<table>
<thead>
<tr>
<th>Title</th>
<th>Analysis of LITTLE NUCLEI family regulating nuclear morphology in Arabidopsis thaliana</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>坂本，勇貴</td>
</tr>
<tr>
<td>Citation</td>
<td>大阪大学，2013，博士論文</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/34036</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Analysis of LITTLE NUCLEI family regulating nuclear morphology in Arabidopsis thaliana

シロイヌナズナにおける細胞核形態を制御する LITTLE NUCLEI ファミリーの解析

Yuki Sakamoto

Department of Biological Science, Graduate School of Science, Osaka University

Dec. 2013
Contents

- **Contents** .. 1
- **Abbreviations** ... 2
- **Abstract** ... 3
- **Introduction** ... 5
- **Material and Methods** 14
- **Results** .. 23
- **Discussion** .. 31
- **Figures** ... 38
- **Acknowledgements** 62
- **References** .. 63
Abbreviations

A. thaliana, Arabidopsis thaliana
ATP, Adenosine-5’-triphosphate
BDM, 2,3-Butanedione monoxime
B. stricta, Barbarea stricta
CaMV, Cauliflower mosaic virus
DAG, Day after germination
DAPI, 2-(4-amidinophenyl)-1H-indole-6-carboxamidine
D. carota L., Daucus carota L.
DIG, Digoxigenin
DMSO, Dimethyl sulfoxide
DTT, Dithiothreitol
EGTA, Ethylene glycol tetraacetic acid
FISH, Fluorescence in situ hybridization
GFP, Green fluorescent protein
GM, Germination
GUS, β-glucuronidase
KASH, Klarsicht/ANC-1/Syne homology protein
LBR, Lamin B receptor
LC-MS/MS, Liquid chromatography tandem mass spectroscopy
LEM, Lap-Emerin-Man
LINC, LITTLE NUCLEI
MES, 2-(N-morpholino)ethanesulfonic acid
MS, Murashige and Skoog
N. benthamiana, Nicotiana benthamiana
NMCP, Nuclear matrix constituent protein
Nup, Nucleoporin
PAGE, Poly-acrylamide gel electrophoresis
PIPES, Piperazine-N,N’-bis(2-ethanesulfonic acid)
rDNA, ribosomal DNA
rhl, root hairless
RT-PCR, Reverse transcription polymerase chain reaction
SDS, Sodium dodecyl sulfate
SUN, Sad1/UNC84 domain protein
T-DNA, Transfer DNA
WIP, WPP domain–interacting proteins
WIT, WPP domain–interacting tail-anchored proteins
X-Gluc, 5-Bromo-4-chloro-1H-indol-3-yl β-D-glucopyranosiduronic acid
YFP, Yellow fluorescent protein
Abstract

The morphology of plant nuclei varies among different species, organs, tissues, and cell types. There is a fixed relationship between nuclear volume and DNA content; a large nucleus contains a large amount of DNA. However, mechanisms and factors involved in the regulation of nuclear morphology are poorly understood.

In this thesis, in chapter 1, I first revealed that treatments of Arabidopsis thaliana leaves and isolated nuclei with actin- and microtubule-depolymerizing reagents did not induce any nuclear morphological change, which suggested that cytoskeletons are not involved in the maintenance of nuclear morphology. To find intranuclear factors involved in the regulation of nuclear morphology, I prepared a crude nuclear lamina fraction from the demembranated nuclei. A total of 660 proteins were identified as putative nuclear lamina proteins by Liquid chromatography tandem mass spectroscopy (LC-MS/MS) of the fraction and I selected 63 of the 660 proteins harboring putative DNA-binding motifs or with unknown functions. Among their T-DNA insertion lines, nuclei of little nuclei1 (linc1) and linc4 disruptants were more spherical than those of wild-type plants. Most of the land plants harbor LINC homologues and A. thaliana harbors four LINC genes. LINC1, LINC2, and LINC3 belong to the one type, while LINC4 belongs to the other type.

In chapter 2, I investigated expression patterns of LINC1-LINC3 fused with β-glucuronidase (GUS) and expressed under the control of individual native promoter in wild-type plants. LINC1-LINC3 were mainly expressed in immature tissues and their expression levels became lower with tissue maturation. Further, I investigated the intracellular localization patterns of LINC1-LINC4 fused with GFP or YFP expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter or individual native promoters in the wild-type plants and linc disruptants. In interphase cells, LINC1-LINC4 were mainly localized at nuclear periphery. In mitotic cells, LINC1 seemed to be
localized on the condensing chromatin during prometaphase to anaphase, whereas other LINCs were localized diffusely in the cytoplasm.

In chapter 3, I analyzed phenotypes of the linc disruptants. linc1-linc4 single disruptants and linc1/linc4 and linc2/linc3 double disruptants were prepared. The disruptants exhibited normal growth under the present experimental conditions. First, nuclear morphology was semi-quantified in leaf and root epidermal cells. linc1, linc4, and linc1/linc4 disruptants exhibited extremely spherical and small nuclei, and linc2, linc3, and linc2/linc3 disruptants exhibited moderately spherical nuclei. Consequently, LINC1 and LINC4 functioned predominantly and LINC2 and LINC3 subordinately in the regulation of nuclear morphology in leaf and root epidermal cells. Although the nuclear morphology in these linc disruptants was more or less abnormal, all linc disruptants exhibited almost normal light-dependent nuclear movement and DNA content compared with the wild-type plants. Furthermore, the chromatin architecture in linc1/linc4 disruptants was investigated by fluorescence in situ hybridization (FISH). The number of signals of centromere and 45S-rDNA recognizing probes in linc1/linc4 disruptants were significantly lower than that in wild-type plants. In summary, I clarified that LINC1 and LINC4 localized at nuclear periphery play predominant roles in regulation of nuclear morphology and chromatin architecture without affecting the DNA content.
Introduction

Nuclear compartment

Living things have the ability of self-replication. Parents hand down information specifying the characteristics that their offspring shall have. On the earth, living things have the genetic information in DNA and some of them acquired a special compartment to store DNA in each cell. Robert Brown found this large compartment and named NUCLEUS (nucleus means almond in Latin) in 1831, although Leeuwenhoek and Franz Bauer had already suggested the existence of such compartment before his discovery. Today, it is known that almost eukaryotic cells contain one nucleus, while exceptionally, for example, a red blood cell and xylem cell do not contain the nucleus, and a skeletal muscle cell, some of the green algae and fungi contain multiple nuclei. Although nucleus is one of the largest organelle in eukaryotic cell except for plant vacuole, DNA is very tightly packed into it. In the case of human, about 2 meters of DNA is contained in each nucleus whose diameter is about 6 µm, which is geometrically equivalent to packing 40 km of extremely fine thread into a tennis ball. Strangely, this extremely tight packing, achieved by a lot of DNA binding proteins such as histone, allows a variety of intranuclear enzymes to easily work for replication, transcription, and restoration. The seemingly contradictory tight-packing structure and flexible enzyme activities were based on strategically constructed nuclear and chromatic architecture.

Nucleus is divided from cytoplasm by a nuclear envelope formed by two lipid bilayer membranes; inner nuclear envelope and outer nuclear envelope. Inner nuclear envelope contains membrane proteins interacting with nuclear lamina and chromatin, outer nuclear envelope contains membrane proteins interacting with cytoplasmic proteins. Nuclear lamina forms a thin sheet-like meshwork inside the nucleus, just beneath the inner nuclear envelope. Nuclear envelope is perforated by large nuclear pores, which transport molecules between the nucleus and cytoplasm. The nucleus
has several nucleoli where ribosome is synthesized in nucleoplasm. The functions of these nuclear components have been extensively studied by a lot of researchers but only a few scientists as me have been interested in the shape and morphology of nucleus.

In the nucleus, DNA is divided into multiple chromosomes, for example, a human genome is in 24 chromosomes and an A. thaliana genome is in 5 chromosomes. In the interphase nucleus, each chromosome occupies specific territory and is never randomly distributed. This chromosome distribution patterns in the nucleus are involved in the epigenetic regulation of gene expression. For example, the chromosome high gene density and high gene transcription activity such as 19th chromosome of human is localized at the central part of nucleus, whereas the chromosome low gene density such as 18th chromosome of human are localized at perinuclear region (Cremer and Cremer, 2001). Additionally, the centromeres and telomeres also exhibit characteristic distribution patterns in the nucleus. Although the information of chromosome distribution patterns in interphase seemingly disappears at the time of cell division, similar distribution patterns reappear in the daughter cells (Gerlich et al., 2003). The chromatin and chromosome distribution patterns are positively regulated and affect gene expression.

Nuclear morphology in animal cells

The nucleus of animal cells is typically spherical or ellipsoidal, but some specialized cells undergo dramatic changes in nuclear shape during differentiation and maturation. For example, spermatids have extremely elongated nuclei (Burgos and Fawcett, 1956; Tokuyasu, 1974; Dadoune, 1995), and neutrophils develop extremely lobulated nuclei (Hoffmann et al., 2007). The nuclear morphology is determined through interactions between intranuclear and extranuclear factors. In animal cells, nuclear lamins and nuclear envelope proteins composing the SUN-KASH complex play indispensable roles in the regulation of nuclear morphology. Lamins are main components of the
nuclear lamina and are directly associated with Sad1/UNC84 domain proteins (SUNs) of the SUN-KASH complex (Starr and Fridolfsson, 2010). SUNs traversing the inner nuclear envelope interact with Klarsicht/ANC-1/Syne homology proteins (KASHs) traversing the outer nuclear envelope (Starr and Fridolfsson, 2010). Disruption or mutation of any of the lamin or KASH genes induces abnormal nuclear morphology (Sullivan et al., 1999; Shimi et al., 2010; Lüke et al., 2008; Khatau et al., 2009). In contrast, nuclear morphology is affected by the extranuclear cytoskeleton. Cytoplasmic actin filaments, microtubules, and intermediate filaments are associated with the outer nuclear envelope KASHs (Starr and Fridolfsson, 2010). In mouse embryonic fibroblasts, thick bundles of actin filaments are organized into a cap structure above the nucleus. Treatment with latrunculin B, which disrupts the actin cap structure, leads to almost complete abrogation of the regulation of nuclear morphology (Khatau et al., 2009). Addition of retinoic acid to leukemic HL-60 cells changes nuclear morphology from an ovoid to a lobulated shape. Nocodazole treatment prevents nuclear lobulation in response to retinoic acid treatment, whereas taxol treatment induces lobulation without retinoic acid (Olins and Olins, 2004). Taken together, the functional association of cytoskeletons with KASH-SUN-lamins is critical to transmit the extranuclear force to the intranuclear lamins in order to regulate nuclear morphology (Starr and Fridolfsson, 2010).

Since late 19th century, it has been recognized that human neutrophil contain non-ovoid, lobulated (segmented) nucleus. The neutrophil nucleus typically has three lobes, but this varies from two to five, and lobes are connected by thin strands of chromatin. Pelger-Huet anomaly is known to exhibit an autosomal dominant inherited abnormality of neutrophils nucleus, characterized by reduced nuclear segmentation and an apparently looser chromatin structure. Heterozygous state generates benign state with altered nucleus, however, homozygous state generates mental retardation and skeletal defects with ovoid nucleus. In 21st century, it is elucidated that Pelger-Huet anomaly is caused by mutation in lamin B receptor (LBR) gene (Hoffmann et al., 2002). LBR is an integral inner nuclear
envelope protein which interacts with lamin B. These studies suggest that defect of the factors involved in regulation of nuclear morphology and chromatin structure induces hereditary disease.

Nuclear morphology in plant cells

In plants, nuclei from different cell types exhibit different shapes, volume, structure (Bennett, 1984), organization of chromatin (Manuelidis and Borden, 1988), and distribution of nuclear proteins (Zirbel et al., 1993). For example, in the several species of moss, spherical nuclei are contained in chloronemal cells, spindle shaped nuclei are in matured caulonemal cells and food-conducting cells, and spirally-coiled rods nuclei are in the spermatozoid (Paolillo et al., 1968ab; Ligrone and Dukett, 1994; Duckett and Ligrone, 1995; Pressel et al., 2008). In angiosperms *Triticum aestivum*, antipodal cell nuclei, containing polytenized chromosomes, are sub-spherical and often have a highly convoluted nuclear envelope, while mature sperm nuclei are haploid and elongated with a smooth profile (Bennett, 1984).

Recently, it becomes possible to observe nuclei in living tissues by using fluorescent markers in *Arabidopsis thaliana*. Chytilova et al. (1999) succeeded in transgenic expression of green fluorescent protein (GFP) fused with nuclear localization signal and to β-glucuronidase (GUS). The nuclear localization signal sequence induces migration of the protein into the nucleus and the GUS sequence increases the size of protein such that it is prevented from passive movement across the nuclear pores. Taking advantage of this technique, Chytilova et al. (1999) examined correlation between nuclear morphology and cell shape. In isodiametric cells, nuclei are generally spherical, while in cylindrical or highly elongated cells, nuclei are ellipsoidal or elongated shape. For example, the shape of root tip cells is square and they contain small spherical nuclei. In contrast, within the root elongation zone, there are rectangular epidermal and cortical cells, which contain ellipsoidal or fusiform-shaped nuclei. Within root vascular tissues, nuclei are generally cylindrical, and within root
hair cells, nuclei are fusiform-shaped and often form subnuclear blebs connected by thin threads of nucleoplasm. The similar variations in nuclear shape are also seen in aerial tissues.

It may be possible to imagine that the morphological variations of nucleus are advantageous to cell functions; the small size of the sperm nuclei might contribute to its smooth transportation in a pollen tube in angiosperms or swimming towards the archegonium in bryophytes and pteridophytes, while the large size of the antipodal nucleus might contribute to its high transcriptional activity. However, I have not yet seen direct evidences for such biological significance of morphological variations of nucleus.

Nuclear morphology and ploidy level in plant cells

In the bryoid moss *Polytrichum juniperinum*, food-conducting cells in both the gametophyte and sporophyte contain highly elongated nuclei more than 15 µm in length and 5 µm in width (Ligrone and Duckett, 1994), while the spermatozoid nuclei are spirally-coiled rods less than 0.2 µm in diameter with completely condensed chromatin (Paolillo et al., 1968ab). In several species of the bryoid mosses, during differentiation of caulonemal and rhizoid cells, the nuclear shape changes from spherical and ovoid to highly elongated and spindle-shaped. In caulonemal cells, there are positive relations between the amount of DNA in nucleus and the volume, length, and shape parameter (length/width) of nucleus (Kingham et al., 1995). Therefore the morphological variety of nucleus may reflect endoreduplication.

Two highly endopolyploid species, *A. thaliana* and *Barbarea stricta*, exhibit a highly positive correlation between nuclear volume and DNA content (Jovtchev et al., 2006), whereas nuclei of the *root hairless 1* mutant (rhl1) of *A. thaliana* are smaller than those of the wild-type plants. The *rhl1* cells undergo only the first two rounds of endoreduplication and stall at 8C, whereas the wild-type cells usually reach 32C (Sugimoto-Shirasu et al., 2005). Moreover, a correlation between nuclear
Volume and genome size has been demonstrated by examining 2C nuclei isolated from more than 10 plant species (Fujimoto et al., 2005; Jovtchev et al., 2006). Taken together, these results suggest that there is a fixed relationship between nuclear volume and DNA content. In addition, a positive correlation between DNA content or ploidy level and cell volume was reported in several plant species (Jovtchev et al., 2006), which further suggests that nuclear volume correlate with cell volume. However, it has not been revealed whether regulatory mechanisms for DNA content, nuclear volume, and cell volume are separate. In addition, the shape of nuclei in *A. thaliana* is not similar to that in *B. stricta*, although their DNA contents and ploidy levels are similar.

Nuclear morphology regulated by cytoskeletons in plant cells

In electron microscopy of food-conducting cells of the moss *Mnium hornum*, elongated nuclei are associated with cytoplasmic microtubules, and the both poles of nuclear envelope forms long tubule like structures that extend towards the distal ends of the cells (Ligrone and Dukett 1994). A microtubule-depolymerizing reagent oryzalin but not an actin-depolymerizing reagent cytochalasin induced changes in the elongated nuclear shape in differentiated caulonemal, rhizoid, and food-conducting cells (Pressel et al., 2008). These studies suggested that microtubule cytoskeleton is responsible for nuclear shaping in the moss one of the base land plants. In pollen tubes of angiosperms, the vegetative nucleus takes elongated morphology. By treating germinating pollen with an actin-depolymerizing reagent cytochalasin D, the morphology of vegetative nucleus became much more spherical (Heslop-Harrison and Heslop-Harrison, 1989). Additionally, in the case of sperm nuclei in *Cyranthus mackenii* pollen tubes, the shape of two sperm nuclei is not same. After treatment with oryzalin differences in nuclear shape between the two sperm nuclei disappeared (Hirano and Hoshino, 2010). Taken together, cytoskeleton-mediated forces may contribute to maintain the nuclear shape in plant cells. However, this was not the case of root hair cells treated with actin- or
microtubule-depolymerizing reagents (Chytilova et al., 2000), suggesting the existence of cell-type specific regulation for the maintenance of nuclear morphology.

Molecules involved in regulation of plant nuclear morphology

Plants do not contain lamin homologs, and only a few plant nuclear lamina proteins have been characterized to date (Mcnulty and Saunders, 1992; Gindullis et al., 1999; Yu and Moreno Diaz de la Espina, 1999; Rose et al., 2003). One such protein is nuclear matrix constituent protein 1 (NMCP1), which has been identified in embryogenic *Daucus carota* L. cells (Masuda et al., 1997). NMCP1 contains extensive coiled-coil domains and is localized to the nuclear lamina as animal lamin (Masuda et al., 1997). LITTLE NUCLEII–4 (LINC1–4), which contains sequences homologous to NMCPs, extensive coiled-coil domains, and nuclear localization signals have been identified in *A. thaliana* (Dittmer et al., 2007; Meier, 2007; Ciska et al., 2013). LINC1 and LINC2 are localized to the nuclear periphery and nucleoplasm, respectively. Nuclei of disruptants of one of these genes are more spherical and smaller than those of the wild-type plants. LINC1 and LINC2 double disruption results in a synergistic decrease in nuclear size and synthetic whole-plant dwarfing phenotype, suggesting a functional redundancy among LINC1 and LINC2 (Dittmer et al., 2007). The nuclear envelope complex is composed of SUNs and WPP domain-interacting proteins (WIP), which are the first identified plant KASHs and are necessary for the maintenance of nuclear morphology in *A. thaliana* (Xu et al., 2007; Oda and Fukuda, 2011; Zhou et al., 2012). More recently, some of myosin XI mutants were reported to exhibit abnormal nuclear morphology (Ojangu et al., 2012; Tamura et al., 2013). Especially, myosin XI-I can interact indirectly with WIP through the direct binding to WPP domain–interacting tail-anchored proteins (WIT), which is localized at the outer nuclear envelope and can bind directly to WIP (Zhao et al., 2008; Tamura et al., 2013). However, how the nuclear lamina proteins, SUN-KASH complex, and cytoskeletons function and whether other protein factors are
involved in the maintenance of plant nuclear morphology remain to be elucidated.

Nuclear positioning and movement

In moss chloronemata, the apical cell and its derivatives have a centrally located nucleus. The nucleus maintains a constant distance from the growing apical tip. In angiosperms, the vegetative nucleus passes into the growing pollen tube and maintains a constant distance from the growing apical tip. As mentioned above, the shape of vegetative nucleus is maintained by actin filaments (Heslop-Harrison and Heslop-Harrison, 1989). The migration of vegetative nucleus is also mediated by actin filaments, supported by the inhibitory effects of cytochalasin D on pollen tube growth and vegetative nucleus migration (Heslop-Harrison and Heslop-Harrison, 1989). Characteristic nuclear movements can be seen in root hairs with their growth. In growing root hairs, the nucleus migrates at close distance form the apical tip. After the root hair stops growing, the nucleus gets out from the sub-apical tip region and migrates randomly throughout the root hair in both directions. Actin filaments are necessary for the uni-directional movement and positioning of the nucleus at the apex during growth and also for the bi-directional movement in mature root hairs (Chytilova et al., 2000; Ketelaar et al., 2002). In *A. thaliana* leaf cells, nuclei show a unique movement in response to environmental light (Iwabuchi et al. 2007). Under dark condition, nuclei are positioned at the center of the bottom of cells, whereas after irradiation with strong blue light, nuclei migrate to anticlinal walls. This migration is inhibited by actin-depolymerizing regent latrunculin B but not microtubule-depolymerizing regent propyzamide (Iwabuchi et al. 2010). Therefore, plant nuclear movements mainly depend on actin cytoskeleton although there are a few reports suggesting an involvement of microtubules (Astrom et al., 1995; Sieberer et al., 2002).
Overview

In this study, I used in *A. thaliana* leaves cytoskeleton inhibitors to demonstrate that cytoskeletons are not involved in the maintenance of nuclear morphology. Next, in order to identify novel proteins involved in the regulation of nuclear morphology, I isolated a crude nuclear lamina fraction from *A. thaliana* leaves and identified LINC1 and LINC4 form that fraction. I investigated expression patterns and intracellular localization patterns of LINCs and phenotypes of line disruptants. It is suggested that LINCs play important roles in the regulation of nuclear morphology.
Materials and Methods

Plant materials and growth conditions

A. thaliana ecotype Col-0 was used as the wild-type plant. I used the following *A. thaliana* LINC disruptants: *linc1* (SALK_016800), *linc2* (SALK_0766530), *linc3* (SALK_099283), and *linc4* (SALK_079288). These *linc* disruptants were crossed to produce *linc1/linc4* and *linc2/linc3* double disruptants. Seeds were surface sterilized with 70% (v/v) ethanol and then sown onto GM medium [MS salts, 1% (w/v) sucrose, 0.4% (w/v) gellan gum, and 0.05% (w/v) MES-KOH at pH 5.7]. The seeds were incubated at 4°C for 1 day to break seed dormancy and then grown at 22°C for 7 days under long-day conditions (16 h light, 70 µmol m⁻² s⁻¹; 8 h dark). The plants were transferred to soil for subsequent growth.

Genotyping of individual T-DNA alleles was performed by standard PCR using the allele-specific primers as follows: for *linc1* (SALK_016800), LP, 5’-CTCCTCCGGTGACACTATCTG-3’ and RP, 5’-AAAAGAAAGGGAGTTGCAAGC-3’; for *linc2* (SALK_0766530), LP, 5’-CTCGAACTGAGCCATTCTGTC-3’ and RP, 5’-AGCTCATTGCTAGAAGGGG-3’; for *linc3* (SALK_099283), LP, 5’-TTGCCTCTGAAATTCCATGTC-3’ and RP, 5’-CAGTGACGCTATACGCTTC-3’; and for *linc4* (SALK_079288), LP, 5’-CAACTTGGAGATTGCGTTAGC-3’ and RP, 5’-CACGCTGTATCTTGCTAAGCC-3’ in combination with the T-DNA-specific primer LBa1, 5’-TGGTTTCACGTAGTGGGCCATCG-3’.

Hoechst staining and semi-quantitative nuclear morphology analysis

Sample leaves were fixed in 2% (w/v) formaldehyde, freshly prepared from paraformaldehyde, and 0.3% (w/v) glutaraldehyde in a PIPES buffer (10 mM EGTA, 5 mM MgSO₄, 0.1 M NaCl, 10 mM NaTP, pH 7.0).
and 50 mM PIPES at pH 7.0) for 2 h with evacuation for the first 5 min. The leaves were stained with a Hoechst solution (5 µg/ml Hoechst 33342 (Calbiochem, Darmstadt, Germany) in the PIPES buffer) containing 0.03% (v/v) Triton X-100 for 1 h and then with the Hoechst solution overnight when needed. Sample roots were fixed in 4% (w/v) formaldehyde, freshly prepared from paraformaldehyde, in the PIPES buffer for 1 h. Fixed roots were treated with 0.5% (w/v) Cellulase Onozuka RS and 0.05% (w/v) Pectolyase Y-23 in the PIPES buffer for 5 min at 37°C and then stained with the Hoechst solution for 10 min. Samples were observed using a DeltaVision microscope with an Olympus IX70 stand (Personal DV; Applied Precision, Issaquah, Washington, USA). Image processing programs (Photoshop 6.0; Adobe Systems, San Jose, California, USA; ImageJ 1.45q; National Institutes of Health, Bethesda, Maryland, USA) were used to analyze the nuclear circularity index and nuclear area. The circularity index was calculated using the equation $4\pi A/P^2$ where A is area and P is perimeter. The index indicates how closely each nucleus corresponds to a spherical shape; a perfect sphere has a value of 1.

When the effects of cytoskeletal and myosin inhibitors on the nuclear morphology were examined, sample leaves after evacuation in the PIPES buffer for 5 min or demembranated nuclei were further treated with 10 µM latrunculin B (Calbiochem) and/or 100 µM propyzamide (Wako, Osaka, Japan) or 100 µM BDM in the PIPES buffer for 1 h. Under these conditions, actin and microtubule cytoskeletons were almost completely disrupted, respectively (Iwabuchi et al. 2010). Stock solutions of inhibitors were prepared in dimethyl sulfoxide (DMSO) and diluted to the final concentration with deionized water at use. Control leaves were treated with 1% DMSO. After inhibitor treatments, sample leaves were fixed and stained as mentioned above. Demembranated nuclei were stained by the Hoechst solution for 5 min without fixation.

Preparation of demembranated nuclei and crude nuclear lamina fraction
Whole plants were maintained in darkness for 36 h to consume starch grains in chloroplasts that were contaminated in the demembranated nuclei fraction. Leaves were treated with an enzyme solution composed of 1% (w/v) Cellulase Onozuka RS (Yakult Pharmaceutical, Tokyo, Japan), 0.1% (w/v) Pectolyase Y-23 (Kyowa Chemical, Kagawa, Japan), 0.6 M mannitol, 80 mM MgCl₂, and 20 mM MES at pH 5.7 for 2 h at 25°C. Protoplasts were filtered through 50-µm mesh, suspended in nuclear isolation (NI) buffer [10 mM MgCl₂, 10 mM KCl, 0.4 M sucrose, 0.5% (v/v) Triton X-100, 10 µM DTT, 1 tablet per 50 ml Complete Protease Inhibitor Cocktail (Roche, Basel, Switzerland), and 10 mM PIPES at pH 7.0], and then incubated with gentle shaking for 30 min at 4°C. After centrifugation at 1000 ×g for 5 min, the pellet was suspended in NI buffer, and the same incubation and centrifugation cycles were repeated. The resultant pellet was designated as a demembranated nuclei fraction. The fraction was further treated with 100 µg/ml DNase and 100 µg/ml RNase in NI buffer without Triton X-100 for 1 h at 25°C. After centrifugation at 10,000 ×g for 5 min, the pellet was washed twice with NI buffer without Triton X-100. The crude nuclear lamina fraction was usually prepared from 5 g leaves.

Electron microscopy

The crude nuclear lamina fraction was put on Cu meshes coated by formvar and poly-L-lysine and observed after negative staining with 1% (w/v) uranyl acetate using a transmission electron microscope (JEOL 1200 EX; JEOL, Tokyo, Japan) at 80 kV.

Mass spectrometric analysis

The crude nuclear lamina fraction was subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Flamingo staining (Bio-Rad, Hercules, California, USA). The stained gel was cut into 16 sections, and the gels were washed with 100% acetonitrile and dried in a vacuum.
concentrator (Fujiwara et al., 2009). The dried gels were treated with reduction solution (10 mM DTT, 50 mM ammonium bicarbonate) for 30 min at 56°C and then treated with alkylation solution (55 mM 2-iodoacetamide, 50 mM ammonium bicarbonate) for 30 min under dark condition. The gels were washed by 50 mM ammonium bicarbonate and 100% acetonitrile and dried in a vacuum concentrator. The dried gel pieces were treated with 2 µl of 0.5 µg/µl trypsin (sequence grade; Promega, Madison, WI, USA) and incubated at 37°C for 16 h. The digested peptides in the gel pieces were recovered twice with 20 µl of 5% (v/v) formic acid / 50% (v/v) acetonitrile. Finally, combined extracts were dried in a vacuum concentrator. LC-MS/MS analyses were performed by using an LTQ-Orbitrap XL-HTC-PAL-Paradigm MS4 system. (Thermo Fisher Scientific, Bremen, Germany). MS/MS spectra were analyzed using the in-house MASCOT server (Perkins et al., 1999) (http://www.matrixscience.com/), and the results were annotated with proteins registered in TAIR8.

RT-PCR analysis

Total RNA was isolated from flowers, flower stalks, leaves, and roots of 4-week-old plants using a Sepasol(R)-RNA I Super G kit (Nacalai Tesque, Kyoto, Japan). After DNase treatment, reverse transcription was performed using the Transcriptor First Strand cDNA Synthesis kit (Roche) with an oligo(dT)$_{18}$ primer. The primers used were as follows: $5'$-AGAATGGACGGAACGTGGGC-3' and $5'$-CGTAGCTTCATGCTGCACCACA-3' for LINC1; $5'$-CCGGAGGAGGATGAGGAATACA-3' and $5'$-CTTGGTCTACAGTCTTCCGTC-3' for LINC2; $5'$-AUCTCCAAGGAAGCGCAACCG-3' and $5'$-TTTCTGTGTTTCAACCGTGAATCTCC-3' for LINC3; $5'$-TAACCCCCTCTGCTGCACCACA-3' and $5'$-GATATGACACTCTGGTGATACGCTTC-3' for LINC4; and $5'$-CGTACAACCGGTATTGTGCTGG-3' and $5'$-GTGATTTCCTTCTCACAAGTCGTC-3' for ACTIN2. All genes were amplified in 30 PCR cycles. PCR products were visualized by ethidium bromide staining.
Construction of GFP and YFP fusion proteins

Each *LINC* fragment was amplified from the genome DNA by PCR using primers

\[
\begin{align*}
5'\text{-aaggcgccgcaATGTCCACGCGTGGTGAAGGT-3'} & \text{ and } \\
5'\text{-ttagcctCGTCGTCGAAGAAAGTCCAAAGCT-3'} & \text{ for } LINC1; \\
5'\text{-caggtacctgATGACCGCGGAAGCGAGACG-3'} & \text{ and } \\
5'\text{-catgcggccggTAGTGAGAAAAGTCCAAAGCTTCTT-3'} & \text{ for } LINC2; \\
5'\text{-aaggcgccgcaATGTCCACGCGTGGTGAAGGT-3'} & \text{ and } \\
5'\text{-ttcctcgggTGTTGAGAAAAGACCACAAATCTT-3'} & \text{ for } LINC3; \text{ and } \\
5'\text{-aaggcgccgcaATGTCCACGCGTGGTGAAGGT-3'} & \text{ and } \\
5'\text{-ttcctcgggCAGAAATAGCAGAAGGGATTATACATCT-3'} & \text{ for } LINC4. LINC1, LINC3, and LINC4
\end{align*}
\]

were cloned into the pSY1 binary vector, which carries a pGPTV-Bar backbone, a *CaMV 35S* promoter derived from pBI101, and *eGFP* (Tsien, 1998). *LINC2* was cloned into pDONR201 (Life Technologies, Carlsbad, California, USA) by BP reaction. Cloned *LINC2* DNA was transferred from the entry clone to the pGWB441 destination vector to generate the *eYFP*-tagged constructs (Nakagawa et al., 2007) by the LR reaction. For own promoter analysis, each *LINC* fragment was amplified from the genome DNA by PCR using primers \(5'\text{-aaggcgccgcaATGTCCACGCGTGGTGAAGGT-3'} \text{ and } 5'\text{-ttagcctCGTCGTCGAAGAAAGTCCAAAGCT-3'} \text{ for } pLINC1::gLINC1; \\
5'\text{-caggtacctgATGACCGCGGAAGCGAGACG-3'} \text{ and } 5'\text{-catgcggccggTAGTGAGAAAAGTCCAAAGCTTCTTCTTT-3'} \text{ for } pLINC2::gLINC2; \\
5'\text{-aaggcgccgcaATGTCCACGCGTGGTGAAGGT-3'} \text{ and } 5'\text{-ttcctcgggTGTTGAGAAAAGACCACAAATCTT-3'} \text{ for } pLINC3::gLINC3; \text{ and } \\
5'\text{-aaggcgccgcaATGTCCACGCGTGGTGAAGGT-3'} \text{ and } 5'\text{-ttcctcgggCAGAAATAGCCAGAAGGGATTATACATCT-3'} \text{ for } pLINC4::gLINC4. LINC1, LINC2, and LINC4 were cloned into the pENTER1A entry vector. Cloned *LINC* DNA was transferred from the
entry clone to the pGWB440 destination vector to generate the eYFP-tagged constructs (Nakagawa et al., 2007) by the LR reaction. LINC3 was cloned into pMM1 binary vector, which carries a pTH35 backbone and sGFP.

Wild-type *A. thaliana* plants were transformed by infection with *Agrobacterium tumefaciens*. Transformed plants were inspected by confocal laser scanning microscopy (Zeiss LSM710; Carl Zeiss, Jena, Germany). In complementation analysis, above-described constructs of LINC1-GFP and LINC4-GFP were transformed in *linc1* and *linc4* disruptants, respectively. Transformed plants were inspected by the DeltaVision microscope with the Olympus IX70 stand (Personal DV; Applied Precision).

GUS staining

GUS staining was carried out according to the method described by Jefferson et al. (1987) with some modifications. Samples were pre-fixed by 90% acetone on ice for 15 min. After washed with reaction buffer (50 mM phosphate (pH7.2), 2 mM potassium ferricyanide, 2 mM potassium ferrocyanide, 0.1% NP-40) samples were incubated in 0.5 mM X-Gluc in reaction buffer at 37 C for over night. Samples were post-fixed by 1% glutaraldehyde in reaction buffer at 37 C for 2 h and then they were dehydrated by ethanol series (30, 50, 70, 80, 90, 100%) each for 10 min. They were observed by Olympus BX50 microscope (Olympus, Tokyo, Japan).

Confocal laser scanning microscopy

Fluorescence confocal images of LINC-GFP and -YFP were obtained using a confocal laser scanning microscope (Carl Zeiss) equipped with 458, 488, and 514 nm Ar/Kr laser lines, a 561 nm DPSS laser line, and a 633 nm He/Ne laser line and ×63 1.2-NA oil immersion objective (C-Apochromat, 441777-9970-000; Carl Zeiss), or ×40 0.95-NA dry objective (Plan-Apochromat,
Image analysis was performed using LSM image examiner software (Carl Zeiss). Image analysis was performed using LSM image examiner software (Carl Zeiss) and Adobe Photoshop 6.0 (Adobe Systems).

Observation of mitotic cells in root tips

Sample roots were fixed in 4% (w/v) formaldehyde, freshly prepared from paraformaldehyde, in the PIPES buffer for 1 h. The fixed roots were treated with 0.5% (w/v) Cellulase Onozuka RS and 0.05% (w/v) Pectolyase Y-23 in the PIPES buffer for 45 sec at 37°C. The roots were stained with the Hoechst solution for 10 min. Samples were observed using the DeltaVision microscope with the Olympus IX70 stand (Personal DV; Applied Precision). The images were deconvolved using the constrained iterative algorithm (Swedlow et al., 1997) implemented in SoftWoRx software (Applied Precision).

Flow cytometry

Ploidy levels of leaf cell nuclei from 4-week-old plants were determined by flow cytometry as described in the study by Sugimoto-Shirasu et al. (2002). The ploidy level was determined by flow cytometry using a Ploidy Analyser PA-11 (Partec GmbH), with UV excitation at 366 nm from a mercury arc lamp. Leaves, hypocotyls, or flowers were chopped with a razor blade in Cystain extraction buffer (Partec GmbH), filtered through a 30 µm CellTrics filter (Partec GmbH) into a sample tube, and stained with Cystain fluorescent buffer (Partec GmbH). At least 7000 nuclei were used for each ploidy measurement.

Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) analysis of interphase chromosomes was intrinsically same as previously described (Murata et al., 1997). For FISH using 180bp probes
recognizing centromere, the isolated nuclei from flower buds of 5-weeks-plant were prepared. The flower buds were fixed by Carnoy's solution (acetic acid : ethanol = 3 : 1) for 2 h at r.t.. The buds were treated with cellulase solution (2% Cellulase Onozuka RS, 0.5% Pectolyase in citrate buffer pH4.5) for 2 h at 37°C and then crushed by vigorously pipetting. After filtration by 100 µm mesh, the samples were pasted on slide glass. The 180bp probes were labeled with digoxigenin (DIG)-11-dUTP by DIG nick translation kit (Roche) and DIG was detected by rhodamine conjugated anti-DIG antibodies (Roche). DNA was stained by 1 µg/ml DAPI. The FISH samples were mounted with Prolong gold (Life Technologies), sealed by nail polish, and inspected by the DeltaVision microscope with the Olympus IX70 stand (Personal DV; Applied Precision).

Microarray

As one microarray sample, 8 individual 1-week-old seedlings of wild-type plant or linc1/linc4 disruptant were sampled from GM plate. The seedlings were homogenized in liquid nitrogen and those total RNA were extracted by RNeasy plant kit with DNase treatment (Qiagen, Hilden, Germany). One wild-type RNA sample and three linc1/linc4 disruptant RNA samples were checked their quality using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), were Cy-3 labeled using by Agilent Low Input Quick Amp Labeling kit 1-color (Agilent Technologies). Microarray analysis was performed following the manufacturer’s instructions (Agilent Technologies) and as previously described by Yamada et al. (2007). It was used an Agilent 4×44k Gene Expression Array: Arabidopsis thaliana Ver.4 and Agilent microarray scanner (Agilent Technologies)

Analysis of light-dependent nuclear positioning

Light-dependent nuclear positioning was examined as described in the study by Iwabuchi et al. (2010). Leaves were detached from the plants at the petioles, floated on distilled water in a petri
dish, and then kept in darkness for 16 h. The dark-adapted leaves were irradiated with blue light (470 nm) using a light-emitting diode light source system (MIL-C1000T for the light source controller, MIL-U200 for the light source frame, and MIL-B18 for the light-emitting diode; SMS). Light intensity was measured with a quantum sensor and data logger (LI-1400; LI-COR). After dark adaptation or blue light irradiation, sample leaves were fixed and stained by the above-described method. Because nuclei of the linc disruptants were spherical, the nucleus getting any contact with the anticlinal walls was defined to be in the light position.
Results

Chapter 1: Identification and phylogenic analysis of LINCs

LINC1 and LINC4 in the nuclear lamina fraction may be involved in the maintenance of nuclear morphology

To know whether cytoskeletons play any role in the maintenance of plant nuclear morphology, I semi-quantitatively measured the circularity index and area of the nucleus in leaf epidermal cells of Arabidopsis thaliana after treatment with latrunculin B and/or propyzamide (Fig. 1A, B), inhibitors of polymerization of actin filaments and microtubules, respectively. No statistically significant difference was detected in both parameters from the control nuclei in any treatment. Furthermore, nuclei isolated from A. thaliana leaf protoplasts retained their spindle shape even after treatment with 1% (v/v) Triton X-100 (Fig. 2A); the shape was the same as that in the leaves (Fig. 2B). The morphology of demembranated nuclei was also maintained after treatment with latrunculin B and/or propyzamide (Fig. 3A–D). Additionally, demembranated nuclei were treated with 2,3-butanedione monoxime (BDM) which is an inhibitor of myosin ATPase activity. BDM also did not affect the morphology of the demembranated nuclei (Fig. 3E). Consequently, I assumed that nuclear morphology is maintained by intranuclear factors such as nuclear lamina components but not by extranuclear factors such as cytoskeletons.

I prepared a crude nuclear lamina fraction from the demembranated nuclei by treatment with DNase and RNase. Mesh-like structures composed of fibrous materials typical of the nuclear lamina were clearly present in electron micrographs of the crude nuclear lamina fraction (Fig. 4A). A total of 660 proteins were identified as putative nuclear lamina proteins by LC-MS/MS of the fraction (Fig. 4B, C and Table 1). Because animal lamins are equipped with DNA-binding activity (Dechat et al., 2008),
I selected 63 of the 660 proteins harboring putative DNA-binding motifs or with unknown functions (Table 2). Two lines exhibiting spherical nuclear shapes in leaf trichome cells (Fig. 5A–C) were screened from T-DNA insertion lines for these 63 genes. One line was a linc1 disruptant (Fig. 5B) and the other was a linc4 disruptant (Fig. 5C).

Most of vascular plants have LINC genes

Arabidopsis thaliana harbors four LINC genes (Dittmer et al., 2007; Meier, 2007). LINC1 contains 1132 amino acids with a molecular weight of 129 kDa and a PI of 4.96, LINC2 contains 1128 amino acids with a molecular weight of 130 kDa and a PI of 4.79, LINC3 contains 1085 amino acids with a molecular weight of 127 kDa and a PI of 4.99, and LINC4 contains 1042 amino acids with a molecular weight of 121 kDa and a PI of 5.01. All LINC homologues except those of *Physcomitrella patens* could be roughly divided into two groups, namely, LINC1, LINC2, LINC3, and NMCP1 belong to the NMCP1 type, while LINC4 and NMCP2 belong to the NMCP2 type. Monocots such as *Zea mays* and *Oryza sativa* harbor one each homologue of the two types while dicots such as *Vitis vinifera*, *Daucus carota* L., *Apium graveolens*, and *A. thaliana* harbor more than two homologues of the NMCP1 type other than one NMCP2 type. *Physcomitrella patens* harbors a special type of LINC which does not seem to belong to any of the two types.
Chapter 2: Expression and localization analyses of LINC

Expression levels of LINC1-LINC3 are high in immature tissues and became lower with tissue maturation.

By RT-PCR, all LINC genes appeared to be expressed in the wild-type whole plant body (Fig. 7). I further investigated detailed expression patterns of LINCs fused with β-glucuronidase (GUS) and expressed under the control of native promoter in wild-type plants. The genomic fragments of LINCs included the approximately 2-kbp upstream promoter sequences from the translation initiation site and the entire coding sequences (pLINC::LINC). In 2 days after germination (DAG), signals of pLINC1::gLINC1-GUS and pLINC2::gLINC2-GUS were detected in the whole plant body but few signal of pLINC3::gLINC3-GUS could be detected (Fig. 8). In cotyledon of 5 DAG plants, strongly signals of pLINC1::gLINC1-GUS, pLINC2::gLINC2-GUS, and pLINC3::gLINC3-GUS were detected (Fig. 9A-C). In cotyledon of 8 DAG plants, signals of pLINC1::gLINC1-GUS were maintained, whereas those of pLINC2::gLINC2-GUS and pLINC3::gLINC3-GUS became lower than in cotyledon of 5DAG plants (Fig. 9D-F). As LINC1-LINC3 signals were very high in the first true leaves of 8 DAG plant, reduction of LINC2 and LINC3 signals occurred only in cotyledon (Fig. 9D' - F'). In the first true leaves of 14 DAG plants, LINC1-LINC3 signals were almost disappeared (Fig. 9G-I). To investigate LINC1-LINC3 expression patterns in roots, pLINC1::gLINC1-YFP, pLINC2::gLINC2-YFP, and pLINC3::gLINC3-GFP were transformed in each single disruptant. LINC1-LINC3 signals were detected strongly at meristematic root tip cells and weakly in differentiated cells (Fig. 10). These results suggested that LINC1-LINC3 were mainly expressed in immature tissues and their expression levels became lower with tissue maturation.

Up until now, I could not detect any signals of pLINC4::gLINC4-GUS in wild-type plants and pLINC4::gLINC4-YFP in wild-type plants and linc4 disruptants. I produced
3-kbp-pLINC4::gLINC4-YFP and transformed linc4 disruptants with it; however, the construct could not recover the nuclear morphology of linc4 disruptants, which suggested that even 3-kbp-pLINC4 is not enough to express LINC4 although 3-kbp-pLINC4 sequence begins just after start codon of previous gene sequence.

Individual LINCs exhibit different localization patterns in interphase and mitotic cells

I investigated the intracellular localization of LINC-GFP or -YFP expressed under the control of the cauliflower mosaic virus (CaMV) 35S promoter in the wild-type plants. I confirmed that the abnormal nuclear morphology of linc1 and linc4 disruptants was recovered by introducing LINC1-GFP and LINC4-GFP, respectively, into the disruptants (Fig. 11). As reported previously (Dittmer et al. 2007), LINC1 was mainly localized to the nuclear periphery (Fig. 12A, B) and LINC2 was localized in the nucleoplasm of both leaf and root epidermal cells (Fig. 12C, D). LINC3 was also localized in the nucleoplasm of both epidermal cell types (Fig. 12E, F). Punctate or bundle-like LINC3 structures were detected occasionally (Fig. 12F). LINC3 clearly exhibited a bundle-shape localization pattern along the long axis of the nucleus in trichome cells (Fig. 12G). LINC4 was localized frequently to the nuclear periphery (Fig. 12H, I) as punctate structures of different sizes in both epidermal cell types. Furthermore, the nucleus in LINC4-GFP-overexpressing plants was considerably larger than that in the wild-type plants (Fig 12J). The longer axis of leaf epidermal nuclei of the wild-type plants was approximately 30 μm at the longest but that in the LINC4-GFP-overexpressing plants reached up to 90 μm. I also investigated the localization pattern of pLINC::gLINC-GFP or -YFP introduced into the linc disruptants. pLINC1::gLINC1-YFP and pLINC3::gLINC3-GFP were exclusively localized at nuclear periphery in meristematic cells having spherical nuclei and also in differentiated cells having spindle-shaped nuclei in roots (Fig 13A, C, D, F). pLINC1::gLINC1-YFP could recover the nuclear morphology of linc1 disruptants (Fig 13A). pLINC2::gLINC2-YFP was mainly localized at nuclear
periphery but partially in nucleoplasm in meristematic and differentiated cells in roots. Intracellular localization patterns of LINC1-LINC3 were unaffected regardless of the morphological difference in nuclei (Fig 13B, E).

Finally, I investigated the intracellular localization of LINC-GFP or -YFP expressed under the control of CaMV35S promoter in the fixed root apical meristem (Fig. 14). LINC1, LINC3, and LINC4 in interphase cells were mainly localized to the nuclear periphery, whereas LINC2 was in the nucleoplasm. A part of LINC3 was localized in the nucleoplasm, and a part of LINC4 appeared to form punctate structures at the nuclear periphery. LINC1 seemed to be localized on the condensing chromatin during prometaphase to anaphase, whereas other LINCs were localized diffusely in the cytoplasm. LINC1 appeared to be transferred from the decondensing chromatin to the reassembling nuclear envelope during early telophase. A small population of LINC2 was transferred from the cytoplasm to the chromatin surface. LINC3 was also transferred from the cytoplasm to the chromatin surface, as if preferentially assembling to the distal surface of the chromatin (Fig. 14 arrows). LINC4 was assembled into punctate structures in the cytoplasm (Fig. 14 arrowheads) and then to the chromatin surface. All LINCs were localized again to the nuclear periphery during late telophase, and a part of LINC4 was still localized on the punctate structures. These results suggest that individual LINCs exhibit different redistribution patterns during different mitotic phases.
Chapter 3: Roles of LINC for nuclear morphology, movement, ploidy level, chromatin structure, and gene expression

LINC1 and LINC4 play predominant roles in the maintenance of nuclear morphology in leaf and root epidermal cells

*linc*1–*linc*4 single disruptants and *linc*/*linc*4 and *linc*/*linc*3 double disruptants were prepared to determine which LINC family isoforms were involved in the maintenance of nuclear morphology. Disruption of these distinctive genes was confirmed by RT-PCR using gene-specific primers (Fig. 15). No detectable difference in the whole-plant morphology was obvious between any of the *linc* disruptants and wild-type plants at least under the present growth conditions (Fig. 16).

I semi-quantitatively measured the circularity index and area of the nucleus in the leaf and root epidermal cells of *linc* disruptants. In leaf epidermal cells, the circularity index of the nucleus in all *linc* disruptants except *linc*3 was significantly higher than that in the wild-type plants (Fig. 17A). The extent of the effects of *LINC1*, *LINC4*, and *LINC1/LINC4* disruption was significantly higher than that of the effects of *LINC2* and *LINC2/LINC3* disruption. The nuclear area in the *linc*, *linc4*, and *linc1/linc4* disruptants was significantly smaller than that in the wild-type plants, while the nuclear area in the *linc2*, *linc3*, and *linc2/linc3* disruptants was not significantly different from that in the wild-type plants (Fig. 17B). Neither the nuclear circularity index nor the nuclear area in the *linc*, *linc4*, and *linc1/linc4* disruptants were significantly different from each other, suggesting that both LINC1 and LINC4 are factors indispensable for maintaining nuclear morphology in leaf epidermal cells. More or less similar results were obtained in root epidermal cells, except that *LINC3* disruption resulted in a small but significant effect on the nuclear circularity index (Fig. 17C, D). In summary, although all *LINC* genes were expressed in the whole plant body, LINC1 and LINC4 functioned predominantly and LINC2 subordinately in the regulation of nuclear morphology in leaf and root.
epidermal cells. LINC3 functioned in roots but not or redundantly functioned with other LINCs in leaves.

Leaf epidermal cells of all linc disruptants exhibit normal light-dependent nuclear positioning

I investigated the effects of LINC disruption on light-dependent nuclear positioning to determine whether nuclear morphology affects nuclear movement. Nuclei of the leaf cells of A. thaliana relocate from the center of the bottom of cells to the anticlinal walls in response to strong blue light (Iwabuchi et al., 2007). Only 40% nuclei of the leaf epidermal cells of the wild-type plants were located along the anticlinal walls under the dark condition, whereas 80% nuclei were along the anticlinal walls after blue light illumination at 100 µmol m$^{-2}$ s$^{-1}$ for 5 h (Fig. 18). All linc disruptants exhibited almost normal light-dependent nuclear positioning, indicating that LINCs are not involved in the regulation of nuclear movement, and that nuclear morphology may not affect nuclear movement in leaf epidermal cells.

Leaf cells of all linc disruptants exhibit a normal ploidy level

Because nuclear morphology in leaf epidermal cells was altered in most of the linc disruptants, I analyzed DNA content in nuclei isolated from rosette leaves by flow cytometry. As reported previously, nuclei from the wild-type leaves had widely distributed DNA content ranging from 2C to 32C (Melaragno et al., 1993; Sugimoto-Shirasu and Roberts, 2003; Ishida et al., 2008), with the highest population of nuclei containing 8C in 4-week-old plants (Fig. 19). Nuclei of all linc disruptants exhibited almost identical patterns of DNA content compared with the nuclei of the wild-type plants. Thus, LINCs may not be involved in the determination of the ploidy level, at least in leaf cells.
linc1/linc4 disruptant exhibits abnormal chromatin distribution

The chromatin architecture was analyzed by fluorescence in situ hybridization (FISH) in wild-type plants and linc1/linc4 disruptants. A digoxigenin-labeled 180-bp DNA probe and a 45S-rDNA probe, whose sequences were complementary with the sequence of centromere contained in all chromosomes and that of 45S ribosomal DNA contained in chromosome II and IV, respectively (Fig. 21G), were detected by rhodamine-conjugated anti-digoxigenin antibodies. Sample nuclei were isolated from flower buds of 5-week-old plants. The number of 180-bp DNA signal foci per one nucleus in wild-type plants was larger than that in linc1/linc4 disruptants, whereas the size of foci in wild-type plants was smaller than that in linc1/linc4 disruptants (Fig. 20). The population of nucleus having 10 foci was the largest in wild-type plants because almost nuclei from flower buds have 2C DNA, which corresponds to 10 chromosomes and 10 centromeres (one chromosome contains one centromere). However, in linc1/linc4 disruptants, the population of nucleus having 10 foci was very small and 4-6 foci became larger. The average fluorescence intensity of 180-bp DNA signals per one nucleus in linc1/linc4 disruptants was not lower than that in wild-type plants (Fig. 20H), suggesting that reduction in the number of foci did not reflect reduction in the amount of centromere in linc1/linc4 disruptants. In the case of 45S-rDNA probes, the number of foci was 2-4 in wild-type plants; however, there were nuclei having only 1 focus in linc1/linc4 disruptants (Fig. 21A-F). The results obtained by flow cytometry and FISH suggested that LINC1 and LINC4 regulate chromatin architecture without alteration of ploidy level.
Discussion

LINC family proteins are involved in the regulation of nuclear morphology

In this study, I showed that all LINCs were involved in the regulation of nuclear morphology, although the extent of the effects of disruption of individual LINC genes was different. Of note, other than the known factor LINC1 (Dittmer et al., 2007), LINC4 also plays predominant non-redundant roles with LINC1 in leaf and root epidermal cells (Fig. 17). According to the previous report, native promoter driven LINC1-GFP, introduced into the \textit{linc1/linc2} disruptants, was expressed only in the root proliferating meristematic tissues but not in differentiated root tissues, such as mature root hairs and epidermal cells (Dittmer and Richards, 2008). In my data, LINC1-LINC3 expression levels in immature tissues are higher than in matured and differentiated tissues (Figs. 8-10). It is intriguing that the abnormal nuclear shape of the \textit{linc1} disruptants is most marked in differentiated tissues, in which the LINC1 promoter activity is not high. On the basis of phylogenetic analysis (Fig. 6, Kimura et al., 2010; Ciska et al., 2013), LINCs have been classified into the NMCP1 type containing LINC1–3 and the NMCP2 type containing LINC4. NMCP1- and NMCP2-type proteins may play different and essential roles co-operatively for the determination and/or maintenance of nuclear morphology. These possibilities should be examined.

Plants utilize multiple isoforms of key proteins, expressed in developmental stage-, tissue-, or cell type-specific manners, to fulfill growth, development, and adaptation. For example, the eight \textit{A. thaliana} PIN-FORMED proteins (PINs) are auxin efflux carriers, and each PIN isoform functions in a specific tissue or cell type to induce tissue- and cell type-specific auxin flow (Křeček et al., 2009). A similar aspect has been reported in the primary transporter plasma membrane H⁺-ATPase proteins (Palmgren, 2001; Arango et al., 2003). Nuclei of the root epidermal cells of the \textit{linc3} disruptant were more spherical than those of the wild-type plants (Fig. 17C), although nuclei of the leaf epidermal...
cells appeared to maintain a normal shape (Fig. 17A). It is suggested that different combinations of LINCs and interactions with their partners contribute to the diversity in plant nuclear morphology.

Regulation of nuclear morphology was accomplished through two steps

LINC1-LINC3 are highly expressed in immature tissues (Figs. 8-10) having mainly spherical and elongating nuclei and their expression levels become lower in mature tissues (Figs. 9, 10) having mainly elongated and spindle shaped nuclei. Spindle shaped nuclei maintained their morphology even after treatment with cytoskeletal inhibitors *in vivo* and *in vitro* (Figs. 1, 3) On the other hand, Tamura et al. (2013) demonstrated that myosin XI-I is localized at nuclear periphery and involved in the regulation of nuclear morphology. These facts suggest that regulation of nuclear morphology is accomplished through at least two steps; one is a strain step and the other is a maintenance step. In the strain step, actin and myosin XI-I generate a force that is transferred into the nucleus through the SUN-KASH complex. The force is received by LINC1-LINC3 to deform the nuclear envelopes. In the maintenance step, the force generated by cytoskeletons is no longer need but intranuclear factors keep the spindle shaped nuclear morphology. Although I have not yet revealed the expression patterns of LINC4, since the effects of disruption are independent of other LINCs, LINC4 could be one of the possible candidates of the intranuclear factors. Defects of any of those factors make the nucleus the most geometrically stable shape a sphere.

LINC1 was localized to the nuclear periphery and LINC2 was localized in the nucleoplasm of both leaf and root epidermal cells (Figs. 12A-D, 13A, B, D, E), confirming previous results (Dittmer et al., 2007). LINC3 was localized to the nuclear periphery and nucleoplasm in punctate and bundle-shaped structures (Figs. 12E-G and 13C, F). LINC4 was localized to the nuclear periphery in...
punctate structures (Fig. 12H-J). Although these characteristic structures might be the results of overexpression, the appearance of bundle-shaped structures suggests that LINC3 may have the ability to polymerize in vivo. In leaf epidermal cells, LINC4-overexpressing plants exhibited considerably longer nuclei than the wild-type plants (Fig. 12J). This was similar to the case of the leaf cells of NUCLEOPORIN136 (Nup136)-overexpressing plants, which also have longer nuclei (Tamura and Hara-Nishimura, 2011). Plant Nup136 is a component of the nuclear pore complex (Lu et al., 2010; Tamura et al., 2010) and thought to be a functional homolog of animal Nup153, which interacts with lamin A and B in Xenopus (Smythe et al., 2000; Al-Haboubi et al., 2011). Nuclear morphology and nuclear lamina architecture in Nup153-K.D. HeLa cells are impaired (Zhou and Panté, 2010). These results suggest that LINC4 may interact with Nup136 to maintain the spindle shape of plant nuclei.

LINC4s exhibit different redistribution patterns in mitotic cells

Inner nuclear envelope proteins such as LBR and Lap-Emerin-Man (LEM) domain proteins are localized to the mitotic endoplasmic reticulum (ER) during mitosis in animal cells (Ellenberg et al., 1997; Yang et al., 1997; Güttinger et al., 2009; Hetzer, 2010), whereas lamins, which interact with LBR and LEM domain proteins during interphase, are dispersed in the cytoplasm from metaphase to anaphase (Yang et al., 1997; Burke and Ellenberg, 2002). In plant cells, the ectopically expressed N-terminal region of human LBR (Irons et al., 2003; Evans et al., 2011) and full-length proteins of A. thaliana SUN1 and SUN2 (Oda and Fukuda, 2011; Graumann and Evans, 2011) are also localized to the mitotic ER from metaphase to anaphase. These two initially relocate from the mitotic ER to the cell plate and the distal surface of chromosomes during early telophase and then further to the proximal surface of chromosomes during late telophase. The localization pattern of another group of nuclear peripheral proteins lacking transmembrane domains, NMCP1 and NMCP2, which contain sequences homologous to LINC4s, has been reported in embryogenic D. carota L. cells and
suspension-cultured *Apium graveolens* cells (Masuda et al., 1999; Kimura et al., 2010). Both proteins reside at the nuclear periphery during interphase. NMCP1 relocates to the spindle during metaphase and then accumulates at the surface of chromosomes during anaphase. In contrast, NMCP2 is dispersed throughout the cytoplasm from metaphase to the end of anaphase and then accumulates at the surface of chromosomes in telophase, but later than NMCP1 accumulation.

In my study, the localization pattern of LINCs in mitotic cells was observed for the first time, although they were expressed under the control of the CaMV 35S promoter. LINC1 appeared to be associated with chromosomes throughout mitosis (Fig. 14), which was different from any of the inner nuclear envelope proteins and NMCPs that are localized to the mitotic ER, cell plate, spindle, or cytoplasm, but not to chromosomes (Masuda et al., 1999; Irons et al., 2003; Kimura et al., 2010; Evans et al., 2011; Oda and Fukuda, 2011; Graumann and Evans, 2011). Only histone H1, which is localized to the nuclear periphery and nucleoplasm during S/G2 phase, is associated with chromosomes during mitosis in tobacco BY-2 cells (Hotta et al., 2007; Nakayama et al., 2008), suggesting that LINC1 may associate with DNA. From prometaphase to anaphase, other LINCs exhibited almost identical localization patterns (Fig. 14), in which they were dispersed in the cytoplasm similar to animal lamins and NMCP2 rather than plant inner nuclear envelope proteins (Yang et al., 1997; Masuda et al., 1999; Burke and Ellenberg, 2002; Irons et al., 2003; Kimura et al., 2010; Evans et al., 2011; Oda and Fukuda, 2011; Graumann and Evans, 2011). A part of LINC2 was assembled around chromosomes during early telophase. LINC3 was first assembled at the distal surface of chromosomes as an inner nuclear envelope protein, which is the ER-specific localization patterns revealed in SUN1, SUN2 (Oda and Fukuda, 2011; Graumann and Evans, 2011) and ectopically expressed truncated LBR (Irons et al., 2003; Evans et al., 2011) were never observed. LINC4 first accumulated in the cytoplasmic punctate structures, which have not been reported in the plant inner nuclear envelope or nuclear peripheral proteins, and then was assembled at the surface of chromosomes during late telophase. In animal cells,
lamins, some of the nuclear pore complexes, and some of the inner nuclear envelope proteins are phosphorylated when they relocate from the nuclear periphery during mitosis (Dessev and Goldman 1988; Dessev et al., 1988, 1989, 1990; Burke and Ellenberg, 2002), suggesting that redistribution of plant LINCidis during mitosis is also regulated through phosphorylation and dephosphorylation.

Regulation of DNA content and nuclear morphology is independent

All *linc* disruptants appeared to maintain the normal ploidy level (Fig. 19), although the nuclear area in the leaf epidermal cells of the *linc1* and *linc4* disruptants was significantly smaller than that of the wild-type plants (Fig. 17B). Although the ploidy level was only slightly lower in the *linc1/2* double disruptants (Dittmer et al., 2007) than in the wild-type plants, nuclear volume decreased dramatically with a concomitant increase in DNA density. Similarly, the DNA density of nuclei of the *linc1* and *linc4* disruptants might also be higher than that in the wild-type plants. From the results obtained in the *linc* disruptants in this study and in the study by Dittmer et al. (2007), I assume that regulatory mechanisms for the ploidy level and nuclear volume are separable, at least in part.

Nuclear morphology does not affect nuclear movement

Extranuclear force is necessary in animal cells for nuclear movement and the maintenance of nuclear morphology. The mouse fibroblast nucleus moves rearward in the cell before the start of migration (Gomes et al., 2005; Luxton et al., 2010). The nuclei of developing neuroepithelial cells move in an apical–basal manner and in-phase with the cell cycle (Baye and Link, 2008). These nuclear migrations depend on the presence of the SUN-KASH complex and cytoskeletons, which transmit the extranuclear force into the nucleus. Nuclear movement and the maintenance of nuclear morphology partly share this machinery in animal cells.

I examined light-dependent nuclear positioning in the *linc* disruptants to determine whether
LINCs play a role in nuclear movement and/or positioning, but they showed a normal response (Fig. 18). Although nuclei in the sun1-K.D./sun2-K.D. plants are more spherical than those in the wild-type plants, nuclear movement in the root hair cells of the sun1-K.D./sun2-K.D. plants does not differ from that of the wild-type plants (Oda and Fukuda, 2011). However, a resent report showed myosin xi-i and wit1/wit2 mutants exhibited both phenotype spherical nuclear morphology and slow nuclear movements (Tamura et al., 2013). These observations suggest that the mechanism for the maintenance of nuclear morphology in plant cells partially common with that for nuclear movement and/or positioning however that nuclear morphology does not considerably affect nuclear movement and/or positioning.

LINC disruptions do not seem to be serious for plant life

Although LINC disruptions affected nuclear morphology, size, and chromatin architectures, at least LINC single and LINC1/LINC4 and LINC2/LINC3 double disruptions did not affect plant growth and development under the present experimental conditions (Figs. 16, 17, 20, 21). LINC1/LINC2 double disruption induced plant dwarf phenotype but it was neither so serious (Dittmer et al., 2007). The disruption of SUN1 and SUN2 proteins, which are inner nuclear envelop proteins and interact with KASH proteins, induced similar phenotype as LINC disruption. The sun1-K.D./sun2-K.D. plants exhibited small and spherical nuclear morphology but no significant differences in development or fertility compared with wild-type plants (Oda et al., 2011). Additionally, the disruption of condensin, which is a multimeric protein complex involved in the chromosome condensation during mitosis and meiosis and regulation of chromatin territory during interphase, also induced similar phenotype. Condensin complex is presumably constituted by one of three different SMC4A-C subunits, one of two different SMC2A, B subunits, one of different CAP-H, H2 subunits, one of two different CAP-D2, D3 subunits and CAP-G, G2 subunits. One of the condensin component
mutants (*cap-D3*) exhibited lower number of centromere signals than wild-type plants and small plant body size (Schubert et al., 2013). However, other mutants of condensin component (CAP-G2 and CAP-H2 disruption) exhibited higher DNA double-strand breaks levels and shorter roots than wild-type plants in the presence of a double-strand breaks inducing reagent zeocin or under UV-C (Sakamoto et al., 2011). These studies and my results suggested that defects in nuclear morphology and chromatin architecture may induce more DNA damage under stressed conditions, such as under UV irradiation. LINC homologous genes were only found in land plants (Fig. 6, Ciska et al., 2013), which might suggest that plants had acquired LINC genes in order to protect DNA from UV damage and succeeded in being terrestrial.
Figures

![Figures](image.png)

Figure 1

Effects of latrunculin B and propyzamide on the nuclear morphology in Arabidopsis thaliana

Leaves were treated for 1 h with 10 µM latrunculin B (LatB) and/or 100 µM propyzamide (Prpz), or with 1% DMSO as control, before fixation. The nuclear circularity index (A) and nuclear area (B) were semi-quantitated from fluorescence images of nuclei stained with Hoechst in the leaf epidermal cells of the wild-type plants. No difference was detected from the control nuclei in any experiments by Student’s *t*-test (*p > 0.05*). Four different plants and more than 60 nuclei in each were analyzed for each experiment. The vertical bars on each column indicate the standard error.
Figure 2

Morphology of nuclei in *A. thaliana* leaves

Fluorescence images of isolated nuclei from leaves stained with Hoechst (left panels) and 3′-dihexyloxacarbocyanine iodide (middle panels) before (upper panels) and after (lower panels) treatment with 1% (v/v) Triton X-100 (A). Merged images are shown in the right panels. Fluorescence image of a leaf epidermal cell stained with Hoechst (B). The white line traces an epidermal cell. Scale bars are 10 µm.
Figure 3

Effects of latrunculin B, propyzamide, and BDM on the demembranated nuclear morphology in *A. thaliana*

Demembranated nuclei isolated from wild-type plant leaves were visualized by staining with Hoechst after 1% DMSO (A), 10 µM LatB (B), 100 µM Prpz (C), 10 µM LatB and 100 µM Prpz (D), or 100 µM BDM (E) treatment. Scale bar is 10 µm
Figure 4

LC-MS/MS analysis in the crude nuclear lamina fraction prepared from A. thaliana leaves

An electron micrograph (A) and a sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) pattern (B) of the nuclear lamina fraction prepared from the wild-type plants. The molecular masses of standard proteins are indicated on the left in kDa. (C) Proteins contained in the nuclear lamina fraction were analyzed by liquid chromatography-tandem mass spectroscopy (LC-MS/MS) and annotated using the MASCOT and TAIR8 databases according to their deduced functions. The scale bar is 200 nm in (A)
Table 1

The proteins identified in the *A. thaliana* crude nuclear lamina fraction by mass spectrometry.

AGI codes are from TAIR database (http://www.Arabidopsis.org).

Scores were calculated by MASCOT. Peptide represents the number of unique peptides matched.
Table 2.

The genes selected from the 660 genes listed in Table 1.
AGI codes are from TAIR database (http://www.Arabidopsis.org). T-DNA insertion IDs are from SALK website (http://signal.salk.edu/).
Figure 5

Nuclear morphology of *A.thaliana* gene disruptants of LITTLE NUCLEI 1(LINC1) and LINC4 screened from 63 proteins

Nuclei in trichome cells were visualized by staining the 4-week-old wild-type plants (A), *lincl* disruptants (B), and *lincl4* disruptants (C) with Hoechst. The scale bar is 10 µm.
Figure 6

Phylogenetic analysis of LINCs and NMCPs

Blue indicates NMCP1 type, red indicates NMCP2 type, and purple indicates *Physcomitrella patens* special type. Ppa; *Physcomitrella patens* Zma; *Zea mays*, Osa; *Oryza sativa*, Vvi; *Vitis vinifera*, Dc; *Daucus carota*, and Ag; *Apium graveolens*. The scale is 0.1 changes.
Expression of LINC genes in *A. thaliana* wild-type plants

Expression of all LINC genes was analyzed in leaves, flowers, flower stalks, and roots of the wild-type plants (WT) by RT-PCR. mRNA was isolated from the 4-week-old plants. *ACTIN2* was used as the internal control.
Figure 8

LINC1-LINC3 expression analysis using GUS reporter gene in 2 DAG seedlings of *A. thaliana*

Expression patterns of LINC1-LINC3 in 2 DAG seedlings. The scale bar is 50 µm.
Figure 9

LINC1-LINC3 expression analysis using GUS reporter gene in cotyledons and first true leaves of A. thaliana

Expression patterns of LINC1-LINC3 in 5 DAG cotyledons (A, B, C), 8 DAG cotyledons (D, E, F) and first true leaves (D’, E’, F’), and 14 DAG first true leaves (G, H, I). The scale bars are 200 µm in A-F’ and
Figure 10
LINC1-LINC3 expression analysis using GFP reporter gene in *A. thaliana* roots
Expression patterns of LINC1-LINC3 in roots. YFP signals are seen yellow, GFP signals are seen green. The scale bar is 100 µm
Figure 11

Complementation analysis of LINC1-GFP and LINC4-GFP in *A. thaliana* roots

LINC1-GFP and *LINC4-GFP* driven by a CaMV 35S promoter were transformed into *linc1* and *linc4* disruptants, respectively. Nuclei were observed in root epidermal cells of 2-week-old plants. Hoechst signals are in magenta and GFP signals are in green in the merged images. Scale bar is 10 µm.
Intracellular localization of LINC in interphase cells of *A. thaliana*

Localization patterns of LINC1-GFP (A, B), LINC2-YFP (C, D), LINC3-GFP (E, F, G), and LINC4-GFP (H, I, J) were demonstrated in root (A, C, E, H) and leaf epidermal cells (B, D, F, I, J), and trichrome cells (G). (A–I) Confocal section images. (J) Stacked image of confocal sections. (F, I) Arrows indicate GFP signals localized to punctate structures. The scale bars are 10 µm.
Figure 13

Intracellular localization analysis of LINC1-LINC3 in interphase cells of *A. thaliana* roots

LINC1-LINC3 intracellular localization patterns in differentiated root epidermal cells (A-C) and in root meristematic cells (D-F). Confocal section images (A–F). YFP signals are seen yellow, GFP signals are seen green. The scale bars are 10 μm.
Figure 14

Intracellular localization of LINCs in fixed mitotic cells of *A. thaliana*

Localization patterns of LINC-GFP and -YFP were demonstrated in chemically fixed mitotic root tip cells. Arrows indicate GFP signals localized at the distal surface of chromosomes. Arrow heads indicate GFP signals localized in the cytoplasmic punctate structures. Hoechst signals are in magenta.
and GFP and YFP signals are in green in the merged images. Scale bar is 10 µm.

Figure 15

Expression of LINC genes in A. thaliana linc disruptants

Expression of LINC genes was analyzed by reverse transcription polymerase chain reaction (RT-PCR) in the wild-type plants (WT) and linc disruptants. mRNA was isolated from the leaves of 4-week-old plants. ACTIN2 was used as the internal control.
Figure 16

Whole-plant morphology of A. thaliana linc disruptants

Representative 4-week-old wild-type plant (WT) and linc disruptants are shown. The scale bar is 5 cm.
Figure 17

Morphological parameters of nuclei in epidermal cells of *A. thaliana* linc disruptants

The nuclear circularity index (A, C) and nuclear area (B, D) were semi-quantitated from fluorescence images of nuclei stained with Hoechst in the leaf (A, B) and root epidermal cells (C, D) of the wild-type plants (WT) and linc disruptants. Different letters indicate a statistical differences detected by Student's *t*-test (*p* < 0.05). More than three different plants and 14–55 nuclei in each were analyzed for each experiment. The vertical bar on each column indicates the standard error.
Figure 18

Light-dependent nuclear positioning in *A. thaliana* linc disruptants

Leaves of the wild-type plants (WT) and linc disruptants were fixed and stained with Hoechst after dark adaptation for 16 h (black columns) or further exposure to blue light (470 nm, 100 μmol m$^{-2}$ s$^{-1}$) for 5 h (blue columns). The number of cells in which the nucleus was located along the anticlinal walls was counted and is shown as a percentage. No difference was detected between linc disruptants and wild-type plants by Student’s *t*-test (p > 0.05). Three different plants (>50 cells) were analyzed for each experiment. The vertical bar on each column indicates the standard error.
Figure 19

Ploidy level of nuclei isolated from leaves of *A. thaliana* *linc* disruptants

Isolated nuclei from 4-week-old leaves of the wild-type plants (WT) and *linc* disruptants were analyzed by flow cytometry. More than 7000 nuclei were analyzed in each experiment.
Figure 20

FISH analysis for *A. thaliana* linc1/4 disruptants using 180-bp DNA probe

180-bp DNA probe signals are seen red in wild-type plants (A, C) and *linc1/linc4* disruptants (D, F). DAPI signals are seen blue in wild-type plants (B, C) and *linc1/linc4* disruptants (E, F). A number of 180-bp foci per one nucleus was quantified and indicated as histograms (G). Total fluorescence intensity of 180-bp DNA probe signals per one nucleus was analyzed in wild-type plants and *linc1/linc4* disruptants (H). The scale bar is 10 µm. An asterisk indicates a statistical difference detected by χ²-test (p < 0.05).
Figure 21

FISH analysis for A. thaliana linc1/4 disruptants using 45S-rDNA probe and diagram of A. thaliana chromosomes

45S-rDNA probe signals are seen red in wild-type plants (A, C) and *linc1*/linc4 disruptants (D, F). DAPI signals are seen blue in wild-type plants (B, C) and *linc1*/linc4 disruptants (E, F). G is a diagram of *A. thaliana* chromosomes. 180-bp DNA probes recognized orange regions (centromere) and 45S-rDNA probes recognized blue regions. The scale bar is 10 µm.
Acknowledgements

I am grateful to Drs. Keiko Sugimoto and Shinichiro Komaki (RIKEN Plant Science Center, Japan) for technical advice on the flow cytometry, Dr. Sachihiro Matsunaga and Mr. Tomoya Sugiyama (Tokyo University of Science, Japan) for technical advice on the fluorescence in situ hybridization, Drs. Yoichiro Fukao and Masayuki Fujiwara (NAIST, Japan) for technical advice on the LC-MS/MS analysis, Dr. Satoshi Fujii (Osaka University, Japan) for technical advice on the electron microscopy, Dr. Tatsuo Kakimoto and Yasushi Shimizu (Osaka University, Japan) for providing the binary vectors, Dr. Tsuyoshi Nakagawa (Shimane University, Japan) for providing the pGWB vectors, and Dr. Shinobu Takada (Osaka University, Japan) for technical advice on gene cloning. I would express my gratitude to present my laboratory members, Dr. Yuki Sakai, Dr. Kosei Iwabuchi (Kyoto University, Japan), and Dr. Takashi Hotta (NAIST, Japan).

Finally, I would like to express my greatest gratitude to Dr. Shingo Takagi my mentor. He discussed experimental and personal problems with me whenever I want. If there was not his advice, I was not able to achieve my study and student life.
References

Yang, L., Guan, T., Gerace, L. (1997) Integral membrane proteins of the nuclear envelope are dispersed throughout the endoplasmic reticulum during mitosis. J. Cell Biol. 137: 1199–1210

