
Title The Kelvin-Helmholtz Instability in the
Protoplanetary Disk

Author(s) 長谷川, 幸彦

Citation 大阪大学, 2014, 博士論文

Version Type VoR

URL https://doi.org/10.18910/34032

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



The Kelvin-Helmholtz Instability in

the Protoplanetary Disk

Yukihiko Hasegawa

Department of Earth and Space Science

Graduate School of Science

Osaka University, Osaka, JAPAN

1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

hasegawa@vega.ess.sci.osaka-u.ac.jp

Submitted: February 2014





The Kelvin-Helmholtz Instability in

the Protoplanetary Disk

(原始惑星系円盤における

ケルビン・ヘルムホルツ不安定)

Yukihiko Hasegawa

Department of Earth and Space Science

Graduate School of Science

Osaka University, Osaka, JAPAN

1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan

hasegawa@vega.ess.sci.osaka-u.ac.jp

Submitted: February 2014





Abstract

Recently, many planetary systems have been found outside the solar system owing to the

progress of the observational technology. In order to explain the variety of planetary systems,

it is essential to interpret the formation processes of planets. In the core accretion model of

planet formation, planetesimals are assumed to form from dust particles in the protoplanetary

disk first, and then they grow into planets. However, there are many significant problems.

For example, due to gas drag in the protoplanetary disk, dust aggregates migrate inward and

fall onto the protostar before growing to planetesimals. This is the radial drift problem. As

one of the solutions to the problem, the gravitational instability (GI) of a settled dust layer

has been suggested. In this scenario, dust aggregates first settle toward the midplane of the

protoplanetary disk and make the dense layer of dust. Then, the dust layer becomes gravita-

tionally unstable, and the dust layer fragments into pieces to form planetesimals before dust

aggregates fall onto the protostar. However, as dust aggregates settle toward the midplane,

the vertical dust density gradient increases. As a result, vertical shear of the rotational ve-

locity in the dust layer becomes strong. This strong shear has the possibility to induce the

Kelvin-Helmholtz instability (KHI), and KHI possibly induces shear-driven turbulence. If the

turbulence is sufficiently strong, it prevents dust aggregates from settling toward the midplane,

and as a result, GI and the planetesimal formation is possibly suppressed. On the other hand,

if GI occurs before KHI, planetesimals will form. However, the condition that GI occurs before

KHI during sedimentation is not known. To know this condition, it is necessary to know the

dust density at the onset of KHI. Investigation for this condition is essential for understanding
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the processes of the planetesimal formation. Previous studies indicated that GI is expected to

occur if the dust abundance in the protoplanetary disk is sufficiently larger than that in the

minimum mass solar nebula (MMSN) model. However, these works were based on the model

with single-sized dust. Previous works did not take into account the appropriate distribution

of dust density that is consistent with their sedimentation and growth. Since property of KHI

strongly depends on the dust density profile, in order to understand correct outcome after

dust sedimentation correctly, it is important to consider appropriate density distribution with

sedimentation and growth of dust.

In this thesis, first, we reexamine the possibility of the onset of KHI during dust sedi-

mentation in the protoplanetary disk. We newly use the dust density distributions that are

consistent with their growth and sedimentation. To clarify the effect of each of growth and

sedimentation, we compare three cases: (1) the case with the single-sized dust without growth,

(2) the case with the multi-sized dust without growth, and (3) the case with the multi-sized

dust with growth. As the condition for KHI, we use the classical Richardson number criterion

by which KHI occurs when the Richardson number is less than 0.25. As a result, it is found

that, for the cases without dust growth, GI tends to occur before the onset of KHI if the dust

abundance is 660 times (for the single-sized dust) or 50 times (for the multi-sized dust) larger

than that in the MMSN model. This result shows that the dust abundance required for GI

of the multi-sized dust is much smaller than that of the single-sized dust. The reason is that

the vertical gradient of the dust density becomes more gradual as a result of the continuous

size distribution. In the case with dust growth, however, it is found that KHI tends to occur

before GI even in the case with large dust abundance with continuous size distribution. This

qualitative change is found to originate from the change of gas drag law from Epstein’s law to

Stokes’ law owing to dust growth.

In the above investigation, we used the classical Richardson number criterion (RNC) with

a constant critical value, 0.25. However, this critical value, 0.25, is based on the case of

the incompressible, inviscid and one component fluid with the laminar flow without rotation.



Thus, it is indicated that, for general cases in the protoplanetary disk, the classical RNC whose

critical value is 0.25 is not ensured to use. Thus, in the second part of this thesis, we directly

perform the linear stability analysis for KHI using the dust density distribution consistent with

dust sedimentation. As a result, we derived a condition in terms of the critical dust density

required for GI before KHI. By comparing the condition for the onset of KHI estimated by

the linear stability analysis with that estimated by the classical RNC, we discuss the validity

of the classical RNC. We find that the condition estimated from the linear stability analysis

agrees well with that estimated by the classical RNC within a factor of 2 in critical density. In

the case without growth, it is found that the classical RNC tends to be more applicable in the

case with the multi-sized dust than in the case with the single-sized dust. The classical RNC

for the case with dust growth is still the open question for future work.

In conclusion, it is found that KHI tends to occur before GI even in the case with large dust

abundance during sedimentation of growing dust aggregates in the protoplanetary disk. This

means that small dust aggregates becomes to be unstable for KHI during their sedimentation

at least once. We discuss the possible process after KHI. When dust aggregates have larger

collisional velocities owing to the shear-driven turbulence than owing to sedimentation and

radial drift, dust aggregates have the possibility to grow quickly or fragment. To clarify this

possibility, we must take account of dust-dust collisions with shear-driven turbulence induced

by KHI in future work.
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Chapter 1

Introduction

Many planetary systems were found outside the solar system owing to the progress of the

observational technology (Mayor & Queloz 1995; Kalas et al. 2008; Marois et al. 2008; Doyle

et al. 2011; Hirano et al. 2012; Carson et al. 2013). There are about one thousand confirmed

exoplanets and more than three thousand candidates. Many observed planetary systems show

different characteristics from the solar system. In order to explain the diversity of planetary

systems, it is essential to understand the formation processes of planets.

In this chapter, we review the theory of the planet formation, and the purpose of this thesis

is presented.

1.1 Theory of Planet Formation

1.1.1 Formation of the Protoplanetary Disk

It is considered that planets form in the protoplanetary disk. The protoplanetary disk is a thin

disk around a protostar and is considered to form from the interstellar medium as described

below.

The interstellar medium is composed of gas and µm-sized dust. The interstellar medium

1



2 CHAPTER 1. INTRODUCTION

is inhomogeneous, and dense regions of the interstellar gas (with number density & 103 cm−3,

mass & 104M⊙ and temperature ∼ 10 K) are called as molecular clouds. The molecular cloud

has clumpy structures, and particularly dense regions (with number density ∼ 105 cm−3 and

mass ∼ M⊙) are called as molecular cloud cores. The molecular cloud core has the angular

momentum (Zhou et al. 1993; Goodman et al. 1993; Ohashi et al. 1997). This material with

the small angular momentum falls towards the center of the core and forms the protostar. On

the other hand, the material far from the rotation axis with larger angular momentum forms

the protoplanetary disk, that is composed of gas and dust.

1.1.2 Gravitational Instability Model

In the massive protoplanetary disk, the self-gravity of the protoplanetary disk is not negligible

compared with the gravity of the central star and the gas pressure of the protoplanetary disk.

When the disk is gravitationally unstable and fragments into pieces, it is expected that the

pieces become planets. This scenario is the gravitational instability model (Cameron 1978).

Toomre’s stability criterion (Toomre 1964; Binney & Tremaine 1987) is known as a criterion

for the gravitational instability of the disk. We present the linear analysis of local stability of

an infinitely thin, rotating disk in the Appendix A. The Toomre’s Q value is given by

Q ≡ csΩK

πGΣ
, (1.1)

where cs is the sound velocity, ΩK is the Keplerian angular velocity, G is the gravitational

constant, and Σ is the surface density of the protoplanetary disk. It is considered that the

gravitational instability of the protoplanetary disk occur when Q < 1. Then, from equation

(1.1), it is shown that the disk fragmentation tends to occur in the case with the small central

star and/or with the cold protoplanetary disk.

For the gravitational instability model, it is shown that the disk fragmentation is expected

to occur at the position far from the central star. For example, in the case when the protoplan-

etary disk has the same angular momentum distribution with the molecular cloud core before
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it collapses, it is considered that the mass of the protoplanetary disk is not so small (Hayashi

et al. 1982; Kimura & Tsuribe 2012), and it is suggested that gas giant planets form far from

the central star (at the heliocentric distance of tens of AU) (Rafikov 2005; Kimura & Tsuribe

2012). Recently, exoplanets are discovered by direct imaging (Kalas et al. 2008; Marois et

al. 2008; Carson et al. 2013). These planets are more massive than Jupiter and are farther

from the central star than Neptune (more than 30 AU). The gravitational instability model

has possibility to explain the formation processes of such planets. However, the gravitational

instability model is not promising to explain the formation of terrestrial planets because it is

not known how rocky cores with little gas form in gas-rich fragments although a possible route

is suggested (Nayakshin 2010).

1.1.3 Core Accretion Model

There are dust aggregates composed of rock and/or ice in the protoplanetary disk. Such dust

aggregates are considered to coalesce into large bodies, then they finally form planets. This is

the core accretion model (Safronov 1969; Hayashi et al. 1985). In the core accretion model,

it is often assumed that the mass of the protoplanetary disk is much (typically 100 times)

smaller than the mass of the central star as described in the next section (Hayashi 1981). This

disk model explained in the next section is called as the minimum mass solar nebula (MMSN)

model.

The classical core accretion model is given below. Micron-sized dust particles (monomers)

collide with each other, then the dust particles stick via surface tension and become aggregates

of small monomers. It is considered that the dust aggregates grow into planetesimals in conse-

quence of iterations of such hit-and-stick collisions. However, the formation of planetesimals is

one of the unresolved issue because there are many problems on the formation of planetesimals

as described in section 1.3. If planetesimals form, planetesimals collide with each other and

grow into large solid bodies (Kokubo & Ida 1996, 1998, 2000). The large solid bodies eventu-

ally become terrestrial planets. If the solid body grows furthermore and becomes roughly 10
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times more massive than Earth mass while the gas remains in the protoplanetary disk, then

the planet becomes more massive because gas around the solid core is captured by the solid

core to form gas envelope (Mizuno 1980). Then, the gas giant planet is formed. At the late

step of the planet formation, however, gas abundance of the protoplanetary disk decreases

with time because of the accretion towards the central star, magnetically-driven wind, and/or

the photoevaporation due to the irradiation from the central region. If the planet grows after

most of gas in the disk have disappeared, the Neptune-like planet is formed.

The classical core accretion model is based on the on-site planet formation. It is considered

that it is difficult for the core accretion model to explain the formation process of the gas giant

planet farther from the central star than Neptune since it is thought that gas has disappeared

from the protoplanetary disk before the formation of the massive core (Dodson-Robinson et

al. 2009). However, the core accretion model has possibility to explain many kinds of planets

in the solar system. In this thesis, we concentrate on the core accretion model. There are,

however, many unresolved problems on the formation of planetesimals. The detail of the

problems are described in section 1.3.

1.2 Models of the Protoplanetary Disk

In this section, we review the model of a protoplanetary disk where planetesimals (and planets)

forms.

In this thesis, we assume that the mass of the central star is given by 1M⊙. We adopt the

cylindrical coordinate system (r, φ, z) at rest in this section, where r is the heliocentric distance

and z is the height from the midplane of the disk. For simplicity, we take no account of the

magnetic tension acting on gas and dust, and neglect the electrostatic force owing to ionization

of gas and to electrostatic charge of dust (Umebayashi 1983; Sano et al. 2000; Okuzumi 2009).

We also assume that there is not MRI-driven turbulence because there are many tiny dust

particles (Sano et al. 2000; Okuzumi & Hirose 2011, 2012).
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1.2.1 Minimum Mass Solar Nebula Model

In the core accretion model, the minimum mass solar nebula (MMSN) model (Hayashi 1981)

is widely adopted as the model of the protoplanetary disk. The MMSN model is based on

amounts of gas and dust of the present solar system and on the elemental composition of the

present Sun.

In the MMSN model, the gas surface density, Σg, and the dust surface density, Σd, are

given by

Σg = 1.7 × 103

(

r

1[AU]

)−3/2

[g cm−2], (1.2)

and

Σd = 7.1ξice

(

r

1[AU]

)−3/2

[g cm−2], (1.3)

where ξice is the parameter which specifies abundance of condensed water ice. In the MMSN

model,

ξice =







1 (r < rsnow)

4.2 (r > rsnow)
, (1.4)

where rsnow is the snow line. At r > rsnow, H2O becomes water ice. In the MMSN model,

temperature, T , is derived from the balance of the radiative heating (from the central star)

and the radiative cooling (from the disk approximated by a black body). By assuming that

the protoplanetary disk is geometrically and optically thin and that temperature is uniform in

the vertical direction, the radial temperature distribution is given by

T = 280

(

r

1[AU]

)−1/2

[K], (1.5)

and the snow line is given by rsnow = 2.7 AU.

We assume that the disk is symmetric with respect to the midplane. We assume (r2 +

z2)1/2 ≃ r and ∂ΩK/∂z = 0 for simplicity, since we assume that the protoplanetary disk is

geometrically thin.
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In this thesis, for the gas surface density and temperature, we adopt equations (1.2) and

(1.5), respectively. For the dust surface density, we adopt equation (1.3) with dust abundance

parameter, fd,

Σd = 7.1fd ξice

(

r

1[AU]

)−3/2

[g cm−2], (1.6)

where fd is the dust abundance parameter. The case with fd = 1 corresponds to the MMSN

model.

1.2.2 Gas Disk

From equation (1.5), the sound velocity is given by

cs =

√

kBT

mµ

= 0.99

(

r

1[AU]

)−1/4

[km s−1], (1.7)

where kB is the Boltzmann constant and mµ(= 3.9×10−24 g) is the mass of gas molecules (the

mean molecular weight is 2.34). The mean free path of gas molecules, lg, is given by lg = 1.44

cm at r = 1 AU (Nakagawa et al. 1986).

Gas is affected by the gravitational force from the central star, the centrifugal force, the

pressure gradient force, and interaction between gas and dust. For simplicity, in the vertical

direction, we assume that the gas component is in hydrostatic equilibrium without self-gravity

and is not affected by the motion of dust. In such a case, the equation of motion for gas in

the vertical direction is given by

0 = −GM⊙z

r3
− 1

ρg

∂Pg

∂z
, (1.8)

where ρg is the gas density and Pg = cs
2ρg is the gas pressure, and ∂Pg/∂z = cs

2∂ρg/∂z because

of equation (1.7). From equation (1.8), the gas density is given by

ρg(z) =
Σg√
πHg

exp

[

−
(

z

Hg

)2
]

, (1.9)
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In the absence of pressure gradient

In the presence of pressure gradient

r

Gravitational force Centrifugal force

Gravitational force
Centrifugal force

Pressure gradient force

Figure 1.1: Affecting forces (arrowed lines) for gas components (circles) except for interaction

between gas and dust for two cases in the absence of the pressure gradient force (upper) and in the

presence of the pressure gradient force (lower).

where Hg is the scale height of the disk, given by

Hg ≡
√

2cs
ΩK

= 4.7 × 10−2

(

r

1[AU]

)5/4

[AU]. (1.10)

From equation (1.10), it is seen that the protoplanetary disk is geometrically thin, Hg/r ≪ 1.

In the radial direction, the gravitational force from the central star is −GM⊙/r
2 < 0, and

the centrifugal force is vgφ
2/r > 0, where vgφ is the rotational velocity of gas. Hereafter, we

consider the case when gas has the circular orbit. If there is no pressure gradient force and

no interaction between gas and dust, gas has the Keplerian angular velocity. However, in

practice, these forces affect. From equations (1.7), (1.9) and (1.10), Pg ∝ r−13/4. Then the

pressure gradient force is −(1/ρg)(∂Pg/∂r) > 0. Thus, gas revolves at a slower velocity than

the Keplerian velocity under the balance among the gravitational force, the centrifugal force

and the pressure gradient force because of the positive pressure gradient force (Figure 1.1). We

define the angular velocity of gas as (1−η)ΩK in the case when there is no interaction between

gas and dust. In order to derive η, we consider the disk composed of gas only. Under the

balance among the gravitational force, the centrifugal force and the pressure gradient force,
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the equation of motion for gas in the radial direction is given by

0 =
vgφ

2

r
− GM⊙

r2
− 1

ρg

∂Pg

∂r
. (1.11)

From equation (1.11) and Pg = cs
2ρg, the rotational velocity of gas is given as

vgφ =

(

GM⊙

r
+

r

ρg

∂Pg

∂r

)1/2

= r

(

1 +
cs

2

vK
2

∂ lnPg

∂ ln r

)1/2

ΩK, (1.12)

where vK is the Keplerian velocity. At r = 1 AU, the sound velocity cs is about 1 km s−1, and

the Keplerian velocity vK = rΩK is about 30 km s−1. Then, equation (1.12) is approximated

by

vgφ = r

(

1 +
1

2

cs
2

vK
2

∂ lnPg

∂ ln r

)

ΩK ≡ r(1 − η)ΩK, (1.13)

where

η ≡ −1

2

cs
2

vK
2

∂ lnPg

∂ ln r
=

13

16

(

Hg

r

)2

= 1.8 × 10−3

(

r

1[AU]

)1/2

≪ 1. (1.14)

Equation (1.14) shows that the gas component revolves at slightly slower velocity than the

Keplerian velocity.

1.2.3 Motion of Dust Particles

Keplerian Rotation

As described in the preceding subsection, the gas component revolves at slightly slower velocity

than the Keplerian velocity. On the other hand, the dust component revolves at the Keplerian

velocity in the case when there is no interaction between gas and dust and when the dust

component has the circular orbit since there is no pressure gradient force.

In the case with taking account of interaction between gas and dust, the drag force acts on

gas and dust since gas tends to revolve at slightly slower velocity than dust aggregates.

Drag Force

The characteristic time scale for acceleration of dust aggregates owing to the gas drag force

is the stopping time. In this thesis, dust aggregates are assumed to be compact and have a
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Figure 1.2: The stopping time as a function of the dust size for the case with ρs = 3 g cm−3 at r = 1

AU. The abscissa is the size of dust aggregates, s, in units of 3lg/2. The ordinate shows the stopping

time, tstop, in units of ΩK
−1.

spherical shape with size (radius) s. In the case with s ≤ 3lg/2 (= 2.2 cm at r = 1 AU), the

gas drag force is given by Epstein’s law (Epstein 1924). In this case, at r = 1 AU and z = 0,

the stopping time, tstop, is given by

tstop =
ρs

ρg(z)

s

cs
= 1.5 × 10−3

(

ρs

3[g cm−3]

)(

s

2.2[cm]

)

[yr], (1.15)

where ρs is the internal density of the dust aggregates. In the case with s ≥ 3lg/2, gas drag is

given by Stokes’ law, and the stopping time is given by

tstop =
2

3

ρs

ρg(z)

s2

lgcs
= 1.5 × 10−3

(

ρs

3[g cm−3]

)(

s

2.2[cm]

)2

[yr], (1.16)

at r = 1 AU and z = 0. Figure 1.2 shows the dependence of the stopping time on the dust

size changes for the case with ρs = 3 g cm−3 at r = 1 AU. Note that the dependence of the

stopping time on the dust size changes at s = 3lg/2.

Sedimentation

The equation of motion of a dust aggregate in the vertical direction is given by

dvz

dt
= − vz

tstop
− ΩK

2z, (1.17)
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where t is the time and vz is the vertical velocity of the dust aggregate, and we assume that the

gas component does not have the vertical velocity. We approximate the vertical velocity of the

dust aggregates by the terminal velocity. The validity of this approximation is discussed in the

next paragraph. By setting dvz/dt = 0 in equation (1.17), we obtain a terminal sedimentation

velocity of a dust aggregate as

vz(z) = −tstopΩK
2z. (1.18)

The characteristic time scale for sedimentation of dust aggregates is given by

tsed ≡ z

|vz(z)|
=

1

tstopΩK
2
. (1.19)

Figure 1.3 shows the dependence of the sedimentation time on the dust size changes for

the case with ρs = 3 g cm−3. In figure 1.3, it is shown that, in the case when the stopping

time is much smaller than the Keplerian period, tstopΩK ≪ 1, the characteristic time scale of

sedimentation is much larger than the Keplerian period, tsedΩK ≫ 1. In the case with tstopΩK

(≡ St, where St is called as the Stokes number) ≪ 1 ≪ tsedΩK, we can approximate the vertical

velocity of the dust aggregates by the terminal velocity. In figure 1.3, tstopΩK = tsedΩK = 1 at

s/(3lg/2) ≃ 10 in the case with ρs = 3 g cm−3 at r = 1 AU. From equations (1.15), (1.16) and

(1.19), the approximation that the vertical velocity of the dust aggregates with ρs = 3 g cm−3

is given by the terminal velocity is suggested to be valid in the case with s≪ 23 cm at r = 1

AU. In subsection 1.4.1, we will show that the terminal velocity approximation is valid during

dust sedimentation toward the midplane of the protoplanetary disk.

1.2.4 Radial and Rotational Velocities of Gas and Dust

In this subsection, we summarize velocities of the gas and dust components with taking into

account their interaction. Gas is affected by the gravitational force from the central star, the

centrifugal force, the pressure gradient force and the drag force between gas and dust. Dust

is affected by the gravitational force from the central star, the centrifugal force and the drag
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Figure 1.3: The sedimentation time as a function of the dust size for the case with ρs = 3 g cm−3 at

r = 1 AU (solid line). The abscissa is the size of dust aggregates, s, in units of 3lg/2. The ordinate

shows the sedimentation time, tsed, in units of ΩK
−1. The stopping time, tstop, is also drawn (dotted

line).

force between gas and dust. Then, equations of motion for gas and dust are given by

dvg

dt
= −ρd

ρg

vg − vd

tstop
− ΩK

2R − 1

ρg

∇Pg, (1.20)

and
dvd

dt
= −vd − vg

tstop
− ΩK

2R, (1.21)

where vg and vd are the velocity vectors of the gas and the dust components, ρd is the dust

density and R is the heliocentric position vector (Nakagawa et al. 1986). For simplicity, we

consider the case of steady state with ∂/∂t = 0. From equations (1.20) and (1.21), we obtain

the radial and rotational velocities of the gas and the dust components as

vgr =
ρd

ρg + ρd

2DΩK

D2 + ΩK
2
ηvK, (1.22)

vgφ = (1 − η)vK +
ρd

ρg + ρd

D2

D2 + ΩK
2
ηvK, (1.23)

vdr = − ρg

ρg + ρd

2DΩK

D2 + ΩK
2
ηvK, (1.24)
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and

vdφ = vK − ρg

ρg + ρd

D2

D2 + ΩK
2
ηvK, (1.25)

where vgr and vgφ are the radial and rotational velocities of the gas components, vdr and vdφ

are the radial and rotational velocities of the dust components, and

D ≡
(

1 +
ρd

ρg

)

1

tstop
(1.26)

(Nakagawa et al. 1986). We present the derivation of these velocities in the Appendix B. In

the case without the dust component, ρd = 0, equation (1.23) is reduced to equation (1.13).

Equations (1.22)-(1.25) show that dust aggregates spiral in towards the central star owing to

the transport of angular momentum from dust to gas as a result of the drag force. The radial

and rotational velocities vary with the dust size, s, and with the dust fraction, ρd/ρg. From

equations (1.24) and (1.26), we have

vdr = − 2tstopΩK

[1 + (ρd/ρg)]2 + (tstopΩK)2
ηvK. (1.27)

In the region with the small dust fraction, ρd/ρg, the radial velocity of dust aggregates becomes

large.

From equations (1.22) and (1.24), the radial velocity for mass center of gas and dust is

given by zero. From equations (1.23) and (1.25), the rotational velocity for mass center of gas

and dust, vφ, is given as

vφ ≡ ρg

ρg + ρd

vgφ +
ρd

ρg + ρd

vdφ =

(

1 − ρg

ρg + ρd

η

)

vK. (1.28)

Equation (1.28) shows that vφ = vK in the case when there is only dust (ρg = 0), and that

vφ = (1 − η)vK in the case when there is only gas (ρd = 0). From equation (1.28), we have

∂vφ

∂z
=

(

ρg

ρ2

∂ρd

∂z
− ρd

ρ2

∂ρg

∂z

)

ηvK, (1.29)

where ρ ≡ ρg + ρd is the total (gas plus dust) density. Note that, according to equation

(1.29), it is seen that the vertical shear of the azimuthal velocity, ∂vφ/∂z, is proportional to

the vertical dust density gradient, ∂ρd/∂z, when the vertical gas density gradient, ∂ρg/∂z, is

small.
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1.3 Problems of Core Accretion Model

As described in subsection 1.1.3, in the core accretion model, it is considered that planetesimals

(and planets) form from dust growth owing to collisions between dust aggregates. However,

there are many problems on the formation of planetesimals. Especially, radial drift and colli-

sional fragmentation of dust are significant problems as described below.

1.3.1 Radial Drift Problem

The protoplanetary disk is composed of gas and dust. As explained in subsections 1.2.2 and

1.2.3, if there is no interaction between gas and dust, dust aggregates have the Keplerian

angular velocity, ΩK, in the case with circular orbit. On the other hand, the pressure gradient

force acts on gas additionally. From equations (1.13) and (1.14), gas revolves at slightly slower

velocity than dust. The velocity difference between gas and dust is given by ηvK with η ∼ 10−3

at r = 1 AU.

If we take account of interaction between gas and dust, headwind acts on dust aggregates

and drag force acts on gas and dust as in equations (1.20) and (1.21). As a result of the

drag force, angular momentum is transported from dust to gas, and dust aggregates spiral in

towards the central star. The drift velocity of dust aggregates is given by equation (1.27).

Adachi et al. (1976) investigated the radial drift of the dust aggregate with Σd/Σg ≪ 1 and

ρd/ρg ≪ 1, and the decay time of the spiral orbit, i.e., the time scale of the radial drift of dust

aggregates, tdrift, is given by

tdrift ≡
r

vdrift

=
1

ηΩK

1 + (tstopΩK)2

2tstopΩK

, (1.30)

where vdrift is the radial drift speed of dust aggregates, |vdr|, in equation (1.27) with ρd/ρg ≪ 1.

Figure 1.4 shows the drift time as the function of the stopping time in the case with η ∼ 2×10−3.

In figure 1.4, it is seen that the drift time has the minimum value at tstopΩK(≡ St) = 1. The
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Figure 1.4: The drift time as the function of the stopping time in the case with η ∼ 2 × 10−3. The

abscissa is the drift time, tdrift, in units of ΩK
−1. The ordinate shows the stopping time, tstop, in

units of ΩK
−1.

minimum value of the drift time, tdrift,min, is given by

tdrift,min =
1

ηΩK

∼ 102

(

η

2 × 10−3

)−1(
r

1[AU]

)

[yr], (1.31)

and tdrift,min ∼ 102 yr at r = 1 AU. In the case with the internal density of dust aggregates

ρs ∼ 1 g cm−3 and the typical value of the gas density ρg ∼ 10−9 g cm−3 at r = 1 AU, the size

of dust aggregate with tdrift ∼ 102 yr, i.e., tstopΩK = 1, is about 1 m from equation (1.16).

If the growth time scale of meter-sized dust aggregates is larger than the drift time, dust

aggregates fall onto the central star and can not grow larger. For the hit-and-stick collisions,

the growth time scale of dust aggregates corresponds to the mean collision time which is given

by

tgrowth =
1

ndσ∆v
, (1.32)

where nd is the number density of dust aggregates, σ is the collisional cross section, and

∆v is the relative speed of the dust-dust collision. In the case with Σd/Σg ≪ 1 and with

ρd/ρg ≪ 1, the maximum relative speed of the dust-dust collision due to the radial motion of

dust aggregates is given as ∆vdr, max ∼ vdrift = ηvK × 2tstopΩK/[1 + (tstopΩK)2] from equation

(1.24), and the maximum relative speed due to the azimuthal motion is given as ∆vdφ, max ∼
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ηvK × (tstopΩK)2/[1 + (tstopΩK)2] from equation (1.25). At tstopΩK ∼ 1, ∆vdr, max & ∆vdφ, max.

The relative speed due to the vertical motion, ∆vz, depends on z from equation (1.18). It is

considered that meter-sized dust aggregates form after dust sedimentation toward the midplane

of the protoplanetary disk (Nakagawa et al. 1981, 1986). Near the midplane, it is speculated

that ∆vdr, max ≫ ∆vz, max. Then, ∆vmax ∼ ∆vdr, max ∼ vdrift. To estimate the growth time scale

of meter-sized dust aggregates, we assume nd ∼ Σd/(4/3)πρss
3Hg, σ ∼ πs2 and ∆v ∼ vdrift.

Then, the growth time scale at r = 1 AU is given as

tgrowth ∼ 4

3

Hg

r

ρss

Σd

r

vdrift

=

(

ρs

3[g cm−3]

)(

s

38[cm]

)

tdrift. (1.33)

In equation (1.33), we used tdrift ≡ r/vdrift [equation (1.30)]. From equation (1.33), the growth

time scale of meter-sized dust aggregates with the internal density ρs ∼ 1 g cm−3 is given by

tgrowth ∼ tdrift at r = 1 AU. Thus, meter-sized dust aggregates may fall onto the central star

before their growth only by the simple hit-and-stick collisions. This is the radial drift problem.

1.3.2 Collisional Fragmentation Problem

In the core accretion model, dust aggregates grow by their hit-and-stick collisions. According

to equations (1.15), (1.16), (1.18), (1.24), (1.25) and (1.26), the relative speed of the dust-dust

collision, ∆v, results from the difference of sizes between dust aggregates. (The dependence of

∆v on the dust size, s, is different for different velocity components, vdr, vdφ and vz, and for

different gas drag laws, Epstein’s law and Stokes’ law.) Thus, the relative speed increases with

increasing the difference of sizes. However, when the relative speed of the dust-dust collision

is too large, dust aggregates can not stick but break catastrophically (Dominik & Tielens

1997; Blum & Wurm 2000; Wada et al. 2009). This prevents dust from growing. This is the

collisional fragmentation problem.

The threshold of collision speed for the collisional fragmentation depends on compositions

of dust aggregates and on the size of monomers (Wada et al. 2009). It is considered that

dust aggregates are mainly composed of rocky particles (at the region near the central star,
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r < rsnow) or icy particles (far from the central star, r > rsnow). Rocky particles stick owing to

the intermolecular force. For rocky particles, e.g., silicate particles, the critical speed is known

to be about a few m s−1 in the case when the size of monomers is 0.1-1 µm. On the other hand,

the critical speed for icy particles is roughly larger than 10 m s−1 because icy particles stick

owing to the hydrogen bonding additionally. Thus, it is more difficult for icy dust to fragment

than for rocky dust.

Note that the realistic dependence of the outcome of the dust-dust collision on the collision

speed is less well understood. Even if the collision speed is smaller than these critical speeds,

it is suggested that there are the collisional compression (Dominik & Tielens 1997; Wada et al.

2007), the bouncing barrier (Zsom et al. 2010) and the electrostatic barrier (Okuzumi 2009).

The outcome of the dust-dust collision varies with the collision speed and is complicated.

Figure 1.5 shows the maximum relative speed of the dust-dust collision for the case with

ρs = 3 g cm−3 at r = 1 AU. The maximum collision speed of dust aggregates is about ηvK ∼
50 m s−1 and is independent of r because η ∝ r1/2 [equation (1.14)] and vK ∝ r−1/2. The critical

speed for fragmentation of icy and porous dust aggregates with 0.1-µm-sized monomers is also

about 50 m s−1 (Wada et al. 2009). From the detailed numerical simulations, it is shown that

icy and porous dust aggregates are able to grow to km-sized planetesimals by hit-and-stick

collisions with neither the radial drift problem nor the collisional fragmentation problem in

the limited region, rsnow < r . 10 AU (Okuzumi et al. 2012). On the other hand, however, it is

considered that rocky dust can not grow to planetesimals by hit-and-stick collisions. The radial

drift speed of a 5-cm-sized dust aggregate with the internal density ρs = 3 g cm−3 is about 5

m s−1 in the case with the gas density ρg ∼ 10−9 g cm−3 at r = 1 AU and is comparable with

the critical speed for fragmentation of rocky particles. Even if dust aggregates are porous, the

internal density remains ρs & 10−5 g cm−3 at r = 1 AU because of the collisional compression

(Suyama et al. 2008; Okuzumi et al. 2012). In such a case, the radial drift speed of a

30-m-sized dust aggregate is comparable with the critical speed for fragmentation of rocky

particles at r = 1 AU. Thus, in the MMSN model, it is expected that rocky dust aggregates
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Figure 1.5: The maximum relative speed of the dust-dust collision, ∆vmax ≡ (∆vdr, max
2 +

∆vdφ,max
2)1/2, for the case with ρs = 3 g cm−3 at r = 1 AU (solid line). The abscissa is the size

of dust aggregates, s, in units of 3lg/2. The ordinate shows the maximum relative speed of the

dust-dust collision, ∆vmax, in units of ηvK. The maximum collision speed due to the radial motion,

∆vdr, max, and that due to the azimuthal motion, ∆vdφ, max, are also drawn (dashed lines). Dotted

lines shows the critical speeds for fragmentation of icy dust, vfrag, ice (∼ 50 m s−1), and for rocky dust,

vfrag, rock (∼ 5 m s−1) (Wada et al. 2009).

are unable to grow to km-sized planetesimals by hit-and-stick collisions before the radial drift

problem. As a means of growth of rocky dust aggregates other than the hit-and-stick collision,

the gravitational instability of the dust layer (described in the next section) is considered.

1.4 Formation and Fragmentation of Dust Layer

In the laminar gas flow, dust aggregates settle toward the midplane of the protoplanetary disk

owing to the gravitational force from the central star. As a result of dust sedimentation, a

thin and dense layer of dust, so-called dust layer, forms. The dust layer is composed of 1-10-

cm-sized dust aggregates at r = 1 AU (Nakagawa et al. 1981, 1986). If the dust layer is dense

enough, the dust layer is gravitationally unstable and it fragments into pieces (Goldreich &

Ward 1973; Sekiya 1983). We present the stability of the dust layer in the Appendix C. At
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r = 1 AU, the mass of the piece is about 1018 g in the MMSN model and the size of the

piece is several kilometers in the case when the internal density of the piece is about 1 g cm−3.

The pieces have large dust densities and strong self-gravitational forces, then a lot of dust

aggregates in the pieces are strongly compressed by strong self-gravitational forces. In such

a case, km-sized planetesimals directly form. This is the gravitational instability (GI) of the

dust layer. Hereafter, GI refers the gravitational instability of the dust layer. The critical

density for GI (Sekiya 1983) is given by

ρc =
0.61M⊙

r3
= 3.6 × 10−7

(

r

1[AU]

)−3

[g cm−3], (1.34)

and GI is expected to occur when the density in the dust layer is larger than the critical density,

ρc. The time scale of the gravitational contraction of the pieces is given by the free-fall time,

tff ∼ (Gρd)
−1/2. In the case with ρd = ρc, the free-fall time is given by

tff ∼ 1√
Gρc

=
1√

0.61ΩK

∼ 0.2TK < TK, (1.35)

where TK ≡ 2π/ΩK is the period of rotation. Thus, if GI begins, it is expected that the

cm-sized dust aggregates collapse to km-sized planetesimals in much a shorter time scale than

their drift time onto the central star. In order to form the dust layer with the large dust

density, dust aggregates have to settle close to the midplane of the protoplanetary disk. Thus,

dust sedimentation is the key to understand GI.

1.4.1 Sedimentation and Growth of Dust Aggregates

Dust aggregates settle toward the midplane at the same time as their radial drift onto the

central star. From equations (1.14), (1.19) and (1.30), we have

tsed
tdrift

=
2η

1 + (tstopΩK)2
≪ 1. (1.36)

Equation (1.36) shows that the fractional change of an orbital radius of a dust aggregate during

its sedimentation is significantly small as compared with the orbital radius. Thus, during dust



1.4. FORMATION AND FRAGMENTATION OF DUST LAYER 19

sedimentation before GI, from equation (1.36), we do not take into account the radial motion

of dust aggregates in this thesis.

From equations (1.15), (1.16) and (1.18), the sedimentation velocity of dust aggregates

depends on the dust size. Dust aggregates grow during dust sedimentation, and the dust size

vary with dust sedimentation (Nakagawa et al. 1981, 1986). During the sedimentation and

growth of dust aggregates, evolution of the dust size distribution is described by the coagulation

equation described by

∂

∂t
n(m, z) +

∂

∂z
[n(m, z)vz(m, z)]

= −n(m, z)

∫ ∞

0

A(m,m′, z)n(m′, z)dm′

+
1

2

∫ m

0

A(m−m′, m′, z)n(m−m′, z)n(m′, z)dm′, (1.37)

where n(m, z)dm is the number density of the dust aggregates with mass between m to m+dm

at height z, and A(m,m′, z) is the coalescence rate for two dust aggregates with m and m′

at z. The second term in the left-hand side of equation (1.37) shows the sedimentation of

dust aggregates with m at z. The first term in the right-hand side of equation (1.37) shows

the growth of dust aggregates from m to other mass. The second term in the right-hand side

of equation (1.37) shows the growth of dust aggregates to m from other mass. The symbol

n(m, z)dz gives a mass function in z to z + dz. The dust density at z, ρd(z), is given by

ρd(z) =

∫ ∞

0

mn(m, z)dm. (1.38)

As for the velocity that induces dust-dust collisions during dust sedimentation before GI,

we take into account velocities generated during sedimentation and thermal Brownian motion

and ignore the radial and azimuthal motions as is the case with Nakagawa et al. (1981). We

assume that the coalescence rate, A(m,m′, z), is given by

A(m,m′, z) = π(s+ s′)2(∆vs + ∆vB), (1.39)
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where ∆vs and ∆vB are the relative velocities of two dust aggregates due to sedimentation and

to the thermal motion, respectively, and are given by

∆vs = |vz(m, z) − vz(m
′, z)|, (1.40)

and

∆vB =
√

kBT

√

1

m
+

1

m′
, (1.41)

respectively. For simplicity, we ignore the collisional compression (Dominik & Tielens 1997;

Wada et al. 2007), the bouncing barrier (Zsom et al. 2010) and the electrostatic barrier

(Okuzumi 2009). From equation (1.39), we assume that the coalescence rate, A(m,m′, z),

is proportional to the relative velocities, ∆vs and ∆vB. Equation (1.41) shows that ∆vB

is independent of z. On the other hand, ∆vs increases with increasing z in the case with

constant m, m′ and ρs from equations (1.15), (1.16), (1.18) and (1.40). Thus, it is expected

that dust aggregates at large z grow faster than at small z.

Integrating equation (1.37) with respect to m, we obtain

∂

∂t

∫ ∞

0

mndm +
∂

∂z

∫ ∞

0

mnvzdm = 0. (1.42)

Using equations (1.38) and (1.42), we obtain

∂

∂t
ρd(z) +

∂

∂z
[ρd(z)v̄z(z)] = 0, (1.43)

which is the continuity equation for dust aggregates treated as fluid, where the mean sedimen-

tation velocity of dust fluid at z is given by

v̄z(z) =

∫∞

0
vz(m, z)mn(m, z)dm
∫∞

0
mn(m, z)dm

. (1.44)

To see the tendency of dust growth, one example of dust density evolution with growth is

shown below. Dust density ρd(z) is assumed to be symmetric with respect to the midplane,

and we examine only the region of z ≥ 0. In this subsection, as an initial condition, the initial

density of dust is assumed to be

ρd(z) = ρd0(0) exp

[

−
(

z

Hg

)2
]

, (1.45)
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where

ρd0(0) =
Σd√
πHg

. (1.46)

We set r = 1 AU. We assume that all dust aggregates have the same initial size, s0 = 1.0×10−4

cm, and that the internal density of dust aggregates, ρs, is 3 g cm−3. The numerical method

of this calculation is presented in the Appendix D.

Figures 1.6 and 1.7 show the distributions of dust density and mass functions from t = 0

yr to 1000 yr in the case with fd = 1. From figure 1.6, it is shown that dust aggregates

primarily grow to s/s0 ∼ 103 in z/Hg ∼ 1 at t . 300 yr. From figure 1.7, it is shown that

dust aggregates with s/s0 ∼ 103 secondly settle toward the midplane, z = 0, with growing

to s/s0 ∼ 104, i.e., s ∼ 1 cm, and that the dense dust layrer with ρd ∼ ρc finally forms

near the midplane. This result shows that dust aggregates before GI are so small that the

stopping times of dust aggregates are much shorter than the Keplerian period [equation (1.15)].

Thus, the approximation of the terminal velocity used in equations (1.18) and (1.22)-(1.25) is

reasonable. These tendencies are similar to the results in Nakagawa et al. (1981, 1986).

From figure 1.7, the peak of the distribution of dust density, ρd, appears at z > 0 while

dust aggregates settle from z/Hg ∼ 1 to the midplane. For reference, in the case without

dust growth, the peak of ρd remains at z = 0 during the dust sedimentation (Garaud & Lin

2004, and section 2.3). In summary, dust growth strongly influences the dust sedimentation

and time evolutions of the profile of the dust density. This tendency is similar to the result in

Tanaka et al. (2005).
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Figure 1.6: The distributions of dust density (left side) and mass functions (right side) in the case

with fd = 1 at t = 0 yr (the top), 100 yr (the center) and 300 yr (the bottom). For the distributions

of dust density (left side), the abscissas show the dust density, ρd(z), in unit of ρd0(0). The ordinates

show z coordinates in unit of Hg. The critical density, ρc, is also drawn (dotted line). For the

distributions of mass functions (right side), the abscissas show the dust size, s, in unit of s0. The

ordinates show z coordinates in unit of Hg. The contrasting density of the color shows the mass

function, mn(m, z), in unit of ρd0(0)/m0, where m0 = (4/3)πρss0
3.
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Figure 1.7: Same as figure 1.6, but for the case at t = 400 yr (the top), 600 yr (the second from the

top), 800 yr (the second from the bottom) and 1000 yr (the bottom).
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1.5 Problem of Shear-driven Turbulence in Planetesi-

mal Formation

1.5.1 Strong Shear by Dust Sedimentation

Before the onset of GI, dust aggregates are so small that the stopping times of dust aggregates

are much smaller than the Keplerian period (Nakagawa et al. 1981, 1986). Then, dust aggre-

gates are small enough to couple strongly to gas on the rotational time scale. In such a case,

the mixture of gas and dust is often treated as the one component fluid for the azimuthal mo-

tion. For small dust aggregates, the sedimentation times are much larger than the Keplerian

period. On the rotational time scale, we regard the vertical motion of dust aggregates as being

smaller than their azimuthal motion. In such a case, the flow of the mixed fluid is assumed to

be laminar on the rotational time scale. Thus, in this section, we regard the mixture of gas

and dust as the one component fluid with laminar flow and consider the azimuthal motion of

the mixed fluid.

The rotational velocity of the mixed fluid of gas and dust depends on a ratio of gas to dust

density as shown in equation (1.28), and the vertical shear of the rotational velocity is given

by equation (1.29). Equation (1.28) shows that vφ = vK in the case when there is only dust

(ρg = 0), and that vφ = (1 − η)vK in the case when there is only gas (ρd = 0).

As dust aggregates settle toward the midplane, the dust-rich region forms near the midplane

and dust-poor regions form outside. Then, the absolute value of the vertical dust density

gradient, |∂ρd/∂z|, increases with dust sedimentation. In this case, according to equation

(1.29), the vertical shear of the rotational velocity of the mixed fluid, |∂vφ/∂z|, increases,

and the strong shear is expected. The emergence of the strong shear flow reminds us of the

Kelvin-Helmholtz instability (KHI) (Chandrasekhar 1961). We explain about KHI in the next

subsection. KHI is suggested to induce shear-driven turbulence and that turbulence due to

KHI prevents dust aggregates from settling further toward the midplane (Cuzzi et al. 1993;



1.5. PROBLEM OF SHEAR-DRIVEN TURBULENCE IN PLANETESIMAL
FORMATION 25

Sekiya 1998). If KHI occur and dust aggregates are stirred up sufficiently, the condition for GI

in section 1.4 is possibly violated. Thus, KHI has the possibility to be an important problem

for the formation of planetesimals by GI.

1.5.2 Kelvin-Helmholtz Instability

In this subsection, we present a brief description of the process of the onset of KHI. For sim-

plicity, we consider the case when there are laminar flows of two superposed fluids with a

relative horizontal velocity. If fluctuation exists at the plane interface between the two fluids,

regions with different velocities exist alternately at the same height where the plane interface

exist in the unperturbed state. In such a case, the regions with different velocities at the same

height tend to mix, i.e., the different velocities tend to become the same velocity owing to the

momentum transfer between the regions. Then, the surplus kinetic energy is caused as the

result of the mixing (Chandrasekhar 1961). Then, the amplitude of fluctuation is more am-

plified owing to the surplus kinetic energy. In consequence, amplification of fluctuation occurs

repeatedly. Iterations of the amplification of fluctuation result from the relative horizontal

velocity between the fluids, i.e., the shear of the velocity between the fluids. This instability of

laminar flows induced by the shear of the velocity is the Kelvin-Helmholtz instability (KHI).

KHI induce turbulence. To understand the detail of KHI and shear-driven turbulence, we

have to perform the linear stability analysis and/or the numerical simulation. The basic linear

stability analysis for KHI is presented in the Appendix E, and the linear stability analysis for

the more realistic case for the protoplanetary disk is presented in chapter 4.

1.5.3 Richardson Number

As described in subsection 1.5.2, KHI induces amplification of the amplitude of fluctuation in

the direction of z owing to the surplus kinetic energy. For the purpose, the surplus kinetic

energy should be larger than the work to transfer fluid elements. From this request, a condition
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for instability of the laminar flow of the incompressible and inviscid fluid with velocity vφ and

density ρ is given as

−gz

ρ

∂ρ

∂z

(

∂vφ

∂z

)−2

≡ J < Jc, (1.47)

where gz is the z component of the acceleration due to the gravitational force. The symbol

J is the Richardson number that is known as an indicator to discuss the possibility of KHI

(Chandrasekhar 1961). If J is smaller than a critical value, Jc, KHI is expected to be induced.

For the laminar flow of the incompressible, inviscid and one component fluid with no rotation,

the critical Richardson number is known as Jc = 0.25 (Chandrasekhar 1961). For other laminar

flows, on the other hand, it is considered that the critical Richardson number is not 0.25 as

described in subsection 1.5.4.

1.5.4 Previous Studies and Remained Problems

Investigations of KHI and the turbulence are essential for understanding the processes of the

planetesimal formation, and there are many previous studies (Weidenschilling 1980; Cuzzi et

al. 1993; Sekiya 1998; Dobrovolskis et al. 1999; Sekiya & Ishitsu 2000, 2001; Ishitsu & Sekiya

2002, 2003; Johansen et al. 2006; Michikoshi & Inutsuka 2006; Bai & Stone 2010). Cuzzi

et al. (1993) numerically calculated the gravitational sedimentation and turbulent diffusion

of two fluid that are gas and single-sized dust. They showed that the dust layer turns out

to be a quasi-steady state by the balance of the gravitational sedimentation and turbulent

diffusion and that GI does not occur as long as dust aggregates are roughly smaller than 1 m.

Sekiya (1998) considered a case that the Richardson number is forced to be nearly equal to

the critical value, Jc = 0.25, at the whole region, and derived the analytical solution of dust

density distribution in the quasi-stationary state. Sekiya (1998) showed that GI is expected

to occur in the case when the dust abundance in the protoplanetary disk is 20 times larger

than that in MMSN model. Sekiya & Ishitsu (2001) and Ishitsu & Sekiya (2003) calculated

the growth rate of KHI by performing the linear stability analysis with regarding the mixture
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of gas and dust as one component fluid. They assumed that the dust density is given by

the hybrid density distribution that is composed of an inner region with a constant density

and outer sinusoidal transition regions. They showed that the growth rate of the unstable

mode decreases with increasing the dust abundance in the protoplanetary disk. Michikoshi

& Inutsuka (2006) performed the linear stability analysis with regarding the two-component

fluid that are gas and single-sized dust. They used the same dust density profile as Sekiya &

Ishitsu (2001). They showed that GI does not occur as long as dust aggregates are roughly

smaller than 10 m for MMSN model.

However, above previous studies did not take account of dust growth. As described in

subsection 1.4.1 and Nakagawa et al. (1981), dust growth strongly influences the dust sedi-

mentation and time evolutions of the profile of the dust density. It is expected that the site of

occurrence of KHI will differ according to the presence or absence of dust growth since equa-

tions (1.29) and (1.47) show that the vertical dust density gradient is related to the condition

for KHI. Thus, dust growth is essential to understand not only the dust sedimentation but

also the occurrence of KHI. Dust aggregates grow due to dust-dust collisions while they settle

toward the midplane (Nakagawa et al. 1981, 1986). Nakagawa et al. (1986) shows that the

law of gas drag force on dust aggregates is changed from Epstein to Stokes as a result of dust

sedimentation with dust growth. They also show that the change of the law of gas drag has

an influence on the sedimentation process. Therefore, to investigate KHI in the settled dust

layer, it is important to take account of dust growth.

As described in subsection 1.5.3, Chandrasekhar (1961) showed that the critical Richardson

number is 0.25. However, such a classical Richardson number criterion, Jc = 0.25, is derived

only for the case with the incompressible, inviscid and laminar fluid, and an effect of the rota-

tion is neglected. There are many previous studies of the Richardson number criterion (RNC)

and the critical Richardson number in the protoplanetary disk (Sekiya & Ishitsu 2000; Garaud

& Lin 2004; Gómez & Ostriker 2005; Chiang 2008; Barranco 2009; Lee et al. 2010). They show

that the critical Richardson number depends on the assumed density profile and varies with
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the dust abundance in the protoplanetary disk and with the rotation of the protoplanetary

disk. If the possible dust density resulting from KHI with Jc 6= 0.25 is totally different from

the dust density with the classical RNC, Jc = 0.25, then the classical RNC is not ensured to

discuss KHI for general cases in the protoplanetary disk. Thus, we should calculate the crit-

ical Richardson number at the onset of KHI without using the classical RNC, and we should

clarify how the possible dust density before KHI calculated without using the classical RNC

is different from that calculated with using the classical RNC.

1.6 Purpose of This Thesis

In this thesis, we focus on the effects of dust sedimentation with dust growth on the Kelvin-

Helmholtz instability. The best way to investigate the planetesimal formation is to calculate

all of the related physical processes: e.g., viscous diffusion of gas, motion of turbulent gas,

interaction between gas and dust through drag force, sedimentation and radial drift of dust,

motion of dust stirred up by turbulence, dust growth, dust fragmentation, time evolutions of

the size distribution and internal structure of dust, gravitational instability of dust layer, and

so on. However, it is difficult to simulate all physical processes numerically at the same time

because of the computer performance.

In the case with dust growth, there is a size distribution of dust aggregates, and the size

distribution changes with time due to dust growth. To focus on and to investigate the effects

of dust growth on the possibility of KHI, we take account of sedimentation, growth and the

size distribution of dust aggregates only, and discuss the possibility of KHI by using the dust

density distribution consistent with their sedimentation history in the disk. The classical RNC,

Jc = 0.25, is used first for simplicity. Later, the classical RNC is reinvestigated. In this thesis,

we adopt the following approach.

1. First, we consider the case without dust growth in order to evince the effects of dust

growth on the possibility of KHI. We investigate two cases without and with an initial
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size distribution of dust aggregates. We calculate dust sedimentation and discuss the

possibility of KHI by using the dust density distribution consistent with their sedimen-

tation.

2. Next, we consider the case with dust growth. We calculate dust sedimentation and

dust growth, and discuss the possibility of KHI by using the dust density distribution

consistent with their sedimentation. We show the effects of dust growth on the possibility

of KHI with comparing the case without dust growth to the case with dust growth.

3. To discuss the validity of the classical Richardson number criterion Jc = 0.25 used above,

we perform the linear analysis of KHI. The conditions of the onset of KHI derived from

the linear analysis are compared with the conditions derived from the classical Richardson

number criterion.

1.7 Content of This Thesis

In chapter 2, we show numerical results for sedimentation of dust grains without growth. In

chapter 3, results are shown for the case with dust growth. In chapter 4, we show results for

the growth rate and the critical Richardson number, and we discuss the validity of the classical

Richardson number criterion. In chapter 5, summary and future prospects are presented.





Chapter 2

Sedimentation of Dust Aggregates

without Growth

In this thesis, we focus on the effects of dust sedimentation in the sense of the density profile

and dust growth on the possibility of KHI. In order to clarify the effects of dust growth, we

first consider the case without dust growth in the protoplanetary disk to compare with the

case with dust growth.

This chapter is mainly based on our paper, Hasegawa & Tsuribe (2013).

2.1 Models

In this thesis, we assume that the mass of the central star is given by 1M⊙. Since radial

drift is small during sedimentation time [equation (1.36)], we neglect the radial motion of dust

aggregates and we set r = 1 AU for simplicity. We assume that the protoplanetary disk is

axisymmetric with respect to the rotational axis of the disk and is symmetric with respect to

the midplane of the disk. In this chapter, we adopt the cylindrical coordinate system (r, φ, z)

at rest. The gas surface density, Σg, the dust surface density, Σd and temperature, T , are

assumed to be equations (1.2), (1.6) and (1.5), respectively. The sound velocity, cs, is given

31
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by equation (1.7). The scale height of the disk, Hg, is given by equation (1.10). The value of

η is given by equation (1.14). For simplicity, we assume (r2 + z2)1/2 ≃ r and ∂ΩK/∂z = 0.

We assume that all dust aggregates are so small (µm-cm) that the stopping time is always

given by equation (1.15) and that tstopΩK ≪ 1 ≪ tsedΩK [from equations (1.15) and (1.19)].

As described in subsection 1.4.1, we approximate velocities of the gas and dust components by

the terminal velocity given as equations (1.18) and (1.22)-(1.25). To discuss the possibility of

KHI, we calculate the Richardson number given by equation (1.47) with gz = ΩK
2z, ρ = ρg+ρd

and Jc = 0.25, for simplicity (Sekiya & Ishitsu 2001). For the revolutions of gas and dust, we

treat the mixture of gas and dust as one component fluid with laminar flow as described in

subsection 1.5.1, and we give the azimuthal velocity of mixed fluid of gas and dust as equation

(1.28). Since we focus on the phase before KHI, we assume that there is no turbulence in the

disk.

According to equations (1.29) and (1.47), the Richardson number strongly depends on the

distribution of the dust density. We calculate the Richardson number for the dust density

given by numerical calculations at each time.

2.2 Sedimentation of Single-sized Dust Aggregates

First, we consider the sedimentation of single-sized dust aggregates. We assume the gas density,

ρg(z), as equation (1.9).

2.2.1 The Initial Condition

Dust density, ρd(z), is assumed to be symmetric with respect to the midplane, and we examine

only the region of z ≥ 0. As an initial condition, the initial density of dust is assumed to be

ρd(z) =
Σd√
πHd

exp

[

−
(

z

Hd

)2
]

, (2.1)
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where Hd is the time dependent scale height of the dust density profile with Hd = Hg at t = 0.

At t = 0, equation (2.1) corresponds to equation (1.45).

We assume the same initial functional form for ρg(z) and ρd(z), and we neglect the de-

pendence of vK on z. At t = 0, ∂ρg/∂z = −(2z/Hg
2)ρg and ∂ρd/∂z = −(2z/Hg

2)ρd. Then,

∂vφ/∂z = 0 from equation (1.29), and the rotational velocity of the mixed fluid of gas and

dust aggregates, vφ, at t = 0 is independent of z. Thus, J = ∞ at t = 0 from equation (1.47),

i.e., the initial state is stable against KHI.

2.2.2 Vertical Shear of the Rotational Velocity

We assume that all dust aggregates are small enough (s . 1 cm), and that the drag force

is given by Epstein’s law [equation (1.15)]. From equations (1.15) and (1.19), it is shown

that the characteristic time scale of sedimentation is much larger than the Keplerian period,

tsedΩK ≫ 1, when the stopping time is much smaller than the Keplerian period, tstopΩK ≪ 1.

In such a case, for single-sized dust aggregates without growth, the profile of the dust density

evolves in a self-similar manner (Garaud & Lin 2004). Then, we do not have to solve equation

(1.37) numerically and can derive the dust density distribution analytically. Here, during the

sedimentation of dust, the distribution of the gas density is assumed to remain constant as

equation (1.9). When the time evolution of the dust density proceeds in a self-similar manner,

the dust density profile in t > 0 is also given by equation (2.1) with a temporally decreasing

scale height of the dust density profile, Hd(t), with 0 < Hd(t) ≤ Hg. Using equations (1.9),

(1.28), and (2.1), we have

∂vφ

∂z
= 2ηzvK

(

1

Hg
2
− 1

Hd
2

)

ρg(z)ρd(z)

[ρg(z) + ρd(z)]2
. (2.2)

Substituting (1.14) and (2.2) into (1.47), an analytical formula for Richardson number can be

derived as

J =
1

2

(

Hg

ηr

)2
(Hd/Hg)

4

[1 − (Hd/Hg)2]2

[

ρg +

(

Hd

Hg

)−2

ρd

]

(ρg + ρd)
3

ρg
2ρd

2
. (2.3)
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Figure 2.1: Dust density and Richardson number at r = 1 AU for the case with single-sized

dust aggregates with fd = 1 where Hd/Hg are 1 (red), 0.7 (green), 0.4 (blue) and 0.1 (magenta),

respectively. [In the case with s = 1 cm and with ρs = 3 g cm−3, t ∼ 0 yr (red), 10 yr (green), 30

yr (blue) and 80 yr (magenta), respectively.] (a) The distribution of dust density (solid line). The

abscissa shows the dust density, ρd(z), in unit of ρd0(0). The ordinate shows z coordinates in unit of

Hg. (b) The distribution of Richardson number (solid line). The abscissa shows Richardson number.

The ordinate shows z coordinates in unit of Hg.

Figure 2.1 shows the time evolution of dust density and the Richardson number for the

case with fd = 1. In figure 2.1, it is seen that the maximum value of dust density increases

and the minimum value of the Richardson number decreases with dust sedimentation.

Since the profile of the dust density evolves in a self-similar manner, the results shown in

this section are independent of the dust size as long as the stopping time is given by Epstein’s

law [equation (1.15)], and the time scale is renormalized.

2.2.3 Results

Figure 2.2 shows results of the distributions of the dust density and the Richardson number

when ρd(0) ≃ 160ρd0(0) for the case with fd = 1, where Hd is 0.0062Hg. In figure 2.2,

it is seen that dust density at the midplane is much smaller than the critical density for
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Figure 2.2: Dust density and Richardson number at r = 1 AU for the case with single-sized dust

aggregates with fd = 1 where Hd is 0.0062Hg. The abscissa and the ordinate show the same as ones

of figure 2.1. (a) The distribution of dust density (black solid line). The critical density ρc is also

drawn (dotted line). (b) The distribution of Richardson number (black solid line). The critical value

Jc is also drawn (dotted line). This figure was presented in Hasegawa & Tsuribe (2013) as figure 1.

GI, ρc = 6.3 × 104ρd0(0) [equation (1.34)], and that the Richardson number is smaller than

Jc = 0.25 around the midplane (z/Hg . 0.0075). Thus, KHI is expected before GI in this case

with fd = 1 at r = 1 AU.

In the previous study, it is indicated that GI tends to occur if the dust abundance in the

protoplanetary disk is much larger than that according to the MMSN model (Sekiya 1998).

This result is based on the assumption of equilibrium condition for KHI everywhere. In this

thesis, we used a non-equilibrium time-dependent density profile during sedimentation in order

to consider the possibility for GI in the case with a large fd. We seek the condition of the dust

abundance, fd, by which GI occurs before the onset of KHI. In figure 2.2a, it can be seen that

the distribution of dust density has the maximum in the midplane. When fd is larger than

1, the dotted line in figure 2.2a moves to left (compare the dotted lines in figures 2.2a, 2.3a

and 2.4a), because the abscissa is proportional to [ρd0(0)]−1 ∝ fd
−1. The dust density at the

midplane is the first to reach the critical density for GI, because the time development of the

dust density proceeds in a self-similar manner. A characteristic Hd when the dust density at
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the midplane attains ρc can be obtained from equation (2.1). We define the characteristic Hd

as Hc. With using z = 0, Hd = Hc and ρd(z) = ρc in equation (2.1), respectively, Hc is given

by

Hc =
Σd√
πρc

= 1.6 × 10−5fdHg ∝ fd. (2.4)

In figure 2.2b, it is seen that the distribution of the Richardson number has a local minimum

value at z/Hg = 3.5 × 10−3 = zc/Hg, where zc is the height where the distribution of the

Richardson number takes the local minimum value. At z = zc, from ∂J/∂z|z=zc
= 0, we find

ρg(zc) = 2ρd(zc), (2.5)

by assuming Hd/Hg ≪ 1 because KHI begins when the dust layer becomes thin. From equation

(2.5), zc is given as

zc =

[

ln

(

2Σd

Σg

Hg

Hd

)]1/2

Hg. (2.6)

The Richardson number at z = zc is given by

J(z = zc) =
27

8

(

Hd

ηr

)2

, (2.7)

by assuming Hd/Hg ≪ 1. From equations (2.4), (2.5) and (2.7), the condition of the dust

abundance, fd, which is necessary for GI to occur before KHI is derived as

fd =

[

8π

27
J(z = zc)

]1/2

ηrρc

(

Σd

fd

)−1

≥ 6.6 × 102 ≡ fdc, (2.8)

at r = 1 AU. Note that Σd ∝ fd.

In figure 2.3, results of the distributions of the dust density and the Richardson number

for the case with fd = 6.6 × 102 are shown. In figure 2.3, it can be seen that the dust density

at the midplane indeed attains the critical density, ρc, and that Richardson number remains

marginally larger than the critical alue, Jc. Thus, in the case with single-sized dust aggregates

without growth at r = 1 AU, GI is expected to occur before KHI only if the dust surface

density is much larger than the gas surface density.
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Figure 2.3: Same as Figure 2.2, but for the case with fd = 6.6 × 102 where Hd is Hc. This figure

was presented in Hasegawa & Tsuribe (2013) as figure 2.

This tendency is similar to the result of Sekiya (1998), but the value of fdc given here

(fdc = 6.6 × 102) is larger than the value given in Sekiya (1998) (fdc = 16.8). The value of

fdc in Sekiya (1998) corresponds to the condition that the protoplanetary disk is in a quasi-

equilibrium state for KHI. On the other hand, the value of fdc given here corresponds to the

condition that GI occurs before KHI during sedimentation. The condition used here is more

stringent than that used in Sekiya (1998). This is why the value of fdc derived here is larger

than the value in Sekiya (1998).

2.3 Effect of Size Distribution

Result given in section 2.2 are independent of the dust size as long as the stopping time is

given by Epstein’s law [equation (1.15)], provided that the time scale is renormalized, since the

profile of the dust density evolves in a self-similar manner. The characteristic time scale for the

sedimentation of the dust aggregates in equation (1.19) depends on size of the dust aggregates.

Thus, even for the same time, the scale height of the dust density profile for different sizes

of dust aggregates is different. Therefore, it is expected that the total dust density profile
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will change from the initial Gaussian profile if dust aggregates have a size distribution. From

equations (1.29) and (1.47), the gradient of the dust density is the essential quantity for the

condition of KHI. Thus, it is expected that the condition required for GI to occur before KHI

in the case with the initial size distribution of dust aggregates is expected to be different

from that in the case without the size distribution. Next, we consider the sedimentation of

multi-sized dust aggregates without growth. We consider Nd kinds of dust sizes. We consider

the case when s is given by integer multiples of the minimum size of dust aggregates, smin,

and when the maximum value, smax, is given by Ndsmin. For simplicity, we assume that all

dust aggregates are so small that the stopping time is always given by Epstein’s law [equation

(1.15)].

2.3.1 Dust Density Profile Consistent with Dust Sedimentation

We assume the initial dust density distribution to be equation (1.45). The distribution of the

total dust density, ρd(z), is given as

ρd(z) =

Nd
∑

i=1

ρd, si
(z), (2.9)

where ρd, si
(z) is the density of dust aggregates in the ith bin of size coordinates, si, at z. We

consider the case when ρd, si
(z) is given as

ρd, si
(z) ∝ 1

Hd, si

exp

[

−
(

z

Hd, si

)2
]

, (2.10)

where Hd, si
is the scale height of the dust density profile for dust aggregates with size si. At

t = 0, Hd, si
= Hg for all si.

We assume that gas density is uniform and that ρg(z) = ρg(0) at any z, for simplicity.

According to equation (1.15), the stopping time of dust aggregates, tstop = (ρs/ρg)(s/cs), is

proportional to s, and is constant with z. We assume that the internal density of all dust

aggregates is the same. Then, the sedimentation velocity (in the vertical direction) of dust
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aggregates, vz(z) ∝ tstopz, is proportional to s and to z. From the time evolution of z(t) with

different size of dust aggregates with z = Hg at t = 0, the formula for Hd, si
can be derived as

Hd, si

Hg

=

(

Hd, smin

Hg

)si/smin

. (2.11)

In equation (2.11), it is seen that Hd, si
is determined only by Hd, smin

and si/smin, instead of

si, because the sizes of all dust aggregates are normalized by the smallest dust aggregates.

For simplicity, the initial size distribution is assumed to be a power law of dust size,

nd, si
(z) = nd, smin

(z)

(

si

smin

)p

, (2.12)

where nd, si
(z) is the initial condition of the number density in the ith bin at z with a power

index p. We assume p = −3 for simplicity. In the case with p = −3, si
3nd, si

(z) is equal to

smin
3nd, smin

(z) from equation (2.12). Then, the initial condition of ρd, si
(z) is given by

ρd, si
(z) =

4

3
πρssi

3nd, si
(z) =

4

3
πρssmin

3nd, smin
(z) = ρd, smin

(z). (2.13)

In the case with p = −3, equation (2.13) shows that the initial dust densities in different bins

are the same. In this case, ρd, si
(z) is given by

ρd, si
(z) =

1

Nd

ρd(z) =
1

Nd

Σd√
πHd, si

exp

[

−
(

z

Hd, si

)2
]

. (2.14)

In the case without dust growth, ρd, si
(z) with different i evolves independently, with different

Hd, si
. From equations (2.9), (2.11) and (2.14), we can derive analytical solutions of ρd(z) by

summation of ρd, si
(z) for all i. We assume Nd = 1000.

The dependence of Hd, si
and nd, si

on si/smin shows that the results shown in this section

are independent of the size of individual dust aggregates, si, provided that the time scale is

renormalized, and are dependent on the size ratio, si/smin, as long as the stopping time is

given by Epstein’s law [equation (1.15)].
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Figure 2.4: Dust density and the Richardson number at r = 1 AU for the case with multi-sized

dust aggregates with fd = 50. The lines, abscissas, and ordinates show the same as ones in figure 2.2.

This figure was presented in Hasegawa & Tsuribe (2013) as figure 3.

2.3.2 Results

Figure 2.4 shows the dust density and the Richardson number for the case with fd = 50. In

figure 2.4, it can be seen that the dust density at the midplane attains the critical density

for GI, ρc [equation (1.34)], and that the Richardson number remains larger than the critical

value. This demonstrates that a dust fraction 50-times larger than that of the MMSN model

induces GI before KHI in the case with multi-sized dust without growth. Note that this dust

fraction is about 10-times smaller than that for single-sized dust (figure 2.3). We found that

this tendency is seen in two cases with p = −2 and p = −4. We also checked the dependence

on Nd, and found that this is the case with Nd & 2. Thus, it is seen that KHI tends to be

inhibited before GI if dust aggregates is multi-sized even with the same fd.

Figure 2.5 shows the dust density in the midplane at the onset of KHI for both cases with

single- and multi-sized dust. The symbol ρd,KH is the dust density in the midplane at the

onset of KHI. It is seen that dust density in the midplane at the onset of KHI increases with

increasing the dust abundance in both cases with single- and multi-sized dust. Especially, it

is seen that the condition ρd,KH = ρc is attained by a smaller dust abundance, fd ≃ 50, in the
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Figure 2.5: Dust density in the midplane and in r = 1 AU at the onset of KHI for the case with

single-sized dust aggregates (triangles), and for the case with multi-sized dust aggregates (circles).

The abscissa shows dust abundance, fd, and the ordinate shows the dust density, ρd,KH, in units of

ρc. The approximated curves are also drawn (dotted lines). This figure was presented in Hasegawa

& Tsuribe (2013) as figure 4.

case with multi-sized dust, rather than single-sized dust, fd ≃ 700. On the other hand, in the

case with fd . 20, the dust density in the case with multi-sized dust is smaller than that in

the case with single-sized dust. We explain this result below.

In this section, we assume that ∂ρg/∂z = 0. From equations (1.29) and (1.47), the Richard-

son number is given as

J =
z

ηr

(

1 +
ρd

ρg

)3(

−ηr
ρg

∂ρd

∂z

)−1

. (2.15)

Equation (2.15) shows that KHI tends to occur in the cases with the small dust density, ρd,

and/or with the large absolute value of the vertical dust density gradient, ∂ρd/∂z. In the

case with multi-sized dust, the larger dust aggregates can settle quickly while the smaller dust

aggregates still remain almost in the initial state. Then, the values of the dust density and

the absolute value of the vertical dust density gradient near the midplane become larger than

the case with single-sized dust. In the case with fd ∼ 1, the absolute value of the vertical dust

density gradient becomes too large though the dust density does not become large yet. Thus,
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in the case with fd ∼ 1, the dust density at the onset of KHI in the case with multi-sized

dust becomes smaller than that in the case with single-sized dust. On the other hand, in the

case with fd ≫ 1, the dust density can become large before the absolute value of the vertical

dust density gradient becomes large because the characteristic scale of dust height, Hd, si
, is

different for different i for multi-sized dust. Therefore, in the case with fd ≫ 1, the dust

density at the onset of KHI in the case with multi-sized dust becomes larger, i.e., easier for

GI to occur than that in the case with single-sized dust. This tendency is seen in cases with

p = −2 and p = −4.

2.4 Summary

In the case without dust growth, the results are summarized as follows:

1. In the case when the abundance of dust aggregates is given as MMSN model, KHI is

expected to occur when the dust density at the midplane is still much smaller than the

critical density for GI.

2. GI tends to occur if the abundance of dust aggregates is larger.

3. In the case with multi-sized dust aggregates, the required abundance of dust for GI has

a possibility to be smaller than that in the case with single-sized dust aggregates.

The above results are based on the assumption that multi-sized dust aggregates settle with-

out growth. However, in actual protoplanetary disks, dust aggregates are expected to collide

mutually and to grow during sedimentation. If dust aggregates grow, the size distribution

and the largest size of dust aggregates will change with time. In order to understand the ac-

tual condition for GI before KHI, the dust density distribution for multi-sized dust with dust

growth during sedimentation is required. Next, we consider the case with dust growth.



Chapter 3

The Case with Dust Growth

In this chapter, we consider the condition for GI before KHI with taking account of the

sedimentation and growth of multi-sized dust aggregates.

This chapter is mainly based on our paper, Hasegawa & Tsuribe (2013).

3.1 Models and Methods

In this thesis, we assume that the mass of the central star is given by 1M⊙. As is the case with

chapter 2, we neglect the radial motion of dust aggregates and we set r = 1 AU for simplicity.

We assume that the protoplanetary disk is axisymmetric with respect to the rotational axis

of the disk and is symmetric with respect to the midplane of the disk. In this chapter, we

adopt the cylindrical coordinate system (r, φ, z) at rest. The gas surface density, Σg, the dust

surface density, Σd and temperature, T , are assumed to be equations (1.2), (1.6) and (1.5),

respectively. The sound velocity, cs, is given by equation (1.7). We assume the gas density,

ρg(z), as equation (1.9). The scale height of the disk, Hg, is given by equation (1.10). The value

of η is given by equation (1.14). For simplicity, we assume (r2 + z2)1/2 ≃ r and ∂ΩK/∂z = 0.

The stopping time of dust aggregates is given by equations (1.15) or (1.16). As described in

subsection 1.4.1, we approximate velocities of the gas and dust components by the terminal

43
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velocity given as equations (1.18) and (1.22)-(1.25). In order to calculate the growth and

sedimentation of dust aggregates, we numerically solve the coagulation equation (1.37). The

coalescence rate is given by equations (1.39), (1.40) and (1.41). To discuss the possibility of

KHI, we calculate the Richardson number given by equation (1.47) with gz = ΩK
2z, ρ = ρg+ρd

and Jc = 0.25, for simplicity (Sekiya & Ishitsu 2001). For the revolutions of gas and dust, we

treat the mixture of gas and dust as one component fluid with laminar flow as described in

subsection 1.5.1, and we give the azimuthal velocity of mixed fluid of gas and dust as equation

(1.28). Since we focus on the phase before KHI, we assume that there is no turbulence in the

disk.

Dust density, ρd(z), is assumed to be symmetric with respect to the midplane, and we

examine only the region of z ≥ 0. As the initial condition, the initial density of dust is given

by equations (1.45) and (1.46). We assume that all dust aggregates have the same initial size,

s0 = 1.0 × 10−4 cm, and that the internal density of dust aggregates, ρs, is 3 g cm−3. The

numerical methods of calculations are presented in the Appendix D.

3.2 Results

3.2.1 Possibilities of KHI in the Early Stage

Figure 3.1 shows the distribution of the dust density and the Richardson number at t = 25

yr. In figure 3.1, although the distribution of the dust density changes little from the initial

state in this short period, it can be seen that the Richardson number becomes small enough

for small z, especially at z/Hg . 10−4 ≪ 1. This rapid decline of J did not appear in the case

without the growth of dust aggregates, described in chapter 2. We suppose that the growth of

dust aggregates is the origin of this rapid decline in the Richardson number at z/Hg ≪ 1 and

at t/tsed ≪ 1.

Equations (1.29) and (1.47) show that the Richardson number is a function of the gradient
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Figure 3.1: (a) The distribution of dust density at r = 1 AU and at t = 25 yr. The line, the abscissa,

and the ordinate show the same as ones of figure 2.2a. (b) The distribution of the Richardson number

at t = 25 yr. The abscissa shows Richardson number. The ordinate shows z coordinate in units of Hg.

The critical value Jc is also drawn (dotted line). This figure was presented in Hasegawa & Tsuribe

(2013) as figure 6.

of the dust density, ∂ρd(z)/∂z. Thus, we focus on ∂ρd(z)/∂z and compare the cases with and

without dust growth. In order to clarify the effect of dust growth, we first look at the case

without the growth of dust aggregates. We consider the case when all dust aggregates have a

single size as an initial condition as is the case with dust growth. In the case with single-sized

dust aggregates without growth, the typical size of the dust aggregates, s̄(z), which is defined

as

s̄(z) ≡
∫∞

0
smn(m, z)dm

∫∞

0
mn(m, z)dm

, (3.1)

is equal to s0, and is independent of z. Garaud and Lin (2004) showed that the time dependence

of the dust density profile proceeds in a self-similar manner in the case without the growth of

dust aggregates. In this case, the gradient of the dust density is given by

∂ρd(z)

∂z
= − 2Σdz√

πHd
3
∝ z → 0 (z → 0). (3.2)

In order to compare with the case including the growth of dust aggregates, we consider the

mean sedimentation velocity of dust at z, v̄z(z), which is derived from equations (1.18), (1.44),
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and (3.1). At z/Hg ≪ 1 and at t/tsed ≪ 1, v̄z(z) is given by

v̄z(z) ≡ − ρs

ρg(z)

s̄(z)

cs
ΩK

2z. (3.3)

In the case without the growth of dust aggregates, v̄z(z) ∝ z at z/Hg ≪ 1, because s̄(z) = s0.

Second, we consider the case with the growth of dust aggregates. In this case, the typical

size of dust aggregates, s̄(z), is a linear function of z at z/Hg ≪ 1 and at t/tsed ≪ 1, owing

to collisions due to sedimentation (see the Appendix F for the reason). In such a case, v̄z(z)

has a quadratic term of z because the typical size of dust aggregates is a linear function of z

[equation (3.3)]. By comparing the functional form of v̄z(z) with that in the case without dust

growth, at z/Hg ≪ 1 and at t/tsed ≪ 1, it is suggested that the gradient of the dust density is

given by
∂ρd(z)

∂z
= δ1z + δ2 → δ2 (z → 0), (3.4)

where δ1(< 0) and δ2(> 0) are appropriate values.

Figure 3.2 shows the distribution of the gradient of the dust density at z/Hg ≪ 1 and at

t = 25 yr for cases with and without dust growth. From figure 3.2, it is confirmed that the

distribution of the gradient of the dust density can be approximated by equation (3.4) with

δ2 > 0 in the case with dust growth. We can approximate ∂ρd(z)/∂z ≃ [−2.0(z/Hg) + 1.0 ×
10−5][ρd0(0)/Hg] (figure 3.2). This indicates that the distribution of the dust density has a

local maximum value at z/Hg ∼ 5×10−6 in the case with the growth of dust aggregates. This

can be confirmed by noting that figure 3.3 that shows the distribution of the dust density in

z/Hg ≪ 1 and at t = 25 yr in the case with dust growth. By approximating ρg(z) as ρg(0)

and ρd(z) as ρd0(0), the Richardson number for z/Hg ≪ 1 is given by

J =

(

16

13

)2(
r

Hg

)2(
Σg

Σd

)−2(
Σg

Σd

+ 1

)3

× z

Hg

[

2Σg

Σd

z

Hg

− ∂ρd(z)

∂z

Hg

ρd0(0)

] [

2z

Hg

+
∂ρd(z)

∂z

Hg

ρd0(0)

]−2

= 1.7 × 105 z̃

[

4.8 × 102 z̃ − ∂ρ̃d(z̃)

∂z̃

] [

2 z̃ +
∂ρ̃d(z̃)

∂z̃

]−2

, (3.5)
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Figure 3.2: Distribution of the gradient of dust density in r = 1 AU and z/Hg ≪ 1 at t = 25 yr.

The abscissa shows the gradient of the dust density ∂ρd(z)/∂z in units of ρd0(0)/Hg. The ordinate

shows z coordinate in units of Hg. Circles show the case with dust growth, and triangles show that

without dust growth. This figure was presented in Hasegawa & Tsuribe (2013) as figure 7.

where z̃ ≡ z/Hg and ρ̃d ≡ ρd/ρd0(0). Figure 3.4 shows the distribution of the Richardson

number at z/Hg ≪ 1 and at t = 25 yr in the case with the growth of dust aggregates. In figure

3.4, it can be seen that the numerical solutions of the Richardson number are sufficiently close

to the approximate equation (3.5). Figure 3.4 shows that the Richardson number drawn by

the solid line is smaller than the critical value, Jc, around the midplane at t = 25 yr.

However, it is doubtful for KHI to occur. Figure 3.3 shows that the distribution of the dust

density has a local maximum value at z 6= 0. Under the local maximum point, the Rayleigh-

Taylor instability (RTI) is suspected to occur because the distribution of the gradient of total

density, ρ = ρg +ρd, becomes positive near the midplane (Chandrasekhar 1961). If RTI occurs,

the distribution of the total density in this region is expected to be adjusted as to be constant

(Watanabe & Yamada 2000; Sekiya & Ishitsu 2001). If it is assumed that the growth rate of

RTI is larger than that of KHI, and that the distribution of the total density becomes constant

around the midplane, the gradient of the total density becomes zero near the midplane. In

this case, the Richardson number near the midplane becomes infinite. Then, it is indicated
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Figure 3.3: Distribution of dust density in r = 1 AU and z/Hg ≪ 1 at t = 25 yr in the case with

the growth of dust aggregates. The line, abscissa, and ordinate show the same situation as in figure

2.2a. This figure was presented in Hasegawa & Tsuribe (2013) as figure 8.
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Figure 3.4: Distribution of the Richardson number in r = 1 AU and z/Hg ≪ 1 at t = 25 yr in

the case with growth of dust aggregates. The circles, the dotted line, the abscissa, and the ordinate

show the same situation as in figure 3.1b. The solid line is given by equation (3.5). This figure was

presented in Hasegawa & Tsuribe (2013) as figure 9.
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that KHI does not occur. Thus, below, the possibility of KHI near the midplane in the early

phase, as indicated in figure 3.1b, is not considered further.

3.2.2 The Dust Density at the Onset of KHI for the Case with Dust

Growth

Figure 3.5 shows the dust density distribution at the onset of KHI in the case with dust

growth with fd = 1. In figure 3.5a, the distribution of the dust density has a local maximum

value at z = zRT ∼ 10−3Hg, and there is a region where the gradient of the dust density

becomes positive. As discussed in subsection 3.2.1, in this case, the distribution of the dust

density is expected to be adjusted to be constant by RTI in the region z . zRT. Assuming

this adjustment by RTI, we modify the distribution of dust density as figure 3.5b with mass

conservation. Note that this treatment for RTI is crude, and that a more accurate treatment

should be addressed in the future. Hereafter, the same modification is always applied for the

density near the midplane.

Figure 3.6 shows the modified dust density at the onset of KHI as a function of the dust

abundance parameter. Figure 3.6 corresponds to figure 2.5 with dust growth. Since it is

difficult to numerically calculate the case with large fd because of the computer performance,

results only for the case with fd ≤ 4 are plotted. In figure 3.6, it can be seen that dust density

at KHI, ρd,KH, increases with increasing the dust abundance parameter, fd, for the case with

fd < 2 as is seen in figure 2.5. On the other hand, in the case with fd > 2, the dust density

at KHI decreases with increasing dust abundance. These tendencies are qualitatively different

from figure 2.5. In figure 3.6, our results show that dust density in the midplane at the onset

of KHI for the case with fd = 4 is about the same as that for the case with fd = 1. As the

physical origin of the decline of ρd,KH for fd > 2, we consider the difference in property of gas

drag. After dust aggregates grow, the law of gas drag changes from Epstein’s law to Stokes’

law. Figure 3.7 shows the mass function, where the dust density distribution takes a local
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Figure 3.5: Dust density in r = 1 AU at the onset of KHI for the case with dust growth and fd = 1.

(a) Dust density obtained by numerical calculations. (b) Dust density adjusted as to be constant

(solid line) and the dust density not adjusted (dotted line). The dust density not adjusted is equal to

that obtained by numerical calculations. For both (a) and (b), the abscissas show the dust densities

ρd(z)’s in units of ρc, and the ordinates show z coordinates in units of Hg. This figure was presented

in Hasegawa & Tsuribe (2013) as figure 10.

maximum value at the onset of KHI for the case with fd = 1 and fd = 4, respectively. For the

case with fd = 1, the mass function has two peaks at m/m0 ∼ 102 and at m/m0 ∼ 1012, and

the typical size of dust aggregates, s̄ [equation (3.1)], is 0.9 cm. (The mass of dust aggregates

with this typical size is about 1012m0. ) On the other hand, for the case with fd = 4, the

mass function has two peaks at m/m0 ∼ 102 and at m/m0 ∼ 1014, and the typical size of dust

aggregates, s̄, is 4 cm. (The mass of dust aggregates with this typical size is about 1014m0.

) In the case with s ≥ 3lg/2 = 2.2 cm, the stopping time is given by Stokes’ law. By a

comparison of these results, it is suggested that the decrease of the dust density at KHI for

fd > 2 in figure 3.6 originates from a change in the law of gas drag due to dust growth.

To confirm this possibility, for reference, we recalculated sedimentation of dust aggregates

with growth using Epstein’s law for all sizes. The solids line in figure 3.8 shows the dust density

at the onset of KHI, ρd,KH, for this case. It can be clearly seen that the dust density at the

onset of KHI, ρd,KH, is large for the large dust abundance parameter, fd. By comparing the
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Figure 3.6: Modified dust density in r = 1 AU at the onset of KHI for the case with dust growth.

The abscissa and the ordinate show the same as situation in figure 2.5. This figure was presented in

Hasegawa & Tsuribe (2013) as figure 11.
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Figure 3.7: (a) Mass function in the case with fd = 1 at z = 1.5× 10−3Hg and r = 1 AU, where the

distributions of the dust density take a local maximum value at the onset of KHI. (b) Mass function

in the case with fd = 4 at z = 3.8 × 10−4Hg and r = 1 AU, where the distributions of dust density

takes a local maximum value at the onset of KHI. In both diagrams (a) and (b), the abscissa shows

the dust mass, m, in units of m0. The ordinate shows the mass function, mn(m, z), in units of

ρd0(0)/m0. The dotted lines show the border line, where the stopping time changes from Epstein’s

law to Stokes’ law. This figure was presented in Hasegawa & Tsuribe (2013) as figure 12.
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Figure 3.8: Modified dust density in r = 1 AU at the onset of KHI for the case with dust growth in

cases of using both Epstein’s law and Stokes’ law (dotted line and squares), and using only Epstein’s

law for all size (solid line and crosses). The abscissa and the ordinate show the same as ones of figure

2.5. This figure was presented in Hasegawa & Tsuribe (2013) as figure 13.

two lines in figure 3.8, it is clear that the physical origin for the decline of ρd,KH for fd > 2

(dotted line) is the change of the gas drag from Epstein’s law to Stokes’ law. Therefore, it is

significant for us to take into account the dust size dependence of the stopping time as well as

dust growth when we investigate the shear-driven turbulence in the protoplanetary disk.

3.3 Discussion

3.3.1 Dependence on the Heliocentric Distance

We now estimate the dependence of the required abundance of dust for GI before KHI on the

heliocentric distance, r. First, we consider the case without dust growth. For simplicity, we

consider the case when all dust aggregates have a single size. The scale height of the dust

density profile at the onset of KHI can be obtained from equation (2.7), and we define the

scale height as HKHI. By substituting Jc and HKHI for J(z = zc) and Hd in equation (2.7),
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respectively, HKHI is given by

HKHI =

(

8Jc

27

)1/2

ηr = 1.0 × 10−2Hg

(

r

1[AU]

)1/4

. (3.6)

Equation (3.6) shows that HKHI is independent of fd. The dependence of Hc [defined in

equation (2.4)] on r is given by Hc = 1.6 × 10−5fd ξiceHg(r/1 [AU])1/4, and we have

HKHI

Hc

= 6.6 × 102

(

fd

1

)−1(
ξice
1

)−1

. (3.7)

The parameter of condensed water ice, ξice, is given by 1 (at r < 2.7 AU) or 4.2 (at r > 2.7

AU) (Hayashi 1981). Equation (3.7) shows the possibility that the required abundance of dust

for GI before KHI is smaller outside the snow line than inside. Next, we consider the case with

dust growth. At the onset of KHI, most of the dust aggregates with the typical size calculated

in subsection 3.2.2 [defined in equation (3.1)] have settled near the midplane. Thus, the typical

size of dust at the onset of KHI can be obtained as the size of dust aggregates that have settled

from high altitudes to the midplane. We have dm = 4πs2ρsds ∼ −π(2s)2ρddz. Assuming that

s = s0 at z = +∞ and that s = sf ≫ s0 at z = 0, we derive sf as

sf ∼
Σd

2ρs

∼
(

fd

1

)(

ξice
1

)(

r

1[AU]

)−3/2

[cm]. (3.8)

The typical sizes of dust at the onset of KHI calculated in subsection 3.2.2 were 0.9 cm and

4 cm in the case with fd = 1 and fd = 4, respectively, and consistent with equation (3.8).

Equation (3.8) shows that the typical size of dust at the onset of KHI is smaller for larger r.

On the other hand, the mean free path of gas molecules scales as lg ∝ ρg
−1 ∝ HgΣg

−1 ∝ r11/4,

and lg is larger for larger r. Thus, the gas drag force tends to be given by Epstein’s law in

the outer region of a protoplanetary disk, even for a large fd. The solid line in figure 3.8

shows that the dust density at the onset of KHI is larger for larger fd in the Epstein regime.

Therefore, the outer region of the protoplanetary disk might be more suitable for GI than the

inner region.

The above discussion is different from that in Takeuchi et al. (2012), which shows that the

inner part of the protoplanetary disk is more suitable for GI. They are based on a different
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condition from ours. They used the scale height of the dust layer, which is determined by the

balance between sedimentation and the diffusion of dust aggregates, while we used the scale

height of the dust density profile at the onset of KHI.

3.3.2 Treatment for Rayleigh-Taylor instability

In this chapter, we took into account the effect of RTI. However, the treatment for RTI used

in this chapter was crude, and the detail of convection induced by RTI did not take into

account. In future work, we should address a more accurate treatment for RTI in the case

with multi-sized dust with growth.

3.3.3 Possibilities of the Streaming Instability

Youdin & Goodman (2005) and Johansen & Youdin (2007) showed that the dynamics in the

midplane is dominated by the streaming instability (SI). Bai & Stone (2010) showed that dust

aggregates with τs ≡ ΩKtstop > 0.01 trigger SI before KHI. In our model, at r = 1 AU, τs > 0.01

corresponds to s > 2 cm. In our calculations, for the case with dust growth and fd > 2, the

typical size of dust aggregates at the maximum density is larger than 2 cm. Therefore, in

the dust layer governed by Stokes’ law, SI would occur before KHI and GI. If SI occurs, it is

expected that dust aggregates accumulate toward dense regions of dust. Then, dense clumps

of dust aggregates form in the disk (Johansen & Youdin 2007). In the dense clumps, dust

abundance is much larger than the MMSN model. In future work, we should address SI in the

case with multi-sized dust with growth.

3.3.4 Possibility after Kelvin-Helmholtz Instability

In this chapter, we found that KHI tends to occur before GI even in the case with large dust

abundance during sedimentation with dust growth. This result suggests that small dust aggre-

gates tend to be suffered from stirring up by shear-driven turbulence induced by KHI during
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their sedimentation at least once. However, this suggestion does not exclude the possibility for

GI. If dust aggregates have larger collisional velocities owing to the shear-driven turbulence

than owing to sedimentation and radial drift, dust aggregates have the possibility to grow

quickly or fragment. If the dust size distribution becomes a quasi-equilibrium distribution as

a result of iterations of collisional growth and fragmentation of dust, then the state may be

similar to that in the case with multi-sized dust aggregates without growth. Then, GI might

occur in the case with large dust abundance. However,it is not known if the quasi-equilibrium

size distribution of dust aggregates arises. To understand this possibility, we must take account

of dust-dust collisions with shear-driven turbulence induced by KHI. In future work, we will

study this possibility.

3.4 Summary

In the case with dust growth, the dust density at the onset of KHI decreases for increasing

dust abundance for fd > 2. This result is qualitatively different from that in the case without

dust growth. The reason is that gas drag changes from Epstein’s law to Stokes’ law for larger

dust aggregates that grow up in advance. Thus, we stress that, for studying of shear-driven

turbulence, the change of the law of gas drag from Epstein’s law to Stokes’ law as well as dust

growth is required to be taken into account.

For the formation of planetesimals, it has been suggested in the literature that in order to

occur GI before an inward drift of dust, dust aggregates have to settle toward the midplane,

and it is suggested to be possible with large dust abundance. However, in this thesis, it is

concluded that KHI tends to occur before GI even in the case with large dust abundance

during sedimentation with dust growth. This result suggests that small dust aggregates tend

to be suffered from stirring up by shear-driven turbulence induced by KHI during their sed-

imentation at least once. However, this conclusion does not exclude the possibility for GI.

If dust aggregates have larger collisional velocities owing to the shear-driven turbulence than
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owing to sedimentation and radial drift, dust aggregates have the possibility to grow quickly or

fragment. This effect was not included in this thesis. To understand this possibility, we must

take account of dust-dust collisions under the condition with shear-driven turbulence induced

by KHI. In future work, we should develop a more realistic model by calculating the effect of

KHI, RTI and SI directly.



Chapter 4

Validity of the Classical RNC

In chapter 2 and 3, in order to investigate dust densities in the midplane at the onset of

KHI, we used the classical Richardson number criterion (RNC) (Chandrasekhar 1961). How-

ever, as described in subsection 1.5.4, the classical RNC is not ensured to discuss KHI in the

protoplanetary disk.

In this chapter, we discuss the validity of the classical RNC. To that end, we directly perform

the linear stability analysis for KHI. The growth rate of KHI is calculated using the linear

stability analysis in order to detect instability with the dust density distribution consistent

with dust sedimentation, and the dust density required for GI before KHI is calculated. By

comparing the result estimated by the linear stability analysis for the onset of KHI with that

estimated by the classical RNC, we discuss the validity of the classical RNC.

For simplicity, we consider multi-sized dust but neglect dust growth in this chapter.

This chapter is mainly based on our paper, Hasegawa & Tsuribe (2014).

4.1 Models and Equations

In this chapter, we investigate the stability for the series of the density distribution induced

by sedimentation. Actually, the stability analysis with the time-dependent evolution of the

57
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dust density can not be reduced to the eigenvalue problem. However, in this chapter, density

distributions for each instant of time are approximated as quasi-equilibrium distributions since

we assume in subsection 4.1.1 that dust sedimentation is significantly slow. In such a case,

the dust density profile evolves in a self-similar manner with single-sized dust without growth

(Garaud & Lin 2004). On the other hand, in the case with multi-sized dust, the dust density

profile is not self-similar during dust sedimentation as described in section 2.3.

In this chapter, we perform the linear stability analysis for KHI. In this section, we present

the models of the unperturbed state and the linear perturbation equation.

4.1.1 Models of Unperturbed State

In this thesis, we assume that the mass of the central star is given by 1M⊙. As is the case with

chapter 2, we neglect the radial motion of dust aggregates and we set r = 1 AU for simplicity.

We assume that the unperturbed quantities are axisymmetric with respect to the rotational

axis of the disk and are symmetric with respect to the midplane of the disk. In this chapter, we

adopt the local Cartesian coordinate system (x, y, z) at r = 1 AU rotating around the central

star with the azimuthal velocity (1 − η)vK (Sekiya & Ishitsu 2000). The gas surface density,

Σg, the dust surface density, Σd and temperature, T , are assumed to be equations (1.2), (1.6)

and (1.5), respectively. The sound velocity, cs, is given by equation (1.7). For simplicity, we

assume that the gas density is uniform in the dust layer because the dust layer is geometrically

thin and that ρg(z) = ρg(0) at any z. Then, the gas density is assumed as

ρg =
Σg√
πHg

= 1.4 × 10−9 [g cm−3]. (4.1)

The scale height of the disk, Hg, is given by equation (1.10), andHg = 4.7×10−2 AU. The value

of η is given by equation (1.14). For simplicity, we assume (r2 + z2)1/2 ≃ r and ∂ΩK/∂z = 0.

We assume that all dust aggregates are so small that the stopping time is always given by

equation (1.15) and that tstopΩK ≪ 1 ≪ tsedΩK from equations (1.15) and (1.19). For the

revolutions of gas and dust, we treat the mixture of gas and dust as one component fluid, and
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the unperturbed azimuthal velocity of mixed fluid of gas and dust is given as

v0 =

(

1 − ρg

ρ0

)

ηvK, (4.2)

where v0 is the unperturbed azimuthal velocity of the mixed fluid of gas and dust and ρ0 ≡
ρg + ρd0(z), where ρd0(z) is the unperturbed dust density. In this chapter, subscript 0 refers

the unperturbed quantities, and subscript 1 refers the perturbed quantities. Equation (4.2)

corresponds to equation (1.28) with ρ = ρ0.

We adopt the initial dust density distribution that is the same as the unperturbed dust

density distribution in Sekiya & Ishitsu (2001), and that is given by

ρd0(z) =







(ρini/2) [1 + cos (πz/zd)] (|z| < zd)

0 (|z| ≥ zd)
, (4.3)

where zd is the time dependent scale height of the dust density profile with zd = Hg at the

initial state, and ρini is the initial dust density at the midplane and is given by

ρini =
Σd

Hg

. (4.4)

We consider Nd kinds of sizes (radii) for dust aggregates. In this case, the dust density

distribution ρd0(z) is given by

ρd0(z) =

Nd
∑

i=1

ρd0, si
(z), (4.5)

where ρd0, si
(z) is the density of dust component with size si at z. Equation (4.5) corresponds

to equation (2.9) with ρd = ρd0 and ρd, si
= ρd0, si

. For simplicity, we assume that the initial

size distribution is given by

ρd0, si
(z) = ρd0, smin

(z) =
ρd0(z)

Nd

, (4.6)

where smin is the minimum size of dust aggregates. Equation (4.6) corresponds to equations

(2.13) and (2.14) with ρd = ρd0 and ρd, si
= ρd0, si

. In this case, ρd0, si
(z) is given by

ρd0, si
(z) =







(ρini/2Nd)(Hg/zd, si
) [1 + cos (πz/zd, si

)] (|z| < zd, si
)

0 (|z| ≥ zd, si
)
, (4.7)
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where zd, si
is the scale height of the dust density profile for dust with size si, and zd, si

is

derived as
zd, si

Hg

=

(

zd, smin

Hg

)si/smin

, (4.8)

where zd, smin
is the scale height of the dust density profile for minimum dust aggregates. The

symbol zd, smin
corresponds to zd [equation (4.3)]. Equation (4.8) corresponds to equation (2.11)

with Hd, si
= zd, si

. We assume Nd = 11 since we checked that the dependence of dust density

at the onset of KHI estimated by the classical RNC on dust abundance is affected by the dust

size distribution in the case with Nd & 2. We assume that si is given by smin, 1.1smin, 1.2smin,

. . . , and 2smin. If the values of fd and zd, smin
are given, the dust density distribution ρd0(z) is

obtained from equations (1.6), (4.4), (4.5), (4.7) and (4.8).

As described in subsection 2.3.1, the results shown in this chapter are independent of the

size of individual dust aggregates, si, provided that the time scale is renormalized, and are

dependent on the size ratio, si/smin, as long as the stopping time is given by Epstein’s law

[equation (1.15)].

For comparison for the onset of KHI, we calculate the Richardson number given by

J = −gz

ρ0

∂ρd0(z)

∂z

(

∂v0

∂z

)−2

, (4.9)

where gz = ΩK
2z. For simplicity, we adopt Jc = 0.25. Equation (4.9) corresponds to equation

(1.47) with vφ = v0, ρ = ρ0 and ∂ρg/∂z = 0. From equations (4.2) and (4.9), we obtain

J = − z

η2r2

ρ0
3

ρg
2

[

∂ρd0(z)

∂z

]−1

. (4.10)

Equation (4.10) corresponds to equation (2.15) with ρ = ρ0.

4.1.2 Linear Perturbation Equation

We calculate the growth rate of KHI for the case with the unperturbed dust density described

in subsection 4.1.1. To calculate the growth rate, we solve the linear perturbation equation
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derived by Sekiya & Ishitsu (2000). Perturbed quantities are assumed to have the form as F1 =

F̂1(z) exp[i(ky − ωt)], where k is the azimuthal wave number, y is the azimuthal coordinate,

and ω = ωr + iωi is the complex angular frequency. For perturbed quantities, we restrict

ourselves to the case with the radial wave number to be zero because this is the most unstable

mode. Hereafter ˆ is omitted, and the perturbation equation is given by

d2w1

dz2
+

1

ρ0

dρ0

dz

dw1

dz
−
(

k2 +
1

v̄

d2v0

dz2
+

1

ρ0

dρ0

dz

1

v̄

dv0

dz
+

ΩK
2z

v̄2

1

ρ0

dρ0

dz

)

w1 = 0, (4.11)

where w1 is the perturbed vertical velocity, and v̄ ≡ v0 − ω/k. Boundary conditions at the

midplane of the disk, i.e., at z = 0 are given by

w1 = 0 at z = 0 (odd mode), (4.12)

and
dw1

dz
= 0 at z = 0 (even mode). (4.13)

Boundary condition at the boundary surface between the dust layer and the gas layers, i.e., at

z = zd is given by
dw1

dz
+

(

k − 1

v̄

dv0

dz

)

w1 = 0 at z = zd. (4.14)

We present the detailed derivation of the linear perturbation equation (4.11) and the boundary

conditions in the Appendix G.

In order to solve the linear perturbation equation (4.11), we assume the dust abundance

parameter, fd, the azimuthal wave number, k, and the dust density at the midplane, ρd0(0).

Then, we can solve the linear perturbation equation (4.11) numerically with the boundary

condition (4.14) for the odd mode (4.12) and the even mode (4.13), respectively. At fixed dust

abundance, fd, and the dust density, ρd0(0), we obtain eigenvalues, ωr and ωi, as functions of

the wave number, k, respectively. At fixed dust abundance, fd, the maximum growth rate,

ωi,max, is given by a function of the dust density. Especially, we regard the minimum dust

density for ωi,max ≥ 0 as the possible dust density reachable without KHI, then the possible

dust density at the midplane, ρd0(0), is finally derived as a function of dust abundance, fd.
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In this chapter, we compare the following two cases. The case with single-sized dust

without the size distribution is labeled with A, and the case with multi-sized dust with the

size distribution is labeled with B.

4.2 Results and Discussion

It is found that even modes are more unstable than odd modes except for two cases: case B

with fd = 1 and ρd0(0) < 0.33ρg, and case B with fd = 2 and ρd0(0) < 0.61ρg.

Figure 4.1 shows the maximum growth rates of KHI as functions of the dust density at the

midplane. From Figure 4.1, the crossing point of each line with ωi,max = 0 is the possible dust

density attained before KHI. As seen in Figure 4.1, it is seen that the dust density in the case

with ωi,max = 10−3ΩK approximates the dust density in the case with ωi,max = 0. Since it is

technically difficult to calculate the case with exactly ωi,max = 0 especially in the case with

the large dust abundance parameter fd, we use the dust density for ωi,max = 10−3ΩK instead

of that for ωi,max = 0 except for case B with fd = 1 and B with fd = 2. For the two cases B

with fd = 1 and B with fd = 2, we use the dust density for ωi,max = 10−5ΩK instead of that

for ωi,max = 0.

Figure 4.2 shows dust densities in the midplane as functions of dust abundance. A label

A-J refers the case A (with single-sized dust) with Jmin = 0.25, a label A-ωi refers the case A

with ωi,max = 10−3ΩK, a label B-J refers the case B (with multi-sized dust) with Jmin = 0.25,

and a label B-ωi refers the case B with ωi,max = 10−5ΩK (case B-1) or ωi,max = 10−3ΩK (other

cases). From Figure 4.2, it is found that for both cases A and B the dust abundance parameters

significantly coincide between the cases with ωi,max ∼ 0 and with Jmin = 0.25. Especially, the

dust density at the midplane ρd0(0) in the case B-ωi with fd ≤ 20 remarkably coincides with

that in the case B-J, and the dotted and solid lines look like overlapping.

In Figure 4.2, it is seen that dust abundance parameters required to achieve ρd0(0)/ρc = 1

for the case with Jmin = 0.25 are fd = 2.5 × 103 in the case A-J and fd = 74 in the case B-J.
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Figure 4.1: Maximum growth rates of KHI ωi,max normalized by the Keplerian angular velocity ΩK

as functions of the dust density at the midplane normalized by that in the case with ωi,max = 10−3ΩK.

A-1 means the case A with fd = 1, A-10 means the case A with fd = 10, B-1 means the case B with

fd = 1, and B-10 means the case B with fd = 10. This figure was presented in Hasegawa & Tsuribe

(2014) as figure 1.
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Figure 4.2: Dust densities at the midplane ρd0(0) normalized by the critical density for GI ρc as

functions of the dust abundance parameter fd for the cases A (triangles) and B (circles). Dotted

lines show the densities with the minimum value of the Richardson number distribution Jmin = 0.25.

Solid lines show the densities with the maximum growth rate of KHI ωi,max = 10−5ΩK (case B-1) or

10−3ΩK (other cases). This figure was presented in Hasegawa & Tsuribe (2014) as figure 2.
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On the other hand, in the case with ωi,max ∼ 0, it is seen that dust abundance parameters

required for ρd0(0)/ρc = 1 are fd = 1.6 × 103 in the case A-ωi and fd = 56 in the case B-ωi.

In above results, values of dust abundance parameters fd are larger than values in chapter

2 that are fd = 6.6 × 102 in the case A-J and fd < 50 in the case B-J. This is because the

initial dust density distribution in this chapter is different from the Gaussian profile used in

chapter 2. From equation (4.10), the Richardson number distribution depends strongly on the

dust density profile, so dust abundance required for GI varies with the initial dust density

distribution even with the same Jmin.

In figure 4.2, it is found that dust abundance parameters required to achieve ρd0(0)/ρc = 1

in the case with multi-sized dust is much smaller than these in the case with single-sized

dust. This tendency is similar to the result in chapter 2. We suggest the possibility that this

tendency is independent on the initial distribution of the dust density.

In summary, it is found that, for both cases with single-sized dust and with multi-sized

dust, the dust abundance parameters significantly coincide between the cases with ωi,max ∼ 0

and with Jmin = 0.25 within a factor of 2. Thus, it is seen that dust abundance parameters

that we calculated in chapter 2 using the classical RNC are reasonable within a factor of 2.

From figure 4.2, for both cases with single-sized dust and with multi-sized dust, dust

densities at the onset of KHI calculated by ωi,max ∼ 0 are well in accord with those calculated

by Jmin = 0.25 in the cases with fd < 10. This result suggests that the classical RNC is safely

used in the case with dust growth as in chapter 3. We should confirm this possibility using

more cases in future work.

For the case with fixed fd and ω = ωi,max, we calculate the spatial profile of a Richardson

number as a function of z. Then we name the minimum value of the Richardson number in this

profile as the critical Richardson number. Figure 4.3 shows the critical Richardson numbers

in the case with ωi,max = 10−5ΩK (cases B-1 and B-2) or ωi,max = 10−3ΩK (other cases) as

functions of the dust abundance parameter, fd. For the case A (with single-sized dust), the

critical Richardson number tends to decrease with increasing the dust abundance parameter,
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Figure 4.3: Minimum Richardson numbers in the case with ωi,max = 10−5ΩK (cases B-1 and B-2)

or ωi,max = 10−3ΩK (other cases) as functions of the dust abundance parameter fd for the case A

(triangles) and for the case B (circles). This figure was presented in Hasegawa & Tsuribe (2014) as

figure 3.

fd. On the other hand, for the case B (with multi-sized dust), the critical Richardson number

tends to increase with the dust abundance parameter, fd, in the case with fd ≤ 20 and to

approach 0.25 in the case with 5 ≤ fd ≤ 20. This result is different from that in the case A.

From these results for multi-sized dust, the critical Richardson number is approximated by

0.25, and Jmin = 0.25 condition is applicable in the case with 5 . fd . 20.

The Coriolis and tidal forces are not included in the linear perturbation equation (4.11).

Ishitsu & Sekiya (2003) performed the linear stability analysis including these forces and found

that the tidal force plays an important role in the stabilization. However, as a first step to

focus on the effect of the dust size distribution, in this thesis we ignore the Coriolis and tidal

forces for simplicity.

4.3 Summary

In this chapter, we have calculated the growth rate of the Kelvin-Helmholtz instability using

the dust density distribution that is consistent with sedimentation of dust aggregates without
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growth. We assumed the thin dust layer and the uniform gas density. Dust aggregates were

assumed to be small, and the mixture of gas and dust aggregates was treated as one component

fluid. We considered the dust size distribution without the dust growth. We have solved the

linear perturbation equation to calculate the growth rate, and we have examined the dust

abundance required for the gravitational instability of the dust layer before KHI.

Our study shows the following results: (1) For the dust abundance required for the gravi-

tational instability, in the both cases with single- and multi-sized dust, the dust abundance for

the case with ωi,max ∼ 0 is about the same as that derived by the condition Jmin = 0.25. Thus,

it is seen that dust abundance parameters calculated in chapters 2 and 3 using the classical

Richardson number criterion, Jmin = Jc = 0.25, are reasonable within errors of a factor of

2. (2) The critical Richardson number is affected by the dust size distribution. In the case

with single-sized dust, the critical Richardson number tends to decrease with increasing dust

abundance. On the other hand, in the case with multi-sized dust, the critical Richardson

number tends to increase and approach 0.25 with increasing dust abundance in the case with

5 . fd . 20. Thus, it is indicated that Jmin = 0.25 condition is applicable in the case with

multi-sized dust with 5 . fd . 20.



Chapter 5

Summary and Future Prospects

5.1 Summary

In this thesis, we have investigated the possibility of the onset of the Kelvin-Helmholtz in-

stability (KHI) during dust sedimentation in the protoplanetary disk. Since property of KHI

strongly depends on the dust density profile, in order to understand correct outcome after

dust sedimentation correctly, it is important to consider appropriate density distribution with

sedimentation and growth of dust. However, previous works did not take into account the ap-

propriate distribution of dust density, which is consistent with their sedimentation and growth.

In this thesis, we consider the KHI based on the dust density distributions that are consistent

with their growth and sedimentation.

In order to clarify the effects of dust growth, we first considered the cases without dust

growth to compare with the case with dust growth. As cases without dust growth, we consid-

ered two cases: the case with the single-sized dust and the case with the multi-sized dust. As

the condition for the onset of KHI, we used the classical Richardson number criterion (RNC)

by which KHI occurs when the Richardson number is less than 0.25. As a result, it was found

that the gravitational instability (GI) of the settled dust layer tends to occur before the onset

of KHI if the dust abundance is larger than ∼ 1000 times (for the single-sized dust) or ∼ 100
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times (for the multi-sized dust) that in the minimum mass solar nebula model. This result

shows that, in the multi-sized dust, the dust abundance required for GI is much smaller than

that in the single-sized dust. In the case with single-sized dust, the dust density profile has

a characteristic scale. In the case with multi-sized dust, on the other hand, the characteristic

scale is diffused out to produce more stabilized profile. Thus, in the case with multi-sized dust

aggregates, the required abundance of dust for GI has a possibility to be smaller than that in

the case with single-sized dust aggregates.

Next, we considered the case with dust growth. In this case, although dust has the contin-

uous size distribution, with dust growth, we find numerically that KHI tends to occur before

GI even in the case with large dust abundance. The reason of this qualitative change is found

to originate from the change of gas drag law from Epstein’s law to Stokes’ law owing to dust

growth. Thus, we stress that, in the study of shear-driven turbulence, the change of the law

of gas drag from Epstein’s law to Stokes’ law, as well as dust growth, is required to be taken

into account, although none of previous works on the KHI in the protoplanetary disk has.

In the above investigation, we used the classical RNC with a constant critical value, 0.25,

which is not ensured to discuss KHI for general cases in the protoplanetary disk. We directly

performed the linear stability analysis for KHI to discuss the validity of the classical RNC.

For the dust density distribution consistent with dust sedimentation, the growth rates of KHI

were calculated, and the dust density required for GI before KHI was clarified. By comparing

the result estimated by the linear stability analysis with that estimated by the classical RNC,

we found that dust density estimated from the linear stability analysis agreed well with that

estimated by the classical RNC within errors of a factor of 2. Especially, it is found that the

classical RNC tended to be more applicable in the case with the multi-sized dust than in the

case with the single-sized dust. These results suggest the possibility that the classical RNC is

useful even for the case with dust growth.

The main conclusion of the present thesis is that KHI tends to occur before GI even in

the case with large dust abundance during sedimentation of growing dust aggregates in the
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protoplanetary disk. This means that small dust aggregates with growth tend to be suffered

from stirring up by shear-driven turbulence induced by KHI during their sedimentation at least

once. However, this conclusion does not exclude the possibility for GI. If dust aggregates have

larger collisional velocities owing to the shear-driven turbulence than owing to sedimentation

and radial drift, dust aggregates have the possibility to grow quickly or fragment. This effect

was not included in this thesis. To understand this possibility, we will have to take account of

dust-dust collisions under the condition with shear-driven turbulence induced by KHI.

5.2 Future Prospects

To take account of dust-dust collisions with shear-driven turbulence induced by KHI, we should

develop a more realistic model by calculating the effect of KHI directly. Then, we have to

address the non-linear growth of KHI numerically in the future work.

Other than dust-dust collisions in shear-driven turbulence, there are many effects neglected

in this thesis. In this thesis, dusts were assumed to be compact and to have a spherical shape.

However, since dusts grow due to dust-dust collisions, large dusts are aggregates of small dusts.

Both laboratory and numerical experiments showed that aggregates are not at all compact and

spherical, but have a fluffy structure (Wurm & Blum 1998; Kempf et al. 1999; Okuzumi et

al. 2009). With the same mass, the size of the fractal aggregate is larger than the size of the

compact and spherical dust aggregate and varies with the porosity of the aggregate. Therefore,

the time evolutions of porosity during the growth of dust aggregates are essential to investigate

dust sedimentation, time scale of dust growth and motion of dust aggregates stirred up. We

will address this effect in the future work.

We neglected the streaming instability (Youdin & Goodman 2005; Johansen & Youdin

2007). Bai & Stone (2010) showed that dust aggregates with τs ≡ ΩKtstop > 0.01 trigger a

streaming instability before KHI. In our model, at r = 1 AU, τs > 0.01 corresponds to s > 2

cm. In our calculations, for the case with dust growth and fd > 2, the typical size of dust
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aggregates at the maximum density is larger than 2 cm. Therefore, in the dust layer governed

by Stokes’ law, the streaming instability would occur before KHI and GI. We will address this

problem in the future work.



Appendix A

Toomre’s Stability Criterion

We present the linear analysis of local stability of an infinitely thin, rotating disk (Toomre

1964; Binney & Tremaine 1987). We consider that the disk is composed of ideal fluid and

is axisymmetric with respect to the rotational axis of the disk. We consider that there is no

motion perpendicular to the disk. The governing equations are given as

∂Σ

∂t
+ ∇ · (Σv) = 0, (A.1)

∂v

∂t
+ (v · ∇)v = −cs

2

Σ
∇Σ −∇Ψ|z=0, (A.2)

and

∇2Ψ = 4πGΣδ(z), (A.3)

where t is the time, Σ is the surface density of the disk, v is the velocity vector of the fluid,

cs is the sound velocity, Ψ is the gravitational potential, G is the gravitational constant, and

δ(z) is the Dirac delta function. We adopt the cylindrical coordinate system (r, φ, z) at rest.

From equations (A.1) and (A.2), we have

∂Σ

∂t
+

∂

∂r
(Σvr) +

Σvr

r
= 0, (A.4)

∂vr

∂t
+ vr

∂vr

∂r
− vφ

2

r
= −cs

2

Σ

∂Σ

∂r
− ∂Ψ

∂r

∣

∣

∣

∣

z=0

, (A.5)
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and
∂vφ

∂t
+ vr

∂vφ

∂r
− vrvφ

r
= 0, (A.6)

where (vr, vφ) are the (r, φ) components of the velocity.

We assume that the unperturbed surface density is steady and uniform, and that the r

component of the unperturbed velocity is zero. We assume that the angular velocity of the

disk, Ω (≡ vφ0/r, where subscript 0 refers the unperturbed quantities), is proportional to r−3/2.

For the unperturbed state, from equation (A.5), we obtain the balance of the centrifugal force

and the gravity,
vφ0

2

r
=
∂Ψ0

∂r

∣

∣

∣

∣

z=0

. (A.7)

From equation (A.3), we have

∇2Ψ0 = 4πGΣ0δ(z). (A.8)

To obtain the linear perturbation equations, we give the quantities as f = f0 + f1, where

subscript 1 refers the perturbed quantities, and neglect the second-order terms and higher-

order terms of the perturbed quantities. For the perturbed state, from equations (A.3)-(A.8),

we have
∂Σ1

∂t
+ Σ0

∂vr1

∂r
+

Σ0vr1

r
= 0, (A.9)

∂vr1

∂t
− 2vφ1Ω = −cs

2

Σ0

∂Σ1

∂r
− ∂Ψ1

∂r

∣

∣

∣

∣

z=0

, (A.10)

∂vφ1

∂t
− vr1Ω

2
= 0, (A.11)

and

∇2Ψ1 = 4πGΣ1δ(z). (A.12)

For simplicity, for perturbed quantities, Σ1 and v1 are assumed to have the form as f1 =

f̂ exp[i(kr − ωt)], where k is the wave number in the direction of r, and ω is the angular

frequency. At z 6= 0, equation (A.12) is given as ∇2Ψ1 = 0. To satisfy this equation, we

assume Ψ1 as

Ψ1 = Ψ̂ exp[i(kr − ωt)] exp(−|kz|). (A.13)
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Integrating equation (A.12) with respect to z from z = −ǫ to z = +ǫ and taking the limit of

ǫ→ +0, we obtain

lim
ǫ→+0

∫ +ǫ

−ǫ

∇2Ψ1dz = lim
ǫ→+0

∫ +ǫ

−ǫ

∂2Ψ1

∂z2
dz

= lim
ǫ→+0

(

∂Ψ1

∂z

∣

∣

∣

∣

z=+ǫ

− ∂Ψ1

∂z

∣

∣

∣

∣

z=−ǫ

)

= −2kΨ̂ exp[i(kr − ωt)]

= 4πGΣ̂ exp[i(kr − ωt)]. (A.14)

From equation (A.14), we obtain

Ψ̂ = −2πG

k
Σ̂. (A.15)

We consider the local stability of the disk, then we assume that kr ≫ 1. From equations

(A.9)-(A.11), (A.13) and (A.15), we have

−iωΣ̂ + ikΩ0v̂r = 0, (A.16)

−iωv̂r − 2v̂φΩ = −ikcs2
Σ̂

Σ0

+ 2πiGΣ̂, (A.17)

and

−iωv̂φ +
1

2
v̂rΩ = 0. (A.18)

From equations (A.16)-(A.18), we obtain the dispersion relation as

ω2 = cs
2k2 − 2πGΣ0k + Ω2 = cs

2

(

k − πGΣ0

cs2

)2

+ Ω2 −
(

πGΣ0

cs

)2

. (A.19)

From equation (A.19), the condition when the gravitational instability of the disk occurs is

given by
csΩ

πGΣ0

≡ Q < 1. (A.20)

From equation (A.20), it is indicated that the disk fragmentation tends to occur in the case

with the small central star and/or with the cold protoplanetary disk.





Appendix B

Radial and Rotational Velocities of

Gas and Dust Components

We present the derivation of the radial and rotational velocities of the gas and the dust com-

ponents. This chapter is mainly based on Nakagawa et al. (1986). We consider that the

disk is axisymmetric with respect to the rotational axis of the disk. We adopt the cylindrical

coordinate system (r, φ, z) at rest. In this coordinate system, the temporal differentiation of

the velocity vector, dv/dt, is given by

dv

dt
=

d

dt
(vrer + vφeφ + vzez) =

(

dvr

dt
− vφ

2

r

)

er +

(

dvφ

dt
+
vrvφ

r

)

eφ +
dvz

dt
ez, (B.1)

where (vr, vφ, vz) are the (r, φ, z) components of the velocity, and er, eφ and ez are basis vectors.

In equation (B.1), we use vφ ≡ r(dφ/dt).

For simplicity, we assume that the protoplanetary disk is geometrically thin, then we assume

(r2 + z2)1/2 ≃ r and ∂ΩK/∂z = 0. We set the velocity (vr, vφ, vz) ≡ (0, vK, 0) + (Vr, Vφ, Vz),

where vK = rΩK is the Keplerian velocity. Then, we have

dvr

dt
− vφ

2

r
=
∂vr

∂t
+ vr

∂vr

∂r
+
vφ

r

∂vr

∂φ
+ vz

∂vr

∂z
− vφ

2

r

=
∂Vr

∂t
+ Vr

∂Vr

∂r
+ Vz

∂Vr

∂z
− Vφ

2

r
− 2ΩKVφ − ΩK

2r, (B.2)

75



76
APPENDIX B. RADIAL AND ROTATIONAL VELOCITIES OF GAS AND DUST

COMPONENTS

and

dvφ

dt
+
vrvφ

r
=
∂Vφ

∂t
+ vr

∂Vφ

∂r
+
vφ

r

∂Vφ

∂φ
+ vz

∂Vφ

∂z
+
dvK

dt
+
Vr(Vφ + vK)

r

=
∂Vφ

∂t
+ Vr

∂Vφ

∂r
+ Vz

∂Vφ

∂z
+

1

2
ΩKVr +

VrVφ

r
. (B.3)

We assume that |Vr|, |Vφ| and |Vz| ≪ vK, and we neglect the second-order terms of Vr, Vφ and

Vz, then we have

dv

dt
=

(

∂Vr

∂t
− 2ΩKVφ − ΩK

2r

)

er +

(

∂Vφ

∂t
+

1

2
ΩKVr

)

eφ +
dvz

dt
ez. (B.4)

The equations of motion for gas and dust are given by

dvg

dt
= −ρd

ρg

vg − vd

tstop
− ΩK

2R − 1

ρg

∇Pg, (B.5)

and
dvd

dt
= −vd − vg

tstop
− ΩK

2R, (B.6)

where t is the time, vg and vd are the velocity vectors of the gas and the dust components, ρg

and ρd is the densities of the gas and the dust components, tstop is the stopping time, ΩK is

the Keplerian angular velocity, R is the heliocentric position vector and Pg = cs
2ρg is the gas

pressure, where cs is the sound velocity. From equations (B.4)-(B.6), we have

∂Vgr

∂t
= −ρd

ρg

Vgr − Vdr

tstop
+ 2ΩKVgφ − 1

ρg

∂Pg

∂r
, (B.7)

∂Vgφ

∂t
= −ρd

ρg

Vgφ − Vdφ

tstop
− 1

2
ΩKVgr, (B.8)

∂Vdr

∂t
= −Vdr − Vgr

tstop
+ 2ΩKVdφ, (B.9)

and
∂Vdφ

∂t
= −Vdφ − Vgφ

tstop
− 1

2
ΩKVdr. (B.10)

Setting ∂/∂t = 0 in equations (B.7)-(B.10) for simplicity, we obtain the (terminal) velocities

in radial and azimuthal direction of the gas and the dust components as

vgr =
ρd

ρg + ρd

2DΩK

D2 + ΩK
2
ηvK, (B.11)
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vgφ = (1 − η)vK +
ρd

ρg + ρd

D2

D2 + ΩK
2
ηvK, (B.12)

vdr = − ρg

ρg + ρd

2DΩK

D2 + ΩK
2
ηvK, (B.13)

and

vdφ = vK − ρg

ρg + ρd

D2

D2 + ΩK
2
ηvK, (B.14)

where

D ≡
(

1 +
ρd

ρg

)

1

tstop
. (B.15)





Appendix C

Linear Stability Analysis of Dust Layer

for GI

We present the linear stability analysis of the dust layer. This chapter is mainly based on

Sekiya (1983). We consider that the disk is axisymmetric with respect to the rotational axis

of the disk. We adopt the cylindrical coordinate system (r, φ, z) at rest. For simplicity, we

assume that the protoplanetary disk is geometrically thin, then we assume (r2 + z2)1/2 ≃ r

and ∂ΩK/∂z = 0. We assume the polytropic equation of state for the gad fluid, given by

Pg = χgρg
γ. (C.1)

Before GI, dust aggregates are so small that the stopping times of dust aggregates are much

smaller than the Keplerian period (Nakagawa et al. 1981, 1986). Then, dust aggregates are

small enough to couple strongly to gas, and the mixture of gas and dust can be treated as one

component fluid. Then, governing equations are given as

∂U

∂t
+ U

∂U

∂r
+W

∂U

∂z
− V 2

r
= −ΩK

2r − ∂ψ

∂r
− 1

ρ

∂P

∂r
, (C.2)

∂V

∂t
+ U

∂V

∂r
+W

∂V

∂z
+
UV

r
= 0, (C.3)
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∂W

∂t
+ U

∂W

∂r
+W

∂W

∂z
= −ΩK

2z − ∂ψ

∂z
− 1

ρ

∂P

∂z
, (C.4)

∂ρ

∂t
+

∂

∂r
(ρU) +

∂

∂z
(ρW ) +

ρU

r
= 0, (C.5)

P = χργ , (C.6)

and
(

1

r

∂

∂r
r
∂

∂r
+

∂2

∂z2

)

ψ = 4πGρ, (C.7)

where (U, V,W ) are the (r, φ, z) components of the velocity, ψ is the gravitational potential,

P = Pg is the pressure, ρ = ρg + ρd is the density and χ = χg(1 + ρd/ρg)
−1.

Hereafter, subscript 0 refers the unperturbed quantities, and subscript 1 refers the per-

turbed quantities. We assume that the unperturbed quantities are symmetric with respect to

the midplane of the disk. We assume ∂ρ0/∂r = 0, ∂P0/∂r = 0 and ∂ψ0/∂r = 0. We integrate

equation (C.7) with respect to z from 0 to z, then we have

dψ0

dz
= 2πGσ0(z), (C.8)

where

σ0(z) ≡ 2

∫ z

0

ρ0dz. (C.9)

At z = h, where h is the scale height of the dust layer, σ0(h) is the surface density of the dust

layer. We assume that the angular velocity of the mixed fluid of gas and dust is the Keplerian

angular velocity, and that the unperturbed velocity (U0, V0,W0) is given by (0,ΩKr, 0). Then,

∂V0/∂r = −ΩK/2. From equations (C.2) and (C.4)-(C.6), we have

−V0
2

r
= −ΩK

2r, (C.10)

0 = −ΩK
2z − ∂ψ0

∂z
− 1

ρ0

∂P0

∂z
, (C.11)

and

P0 = χρ0
γ. (C.12)
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To obtain the linear perturbation equations, we give the quantities as F = F0 + F1 and

neglect the second-order terms and higher-order terms of the perturbed quantities. For the

perturbed state, from equations (C.2)-(C.12), we have

∂U1

∂t
− 2ΩKV1 = − ∂

∂r

(

ψ1 −
P1

ρ0

)

, (C.13)

∂V1

∂t
+

1

2
ΩKU1 = 0, (C.14)

∂W1

∂t
= − ∂

∂z

(

ψ1 −
P1

ρ0

)

, (C.15)

∂ρ1

∂t
+ ρ0

∂U1

∂r
+

∂

∂z
(ρ0W1) +

ρ0U1

r
= 0, (C.16)

P1 = c0
2ρ1, (C.17)

and
(

1

r

∂

∂r
r
∂

∂r
+

∂2

∂z2

)

ψ1 = 4πGρ1, (C.18)

where c0 ≡ (χγρ0
γ−1)1/2 is the sound velocity. We assume ∂c0/∂r = 0. For simplicity,

perturbed quantities are assumed to have the form as F1 = F̃ (z)J1(kr) exp(−iωt), where k

is the wave number in the direction of r, ω is the angular frequency and J1 is the first-order

Bessel function of the first kind. From equations (C.13)-(C.18), we obtain

−iωŨ − 2ΩKṼ = f̃ , (C.19)

−iωṼ +
1

2
ΩKŨ = 0, (C.20)

−iωW̃r =
df̃

dz
, (C.21)

−iωρ̃r − k2ρ0Ũ +
d

dz

(

ρ0W̃r

)

= 0, (C.22)

g̃ − f̃ =
c0

2

ρ0

ρ̃r, (C.23)

and
(

−k2 +
d2

dz2

)

g̃ = −4πGρ̃r, (C.24)
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where

f1 ≡ − ∂

∂r

(

ψ1 −
P1

ρ0

)

, (C.25)

g1 ≡ −∂ψ1

∂r
, (C.26)

Wr ≡
∂W1

∂r
, (C.27)

and

ρr ≡
∂ρ1

∂r
. (C.28)

We assume that the mixed fluid of gas and dust is incompressible, i.e., that c0 = ∞, ρ̃r = 0

and dρ0/dz = 0. Then, from equation (C.9), the surface density of the dust layer is given by

σ0(h) = 2ρ0h. (C.29)

From equations (C.22) and (C.24), we obtain

−k2Ũ +
dW̃r

dz
= 0, (C.30)

and
(

−k2 +
d2

dz2

)

g̃ = 0. (C.31)

To obtain a dispersion relation, we consider the boundary conditions between the dust layer

and the gas layers. In the perturbed state, the boundary surface becomes slightly deformed.

We define the displacement of the boundary surface perpendicular to the midplane by h1. For

the displacement of the boundary, h1, we have

∂h1

∂t
= W1(z = h0 + h1) = W1(z = h0) +

∂W1

∂z

∣

∣

∣

∣

z=h0

h1 = W1(z = h0), (C.32)

then
∂2h1

∂t2
=
∂W1

∂t

∣

∣

∣

∣

z=h0

. (C.33)

We put ∂h1/∂r ≡ hr = h̃rJ1(kr) exp(−iωt). From equations (C.21) and (C.33), we have

−ω2h̃r =
df̃

dz

∣

∣

∣

∣

∣

z=h0

. (C.34)
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At the boundary surface, the pressure is continuous between the dust layer and the gas layers.

The boundary condition is given by

P (h0 + h1) = Pge, (C.35)

where Pge is the gas pressure at the boundary. We assume that Pge is constant even if there is

the displacement of the boundary surface. Then we have

P (h0) = P0(h0) + P1(h0) = Pge + P1(h0) = P (h0 + h1) + P1(h0). (C.36)

The equation of motion of a fluid element in the range h0 < z < h0 + h1 is given by

ρ0

dW

dt
= ρ0

(

−∂ψ
∂z

− ΩK
2z

)

− ∂P

∂z
. (C.37)

We integrate equation (C.37) with respect to z from z = h0 to z = h0 + h1 and neglect the

second-order terms of the perturbed quantities. For the left-hand side of equation (C.37), we

obtain
∫ h0+h1

h0

ρ0

dW

dt
dz = ρ0

∫ h0+h1

h0

dW1

dt
dz = ρ0

dW1

dt

∣

∣

∣

∣

z=h0

h1 = 0. (C.38)

For the right-hand side of equation (C.37), from equation (C.36), we have

∫ h0+h1

h0

[

ρ0

(

−∂ψ
∂z

− ΩK
2z

)

− ∂P

∂z

]

dz

= −ρ0

(

∂ψ

∂z
+ ΩK

2z

)
∣

∣

∣

∣

z=h0

h1 − [P (h0 + h1) − P (h0)]

= −ρ0

(

∂ψ0

∂z

∣

∣

∣

∣

z=h0

+ ΩK
2h0

)

h1 + P1(h0). (C.39)

From equations (C.37)-(C.39), P1(h0) is given as

P1(h0) = ρ0

(

∂ψ0

∂z

∣

∣

∣

∣

z=h0

+ ΩK
2h0

)

h1. (C.40)

From equations (C.8) and (C.29), we have

∂ψ0

∂z

∣

∣

∣

∣

z=h0

= 4πGρ0h0. (C.41)
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From equations (C.40) and (C.41), P1(h0) is given by

P1(h0) = ρ0h1(4πGρ0 + ΩK
2)h0. (C.42)

From equations (C.25), (C.26) and (C.42), we obtain

g̃(h0) − f̃(h0) = h̃r(4πGρ0 + ΩK
2)h0. (C.43)

At the boundary surface, the gravitational potential is also continuous between the dust layer

and the gas layers (Goldreich & Lynden-Bell 1965). The boundary condition is given by

ψ1(z = h0+) = ψ1(z = h0−). (C.44)

From equation (C.7), we have

∂ψ1

∂z

∣

∣

∣

∣

z=h0+

− ∂ψ1

∂z

∣

∣

∣

∣

z=h0−

= 4πGρ0h1. (C.45)

At |z| → ±∞, ψ1 should become zero. To satisfy this condition, we assume that ψ̃ as

ψ̃(z) ∝ exp(−k|z|). (C.46)

From equations (C.44)-(C.46), we have

dψ̃

dz

∣

∣

∣

∣

∣

z=h0−

+ 4πGρ0h̃ + kψ̃(z = h0−) = 0. (C.47)

From equations (C.26) and (C.47), the condition at z = h0 in the dust layer is given as

dg̃

dz

∣

∣

∣

∣

z=h0

− 4πGρ0h̃r + kg̃(z = h0) = 0. (C.48)

From equations (C.19)-(C.21), (C.30), (C.31), (C.34), (C.43) and (C.48), we obtain the

dispersion relation as

ω2

ΩK
2

=

[

1 +

(

1 − 1 + e−2K

2K

)

4πGρ0

ΩK
2

]

nK tanh(nK), (C.49)
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Figure C.1: Angular frequencies as functions of the wave number given by equation (C.50). Solid

lines shows ω2/ΩK
2 for cases with 4πGρ0/ΩK

2 = 7 (red), 7.3 (green), 7.617 (blue), 8 (magenta) and

8.3 (cyan), respectively.

where n2 ≡ (1 − ΩK
2/ω2)−1 and K ≡ kh0. To obtain the condition with ω2 < 0, we consider

the case with |ω2/ΩK
2| ≪ 1. Using tanh(0 + x) = x− x3/3, from equation (C.49), we have

ω2

ΩK
2

= −
{

1 +

[

1 +

(

1 − 1 + e−2K

2K

)

4πGρ0

ΩK
2

]−1

K−2

}

3K−2. (C.50)

Figure C.1 shows the angular frequencies as functions of the wave number given by equation

(C.50). In figure C.1, solid lines shows ω2/ΩK
2 for cases with 4πGρ0/ΩK

2 = 7 (red), 7.3

(green), 7.617 (blue), 8 (magenta) and 8.3 (cyan), respectively. From figure C.1, in the case

with 4πGρ0/ΩK
2 = 7.617, i.e.,

ρ0 =
0.61M∗

r3
≡ ρc, (C.51)

the angular frequency becomes zero at K = 0.2775, and in the case with ρ0 > ρc, the unstable

mode exists. Then, the dust layer fragments into pieces if the unstable mode exists in the

system (Goldreich & Ward 1973). In the MMSN model, the mode with ρ0 = ρc andK = 0.2775

has the wavelength given by 2.2×108 cm at r = 1 AU. Then, the mass of the fragment is about

1018 g and the size of the fragment is several kilometers if the internal density of the piece is

about 1 g cm−3. This is shown that the mass of this fragment corresponds to the planetesimal.





Appendix D

Methods of Numerical Calculations

We present methods of numerical calculations performed in subsection 1.4.1 and in chapter 3.

D.1 Coordinates of Space and Mass

The range of calculations (0 ≤ z . 3Hg) along the z coordinates are logarithmically divided

into 106 spaced grids as zj . The grids are set to be rest and are given as

zj =







(2j + 1)/(10δz
95)Hg (0 ≤ j ≤ 4)

(δz + 1)/(2δz
100−j)Hg (5 ≤ j ≤ 105)

, (D.1)

where δz = 21/4. The thickness of the grid is given as

∆zj =







1/(5δz
95)Hg (0 ≤ j ≤ 4)

(δz − 1)/(δz
100−j)Hg (5 ≤ j ≤ 105)

. (D.2)

The thickness of the nearest grid to the midplane, ∆z0, is 1.4 × 10−8Hg. Using this spatial

resolution, the dust scale height when GI occurs is sufficiently resolved. From equations (D.1)

and (D.2), z105 + ∆z105/2 = 2.8Hg.

Mass coordinates, mi, are logarithmically divided into 400 mass bins. The mass coordinate
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varies with time, and the initial mass coordinate is given as

mi =







(i+ 1)m0 (0 ≤ i ≤ 9)

δmmi−1 (10 ≤ i ≤ 399)
, (D.3)

where δm = 1.1. At t = 0, m399 = 1.4 × 1017m0. If s0 ≡ (3m0/4πρs)
1/3 = 1 µm, then

s399 ≡ (3m399/4πρs)
1/3 = 52 cm. The width of the grid is given as

∆mi =
mi+1 −mi−1

2
. (D.4)

We always assume m−1 = 0 and m400 = δmm399.

D.2 Numerical Method for Dust Sedimentation

In our numerical calculations, the TVD scheme (Roe 1986) is applied to calculate the sedi-

mentation of dust aggregates.

D.2.1 Detail of Scheme

The equation of continuity for a physical quantity, f , with a velocity, v, in one direction, x, is

given by
∂

∂t
f(t, x) +

∂

∂x
[f(t, x)v(x)] = 0. (D.5)

Equation (D.5) corresponds to equation (1.37) without dust growth. Using the explicit method,

we obtain

fn+1
j = fn

j −
(

f̃n
j+1/2vj+1/2 − f̃n

j−1/2vj−1/2

) ∆t

∆xj
, (D.6)

where fn
j ≡ f(tn, xj), f

n+1
j ≡ f(tn + ∆t, xj), vj+1/2 ≡ v(xj + ∆xj/2), vj−1/2 ≡ v(xj − ∆xj/2)

and ∆t is the time interval of the numerical calculation. In the first-order upwind difference

scheme, f̃n
j+1/2 is given by

f̃n
j+1/2 =







fn
j (vj+1/2 > 0)

fn
j+1 (vj+1/2 < 0)

. (D.7)
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On the other hand, in the TVD scheme (Roe 1986), f̃n
j+1/2 is given by

f̃n
j+1/2 = fn

j + minmod

(

fn
j+1 − fn

j

xj+1 − xj

,
fn

j − fn
j−1

xj − xj−1

)

∆xj

2
(for the case with vj+1/2 > 0), (D.8)

or

f̃n
j+1/2 = fn

j+1 − minmod

(

fn
j+2 − fn

j+1

xj+2 − xj+1

,
fn

j+1 − fn
j

xj+1 − xj

)

∆xj+1

2
(for the case with vj+1/2 < 0),

(D.9)

where

minmod(a, b) =



















a (ab ≥ 0 and |a| ≤ |b|)
b (ab ≥ 0 and |a| > |b|)
0 (ab < 0)

. (D.10)

D.2.2 Test Calculation

As a test calculation, we adopt the initial condition that is given by

f(t = 0, x) =































exp{−[(x− 20)/10]2} (0 ≤ x ≤ 40)

0 (40 < x < 60)

1 (60 ≤ x ≤ 100)

0 (100 < x < 120)

. (D.11)

We adopt the periodic boundary condition that is given by

f(t, x) = f(t, x+ 120). (D.12)

We set v = 1, xj = j, ∆x = 1 and ∆t = 0.2. Figure D.1 shows the results with our numerical

method for the advection (corresponding to the sedimentation of dust aggregates) at t = 120.

In figure D.1, it is seen that result of the calculation using the TVD scheme is better than that

using the first-order upwind difference scheme.
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Figure D.1: Results of the numerical advection test (corresponding to the sedimentation of dust

aggregates in this thesis) at t = 120. Numerical results calculated using the first-order upwind

difference scheme (triangles) and the TVD scheme (circles) are compared with the analytic solution

(dotted line).

D.3 Numerical Method for Dust Growth

In our numerical calculations, the method with moving meshes (Wetherill & Stewart 1989) is

applied for dust growth.

D.3.1 Detail of Scheme

The coagulation equation for a mass function, f , with a mass of bodies, m, is given by

∂

∂t
f(t,m) = −f(t,m)

∫ ∞

0

K(m,m′)f(t,m′)dm′

+
1

2

∫ m

0

K(m−m′, m′)f(t,m−m′)f(t,m′)dm′, (D.13)

where K(m,m′) is the coalescence rate for bodies with m and m′. Equation (D.13) corresponds

to equation (1.37) without dust sedimentation. Hereafter, we consider the case when f is the

mass function described in equation (1.37). Using the explicit method, the term in the left-
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hand side of equation (D.13) is replaced by

fn+1
i − fn

i

∆t
, (D.14)

where fn
i ≡ f(tn, mi) and fn+1

i ≡ f(tn + ∆t,mi). The second term in the right-hand side of

equation (D.13) is replaced by

∑

l≥k

Klk

1 + δkl

fn
l f

n
k ∆mk ≡

∑

l≥k

νkl, (D.15)

where Klk ≡ K(ml, mk), δkl is the Kronecker delta function, and k and l are given as

1

2
(mi +mi−1) ≤ mk +ml <

1

2
(mi+1 +mi), (D.16)

Using equations (D.14) and (D.15), we approximate the coagulation equation by

fn+1
i = fn

i +

(

−
∞
∑

k=0

νki +
∑

l≥k

νkl

)

∆t. (D.17)

In order to calculate the time evolution of the mass function, we numerically solve this equation.

Next, we consider the total mass of bodies contained within a bin of ith mass, Mn
i ∆mi. At

t = 0, Mn
i = mif

n
i . In the case with (mi+mi−1)/2 ≤ mk +ml < (mi+1+mi)/2, fk decreases by

νkl∆t, fl also decreases by νkl∆t, and fi increases by νkl∆t. Then, Mk decreases by mkνkl∆t,

Ml decreases by mlνkl∆t, and Mi increases not by miνkl∆t but by (mk +ml)νkl∆t. In such a

case, we have fn+1
i = fn

i + νkl∆t and Mn+1
i = Mn

i + (mk +ml)νkl∆t. At the next time step,

t = tn + ∆t, we redefine a new mass coordinate, mi, as Mn+1
i /fn+1

i . When fn+1
i = 0 and/or

Mn+1
i = 0, the mass coordinate, mi, remains unchanged.

In the case with l = i, then fk decreases by νki∆t, fi remains unchanged (i.e., fn+1
i = fn

i ),

Mk decreases by mkνki∆t, and Mi increases by mkνki∆t.

When mi+1 becomes larger than δm
2mi and Mn

399 is zero, then we redefine the new mass
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coordinates, mi, new, as

mi,new = mi,

mi+1, new = δmmi,

mi+2, new = mi+1,

mi+3, new = mi+2, mi+4, new = mi+3, . . . , m398, new = m397, and

m399, new = m398,

(D.18)

and the new thickness of the grid as

∆mi, new = (mi+1,new −mi−1, new)/2. (D.19)

We define Mn
i,new as

Mn
i,new = Mn

i ∆mi, new/∆mi,

Mn
i+1, new = Mn

i −Mn
i, new +Mn

i+1 −Mn
i+2, new,

Mn
i+2, new = Mn

i+1∆mi+2, new/∆mi+1,

Mn
i+3, new = Mn

i+2, M
n
i+4, new = Mn

i+3, . . . , Mn
398, new = Mn

397, and

Mn
399, new = Mn

398 +Mn
399,

(D.20)

and fn
i,new as

fn
i, new = Mn

i, new/mi, new,

fn
i+1, new = Mn

i+1, new/mi+1,new,

fn
i+2, new = Mn

i+2, new/mi+2,new,

fn
i+3, new = fn

i+2, f
n
i+4, new = fn

i+3, . . . , fn
398, new = fn

397, and

fn
399, new = Mn

399, new/m399, new.

(D.21)

On the other hand, when mi+1 becomes larger than δm
2mi and Mn

399 is not zero, then we define

δm, new as

δm, new = δm
3/2. (D.22)
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When mi+1 becomes smaller than δm
1/2mi, on the other hand, then we redefine the new

mass coordinates, mi,new, as

mi,new = mi+1,

mi+1, new = mi+2,

mi+2, new = mi+3, mi+3, new = mi+4, . . . , m398, new = m399, and

m399, new = δmm399.

(D.23)

We define Mn
i,new as

Mn
i,new = Mn

i +Mn
i+1(mi+1, new −mi+1)/2∆mi+1,

Mn
i+1, new = Mn

i+2 +Mn
i+1(mi+1 −mi, new)/2∆mi+1,

Mn
i+2, new = Mn

i+3, M
n
i+3, new = Mn

i+4, . . . , Mn
398, new = Mn

399, and

Mn
399, new = 0,

(D.24)

and fn
i,new as

fn
i, new = Mn

i, new/mi, new,

fn
i+1, new = Mn

i+1, new/mi+1,new,

fn
i+2, new = fn

i+3, f
n
i+3, new = fn

i+4, . . . , fn
398, new = fn

399, and

fn
399, new = 0.

(D.25)

D.3.2 Test Calculation

We consider the case with

K(m,m′) = m+m′, (D.26)

and adopt the initial condition that is given by

f(t = 0, m) =







1 (m = m0 = 1)

0 (m 6= m0)
. (D.27)

For the case with equations (D.26) and (D.27), the analytical solution is given by

f(t,m) =
mm−1

m!
e−t(1 − e−t)m−1 exp[−m(1 − e−t)], (D.28)
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Figure D.2: Results of a test of our numerical method for the growth of bodies at t = 1 (red), 2

(green), 3 (blue), 4 (magenta), 5 (cyan), 6 (yellow), 7 (orange) and 8 (gray), respectively. Numerical

results (circles) are compared with analytic solutions by Trubnikov (1971) (black dotted lines). The

monochrome version of this figure was presented in Hasegawa & Tsuribe (2013) as figure 5.

(Trubnikov 1971). The initial mass coordinate is given by equation (D.3). We set δm = 1.1

and ∆t = 10−3. Figure D.2 shows the results with our numerical method for the growth of

bodies. In figure D.2, it is seen that our numerical method gives satisfactory results in the

calculation of the growth of dust aggregates.



Appendix E

Linear Stability Analysis of Laminar

Flow for KHI

We present the linear stability analysis of the laminar flow for KHI (Chandrasekhar 1961). We

assume that there is one component fluid and that the fluid is incompressible and inviscid. We

consider the Cartesian coordinate system (x, y, z) at rest, and assume that there are a laminar

flow in the direction of y and the gravitational force in the negative direction of z. We also

assume that the gravitational acceleration is spatially and temporally constant. The governing

equations are given as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (E.1)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0, (E.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
, (E.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂y
, (E.4)

and

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
− gz, (E.5)
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where t is the time, (u, v, w) are the (x, y, z) components of the velocity, ρ is the density of the

fluid, P is the pressure, and gz = const > 0 is the constant acceleration due to the gravitational

force.

We assume that the unperturbed state is steady and uniform in y direction, and that the

x and z components of the unperturbed velocity are zero. Then, we have

u0 = 0, v0 = v0(z), w0 = 0, ρ0 = ρ0(z), and P0 = P0(z), (E.6)

where subscript 0 refers the unperturbed quantities. For the unperturbed state, from equations

(E.5) and (E.6), we have

0 = − 1

ρ0

dP0

dz
− gz. (E.7)

To obtain the linear perturbation equations, we write the quantities as f = f0 + f1, where

subscript 1 refers the perturbed quantities, and neglect the second-order terms of the perturbed

quantities. For the perturbed state, from equations (E.1)-(E.7), we have

∂u1

∂x
+
∂v1

∂y
+
∂w1

∂z
= 0, (E.8)

∂ρ1

∂t
+ v0

∂ρ1

∂y
+ w1

dρ0

dz
= 0, (E.9)

∂u1

∂t
+ v0

∂u1

∂y
= − 1

ρ0

∂P1

∂x
, (E.10)

∂v1

∂t
+ v0

∂v1

∂y
+ w1

dv0

dz
= − 1

ρ0

∂P1

∂y
, (E.11)

and
∂w1

∂t
+ v0

∂w1

∂y
= − 1

ρ0

∂P1

∂z
− gz

ρ1

ρ0

. (E.12)

Perturbed quantities are assumed to have the form as f1 = f̂1(z) exp[i(kxx+ kyy−ωt)], where

kx is the wave number in the direction of x, ky is the wave number in the direction of y,

and ω ≡ ωr + iωi is the complex angular frequency. Hereafter ˆ is omitted, and equations

(E.8)-(E.12) are given by

ikxu1 + ikyv1 +Dzw1 = 0, (E.13)
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−iωρ1 + ikyv0ρ1 + w1Dzρ0 = 0, (E.14)

−iωu1 + ikyv0u1 = −ikx
P1

ρ0

, (E.15)

−iωv1 + ikyv0v1 + w1Dzv0 = −iky
P1

ρ0

, (E.16)

and

−iωw1 + ikyv0w1 = − 1

ρ0

DzP1 − gz
ρ1

ρ0

, (E.17)

where Dz ≡ d/dz.

Multiplying equations (E.15) and (E.16) by ikxρ0 and ikyρ0, respectively, we have

ρ0ω̄kxu1 = kx
2P1, (E.18)

and

ρ0ω̄kyv1 + iρ0ky(Dzv0)w1 = ky
2P1, (E.19)

where ω̄ ≡ ω − kyv0. From equations (E.13), (E.18) and (E.19), we have

Dz[iρ0ω̄Dzw1 + iρ0ky(Dzv0)w1] = k2DzP1, (E.20)

where k2 ≡ kx
2 + ky

2. Multiplying equation (E.17) by −k2ρ0, we have

iρ0ω̄k
2w1 = k2DzP1 + gzk

2ρ1. (E.21)

From equations (E.14), (E.20) and (E.21), we have

Dz[ρ0ω̄Dzw1 + ρ0ky(Dzv0)w1] − ρ0ω̄k
2w1 = gzk

2(Dzρ0)
w1

ω̄
. (E.22)

For simplicity, we consider the case when there are laminar flows of two superposed fluids

with a relative horizontal velocity. To obtain the boundary condition at the boundary surface

of laminar flows, we suppose that there is a boundary surface of laminar flows at z = zs. For

the unperturbed state, zs = zs0 is a constant value. The equation of motion for the boundary

surface is given as
∂zs
∂t

+ u(zs)
∂zs
∂x

+ v(zs)
∂zs
∂y

+ w(zs)
∂zs
∂z

= w(zs). (E.23)
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In the perturbed state, the surface becomes slightly deformed. We define the deformed surface

by zs = zs0 + zs1. From equation (E.23), the equation of motion for the deformed surface is

given as
∂zs1
∂t

+ v0(zs0)
∂zs1
∂y

= w1(zs0). (E.24)

In equation (E.24), we use the following expansions:

v0(zs0 + zs1) = v0(zs0) +
dv0

dz

∣

∣

∣

∣

z=zs0

zs1, (E.25)

and

w1(zs0 + zs1) = w1(zs0) +
dw1

dz

∣

∣

∣

∣

z=zs0

zs1 = w1(zs0). (E.26)

We assume that the perturbed quantity zs1 is given as zs1 = zs1(z) exp[i(kxx+ kyy−ωt)], then

we have

−iωzs1 + ikyv0(zs0)zs1 = w1(zs0). (E.27)

From equation (E.27), we have

zs1 =
iw1

ω̄

∣

∣

∣

∣

z=zs0

. (E.28)

Equation (E.28) shows that w1/ω̄ must be continuous at the boundary surface of laminar flows.

To obtain the condition at the boundary surface, z = zs, we integrate equation (E.22) over

an infinitesimal element (zs0 − ǫ, zs0 + ǫ) and pass to the limit ǫ→ 0. Since gk2 and w1/ω̄ are

continuous at the boundary surface, we obtain the condition at the boundary surface as

∆s0[ρ0ω̄Dzw1 + ρ0ky(Dzv0)w1] = gzk
2[∆s0(ρ0)]

(w1

ω̄

)
∣

∣

∣

z=zs0

, (E.29)

where

∆s0(F ) ≡ F (z = zs0 + 0) − F (z = zs0 − 0) = lim
ǫ→0

∫ z+ǫ

z−ǫ

DzFdz. (E.30)

We set zs0 = 0 and consider the case with

v0(z) =







v+ (z > 0)

v− (z < 0)
, (E.31)
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and

ρ0(z) =







ρ+ (z > 0)

ρ− (z < 0)
. (E.32)

Then, Dzv0 = 0 and Dzρ0 = 0 at z 6= 0. We assume that v+ 6= v− and that ρ+ ≤ ρ−. From

equation (E.22), we have

D2
zw1 − k2w1 = 0. (E.33)

The general solution of equation (E.33) is a linear combination of ekz and e−kz. We assume the

boundary condition that w1 is zero at z → ±∞. From equation (E.28), w1/ω̄ is continuous at

z = 0. Then, we obtain the solution of equation (E.33) as

w1(z) =







A(ω − kyv+)e−kz (z > 0)

A(ω − kyv−)ekz (z < 0)
, (E.34)

where A is a integral constant. From equation (E.34), we have

(w1

ω̄

)
∣

∣

∣

z=0
= A. (E.35)

From equations (E.29)-(E.32), (E.34) and (E.35), we obtain the dispersion relation as

(ρ+ + ρ−)ω2 − 2ky(ρ+v+ + ρ−v−)ω + ky
2(ρ+v+

2 + ρ−v−
2) − gzk(ρ− − ρ+) = 0. (E.36)

The roots of equation (E.36) are given by

ω =
ky(ρ+v+ + ρ−v−) ± i

√

ky
2ρ+ρ−(v− − v+)2 − gzk(ρ−2 − ρ+

2)

ρ+ + ρ−
. (E.37)

From equation (E.37), instability occurs for the modes with

ky
2ρ+ρ−(v− − v+)2 − gzk(ρ−

2 − ρ+
2) > 0. (E.38)

Therefore, two uniform fluids in a horizontal relative motion separated by a horizontal bound-

ary surface is unstable, and this is called the Kelvin-Helmholtz instability (KHI). Since gz > 0

and ρ+ ≤ ρ−, equation (E.38) is rewritten as

k > kmin(kx) ≡
gz

(v− − v+)2

ρ−
2 − ρ+

2

ρ+ρ−

k2

ky
2
≥ kmin(0) =

gz

(v− − v+)2

ρ−
2 − ρ+

2

ρ+ρ−
> 0. (E.39)
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kmin(0) = 1.5

Figure E.1: The stability and instability of laminar flows of two fluids in the case with v+ = 1,

v− = 2, ρ+ = 1, ρ− = 2 and gz = 1.

Figure E.1 shows the stability and instability of laminar flows of two fluids in the case with

v+ = 1, v− = 2, ρ+ = 1, ρ− = 2 and gz = 1. For the mode with ky = 0, then kmin(∝ k2/ky
2) =

+∞ [equation (E.39)]. For such a mode, the finite wave number k (= kx) can not become

larger than kmin, then two uniform fluids are stable. Thus, perturbations perpendicular to the

direction of flows can not cause KHI. We explain this result by the process of the onset of

KHI described in subsection 1.5.2. The surplus energy results from the momentum transfer

between the regions with different unperturbed velocities in fluctuation of the plane interface.

Even if the surplus energy causes the x-component of fluctuation, the momentum transfer does

not occur because the x-component of the unperturbed velocity is zero. Then, the amplitude

of fluctuation in the direction of z is not amplified. Thus, KHI does not occur if the wave

number in the direction of x, kx, become large.

The real part of the complex angular frequency is given by

ωr =



















ky(ρ+v+ + ρ−v−)/(ρ+ + ρ−) [k > kmin(kx)]

ky(ρ+v+ + ρ−v−)/(ρ+ + ρ−)

±
√

gzk(ρ−2 − ρ+
2) − ky

2ρ+ρ−(v− − v+)2/(ρ+ + ρ−) [k ≤ kmin(kx)]

, (E.40)

and the imaginary part of the complex angular frequency that corresponds to the growth rate
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Figure E.2: Growth rates of KHI in the case with v+ = 1, v− = 2, ρ+ = 1, ρ− = 2 and gz = 1.

of KHI is given by

ωi =







±
√

ky
2ρ+ρ−(v− − v+)2 − gzk(ρ−2 − ρ+

2)/(ρ+ + ρ−) [k > kmin(kx)]

0 [k ≤ kmin(kx)]
, (E.41)

The mode with the negative growth rate of KHI decays with increaseing time. Thus, we only

consider the positive growth rate of KHI.

Figure E.2 shows positive growth rates of KHI in the case with v+ = 1, v− = 2, ρ+ = 1,

ρ− = 2 and gz = 1. From Figure E.2, it is shown that the growth rate, ωi, decreases with

increasing the wave number in the direction of x, kx. Thus, the mode with kx = 0 is the most

unstable.

Next, we consider the effect of rotation on the development of KHI. We adopt the local

Cartesian coordinate system (x, y, z) rotating with an uniform angular velocity Ω = (0, 0,Ω).

Then, equations (E.10) and (E.11) are replaced by

∂u1

∂t
+ v0

∂u1

∂y
− 2Ωv1 = − 1

ρ0

∂P1

∂x
, (E.42)

and

∂v1

∂t
+ v0

∂v1

∂y
+ w1

dv0

dz
+ 2Ωu1 = − 1

ρ0

∂P1

∂y
. (E.43)
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In these equations, we neglect the tidal force. Then, equation (E.29) is replaced by

∆s0

[

ρ0ω̄

(

1 − 4Ω2

ω̄2

)

Dzw1 +

(

1 +
2iΩ

ω̄

)

ρ0ky(Dzv0)w1

]

= gzk
2[∆s0(ρ0)]

(w1

ω̄

)
∣

∣

∣

z=zs0

. (E.44)

From equation (E.44), we have

w1(z) =







A(ω − kyv+) exp(−κ+z) (z > 0)

A(ω − kyv−) exp(κ−z) (z < 0)
, (E.45)

where

κ± ≡ k

[

1 − 4Ω2

(ω − kyv±)2

]−1/2

. (E.46)

We consider the most unstable mode with kx = 0. The dispersion relation is given by

ρ+(ω − kyv+)2

[

1 − 4Ω2

(ω − kyv+)2

]1/2

+ ρ−(ω − kyv−)2

[

1 − 4Ω2

(ω − kyv−)2

]1/2

= gzky(ρ− − ρ+).

(E.47)

For simplicity, we consider the case with ρ+ = ρ−. Then, we obtain the angular frequency as

ω =
ky(v+ + v−) ± i

√

ky
2(v− − v+)2 − 8Ω2

2
, (E.48)

and the growth rate of KHI is given as

ωi =
1

2

√

ky
2(v− − v+)2 − 8Ω2. (E.49)

Equation (E.49) shows that rotation decreases the growth rate of KHI.



Appendix F

Typical Size of Dust Aggregates in the

Dust Sedimentation with Growth

We explain the reason that the typical size of dust aggregates s̄(z) is a linear function of z at

z/Hg ≪ 1 and at t/tsed ≪ 1 owing to collisions due to sedimentation in the case with growth

of dust aggregates (Hasegawa & Tsuribe 2013). We now estimate the mean collision time by

the same method as that used in Nakagawa et al. (1981). The mean collision time is given by

tcoll =
1

ndσ∆v
, (F.1)

where nd is the number density of dust aggregates, σ is the collisional cross section and ∆v

is the relative velocity of the dust-dust collision. We assume that the sizes of dust aggregates

are given by the typical size, and that masses of dust aggregates are given by the typical mass

of dust aggregates. The typical mass is given by

m̄(z) =
4

3
πρs[s̄(z)]

3, (F.2)

and we regard that σ = πs̄2. We treat nd as ρd/m̄ or (Σd/Σg)[ρg/m̄] at z/Hg ≪ 1 and at

t/tsed ≪ 1. For the collision due to sedimentation, we simply put |s− s′| = s̄ and ∆v = ∆vs.

The mean collision time for sedimentation is defined as tcoll, s. At z/Hg ≪ 1 and at t/tsed ≪ 1,
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tcoll, s is obtained as

tcoll, s =
2
√

2

3

Σg

Σd

1

ΩK

(

z

Hg

)−1

= 36

(

z

Hg

)−1

[year]. (F.3)

In equation (F.3), it can be seen that tcoll, s is independent of s̄, and that tcoll, s ∝ z−1. For

collisions due to the thermal motion, we simply put m = m′ = m̄ and ∆v = ∆vB. The mean

collision time for the thermal motion, tcoll, B, is obtained by

tcoll,B =
4

3

√

2

3

πHg

Σd

ρs

3

2 s0

5

2

√
kBT

(

s̄

s0

)
5

2

exp

[

(

z

Hg

)2
]

= 28

(

s̄

s0

)
5

2

[year], (F.4)

at z/Hg ≪ 1 and at t/tsed ≪ 1. In equation (F.4), it can be seen that tcoll,B is independent of

z and tcoll,B ∝ s̄ 5/2 at z/Hg ≪ 1 and at t/tsed ≪ 1.

From equations (F.3) and (F.4), it is found that tcoll,B < tcoll, s when sizes of dust aggregates

are small. Therefore, it is expected that collisions due to thermal motion dominate as long as

the sizes of the dust aggregates are small. After dust aggregates have grown, it is expected

that tcoll,B > tcoll, s, and that collisions due to sedimentation dominate. The growing speed

of dust aggregates in sedimentation is expected to be proportional to z because tcoll, s ∝ z−1.

Thus, it is supposed that the typical mass of dust aggregates at z, m̄(z), is given by

m̄(z) =

(

a1 ×
z

Hg

+ a2

)

m0, (F.5)

where a1 and a2 are appropriate values. Then, the typical size of dust aggregates at z is given

by s̄(z) = [a1(z/Hg) + a2]
1/3s0. If a1z/a2Hg ≪ 1, it is supposed that s̄(z) is approximated by

s̄(z) =

(

a3 ×
z

Hg

+ a4

)

s0, (F.6)

with the Taylor expansion. Symbols a3 and a4 are appropriate values.

Figure F.1 shows the distribution of the typical mass and size of dust aggregates at z/Hg ≪
1 and at t = 25 year in numerical results in subsection 3.2.1. From figure F.1, it is confirmed

the functional form of s̄(z) = [a3(z/Hg) + a4]s0 at z/Hg ≪ 1 and at t/tsed ≪ 1.
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Figure F.1: (a) Distribution of the typical mass of dust aggregates in r = 1 AU at t = 25 year. The

abscissa, where mtypical means m̄, shows the typical mass, m̄, in units of m0. The ordinate shows

z coordinate in units of Hg. (b) Distribution of the typical size of dust aggregates at t = 25 year.

The abscissa, where stypical means s̄, shows the typical size, s̄, in units of s0. The ordinate shows z

coordinate in units of Hg. This figure was presented in Hasegawa & Tsuribe (2013) as figure 14.

The above discussions assume that collisions due to sedimentation become more dominant

than those due to the thermal motion. However, it is not confirmed that collisions due to

sedimentation are dominant before t = 25 year. We should now confirm that the dominant

effect in the growth of dust aggregates is sedimentation at t = 25 year.

At z/Hg ≪ 1 and t ≈ 0, it is expected that collisions due to the thermal motion are

dominant, and that tcoll, B is independent of z. In this case, it is supposed that the typical size

of dust aggregates is independent of z, i.e., a3 in the formula for s̄(z) is temporally constant.

However, in a certain time, it is expected that the dominant effect in the growth of dust

aggregates changes from collisions due to the thermal motion to those due to sedimentation

because of dust growth. Therefore, the time for this change can be determined by investigating

the time development of a3 for s̄(z).

Figure F.2 shows the time development of a3. In figure F.2, a3 is approximated by a3 =

6.3×10−5(t/1 [yr])2+7.0×10−3(t/1 [yr])−3.0×10−2. This shows that a3 > 0 at t & 4 yr, then

it is expected that collisions due to sedimentation dominate in the growth of dust aggregates
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Figure F.2: The time development of a3 (circles) in r = 1 AU and z/Hg ≪ 1 at t/tsed ≪ 1. The

abscissa shows time and the ordinate shows a3 that is derived from fitting s̄(z) into [a3(z/Hg)+a4]s0.

The approximated curve is also drawn (dotted line). This figure was presented in Hasegawa & Tsuribe

(2013) as figure 15.

at t & 4 yr. Therefore, we conclude that the assumption that collisions due to sedimentation

become more dominant than those due to the thermal motion is appropriate at t = 25 yr.



Appendix G

Linear Perturbation Equation for KHI

We present the derivation of a set of linear perturbation equations for KHI for a fluid with a

continuous density distribution in the protoplanetary disk (Sekiya & Ishitsu 2000). We assume

that there is one component fluid and that the fluid is incompressible and inviscid. We assume

that the protoplanetary disk is axisymmetric with respect to the rotational axis of the disk.

We adopt the local Cartesian coordinate system (x, y, z) rotating around a central star with

the constant azimuthal velocity. The curvature is neglected. We take into account only the

gravitational force from the central star and neglect the self-gravity of the fluid. For simplicity,

we assume ∂ΩK/∂z = 0, where ΩK is the Keplerian angular velocity. The Coriolis and tidal

forces are neglected. The governing equations are the equation of continuity, the equation of

incompressibility and equations of motion, and are given as

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0, (G.1)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0, (G.2)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ

∂P

∂x
, (G.3)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ

∂P

∂y
, (G.4)
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and
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ

∂P

∂z
− ΩK

2z, (G.5)

where t is the time, (u, v, w) are the (x, y, z) components of the velocity, ρ is the density of

the fluid and P is the pressure. Equations (G.1)-(G.5) are the same as equations (E.1)-(E.5),

except for gz = ΩK
2z and ∂gz/∂z 6= 0.

We consider the case when the unperturbed velocity, density and pressure are given by

equation (E.6), i.e.,

u0 = 0, v0 = v0(z), w0 = 0, ρ0 = ρ0(z), and P0 = P0(z). (G.6)

Subscript 0 refers the unperturbed quantities, and subscript 1 refers the perturbed quantities.

To obtain the linear perturbation equations, we give the quantities as f = f0 + f1 and neglect

the second-order terms of the perturbed quantities. Perturbed quantities are assumed to have

the form as f1 = f̂1(z) exp[i(kxx+kyy−ωt)], where kx is the wave number in the direction of x,

ky is the wave number in the direction of y, and ω ≡ ωr + iωi is the complex angular frequency.

Hereafter ˆ is omitted, then equations (G.1)-(G.5) are replaced by equations (E.13)-(E.17), i.e.,

ikxu1 + ikyv1 +
dw1

dz
= 0, (G.7)

−iω̄ρ1 +
dρ0

dz
w1 = 0, (G.8)

−iω̄u1 = −ikx
P1

ρ0

, (G.9)

−iω̄v1 +
dv0

dz
w1 = −iky

P1

ρ0

, (G.10)

and

−iω̄w1 = − 1

ρ0

dP1

dz
− ΩK

2z

ρ0

ρ1, (G.11)

where ω̄ ≡ ω − kyv0, and the linear perturbation equation is given by equation (E.22), i.e.,

d2w1

dz2
+

1

ρ0

dρ0

dz

dw1

dz
−
(

k2 +
1

v̄

d2v0

dz2
+

1

ρ0

dρ0

dz

1

v̄

dv0

dz
+

k2

ky
2

ΩK
2z

v̄2

1

ρ0

dρ0

dz

)

w1 = 0, (G.12)
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where k2 ≡ kx
2 + ky

2 and v̄ ≡ v0 − ω/ky = −ω̄/ky. Equations (G.7)-(G.12) are the same

as equations (E.13)-(E.17) and (E.22), except for gz = ΩK
2z and ∂gz/∂z 6= 0. We assume

that v0, ρ0 and P0 are continuous at any z, and that v0(−z) = v0(z), ρ0(−z) = ρ0(z) and

P0(−z) = −P0(z).

To solve the linear perturbation equation (G.12), boundary conditions are needed. We

consider the case with ∂v0/∂z = 0 and ∂ρ0/∂z = 0 at |z| ≥ zd, where zd is an arbitrary value

and corresponds to the scale height of the dust layer. At |z| ≥ zd, equation (G.12) is simplified

as
d2w1

dz2
− k2w1 = 0. (G.13)

From equation (G.13), we have

w1 =







A+ exp(−kz) (z ≥ zd)

A− exp(kz) (z ≤ −zd)
, (G.14)

where A+ and A− are arbitrary constants. At z = ±zd, P1 should be continuous. From

equations (G.7), (G.9) and (G.10), we have

P1 =
iρ0ω̄

k2

(

dw1

dz
− 1

v̄

dv0

dz
w1

)

. (G.15)

At |z| ≥ zd, using equation (G.14), equation (G.15) is simplified as

P1 =







−(iρ0ω̄/k)w1 (z ≥ zd)

(iρ0ω̄/k)w1 (z ≤ −zd)
. (G.16)

At z = ±zd, from equations (G.15) and (G.16), we have

dw1

dz
+

(

±k − 1

v̄

dv0

dz

)

w1 = 0 at z = ±zd. (G.17)

From equation (G.17), there are two types of solutions: odd solutions, where w1(−z) = −w1(z),

i.e.,

w1 = 0 at z = 0, (G.18)
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and even solutions, where w1(−z) = w1(z), i.e.,

dw1

dz
= 0 at z = 0. (G.19)

As the same in the case in the Appendix E, the mode with kx = 0 is the most unstable.

For such a mode, k is equal to ky, and the linear perturbation equation is given by

d2w1

dz2
+

1

ρ0

dρ0

dz

dw1

dz
−
(

k2 +
1

v̄

d2v0

dz2
+

1

ρ0

dρ0

dz

1

v̄

dv0

dz
+

ΩK
2z

v̄2

1

ρ0

dρ0

dz

)

w1 = 0. (G.20)

Boundary conditions are given by

w1 = 0 at z = 0 (odd mode), (G.21)

dw1

dz
= 0 at z = 0 (even mode), (G.22)

and
dw1

dz
+

(

k − 1

v̄

dv0

dz

)

w1 = 0 at z = zd. (G.23)

Equation (G.20) is applicable to the case with the continuous density distribution. On the

other hand, in the Appendix E, we considered the case with discontinuous density distribution.

This is the difference between the Appendix E and the Appendix G.
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