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Abstract

Recently, many planetary systems have been found outside the solar system owing to the
progress of the observational technology. In order to explain the variety of planetary systems,
it is essential to interpret the formation processes of planets. In the core accretion model of
planet formation, planetesimals are assumed to form from dust particles in the protoplanetary
disk first, and then they grow into planets. However, there are many significant problems.
For example, due to gas drag in the protoplanetary disk, dust aggregates migrate inward and
fall onto the protostar before growing to planetesimals. This is the radial drift problem. As
one of the solutions to the problem, the gravitational instability (GI) of a settled dust layer
has been suggested. In this scenario, dust aggregates first settle toward the midplane of the
protoplanetary disk and make the dense layer of dust. Then, the dust layer becomes gravita-
tionally unstable, and the dust layer fragments into pieces to form planetesimals before dust
aggregates fall onto the protostar. However, as dust aggregates settle toward the midplane,
the vertical dust density gradient increases. As a result, vertical shear of the rotational ve-
locity in the dust layer becomes strong. This strong shear has the possibility to induce the
Kelvin-Helmholtz instability (KHI), and KHI possibly induces shear-driven turbulence. If the
turbulence is sufficiently strong, it prevents dust aggregates from settling toward the midplane,
and as a result, GI and the planetesimal formation is possibly suppressed. On the other hand,
if GI occurs before KHI, planetesimals will form. However, the condition that GI occurs before
KHI during sedimentation is not known. To know this condition, it is necessary to know the

dust density at the onset of KHI. Investigation for this condition is essential for understanding



the processes of the planetesimal formation. Previous studies indicated that GI is expected to
occur if the dust abundance in the protoplanetary disk is sufficiently larger than that in the
minimum mass solar nebula (MMSN) model. However, these works were based on the model
with single-sized dust. Previous works did not take into account the appropriate distribution
of dust density that is consistent with their sedimentation and growth. Since property of KHI
strongly depends on the dust density profile, in order to understand correct outcome after
dust sedimentation correctly, it is important to consider appropriate density distribution with

sedimentation and growth of dust.

In this thesis, first, we reexamine the possibility of the onset of KHI during dust sedi-
mentation in the protoplanetary disk. We newly use the dust density distributions that are
consistent with their growth and sedimentation. To clarify the effect of each of growth and
sedimentation, we compare three cases: (1) the case with the single-sized dust without growth,
(2) the case with the multi-sized dust without growth, and (3) the case with the multi-sized
dust with growth. As the condition for KHI, we use the classical Richardson number criterion
by which KHI occurs when the Richardson number is less than 0.25. As a result, it is found
that, for the cases without dust growth, GI tends to occur before the onset of KHI if the dust
abundance is 660 times (for the single-sized dust) or 50 times (for the multi-sized dust) larger
than that in the MMSN model. This result shows that the dust abundance required for GI
of the multi-sized dust is much smaller than that of the single-sized dust. The reason is that
the vertical gradient of the dust density becomes more gradual as a result of the continuous
size distribution. In the case with dust growth, however, it is found that KHI tends to occur
before GI even in the case with large dust abundance with continuous size distribution. This
qualitative change is found to originate from the change of gas drag law from Epstein’s law to

Stokes’ law owing to dust growth.

In the above investigation, we used the classical Richardson number criterion (RNC) with
a constant critical value, 0.25. However, this critical value, 0.25, is based on the case of

the incompressible, inviscid and one component fluid with the laminar flow without rotation.



Thus, it is indicated that, for general cases in the protoplanetary disk, the classical RNC whose
critical value is 0.25 is not ensured to use. Thus, in the second part of this thesis, we directly
perform the linear stability analysis for KHI using the dust density distribution consistent with
dust sedimentation. As a result, we derived a condition in terms of the critical dust density
required for GI before KHI. By comparing the condition for the onset of KHI estimated by
the linear stability analysis with that estimated by the classical RNC, we discuss the validity
of the classical RNC. We find that the condition estimated from the linear stability analysis
agrees well with that estimated by the classical RNC within a factor of 2 in critical density. In
the case without growth, it is found that the classical RNC tends to be more applicable in the
case with the multi-sized dust than in the case with the single-sized dust. The classical RNC
for the case with dust growth is still the open question for future work.

In conclusion, it is found that KHI tends to occur before GI even in the case with large dust
abundance during sedimentation of growing dust aggregates in the protoplanetary disk. This
means that small dust aggregates becomes to be unstable for KHI during their sedimentation
at least once. We discuss the possible process after KHI. When dust aggregates have larger
collisional velocities owing to the shear-driven turbulence than owing to sedimentation and
radial drift, dust aggregates have the possibility to grow quickly or fragment. To clarify this
possibility, we must take account of dust-dust collisions with shear-driven turbulence induced

by KHI in future work.
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Chapter 1

Introduction

Many planetary systems were found outside the solar system owing to the progress of the
observational technology (Mayor & Queloz 1995; Kalas et al. 2008; Marois et al. 2008; Doyle
et al. 2011; Hirano et al. 2012; Carson et al. 2013). There are about one thousand confirmed
exoplanets and more than three thousand candidates. Many observed planetary systems show
different characteristics from the solar system. In order to explain the diversity of planetary
systems, it is essential to understand the formation processes of planets.

In this chapter, we review the theory of the planet formation, and the purpose of this thesis

is presented.

1.1 Theory of Planet Formation

1.1.1 Formation of the Protoplanetary Disk

It is considered that planets form in the protoplanetary disk. The protoplanetary disk is a thin
disk around a protostar and is considered to form from the interstellar medium as described
below.

The interstellar medium is composed of gas and um-sized dust. The interstellar medium

1



2 CHAPTER 1. INTRODUCTION

is inhomogeneous, and dense regions of the interstellar gas (with number density = 10® cm ™3,

mass > 10*M, and temperature ~ 10 K) are called as molecular clouds. The molecular cloud

3 and

has clumpy structures, and particularly dense regions (with number density ~ 105 cm™
mass ~ M) are called as molecular cloud cores. The molecular cloud core has the angular
momentum (Zhou et al. 1993; Goodman et al. 1993; Ohashi et al. 1997). This material with
the small angular momentum falls towards the center of the core and forms the protostar. On

the other hand, the material far from the rotation axis with larger angular momentum forms

the protoplanetary disk, that is composed of gas and dust.

1.1.2 Gravitational Instability Model

In the massive protoplanetary disk, the self-gravity of the protoplanetary disk is not negligible
compared with the gravity of the central star and the gas pressure of the protoplanetary disk.
When the disk is gravitationally unstable and fragments into pieces, it is expected that the
pieces become planets. This scenario is the gravitational instability model (Cameron 1978).

Toomre’s stability criterion (Toomre 1964; Binney & Tremaine 1987) is known as a criterion
for the gravitational instability of the disk. We present the linear analysis of local stability of
an infinitely thin, rotating disk in the Appendix A. The Toomre’s QQ value is given by

CSQK

o5 (1.1)

Q=

where ¢ is the sound velocity, Qk is the Keplerian angular velocity, G is the gravitational
constant, and ¥ is the surface density of the protoplanetary disk. It is considered that the
gravitational instability of the protoplanetary disk occur when ) < 1. Then, from equation
(1.1), it is shown that the disk fragmentation tends to occur in the case with the small central
star and/or with the cold protoplanetary disk.

For the gravitational instability model, it is shown that the disk fragmentation is expected
to occur at the position far from the central star. For example, in the case when the protoplan-

etary disk has the same angular momentum distribution with the molecular cloud core before
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it collapses, it is considered that the mass of the protoplanetary disk is not so small (Hayashi
et al. 1982; Kimura & Tsuribe 2012), and it is suggested that gas giant planets form far from
the central star (at the heliocentric distance of tens of AU) (Rafikov 2005; Kimura & Tsuribe
2012). Recently, exoplanets are discovered by direct imaging (Kalas et al. 2008; Marois et
al. 2008; Carson et al. 2013). These planets are more massive than Jupiter and are farther
from the central star than Neptune (more than 30 AU). The gravitational instability model
has possibility to explain the formation processes of such planets. However, the gravitational
instability model is not promising to explain the formation of terrestrial planets because it is
not known how rocky cores with little gas form in gas-rich fragments although a possible route

is suggested (Nayakshin 2010).

1.1.3 Core Accretion Model

There are dust aggregates composed of rock and/or ice in the protoplanetary disk. Such dust
aggregates are considered to coalesce into large bodies, then they finally form planets. This is
the core accretion model (Safronov 1969; Hayashi et al. 1985). In the core accretion model,
it is often assumed that the mass of the protoplanetary disk is much (typically 100 times)
smaller than the mass of the central star as described in the next section (Hayashi 1981). This
disk model explained in the next section is called as the minimum mass solar nebula (MMSN)
model.

The classical core accretion model is given below. Micron-sized dust particles (monomers)
collide with each other, then the dust particles stick via surface tension and become aggregates
of small monomers. It is considered that the dust aggregates grow into planetesimals in conse-
quence of iterations of such hit-and-stick collisions. However, the formation of planetesimals is
one of the unresolved issue because there are many problems on the formation of planetesimals
as described in section 1.3. If planetesimals form, planetesimals collide with each other and
grow into large solid bodies (Kokubo & Ida 1996, 1998, 2000). The large solid bodies eventu-

ally become terrestrial planets. If the solid body grows furthermore and becomes roughly 10
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times more massive than Earth mass while the gas remains in the protoplanetary disk, then
the planet becomes more massive because gas around the solid core is captured by the solid
core to form gas envelope (Mizuno 1980). Then, the gas giant planet is formed. At the late
step of the planet formation, however, gas abundance of the protoplanetary disk decreases
with time because of the accretion towards the central star, magnetically-driven wind, and/or
the photoevaporation due to the irradiation from the central region. If the planet grows after
most of gas in the disk have disappeared, the Neptune-like planet is formed.

The classical core accretion model is based on the on-site planet formation. It is considered
that it is difficult for the core accretion model to explain the formation process of the gas giant
planet farther from the central star than Neptune since it is thought that gas has disappeared
from the protoplanetary disk before the formation of the massive core (Dodson-Robinson et
al. 2009). However, the core accretion model has possibility to explain many kinds of planets
in the solar system. In this thesis, we concentrate on the core accretion model. There are,
however, many unresolved problems on the formation of planetesimals. The detail of the

problems are described in section 1.3.

1.2 Models of the Protoplanetary Disk

In this section, we review the model of a protoplanetary disk where planetesimals (and planets)
forms.

In this thesis, we assume that the mass of the central star is given by 1M,. We adopt the
cylindrical coordinate system (r, ¢, z) at rest in this section, where r is the heliocentric distance
and z is the height from the midplane of the disk. For simplicity, we take no account of the
magnetic tension acting on gas and dust, and neglect the electrostatic force owing to ionization
of gas and to electrostatic charge of dust (Umebayashi 1983; Sano et al. 2000; Okuzumi 2009).
We also assume that there is not MRI-driven turbulence because there are many tiny dust

particles (Sano et al. 2000; Okuzumi & Hirose 2011, 2012).
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1.2.1 Minimum Mass Solar Nebula Model

In the core accretion model, the minimum mass solar nebula (MMSN) model (Hayashi 1981)
is widely adopted as the model of the protoplanetary disk. The MMSN model is based on
amounts of gas and dust of the present solar system and on the elemental composition of the
present Sun.

In the MMSN model, the gas surface density, >,, and the dust surface density, ¥4, are
given by

~3/2
S=1.7x10° [ —— -2 1.2
and

N
S = 716 (m) gem™, (13)

where . is the parameter which specifies abundance of condensed water ice. In the MMSN

model,

fice = ! (T - TSHOW) ) (14)

4.2 (1 > Tsnow)

where 74,0 1S the snow line. At r > rg0w, HoO becomes water ice. In the MMSN model,
temperature, 7', is derived from the balance of the radiative heating (from the central star)
and the radiative cooling (from the disk approximated by a black body). By assuming that
the protoplanetary disk is geometrically and optically thin and that temperature is uniform in

the vertical direction, the radial temperature distribution is given by

T = 280 (ﬁ) o K], (1.5)

and the snow line is given by rg,ow = 2.7 AU.
We assume that the disk is symmetric with respect to the midplane. We assume (72 +
22)Y/2 ~ r and 90k /0z = 0 for simplicity, since we assume that the protoplanetary disk is

geometrically thin.



6 CHAPTER 1. INTRODUCTION

In this thesis, for the gas surface density and temperature, we adopt equations (1.2) and
(1.5), respectively. For the dust surface density, we adopt equation (1.3) with dust abundance

parameter, fq,
, -3/2
Ya=T1f1&ce | = -2 1.
d 7 fdglce(l[AU]) [gcm ]7 ( 6)

where fq is the dust abundance parameter. The case with fq = 1 corresponds to the MMSN

model.

1.2.2 Gas Disk

From equation (1.5), the sound velocity is given by

, —1/4
Cs = ,/% =0.99 <1[AU]) [kms™], (1.7)

where kg is the Boltzmann constant and m, (= 3.9 x 1072* g) is the mass of gas molecules (the

mean molecular weight is 2.34). The mean free path of gas molecules, I, is given by [, = 1.44
cm at r =1 AU (Nakagawa et al. 1986).

Gas is affected by the gravitational force from the central star, the centrifugal force, the
pressure gradient force, and interaction between gas and dust. For simplicity, in the vertical
direction, we assume that the gas component is in hydrostatic equilibrium without self-gravity
and is not affected by the motion of dust. In such a case, the equation of motion for gas in
the vertical direction is given by

GM@Z 1 8Pg

0= ,
r3 pg 0%

(1.8)

where p, is the gas density and P, = ¢;?p, is the gas pressure, and 9P, /0z = ¢,20py/0z because
of equation (1.7). From equation (1.8), the gas density is given by

(o) = =g e [— (F)] , (19)
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In the absence of pressure gradient

Gravitational force /\ Centrifugal force

N

In the presence of pressure gradient

—_—>7r

.. Centrifugal force
Gravitational force g

Pressure gradient force

Figure 1.1: Affecting forces (arrowed lines) for gas components (circles) except for interaction
between gas and dust for two cases in the absence of the pressure gradient force (upper) and in the

presence of the pressure gradient force (lower).

where H, is the scale height of the disk, given by

C r 5/4
H, = \g—i =4.7x 1072 <m) [AU]. (1.10)

From equation (1.10), it is seen that the protoplanetary disk is geometrically thin, H,/r < 1.

In the radial direction, the gravitational force from the central star is —G M /r* < 0, and
the centrifugal force is vy,*/r > 0, where vy is the rotational velocity of gas. Hereafter, we
consider the case when gas has the circular orbit. If there is no pressure gradient force and
no interaction between gas and dust, gas has the Keplerian angular velocity. However, in
practice, these forces affect. From equations (1.7), (1.9) and (1.10), P, o< 7—'3/%. Then the
pressure gradient force is —(1/p,)(0F,/0r) > 0. Thus, gas revolves at a slower velocity than
the Keplerian velocity under the balance among the gravitational force, the centrifugal force
and the pressure gradient force because of the positive pressure gradient force (Figure 1.1). We
define the angular velocity of gas as (1 —n){2k in the case when there is no interaction between
gas and dust. In order to derive 7, we consider the disk composed of gas only. Under the

balance among the gravitational force, the centrifugal force and the pressure gradient force,
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the equation of motion for gas in the radial direction is given by
2
- - — — — = (1.11)

From equation (1.11) and P, = c¢;2p,, the rotational velocity of gas is given as
g Pg

M P\ 2 20 P\
vg¢:<G @+L%) :T(1+C Oln g) Qxk, (1.12)

r pg Or vg? Olnr

! and

where vk is the Keplerian velocity. At r = 1 AU, the sound velocity ¢, is about 1 km s~
the Keplerian velocity vk = rQx is about 30 km s™!. Then, equation (1.12) is approximated

by

1¢? 0ln P, _
vg¢:r(1+§UK2 oy ) Qg =r(1 —n)Qk, (1.13)
where , "
1 ¢ omP, 13 [(H, 3 r
=——— =—|—) =18x10" 1. 1.14
1= 002 olnr 16 ( y ) 8 o) < (1.14)

Equation (1.14) shows that the gas component revolves at slightly slower velocity than the

Keplerian velocity.

1.2.3 Motion of Dust Particles
Keplerian Rotation

As described in the preceding subsection, the gas component revolves at slightly slower velocity
than the Keplerian velocity. On the other hand, the dust component revolves at the Keplerian
velocity in the case when there is no interaction between gas and dust and when the dust
component has the circular orbit since there is no pressure gradient force.

In the case with taking account of interaction between gas and dust, the drag force acts on

gas and dust since gas tends to revolve at slightly slower velocity than dust aggregates.

Drag Force

The characteristic time scale for acceleration of dust aggregates owing to the gas drag force

is the stopping time. In this thesis, dust aggregates are assumed to be compact and have a
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10° 10
5131y 12)

10

Figure 1.2: The stopping time as a function of the dust size for the case with ps =3 gem ™3 at r =1
AU. The abscissa is the size of dust aggregates, s, in units of 3/, /2. The ordinate shows the stopping

time, tsop, in units of QgL

spherical shape with size (radius) s. In the case with s < 3l,/2 (= 2.2 cm at » = 1 AU), the
gas drag force is given by Epstein’s law (Epstein 1924). In this case, at r = 1 AU and z = 0,
the stopping time, tsop, is given by

tstop = &é —1.5x 1073 (3[g§;13]) (2.2[5%]) [y1], (1.15)

where p; is the internal density of the dust aggregates. In the case with s > 31,/2, gas drag is

given by Stokes’ law, and the stopping time is given by

2 ps 32 -3 ps S ?
tstop = = =1.5x10 ) 1.16
P 3 pg(2) Lyt % <3[g cm~3] ) \ 2.2[cm)] ] (1.16)

at r = 1 AU and z = 0. Figure 1.2 shows the dependence of the stopping time on the dust

size changes for the case with p; = 3 gem™ at r = 1 AU. Note that the dependence of the
stopping time on the dust size changes at s = 3,/2.

Sedimentation

The equation of motion of a dust aggregate in the vertical direction is given by

dv v
2= 2 O 1.17
dt toop # (1.17)
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where ¢ is the time and v, is the vertical velocity of the dust aggregate, and we assume that the
gas component does not have the vertical velocity. We approximate the vertical velocity of the
dust aggregates by the terminal velocity. The validity of this approximation is discussed in the
next paragraph. By setting dv,/dt = 0 in equation (1.17), we obtain a terminal sedimentation

velocity of a dust aggregate as

v,(z) = —tstopQKzz. (1.18)
The characteristic time scale for sedimentation of dust aggregates is given by

z 1
tooq = - . 1.19
|'UZ(Z)| tstopQK2 ( )

Figure 1.3 shows the dependence of the sedimentation time on the dust size changes for

the case with p, = 3 gem™3

. In figure 1.3, it is shown that, in the case when the stopping
time is much smaller than the Keplerian period, ts.p{2x < 1, the characteristic time scale of
sedimentation is much larger than the Keplerian period, tsq2x > 1. In the case with 40,2k
(= St, where St is called as the Stokes number) < 1 < t.q{2k, we can approximate the vertical
velocity of the dust aggregates by the terminal velocity. In figure 1.3, tsopSlx = tseafdx = 1 at
s/(3lg/2) ~ 10 in the case with ps = 3 gem™ at r = 1 AU. From equations (1.15), (1.16) and
(1.19), the approximation that the vertical velocity of the dust aggregates with p, = 3 gem™3
is given by the terminal velocity is suggested to be valid in the case with s < 23 cm at r =1

AU. In subsection 1.4.1, we will show that the terminal velocity approximation is valid during

dust sedimentation toward the midplane of the protoplanetary disk.

1.2.4 Radial and Rotational Velocities of Gas and Dust

In this subsection, we summarize velocities of the gas and dust components with taking into
account their interaction. Gas is affected by the gravitational force from the central star, the
centrifugal force, the pressure gradient force and the drag force between gas and dust. Dust

is affected by the gravitational force from the central star, the centrifugal force and the drag
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s/(31g/2)

Figure 1.3: The sedimentation time as a function of the dust size for the case with p; = 3 gcm ™ at
r =1 AU (solid line). The abscissa is the size of dust aggregates, s, in units of 3l,/2. The ordinate
shows the sedimentation time, tsq, in units of Qx . The stopping time, tstop, 15 also drawn (dotted

line).

force between gas and dust. Then, equations of motion for gas and dust are given by

d — 1
We _ _PdVe = Vd ) 2R _ —VP,, (1.20)
dt Pg tstop Pg
and
dvy Vg — Vg 2
- _ — OW2R 1.21
dt tstop D (1.21)

where v, and vq are the velocity vectors of the gas and the dust components, pq is the dust
density and R is the heliocentric position vector (Nakagawa et al. 1986). For simplicity, we
consider the case of steady state with 9/0t = 0. From equations (1.20) and (1.21), we obtain

the radial and rotational velocities of the gas and the dust components as

Pa 2Dk

Vgp = VK, 1.22
T et pa D0 22
Pd D?
Ve = (1 — n)vk + VK, 1.23
gs = ( 1)Uk pg+pdD2+QK2n K ( )
2D}
vay = ——L% K, (124)

_Pg+Pd D% + Qx
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and
Pg D?
VK,
Po+ paD2+ O
where vy, and vy, are the radial and rotational velocities of the gas components, vg, and vq4

Vap = UK — (125)

are the radial and rotational velocities of the dust components, and
1
Dz<1+@) (1.26)
pg tstop

(Nakagawa et al. 1986). We present the derivation of these velocities in the Appendix B. In

the case without the dust component, pq = 0, equation (1.23) is reduced to equation (1.13).
Equations (1.22)-(1.25) show that dust aggregates spiral in towards the central star owing to
the transport of angular momentum from dust to gas as a result of the drag force. The radial
and rotational velocities vary with the dust size, s, and with the dust fraction, pq/p,. From

equations (1.24) and (1.26), we have
2tstopQK
o . 1.27
" T Gl + g™ 2

In the region with the small dust fraction, pq/pg, the radial velocity of dust aggregates becomes

large.
From equations (1.22) and (1.24), the radial velocity for mass center of gas and dust is
given by zero. From equations (1.23) and (1.25), the rotational velocity for mass center of gas

and dust, vy, is given as

__ Ps Pd Pg
Vg = Vo + Vdp = <1 — 77)> VK- 1.28
T et pa L petpa Pg + pa (1.28)

Equation (1.28) shows that v, = vk in the case when there is only dust (p, = 0), and that

vy = (1 — n)vk in the case when there is only gas (pqg = 0). From equation (1.28), we have

vy _ (s Opa _ padpg
0z <p2 0z p? 0z UK (1.29)

where p = p, + pa is the total (gas plus dust) density. Note that, according to equation
(1.29), it is seen that the vertical shear of the azimuthal velocity, dv,/0z, is proportional to
the vertical dust density gradient, dpq/0z, when the vertical gas density gradient, dp,/0z, is

small.
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1.3 Problems of Core Accretion Model

As described in subsection 1.1.3, in the core accretion model, it is considered that planetesimals
(and planets) form from dust growth owing to collisions between dust aggregates. However,
there are many problems on the formation of planetesimals. Especially, radial drift and colli-

sional fragmentation of dust are significant problems as described below.

1.3.1 Radial Drift Problem

The protoplanetary disk is composed of gas and dust. As explained in subsections 1.2.2 and
1.2.3, if there is no interaction between gas and dust, dust aggregates have the Keplerian
angular velocity, 2k, in the case with circular orbit. On the other hand, the pressure gradient
force acts on gas additionally. From equations (1.13) and (1.14), gas revolves at slightly slower
velocity than dust. The velocity difference between gas and dust is given by nuk with n ~ 1073
at r =1 AU.

If we take account of interaction between gas and dust, headwind acts on dust aggregates
and drag force acts on gas and dust as in equations (1.20) and (1.21). As a result of the
drag force, angular momentum is transported from dust to gas, and dust aggregates spiral in
towards the central star. The drift velocity of dust aggregates is given by equation (1.27).
Adachi et al. (1976) investigated the radial drift of the dust aggregate with ¥4/%, < 1 and
pa/pe < 1, and the decay time of the spiral orbit, i.e., the time scale of the radial drift of dust

aggregates, tqsif, 1S given by

T . 1 ]_ + (tstopQK)Q

_ , 1.30
Vdrift nQK 2tstop QK ( )

tariee =

where vgyif; 1s the radial drift speed of dust aggregates, |vq,|, in equation (1.27) with pg/ps < 1.
Figure 1.4 shows the drift time as the function of the stopping time in the case with n ~ 2x1073.
In figure 1.4, it is seen that the drift time has the minimum value at ts,, 2k (= St) = 1. The
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tstop QK

Figure 1.4: The drift time as the function of the stopping time in the case with n ~ 2 x 1073. The

1

abscissa is the drift time, tqyig, in units of k. The ordinate shows the stopping time, tgop, in

units of Qx L.
minimum value of the drift time, ¢y min, 1S given by

1 n - r
o=~ 102 — 1.31
tdrlft,mm WQK 0 <2 « 10_3) <1[QU]> [yr]u ( 3 )

and Zayife, min ~ 102 yr at r = 1 AU. In the case with the internal density of dust aggregates

ps ~ 1 gem™ and the typical value of the gas density py ~ 1072 gem™ at r = 1 AU, the size
of dust aggregate with g ~ 10% yr, i.e., tsopS2k = 1, is about 1 m from equation (1.16).

If the growth time scale of meter-sized dust aggregates is larger than the drift time, dust
aggregates fall onto the central star and can not grow larger. For the hit-and-stick collisions,

the growth time scale of dust aggregates corresponds to the mean collision time which is given

by
1

- 1.32
ngoAv’ ( )

tgrowth -

where ng is the number density of dust aggregates, o is the collisional cross section, and
Av is the relative speed of the dust-dust collision. In the case with ¥3/X, < 1 and with
pa/pe < 1, the maximum relative speed of the dust-dust collision due to the radial motion of
dust aggregates is given as Avg, max ~ Varite = MUK X 2lstopSic/[1 + (tstopk)?] from equation

(1.24), and the maximum relative speed due to the azimuthal motion is given as Avgg max ~
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nuk X (tstop$2k)?/[1 + (tstop$2x)?] from equation (1.25). At tsopQk ~ 1, AVdr max 2 AVdg, max-
The relative speed due to the vertical motion, Av,, depends on z from equation (1.18). It is
considered that meter-sized dust aggregates form after dust sedimentation toward the midplane
of the protoplanetary disk (Nakagawa et al. 1981, 1986). Near the midplane, it is speculated
that Avdr, max > AU; max. Then, Avpax ~ AVdy, max ~ Varife- 10 estimate the growth time scale
of meter-sized dust aggregates, we assume nq ~ Xq/(4/3)7pss’Hy, 0 ~ ws? and Av ~ vgyig.

Then, the growth time scale at » =1 AU is given as

4 H, pss r Ps S
tarowth ~ = —> = tavie. 1.33
growth ™ 57, Y4 Vdrift (3[gcm3]) <38[cm]) drift ( )

In equation (1.33), we used taie = 7/Vanige [equation (1.30)]. From equation (1.33), the growth

time scale of meter-sized dust aggregates with the internal density ps ~ 1 gem ™ is given by
terowth ~ tarie at 7 = 1 AU. Thus, meter-sized dust aggregates may fall onto the central star

before their growth only by the simple hit-and-stick collisions. This is the radial drift problem.

1.3.2 Collisional Fragmentation Problem

In the core accretion model, dust aggregates grow by their hit-and-stick collisions. According
to equations (1.15), (1.16), (1.18), (1.24), (1.25) and (1.26), the relative speed of the dust-dust
collision, Awv, results from the difference of sizes between dust aggregates. (The dependence of
Awv on the dust size, s, is different for different velocity components, vg,, vqy and v,, and for
different gas drag laws, Epstein’s law and Stokes’ law.) Thus, the relative speed increases with
increasing the difference of sizes. However, when the relative speed of the dust-dust collision
is too large, dust aggregates can not stick but break catastrophically (Dominik & Tielens
1997; Blum & Wurm 2000; Wada et al. 2009). This prevents dust from growing. This is the
collisional fragmentation problem.

The threshold of collision speed for the collisional fragmentation depends on compositions
of dust aggregates and on the size of monomers (Wada et al. 2009). It is considered that

dust aggregates are mainly composed of rocky particles (at the region near the central star,
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7 < Tsnow) O icy particles (far from the central star, r > rg,q). Rocky particles stick owing to
the intermolecular force. For rocky particles, e.g., silicate particles, the critical speed is known
to be about a few ms~! in the case when the size of monomers is 0.1-1 gm. On the other hand,
the critical speed for icy particles is roughly larger than 10 ms~! because icy particles stick
owing to the hydrogen bonding additionally. Thus, it is more difficult for icy dust to fragment
than for rocky dust.

Note that the realistic dependence of the outcome of the dust-dust collision on the collision
speed is less well understood. Even if the collision speed is smaller than these critical speeds,
it is suggested that there are the collisional compression (Dominik & Tielens 1997; Wada et al.
2007), the bouncing barrier (Zsom et al. 2010) and the electrostatic barrier (Okuzumi 2009).

The outcome of the dust-dust collision varies with the collision speed and is complicated.

Figure 1.5 shows the maximum relative speed of the dust-dust collision for the case with
ps =3 gem™? at r = 1 AU. The maximum collision speed of dust aggregates is about nug ~
50 ms~! and is independent of r because 7 oc 7'/2 [equation (1.14)] and vk oc 7~*/2. The critical
speed for fragmentation of icy and porous dust aggregates with 0.1-pm-sized monomers is also
about 50 ms~! (Wada et al. 2009). From the detailed numerical simulations, it is shown that
icy and porous dust aggregates are able to grow to km-sized planetesimals by hit-and-stick
collisions with neither the radial drift problem nor the collisional fragmentation problem in
the limited region, rg,ow < 7 S 10 AU (Okuzumi et al. 2012). On the other hand, however, it is
considered that rocky dust can not grow to planetesimals by hit-and-stick collisions. The radial
drift speed of a 5-cm-sized dust aggregate with the internal density ps = 3 gem™ is about 5
ms~! in the case with the gas density p; ~ 107 gem™ at » =1 AU and is comparable with
the critical speed for fragmentation of rocky particles. Even if dust aggregates are porous, the
internal density remains ps 2> 107° gem™ at r = 1 AU because of the collisional compression
(Suyama et al. 2008; Okuzumi et al. 2012). In such a case, the radial drift speed of a

30-m-sized dust aggregate is comparable with the critical speed for fragmentation of rocky

particles at » = 1 AU. Thus, in the MMSN model, it is expected that rocky dust aggregates
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10
100 Vrag, ice <z
g Vfrag rock / !
Z 10! ’
~ / \.“
< AVdr, max ™
10 ,
’,""Avd ¢, max
10” 1 0 / g 2
107 10 10 10
s/ (31g /2)
Figure 1.5: The maximum relative speed of the dust-dust collision, Avmyax = (Avdr,maXQ +

Avd¢7maxz)1/2, for the case with ps = 3 gem™ at » = 1 AU (solid line). The abscissa is the size
of dust aggregates, s, in units of 3l;/2. The ordinate shows the maximum relative speed of the
dust-dust collision, Avpay, in units of nug. The maximum collision speed due to the radial motion,
Avdr, max, and that due to the azimuthal motion, Avge max, are also drawn (dashed lines). Dotted

lines shows the critical speeds for fragmentation of icy dust, vgag, ice (~ 50 m s~1), and for rocky dust,

Ufrag, rock (N ) msil) (Wada et al. 2009)

are unable to grow to km-sized planetesimals by hit-and-stick collisions before the radial drift
problem. As a means of growth of rocky dust aggregates other than the hit-and-stick collision,

the gravitational instability of the dust layer (described in the next section) is considered.

1.4 Formation and Fragmentation of Dust Layer

In the laminar gas flow, dust aggregates settle toward the midplane of the protoplanetary disk
owing to the gravitational force from the central star. As a result of dust sedimentation, a
thin and dense layer of dust, so-called dust layer, forms. The dust layer is composed of 1-10-
cm-sized dust aggregates at r = 1 AU (Nakagawa et al. 1981, 1986). If the dust layer is dense
enough, the dust layer is gravitationally unstable and it fragments into pieces (Goldreich &

Ward 1973; Sekiya 1983). We present the stability of the dust layer in the Appendix C. At
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r = 1 AU, the mass of the piece is about 10'8 g in the MMSN model and the size of the
piece is several kilometers in the case when the internal density of the piece is about 1 gcem™3.
The pieces have large dust densities and strong self-gravitational forces, then a lot of dust
aggregates in the pieces are strongly compressed by strong self-gravitational forces. In such
a case, km-sized planetesimals directly form. This is the gravitational instability (GI) of the
dust layer. Hereafter, GI refers the gravitational instability of the dust layer. The critical
density for GI (Sekiya 1983) is given by

0.61M,,

r

=3.6x10"" (m) [gem ™), (1.34)

Pe

and GI is expected to occur when the density in the dust layer is larger than the critical density,
pe- The time scale of the gravitational contraction of the pieces is given by the free-fall time,

tg ~ (Gpq) Y%, In the case with pq = p., the free-fall time is given by

1 1
t laY) p—
T VG V0610k

where Tx = 27/Qx is the period of rotation. Thus, if GI begins, it is expected that the

cm-sized dust aggregates collapse to km-sized planetesimals in much a shorter time scale than
their drift time onto the central star. In order to form the dust layer with the large dust
density, dust aggregates have to settle close to the midplane of the protoplanetary disk. Thus,

dust sedimentation is the key to understand GI.

1.4.1 Sedimentation and Growth of Dust Aggregates

Dust aggregates settle toward the midplane at the same time as their radial drift onto the

central star. From equations (1.14), (1.19) and (1.30), we have

lsed o 277
tdrift 1 + (tstopQK)

S < 1. (1.36)

Equation (1.36) shows that the fractional change of an orbital radius of a dust aggregate during

its sedimentation is significantly small as compared with the orbital radius. Thus, during dust
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sedimentation before GI, from equation (1.36), we do not take into account the radial motion
of dust aggregates in this thesis.

From equations (1.15), (1.16) and (1.18), the sedimentation velocity of dust aggregates
depends on the dust size. Dust aggregates grow during dust sedimentation, and the dust size
vary with dust sedimentation (Nakagawa et al. 1981, 1986). During the sedimentation and
growth of dust aggregates, evolution of the dust size distribution is described by the coagulation

equation described by

9, 9,
an(mv Z) + @[n(ma Z)vz(ma Z)]
= —n(m, 2) / A(m,m/, 2)n(m’, z)dm’
0
= % / Alm —m!',m/, 2)n(m —m', 2)n(m', 2)dm/, (1.37)
0

where n(m, z)dm is the number density of the dust aggregates with mass between m to m+dm
at height z, and A(m,m/, z) is the coalescence rate for two dust aggregates with m and m’
at z. The second term in the left-hand side of equation (1.37) shows the sedimentation of
dust aggregates with m at z. The first term in the right-hand side of equation (1.37) shows
the growth of dust aggregates from m to other mass. The second term in the right-hand side
of equation (1.37) shows the growth of dust aggregates to m from other mass. The symbol

n(m, z)dz gives a mass function in z to z + dz. The dust density at z, pq(2), is given by
pa(z) = / mn(m, z)dm. (1.38)
0

As for the velocity that induces dust-dust collisions during dust sedimentation before GI,
we take into account velocities generated during sedimentation and thermal Brownian motion
and ignore the radial and azimuthal motions as is the case with Nakagawa et al. (1981). We

assume that the coalescence rate, A(m,m’, z), is given by

A(m,m/, z) = (s + ') (Avs + Avg), (1.39)
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where Avg and Awvg are the relative velocities of two dust aggregates due to sedimentation and

to the thermal motion, respectively, and are given by

Avg = v, (m, 2) — v (M, 2)], (1.40)

/1 1
A'UB = 1/ ]{;BT E + %7 (141)

respectively. For simplicity, we ignore the collisional compression (Dominik & Tielens 1997;

and

Wada et al. 2007), the bouncing barrier (Zsom et al. 2010) and the electrostatic barrier
(Okuzumi 2009). From equation (1.39), we assume that the coalescence rate, A(m,m’, z),
is proportional to the relative velocities, Avs and Avg. Equation (1.41) shows that Avg
is independent of z. On the other hand, Awg increases with increasing z in the case with
constant m, m’ and ps from equations (1.15), (1.16), (1.18) and (1.40). Thus, it is expected
that dust aggregates at large z grow faster than at small z.

Integrating equation (1.37) with respect to m, we obtain

%/ mndm + g/ mnuv,dm = 0. (1.42)
0 = Jo
Using equations (1.38) and (1.42), we obtain

3} 0 ~

which is the continuity equation for dust aggregates treated as fluid, where the mean sedimen-

tation velocity of dust fluid at z is given by

U,(2) =

To see the tendency of dust growth, one example of dust density evolution with growth is

[ v.(m, 2) mn(m, z)dm

0
Jo° mn(m, z)dm

(1.44)

shown below. Dust density pq(z) is assumed to be symmetric with respect to the midplane,
and we examine only the region of z > 0. In this subsection, as an initial condition, the initial

density of dust is assumed to be

pal2) = paol0) exp [— (ﬁ)] | (1.45)



1.4. FORMATION AND FRAGMENTATION OF DUST LAYER 21

where

pao(0) = (1.46)

We set r = 1 AU. We assume that all dust aggregates have the same initial size, sp = 1.0 x 10~*
cm, and that the internal density of dust aggregates, ps, is 3 gecm™. The numerical method

of this calculation is presented in the Appendix D.

Figures 1.6 and 1.7 show the distributions of dust density and mass functions from ¢ = 0
yr to 1000 yr in the case with fg3 = 1. From figure 1.6, it is shown that dust aggregates
primarily grow to s/sg ~ 10® in z/H, ~ 1 at ¢ < 300 yr. From figure 1.7, it is shown that
dust aggregates with s/so ~ 10 secondly settle toward the midplane, z = 0, with growing
to s/sg ~ 101, ie., s ~ 1 cm, and that the dense dust layrer with pg ~ p. finally forms
near the midplane. This result shows that dust aggregates before GI are so small that the
stopping times of dust aggregates are much shorter than the Keplerian period [equation (1.15)].
Thus, the approximation of the terminal velocity used in equations (1.18) and (1.22)-(1.25) is

reasonable. These tendencies are similar to the results in Nakagawa et al. (1981, 1986).

From figure 1.7, the peak of the distribution of dust density, pq, appears at z > 0 while
dust aggregates settle from z/H, ~ 1 to the midplane. For reference, in the case without
dust growth, the peak of pq remains at z = 0 during the dust sedimentation (Garaud & Lin
2004, and section 2.3). In summary, dust growth strongly influences the dust sedimentation
and time evolutions of the profile of the dust density. This tendency is similar to the result in

Tanaka et al. (2005).



22

CHAPTER 1. INTRODUCTION

z/Hg

z/Hg

z/Hg

Figure 1.6: The distributions of dust density (left side) and mass functions (right side) in the case
with fq =1 at ¢ = 0 yr (the top), 100 yr (the center) and 300 yr (the bottom). For the distributions
of dust density (left side), the abscissas show the dust density, pq(z), in unit of p4p(0). The ordinates
show z coordinates in unit of H,. The critical density, pc, is also drawn (dotted line). For the
distributions of mass functions (right side), the abscissas show the dust size, s, in unit of sg. The

ordinates show z coordinates in unit of H,. The contrasting density of the color shows the mass
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1.5 Problem of Shear-driven Turbulence in Planetesi-

mal Formation

1.5.1 Strong Shear by Dust Sedimentation

Before the onset of GI, dust aggregates are so small that the stopping times of dust aggregates
are much smaller than the Keplerian period (Nakagawa et al. 1981, 1986). Then, dust aggre-
gates are small enough to couple strongly to gas on the rotational time scale. In such a case,
the mixture of gas and dust is often treated as the one component fluid for the azimuthal mo-
tion. For small dust aggregates, the sedimentation times are much larger than the Keplerian
period. On the rotational time scale, we regard the vertical motion of dust aggregates as being
smaller than their azimuthal motion. In such a case, the flow of the mixed fluid is assumed to
be laminar on the rotational time scale. Thus, in this section, we regard the mixture of gas
and dust as the one component fluid with laminar flow and consider the azimuthal motion of

the mixed fluid.

The rotational velocity of the mixed fluid of gas and dust depends on a ratio of gas to dust
density as shown in equation (1.28), and the vertical shear of the rotational velocity is given
by equation (1.29). Equation (1.28) shows that v, = vk in the case when there is only dust
(pg = 0), and that vy = (1 — n)vk in the case when there is only gas (pqg = 0).

As dust aggregates settle toward the midplane, the dust-rich region forms near the midplane
and dust-poor regions form outside. Then, the absolute value of the vertical dust density
gradient, |0pq/0z|, increases with dust sedimentation. In this case, according to equation
(1.29), the vertical shear of the rotational velocity of the mixed fluid, |0v,/0z|, increases,
and the strong shear is expected. The emergence of the strong shear flow reminds us of the
Kelvin-Helmholtz instability (KHI) (Chandrasekhar 1961). We explain about KHI in the next
subsection. KHI is suggested to induce shear-driven turbulence and that turbulence due to

KHI prevents dust aggregates from settling further toward the midplane (Cuzzi et al. 1993;
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Sekiya 1998). If KHI occur and dust aggregates are stirred up sufficiently, the condition for GI
in section 1.4 is possibly violated. Thus, KHI has the possibility to be an important problem

for the formation of planetesimals by GI.

1.5.2 Kelvin-Helmholtz Instability

In this subsection, we present a brief description of the process of the onset of KHI. For sim-
plicity, we consider the case when there are laminar flows of two superposed fluids with a
relative horizontal velocity. If fluctuation exists at the plane interface between the two fluids,
regions with different velocities exist alternately at the same height where the plane interface
exist in the unperturbed state. In such a case, the regions with different velocities at the same
height tend to mix, i.e., the different velocities tend to become the same velocity owing to the
momentum transfer between the regions. Then, the surplus kinetic energy is caused as the
result of the mixing (Chandrasekhar 1961). Then, the amplitude of fluctuation is more am-
plified owing to the surplus kinetic energy. In consequence, amplification of fluctuation occurs
repeatedly. Iterations of the amplification of fluctuation result from the relative horizontal
velocity between the fluids, i.e., the shear of the velocity between the fluids. This instability of
laminar flows induced by the shear of the velocity is the Kelvin-Helmholtz instability (KHI).
KHI induce turbulence. To understand the detail of KHI and shear-driven turbulence, we
have to perform the linear stability analysis and/or the numerical simulation. The basic linear
stability analysis for KHI is presented in the Appendix E, and the linear stability analysis for

the more realistic case for the protoplanetary disk is presented in chapter 4.

1.5.3 Richardson Number

As described in subsection 1.5.2, KHI induces amplification of the amplitude of fluctuation in
the direction of z owing to the surplus kinetic energy. For the purpose, the surplus kinetic

energy should be larger than the work to transfer fluid elements. From this request, a condition
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for instability of the laminar flow of the incompressible and inviscid fluid with velocity v, and

density p is given as

)
—g—;% <%) =J<J, (1.47)

where ¢, is the z component of the acceleration due to the gravitational force. The symbol
J is the Richardson number that is known as an indicator to discuss the possibility of KHI
(Chandrasekhar 1961). If J is smaller than a critical value, J., KHI is expected to be induced.
For the laminar flow of the incompressible, inviscid and one component fluid with no rotation,
the critical Richardson number is known as J. = 0.25 (Chandrasekhar 1961). For other laminar
flows, on the other hand, it is considered that the critical Richardson number is not 0.25 as

described in subsection 1.5.4.

1.5.4 Previous Studies and Remained Problems

Investigations of KHI and the turbulence are essential for understanding the processes of the
planetesimal formation, and there are many previous studies (Weidenschilling 1980; Cuzzi et
al. 1993; Sekiya 1998; Dobrovolskis et al. 1999; Sekiya & Ishitsu 2000, 2001; Ishitsu & Sekiya
2002, 2003; Johansen et al. 2006; Michikoshi & Inutsuka 2006; Bai & Stone 2010). Cuzzi
et al. (1993) numerically calculated the gravitational sedimentation and turbulent diffusion
of two fluid that are gas and single-sized dust. They showed that the dust layer turns out
to be a quasi-steady state by the balance of the gravitational sedimentation and turbulent
diffusion and that GI does not occur as long as dust aggregates are roughly smaller than 1 m.
Sekiya (1998) considered a case that the Richardson number is forced to be nearly equal to
the critical value, J. = 0.25, at the whole region, and derived the analytical solution of dust
density distribution in the quasi-stationary state. Sekiya (1998) showed that GI is expected
to occur in the case when the dust abundance in the protoplanetary disk is 20 times larger
than that in MMSN model. Sekiya & Ishitsu (2001) and Ishitsu & Sekiya (2003) calculated
the growth rate of KHI by performing the linear stability analysis with regarding the mixture
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of gas and dust as one component fluid. They assumed that the dust density is given by
the hybrid density distribution that is composed of an inner region with a constant density
and outer sinusoidal transition regions. They showed that the growth rate of the unstable
mode decreases with increasing the dust abundance in the protoplanetary disk. Michikoshi
& Inutsuka (2006) performed the linear stability analysis with regarding the two-component
fluid that are gas and single-sized dust. They used the same dust density profile as Sekiya &
Ishitsu (2001). They showed that GI does not occur as long as dust aggregates are roughly
smaller than 10 m for MMSN model.

However, above previous studies did not take account of dust growth. As described in
subsection 1.4.1 and Nakagawa et al. (1981), dust growth strongly influences the dust sedi-
mentation and time evolutions of the profile of the dust density. It is expected that the site of
occurrence of KHI will differ according to the presence or absence of dust growth since equa-
tions (1.29) and (1.47) show that the vertical dust density gradient is related to the condition
for KHI. Thus, dust growth is essential to understand not only the dust sedimentation but
also the occurrence of KHI. Dust aggregates grow due to dust-dust collisions while they settle
toward the midplane (Nakagawa et al. 1981, 1986). Nakagawa et al. (1986) shows that the
law of gas drag force on dust aggregates is changed from Epstein to Stokes as a result of dust
sedimentation with dust growth. They also show that the change of the law of gas drag has
an influence on the sedimentation process. Therefore, to investigate KHI in the settled dust

layer, it is important to take account of dust growth.

As described in subsection 1.5.3, Chandrasekhar (1961) showed that the critical Richardson
number is 0.25. However, such a classical Richardson number criterion, J. = 0.25, is derived
only for the case with the incompressible, inviscid and laminar fluid, and an effect of the rota-
tion is neglected. There are many previous studies of the Richardson number criterion (RNC)
and the critical Richardson number in the protoplanetary disk (Sekiya & Ishitsu 2000; Garaud
& Lin 2004; Gémez & Ostriker 2005; Chiang 2008; Barranco 2009; Lee et al. 2010). They show

that the critical Richardson number depends on the assumed density profile and varies with
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the dust abundance in the protoplanetary disk and with the rotation of the protoplanetary
disk. If the possible dust density resulting from KHI with J. # 0.25 is totally different from
the dust density with the classical RNC, J. = 0.25, then the classical RNC is not ensured to
discuss KHI for general cases in the protoplanetary disk. Thus, we should calculate the crit-
ical Richardson number at the onset of KHI without using the classical RNC, and we should
clarify how the possible dust density before KHI calculated without using the classical RNC
is different from that calculated with using the classical RNC.

1.6 Purpose of This Thesis

In this thesis, we focus on the effects of dust sedimentation with dust growth on the Kelvin-
Helmholtz instability. The best way to investigate the planetesimal formation is to calculate
all of the related physical processes: e.g., viscous diffusion of gas, motion of turbulent gas,
interaction between gas and dust through drag force, sedimentation and radial drift of dust,
motion of dust stirred up by turbulence, dust growth, dust fragmentation, time evolutions of
the size distribution and internal structure of dust, gravitational instability of dust layer, and
so on. However, it is difficult to simulate all physical processes numerically at the same time
because of the computer performance.

In the case with dust growth, there is a size distribution of dust aggregates, and the size
distribution changes with time due to dust growth. To focus on and to investigate the effects
of dust growth on the possibility of KHI, we take account of sedimentation, growth and the
size distribution of dust aggregates only, and discuss the possibility of KHI by using the dust
density distribution consistent with their sedimentation history in the disk. The classical RNC,
Je. = 0.25, is used first for simplicity. Later, the classical RNC is reinvestigated. In this thesis,
we adopt the following approach.

1. First, we consider the case without dust growth in order to evince the effects of dust

growth on the possibility of KHI. We investigate two cases without and with an initial



1.7. CONTENT OF THIS THESIS 29

size distribution of dust aggregates. We calculate dust sedimentation and discuss the
possibility of KHI by using the dust density distribution consistent with their sedimen-

tation.

2. Next, we consider the case with dust growth. We calculate dust sedimentation and
dust growth, and discuss the possibility of KHI by using the dust density distribution
consistent with their sedimentation. We show the effects of dust growth on the possibility

of KHI with comparing the case without dust growth to the case with dust growth.

3. To discuss the validity of the classical Richardson number criterion J, = 0.25 used above,
we perform the linear analysis of KHI. The conditions of the onset of KHI derived from
the linear analysis are compared with the conditions derived from the classical Richardson

number criterion.

1.7 Content of This Thesis

In chapter 2, we show numerical results for sedimentation of dust grains without growth. In
chapter 3, results are shown for the case with dust growth. In chapter 4, we show results for
the growth rate and the critical Richardson number, and we discuss the validity of the classical

Richardson number criterion. In chapter 5, summary and future prospects are presented.






Chapter 2

Sedimentation of Dust Aggregates
without Growth

In this thesis, we focus on the effects of dust sedimentation in the sense of the density profile
and dust growth on the possibility of KHI. In order to clarify the effects of dust growth, we
first consider the case without dust growth in the protoplanetary disk to compare with the
case with dust growth.

This chapter is mainly based on our paper, Hasegawa & Tsuribe (2013).

2.1 Models

In this thesis, we assume that the mass of the central star is given by 1M. Since radial
drift is small during sedimentation time [equation (1.36)], we neglect the radial motion of dust
aggregates and we set r = 1 AU for simplicity. We assume that the protoplanetary disk is
axisymmetric with respect to the rotational axis of the disk and is symmetric with respect to
the midplane of the disk. In this chapter, we adopt the cylindrical coordinate system (r, ¢, z)
at rest. The gas surface density, ¥, the dust surface density, ¥4 and temperature, 7', are

assumed to be equations (1.2), (1.6) and (1.5), respectively. The sound velocity, ¢, is given
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by equation (1.7). The scale height of the disk, H,, is given by equation (1.10). The value of
n is given by equation (1.14). For simplicity, we assume (r? + 22)Y/? ~ r and 0Qk/0z = 0.
We assume that all dust aggregates are so small (um-cm) that the stopping time is always
given by equation (1.15) and that fs .,k < 1 < tsaf2k [from equations (1.15) and (1.19)].
As described in subsection 1.4.1, we approximate velocities of the gas and dust components by
the terminal velocity given as equations (1.18) and (1.22)-(1.25). To discuss the possibility of
KHI, we calculate the Richardson number given by equation (1.47) with g, = Qx?z, p = Petpa
and J. = 0.25, for simplicity (Sekiya & Ishitsu 2001). For the revolutions of gas and dust, we
treat the mixture of gas and dust as one component fluid with laminar flow as described in
subsection 1.5.1, and we give the azimuthal velocity of mixed fluid of gas and dust as equation
(1.28). Since we focus on the phase before KHI, we assume that there is no turbulence in the
disk.

According to equations (1.29) and (1.47), the Richardson number strongly depends on the
distribution of the dust density. We calculate the Richardson number for the dust density

given by numerical calculations at each time.

2.2 Sedimentation of Single-sized Dust Aggregates
First, we consider the sedimentation of single-sized dust aggregates. We assume the gas density,

pe(2), as equation (1.9).

2.2.1 The Initial Condition

Dust density, pq(2), is assumed to be symmetric with respect to the midplane, and we examine

only the region of z > 0. As an initial condition, the initial density of dust is assumed to be

pale) = o e [— (ﬁ)] | 1)
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where Hy is the time dependent scale height of the dust density profile with Hy = H, at t = 0.
At t =0, equation (2.1) corresponds to equation (1.45).

We assume the same initial functional form for p,(z) and p4(z), and we neglect the de-
pendence of vk on z. At t = 0, dp,/0z = —(22/H,*)p, and dpa/0z = —(22/Hy*)pg. Then,
v, /0z = 0 from equation (1.29), and the rotational velocity of the mixed fluid of gas and
dust aggregates, vy, at t = 0 is independent of z. Thus, J = oo at ¢ = 0 from equation (1.47),
i.e., the initial state is stable against KHI.

2.2.2 Vertical Shear of the Rotational Velocity

We assume that all dust aggregates are small enough (s < 1 cm), and that the drag force
is given by Epstein’s law [equation (1.15)]. From equations (1.15) and (1.19), it is shown
that the characteristic time scale of sedimentation is much larger than the Keplerian period,
tsedflk > 1, when the stopping time is much smaller than the Keplerian period, tsop{x < 1.
In such a case, for single-sized dust aggregates without growth, the profile of the dust density
evolves in a self-similar manner (Garaud & Lin 2004). Then, we do not have to solve equation
(1.37) numerically and can derive the dust density distribution analytically. Here, during the
sedimentation of dust, the distribution of the gas density is assumed to remain constant as
equation (1.9). When the time evolution of the dust density proceeds in a self-similar manner,
the dust density profile in ¢ > 0 is also given by equation (2.1) with a temporally decreasing
scale height of the dust density profile, Hq(t), with 0 < Hy(t) < H,. Using equations (1.9),
(1.28), and (2.1), we have

%_ 0 1 . 1 pg(2)pa(z)
5z (H Hﬁ) a(2) + pal)E (2.2)

Substituting (1.14) and (2.2) into (1.47), an analytical formula for Richardson number can be

(i)
P I Pd
g Hg

derived as
(pg + Pd)3
Pg?pa”

nr

;1 (Hg)Q[ (Hq/H,)*

=2 ) = (/)P >
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Figure 2.1: Dust density and Richardson number at » = 1 AU for the case with single-sized
dust aggregates with fq = 1 where Hyq/H, are 1 (red), 0.7 (green), 0.4 (blue) and 0.1 (magenta),
respectively. [In the case with s = 1 cm and with ps = 3 gem ™3, ¢ ~ 0 yr (red), 10 yr (green), 30
yr (blue) and 80 yr (magenta), respectively.] (a) The distribution of dust density (solid line). The
abscissa shows the dust density, pq(z), in unit of pgo(0). The ordinate shows z coordinates in unit of
H,. (b) The distribution of Richardson number (solid line). The abscissa shows Richardson number.

The ordinate shows z coordinates in unit of H,.

Figure 2.1 shows the time evolution of dust density and the Richardson number for the
case with fq = 1. In figure 2.1, it is seen that the maximum value of dust density increases
and the minimum value of the Richardson number decreases with dust sedimentation.

Since the profile of the dust density evolves in a self-similar manner, the results shown in
this section are independent of the dust size as long as the stopping time is given by Epstein’s

law [equation (1.15)], and the time scale is renormalized.

2.2.3 Results

Figure 2.2 shows results of the distributions of the dust density and the Richardson number
when p4(0) ~ 160p40(0) for the case with fq = 1, where Hy is 0.0062H,. In figure 2.2,

it is seen that dust density at the midplane is much smaller than the critical density for



2.2. SEDIMENTATION OF SINGLE-SIZED DUST AGGREGATES 35

@ 0012 b 0012
0.009 0.009 |
o0
) | o0
< 0006 T 0.006 |
W)
0.003 f
0.003
0 L L L L
10° 100 100 100 10t 10 0 - S |
Pa(@)/ Paol0) 10 10 10
J

Figure 2.2: Dust density and Richardson number at » = 1 AU for the case with single-sized dust
aggregates with fq = 1 where Hy is 0.0062H,. The abscissa and the ordinate show the same as ones
of figure 2.1. (a) The distribution of dust density (black solid line). The critical density p. is also
drawn (dotted line). (b) The distribution of Richardson number (black solid line). The critical value

Je is also drawn (dotted line). This figure was presented in Hasegawa & Tsuribe (2013) as figure 1.

GI, pe = 6.3 x 10%pg(0) [equation (1.34)], and that the Richardson number is smaller than
J. = 0.25 around the midplane (z/H, < 0.0075). Thus, KHI is expected before GI in this case
with fg =1atr=1AU.

In the previous study, it is indicated that GI tends to occur if the dust abundance in the
protoplanetary disk is much larger than that according to the MMSN model (Sekiya 1998).
This result is based on the assumption of equilibrium condition for KHI everywhere. In this
thesis, we used a non-equilibrium time-dependent density profile during sedimentation in order
to consider the possibility for GI in the case with a large f3. We seek the condition of the dust
abundance, fq, by which GI occurs before the onset of KHI. In figure 2.2a, it can be seen that
the distribution of dust density has the maximum in the midplane. When fy is larger than
1, the dotted line in figure 2.2a moves to left (compare the dotted lines in figures 2.2a, 2.3a
and 2.4a), because the abscissa is proportional to [pao(0)] ™ o fa~'. The dust density at the
midplane is the first to reach the critical density for GI, because the time development of the

dust density proceeds in a self-similar manner. A characteristic Hy when the dust density at
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the midplane attains p. can be obtained from equation (2.1). We define the characteristic Hy
as H.. With using z = 0, Hy = H. and pq(z) = p. in equation (2.1), respectively, H. is given

by

X4
H, = =1.6 x 107°f4H, < f. (2.4)
VTpe ¢

In figure 2.2b, it is seen that the distribution of the Richardson number has a local minimum

value at z/H, = 3.5 x 107% = z./H,, where z. is the height where the distribution of the

Richardson number takes the local minimum value. At z = z, from 0.J/0z|,—,. = 0, we find

pe(ze) = 2pa(ze); (2.5)

by assuming Hy/H, < 1 because KHI begins when the dust layer becomes thin. From equation

oy I, \ 12
— |In(Z242= H,. 2.
e ()] 29

The Richardson number at z = z. is given by

J(z=z) = %7 (%)2 , (2.7)

(2.5), z. is given as

by assuming Hq/H, < 1. From equations (2.4), (2.5) and (2.7), the condition of the dust

abundance, fg, which is necessary for GI to occur before KHI is derived as

8 12 Sa) _
fa= [2—7J(z = ZC)} T pe <E) > 6.6 % 10” = fue, (2.8)

at r =1 AU. Note that X4 o fq.

In figure 2.3, results of the distributions of the dust density and the Richardson number
for the case with f; = 6.6 x 102 are shown. In figure 2.3, it can be seen that the dust density
at the midplane indeed attains the critical density, p., and that Richardson number remains
marginally larger than the critical alue, J.. Thus, in the case with single-sized dust aggregates
without growth at r = 1 AU, GI is expected to occur before KHI only if the dust surface

density is much larger than the gas surface density.
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Figure 2.3: Same as Figure 2.2, but for the case with fq = 6.6 x 10> where Hy is H.. This figure

was presented in Hasegawa & Tsuribe (2013) as figure 2.

This tendency is similar to the result of Sekiya (1998), but the value of fg. given here
(fac = 6.6 x 10?) is larger than the value given in Sekiya (1998) (fq. = 16.8). The value of
fae in Sekiya (1998) corresponds to the condition that the protoplanetary disk is in a quasi-
equilibrium state for KHI. On the other hand, the value of f4. given here corresponds to the
condition that GI occurs before KHI during sedimentation. The condition used here is more
stringent than that used in Sekiya (1998). This is why the value of fg. derived here is larger
than the value in Sekiya (1998).

2.3 Effect of Size Distribution

Result given in section 2.2 are independent of the dust size as long as the stopping time is
given by Epstein’s law [equation (1.15)], provided that the time scale is renormalized, since the
profile of the dust density evolves in a self-similar manner. The characteristic time scale for the
sedimentation of the dust aggregates in equation (1.19) depends on size of the dust aggregates.
Thus, even for the same time, the scale height of the dust density profile for different sizes

of dust aggregates is different. Therefore, it is expected that the total dust density profile
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will change from the initial Gaussian profile if dust aggregates have a size distribution. From
equations (1.29) and (1.47), the gradient of the dust density is the essential quantity for the
condition of KHI. Thus, it is expected that the condition required for GI to occur before KHI
in the case with the initial size distribution of dust aggregates is expected to be different
from that in the case without the size distribution. Next, we consider the sedimentation of
multi-sized dust aggregates without growth. We consider Ny kinds of dust sizes. We consider
the case when s is given by integer multiples of the minimum size of dust aggregates, Sy,
and when the maximum value, Sy, is given by Ngsyin. For simplicity, we assume that all
dust aggregates are so small that the stopping time is always given by Epstein’s law [equation

(1.15)].

2.3.1 Dust Density Profile Consistent with Dust Sedimentation

We assume the initial dust density distribution to be equation (1.45). The distribution of the

total dust density, pq(2), is given as

pa(2) = Z pa,s:(2); (2.9)

where pq s,(2) is the density of dust aggregates in the ith bin of size coordinates, s;, at z. We

consider the case when pq s, (2) is given as

1 =\’
pae ) o T exp [— () ] 210

where Hy s, is the scale height of the dust density profile for dust aggregates with size s;. At
t=0, Hy s, = Hy for all s;.

We assume that gas density is uniform and that pe(2) = pg(0) at any z, for simplicity.
According to equation (1.15), the stopping time of dust aggregates, tsop = (ps/pg)(5/Cs), 18
proportional to s, and is constant with z. We assume that the internal density of all dust

aggregates is the same. Then, the sedimentation velocity (in the vertical direction) of dust
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aggregates, v,(2) X tsopz, i proportional to s and to z. From the time evolution of z(¢) with

different size of dust aggregates with 2 = H, at ¢t = 0, the formula for Hy ,, can be derived as

Hd s Hd . Si/smin
S tmin . 2.11
i (i) 1)

In equation (2.11), it is seen that Hy s, is determined only by Hg s, and s;/Smin, instead of
s;, because the sizes of all dust aggregates are normalized by the smallest dust aggregates.

For simplicity, the initial size distribution is assumed to be a power law of dust size,

nd.s, (2) :ndvsmm(z)( % )p, (2.12)

Smin
where ng g,(2) is the initial condition of the number density in the ith bin at z with a power

index p. We assume p = —3 for simplicity. In the case with p = —3, s;°nq4 ., (2) is equal to

Smin°Nd s, (z) from equation (2.12). Then, the initial condition of pg s, (z) is given by

4 4
pa, s (2) = gﬂ'pssi‘?’nd’si(z) = gﬂpssming‘nd,smin(z) = Pd, spin (2)- (2.13)

In the case with p = —3, equation (2.13) shows that the initial dust densities in different bins

are the same. In this case, pg s,(2) is given by

1 IR P =\
R I BT _ 2.14
Pa.si(2) = Jppal) = F o exp [ (Hd,s) ] .

In the case without dust growth, pg s, (2) with different i evolves independently, with different
Hy ;. From equations (2.9), (2.11) and (2.14), we can derive analytical solutions of p4(z) by
summation of pq s, (z) for all i. We assume Ngq = 1000.

The dependence of Hy s, and ng s, on s;/Smin shows that the results shown in this section
are independent of the size of individual dust aggregates, s;, provided that the time scale is
renormalized, and are dependent on the size ratio, s;/smm, as long as the stopping time is

given by Epstein’s law [equation (1.15)].
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Figure 2.4: Dust density and the Richardson number at » = 1 AU for the case with multi-sized
dust aggregates with fq = 50. The lines, abscissas, and ordinates show the same as ones in figure 2.2.

This figure was presented in Hasegawa & Tsuribe (2013) as figure 3.

2.3.2 Results

Figure 2.4 shows the dust density and the Richardson number for the case with fq = 50. In
figure 2.4, it can be seen that the dust density at the midplane attains the critical density
for GI, p. [equation (1.34)], and that the Richardson number remains larger than the critical
value. This demonstrates that a dust fraction 50-times larger than that of the MMSN model
induces GI before KHI in the case with multi-sized dust without growth. Note that this dust
fraction is about 10-times smaller than that for single-sized dust (figure 2.3). We found that
this tendency is seen in two cases with p = —2 and p = —4. We also checked the dependence
on Ny, and found that this is the case with Ng = 2. Thus, it is seen that KHI tends to be

inhibited before GI if dust aggregates is multi-sized even with the same fq.

Figure 2.5 shows the dust density in the midplane at the onset of KHI for both cases with
single- and multi-sized dust. The symbol pqkm is the dust density in the midplane at the
onset of KHI. It is seen that dust density in the midplane at the onset of KHI increases with
increasing the dust abundance in both cases with single- and multi-sized dust. Especially, it

is seen that the condition pgxu = p. is attained by a smaller dust abundance, f4 ~ 50, in the
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Figure 2.5: Dust density in the midplane and in » = 1 AU at the onset of KHI for the case with
single-sized dust aggregates (triangles), and for the case with multi-sized dust aggregates (circles).
The abscissa shows dust abundance, fq, and the ordinate shows the dust density, pq km, in units of

pe. The approximated curves are also drawn (dotted lines). This figure was presented in Hasegawa

& Tsuribe (2013) as figure 4.

case with multi-sized dust, rather than single-sized dust, fq ~ 700. On the other hand, in the
case with fq < 20, the dust density in the case with multi-sized dust is smaller than that in
the case with single-sized dust. We explain this result below.

In this section, we assume that dp,/0z = 0. From equations (1.29) and (1.47), the Richard-

z 3 ro !
J== (1 + @> (—"—ﬁ) . (2.15)
nr Pg pg 0z

Equation (2.15) shows that KHI tends to occur in the cases with the small dust density, pq,

son number is given as

and/or with the large absolute value of the vertical dust density gradient, dpq/0dz. In the
case with multi-sized dust, the larger dust aggregates can settle quickly while the smaller dust
aggregates still remain almost in the initial state. Then, the values of the dust density and
the absolute value of the vertical dust density gradient near the midplane become larger than
the case with single-sized dust. In the case with fq ~ 1, the absolute value of the vertical dust

density gradient becomes too large though the dust density does not become large yet. Thus,
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in the case with fq ~ 1, the dust density at the onset of KHI in the case with multi-sized
dust becomes smaller than that in the case with single-sized dust. On the other hand, in the
case with fq > 1, the dust density can become large before the absolute value of the vertical
dust density gradient becomes large because the characteristic scale of dust height, Hy ,, is
different for different ¢ for multi-sized dust. Therefore, in the case with fq4 > 1, the dust
density at the onset of KHI in the case with multi-sized dust becomes larger, i.e., easier for
GI to occur than that in the case with single-sized dust. This tendency is seen in cases with

p=—2and p= —4.

2.4 Summary
In the case without dust growth, the results are summarized as follows:

1. In the case when the abundance of dust aggregates is given as MMSN model, KHI is
expected to occur when the dust density at the midplane is still much smaller than the

critical density for GI.
2. GI tends to occur if the abundance of dust aggregates is larger.

3. In the case with multi-sized dust aggregates, the required abundance of dust for GI has

a possibility to be smaller than that in the case with single-sized dust aggregates.

The above results are based on the assumption that multi-sized dust aggregates settle with-
out growth. However, in actual protoplanetary disks, dust aggregates are expected to collide
mutually and to grow during sedimentation. If dust aggregates grow, the size distribution
and the largest size of dust aggregates will change with time. In order to understand the ac-
tual condition for GI before KHI, the dust density distribution for multi-sized dust with dust

growth during sedimentation is required. Next, we consider the case with dust growth.



Chapter 3

The Case with Dust Growth

In this chapter, we consider the condition for GI before KHI with taking account of the
sedimentation and growth of multi-sized dust aggregates.

This chapter is mainly based on our paper, Hasegawa & Tsuribe (2013).

3.1 Models and Methods

In this thesis, we assume that the mass of the central star is given by 1 M. As is the case with
chapter 2, we neglect the radial motion of dust aggregates and we set »r = 1 AU for simplicity.
We assume that the protoplanetary disk is axisymmetric with respect to the rotational axis
of the disk and is symmetric with respect to the midplane of the disk. In this chapter, we
adopt the cylindrical coordinate system (r, ¢, z) at rest. The gas surface density, ¥,, the dust
surface density, 34 and temperature, T, are assumed to be equations (1.2), (1.6) and (1.5),
respectively. The sound velocity, cs, is given by equation (1.7). We assume the gas density,
pe(2), as equation (1.9). The scale height of the disk, H,, is given by equation (1.10). The value
of 1 is given by equation (1.14). For simplicity, we assume (r? + 2%)1/2 ~ r and 9 /0z = 0.
The stopping time of dust aggregates is given by equations (1.15) or (1.16). As described in

subsection 1.4.1, we approximate velocities of the gas and dust components by the terminal
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velocity given as equations (1.18) and (1.22)-(1.25). In order to calculate the growth and
sedimentation of dust aggregates, we numerically solve the coagulation equation (1.37). The
coalescence rate is given by equations (1.39), (1.40) and (1.41). To discuss the possibility of
KHI, we calculate the Richardson number given by equation (1.47) with g, = Qx?z, p = Petpa
and J. = 0.25, for simplicity (Sekiya & Ishitsu 2001). For the revolutions of gas and dust, we
treat the mixture of gas and dust as one component fluid with laminar flow as described in
subsection 1.5.1, and we give the azimuthal velocity of mixed fluid of gas and dust as equation
(1.28). Since we focus on the phase before KHI, we assume that there is no turbulence in the
disk.

Dust density, pq(z), is assumed to be symmetric with respect to the midplane, and we
examine only the region of z > 0. As the initial condition, the initial density of dust is given
by equations (1.45) and (1.46). We assume that all dust aggregates have the same initial size,
so = 1.0 x 107* cm, and that the internal density of dust aggregates, ps, is 3 gecm 3. The

numerical methods of calculations are presented in the Appendix D.

3.2 Results

3.2.1 Possibilities of KHI in the Early Stage

Figure 3.1 shows the distribution of the dust density and the Richardson number at t = 25
yr. In figure 3.1, although the distribution of the dust density changes little from the initial
state in this short period, it can be seen that the Richardson number becomes small enough
for small z, especially at z/H, < 107* < 1. This rapid decline of J did not appear in the case
without the growth of dust aggregates, described in chapter 2. We suppose that the growth of
dust aggregates is the origin of this rapid decline in the Richardson number at z/H, < 1 and
at t/teeq < 1.

Equations (1.29) and (1.47) show that the Richardson number is a function of the gradient
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Figure 3.1: (a) The distribution of dust density at » = 1 AU and at ¢t = 25 yr. The line, the abscissa,
and the ordinate show the same as ones of figure 2.2a. (b) The distribution of the Richardson number
at t = 25 yr. The abscissa shows Richardson number. The ordinate shows z coordinate in units of H.

The critical value J. is also drawn (dotted line). This figure was presented in Hasegawa & Tsuribe

(2013) as figure 6.

of the dust density, dpq(z)/0z. Thus, we focus on dpq(z)/0z and compare the cases with and
without dust growth. In order to clarify the effect of dust growth, we first look at the case
without the growth of dust aggregates. We consider the case when all dust aggregates have a
single size as an initial condition as is the case with dust growth. In the case with single-sized
dust aggregates without growth, the typical size of the dust aggregates, s(z), which is defined

as
S smn(m, z)dm

5(2) = Jo° mn(m, z)dm’

is equal to sg, and is independent of z. Garaud and Lin (2004) showed that the time dependence

(3.1)

of the dust density profile proceeds in a self-similar manner in the case without the growth of
dust aggregates. In this case, the gradient of the dust density is given by

Opa(z 2¥4%
gi):—ﬁ;dwmﬁo (z — 0). (3.2)

In order to compare with the case including the growth of dust aggregates, we consider the

mean sedimentation velocity of dust at z, v,(z), which is derived from equations (1.18), (1.44),



46 CHAPTER 3. THE CASE WITH DUST GROWTH

and (3.1). At z/H, < 1 and at t/tseq < 1, 0,(2) is given by

(3.3)

In the case without the growth of dust aggregates, v,(z) o z at z/H, < 1, because 5(z) = s.

Second, we consider the case with the growth of dust aggregates. In this case, the typical
size of dust aggregates, 5(z), is a linear function of z at z/H, < 1 and at t/tsq < 1, owing
to collisions due to sedimentation (see the Appendix F for the reason). In such a case, v.(z)
has a quadratic term of z because the typical size of dust aggregates is a linear function of z
lequation (3.3)]. By comparing the functional form of v,(z) with that in the case without dust
growth, at z/H, < 1 and at ¢/t,q < 1, it is suggested that the gradient of the dust density is

given by
Ipa(2)
0z

where 01(< 0) and d2(> 0) are appropriate values.

=01z+02 — 02 (2 —0), (3.4)

Figure 3.2 shows the distribution of the gradient of the dust density at z/H, < 1 and at
t = 25 yr for cases with and without dust growth. From figure 3.2, it is confirmed that the
distribution of the gradient of the dust density can be approximated by equation (3.4) with
d2 > 0 in the case with dust growth. We can approximate dpq(z)/0z ~ [-2.0(z/Hg) + 1.0 x
107°][pa0(0)/H,] (figure 3.2). This indicates that the distribution of the dust density has a
local maximum value at z/Hy ~ 5 x 107% in the case with the growth of dust aggregates. This
can be confirmed by noting that figure 3.3 that shows the distribution of the dust density in
z/Hy, < 1 and at t = 25 yr in the case with dust growth. By approximating p,(2) as pg(0)
and pq(z) as pao(0), the Richardson number for z/H, < 1 is given by

() () (2) ()
z F_Egi_apd(z) H, {22’ Opa(z) H, }2

X JRE—
Hg Ed Hg 0z de(O)

= 1.7x10° 2 [4.8 x 10 7 — 8'50‘—@] [22 + aﬁd(g)} B (3.5)
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Figure 3.2: Distribution of the gradient of dust density in r =1 AU and z/H, < 1 at t = 25 yr.
The abscissa shows the gradient of the dust density dpq(z)/0z in units of pqo(0)/Hg. The ordinate
shows z coordinate in units of Hy. Circles show the case with dust growth, and triangles show that

without dust growth. This figure was presented in Hasegawa & Tsuribe (2013) as figure 7.

where Z = z/H, and pq = pa/pao(0). Figure 3.4 shows the distribution of the Richardson
number at z/H, < 1 and at ¢ = 25 yr in the case with the growth of dust aggregates. In figure
3.4, it can be seen that the numerical solutions of the Richardson number are sufficiently close
to the approximate equation (3.5). Figure 3.4 shows that the Richardson number drawn by

the solid line is smaller than the critical value, J., around the midplane at ¢ = 25 yr.

However, it is doubtful for KHI to occur. Figure 3.3 shows that the distribution of the dust
density has a local maximum value at z # 0. Under the local maximum point, the Rayleigh-
Taylor instability (RTI) is suspected to occur because the distribution of the gradient of total
density, p = py + pda, becomes positive near the midplane (Chandrasekhar 1961). If RTT occurs,
the distribution of the total density in this region is expected to be adjusted as to be constant
(Watanabe & Yamada 2000; Sekiya & Ishitsu 2001). If it is assumed that the growth rate of
RTT is larger than that of KHI, and that the distribution of the total density becomes constant
around the midplane, the gradient of the total density becomes zero near the midplane. In

this case, the Richardson number near the midplane becomes infinite. Then, it is indicated
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Figure 3.3: Distribution of dust density in » =1 AU and z/H; < 1 at t = 25 yr in the case with
the growth of dust aggregates. The line, abscissa, and ordinate show the same situation as in figure

2.2a. This figure was presented in Hasegawa & Tsuribe (2013) as figure 8.

10 10® 100 10'?

10
Figure 3.4: Distribution of the Richardson number in 7 = 1 AU and z/H, < 1 at ¢t = 25 yr in
the case with growth of dust aggregates. The circles, the dotted line, the abscissa, and the ordinate
show the same situation as in figure 3.1b. The solid line is given by equation (3.5). This figure was

presented in Hasegawa & Tsuribe (2013) as figure 9.
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that KHI does not occur. Thus, below, the possibility of KHI near the midplane in the early

phase, as indicated in figure 3.1b, is not considered further.

3.2.2 The Dust Density at the Onset of KHI for the Case with Dust
Growth

Figure 3.5 shows the dust density distribution at the onset of KHI in the case with dust
growth with fq = 1. In figure 3.5a, the distribution of the dust density has a local maximum
value at 2 = zgr ~ 107°H,, and there is a region where the gradient of the dust density
becomes positive. As discussed in subsection 3.2.1, in this case, the distribution of the dust
density is expected to be adjusted to be constant by RTI in the region z < zrr. Assuming
this adjustment by RTI, we modify the distribution of dust density as figure 3.5b with mass
conservation. Note that this treatment for RTI is crude, and that a more accurate treatment
should be addressed in the future. Hereafter, the same modification is always applied for the

density near the midplane.

Figure 3.6 shows the modified dust density at the onset of KHI as a function of the dust
abundance parameter. Figure 3.6 corresponds to figure 2.5 with dust growth. Since it is
difficult to numerically calculate the case with large fq because of the computer performance,
results only for the case with fq < 4 are plotted. In figure 3.6, it can be seen that dust density
at KHI, pqn, increases with increasing the dust abundance parameter, fq, for the case with
fa < 2 as is seen in figure 2.5. On the other hand, in the case with fq > 2, the dust density
at KHI decreases with increasing dust abundance. These tendencies are qualitatively different
from figure 2.5. In figure 3.6, our results show that dust density in the midplane at the onset
of KHI for the case with fqy = 4 is about the same as that for the case with fq = 1. As the
physical origin of the decline of pq xu for fq > 2, we consider the difference in property of gas
drag. After dust aggregates grow, the law of gas drag changes from Epstein’s law to Stokes’

law. Figure 3.7 shows the mass function, where the dust density distribution takes a local
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Figure 3.5: Dust density in » = 1 AU at the onset of KHI for the case with dust growth and fq = 1.
(a) Dust density obtained by numerical calculations. (b) Dust density adjusted as to be constant
(solid line) and the dust density not adjusted (dotted line). The dust density not adjusted is equal to
that obtained by numerical calculations. For both (a) and (b), the abscissas show the dust densities
pa(z)’s in units of p, and the ordinates show z coordinates in units of H,. This figure was presented

in Hasegawa & Tsuribe (2013) as figure 10.

maximum value at the onset of KHI for the case with fq3 = 1 and fq = 4, respectively. For the
case with fq = 1, the mass function has two peaks at m/mg ~ 10* and at m/mg ~ 102, and
the typical size of dust aggregates, § [equation (3.1)], is 0.9 ecm. (The mass of dust aggregates
with this typical size is about 10*?mg. ) On the other hand, for the case with fq = 4, the
mass function has two peaks at m/mg ~ 10? and at m/mg ~ 10!, and the typical size of dust
aggregates, 5, is 4 cm. (The mass of dust aggregates with this typical size is about 10%my.
) In the case with s > 3l,/2 = 2.2 cm, the stopping time is given by Stokes’ law. By a
comparison of these results, it is suggested that the decrease of the dust density at KHI for
fa > 2 in figure 3.6 originates from a change in the law of gas drag due to dust growth.

To confirm this possibility, for reference, we recalculated sedimentation of dust aggregates
with growth using Epstein’s law for all sizes. The solids line in figure 3.8 shows the dust density
at the onset of KHI, pqkmu, for this case. It can be clearly seen that the dust density at the

onset of KHI, pqkm, is large for the large dust abundance parameter, f4. By comparing the
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Figure 3.6: Modified dust density in » = 1 AU at the onset of KHI for the case with dust growth.
The abscissa and the ordinate show the same as situation in figure 2.5. This figure was presented in

Hasegawa & Tsuribe (2013) as figure 11.
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Figure 3.7: (a) Mass function in the case with fg =1 at z = 1.5 x 107 H, and r = 1 AU, where the
distributions of the dust density take a local maximum value at the onset of KHI. (b) Mass function
in the case with fq =4 at z = 3.8 x 10_4Hg and r = 1 AU, where the distributions of dust density
takes a local maximum value at the onset of KHI. In both diagrams (a) and (b), the abscissa shows
the dust mass, m, in units of mg. The ordinate shows the mass function, mn(m, z), in units of
pdo(0)/mg. The dotted lines show the border line, where the stopping time changes from Epstein’s

law to Stokes’ law. This figure was presented in Hasegawa & Tsuribe (2013) as figure 12.
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Figure 3.8: Modified dust density in » = 1 AU at the onset of KHI for the case with dust growth in
cases of using both Epstein’s law and Stokes’ law (dotted line and squares), and using only Epstein’s
law for all size (solid line and crosses). The abscissa and the ordinate show the same as ones of figure

2.5. This figure was presented in Hasegawa & Tsuribe (2013) as figure 13.

two lines in figure 3.8, it is clear that the physical origin for the decline of pgxn for fq > 2
(dotted line) is the change of the gas drag from Epstein’s law to Stokes’ law. Therefore, it is
significant for us to take into account the dust size dependence of the stopping time as well as

dust growth when we investigate the shear-driven turbulence in the protoplanetary disk.

3.3 Discussion

3.3.1 Dependence on the Heliocentric Distance

We now estimate the dependence of the required abundance of dust for GI before KHI on the
heliocentric distance, r. First, we consider the case without dust growth. For simplicity, we
consider the case when all dust aggregates have a single size. The scale height of the dust
density profile at the onset of KHI can be obtained from equation (2.7), and we define the
scale height as Hky. By substituting J. and Hgyy for J(z = z.) and Hy in equation (2.7),
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respectively, Hgyp is given by

J 1/2 , 1/4
Hycqp = < =10x107%H, | —— . 3.
= (3) =00 (i)

Equation (3.6) shows that Hgyp is independent of fy3. The dependence of H. [defined in
equation (2.4)] on r is given by H. = 1.6 X 1072 f; &ce Hg(r/1 [AU])Y4, and we have

—1 —1
H;;?I = 6.6 x 10° (%) (51) . (3.7)

The parameter of condensed water ice, e, is given by 1 (at r < 2.7 AU) or 4.2 (at r > 2.7

AU) (Hayashi 1981). Equation (3.7) shows the possibility that the required abundance of dust
for GI before KHI is smaller outside the snow line than inside. Next, we consider the case with
dust growth. At the onset of KHI, most of the dust aggregates with the typical size calculated
in subsection 3.2.2 [defined in equation (3.1)] have settled near the midplane. Thus, the typical
size of dust at the onset of KHI can be obtained as the size of dust aggregates that have settled
from high altitudes to the midplane. We have dm = 4rs%p,ds ~ —7(25)?padz. Assuming that

s = Sp at z = +00 and that s = sf > sg at z = 0, we derive s; as

o (5 (i) o 53

The typical sizes of dust at the onset of KHI calculated in subsection 3.2.2 were 0.9 cm and

4 c¢m in the case with fq = 1 and fq = 4, respectively, and consistent with equation (3.8).
Equation (3.8) shows that the typical size of dust at the onset of KHI is smaller for larger r.
On the other hand, the mean free path of gas molecules scales as [, o< p, ! Hngfl o /4,
and [, is larger for larger r. Thus, the gas drag force tends to be given by Epstein’s law in
the outer region of a protoplanetary disk, even for a large fq. The solid line in figure 3.8
shows that the dust density at the onset of KHI is larger for larger fy in the Epstein regime.
Therefore, the outer region of the protoplanetary disk might be more suitable for GI than the
inner region.

The above discussion is different from that in Takeuchi et al. (2012), which shows that the

inner part of the protoplanetary disk is more suitable for GI. They are based on a different
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condition from ours. They used the scale height of the dust layer, which is determined by the
balance between sedimentation and the diffusion of dust aggregates, while we used the scale

height of the dust density profile at the onset of KHI.

3.3.2 Treatment for Rayleigh-Taylor instability

In this chapter, we took into account the effect of RTI. However, the treatment for RTI used
in this chapter was crude, and the detail of convection induced by RTI did not take into
account. In future work, we should address a more accurate treatment for RTI in the case

with multi-sized dust with growth.

3.3.3 Possibilities of the Streaming Instability

Youdin & Goodman (2005) and Johansen & Youdin (2007) showed that the dynamics in the
midplane is dominated by the streaming instability (SI). Bai & Stone (2010) showed that dust
aggregates with 73 = Qklgop > 0.01 trigger SI before KHI. In our model, at r = 1 AU, 7, > 0.01
corresponds to s > 2 cm. In our calculations, for the case with dust growth and fy > 2, the
typical size of dust aggregates at the maximum density is larger than 2 cm. Therefore, in
the dust layer governed by Stokes’ law, SI would occur before KHI and GI. If SI occurs, it is
expected that dust aggregates accumulate toward dense regions of dust. Then, dense clumps
of dust aggregates form in the disk (Johansen & Youdin 2007). In the dense clumps, dust
abundance is much larger than the MMSN model. In future work, we should address SI in the

case with multi-sized dust with growth.

3.3.4 Possibility after Kelvin-Helmholtz Instability

In this chapter, we found that KHI tends to occur before GI even in the case with large dust
abundance during sedimentation with dust growth. This result suggests that small dust aggre-

gates tend to be suffered from stirring up by shear-driven turbulence induced by KHI during
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their sedimentation at least once. However, this suggestion does not exclude the possibility for
GI. If dust aggregates have larger collisional velocities owing to the shear-driven turbulence
than owing to sedimentation and radial drift, dust aggregates have the possibility to grow
quickly or fragment. If the dust size distribution becomes a quasi-equilibrium distribution as
a result of iterations of collisional growth and fragmentation of dust, then the state may be
similar to that in the case with multi-sized dust aggregates without growth. Then, GI might
occur in the case with large dust abundance. However.it is not known if the quasi-equilibrium
size distribution of dust aggregates arises. To understand this possibility, we must take account
of dust-dust collisions with shear-driven turbulence induced by KHI. In future work, we will

study this possibility.

3.4 Summary

In the case with dust growth, the dust density at the onset of KHI decreases for increasing
dust abundance for fq > 2. This result is qualitatively different from that in the case without
dust growth. The reason is that gas drag changes from Epstein’s law to Stokes’ law for larger
dust aggregates that grow up in advance. Thus, we stress that, for studying of shear-driven
turbulence, the change of the law of gas drag from Epstein’s law to Stokes’ law as well as dust
growth is required to be taken into account.

For the formation of planetesimals, it has been suggested in the literature that in order to
occur GI before an inward drift of dust, dust aggregates have to settle toward the midplane,
and it is suggested to be possible with large dust abundance. However, in this thesis, it is
concluded that KHI tends to occur before GI even in the case with large dust abundance
during sedimentation with dust growth. This result suggests that small dust aggregates tend
to be suffered from stirring up by shear-driven turbulence induced by KHI during their sed-
imentation at least once. However, this conclusion does not exclude the possibility for GI.

If dust aggregates have larger collisional velocities owing to the shear-driven turbulence than
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owing to sedimentation and radial drift, dust aggregates have the possibility to grow quickly or
fragment. This effect was not included in this thesis. To understand this possibility, we must
take account of dust-dust collisions under the condition with shear-driven turbulence induced
by KHI. In future work, we should develop a more realistic model by calculating the effect of

KHI, RTT and SI directly.



Chapter 4

Validity of the Classical RNC

In chapter 2 and 3, in order to investigate dust densities in the midplane at the onset of
KHI, we used the classical Richardson number criterion (RNC) (Chandrasekhar 1961). How-
ever, as described in subsection 1.5.4, the classical RNC is not ensured to discuss KHI in the
protoplanetary disk.

In this chapter, we discuss the validity of the classical RNC. To that end, we directly perform
the linear stability analysis for KHI. The growth rate of KHI is calculated using the linear
stability analysis in order to detect instability with the dust density distribution consistent
with dust sedimentation, and the dust density required for GI before KHI is calculated. By
comparing the result estimated by the linear stability analysis for the onset of KHI with that
estimated by the classical RNC, we discuss the validity of the classical RNC.

For simplicity, we consider multi-sized dust but neglect dust growth in this chapter.

This chapter is mainly based on our paper, Hasegawa & Tsuribe (2014).

4.1 Models and Equations

In this chapter, we investigate the stability for the series of the density distribution induced

by sedimentation. Actually, the stability analysis with the time-dependent evolution of the

o7
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dust density can not be reduced to the eigenvalue problem. However, in this chapter, density
distributions for each instant of time are approximated as quasi-equilibrium distributions since
we assume in subsection 4.1.1 that dust sedimentation is significantly slow. In such a case,
the dust density profile evolves in a self-similar manner with single-sized dust without growth
(Garaud & Lin 2004). On the other hand, in the case with multi-sized dust, the dust density
profile is not self-similar during dust sedimentation as described in section 2.3.

In this chapter, we perform the linear stability analysis for KHI. In this section, we present

the models of the unperturbed state and the linear perturbation equation.

4.1.1 Models of Unperturbed State

In this thesis, we assume that the mass of the central star is given by 1M. As is the case with
chapter 2, we neglect the radial motion of dust aggregates and we set »r = 1 AU for simplicity.
We assume that the unperturbed quantities are axisymmetric with respect to the rotational
axis of the disk and are symmetric with respect to the midplane of the disk. In this chapter, we
adopt the local Cartesian coordinate system (x,y, z) at r = 1 AU rotating around the central
star with the azimuthal velocity (1 — n)vk (Sekiya & Ishitsu 2000). The gas surface density,
Y, the dust surface density, 34 and temperature, 7', are assumed to be equations (1.2), (1.6)
and (1.5), respectively. The sound velocity, ¢, is given by equation (1.7). For simplicity, we
assume that the gas density is uniform in the dust layer because the dust layer is geometrically
thin and that py(2) = pg(0) at any z. Then, the gas density is assumed as
Xg

Pg = JTH,

The scale height of the disk, Hy, is given by equation (1.10), and H, = 4.7x 1072 AU. The value

=1.4x 1077 [gem™?]. (4.1)

of 1 is given by equation (1.14). For simplicity, we assume (r? + 2%)'/2 ~ r and 9 /0z = 0.
We assume that all dust aggregates are so small that the stopping time is always given by
equation (1.15) and that tsp,Qx < 1 <K teaf2x from equations (1.15) and (1.19). For the

revolutions of gas and dust, we treat the mixture of gas and dust as one component fluid, and
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the unperturbed azimuthal velocity of mixed fluid of gas and dust is given as

vy = <1 - @> NUK, (4.2)
Po

where vy is the unperturbed azimuthal velocity of the mixed fluid of gas and dust and py =
pe + pao(z), where pgo(2) is the unperturbed dust density. In this chapter, subscript 0 refers
the unperturbed quantities, and subscript 1 refers the perturbed quantities. Equation (4.2)
corresponds to equation (1.28) with p = py.

We adopt the initial dust density distribution that is the same as the unperturbed dust
density distribution in Sekiya & Ishitsu (2001), and that is given by

(Pini/2) [L + cos (7z/za)] (|| < za)
pao(z) = : (4.3)
0 (2] = za)
where zq is the time dependent scale height of the dust density profile with zq4 = H, at the
initial state, and pyy; is the initial dust density at the midplane and is given by

24
ini = - 4.4
P , (4.4)

We consider Ny kinds of sizes (radii) for dust aggregates. In this case, the dust density
distribution pqg(z) is given by

pao(z) = ZPdQ si(2), (4.5)

where pqo, s;(2) is the density of dust component with size s; at z. Equation (4.5) corresponds
to equation (2.9) with pq = pao and pg, s, = pao,s,- For simplicity, we assume that the initial
size distribution is given by

z
005(2) = pa0n(2) = P22, (4.
d

where sy, is the minimum size of dust aggregates. Equation (4.6) corresponds to equations

(2.13) and (2.14) with pq = pao and pq s; = pdo,s;- In this case, pgo, s, (2) is given by

pio.a(2) = (Pini/2Na)(Hg/2q,5,) [1 4 cos (m2/za,5)] (2] < za,5,) | (47)
0 (|Z| > Zd78i)
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where zq 5, is the scale height of the dust density profile for dust with size s;, and z4 , is

si/smin
Zd. s: Zd. g:
L — > Smin 48

g g

derived as

where zq g . is the scale height of the dust density profile for minimum dust aggregates. The
symbol zq 5. corresponds to zq [equation (4.3)]. Equation (4.8) corresponds to equation (2.11)
with Hy 5, = 24,5,- We assume Ng = 11 since we checked that the dependence of dust density
at the onset of KHI estimated by the classical RNC on dust abundance is affected by the dust
size distribution in the case with Nq 2 2. We assume that s; is given by Sumin, 1.18min, 1.28min,
.., and 2sp,. If the values of fyq and zq s, are given, the dust density distribution pgo(z) is
obtained from equations (1.6), (4.4), (4.5), (4.7) and (4.8).

As described in subsection 2.3.1, the results shown in this chapter are independent of the
size of individual dust aggregates, s;, provided that the time scale is renormalized, and are
dependent on the size ratio, $;/Smin, as long as the stopping time is given by Epstein’s law
lequation (1.15)].

For comparison for the onset of KHI, we calculate the Richardson number given by

9. Opao(z) (Ovg -2
_ 9 v 4
/ po 0z < 0z ' (49)

where g, = Qk?z. For simplicity, we adopt .J. = 0.25. Equation (4.9) corresponds to equation
(1.47) with vy, = vg, p = po and dp,/0z = 0. From equations (4.2) and (4.9), we obtain

z p’ {3/%10(2)} 71.

T n%r? p?Q 0z

(4.10)

Equation (4.10) corresponds to equation (2.15) with p = py.

4.1.2 Linear Perturbation Equation

We calculate the growth rate of KHI for the case with the unperturbed dust density described

in subsection 4.1.1. To calculate the growth rate, we solve the linear perturbation equation
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derived by Sekiya & Ishitsu (2000). Perturbed quantities are assumed to have the form as F} =
Fy(2) expli(ky — wt)], where k is the azimuthal wave number, y is the azimuthal coordinate,
and w = w, + 1w; is the complex angular frequency. For perturbed quantities, we restrict
ourselves to the case with the radial wave number to be zero because this is the most unstable

mode. Hereafter ~ is omitted, and the perturbation equation is given by

Lo Lipoduy (k 1dvo | LipoLdvy QKQZL%) w =0, (411)

dz>  pg dz dz vdz2 ' podz v dz v2 po dz
where w; is the perturbed vertical velocity, and v = vy — w/k. Boundary conditions at the

midplane of the disk, i.e., at z = 0 are given by

wy; =0 at z =0 (odd mode), (4.12)
and
d
% =0 at z =0 (even mode). (4.13)

Boundary condition at the boundary surface between the dust layer and the gas layers, i.e., at
z = zq is given by

1
%Jr (k‘——%) wy =0 at z = 24. (4.14)
z

v dz
We present the detailed derivation of the linear perturbation equation (4.11) and the boundary
conditions in the Appendix G.

In order to solve the linear perturbation equation (4.11), we assume the dust abundance
parameter, fq, the azimuthal wave number, k, and the dust density at the midplane, pqo(0).
Then, we can solve the linear perturbation equation (4.11) numerically with the boundary
condition (4.14) for the odd mode (4.12) and the even mode (4.13), respectively. At fixed dust
abundance, fq, and the dust density, pqo(0), we obtain eigenvalues, w, and w;, as functions of
the wave number, k, respectively. At fixed dust abundance, fgq, the maximum growth rate,
Wi max, 1S given by a function of the dust density. Especially, we regard the minimum dust
density for w; max > 0 as the possible dust density reachable without KHI, then the possible

dust density at the midplane, pqq(0), is finally derived as a function of dust abundance, fj.
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In this chapter, we compare the following two cases. The case with single-sized dust
without the size distribution is labeled with A, and the case with multi-sized dust with the

size distribution is labeled with B.

4.2 Results and Discussion

It is found that even modes are more unstable than odd modes except for two cases: case B
with fq =1 and pqo(0) < 0.33p,, and case B with fg = 2 and pqo(0) < 0.61p,.

Figure 4.1 shows the maximum growth rates of KHI as functions of the dust density at the
midplane. From Figure 4.1, the crossing point of each line with w; max = 0 is the possible dust
density attained before KHI. As seen in Figure 4.1, it is seen that the dust density in the case
with wjmax = 1073Qxk approximates the dust density in the case with Wimax = 0. Since it is
technically difficult to calculate the case with exactly w;max = 0 especially in the case with
the large dust abundance parameter fy, we use the dust density for w; ma, = 107*Qxk instead
of that for w;max = 0 except for case B with fq = 1 and B with fq = 2. For the two cases B
with fqg = 1 and B with fq = 2, we use the dust density for w; max = 107°Qk instead of that
for w; max = 0.

Figure 4.2 shows dust densities in the midplane as functions of dust abundance. A label
A-J refers the case A (with single-sized dust) with J,;, = 0.25, a label A-w; refers the case A
with w; max = 107°Qx, a label B-J refers the case B (with multi-sized dust) with Jy,;, = 0.25,
and a label B-w; refers the case B with w; max = 107°Qxk (case B-1) or w; max = 1072Qx (other
cases). From Figure 4.2, it is found that for both cases A and B the dust abundance parameters
significantly coincide between the cases with w; max ~ 0 and with Jy,;, = 0.25. Especially, the
dust density at the midplane pq(0) in the case B-w; with fq < 20 remarkably coincides with
that in the case B-J, and the dotted and solid lines look like overlapping.

In Figure 4.2, it is seen that dust abundance parameters required to achieve pqo(0)/p. = 1

for the case with Joi, = 0.25 are fq = 2.5 x 10® in the case A-J and fy4 = 74 in the case B-J.
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Figure 4.1: Maximum growth rates of KHI w; max normalized by the Keplerian angular velocity {2k
as functions of the dust density at the midplane normalized by that in the case with w; max = 1073Qk.
A-1 means the case A with fqg = 1, A-10 means the case A with fy = 10, B-1 means the case B with
fa =1, and B-10 means the case B with fq = 10. This figure was presented in Hasegawa & Tsuribe

(2014) as figure 1.
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Figure 4.2: Dust densities at the midplane pqo(0) normalized by the critical density for GI p. as
functions of the dust abundance parameter fq for the cases A (triangles) and B (circles). Dotted
lines show the densities with the minimum value of the Richardson number distribution Jy;, = 0.25.
Solid lines show the densities with the maximum growth rate of KHI w; max = 10750k (case B-1) or

1073Qk (other cases). This figure was presented in Hasegawa & Tsuribe (2014) as figure 2.
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On the other hand, in the case with w; max ~ 0, it is seen that dust abundance parameters
required for pgo(0)/p. = 1 are fq = 1.6 x 10% in the case A-w; and fq = 56 in the case B-w;.
In above results, values of dust abundance parameters fq are larger than values in chapter
2 that are fq = 6.6 x 10? in the case A-J and fq < 50 in the case B-J. This is because the
initial dust density distribution in this chapter is different from the Gaussian profile used in
chapter 2. From equation (4.10), the Richardson number distribution depends strongly on the
dust density profile, so dust abundance required for GI varies with the initial dust density

distribution even with the same J;,.

In figure 4.2, it is found that dust abundance parameters required to achieve pqo(0)/p. = 1
in the case with multi-sized dust is much smaller than these in the case with single-sized
dust. This tendency is similar to the result in chapter 2. We suggest the possibility that this

tendency is independent on the initial distribution of the dust density.

In summary, it is found that, for both cases with single-sized dust and with multi-sized
dust, the dust abundance parameters significantly coincide between the cases with w; max ~ 0
and with J,;, = 0.25 within a factor of 2. Thus, it is seen that dust abundance parameters

that we calculated in chapter 2 using the classical RNC are reasonable within a factor of 2.

From figure 4.2, for both cases with single-sized dust and with multi-sized dust, dust
densities at the onset of KHI calculated by w; max ~ 0 are well in accord with those calculated
by Juin = 0.25 in the cases with fq < 10. This result suggests that the classical RNC is safely
used in the case with dust growth as in chapter 3. We should confirm this possibility using

more cases in future work.

For the case with fixed f3 and w = w; max, We calculate the spatial profile of a Richardson
number as a function of z. Then we name the minimum value of the Richardson number in this
profile as the critical Richardson number. Figure 4.3 shows the critical Richardson numbers
in the case with w; ma = 10790k (cases B-1 and B-2) or w; max = 1073Qk (other cases) as
functions of the dust abundance parameter, fy. For the case A (with single-sized dust), the

critical Richardson number tends to decrease with increasing the dust abundance parameter,
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Figure 4.3: Minimum Richardson numbers in the case with w; max = 107°Qx (cases B-1 and B-2)
O Wj max = 10730k (other cases) as functions of the dust abundance parameter fy for the case A
(triangles) and for the case B (circles). This figure was presented in Hasegawa & Tsuribe (2014) as

figure 3.

fa. On the other hand, for the case B (with multi-sized dust), the critical Richardson number
tends to increase with the dust abundance parameter, f4, in the case with f3 < 20 and to
approach 0.25 in the case with 5 < fq < 20. This result is different from that in the case A.
From these results for multi-sized dust, the critical Richardson number is approximated by
0.25, and J,;, = 0.25 condition is applicable in the case with 5 < fy < 20.

The Coriolis and tidal forces are not included in the linear perturbation equation (4.11).
Ishitsu & Sekiya (2003) performed the linear stability analysis including these forces and found
that the tidal force plays an important role in the stabilization. However, as a first step to
focus on the effect of the dust size distribution, in this thesis we ignore the Coriolis and tidal

forces for simplicity.

4.3 Summary

In this chapter, we have calculated the growth rate of the Kelvin-Helmholtz instability using

the dust density distribution that is consistent with sedimentation of dust aggregates without
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growth. We assumed the thin dust layer and the uniform gas density. Dust aggregates were
assumed to be small, and the mixture of gas and dust aggregates was treated as one component
fluid. We considered the dust size distribution without the dust growth. We have solved the
linear perturbation equation to calculate the growth rate, and we have examined the dust
abundance required for the gravitational instability of the dust layer before KHI.

Our study shows the following results: (1) For the dust abundance required for the gravi-
tational instability, in the both cases with single- and multi-sized dust, the dust abundance for
the case with w; max ~ 0 is about the same as that derived by the condition Jy,;, = 0.25. Thus,
it is seen that dust abundance parameters calculated in chapters 2 and 3 using the classical
Richardson number criterion, J,.;,, = J. = 0.25, are reasonable within errors of a factor of
2. (2) The critical Richardson number is affected by the dust size distribution. In the case
with single-sized dust, the critical Richardson number tends to decrease with increasing dust
abundance. On the other hand, in the case with multi-sized dust, the critical Richardson
number tends to increase and approach 0.25 with increasing dust abundance in the case with
5 < fa < 20. Thus, it is indicated that J;, = 0.25 condition is applicable in the case with

multi-sized dust with 5 < fy < 20.



Chapter 5

Summary and Future Prospects

5.1 Summary

In this thesis, we have investigated the possibility of the onset of the Kelvin-Helmholtz in-
stability (KHI) during dust sedimentation in the protoplanetary disk. Since property of KHI
strongly depends on the dust density profile, in order to understand correct outcome after
dust sedimentation correctly, it is important to consider appropriate density distribution with
sedimentation and growth of dust. However, previous works did not take into account the ap-
propriate distribution of dust density, which is consistent with their sedimentation and growth.
In this thesis, we consider the KHI based on the dust density distributions that are consistent
with their growth and sedimentation.

In order to clarify the effects of dust growth, we first considered the cases without dust
growth to compare with the case with dust growth. As cases without dust growth, we consid-
ered two cases: the case with the single-sized dust and the case with the multi-sized dust. As
the condition for the onset of KHI, we used the classical Richardson number criterion (RNC)
by which KHI occurs when the Richardson number is less than 0.25. As a result, it was found
that the gravitational instability (GI) of the settled dust layer tends to occur before the onset
of KHI if the dust abundance is larger than ~ 1000 times (for the single-sized dust) or ~ 100

67
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times (for the multi-sized dust) that in the minimum mass solar nebula model. This result
shows that, in the multi-sized dust, the dust abundance required for GI is much smaller than
that in the single-sized dust. In the case with single-sized dust, the dust density profile has
a characteristic scale. In the case with multi-sized dust, on the other hand, the characteristic
scale is diffused out to produce more stabilized profile. Thus, in the case with multi-sized dust
aggregates, the required abundance of dust for GI has a possibility to be smaller than that in

the case with single-sized dust aggregates.

Next, we considered the case with dust growth. In this case, although dust has the contin-
uous size distribution, with dust growth, we find numerically that KHI tends to occur before
GI even in the case with large dust abundance. The reason of this qualitative change is found
to originate from the change of gas drag law from Epstein’s law to Stokes’ law owing to dust
growth. Thus, we stress that, in the study of shear-driven turbulence, the change of the law
of gas drag from Epstein’s law to Stokes’ law, as well as dust growth, is required to be taken

into account, although none of previous works on the KHI in the protoplanetary disk has.

In the above investigation, we used the classical RNC with a constant critical value, 0.25,
which is not ensured to discuss KHI for general cases in the protoplanetary disk. We directly
performed the linear stability analysis for KHI to discuss the validity of the classical RNC.
For the dust density distribution consistent with dust sedimentation, the growth rates of KHI
were calculated, and the dust density required for GI before KHI was clarified. By comparing
the result estimated by the linear stability analysis with that estimated by the classical RNC,
we found that dust density estimated from the linear stability analysis agreed well with that
estimated by the classical RNC within errors of a factor of 2. Especially, it is found that the
classical RNC tended to be more applicable in the case with the multi-sized dust than in the
case with the single-sized dust. These results suggest the possibility that the classical RNC is

useful even for the case with dust growth.

The main conclusion of the present thesis is that KHI tends to occur before GI even in

the case with large dust abundance during sedimentation of growing dust aggregates in the
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protoplanetary disk. This means that small dust aggregates with growth tend to be suffered
from stirring up by shear-driven turbulence induced by KHI during their sedimentation at least
once. However, this conclusion does not exclude the possibility for GI. If dust aggregates have
larger collisional velocities owing to the shear-driven turbulence than owing to sedimentation
and radial drift, dust aggregates have the possibility to grow quickly or fragment. This effect
was not included in this thesis. To understand this possibility, we will have to take account of

dust-dust collisions under the condition with shear-driven turbulence induced by KHI.

5.2 Future Prospects

To take account of dust-dust collisions with shear-driven turbulence induced by KHI, we should
develop a more realistic model by calculating the effect of KHI directly. Then, we have to
address the non-linear growth of KHI numerically in the future work.

Other than dust-dust collisions in shear-driven turbulence, there are many effects neglected
in this thesis. In this thesis, dusts were assumed to be compact and to have a spherical shape.
However, since dusts grow due to dust-dust collisions, large dusts are aggregates of small dusts.
Both laboratory and numerical experiments showed that aggregates are not at all compact and
spherical, but have a fluffy structure (Wurm & Blum 1998; Kempf et al. 1999; Okuzumi et
al. 2009). With the same mass, the size of the fractal aggregate is larger than the size of the
compact and spherical dust aggregate and varies with the porosity of the aggregate. Therefore,
the time evolutions of porosity during the growth of dust aggregates are essential to investigate
dust sedimentation, time scale of dust growth and motion of dust aggregates stirred up. We
will address this effect in the future work.

We neglected the streaming instability (Youdin & Goodman 2005; Johansen & Youdin
2007). Bai & Stone (2010) showed that dust aggregates with 74 = Qxtsop > 0.01 trigger a
streaming instability before KHI. In our model, at »r = 1 AU, 7, > 0.01 corresponds to s > 2

cm. In our calculations, for the case with dust growth and fq4 > 2, the typical size of dust
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aggregates at the maximum density is larger than 2 cm. Therefore, in the dust layer governed
by Stokes’ law, the streaming instability would occur before KHI and GI. We will address this

problem in the future work.



Appendix A

Toomre’s Stability Criterion

We present the linear analysis of local stability of an infinitely thin, rotating disk (Toomre
1964; Binney & Tremaine 1987). We consider that the disk is composed of ideal fluid and
is axisymmetric with respect to the rotational axis of the disk. We consider that there is no

motion perpendicular to the disk. The governing equations are given as

)
ov c?
E + (V : V>V = —EVE — V\I/‘Z:(], (A2)
and
V2 = 47GY6(2), (A.3)

where t is the time, X is the surface density of the disk, v is the velocity vector of the fluid,
¢s is the sound velocity, W is the gravitational potential, G is the gravitational constant, and
d(z) is the Dirac delta function. We adopt the cylindrical coordinate system (r, ¢, z) at rest.
From equations (A.1) and (A.2), we have

oY, 0 S,

—+ — (X = A4
ot + 37“( Ur) + . 0, ( )
ov, Ov, 2 ORG) SO\
a e T T Ty o o ) (A-5)
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and
Ovg Ovg v
ot +or o r

where (v,,vy4) are the (7, ¢) components of the velocity.

0, (A.6)

We assume that the unperturbed surface density is steady and uniform, and that the r
component of the unperturbed velocity is zero. We assume that the angular velocity of the
disk, Q (= vgo/r, where subscript 0 refers the unperturbed quantities), is proportional to r=3/2,
For the unperturbed state, from equation (A.5), we obtain the balance of the centrifugal force

and the gravity,

2
U¢0 0\110
_—=— . A7
r or |._, (A7)
From equation (A.3), we have
V20, = 41G¥06(2). (A.8)

To obtain the linear perturbation equations, we give the quantities as f = fy + fi, where
subscript 1 refers the perturbed quantities, and neglect the second-order terms and higher-

order terms of the perturbed quantities. For the perturbed state, from equations (A.3)-(A.8),

we have
621 avrl 201}7«1
P =0 A9
ot + 20 or + r ’ (A-9)
OV 20X, 0V,
— = —— = = Al
or So or o |, (4.10)
Ovgr 1182
— = A1l
and

For simplicity, for perturbed quantities, ¥; and v; are assumed to have the form as f; =
f expli(kr — wt)], where k is the wave number in the direction of r, and w is the angular
frequency. At z # 0, equation (A.12) is given as V?W; = 0. To satisfy this equation, we
assume W, as

Uy = Wexpli(kr — wt)] exp(—|kz]). (A.13)
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Integrating equation (A.12) with respect to z from z = —¢ to z = +€ and taking the limit of

€ — 40, we obtain

+e +e 82\1’
lim V2U,dz = lim Ldz
e—10 | . e—+0 [ . 022
. oy, oV,
= lim | — - —
—+0\ Jz | _., 0z |,__.

= —2kW expli(kr — wt)]

= 4GS expli(kr — wt)). (A.14)
From equation (A.14), we obtain
~ 2 ~
¥ = __sz, (A.15)

We consider the local stability of the disk, then we assume that kr > 1. From equations
(A.9)-(A.11), (A.13) and (A.15), we have

—iw3 + ikQob, = 0, (A.16)
N ~ . 2 i] e
— 1w, — 20480 = —ikcq o + 2miGY, (A.17)
0
and
1
—iwdy + 50,0 =0. (A.18)

From equations (A.16)-(A.18), we obtain the dispersion relation as

0\ 0\’
w? = c2k? — 2rGEok + OF = ¢ <l€ — G 0) + Q2 — (WG 0) ) (A.19)

cs? Cs
From equation (A.19), the condition when the gravitational instability of the disk occurs is

given by
¢
WGEO

From equation (A.20), it is indicated that the disk fragmentation tends to occur in the case

=Q < 1. (A.20)

with the small central star and/or with the cold protoplanetary disk.






Appendix B

Radial and Rotational Velocities of

Gas and Dust Components

We present the derivation of the radial and rotational velocities of the gas and the dust com-
ponents. This chapter is mainly based on Nakagawa et al. (1986). We consider that the
disk is axisymmetric with respect to the rotational axis of the disk. We adopt the cylindrical
coordinate system (7, ¢, z) at rest. In this coordinate system, the temporal differentiation of
the velocity vector, dv/dt, is given by

dv d dv,  vy? dvy — vUg dv,
E = ﬁ(vrer + U¢e¢ + Uzez) - ( dt - 7) 578 + (E + r e¢ + Eeza (Bl)

where (v, v4,v,) are the (r, ¢, z) components of the velocity, and e,, e, and e, are basis vectors.
In equation (B.1), we use vy = r(d¢/dt).

For simplicity, we assume that the protoplanetary disk is geometrically thin, then we assume
(r2 + 2)Y2 ~ r and 0Qk /02 = 0. We set the velocity (v,,vg,v.) = (0,vk,0) + (V;, Vi, V2),

where vk = r{)k is the Keplerian velocity. Then, we have

dv,  vy* v, ov,. vy O, ov, vy’

dt ro ot +Ur8r+r8¢+vz82 r

oV, v, ov, V,?
= Vo TV T

- QQde) - QKzT, (BQ)
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76 COMPONENTS
and
dvg = vUy oV Vs 050V, oVy dug  Vi(Vg + k)
dt+r _8t+vr87“+r8¢+vz62+dt+ r
6V¢ 6V¢ 8V¢ 1 ‘/rvqb
— —Q ) B.
ot _'_Vrar —|—Vzaz+2 kVr + . ( 3)

We assume that |V, |V,| and |V, | < vk, and we neglect the second-order terms of V., V,, and

V., then we have

dv av, aVy 1 dv
(T 20V, — Q) e+ [ 22 SV —e.. B.4
dt <8t KYe Kr)e_k<8t+2 K )Q“+dte (B4)
The equations of motion for gas and dust are given by
d — 1
Vg _ _PdVeg = Vd Ok’R — —VP, (B.5)
dt Pg tstop Pe
and
dvq V4 — Vg 9
=— — QxR B.6
dt tstop e (B.6)

where t is the time, v, and vq4 are the velocity vectors of the gas and the dust components, p,
and pq is the densities of the gas and the dust components, tg.p is the stopping time, Qk is
the Keplerian angular velocity, R is the heliocentric position vector and Py = ¢s?pg is the gas

pressure, where ¢ is the sound velocity. From equations (B.4)-(B.6), we have

a‘/gr Pd ‘/gr - Vdr 1 OF,
_ _Pale W oy, - 2% B.7
at pg tstop * e pg 67‘ ’ ( )
Wap _ paVep—Vay 1
at pg tstop 92 K‘/gT‘a ( 8)
oV, Var — Vi
a; = — dt ) & -+ 2QKVd¢7 (Bg)
stop
and
OVap _ Vas=Vep 1g 1 (B.10)

ot toton 2
Setting 0/0t = 0 in equations (B.7)-(B.10) for simplicity, we obtain the (terminal) velocities

in radial and azimuthal direction of the gas and the dust components as

pg + pa D?* + Qg

Vgr 5TVK (B.11)
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Appendix C

Linear Stability Analysis of Dust Layer
for GI

We present the linear stability analysis of the dust layer. This chapter is mainly based on
Sekiya (1983). We consider that the disk is axisymmetric with respect to the rotational axis

of the disk. We adopt the cylindrical coordinate system (7, ¢, z) at rest. For simplicity, we

assume that the protoplanetary disk is geometrically thin, then we assume (r? + 22)Y/2 ~ r
and 0Qk/0z = 0. We assume the polytropic equation of state for the gad fluid, given by
Py = Xgpg- (C.1)

Before GI, dust aggregates are so small that the stopping times of dust aggregates are much
smaller than the Keplerian period (Nakagawa et al. 1981, 1986). Then, dust aggregates are
small enough to couple strongly to gas, and the mixture of gas and dust can be treated as one
component fluid. Then, governing equations are given as

8_U+ 8U+ ou v g 19P
ot or 0z r or por
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oW oW OW oy 10P

R R - = 2 - -
ot +U8r +W8,z ez 0z p0oz’ (C4)
dp 0 0 pU
5 T, PU) + 5 (W) + == =0, (C.5)
P=xp, (C.6)
and
19 o9 02

where (U, V, W) are the (r, ¢, z) components of the velocity, ¢ is the gravitational potential,
P = P, is the pressure, p = pg + pq is the density and x = xg(1 + pa/ps) "

Hereafter, subscript 0 refers the unperturbed quantities, and subscript 1 refers the per-
turbed quantities. We assume that the unperturbed quantities are symmetric with respect to
the midplane of the disk. We assume dpy/0r = 0, 0Fy/0r = 0 and 0y/0r = 0. We integrate

equation (C.7) with respect to z from 0 to z, then we have

d
% = 271Goy(z), (C.8)
where
oo(z) = 2/ podz. (C.9)
0

At z = h, where h is the scale height of the dust layer, og(h) is the surface density of the dust
layer. We assume that the angular velocity of the mixed fluid of gas and dust is the Keplerian

angular velocity, and that the unperturbed velocity (Up, Vi, Wp) is given by (0, Qkr,0). Then,
OVo/O0r = —Qk /2. From equations (C.2) and (C.4)-(C.6), we have

2
—V% = —Qgr, (C.10)
oYy 1 0F,
S Ot i ) A1
0 K < Oz 0 Oz ) (C )

and

PO = Xpo,y. (012)
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To obtain the linear perturbation equations, we give the quantities as F' = Fj + F} and
neglect the second-order terms and higher-order terms of the perturbed quantities. For the

perturbed state, from equations (C.2)-(C.12), we have

8U1 a Pl
—20 = - — 1
st = - (- 1), (.13
o, 1
8W1 8 Pl
__o(, B 1
= (-2, (©15)
8p1 8U1 0 pOUl
ZPL - = 1
5 TP +az(PoW1)+ — =0 (C.16)
P1 = Cozpl, (Cl?)
and
10 0 0?
where ¢y = (xypo?')? is the sound velocity. We assume dco/Or = 0. For simplicity,

perturbed quantities are assumed to have the form as Fy = F(2).J,(kr) exp(—iwt), where k
is the wave number in the direction of r, w is the angular frequency and .J; is the first-order

Bessel function of the first kind. From equations (C.13)-(C.18), we obtain

—iwl — 2QkV = f, (C.19)
S

—iwV + §QKU =0, (C.20)

- df
—1 = 21
wW, 1 (C.21)

o -~ d =

—iwp, — k2poU + - (pOWr) =0, (C.22)

~ 3 002 ~
g—f=—"pr (C.23)

Po

and

2 a? ~
—k* 4+ — | g = —4nGp,, (C.24)
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where
| = —8% <w1 -~ %) , (C.25)
g1 = —%, (C.26)
W, = 8;{1, (C.27)
and
pr = % (C.28)

We assume that the mixed fluid of gas and dust is incompressible, i.e., that ¢y = oo, p, =0

and dpy/dz = 0. Then, from equation (C.9), the surface density of the dust layer is given by

From equations (C.22) and (C.24), we obtain
aw,

KU+ —L=0 C.30
+ =0 (C.30)
and

2 4’ .

To obtain a dispersion relation, we consider the boundary conditions between the dust layer
and the gas layers. In the perturbed state, the boundary surface becomes slightly deformed.
We define the displacement of the boundary surface perpendicular to the midplane by hy. For

the displacement of the boundary, h;, we have

oh oW
=L :W1<Z:h0—|—h1) :W1(22h0)+ ! hl :W1<Z:h0), (032)
ot 0z | ,_p,
then
O*hy  OW
T (C.33)
We put dhy/0r = hy, = h,Jy(kr) exp(—iwt). From equations (C.21) and (C.33), we have
- df
—wrh, = L 34
why = = B (C.34)
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At the boundary surface, the pressure is continuous between the dust layer and the gas layers.

The boundary condition is given by
P(h(] + h1> = Pgeu (035)

where P, is the gas pressure at the boundary. We assume that P, is constant even if there is

the displacement of the boundary surface. Then we have
P(hg) = Py(ho) + Pi(ho) = Pae + Pi(ho) = P(ho + h1) + Pi(ho). (C.36)

The equation of motion of a fluid element in the range hy < z < hg + h; is given by

aw (o 5\ 0P
PO = Po (—& —Qx Z) 5 (C.37)

We integrate equation (C.37) with respect to z from z = hg to z = hg + hy and neglect the
second-order terms of the perturbed quantities. For the left-hand side of equation (C.37), we

/ho+h1 de /ho+h1 dWld AW,
—az = — Az =
. Po i Po e dt Po i

obtain

hy = 0. (C.38)

z=hg

For the right-hand side of equation (C.37), from equation (C.36), we have

hoths PP ) &
/ho lm (‘& - Z) - a} @

= —po (g—f + QKQz) hi — [P(ho + h1) — P(ho)]

B (awo
= —po | =

z=hg

0z

+ QK2h0> hy + Pi(ho). (C.39)

z=hg

From equations (C.37)-(C.39), P;(ho) is given as

0
Pl(ho) = o (% + QK2h0> hl. (040)
z z=hg
From equations (C.8) and (C.29), we have
0
% - 4G poho. (C.41)
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From equations (C.40) and (C.41), P;(ho) is given by
Py (ho) = pohy(47Gpo + Q) ho. (C.42)

From equations (C.25), (C.26) and (C.42), we obtain
G(ho) = f(ho) = he(47Gpy + Q) ho. (C.43)

At the boundary surface, the gravitational potential is also continuous between the dust layer

and the gas layers (Goldreich & Lynden-Bell 1965). The boundary condition is given by

U1(z = hot) = ¢1(z = ho—). (C.44)
From equation (C.7), we have
Iy o
o — =4 : A4
B . 92 o 7Gpohy (C.45)

At |z| — %00, ¥ should become zero. To satisfy this condition, we assume that ¥ as
U(2) o< exp(—k|z|). (C.46)
From equations (C.44)-(C.46), we have

)

7 + 4G poh + k(2 = ho—) = 0. (C.47)

z=ho—
From equations (C.26) and (C.47), the condition at z = hg in the dust layer is given as

dg

e — 4w Gpohy + k(z = hg) = 0. (C.48)

z=hg
From equations (C.19)-(C.21), (C.30), (C.31), (C.34), (C.43) and (C.48), we obtain the

dispersion relation as

w? 1+ e 25N 47Gpy
— =11 1— K tanh(nK A4
0.2 [ + < 5K ) 0 } nK tanh(nk), (C.49)
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Figure C.1: Angular frequencies as functions of the wave number given by equation (C.50). Solid
lines shows w?/Qk? for cases with 47Gpy/Qk? = 7 (red), 7.3 (green), 7.617 (blue), 8 (magenta) and

8.3 (cyan), respectively.

where n? = (1 — Qx?/w?)~" and K = khy. To obtain the condition with w? < 0, we consider

the case with |w?/Qk?| < 1. Using tanh(0 + 2) = 2 — 2%/3, from equation (C.49), we have

w? 1+ e 2K\ 47Gpy !
o =—ql+ |14+ (1- K2 3K™> .
= { wee (1- ) 3 (C.50)

Figure C.1 shows the angular frequencies as functions of the wave number given by equation
(C.50). In figure C.1, solid lines shows w?/Q* for cases with 47Gpy/Q* = 7 (red), 7.3
(green), 7.617 (blue), 8 (magenta) and 8.3 (cyan), respectively. From figure C.1, in the case

with 47Gpy/Qx* = 7.617, i.e.,
0.61M,
Po =

= pe, (C.51)

73
the angular frequency becomes zero at K = 0.2775, and in the case with py > p., the unstable
mode exists. Then, the dust layer fragments into pieces if the unstable mode exists in the
system (Goldreich & Ward 1973). In the MMSN model, the mode with py = p. and K = 0.2775
has the wavelength given by 2.2 x 10% cm at » = 1 AU. Then, the mass of the fragment is about
10 g and the size of the fragment is several kilometers if the internal density of the piece is

about 1 gecm™3. This is shown that the mass of this fragment corresponds to the planetesimal.






Appendix D

Methods of Numerical Calculations

We present methods of numerical calculations performed in subsection 1.4.1 and in chapter 3.

D.1 Coordinates of Space and Mass

The range of calculations (0 < z < 3H,) along the z coordinates are logarithmically divided
into 106 spaced grids as z;. The grids are set to be rest and are given as
(2 +1)/(108.7)H, (0= <4)

o | : (D.1)
(6. +1)/(26,"YH, (5<j<105)

where 0, = 2'/4. The thickness of the grid is given as

1/(50.%)H, (0<j<4)

Az = )
(0. —1)/(6." ) H, (5<j <105)

J

(D.2)

The thickness of the nearest grid to the midplane, Az, is 1.4 x 1078H,. Using this spatial
resolution, the dust scale height when GI occurs is sufficiently resolved. From equations (D.1)
and (D2), 2105 + A2’105/2 = 28Hg

Mass coordinates, m;, are logarithmically divided into 400 mass bins. The mass coordinate

87
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varies with time, and the initial mass coordinate is given as

1+ 1)m, 0<:<9
o i m <i<o) o)
O i1 (10 <7 < 399)

where §,, = 1.1. At t = 0, magg = 1.4 x 10"7my. If 59 = (3mg/4mps)"/® = 1 pum, then
S399 = (3misge/4mps)"/? = 52 cm. The width of the grid is given as

mit1 — My—1

Ai:
m 2

(D.4)

We always assume m_; = 0 and myg9 = 0,,M399.

D.2 Numerical Method for Dust Sedimentation

In our numerical calculations, the TVD scheme (Roe 1986) is applied to calculate the sedi-

mentation of dust aggregates.

D.2.1 Detail of Scheme

The equation of continuity for a physical quantity, f, with a velocity, v, in one direction, z, is

given by
0 )+ () = 0 (0.5)
—f(t, )+ — x)v(x)] = 0. .
ot oz
Equation (D.5) corresponds to equation (1.37) without dust growth. Using the explicit method,
we obtain
n+1 n m mn At
=0 (fj+1/2vj+1/2 - fj71/2vj—1/2) N (D.6)
L

where f7' = f(tn, 7;), f]”“ = f(ty + At 5), vig12 = v(w; + Ax;/2), vj_1)2 = v(x; — Ax;/2)
and At is the time interval of the numerical calculation. In the first-order upwind difference

scheme, fjn+1 /o Is given by

n fi (W2 > 0)
J+1/2 = Jn ! : (D.7)
fivr (Wjp12 <0)
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On the other hand, in the TVD scheme (Roe 1986), f]+1/2 is given by

N n n n o__ n A
i41/o = fj + minmod (;J: ]; i — 1) ;J (for the case with vj 1/ >0), (D.8)
J i LT Ly
or
n n . o — fit n1—f‘n Axj .
1 = ff — minmod (xj; — 55]311’ 56’];1 — xjj) 2J+ (for the case with v;41/2 < 0),
(D.9)
where
a (ab>0and |a| < |b|)
minmod(a,b) = ¢ b (ab> 0 and |a| > [b]) - (D.10)
0 (ab<0)
D.2.2 Test Calculation
As a test calculation, we adopt the initial condition that is given by
(
exp{—[(z —20)/10]*} (0 < < 40)
0 (40 <z < 60)
f(t=0,z) = (D.11)
1 (60 < x < 100)
| 0 (100 < = < 120)
We adopt the periodic boundary condition that is given by
f(t,x) = f(t,xz + 120). (D.12)

We set v =1, z; = j, Az =1 and At = 0.2. Figure D.1 shows the results with our numerical
method for the advection (corresponding to the sedimentation of dust aggregates) at ¢ = 120.
In figure D.1, it is seen that result of the calculation using the TVD scheme is better than that

using the first-order upwind difference scheme.
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I‘Jpwind‘differe‘nce P
TVD o

ftx)

120

Figure D.1: Results of the numerical advection test (corresponding to the sedimentation of dust
aggregates in this thesis) at ¢ = 120. Numerical results calculated using the first-order upwind

difference scheme (triangles) and the TVD scheme (circles) are compared with the analytic solution

(dotted line).
D.3 Numerical Method for Dust Growth

In our numerical calculations, the method with moving meshes (Wetherill & Stewart 1989) is

applied for dust growth.

D.3.1 Detail of Scheme

The coagulation equation for a mass function, f, with a mass of bodies, m, is given by

0

af(t, m) = —f(t,m) /OOO K(m,m") f(t,m")dm’

+ ! /m K(m —m',m')f(t,m —m') f(t,m")dm’, (D.13)
2 Jo

where K (m,m’) is the coalescence rate for bodies with m and m/. Equation (D.13) corresponds
to equation (1.37) without dust sedimentation. Hereafter, we consider the case when f is the

mass function described in equation (1.37). Using the explicit method, the term in the left-
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hand side of equation (D.13) is replaced by

= fr
IV (D.14)

where fI' = f(t,,m;) and f" = f(t, + At,m;). The second term in the right-hand side of

equation (D.13) is replaced by

K
DT M= v, (D.15)

1>k k 1>k

where Ky, = K(my, my), dx is the Kronecker delta function, and k and [ are given as

1 1
§(ml + mi_l) <myp+my < §(m,~+1 + mi), (D16)

Using equations (D.14) and (D.15), we approximate the coagulation equation by

it =1 (— Z Vii + Z Vk;l) At. (D.17)
k=0

1>k

In order to calculate the time evolution of the mass function, we numerically solve this equation.

Next, we consider the total mass of bodies contained within a bin of ¢th mass, M*Am,. At
t =0, M = m;f". In the case with (m;+m;_1)/2 < my+my; < (m;y1+m;)/2, fir decreases by
v At, f; also decreases by v, At, and f; increases by vy At. Then, My decreases by myuv At,
M, decreases by myvi At, and M; increases not by m;v At but by (my + my)vAt. In such a
case, we have '™ = fI' + vy At and M = M + (my, + my)vAt. At the next time step,
t = t, + At, we redefine a new mass coordinate, m;, as M/ f/""1. When f/"*' = 0 and/or
Mi"Jrl = 0, the mass coordinate, m;, remains unchanged.

In the case with [ = i, then f; decreases by v;At, f; remains unchanged (i.e., /' = f1),

My, decreases by mygu; At, and M; increases by myvp; At.

When m;,, becomes larger than 8m2m; and M3y, is zero, then we redefine the new mass
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coordinates, 1m; pew, as

mMi new = My,

Mitr1, new = OmMy,
M2 new = M1, (D.18)
M43, new = M2, Mitd, new = Mit3, - - ., M398 new = M3g7, and
mM399, new = 11398,
and the new thickness of the grid as
Ami, new — (mi+1,new - mifl,new>/2- <D19>
n
We define M7, as
n — n
Mi,new - Mz Ami, new/Amia
n _ n n n n
i+1,new MZ - Mi, new + i+1 — 42 new>
n _ n
i+2,new Mi+1Ami+2,new/Ami+17 <D20>
n — n n — n n — n
i+3,new — it Mitg new = Mitss -5 398 new = M3y,, and
n _ n n
399, new — Y398 + M3zgg,
and onHeW as
n — n
fi,new - Mi,new/miyne“”
n — n
i+1,new i+1,new/mi+17neW7
n — n .
i+2,new i+2,new/ml+27neW7 <D21>
n _ n n _ n n _ n
i+3,new — Ji+2s Jitd,new — Jit3s - f398,new = [f397, and

n _ n
f3997 new ‘]\43997 new/m3997 new -

On the other hand, when m;,; becomes larger than 8,,2m; and M3y is not zero, then we define
Om, new a8

= 6,2 (D.22)

5m, new



D.3. NUMERICAL METHOD FOR DUST GROWTH 93

When m;,; becomes smaller than Om >m;, on the other hand, then we redefine the new

mass coordinates, 1m; new, as

mMi new = Mi41,

M1, new = M2,

(D.23)
Mi42 new = M43, Mi43 new = Mli44, - -, 11398 new — 111399, and
mM399 new = O Mi399.
We define M7, as
M o = M+ M7 (041, new — Mig1)/28m41,
Mzn new — Mln + Mzn m; — My new 2Aml s
+1, +2 1 (Mg new)/ +1 (D.24)
Miﬁ—Q,new - Mir—Ll—?ﬂ Miﬁ—S,new - Mz??‘,-4’ ] M??Q&new - M??QQ’ and
MZZ)Q, new 07
and fI" ., as
fitlnew = Mz??new/mi,newa
in new Mzn new/ M new s
11, +1, /Mg, (D.25)
&2,new = irfk?ﬂ irfk?;,new = ierl? ] f?:b&new = ffﬁ)&)’ and
f??QQ7 new 0.
D.3.2 Test Calculation
We consider the case with
K(m,m") =m+m/, (D.26)
and adopt the initial condition that is given by
1 (m=mg=1)
f(t=0,m) = (D.27)
0 (m# my)
For the case with equations (D.26) and (D.27), the analytical solution is given by
mmfl
ft,m) = e (1 —e )™ texp[—m(1 — e, (D.28)

m)
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Figure D.2: Results of a test of our numerical method for the growth of bodies at ¢ = 1 (red), 2
(green), 3 (blue), 4 (magenta), 5 (cyan), 6 (yellow), 7 (orange) and 8 (gray), respectively. Numerical
results (circles) are compared with analytic solutions by Trubnikov (1971) (black dotted lines). The
monochrome version of this figure was presented in Hasegawa & Tsuribe (2013) as figure 5.
(Trubnikov 1971). The initial mass coordinate is given by equation (D.3). We set d,, = 1.1

and At = 1073, Figure D.2 shows the results with our numerical method for the growth of

bodies. In figure D.2, it is seen that our numerical method gives satisfactory results in the
calculation of the growth of dust aggregates.



Appendix E

Linear Stability Analysis of Laminar

Flow for KHI

We present the linear stability analysis of the laminar flow for KHI (Chandrasekhar 1961). We
assume that there is one component fluid and that the fluid is incompressible and inviscid. We
consider the Cartesian coordinate system (x,y, z) at rest, and assume that there are a laminar
flow in the direction of y and the gravitational force in the negative direction of z. We also
assume that the gravitational acceleration is spatially and temporally constant. The governing

equations are given as

ou Ov Ow

—_— —_— —_— E.l

Ox + oy + 0z 0 (B.1)
@+u@+v@+w@—0, (E.2)

ot ox dy 0z

@4_ @4_ @—f‘ @—_la_P (E3)
ot or U@y Yo, T p o’ '

@+u@+v@+w@——la—f) (E.4)
ot Ox oy 0z  poy’ '

and

a—w+ua—w+va—w+wa—w——la—]g— (E.5)
ot ox oy 0z poOz Iz '

95
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where ¢ is the time, (u, v, w) are the (z,y, z) components of the velocity, p is the density of the
fluid, P is the pressure, and g, = const > 0 is the constant acceleration due to the gravitational
force.

We assume that the unperturbed state is steady and uniform in y direction, and that the

x and z components of the unperturbed velocity are zero. Then, we have
ug =0, vg =v9(2), wo =0, po=po(z), and Py = Py(2), (E.6)

where subscript 0 refers the unperturbed quantities. For the unperturbed state, from equations
(E.5) and (E.6), we have

To obtain the linear perturbation equations, we write the quantities as f = fy + fi, where
subscript 1 refers the perturbed quantities, and neglect the second-order terms of the perturbed

quantities. For the perturbed state, from equations (E.1)-(E.7), we have
8’&1 8’01 8’(1]1

it S Tt E.
Ox + dy + 0z 0 (E.8)
8,01 8p1 dpo
il Zr = E.
ot -+ Vg ay -+ wy dz 0, ( 9)
8u1 8u1 1 8P1
bt - -t E.1
ot + % Ay po Ox’ (E-10)
vy on dvy 1 0P,
ey -1 - E.11
ot —Hjoﬁy +w1dz po Oy’ ( )
and
Ow, Owy _ _i% P1 (B.12)

oy T T wer T

Perturbed quantities are assumed to have the form as fi = f1(2) expli(kyz + k,y — wt)], where

k. is the wave number in the direction of z, k, is the wave number in the direction of y,

and w = w, + 1w; is the complex angular frequency. Hereafter ~ is omitted, and equations
(E.8)-(E.12) are given by

tkyuy + ikyvy + Dywy = 0, (E.13)
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—iwpr + ikyvopr + w1 D.py = 0, (E.14)
P
—iwuy + ikyvouy = —iky—, (E.15)
Po
. . I &
—iwvy + ikyvovr + w1 Dyvg = —iky,—, (E.16)
Po
and
. . ]_ ;01
—twwy + ikyvowy = ——D, P — g.—, (E.17)
Po Po

where D, = d/dz.
Multiplying equations (E.15) and (E.16) by ik, po and ik,po, respectively, we have

podjkmul = kaPh (Elg)

and

po@k}y’l}l -+ ipok:y(DZvo)wl = k?yQPl, (E]_g)

where w = w — kyvy. From equations (E.13), (E.18) and (E.19), we have
D, [ipowD wy + ipoky (D vo)w:] = k*D,P;, (E.20)
where k2 = k,” + k,*. Multiplying equation (E.17) by —k2p,, we have
ipowk*wy = kD, P, + g.k*p;. (E.21)
From equations (E.14), (E.20) and (E.21), we have
D.[pow D w; + poky, (D, ve)w:] — powk*w; = gsz(szo)%. (E.22)

For simplicity, we consider the case when there are laminar flows of two superposed fluids
with a relative horizontal velocity. To obtain the boundary condition at the boundary surface
of laminar flows, we suppose that there is a boundary surface of laminar flows at z = z;. For
the unperturbed state, z; = 24 is a constant value. The equation of motion for the boundary
surface is given as

0z, 0z 0z Oz
oy + u(zs)a—x + v(zs)a—y + w(zs)a = w(zs). (E.23)
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In the perturbed state, the surface becomes slightly deformed. We define the deformed surface
by zs = 250 + 251. From equation (E.23), the equation of motion for the deformed surface is

given as

0z
+ vo(zso)aiyl — 1w (240)- (E.24)

In equation (E.24), we use the following expansions:

dv
vo(2s0 + 2s1) = Vo(2s0) + d—zo Zs1, (E.25)
Z=2Zs0
and
dw
wi (250 + 251) = wi(20) + d—zl 2z = w1 (250)- (E.26)
Z=2Zs0

We assume that the perturbed quantity zq is given as zq = zq(2) expli(k,z + kyy — wt)], then
we have

—iwzg + tkyvo(2s0) 261 = W1 (2s0)- (E.27)

From equation (E.27), we have

251 — ——— . (E28)

Z=2Zs0

Equation (E.28) shows that w; /@ must be continuous at the boundary surface of laminar flows.
To obtain the condition at the boundary surface, z = z;, we integrate equation (E.22) over
an infinitesimal element (24 — €, 25 + €) and pass to the limit ¢ — 0. Since gk? and w; /@ are

continuous at the boundary surface, we obtain the condition at the boundary surface as

w
AsolpowD.wy + poky(D-vo)wi] = g-k*[As(po)] (é) , (E.29)
Z=Zs0
where
z+€
Ap(F)=F(z=20+0)— F(z=25—0) = lir% D.Fdz. (E.30)
We set zqg = 0 and consider the case with
v z>0
vw(z) =4 (z>0) , (E.31)
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and

iz =] B0 (£.32)
p- (2<0)
Then, D,vy = 0 and D,py = 0 at z # 0. We assume that v, # v_ and that p, < p_. From
equation (E.22), we have
D*w; — k*w; = 0. (E.33)
The general solution of equation (E.33) is a linear combination of e** and e7**. We assume the

boundary condition that w; is zero at z — 400. From equation (E.28), w;/w is continuous at

z = 0. Then, we obtain the solution of equation (E.33) as

) = Alw — kyvp)e ™ (2> 0) | (E.34)
Alw — ky_)e? (2 <0)

where A is a integral constant. From equation (E.34), we have

(Z)

From equations (E.29)-(E.32), (E.34) and (E.35), we obtain the dispersion relation as

= A. (E.35)

z=0

(o4 + p)w? = 2k (prvy + pvw + kS (pyo® + pv?) = gk(p- — py) = 0. (E.306)

The roots of equation (E.36) are given by

ky(prvy + povo) £ ’i\/kfm,o—(v— —v4)? = g:k(p-2 — p4?)
w = . (E.37)
P+ + p-

From equation (E.37), instability occurs for the modes with

ky*pip- (v —v0)? = gok(p-* = pi?) > 0. (E.38)

Therefore, two uniform fluids in a horizontal relative motion separated by a horizontal bound-
ary surface is unstable, and this is called the Kelvin-Helmholtz instability (KHI). Since g, > 0

and p; < p_, equation (E.38) is rewritten as

2 2 1.2 2 2

9. p--—py k 9. p-"— Py
k> knin(ks) = — > knin(0) = > 0. E.39
(k) (vo—v)? pepo k) © (v —v4)? pyp- (E.39)
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Figure E.1: The stability and instability of laminar flows of two fluids in the case with vy = 1,

v_=2,pr =1, p_=2and g, = 1.

Figure E.1 shows the stability and instability of laminar flows of two fluids in the case with
vy =1v_ =2 p,=1,p =2and g, = 1. For the mode with k, = 0, then Ky, (oc k?/k,*) =
+00 [equation (E.39)]. For such a mode, the finite wave number k (= k,) can not become
larger than £, then two uniform fluids are stable. Thus, perturbations perpendicular to the
direction of flows can not cause KHI. We explain this result by the process of the onset of
KHI described in subsection 1.5.2. The surplus energy results from the momentum transfer
between the regions with different unperturbed velocities in fluctuation of the plane interface.
Even if the surplus energy causes the z-component of fluctuation, the momentum transfer does
not occur because the z-component of the unperturbed velocity is zero. Then, the amplitude
of fluctuation in the direction of z is not amplified. Thus, KHI does not occur if the wave
number in the direction of x, k,, become large.

The real part of the complex angular frequency is given by

ky(p+vs + p-v_)/(p+ + p-) [k > Fin (kz)]
wr = ky(psvy +p-v)/(ps + p-) , (E.40)
£k (02 = 022) = ) pip-(v- = 0P pi +p2) b < K]

and the imaginary part of the complex angular frequency that corresponds to the growth rate
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Figure E.2: Growth rates of KHI in the case with vy =1, v_ =2, py =1, p_ =2 and g, = 1.

of KHI is given by

o i\/ky2p+p, (v- —v4)? = g:k(p-2 — p42) /(o5 + p-) [k > kmin(kz)] , (E41)

0 [k < Koin (F2)]

The mode with the negative growth rate of KHI decays with increaseing time. Thus, we only
consider the positive growth rate of KHI.

Figure E.2 shows positive growth rates of KHI in the case with v, =1, v_ =2, p, =1,
p— = 2 and g, = 1. From Figure E.2, it is shown that the growth rate, w;, decreases with
increasing the wave number in the direction of x, k,. Thus, the mode with k, = 0 is the most
unstable.

Next, we consider the effect of rotation on the development of KHI. We adopt the local
Cartesian coordinate system (z,y, z) rotating with an uniform angular velocity Q = (0,0, Q).

Then, equations (E.10) and (E.11) are replaced by

3u1 8’&1 1 aPl
Wy = —— —— E.42
o + o 3y U oo D1 ( )
and
1 0P
Ou, v o +w1% +2Quy = ——b. (E.43)

EJF 08y dz po Oy
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In these equations, we neglect the tidal force. Then, equation (E.29) is replaced by

402 2182 w
ASO [pow <]_ — F) Dzwl + (]. + 7) pok:y(DZvo)wl} = gsz[AsO(pO)] (El) . (E44)

Z=2Zs0

From equation (E.44), we have
wi(z) = : (E.45)

where
492 —1/2
e

ke =k [1 - (E.46)

w — kyvy

We consider the most unstable mode with k, = 0. The dispersion relation is given by

492 1/2
)2:| = gzky<pf - p+)

402 )2} v +p-(w = kyv)” [1 @ kpp
(E.A7)

—k 20—

For simplicity, we consider the case with p, = p_. Then, we obtain the angular frequency as

By (o +02) £ iyl (0 — v0,)? — 802
o= . , (E.48)

and the growth rate of KHI is given as

1
w; = 5\/1@2(@ —vy)? — 802 (E.49)

Equation (E.49) shows that rotation decreases the growth rate of KHI.



Appendix F

Typical Size of Dust Aggregates in the
Dust Sedimentation with Growth

We explain the reason that the typical size of dust aggregates 5(z) is a linear function of z at
z/Hy < 1 and at t/teq < 1 owing to collisions due to sedimentation in the case with growth
of dust aggregates (Hasegawa & Tsuribe 2013). We now estimate the mean collision time by

the same method as that used in Nakagawa et al. (1981). The mean collision time is given by

1

_ Fi1
ngoAv’ (F.1)

teoll =

where ng is the number density of dust aggregates, o is the collisional cross section and Aw
is the relative velocity of the dust-dust collision. We assume that the sizes of dust aggregates
are given by the typical size, and that masses of dust aggregates are given by the typical mass

of dust aggregates. The typical mass is given by

m(z) = splsC) (F.2)

and we regard that o = 75%. We treat nq as pa/m or (34/%,)[pe/m| at z/Hy < 1 and at
t/tseqa < 1. For the collision due to sedimentation, we simply put |s — s'| = 5 and Av = Auw.

The mean collision time for sedimentation is defined as teon,s. At 2/Hy < 1 and at ¢/tseq < 1,
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teol, s 1s obtained as

2v2Y%, 1 2\ 1 2\ !
teo S:——g— — =36 — . F.3
. 3 Xaflkk <Hg) <Hg) [year] ( )

In equation (F.3), it can be seen that t.o s is independent of 5, and that .. s 271, For
collisions due to the thermal motion, we simply put m = m’ = m and Av = Avg. The mean

collision time for the thermal motion, t.n B, is obtained by

4 [27H, p 503 (57 2\° 5\?
teolp = =) o—22 20 (2 — =28 | — , F.4
LB 3\/; Ya kol (so) P [(Hg) ] <30) [year] (F4)

at z/Hy < 1 and at t/teq < 1. In equation (F.4), it can be seen that f., g is independent of

zand tenp < 572 at 2/Hy < 1 and at t/teq < 1.

From equations (F.3) and (F.4), it is found that tcon, 5 < teon,s When sizes of dust aggregates
are small. Therefore, it is expected that collisions due to thermal motion dominate as long as
the sizes of the dust aggregates are small. After dust aggregates have grown, it is expected
that teon, B > feon s, and that collisions due to sedimentation dominate. The growing speed
of dust aggregates in sedimentation is expected to be proportional to z because teo s < 27
Thus, it is supposed that the typical mass of dust aggregates at z, m(z), is given by

m(z) = (a1 x Hi + ag) mo, (F.5)

g
where a; and a, are appropriate values. Then, the typical size of dust aggregates at z is given
by 5(2) = [a1(z/Hy) + as]3sg. If ay2/asHy < 1, it is supposed that 5(z) is approximated by

_ z
5(z) = (ag X — + a4) S0, (F.6)

Hy

with the Taylor expansion. Symbols a3 and a4 are appropriate values.

Figure F.1 shows the distribution of the typical mass and size of dust aggregates at z/H, <
1 and at t = 25 year in numerical results in subsection 3.2.1. From figure F.1, it is confirmed

the functional form of 5(z) = [a3(z/Hg) + as]so at z/Hy < 1 and at t/tseq < 1.
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Figure F.1: (a) Distribution of the typical mass of dust aggregates in » = 1 AU at ¢t = 25 year. The
abscissa, where Mmyypical means m, shows the typical mass, m, in units of mg. The ordinate shows
z coordinate in units of H,. (b) Distribution of the typical size of dust aggregates at t = 25 year.
The abscissa, where sypical means s, shows the typical size, 5, in units of so. The ordinate shows z

coordinate in units of H,. This figure was presented in Hasegawa & Tsuribe (2013) as figure 14.

The above discussions assume that collisions due to sedimentation become more dominant
than those due to the thermal motion. However, it is not confirmed that collisions due to
sedimentation are dominant before ¢t = 25 year. We should now confirm that the dominant
effect in the growth of dust aggregates is sedimentation at ¢ = 25 year.

At z/H, < 1 and t ~ 0, it is expected that collisions due to the thermal motion are
dominant, and that ¢.,; p is independent of z. In this case, it is supposed that the typical size
of dust aggregates is independent of z, i.e., as in the formula for §(z) is temporally constant.
However, in a certain time, it is expected that the dominant effect in the growth of dust
aggregates changes from collisions due to the thermal motion to those due to sedimentation
because of dust growth. Therefore, the time for this change can be determined by investigating
the time development of a3 for §(z).

Figure F.2 shows the time development of as. In figure F.2, a3 is approximated by az =
6.3x107°(¢/1 [yr])*+7.0x 1073(¢/1 [yr]) —3.0 x 10~2. This shows that az > 0 at ¢ = 4 yr, then

it is expected that collisions due to sedimentation dominate in the growth of dust aggregates
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Figure F.2: The time development of a3 (circles) in r =1 AU and z/Hy < 1 at t/tseq < 1. The
abscissa shows time and the ordinate shows ag that is derived from fitting 5(2) into [a3(z/Hg) + a4]so.
The approximated curve is also drawn (dotted line). This figure was presented in Hasegawa & Tsuribe

(2013) as figure 15.

at t 2 4 yr. Therefore, we conclude that the assumption that collisions due to sedimentation

become more dominant than those due to the thermal motion is appropriate at ¢ = 25 yr.



Appendix G

Linear Perturbation Equation for KHI

We present the derivation of a set of linear perturbation equations for KHI for a fluid with a
continuous density distribution in the protoplanetary disk (Sekiya & Ishitsu 2000). We assume
that there is one component fluid and that the fluid is incompressible and inviscid. We assume
that the protoplanetary disk is axisymmetric with respect to the rotational axis of the disk.
We adopt the local Cartesian coordinate system (z,y, z) rotating around a central star with
the constant azimuthal velocity. The curvature is neglected. We take into account only the
gravitational force from the central star and neglect the self-gravity of the fluid. For simplicity,
we assume €k /0z = 0, where Q is the Keplerian angular velocity. The Coriolis and tidal
forces are neglected. The governing equations are the equation of continuity, the equation of

incompressibility and equations of motion, and are given as

ou Ov Ow

I Tt 1

8a:+8y+8z 0 (G-1)
@+u@+v@+ @—0, (G.2)

ot Yor oy T Vo T

@+u%+v@+w%——la—P (G.3)
ot o oy 0z  pox’ '

@+u@+v@+w@——la—]g (G4)
ot Ox oy 0z  poy’ '
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and

ow ow ow ow 10P
AP M W .
o " Yor TVay tVWar T oo KA (G-5)

where ¢ is the time, (u,v,w) are the (z,y, z) components of the velocity, p is the density of

the fluid and P is the pressure. Equations (G.1)-(G.5) are the same as equations (E.1)-(E.5),
except for g, = Qx*z and 0g./0z # 0.
We consider the case when the unperturbed velocity, density and pressure are given by

equation (E.6), i.e.,
uy =0, v9 =v9(2), wo =0, po = po(2), and Py = Py(2). (G.6)

Subscript 0 refers the unperturbed quantities, and subscript 1 refers the perturbed quantities.
To obtain the linear perturbation equations, we give the quantities as f = fy + f1 and neglect
the second-order terms of the perturbed quantities. Perturbed quantities are assumed to have
the form as f; = f1(2) expli(kyx+ k,y —wt)], where k, is the wave number in the direction of z,
k, is the wave number in the direction of y, and w = w, +1iw; is the complex angular frequency.

Hereafter " is omitted, then equations (G.1)-(G.5) are replaced by equations (E.13)-(E.17), i.e.,

d
ikxul + ikyvl —+ ﬂ = O, (G?)
dz
. d
—iwpy + %wl =0, (G.8)
P
—iuy = —iky—, (G.9)
Po
. dv . P
—iwvy + d_;wl = —zkyp—;, (G.10)
and
1dP Qg
—iowy = ————- — =& Zpl, (G.11)
po dz Po

where w = w — k,vg, and the linear perturbation equation is given by equation (E.22), i.e.,

2 2 2 2
dw1+i@%_(kz 1wy 1 dpoldug k_QKZi%)wlzo, (G.12)

dz2  py dz dz vdz2 | podzvdz k22 0% po dz
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where k* = k,” + k,” and v = vy — w/k, = —w/k,. Equations (G.7)-(G.12) are the same
as equations (E.13)-(E.17) and (E.22), except for g. = Qk’z and 0g./0z # 0. We assume
that vy, po and Py are continuous at any z, and that vo(—z) = wvo(2), po(—2z) = po(z) and
Py(—z) = —Py(2).

To solve the linear perturbation equation (G.12), boundary conditions are needed. We
consider the case with dvy/0z = 0 and Jpy/0z = 0 at |z| > zq, where zq is an arbitrary value
and corresponds to the scale height of the dust layer. At |z] > zq, equation (G.12) is simplified

as
d2w1

d22 — k2w1 =0. (Gl?))

From equation (G.13), we have

o — Ay exp(—kz) (2> z) (G.14)

A_exp(kz) (2 < —zq)

where A, and A_ are arbitrary constants. At z = +z4, P; should be continuous. From

equations (G.7), (G.9) and (G.10), we have

o (dwy  1d
p = i <ﬂ _ _ﬂw1> | (G.15)

At |z] > zq4, using equation (G.14), equation (G.15) is simplified as

P = ~lipfkywr (z22) (G.16)

(ipow/kywr (2 < —za)

At z = £2z4, from equations (G.15) and (G.16), we have

dw1 1 dUQ

- 4+ -7 = = +2z,. 1

dz+< k 17dz)w1 0 at z 24 (G.17)
From equation (G.17), there are two types of solutions: odd solutions, where w(—z) = —w;(z),
ie.,

w; =0 at z =0, (G.18)
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and even solutions, where wy(—z) = wy(2), i.e.,

d
% =0 at 2= 0. (G.19)

As the same in the case in the Appendix E, the mode with k£, = 0 is the most unstable.

For such a mode, k is equal to k,, and the linear perturbation equation is given by

dz>  pg dz dz

d*>w; 1 dpodwy 12 ldQUO 1 dpoldvy Q2 1 dpg
vdz?  py dz v dz v2 po dz

Boundary conditions are given by

wy; =0 at z =0 (odd mode), (G.21)
dw,
T 0 at 2 = 0 (even mode), (G.22)
and
%Jr (k—%%) w; =0 at z = 2. (G.23)

Equation (G.20) is applicable to the case with the continuous density distribution. On the
other hand, in the Appendix E, we considered the case with discontinuous density distribution.

This is the difference between the Appendix E and the Appendix G.
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