC core barrel is lowered through the drill pipe and lands near the bit, the 

drill pipe is pressured up until the two shear pins that hold the inner barrel attached to 

the outer barrel fail. The inner barrel then advances into the formation and cuts the core. 

The driller can detect a successful cut, or “full stroke,” from the pressure gauge on the 

rig floor. The XCB system is deployed when the formation becomes too stiff for the 

APC system or when drilling harder substrate, such as chert. 

APC refusal is conventionally defined in two ways: (1) the piston fails to achieve 

a complete stroke (as determined from the pump pressure reading) because the 

formation is too hard or (2) excessive force (>60,000 lb; ~267 kN) is required to pull the 

core barrel out of the formation. When full or partial stroke can be achieved but 

excessive force cannot retrieve the barrel, the core barrel can be “drilled over,” that is, 

after the inner core barrel is successfully shot into the formation, the drill bit is 

advanced to total depth to free the APC barrel. When an APC core barrel achieves only 

a partial stroke, the lowermost portion of the core could be material that is “sucked” into 

the core barrel. Only standard steel core barrels were used during Expedition 336 coring 
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operations. Most APC/XCB cored intervals were ~9.5 m long, which is the length of a 

standard core barrel. 

The XCB system was used to advance the hole when APC refusal occurred at the 

sediment/basement contact. The XCB is a rotary system with a small cutting shoe 

extending below the large rotary APC/XCB bit. The smaller bit can cut a 

semi-indurated core with less torque and fluid circulation than the main bit and thus 

optimizes recovery. The XCB cutting shoe (bit) extends up to ~30.5 cm ahead of the 

main bit in soft sediments but retracts into the main bit if hard formations are 

encountered. 

The RCB system was deployed to core basement rocks. The RCB is a 

conventional rotary drilling system and requires a dedicated RCB bottom-hole assembly 

and a dedicated RCB drilling bit (outer diameter of 9 7/8 inch). 

 

IODP depth convention 

The methods and nomenclature for calculating sample depth in a hole have 

changed to be methodspecific, which will ensure that data acquisition, scale mapping, 

and composite-scale and splice construction are unequivocal. The primary scales are 

measured by the length of drill string (e.g., drilling depth below rig floor (DRF) and 

drilling depth below seafloor (DSF)), length of core recovered (e.g., core depth below 

seafloor (CSF) and core composite depth below seafloor (CCSF), and logging wireline 

(e.g., wireline log depth below rig floor (WRF) and wireline log depth below seafloor 

(WSF)). All units are in meters. Relationships between scales are either defined by 

protocol (such as the rules for computation of CSF from DSF), or they are defined on 

the basis of user-defined correlations (such as stratigraphic correlation of cores between 

holes to create a common CCSF scale from the CSF scale of each hole or for 

core-to-log correlation). The distinction in nomenclature should keep the user aware 

that a nominal depth value at two different scales usually does not refer to the exact 

same stratigraphic interval. Unless otherwise noted, all Expedition 336 core depths have 

been calculated as CSF Method A (CSF-A), and all downhole wireline depths have 

been calculated as WSF Method A (WSF-A). To more easily communicate shipboard 

results in this volume, all depths are reported as mbsf, except where otherwise noted. 
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Core handling 

Core handling and flow were adjusted to best meet the microbiological priorities 

of the expedition. Hard rock cores were immediately split into ~1.5 m long sections and 

taken to the splitting room, where they were emptied into sterilized split liners. Each 

split section was labeled every drilling operation and separations to 1.5 m long sections. 

For examples, cores labeled 2R3 means that this cores were collected at second drilling 

operation by RCB and the third shallowest 1.5 m long section, cores labeled 4H6 means 

that this cores were collected at forth drilling operation by APC and the sixth shallowest 

1.5 m long sections, and cores labeled 11X1 means that this cores were collected at 

eleventh drilling operation by XCB and the shallowest 1.5 m long section 

Immediate review by microbiologists and petrologists allowed hard rock 

microbiology samples to be selected and taken. These samples were photographed and 

then removed to the microbiology laboratory for processing. The normal hard rock core 

flow was then resumed, with the exception that the outer surfaces of whole-round core 

pieces of sufficient length were also digitally scanned. Fig. A.5 shows core handling of 

hard rocks (Expedition 336 Scientists 2012). After the shipboard physical properties 

measurements and core description, samples for personal studies were cut out and 

collected. 

For sediment cores, the core liner was marked to identify core sections and 

intensive whole-round samples for microbiology and interstitial water samples. Syringe 

samples were taken for headspace and microbiological analyses. The core sections 

remaining after whole-round sampling were taken inside, labeled, and moved to the 

core refrigerator, where oxygen concentration measurements were made with optodes 

and interstitial water samples were taken using Rhizon samplers. After collected 

samples for microbial, oxygen concentration, and interstitial water measurements, 

shipboard physical properties measurements and core description were conducted. Fig. 

A.6 shows core handling of sediments (Expedition 336 Scientists 2012). Finally, 

samples for personal studies were collected by ~ 10 cc syringe. 
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Fig. A.5. Hard rock core flow for physical properties measurements, Expedition 336. 

Approximate time steps are given per core section. WR = whole round samples, MBIO 

= means microbiology, GRA = gamma ray attenuation, MS = magnetic susceptibility, 

NGR = natural gamma radiation, MAD = moisture and density, A = archive half, and W 

= working half (Modified from Edwards et al., 2012).  
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Fig. A.6. Sediment core flow for physical properties measurements, Expedition 336. 

Approximate time steps are given per core section. WR = whole round samples, MBIO 

= means microbiology, GRA = gamma ray attenuation, MS = magnetic susceptibility, 

NGR = natural gamma radiation, MAD = moisture and density, A = archive half, and W 

= working half (Modified from Edwards et al., 2012). 
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Sampling sites for organic geochemical analysis of carbon 

From U1382A, 11 samples were collected including each lithology, massive flow, 

basalt flow, sedimentary breccia, and pillow lava (Figs. A.7 and A.8). Each samples was 

cut in a quarter of cylinder with 3 cm height (Fig. A.8).  

 

Fig. A.7. Hole U1382A lithologic summary and sampling points for analysis organic 

geochemical analysis in this study (Modified after Edwards et al., 2012).  
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Fig. A.8. Half-cut cores at Hole U1382A and sampling points for organic geochemical 

analysis in this study. (continued on the next page.) 
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Fig. A.8. (continued) 
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From U1383C, 29 samples were collected including each lithology, pillow lava, 

sheet glow, and pillow lava (Figs. A.9 and A.10). Each samples was also cut in a quarter 

of cylinder with 3 cm height (Fig. A.10).  

 

 
Fig. A.9. Hole U1383C lithologic summary and sampling points for analysis organic 

geochemical analysis in this study (Modified after Edwards et al., 2012). 
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Fig. A.10. Half-cut cores at Hole U1383C and sampling points for organic geochemical 

analysis in this study. (continued on the next page.) 
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Fig. A.10. (continued). 



Appendix. Carbon isotopic analyses of basalts and sediments in North Pond 
for research of deep subseafloor biosphere 

 
 

119 

 

Fig. A.10. (continued) 



Appendix. Carbon isotopic analyses of basalts and sediments in North Pond 
for research of deep subseafloor biosphere 

 
 

120 

From U1382B, U1383D, and U1384A, 16, 13, and 18 sediment samples were 

collected from several depths (Figs. A.11, A.12 and A.13). Each sample was collected 

by syringe and sample volume was about 10-20 cc. 



Appendix. Carbon isotopic analyses of basalts and sediments in North Pond 
for research of deep subseafloor biosphere 

 
 

121 

 
 

Fig. A.11. Half-cut cores at Hole U1382B and sampling points for organic geochemical 

analysis in this study. CC and WRND SAMPLES means core catcher and the areas 

where samples for microbial and interstitial water analysis were collected (continued on 

the next page.) 
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Fig. A.11. (continued). 
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Fig. A.11. (continued) 
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Fig. A.11. (continued). 
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Fig. A.12. Half-cut cores at Hole U1383D and sampling points for organic geochemical 

analysis in this study. CC and WRND SAMPLES means core catcher and the areas 

where samples for microbial and interstitial water analysis were collected (continued on 

the next page.) 
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Fig. A.12. (continued) 
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Fig. A.13. Half-cut cores at Hole U1384A and sampling points for organic geochemical 

analysis in this study. CC and WRND SAMPLES means core catcher and the areas 

where samples for microbial and interstitial water analysis were collected (continued on 

the next page.) 



Appendix. Carbon isotopic analyses of basalts and sediments in North Pond 
for research of deep subseafloor biosphere 

 
 

128 

 

Fig. A.13. (continued) 
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Fig. A.13. (continued) 
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Fig. A.13. (continued). 
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Preparation of samples for elemental and isotopic analysis 

HCl and HF were obtained from Wako Pure Chemical Industries. Procedures for 

preparing samples are shown in Fig. 4.2. Sediment samples were dried at 45°C and 6 M 

of HCl were added to remove carbonates. After HCl treatment, the sediment samples 

were dried at around 70 °C. While, for preparation of basaltic samples, surfaces of the 

basaltic samples were cut off more than 5.0 mm to prevent contaminations and inner 

basaltic samples were grounded into powders. Similar to the procedures for sediments, 

6 M of HCl were added to these basaltic samples to remove carbonates and these 

samples were dried at around 70 °C. To extract kerogens, parts of basaltic samples were 

treated with HCl and HF. 10 g of powdered basaltic samples were washed with 6 N of 

HCl more than 20 times until supernatant solutions were not yellow issued from iron 

elution. Samples washed with HCl were added 1N HCl/9N HF. Recovered acid 

insoluble matters were washed with deionized water (18.2 MΩ) until pH of supernatant 

solutions were neutral. Finally, insoluble matters were washed with methanol and dried 

at around 70 °C. 

 
Fig. A.14. Procedure for preparation of samples for elemental and isotopic analysis. (a) 

Preparation of sediment samples for analysis TC and δ13C (bulk). (b) Preparation of 

hard rock samples for analysis of TC, δ13C (bulk), TOC, δ13C (org), carbon contents 

(kerogen), and δ13C (kerogen). 
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A.2.4. Elemental and isotopic analysis 

All samples were analyzed by elemental analyzer (Flash EA 1112; Thermo Fisher 

Scientific K.K.)/isotope ratio mass spectrometer (Delta Plus Advantage; Thermo Fisher 

Scientific K.K.) (EA/IRMS) at Kochi Core Center. We analyzed about 10 and 50 mg of 

sediment and basaltic samples were analyzed to measure the carbon contents and δ13C 

of total carbon, respectively. While, we analyzed about 50 - 100 mg of basaltic samples 

treated by HCl and kerogen were analyzed to measure the carbon contents and δ13C. 

Each sample was contained into Sn capsules. Elemental and isotopic compositions were 

calibrated relative to sulfanilamide and L-alanine, respectively. The values are reported 

the conventional δ13C notation relative to the VPDB standard. The analytical error for 

determination of carbon contents was within 0.005 wt%. The precision of the δ13C was 

better than 0.1 ‰. 

Seven kerogen samples were analyzed by scanning electron microscopy/energy 

dispersive spectroscopy (SEM/EDS). These samples were then mounted on Al sample 

holders under low-vacuumed state. An accelerating voltage of 15.0 kV was used for 

acquisition of backscatter micrographs and EDS spectra. 

 

A.3. Results and Discussion 

A.3.1. Carbon isotopic analysis in the sediments 

TC value ranged 6 ~ 11 % for whole sediment samples. Similar depth profiles of 

TC were observed at the three sites (U1382B, U1383D, and U1384A) (Fig. A.15 (a)). 

At the depth of 0 ~ 40 mbsf, TC increased with depth and showed maximum value at 20 

~ 40 mbsf. At the depth of 40~ 90 mbsf, TC decreased with depth. δ13C (bulk) ranged 

−0.0400 ~ +1.93 ‰ for whole sediment samples (Fig. A.15 (b)). Depth profiles of δ13C 

(bulk) were very similar to those of TC. These depth profiles of TC and δ13C (bulk) 

appear to have inverse relation with the distributions of O2 concentration (Fig. A.16; 

Orcutt et al., 2013). Oxygen is being transported into the sediments from both the water 

column and from the fluids moving through underlying basement (Orcutt 

2013).  Oxygen is being consumed within the sediments at a high enough rate to make 

the middle of the sediments anoxic, but the resupply of oxygen at depth from basement 

fluids leads to an increase in concentrations towards basement. This may represent that 

oxidation decomposition of carbonates and organic carbon are inhibited at the middle of 

the sediments because this depth are anoxic environments. Therefore, δ13C (bulk) are 



Appendix. Carbon isotopic analyses of basalts and sediments in North Pond 
for research of deep subseafloor biosphere 

 
 

133 

high value at the middle of sediments because more carbonate remains in the sediments.  

 

 
Fig. A.15. Depth related profiles in (a) total carbon (TC) content and (b) δ13C (bulk) of 

sediments at Hole U1382B, U1383D, and U1384A.  

 

 
Fig. A.16. Profiles of concentration of oxygen in the sediments at Hole U1382B, 

U1383D, U1383E, and U1384A (Orcutt et al., 2013). 
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In addition, the depth profiles of TC and δ13C (bulk) also appear to have relation 

ship with the concentration of PO4, NO2, NO3, and NH4 in the pore water squeezed 

from sediments (Fig. A.17; Modified from Edwards et al., 2012). Value of NH4 should 

be treated with caution about the detection limits. Samples from Hole U1383D had a 

detection limit of 6 µM due to the dilution. Samples from Hole U1382B and U1384A 

had a detection limit of 1.5 µM (Edwards et al., 2012). The depth profile of TC is 

similar to that of nitrate. While, concentrations of NH4 are below detection limits below 

20 mbsf and 0 ~ 60 mbsf at Hole U1382B and U1384A, except for Hole U1383D. This 

may represent that microbes with nitrification, the process to produce nitrate from 

ammonium by nitrifier, are active in the sediment.  

 

 
Fig. A.17. Chemical analysis of PO4, nitrate, and NH4 in the pore water of sediments at 

Hole U1382B, U1383D, U1383E, and U1384A. Value of NH4 should be treated with 

caution about the detection limits. Samples from Hole U1383D had a detection limit of 

6 µM due to the dilution. Samples from Hole U1382B and U1384A had a detection 

limit of 1.5 µM (Modified after Edwards et al., 2012). 

 

A.3.2. Carbon isotopic analysis and elemental analysis in the basalts 

TC (0.01 ~ 0.37 %) and TOC (0.01 ~ 0.03%) values of basalts were almost 

constant over the depth (Fig. A.18 (b)), while sediment breccias and carbonates 
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contained more carbon than basalts (3.56 ~ 11.9 %; Fig. A.18 (a)). δ13C (bulk) of 

basaltic samples ranged −21.8 ~ +2.69 ‰. Sediment breccias and carbonates had 

slightly larger δ13C (bulk), ranging −18.6 ~ +2.82 ‰. δ13C (org) of basalts, sediment 

breccias, and carbonates showed similar value (~ −25 ‰) over the depth. δ13C 

(kerogen) were slihgtly smaller value (−30.4 ~ −27.6 ‰) than those of δ13C (org) (Table. 

A.1). This isotopic range appears to be comparable to the carbon isotopic compositions 

resulting from carbon fixation pathways with Calvin cycle (Deines, 1980). In addition, 

it has been reported that some Fe-oxidizing microbes fix CO2 utilizing Calvin cycle 

(Davis et al., 2010; Singer et al., 2010). The results may be reflected by the activities of 

Fe oxidizing bacteria at 70 ~ 315 mbsf. It was also revealed that condensation of sulfur 

and carbon in the extracted kerogen by SEM/EDS analysis. As a result, sulfur is 

concentrated in all kerogen samples (Fig. A.19). Sulfate reduction is one of the major 

metabolisms that can occur in the basalts (Bach and Edwards, 2003). Lever et al. (2013) 

confirmed the coexistence of methane- and sulfur-cycling microbes in the basalts 

collected from the eastern flank of the Juan de Fuca Ridge. They measured δ13C of total 

organic carbon of basalts and the δ13C values were corresponding to methane oxidizing 

archaea (δ13C = −28 ~ 26 ‰) and sulfate reducer (δ13C ~ −35 ‰). In this study, δ13C 

values are similar to those measured by Lever (2013). In addition, δ13C values were 

lower as depth is deeper at both of U1382A and U1383C. Therefore, methane- and 

sulfur-cycling microbes may be also coexistence in basalts of North Pond. 

Sulfur-cycling microbes may be more prevail at the deeper depth of oceanic crust 

because redox environments in the basalt is more reductive environments at the deeper 

depth than those at shallower depth. This result may suggest that methane- and 

sulfur-cycling microbes universally prevail in the basaltic aquifer. 
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Fig. A.18. Depth-related profiles in (a) total carbon (TC) content, (b) TC (close up of 

Fig. A.18 (a) below 0.5 %), (c) total organic carbon (TOC) content, (d) δ13C (bulk), and 

(e) δ13C (organic residue) of hard rocks (basalts, carboantes, and sedimentary breccias) 

at U1382A and U1383C.  
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Fig. A.18. (continued). 
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Table A.1. Carbon contents of kerogen samples extracted from basaltic samples at Hole 

U1382A and U1383C. 

U1382A 

Depth (mbsf) Carbon contents (%) δ13C (kerogen) (‰) 

124.50 31.72 (±8.52) −27.63 (±0.66) 

144.54 30.61 −29.87 

173.03 8.04 (±2.33) −29.48 (±0.52) 

201.55 8.54 (±0.39) −30.44 (±0.26) 

U1383C 

193.49 2.86 (±0.19) −29.72 (±0.46) 

303.89 21.21 (±0.39) −29.42 (±0.94) 

 

 
Fig. A.19. Elemental mapping of kerogen extracted from basalts collected from 124.5 

and 201.6 mbsf at U1382A and 303.9 mbsf at U1383C, respectively. 
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A.4. Conclusion 

In this study, we detected organic carbon and analyzed carbon isotope of basalts 

and sediments collected from North Pond for understanding the origin and formation of 

carbon compounds in relation to possible microbial activity in the basaltic crust. TC 

value ranged 6 ~ 11 % for whole sediment samples. Depth profiles of δ13C (bulk) of 

sediments were very similar to those of TC. These depth profiles of TC and δ13C (bulk) 

appear to have inverse relation ship with the distributions of O2 concentration. This may 

represent that oxidation decomposition of carbonates and organic carbon are inhibited at 

the middle of the sediments because this depth are anoxic environments. Therefore, 

δ13C (bulk) are high value at the middle of sediments because more carbonate remains 

in the sediments. In addition, the depth profiles of TC and δ13C (bulk) of sediments also 

appear to have a relation with the concentration of PO4, NO2, NO3, and NH4 in the pore 

water squeezed from sediments. The depth profile of TC is similar to that of nitrate. 

While, concentrations of NH4 are below detection limits below 20 mbsf and 0 ~ 60 

mbsf at Hole U1382B and U1384A, except for Hole U1383D. This may represent that 

microbes with nitrification, the process to produce nitrate from ammonium by nitrifier, 

are active in the sediment.  

TC (0.01 ~ 0.37 %) and TOC (0.01 ~ 0.03%) values of basalts were almost 

constant over the depth, while sediment breccias and carbonates contained more carbon 

than basalts (3.56 ~ 11.9 %). δ13C (bulk) of basalts ranged −21.8 ~ +2.69 ‰. Sediment 

breccias and carbonates had larger δ13C (bulk), ranging −18.6 ~ +2.82 ‰. δ13C (org) of 

hard rocks showed similar value (~ −25 ‰) over the depth, except for δ13C values were 

lower as depth is deeper. It was also revealed that condensation of sulfur and carbon in 

the extracted kerogen by SEM/EDS analysis. Therefore, methane- and sulfur-cycling 

microbes may be also coexistence in basalts of North Pond. Sulfur-cycling microbes 

may be more prevail at the deeper depth of oceanic crust because redox environments in 

the basalt is more reductive environments at the deeper depth than those at shallower 

depth. This result may suggest that methane- and sulfur-cycling microbes universally 

prevail in the basaltic aquifer. 
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In chapter 2, the effects of pH and temperature on the dimerization rate of 

di-peptides. The dimerization rate significantly changed with pH and reached a 

maximum at about pH 9.8. Since Gly has three dissociation states (Gly+, Gly±, and 

Gly−), the dimerization of Gly can be separated into reactions for each dissociation state. 

The rates decreased in the order of Gly± + Gly− → GlyGly (fast), Gly− + Gly− → 

GlyGly (medium), and Gly± + Gly± → GlyGly (slow), and the rate constants differed by 

as much as a factor of 98. The dimerization rate became greatest at pH 9.8 because the 

fractions of Gly± and Gly– are approximately equal at this pH. The revealed relationship 

between pH, dissociation state, polymerization rate, and temperature seems to be useful 

for the evaluation of favorable conditions for chemical evolution of life. Based on these 

results and previous reports on the stability of amino acids under hydrothermal 

conditions, we determined that Gly dimerizes most efficiently under alkaline pH (~9.8) 

at about 150 °C. 

In chapter 3, the effects of metal ions on the formation of di- and tri- peptides in 

the aqueous solutions were evaluated. As a result, high-pH aqueous solutions with Cu2+ 

are the most favorable for prebiotic peptide formation, and triglycine is only produced 

under these conditions. This observation expands the potential for chemical evolution to 

new types of deep-sea hydrothermal environments such as the Lost City or South 

Chamorro sea mount that eruct low-temperature, high-pH fluids because of 

serpentinization. Metal–amino acid or metal–short peptide complexes have various 

functions, such as self-organization, self-recombination, and catalysis, which could 

contribute to origin-of-life reactions. In addition, the complexes have high mobility in 

the oceans without precipitation of metallic ions and might have facilitated primitive 

biological functions in the Earth's early oceans. 

    In chapter 4, the effects of basalt, pressure, and temperature on the reaction of Gly 

in the aqueous solutions were evaluated. The yields of GlyGly and DKP depended on 

temperature had maximum at 200 °C. Formation of GlyGly and DKP did not depend on 

pressure. On the other hand, the yield of GlyGly from solutions containing basalt was 

2.6 times higher than those from solutions without basalt. The dimerization rate with 

basalt was 13 times higher than that without basalt. These catalytic effects of basalt 

result from the removal of intramolecular interaction between –COO- and –NH3
+ groups 

within amino acid molecules and increasing of the electrophilicity of carbonyl carbon in 

the amino acids. It is difficult to promote the polymerization of amino acids in the 
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aqueous solution and interaction of amino acids and basaltic surfaces are one of the 

prospective catalysts at hydrothermal systems. The flow paths beneath the hydrothermal 

vents are probably one of the most suitable environments for polymerization of amino 

acids.  

In Appendix, we detected of organic carbon and analyzed carbon isotope of 

basalts and sediments collected from North Pond for understanding the origin and 

formation of carbon compounds in relation to possible microbial activity in the basaltic 

crust. As a result, methane- and sulfur-cycling microbes may be coexistence in basalts 

of North Pond and sulfur-cycling microbes may be more prevail at the deeper depth of 

oceanic crust. These results suggest that methane- and sulfur-cycling microbes 

universally prevail in the basaltic aquifer above 300 mbsf.  

As a result, the most suitable environments for polymerization of amino acids are 

the flow paths beneath the hydrothermal vents flowing hydrothermal fluids that is basic 

(~ pH 9.8), relatively cold (150 ~ 200 °C) and rich in Cu2+ (Fig. 5.1). In the present 

hydrothermal systems, deep underground of south Chammoro sea mount is the most 

suitable environments for chemical evolution of organics. 

 

 
Fig. 5.1. Schemes of the most suitable hydrothermal environment for chemical 

evolutions of organics. 
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    Water–rock interaction produces a broad range of pH and redox conditions in 

hydrothermal fluids. These dynamic changes of physical and chemical properties of 

water are attractive environments for synthesis of organics and deep subseafloor 

biospheres. These dynamic changes probably had major roles to synthesis organics 

having metabolic function, one of the most important biological functions because 

metabolic functions work out by transport of electron. In this Ph. D. thesis, we studied 

about closed systems. Polymerization of amino acids may be promoted under 

non-equilibrium conditions. Redox reactions of organics in the non-equilibrium 

conditions may be a key to resolve how organics having biofunction were formed. 

    At present earth, the water-rock reactions release energy for supporting 

metabolisms of chemosynthetic microbes. In addition, transition metals are erich in the 

hydrothermal systems and metal–amino acid or metal–short peptide complexes have 

various functions. The complexes have high mobility in the oceans without precipitation 

of metallic ions as minerals and might have facilitated primitive biological functions in 

the Earth's early oceans. Abundant ecosystems might have prevailed under the 

hydrothermal systems in the primitive earth after chemical evolution of organic 

materials leading to life.  

    Various lives prevail all over the present earth and detections of abiotic synthesis 

of organic materials in the earth may be more difficult than those in extraterrestrial 

planets. The aouthor prospect that the process of abiotic organic synthesis leading to 

origin of life and abundant ecosystems will be detected at extraterrestrial planets having 

interior oceans or hydrothermal systems, such as Europa or Enceladus, in the future. 
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