

Title	遷移金属触媒を用いる酸化的不斉C-0及びC-C結合形成 反応の開発
Author(s)	秋田, 三俊
Citation	大阪大学, 2014, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/34038
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

遷移金属触媒を用いる

酸化的不斉 C-O 及び C-C 結合形成反応の開発

大阪大学

理学研究科

化学専攻

2014年

秋田三俊

目次

第一節 触媒的不紊合成 1 第二節 選移金属触媒による C-H 結合官能基化 3 第二節 エナンチオ選択的な C-H 結合官能基化 6 第四節 本研究 8 参考文献 9 第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第一章 粘着 11 第一項 不斉酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二章 オレフルケン酸を基質とする酸化的環化反応の適用例 15 第二項 インルケン酸を基質とする酸化的環化反応の研究背景 20 第二節 反応機構の考察 22 第二章 イレフィン酸体の単離 24 第三項 イレフィン増体の単離 24 第三項 アンシンドノンの効果に関する考察 35 第五項 アベンジンギノンの効果に関する考察 35 第五項 アベンジンドノンの効果に関する考察 37 第三節 素質一般性の検討 28 第五項 中ベビンドンシングステレンの効果に関する考察 37 第二節 素質一般性の検討 46 参考文献 素目 92 第二項 本ラル Mn 触媒による 2-たフトールの酸化的不済カップリング反応 51 第二節 キラル Mn 触媒による ステラップリング反応の報告 92	第一章	序論	1
第二節 遷移金属触媒による C-H 結合官能基化 3 第三節 エナンチオ選択的な C-H 結合官能基化 6 第四節 本研究 8 参考文献 9 第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合エステル化反応の反 11 応機構解析 11 第一項 不否酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二項 Pd-SPRIX 触媒の酸化的不斉環化反応への適用例 15 第二項 イアルケン酸を基質とする酸化的環化反応の研究背景 20 第二節 反応機構の考察 22 第一項 Wacker型機構の否定 22 第一項 Wacker型機構の否定 22 第二項 オレフィン結体の単離 24 第三項 アレマンジ会体の単離 24 第三項 オレマンジ会体の単常 28 第五項 アベンジキノンの効果に関する考察 31 第五項 アベンジキノンの効果に関する考察 35 第五項 単位の検討 40 第四節 まとめ 46 参考文献 48 実験項 第二章 キラル Mn 触媒による 2-ナフトール類の酸化的不斉市ップリング反応 92 第一章 キラル Mn 触媒による ステカップリング反応の執討 92 第二章 キラル Mn 触媒体による 99 第二章 キラル Mn 触媒体による 10	第一節	触媒的不斉合成	1
第三節 エナンチオ選択的な C-H 結合官能基化 6 第四節 本研究 8 参考文献 9 第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合主ステル化反応の反 11 第一節 結言 11 第一項 不容酸化的アリル位 C-H 結合言能基化反応の現状と課題 11 第二項 Pd-SPRIX 触媒の酸化的不斉環化反応への適用例 15 第二項 イアルケン酸を基置とする酸化的環化反応の研究背景 22 第一項 Wacker 型機構の否定 22 第一項 Wacker 型機構の否定 22 第二項 オレワイン錯体の単離 24 第三項 C-H 結合活性化皮階に関する考察 25 第四節 友と成機構の考察 35 第五項 アペンジキノンの効果に関する考察 37 第二節 基点反応機構の考察 35 第五項 単ペンジキノンの効果に関する考察 37 第三節 基クル 40 第四節 まとめ 40 第四節 まとが 40 第三章 キラル Mn 触媒による 22 第一項 選びるの研究背景 31 第二項 キラル Mn 触媒による 2-ナフトールの酸化的不済カップリング反応の検討 第二項 キラル Mn 触媒体追ذ よる 2-ナフトールの酸化的不済カップリング反応の検討 第二項 キラル Mn 触媒体追ذ よる<	第二節	遷移金属触媒による C-H 結合官能基化	3
第四節 本研究 参考文献 8 第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合エステル化反応の反 II 広機構解析 11 第一項 不斉酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二項 Pd-SPRIX 触媒の酸化的不容環化反応への適用例 15 第二項 4.7 ルケン酸を基質とする酸化的環化反応の研究背景 20 第二節 反応機構の考察 22 第二項 オレフィンジ曲体の単離 24 第三項 オレフィン錯体の単離 24 第三項 アレマンジ輪体の可定 28 第二項 アレマイン錯体の単離 24 第三項 アレマイン錯体の単離 24 第三項 マレマンジキノンの効果に関する考察 25 第四項 濃度効果の検討 28 第五項 アベンジキノンの効果に関する考察 31 第二項 若たと応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 29 2-ナフトルの酸化的不斉カップリング反応 31 第二章 キラル Mn 触媒による 2-ナフトール和の酸化的不斉ホモカップリング反応の検討 92 第二章 キラル Mn 触媒による 不斉酸化反応検討 92 第二章 キラル Mn 触媒による不斉酸化反応の検討 92 <	第三節	エナンチオ選択的な C-H 結合官能基化	6
参考文献 9 第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合エステル化反応の反 II 応機構解析 11 第一項 杯音 11 第一項 不斉酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二項 マカルケン酸を基質とする酸化的原化反応の研究背景 20 第二項 4.7ルケン酸を基質とする酸化的原化反応の研究背景 20 第二項 秋日 21 第二項 人方ルケン酸を基質とする酸化的原化反応の研究背景 20 第二項 人方ルケン酸を基質とする酸化的原化の不容示明 22 第一項 Wacker 型機構の考察 22 第二項 オレフィン錯体の単離 24 第三項 ノインネジンがキノンの効果に関する考察 25 第四項 濃度効果の検討 28 第五項 アベンパキノンの効果に関する考察 31 第五項 二 二 二 第三節 基質一般性の検討 40 第四節 まどめ 46 参考文献 48 実験項 51 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 25 51 第三節 基質一般性の検討 40 第二節 キラル Mn 触媒による 2-ナフトール和の酸化的不済カップリング反応 51 第二節 キラル Mn 触媒による不斉酸化反応の報告例 92 夏二節 キラル Mn 触媒による不斉酸化反応の報告例 92 第二節 キラル Mn 触媒による不斉酸化反応の報告例 99 第二節 まとめ </td <td>第四節</td> <td>本研究</td> <td>8</td>	第四節	本研究	8
第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合エステル化反応のの 11 席一節 結言 11 第一項 不斉酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二項 Pd-SPRIX 触媒の酸化的不斉環化反応への適用例 15 第二項 4アルケン酸を基質とする酸化的環化反応の研究背景 20 第二節 反応機構の考察 22 第一項 Wacker 型機構の否定 22 第一項 Wacker 型機構の否定 22 第二項 オレフィン錯体の単離 24 第三項 アレンクン酸を基質とする酸化的環化反応の研究背景 25 第四項 濃度効果の検討 28 第五項 アレンクン結び、動果に関する考察 35 第五項 アイングキノンの効果に関する考察 35 第五項 ウインジキノンの効果に関する考察 35 第二項 法位の選択性の発現機構の考察 37 第二節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 31 第二章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応 48 第二章 キラル Mn 触媒による 2-ナフトール和の酸化の不斉カップリング反応の検討 99 第二章 キラル Mn 触媒による 99 第二章 キラル Mn 触媒体による 10 第二章 <td< th=""><th></th><th>参考文献</th><th>9</th></td<>		参考文献	9
第一節 緒言 11 第一項 不斉酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二項 Pd-SPRIX 触媒の酸化的不斉環化反応への適用例 15 第三項 4.アルケン酸を基質とする酸化的環化反応の研究背景 20 第二節 反応機構の考察 22 第一項 Wacker型機構の否定 22 第二項 オレフィン錯体の単離 24 第三項 C-H 結合活性化段階に関する考察 25 第四項 濃度効果の検討 28 第五項 p-ペンゾキノンの効果に関する考察 35 第七項 立体選択性の発現機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 第二節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 第二節 基質 第二章 92 第二節 オシアル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応 92 第二節 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応の検討 92 第二節 キラル Mn 触媒による 93 第二項 特別・加触媒体造解析の試み 10 第三節 まとめ	第二章	キラル Pd 触媒による酸化的アリル位 C-H 結合エステル化反応の反 応機構解析	11
第一項 不斉酸化的アリル位 C-H 結合官能基化反応の現状と課題 11 第二項 Pd-SPRIX 触媒の酸化的不斉環化反応への適用例 15 第三項 4.アルケン酸を基質とする酸化的環化反応の研究背景 20 第二節 反応機構の考察 22 第一項 Wacker 型機構の否定 22 第二項 オレフィン錯体の単離 24 第三項 C-H 結合活性化段階に関する考察 25 第四項 濃度効果の検討 28 第五項 <i>p</i> ペンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応 51 第二章 キラル Mn 触媒による 2-ナフトール規の酸化的不斉ホモカップリング反応 92 第二節 キラル Mn 触媒による 2-ナフトール取の酸化的不斉カップリング反応の検討 92 第二節 キラル Mn 触媒による 99 第二節 キラル Mn 触媒による 91 第二節 キラル Mn 触媒による 99 第二章 まとめ 10 第三節 まとめ 10 第三節 まとめ 10	第一節	緒言	11
第二項 Pd-SPRIX 触媒の酸化的不斉環化反応への適用例 15 第三項 4アルケン酸を基質とする酸化的環化反応の研究背景 20 第二第 反応機構の考察 22 第一項 Wacker 型機構の否定 22 第二項 オレフィン結体の単離 24 第三項 アースンジ結体の単離 24 第三項 C-H 結合活性化段階に関する考察 25 第四項 濃度効果の検討 28 第五項 p-ベンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体凝視化の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 29 2-ナフトールの酸化的不斉カップリング反応 第一第 キラル Mn 触媒による 2-ナフトール類の酸化的不斉ホモカッブリング 92 第一項 遷移金属魚触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 第二項 キラル Mn 触媒による ス子酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 第二項 反応条件の検討 99 第二項 転換構造解析の試み 10 第三節 まとめ 10 第三節 まとめ 10 第三節 まとめ 10 素等文献 10 2 <td>第一項</td> <td>不斉酸化的アリル位 C–H 結合官能基化反応の現状と課題</td> <td>11</td>	第一項	不斉酸化的アリル位 C–H 結合官能基化反応の現状と課題	11
第三項 4アルケン酸を基質とする酸化的環化反応の研究背景 20 第二節 反応機構の考察 22 第一項 Wacker 型機構の否定 22 第二項 オレフィン錯体の単離 24 第三項 イレフィン錯体の単離 24 第三項 オレフィン錯体の単離 24 第三項 アー4 法合活性化段階に関する考察 25 第四項 濃度効果の検討 28 第五項 アベンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 37 第二項 主質一般性の検討 40 第四節 まとめ 46 参考文献 実験項 51 第三章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 第二項 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応の検討 第二項 転媒構造解析の試み 10 第三節 まとめ 10 第三節 まとめ 10 第三節 まとめ 10 第三節 まとめ 10 第近 東険項 10 第年頃 東欧項 10 第二節 まとめ 10 第二節 まとめ 10 第第項 10 第時 11	第二項	Pd-SPRIX 触媒の酸化的不斉環化反応への適用例	15
第二節 反応機構の考察 22 第一項 Wacker 型機構の否定 22 第二項 オレフィン錯体の単離 24 第三項 オレフィン錯体の単離 24 第三項 オレフィン錯体の単離 24 第三項 オレフィン錯体の単離 24 第三項 決皮効果の検討 28 第五項 p-ペンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 35 第七項 立体選択他の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 29 2-ナフトールの酸化的不者カップリング反応 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 反応の研究背景 9 2-ナフトールの酸化的不斉カップリング反応の検討 第二項 キラル Mn 触媒による ステオ酸化反応の報告例 98 第二項 転媒構造解析の試み 10 第三節 まとめ 10 素子文献 10 表考文献 10 第三節 まとめ 10 第三節 まとめ 10 素楽項 10 素 10 素験項 10 素 10	第三項	4-アルケン酸を基質とする酸化的環化反応の研究背景	20
第一項 Wacker 型機構の否定 22 第二項 オレフィン錯体の単離 24 第三項 C-H 結合活性化段階に関する考察 25 第四項 濃度効果の検討 28 第五項 p-ペンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第二章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 反応の研究背景 98 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二項 キラル Mn 触媒による ステオ酸化反応の報告例 98 第二項 無媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 参考文献 10 第三節 まとめ 10 参考文献 10 次験項 10 第時 11 期時 11	第二節	反応機構の考察	22
第二項 オレフィン錯体の単離 24 第三項 C-H 結合活性化段階に関する考察 25 第四項 濃度効果の検討 28 第五項 p-ベンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 甚質一般性の検討 40 第四節 まとめ 46 参考文献 51 第三章 キラル Mn 触媒による 92 上サフトールの酸化的不斉カップリング反応 51 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 「京市の 新言 92 第二項 キラル Mn 触媒による 7斉酸化反応の報告例 98 第二項 キラル Mn 触媒による 99 第二項 たの 検討 99 第二項 短応条件の検討 99 第二項 無媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 第三節 まとめ 10 素換項 10 第三節 まとめ 10 素以項 10 第三節 まとめ 10 素換項 11	第一項	Wacker 型機構の否定	22
第三項 C-H 結合活性化段階に関する考察 25 第四項 濃度効果の検討 28 第五項 p-ペンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 2-ナフトールの酸化的不済カップリング反応 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不済ホモカップリング 92 反応の研究背景 93 第二項 キラル Mn 触媒による 2-ナフトール類の酸化的不済ホモカップリング反応の検討 94 第二項 キラル Mn 触媒による 94 第二項 ため 94 第二項 レ成本保の検討 99 第二項 一次条件の検討 99 第三節 まとめ 10 第三節 まとめ 10 素楽文献 10 シッマ、 第三節 まとめ 10 第三節 まとめ 10 第三節 まとめ 10 素験項 10 10 第三節 まとめ 10	第二項	オレフィン錯体の単離	24
第四項 濃度効果の検討 28 第五項 p-ペンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 第一年 キラル Mn 触媒による 92 第一項 遷移金属触媒による 2-ナフトールの酸化的不斉カップリング反応 92 寮二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 第二節 まとめ 10 第三節 まとめ 10 家奥項 10 シップリング反応の検討 10 家映項 10 シッ教考文献 10 素座項 10 シッ教考文献 10 第三節 まとめ 10 シッ教文献 10 素験項 10 シッ教主人献 10	第三項	C-H 結合活性化段階に関する考察	25
第五項 p-ペンゾキノンの効果に関する考察 31 第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 2-ナフトールの酸化的不斉カップリング反応 92 第一節 緒言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング反応 98 第二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二項 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二項 転媒構造解析の試み 10 第三節 まとめ 10 蒙美頭項 10 シス 第三節 まとめ 10 素美頭項 10 シス 第三節 まとめ 10 素支軟項 10 シス 第三節 まとめ 10 素原項 10 シス 第三節 まとめ 10 素酸項 10 シス 第一節 新音 11	第四項	濃度効果の検討	28
第六項 推定反応機構の考察 35 第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 2-ナフトールの酸化的不斉カップリング反応 92 第一節 諸言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 反応の研究背景 98 第二項 キラル Mn 触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 夏市の研究背景 99 第二項 た奈件の検討 99 第二節 まとめ 10 第三節 まとめ 10 蒙美験項 10 10 搬購 実験項 10 総括 10 10 謝辞 11 11 謝辞 11	第五項	<i>p-</i> ベンゾキノンの効果に関する考察	31
第七項 立体選択性の発現機構の考察 37 第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 2-ナフトールの酸化的不斉カップリング反応 92 第一節 諸言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング反応 98 第二節 キラル Mn 触媒による 2-ナフトール類の酸化的不斉ホモカップリング反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 91 第二節 キラル Mn 触媒による 91 第二節 まとめ 10 第三節 まとめ 10 参考文献 10 参考文献 10 素験項 10 謝辞 11 11	第六項	推定反応機構の考察	35
第三節 基質一般性の検討 40 第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 2-ナフトールの酸化的不斉カップリング反応 92 第一節 緒言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 反応の研究背景 98 第二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 参考文献 10 素美験項 10 11 謝辞 11 11	第七項	立体選択性の発現機構の考察	37
第四節 まとめ 46 参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 2-ナフトールの酸化的不斉カップリング反応 92 第一節 緒言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 反応の研究背景 98 第二項 キラル Mn 触媒による 7斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二節 キラル Mn 触媒による 10 第二節 まシルの酸化的不斉カップリング反応の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 素支軟 10 表考文献 10 素酸項 10 10 第部 第6 10 第三節 まとめ 10 素験項 10 10 素酸項 10 10 素教考文献 10 10 素酸項 10 10 第一節 まとめ 10 素酸項 10 10 素酸項 10 10 素酸項<	第三節	基質一般性の検討	40
参考文献 48 実験項 51 第三章 キラル Mn 触媒による 92 2-ナフトールの酸化的不斉カップリング反応 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 第二項 キラル Mn 触媒による ス子酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二項 反応条件の検討 99 第三節 まとめ 10 参考文献 10 実験項 総括 11 謝辞 11	第四節	まとめ	46
実験項 51 第三章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応 92 第一節 緒言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 原応の研究背景 98 第二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二項 転媒構造解析の試み 10 第三節 まとめ 10 素東頭 10 水括 10 謝辞 11 11		参考文献	48
第三章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応 92 第一節 緒言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 反応の研究背景 92 第二項 キラル Mn 触媒による 7斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 参考文献 実験項 10 総括 10 11 謝辞 11 11		実験項	51
2-ナフトールの酸化的不済カップリング反応 92 第一節 緒言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不済ホモカップリング 92 反応の研究背景 98 第二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第二項 短応条件の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 素支献 10 実験項 10 推薦 10 11	第三章	キラル Mn 触媒による	92
第一節 緒言 92 第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 反応の研究背景 92 第二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第一項 反応条件の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 実験項 10		2-ナフトールの酸化的不斉カップリング反応	
第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 92 反応の研究背景 第二項 第二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第一項 反応条件の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 素験項 10 謝辞 11	第一節	緒言	92
第二項 キラル Mn 触媒による不斉酸化反応の報告例 98 第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第一項 反応条件の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 麦考文献 10 実験項 10 搬搭 11 謝辞 11	第一項	遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング 反応の研究背景	92
第二節 キラル Mn 触媒による 99 2-ナフトールの酸化的不斉カップリング反応の検討 99 第一項 反応条件の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 実験項 10 批評 11	第二項	キラル Mn 触媒による不斉酸化反応の報告例	98
2-ナフトールの酸化的不斉カップリング反応の検討 99 第一項 反応条件の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 実験項 10 総括 11 謝辞 11	第二節	キラル Mn 触媒による	99
第一項 反応条件の検討 99 第二項 触媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 実験項 10 総括 11 謝辞 11		2-ナフトールの酸化的不斉カップリング反応の検討	
第二項 触媒構造解析の試み 10 第三節 まとめ 10 参考文献 10 実験項 10 総括 11 謝辞 11	第一項	反応条件の検討	99
第三節 まとめ 10 参考文献 10 実験項 10 総括 11 謝辞 11	第二項	触媒構造解析の試み	103
参考文献 10 実験項 10 総括 11 謝辞 11	第三節	まとめ	105
実験項 10 総括 11 謝辞 11		参考文献	108
総括		実験項	109
謝辞 11		総括	110
		謝辞	111

略語表

便宜上、本論文全般において以下に示す略語及び略号を用いた。

Ac	acetyl
acac	acetylacetonate
<i>t</i> -Amyl-OH	2-Methyl-2-butanol
BINAP	2 2'-his(dinhenvlnhosphino)-1 1'-hinanhthyl
BINOL	2.2°-dihydroxy-1.1°-binaphtyl
Bn	benzyl
Boc	<i>tert</i> -butoxycarbonyl
BOXAX	2 2'-his(oxazolyl)-1 1'-hinanhthyls
BOX	his(oxazoline) ligand
t-Bu	tert-hutyl
Bz	henzovl
conv	conversion
Cn	cyclopentadienyl
DCE	dichloroethane
DCM	dichloromethane
DMA	N N-dimethylfacetoamide
DMF	<i>NN</i> -dimethylformamide
DMSO	dimethyl sulfoxide
ee	enantiomeric excess
Et	ethyl
HPLC	high performance liquid chromatography
Ile	isoleucine
KIE	kinetic isotope effect
L	ligand
Me	methyl
mp	melting point
MS	molecular sieve
2-naph	2-naphthyl
SPRIX	spiro bis(isoxazoline) ligand
Ph	nhenvl
Phebim	phenyl bis(imidazoline)
Piv	pivalovl
<i>i</i> -Pr	isopropyl
Pv-box	bis (oxazolinyl) pyridine ligand
quant	quantitatively
Salen	N. N' -bis(salicylidene)ethylenediamine
TBME	methyl <i>tert</i> -butyl ether
THF	tetrahvdrofurane
Ts	<i>p</i> -toluenesulfonyl

第一章 序論

第一節 触媒的不斉合成

自然界に存在している化合物の中には、結合の組み換えなしでは分子をそれ自身の鏡像 に重ね合わせられないものがある。このような性質をキラルと言い、右手と左手のように 互いに鏡像の関係にある異性体(エナンチオマーあるいは鏡像異性体と称する)が生じる。 両エナンチオマーの物性は旋光性及び生物活性以外等しい。生物活性が異なる身近な例と して、エナンチオマー間では味や臭いが違う。これは、人体を構成するアミノ酸が片方の エナンチオマーから構成されており、人体の様々な組織が光学活性な受容体として働くた めである。したがって、望みとする片方のエナンチオマーだけを選択的に合成することは、 学術的な面だけでなく、医薬品、農薬、香料、機能性材料の合成など工業の幅広い分野で 重要視されている。

一般に光学活性化合物を得る方法としては、キラルプール法、生物的な天然酵素等を用いる合成法、ラセミ体の光学分割、そして触媒的不斉合成が知られている。天然のキラル源を利用するキラルプール法は、化学量論量もしくはそれ以上のキラル源を必要とするという点で効率が悪い。生物的合成法では、非常に高い選択性が得られるものの、耐溶媒性、pH・温度依存性、高い基質特異性などの観点から適用条件に制約が多い。ラセミ体の光学分割は片方のエナンチオマーが無駄になる場合もあるので、アトムエコノミーや経済的な面で不利益を生む。それに対して触媒的不斉合成は、少量のキラル源から大量の光学活性化合物を合成できるため効率性に秀でている。以上の観点から、工業化にも有効な触媒的不斉合成が多数開発され、2001年の野依良治教授、W.S. Knowles 博士、K.B. Sharpless 教授らのノーベル化学賞受賞に見られるように、この分野の業績は社会的にも広く認められている。

遷移金属触媒を用いる触媒的不斉合成において、最も重要な命題の一つとして「触媒活性 とエナンチオ選択性の向上」が挙げられる。活性・選択性の向上のためには、勿論反応条 件の最適化は必要であるものの、最も決定的な要素は金属中心を取り巻く不斉配位子にあ る。これまでに立体認識に有効な不斉環境を構築し、反応を促進させるための適切な電子 的効果を中心金属に与える不斉配位子の開発が盛んに行われている。既にホスフィン系配 位子、オキサゾリン系配位子、アミノアルコール系配位子、ジオール系配位子、サレン型 配位子等、様々な不斉配位子が開発されている。それらの配位子の代表例を Figure 1-1 に 示す。

それぞれの不斉配位子には反応によって向き不向きが存在する。主にホスフィン系配位 子は不斉水素還元²に、オキサゾリン系配位子は不斉 Diels-Alder 反応³⁾や不斉シクロプロ パン化反応⁴⁾等に用いられ、アミノアルコール系配位子はジアルキル亜鉛のカルボニル基 への不斉アルキル化反応⁵に用いられる。ジオール系配位子の代表例として BINOL が挙げ られ、酒石酸エステルはアリルアルコール等の不斉エポキシ化反応⁶に、BINOL は不斉ア ルドール反応⁷⁾や不斉マイケル反応⁸などに用いられている。サレン型配位子は不斉エポ キシ化⁹⁾や不斉エン反応¹⁰⁾などに用いられてきた。このように様々な不斉配位子が開発さ れ、遷移金属による触媒的不斉合成の分野が発展してきた。

第二節 遷移金属触媒による C-H 結合官能基化反応

従来の有機合成化学は、化合物中に存在する官能基を別の官能基へと変換する、言わば 「官能基変換の化学」であった。それ故、目的化合物まで多段階変換を要することもあり、 原子効率や環境負荷の観点においても問題があった。一方、ほとんどの全ての有機化合物 には C-H 結合が存在する。この何の変哲も無い結合を直接官能基化出来れば「官能基変換 の化学」の問題点が一挙に解決され、大変有用な手法と成り得る。これを可能とするのが 「遷移金属触媒」である。遷移金属触媒を用いて C-H 結合を直接的に官能基化する反応は、 実は古くから知られていた。1955 年、村橋らが報告したイミン 1 のカルボニル化反応が C-H 結合切断を経る触媒的官能基導入反応である(Scheme 1-1)¹¹⁾。

Scheme 1-1. Co-catalyzed C-H Functionalization.

1969年、藤原・守谷らは Pd(OAc)₂を触媒として用いて、ベンゼン 3 とスチレン 4 の酸 化的なクロスカップリングを達成した (Scheme 1-2)¹²⁾。しかしながらこの反応条件では、 ベンゼン 3 を溶媒量必要とし、置換ベンゼンを用いた場合反応の位置選択性を制御できな かったため、汎用性に乏しく当時はあまり注目されなかった。

Scheme 1-2. Fujiwara-Moritani reaction.

したがって、特定の C-H 結合を選択的に官能基化する手法の開発が求められていた。この分野の先駆的な研究として、1993 年の村井らによるアセトフェノン類 6 のオルト位 C-H オレフィン挿入反応がある (Scheme 1-3)。彼らは Ru 触媒を用い、芳香環上のカルボニル 配向基に対してオルト位の C-H 結合の選択的な修飾に成功した¹³⁾。この論文の報告を契機に、C-H 結合を多種多様な金属触媒・配向基を用いて官能基化する研究が活発に展開されている¹⁴⁾。

Scheme 1-3. First o-Selective Catalytic C-H Bond Functionalization.

C-H 結合官能基化は上述した C-C 結合形成反応だけでなく、C-O 結合形成反応も達成 されている。2004 年 Sanford らは、配向基を用いて芳香環 9 への位置選択的な酸素原子の 導入に成功している¹⁵ (Scheme 1-4)。本反応は Pd(II/IV)サイクルを経る反応機構が提唱さ れており、従来の Pd(II/IV)サイクルとは異なる Pd 触媒研究が急速に発展している¹⁶。

2012年、Yuらはこれまでの配向基の常識を覆し、オルト位ではなくメタ位の C-H 結合 を選択的に活性化する「Template」を開発している¹⁷⁾(Scheme 1-5)。それまで基質の立体 的な因子に依存するメタ位選択的な C-H 結合官能基化¹⁸⁾はいくつか報告されていたが、 Yuらの Template を用いれば、オルト位に置換基が存在しない基質でもメタ位選択的に活 性化が進行する。さらに、彼らは自身で開発した C-H オレフィン化反応が、天然物や医薬 品合成の終盤に適用可能であることを示している¹⁹⁾(Scheme 1-6)。このような手法は、医 薬品として活性のある化合物に近い状態から構造修飾を行えるため、「Late-Stage Functionalization」と呼ばれ、汎用性の高い概念として確立されつつある。本手法は合成経 路の収束度を上げつつ、直線的合成の最少化にも寄与するため、総収率の向上や並行作業 性を改善する。

Scheme 1-4. First Example of Aromatic C-H Bond Oxidation.

Scheme 1-5. First Example of *m*-Selective C-H Bond Olefination.

Scheme 1-6. An Example of Late Stage Functionalization.

第三節 エナンチオ選択的な C-H 結合官能基化反応

前節で述べた遷移金属触媒による C-H 結合官能基化反応がエナンチオ選択的に促進される触媒系も開発されている²⁰⁾。2009 年、Yu らはジフェニル酢酸誘導体 17 を基質とする酸化的 Heck 反応において、アミノ酸から容易に合成可能な不斉配位子を用いることで、最高 97% ee の高いエナンチオ選択性を達成している²¹⁾ (Scheme 1-7) また、彼らは同じくアミノ酸から誘導される不斉配位子を用いてエナンチオ選択的な C-O 結合形成反応も達成している²²⁾ (Scheme 1-8)。本反応は Pd(II/IV)サイクルを経るエナンチオ選択的な C-H 結合官能基化の初めての例とされている。

Scheme 1-7. Enantioselective Oxidative Heck Reaction.

2012 年 Cramer らは、天然の糖を出発原料に C2 対称性を持つキラルな Cp 配位子を開発 している。彼らはこの不斉配位子を有する Rh 錯体 20 を調製し、オルト位の C-H 結合活 性化を経る、アルケンとの不斉環化反応を達成している^{23a)} (Scheme 1-9)。さらに Cramer らはこのキラル Cp 配位子を発展させた。2014 年、キラル Rh 触媒 23 を用いて、穏和な条 件で 4 級炭素を持つジヒドロフラン誘導体 25 のエナンチオ選択的合成に成功している^{23b)} (Scheme 1-10)。

Scheme 1-9. Asymmetric C-H Functionalization Using Chiral Cp Ligands.

Scheme 1-10. Chiral CpRh-Catalyzed Asymmetric Hydroarylations.

これまでに述べてきた C-H 結合活性化機構とは異なりラジカル機構ではあるものの、合成化学的価値の高いエナンチオ選択的な C-H 結合官能基化の例として、2-ナフトール類の酸化的不斉カップリング反応が挙げられる。2001年、Kozlowski らは 1,5-diaza-cis-decaline 26を配位子とする Cu(I)錯体を開発し、Cu 錯体を用いた触媒では 93% ee という高い光学収率で BINOL 誘導体 28 を合成しすることに始めて成功している²⁴⁾ (Scheme 1-11)。2-ナフトール類の酸化的不斉カップリング反応は様々な遷移金属触媒を用いて達成されており、詳細第三章で述べる。

Scheme 1-11. Enantioselective Oxidative Homo-Coupling of 2-Naphthols.

第四節 本研究

これまで述べてきたように、遷移金属触媒を用いるエナンチオ選択的な C-H 結合官能基 化は、近年急速に展開され始めた分野であり未開拓な領域が多い。そこで筆者は遷移金属 触媒の新たな可能性を切り拓くべく研究に着手した。

本論文の第二章ではキラル Pd 触媒によるエナンチオ選択的なアリル位 C-H 結合エステル化反応ついて述べる。次の第三章ではキラル Mn 触媒によるエナンチオ選択的な 2-ナフトールの酸化的不斉ホモカップリング反応の検討について述べる。

参考文献

- 1) H. Nozaki, S. Moriuti, H. Takaya, R. Noyori, Tetrahedron Lett, 2005, 46, 5655.
- (a) H. Takaya, T. Ohta, R. Noyori, In *Catalytic Asymmetric Synthesis*; Ojima, I. Ed., VCH:New York, **1993**, pp 1. (b) T. Ohkuma, M. Kitamura, R. Noyori,; In *Catalytic Asymmetric Synthesis* 2 nd Ed; VCH:New York, **2000**, pp 1.
- (a) D. A. Evans, J. S. Johnson, In *Comprehensive Asymmetric Catalysis*; E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Edg; Springer: Berin, **1999**; Vol. 3, pp 1177.
- 4) (a) M. P. Doyle, D. C. Forbes, *Chem. Rev.* 1998, 98, 911. (b) A. Pfaltz, In *Comprehensive Asymmetric Catalysis*; E. N. Jacobsen, A. Pfaltz, H. Yamamoto, Edg; Springer: Berin, 1999; Vol. 3, pp 513.
- (a) M. Kitamura, S. Suga,; K. Kawai, R. Noyori, *J, Am, Chem, Soc,* 1986, 108, 6071. (b) K. Soai, S. Yokoyama, T. Hayasaka, K. Ebihara, *J, Org, Chem*, 1988, 102, 4149.
- 6) T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974.
- (a) N. Yoshikawa, M. A. Y. Yamada, J. Das, H. Sasai, M. Shibasaki, *J, Am, Chem, Soc*, 1999, 121, 4168.
 (b) N. Yoshikawa, N. Kumagai, S. Matsunaga, G. Moll, T. Ohshima, T. Suzuki, M. Shibasaki. *J. Am. Chem. Soc.* 2001, 123, 2466.
- 8) M. Shibasaki, H. Sasai, T. Arai, Angew. Chem., Int. Ed. Engl. 1997, 36, 1236.
- (a) N. Hosoya, R. Irie, Y. Ito, K. katsuki, *Synlett* **1990**, 261. (b) W. Zhang, J. L Loebach, S. R. Wilson, E. N. Jacobsen, *J. Am. Chem. Soc.* **1990**, *112*, 2801. (c) A.-H. M. Vries, R. Imbos, B. L. Feringa, *Tetrahedron Asymmetry* **1997**, *8*, 1467.
- 10) S. Kezuka, T. Ikeno, T. Yamada, Org. Lett. 2001, 3, 1937.
- 11) S. Murahashi, J. Am. Chem. Soc. 1955, 77, 6403
- 12) I. Moritani, Y. Fujiwara, Tetrahedron Lett. 1967, 8, 1119.
- S. Murai, F. Kakiuchi, S. Sekine, Y. Tanaka, A. Kamatani, M. Sonoda, N. Chatani, *Nature*, 1993, 366, 529.
- 14) For recent selected reviews on C-H activation, see (a) D. Alberico, M. E. Scott, M. Lautens, *Chem. Rev.* 2007, 107, 174. (b) I. V. Seregin, V. Gevorgyan, *Chem. Soc. Rev.* 2007, 36, 1173.
 (c) F. Kakiuchi, T. Kochi, *Synthesis* 2008, 3013. (d) B.-J. Li, S.-D. Yang, Z.-J. Shi, *Synlett* 2008, 22, 949. (e) G. P. McGlacken, L. M. Bateman, *Chem. Soc. Rev.* 2009, 38, 2447. (f) O. Daugulis, H.-Q. Do, D. Shabashov, *Acc. Chem. Res.* 2009, 42, 1074. (g) X. Chen, K. M. Engle, D.-H. Wang, J.-Q. Yu, *Angew. Chem.* 2009, 121, 5196; *Angew. Chem. Int. Ed.* 2009, 48, 5094. (h) L. Ackermann, R. Vicente, A. R. Kapdi, *Angew. Chem.* 2009, 121, 9976; *Angew. Chem. Int. Ed.* 2009, 48, 9792. (i) F. Bellina, R. Rossi, *Tetrahedron* 2009, 65, 10269. (j) D. A. Colby, R. G. Bergman, J. A. Ellman, *Chem. Rev.* 2010, 110, 624. (k) R. Jazzar, J. Hitce, A. Renaudat, J. Sofack-Kreutzer, O. Baudoin, *Chem. Eur. J.* 2010, 16, 2654. (l) L. Ackermann, *Chem. Rev.*

2011, 111, 1315. (m) C.-L. Sun, B.-J. Li, Z.-J. Shi, Chem. Rev. 2011, 111, 1293. (n) K. Hirano, M. Miura, Synlett 2011, 294. (o) J. Wencel-Delord, T. Drçge, F. Liu, F. Glorius, Chem. Soc. Rev. 2011, 40, 4740. (p) L. McMurray, F. O'Hara, M. J. Gaunt, Chem. Soc. Rev. 2011, 40, 1885. (q) O. Baudoin, Chem. Soc. Rev. 2011, 40, 4902. (r) G. Rousseau, B. Breit, Angew. Chem. 2011, 123, 2498; Angew. Chem. Int. Ed. 2011, 50, 2450. (s) N. Kuhl, M. N. Hopkinson, J. Wencel-Delord, F. Glorius, Angew. Chem. 2012, 124, 10382; Angew. Chem. Int. Ed. 2012, 51, 10236. (t) J. Yamaguchi, A. D. Yamaguchi, K. Itami, Angew. Chem. 2012, 124, 9092; Angew. Chem. Int. Ed. 2012, 51, 8960. (u) P. B. Arockiam, C. Bruneau, P. H. Dixneuf, Chem. Rev. 2012, 112, 5879. (v) G. Song, F.Wang, X. Li, Chem. Soc. Rev. 2012, 41, 3651. (w) D. Y. K. Chen, S. W. Youn, Chem. Eur. J. 2012, 18, 452. (x) J. Hartwig, Acc. Chem. Res. 2012, 45, 864. (y) S. R. Neufeldt, M. S. Sanford, Acc. Chem. Res. 2012, 45, 936. (z) B.-J. Li, Z.-J. Shi, Chem. Soc. Rev. 2012, 41, 5588. (aa) J. Mousseau, A. B. Charette, Acc. Chem. Res. 2013, 46, 412. (ab) S. I. Kozhushkov, L. Ackermann, Chem. Sci. 2013, 4, 886.

- 15) A. R. Dick, K. L. Hull, M. S. Sanford, J. Am. Chem. Soc. 2004, 126, 2300.
- (a) L.-M. Xu, B.-J. Li, Z. Yang, Z.-J. Shi, *Chem. Soc. Rev.* 2010, *39*, 712. (b) P. Sehnal, R. J. K. Taylor, I. J. S. Fairlamb, *Chem. Rev.* 2010, *110*, 824. (c) K. M. Engle, T.-S. Mei, X. Wang, J.-Q. Yu, *Angew. Chem.* 2011, *123*, 1514; *Angew. Chem. Int. Ed.* 2011, *50*, 1478. (d) A. J. Hickman, M. S. Sanford, *Nature* 2012, *484*, 177; for a Pd^{II}/Pd^{III} catalysis cycle as an alternative to the Pd^{II}/Pd^{IV} mechanisms, see for example (e) D. C. Powers, M. A. L. Geibel, J. E. M. N. Klein, T. Ritter, *J. Am. Chem. Soc.* 2009, *131*, 17050. (f) N. R. Deprez, M. S. Sanford, *J. Am. Chem. Soc.* 2009, *131*, 11234.
- 17) D. Leow, G. Li, T-S. Mei, J-Q. Yu, Nature 2012, 486, 518.
- 18) (a) Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds; J.-Y. Cho, M. K. Tse, D. Holmes, R. E. Jr Maleczka, M. R. III. Smith, *Science*, 2002, 295, 305. (b) Mild iridium-catalyzed borylation of arenes. High turnover numbers, room temperature reactions, and isolation of a potential intermediate; T. Ishiyama, J. Takagi, K. Ishida, N. Miyaura. J. Am. Chem. Soc. 2002, 124, 390.
- 19) D. -H. Wang, J-Q. Yu, J. Am. Chem. Soc. 2011, 133, 5767.
- 20) (a) R. Giri, B-F. Shi, K-M. Engle, N. Maugel, J-Q. Yu, *Chem. Soc. Rev.*, 2009, 38, 3242. (b) J. Wencel-Delord, F. Colobert, *Chem. Eur. J.* 2013, 19, 14010.
- 21) B-F. Shi, Y-H. Zhang, J.K. Lam, D.-H. Wang, J-Q. Yu, J. Am. Chem. Soc., 2010, 132, 460.
- 22) X-F. Cheng, Y. Li, Y-M. Su, F. Yin, J-Y. Wang, J. Sheng, H.U. Vora, X-S. Wang, J-Q. Yu, J. Am. Chem. Soc., 2013, 135, 1236.
- 23) (a) B. Ye, N. Cramer, *Science* 2012, *338*, 504. (b) B. Ye, P.A. Donets, N. Cramer, *Angew. Chem. Int. Ed.* 2014, *53*, 507.
- 24) X. Li, J. Yang, M. C. Kozlowski, Org. Lett, 2001, 3, 1137.

第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合エステル化反応の反応機構解析 第一節 緒言

第一項 不斉酸化的アリル位 C-H 結合官能基化反応の現状と課題

辻-Trost 反応は、アリルエステル等の基質が Pd(0)に酸化的付加し、生じた π-アリル Pd 中間体に求核剤が付加する反応である (Scheme 2-1)。本反応は基質適用範囲が広く、 穏和な条件で C-C 結合や C-O、C-N 結合も形成できるため、極めて有用な反応である。 キラル配位子を用いることでエナンチオ選択的な触媒反応への展開も可能であり、これ までに数多くの反応が報告されている¹⁾。本反応はπ-アリル Pd 中間体を経由するものの、 この鍵中間体を形成するには予め基質にアセトキシ基やハロゲン等の脱離基を導入して おく必要がある。それに対して、Pd(II)触媒を用いる酸化的アリル位 C-H 結合官能基化 は脱離基を必要としない。このように有機化合物中によく見られるオレフィン構造を足 がかりに C-H 結合を修飾する「アリル位 C-H 結合官能基化」は 20 年以上前から知られ ていた²⁾ものの、近年環境調和型の反応として再び注目を集めている。

Scheme 2-1. Oxidative Allylic C–H Substitution.

2004 年に White らが報告したアリル位アセトキシ化反応³⁾ (Scheme 2-2a)、同じく 2008 年に White らが達成したアミノ化⁴⁾(Scheme 2-2b)、2008 年に Shi らが報告したアルキル化 反応⁵⁾ (Scheme 2-2c) を皮切りに、アリル位 C-H 結合を直接的に C-O、C-N 及び C-C 結 合へ変換する様々な触媒系が報告されている(他の論文を大量にリファー)。また、ごく最 近 Doyle らによってフッ素化の例も報告されている⁶⁾ (Scheme 2-2d)。

Scheme 2-2. Oxidative Allylic C-H Esterification, Amination, Alkylation and Fluorination.

上述した分子間反応だけではなく、分子内反応も多数報告されている。2007 年 White ら は、末端オレフィンと Ts カルバメート部位を持つ基質 34 を用いて、アリル位 C-H 結合活 性化を経るオキサゾリジノン誘導体 35 のジアステレオ選択的な合成に成功している⁷⁾ (Scheme 2-3)。さらに、2009 年に White らは、それまで困難とされていた C-H 結合活性 化による大員環の構築に成功し、天然物の短段階合成を達成している⁸⁾ (Scheme 2-4)。

Scheme 2-3. Intramolecular Allylic C-H Amination Catalyzed by White Catalyst.

Scheme 2-4. Total Synthesis of 6-Deoxyerythronolide B by Late Stage C-H Oxidation

しかしながら酸化的アリル位 C-H 結合官能基化の合成化学的価値の高さとは裏腹に、そのエナンチオ選択的反応例は筆者の知る限りでは筆者の研究開始時点では1例しか報告されていなかった。2008 年 White らは、Pd(OAc)₂ とビススルホキシド配位子からなる触媒に 光学活性な Cr-Salen 錯体 34 を添加して、初のエナンチオ選択的な酸化的アリル位 C-H 結 合官能基化を達成している⁹ (Scheme 2-5)。

2012 年、Rainy らは Pd(OAc)₂ に BINOL 由来の光学活性なリン酸 42 を組み合わせて、四 員環の歪エネルギーの解消を駆動力とする、C-C 結合の転位を伴うアリル位 C-H 結合ア ルキル化反応において、最高98% ee と非常に高い不斉収率を達成している¹⁰ (Scheme 2-6)。

Scheme 2-6. Intramolecular Enantioselective Allylic C–H Alkylation.

White、Rainy のどちらの場合も、不斉誘起にはアキラルな Pd 触媒にそれぞれ光学活性 なキラルルイス酸、キラルブレンステッド酸の添加が必須である。そのためエナンチオ選 択的な酸化的アリル位 C-H 結合官能基化を、辻-Trost 反応のような実用性の高い反応に昇 華させるには、Pd 上のキラル配位子によってエナンチオ選択性を制御する必要がある。 2013 年 Trost らは、自らが開発した phosphoramidite 配位子 45 を利用し、分子間で初めて エナンチオ選択的なアリル位 C-H 結合アルキル化を達成している¹¹⁾ (Scheme 2-7)。本反 応は辻-Trost 反応と同様に、キラル配位子によってエナンチオ選択性が制御されている数 少ない例である。

Scheme 2-7. Intermolecular Enantioselective Allylic C–H Alkylation.

第二項 Pd-SPRIX 触媒の酸化的不斉環化反応への適用例

酸化的 C-H 結合官能基化において、高い化学収率及びエナンチオ選択性を得るためには 酸化的な条件に耐えうる不斉配位子の選択が必要である。不斉配位子として広く用いられ ている BINAP 46 等のホスフィン系配位子は、酸化的な条件では配位子自体が酸化して失 活し、扱い難い場合が多い。オキサゾリン配位部位を持つ BOXAX 47 配位子は酸化的な条 件に安定だであるものの、BINAP と同様 1,1'-ビナフチル骨格を有するので高温ではラセ ミ化する恐れがある。

こういった背景の下、筆者の研究室では、スピロ骨格とこれまで配位子 として報告例がなかったイソオキサゾリン配位部位を併せ持つ配位子 SPRIX 48 を開発した¹²⁾。合成法を Scheme 2-8 に示す。(*M**,*S**,*S**)、 (*M**,*R**,*R**)、および(*M**,*S**,*R**)と三種類生じるジアステレオマーの内、 (*M**,*S**,*S**)体のみが二座配位子として機能する。光学的に純粋な (*M**,*S**,*S**)体は、DAICEL 社の CHIRALPAK AD カラムを用いた光学分割 によって得られる。SPRIX は、酸性、塩基性、酸化的条件下のいずれに

も安定であり、剛直なスピロ骨格ゆえラセミ化の恐れは少ない。さらに、イソオキサゾリン49の共役酸のpKaは-2.35¹³⁾と対応するオキサゾリン50の4.4¹⁴⁾を遥かに下回っており、イソオキサゾリンの金属に対する σ-ドナー性は低いと予想される。その結果、イソオキサ ゾリンが配位した金属中心の電子密度が変わらず、金属塩本来の高い Lewis 酸性が保持されるため、酸化的環化反応の促進に重要な炭素-炭素多重結合の活性化に大きく寄与する。 すなわち、SPRIX はエナンチオ選択的な酸化的環化反応における有用なキラル配位子として期待できる。

15

実際、これまで筆者の研究室では、SPRIX 配位子をエナンチオ選択的 Wacker 型環化反応へと適用し優れた成果をあげている。

2001 年荒井博士は、アルケニルアルコールを基質とする不斉 Wacker 型環化反応の初め ての例を報告している。アルケニルジオール 51 を基質に用い、15 mol %の Pd(OCOCF₃)₂ ならびに 18 mol %の(*M,S,S*)-*i*-Pr-SPRIX 存在下、酸化剤として *p*-ベンゾキノンを加えると、 6-*endo* 環化生成物 52 が収率 70%、70% ee で得られる(Scheme 2-9)^{12a)}。

Scheme 2-9. Enantioselective Wacker-type Cyclization Promoted by Pd(II)-SPRIX Catalyst.

興味深いことに、フェノール類の不斉 Wacker 型環化反応に有効なキラルスピロ骨格を 有する村橋、細川らの触媒 **53**¹⁵やキラルホスフィン配位子(*R*)-**46**¹⁶、魚住、林らの (*S*,*S*)-*i*-Pr-BOXAX **47**¹⁷、BOX 配位子(*S*,*S*)-**54**¹⁸などから調製した Pd 触媒では本反応が促進 されない点である。単座配位子として作用するモノオキサゾリン配位子(*S*)-**55**¹⁹を用いると、 反応は進行するものの生成物 **52** はラセミ体として得られる。この結果は本反応における SPRIX の優位性を端的に示している(Scheme 2-10)。 Scheme 2-10. Examination of Chiral Ligand in the Novel Wacker-type Cyclization.

類似の反応条件下ジアルケニルアルコール 55 を基質とすると、分子内でドミノ型の反応 が進行し、単環式生成物 56、57 とともに二環式生成物 58 が単一のジアステレオマーとし て最高 95% ee で得られる (Scheme 2-11)^{12b)}。

Scheme 2-11. Enantioselective Tandem Cyclization via Oxy Palladation.

一方、谷垣修士は、2 - ゲラニルフェノール類 59 のエナンチオ選択的 Wacker 型環化反応に成功し、天然物である(*R*)-Cordiachromene (60)の保護基を必要としない短段階不斉合成へと展開している(Scheme 2-12)²⁰⁾。

Scheme 2-12. Enantioselective 6-endo-trig Wacker-type Cyclization of 2-Geranylphenols by Pd(II)–SPRIX Catalyst.

また 2010 年、Suman 博士はケト - エノール互変異性を利用した 1,3-ジケトンを用いる初 のエナンチオ選択的 Wacker 型環化反応の開発にも成功している。2-アルケニル-1,3-ジケ トン 61 を基質とするとエノール部位が求核剤として作用し、クロメン誘導体 62 が最高 84% ee で得られている (Scheme 2-13)²¹⁾。

Scheme 2-13. Wacker-type Cyclization of 2-Alkenyl-1,3-Diketones by Pd(II)–SPRIX Catalyst.

SPRIX は上記のような酸素求核剤だけでなく、窒素を求核剤とした aza-Wacker 型環化反応にも適用可能である。2009 年辻原博士は、アルケニルウレア **63** を基質とした分子内酸化的アミノカルボニル化による二環式β-アミノ酸誘導体 **64** のエナンチオ選択的合成を報告している(Scheme 2-14)²²⁾。

Scheme 2-14. Enantioselective Intramolecular Oxidative Aminocarbonylation of Alkenylureas by Pd(II)–SPRIX Catalyst.

これまで述べてきた従来の Pd(0)/Pd(II)サイクルを経る反応だけではなく、SPRIX が持つ 酸化的条件下での高い安定性を生かし、Pd(II)/Pd(IV)触媒反応の不斉化にも成功している ²³⁾。すなわち、Pd-SPRIX 触媒存在下、超原子価ヨウ素試薬を酸化剤として用いるエニン 65 の不斉酸化的環化反応である (Scheme 2-15)。さらに 2010 年、橋本修士は Pd(II)/Pd(IV) 触媒サイクルを経る、エニン 67 の塩素化を伴うエナンチオ選択的分子内環化反応を報告し ている ²⁴⁾ (scheme 2-16)。

Scheme 2-15. Pd(II)/Pd(IV)-catalyzed Enantioselective Cyclization of Enynes.

また 2013 年、Yogesh 修士はこれまでラセミ反応²⁵⁾しか報告が無かったホモアリルアル コール 69 の 5-endo-trig 型環化的アセトキシ化によるテトラヒドロフラン誘導体 70 のエナ ンチオ選択的合成を達成している²⁶⁾ (Scheme 2-17)。

Scheme 2-17. Pd(II)/Pd(IV)-catalyzed Enantioselective Cyclization of Homoallyl Alcohol.

以上のように、SPRIX は、その特徴である①剛直なスピロ骨格に基づく高度な不斉環境、 ②酸化的条件下での優れた安定性、③イソオキサゾリン配位部位由来の低い σ -ドナー性の ために、既存の配位子では達成できない様々なエナンチオ選択的な酸化的環化反応を実現 できる。さらに当研究室では、SPRIXの酸に対する高い安定性を生かし、それまで量論反 応しか報告²⁷⁾されていなかった、不飽和カルボン酸の酸化的環化反応によるエナンチオ選 択的なラクトン合成を報告している。当研究室の Gan 博士、Priti 博士は、Pd(II)-SPRIX 触 媒による β,γ -不飽和カルボン酸 71 の酸化的 5-endo-trig 型環化反応を見出し、 γ -ブテノリド 類 72 のエナンチオ選択的合成を報告している²⁸⁾ (Scheme 2-18)。

Scheme 2-18. Pd(II)–SPRIX–catalyzed Enantioselective 5-endo-trig-type Cyclization of β , γ -Unsaturated Carboxylic Acid.

第三項 4-アルケン酸を基質とする酸化的環化反応の研究背景

当研究室の谷垣修士は、1993 年 Larock らが報告した γ,δ-不飽和カルボン酸 73 の酸化的 5-exo-trig 型環化による γ-ラクトン 74 のラセミ体合成²⁹⁾ (Scheme 2-19) に着目し、エナン チオ選択的反応への応用を検討している³⁰⁾。その結果、Scheme 2-20 に示すように Pd-SPRIX を用いることで γ-アルケニル-γ-ラクトン 76a が 82% ee で得られている。

Scheme 2-20. Pd(II)-SPRIX-catalyzed Enantioselective 5-exo-trig-type Cyclization of γ , δ -Unsaturated Carboxylic Acid.

本反応に SPRIX 以外の不斉配位子を用いた場合、中程度の不斉誘起は観測されたものの、 いずれも反応速度が著しく遅く、目的ラクトン体 76a の収率も低かった(Figure 2-1)。 Scheme 2-20 に示す最適条件下ではバックグラウンド反応はほとんど進行せず、 Pd(II)-SPRIX 触媒の顕著な反応促進作用が示されている。

Figure 2-1. Effects of Other Chiral Ligand on the 5-oxo-trig-type Cyclization.

そこで筆者は、本反応の実用性や合成化学的価値を高めるべく研究に着手した。すなわち、本反応の機構について詳細な考察を行うとともに、γ,δ-不飽和カルボン酸の構造適用 範囲を精査した。

第二節 反応機構の考察

第一項 Wacker 型機構の否定

この酸化的環化反応は基質のオレフィンがPdに配位した錯体Iを経由して進行している と推察される(Scheme 2-21)。その後の過程は2通り考えられる。すなわちアルキルPd中 間体 II を経るオキシパラデーションを契機とした Wacker 型機構と、オレフィン錯体 Iの アリル位の C-H 結合が活性化されて生成した π-アリルPd 中間体を経由する機構である。

Scheme 2-21. Possible Pathways.

Scheme 2-22. Contradiction of the Wacker-type Mechanism.

まず、本反応がどちらの機構で進行しているかを明らかにしようと試みた。オレフィン 末端部位に Me 基を持たない基質 78 は Pd(II)触媒による Wacker 型環化が報告されている³¹⁾ (Scheme 2-22a)。それ故、筆者の触媒系でも同様の生成物が得られれば、本反応が Wacker 型機構で進行している可能性が高まると考えられた。しかしながら、基質 78 を筆者の系に 付しても環化が全く進行しなかった (Scheme 2-22b)。反応温度を 40 ℃ に上げても環化は 進行せず、原料が回収された。この結果は本反応の機構が Wacker 型でない可能性を示唆 している。

次にオレフィンの位置が異なる基質 81 と 83 を調製し最適条件下で反応を行った (Scheme 24a, b)。その結果、15% ee とエナンチオ選択性は低いものの、高収率で同一の γ-ラクトン 82 が得られた。81 の反応は、Wacker 型機構で 82 の生成が説明できるものの、 83 の場合では反応点がアリル位のため説明がつかない。この結果も本反応が π-アリル機構 で進行している可能性を示唆している。そこで本反応は π-アリル機構で進行しているもの と考え、触媒サイクルの各段階について詳細に検討を行った。 本反応が Scheme 2-21 で示すオレフィン錯体 I を経由して進行しているのかを明らかにす るために、オレフィン錯体 I の単離を試みた(Scheme 2-24a)。CDCl₃溶媒中、基質 75a に 1 当量の Pd-SPRIX 錯体を作用させ¹H NMR で反応を追跡したところ、75a と 76a のピーク のみ観測され、中間体 84 の観測には至らなかった。そこで本来の触媒系とは異なるものの、 Ts カルバメート求核部位を有する基質 85 で試みた結果、アリル位 C-H 結合活性化は全く 進行せずに、オレフィンが Pd に配位した本反応の中間体と考えられるオレフィン錯体 86 が定量的に単離された(Scheme 2-24b)。この結果を受けて、Scheme 2-21 で示されるよう に 4-アルケン酸基質の場合でも同様に、この種のキレート錯体を経由していると推察され る。

Scheme 2-24. Isolation of Chelate Complex Using Ts-Carbamate Substrate 84.

第三項 C-H 結合活性化段階に関する考察

本反応の律速段階に関する知見を得るために、オレフィン上の Me 基を重水素ラベルした基質 75a-d6 を用いて、速度論的同位体効果の観測を試みた(Scheme 2-25)。75a と、76a をそれぞれ独立した系で反応させ、収率の経時変化を¹H NMR で追跡した(実験項 Table S1 and S2 ならびに Figure S1 and S2)。その結果、両者で明らかな反応初速度の違いが確認できた。反応開始から 120 分後までの間の収率の変化から算出した際の KIE の値は 1.8 であり、一次の同位体効果が観測された。この結果は、C-H 結合活性化の段階が本反応の律速段階に関与していることを示唆している。Wacker 型環化反応の β -水素脱離によって観測される KIE は小さく、二次の同位体効果の値とほぼ同程度である³²⁾。したがって本系で観測された 1.8 という値は本反応が π -アリル機構である可能性を支持している。さらに、これまでに報告されているアリル位 C-H 結合の活性化を経るアリル位アミノ化によって観測された KIE 値は 1.64~1.88³³、アルキル化においては 2.2³⁴⁾である。筆者の系でも同程度のKIE 値 1.8 が観測されたため、本系もアリル位 C-H 結合の活性化を経て進行している可能性が示唆された。

Scheme 2-25. KIE Study (Independent System).

Competitive system

一方、75a と 75a-d6 を 0.5 当量ずつ混合し、同じ系中で反応させて測定した場合の KIE の値は 1.1 (実験項 Table S3 and S4 ならびに Figure S3 and S4) となった。Scheme 2-26 に示 すように、本系には 75a と 75a-d6 由来の中間体、それぞれ 75a-A~C 及び 75a-d6-A~C が存 在する。C-H 結合活性化の段階の反応速度は、それぞれ独立の系で KIE を測定した時に速 度差が観測されたことから、75a-d6-B よりも 75a-B からの方が速い。そのため反応の極初 期に一時的に 75a-d6-B の濃度が高まり、75a-B の濃度が低下すると考えられる。しかしな がら青枠内の平衡は単なる配位子交換であり、75a、75a-A、75a-B、75a-d6、75a-d6-A、75a-d6-B 間は速い平衡にある (*k*₃ << *k*₁, *k*₂, *k*₄) ので、濃度の高い 75a-d6-B が優先的に消費 され始める。このようにして KIE の値が反応の進行とともに小さくなったと考えられる³⁵)。

次にδ位の2つの Me 基の内、どちらで優先的に C-H 結合活性化が進行しているのかを 明らかにするために、E 体及びZ 体のクロチル基を持つ基質を合成し、最適条件化での反 応性及びエナンチオ選択性の違いを確認した(Scheme 2-27)。その結果、E 体の基質(E)-81 からは収率 96%、15% ee で目的生成物が得られた。一方、Z 体の基質(Z)-81 では反応性が 低く、35 ℃ に昇温させたところ 59%収率、40% ee で同一の γ-ラクトン 82 が得られた。

これらの結果から、本反応の C-H 結合活性化は優先的に trans 位の Me 基上で進行して いることが示唆された (Scheme 2-28)。さらに E 体の基質(E)-81 で選択性が著しく低下し た為、本反応の不斉誘起に cis 位の Me 基が大きく関与していることが推察された。尚、立 体選択性の発現機構の詳細は第七項で述べる。

Scheme 2-28. C-H Bond Activation at the Trans Position.

第四項 濃度効果の検討

反応機構についてさらなる知見を得るために速度論解析を行った。Pd-SPRIX 触媒の等量 数を 1, 5, 10, 30, 50 mol %に設定し、それぞれ 30 分ごとに ¹H NMR で原料転化率を確認し た。そして転化率が 50%以下の場合のみで最小自乗法を用いて反応初速度を算出した (Table S5)。そして得られた反応初速度を縦軸に、Pd-SPRIXの当量数を横軸にしてプロッ トした(Figure 2-2A)。その結果、本反応は Pd-SPRIX の濃度に対して一次依存であること が明らかになった。同様に p-ベンゾキノンの濃度効果も確認した。0~10 当量の p-ベンゾキ ノンの各場合について原料転化率の経時変化から反応初速度を算出し(Table S6)、p-ベン ゾキノンの当量数を横軸にしてグラフ化した結果、飽和曲線が得られた(Figure 2-2B)。こ れは Pd(0)の再酸化が本反応の律速段階ではないことを示している。次に基質 75a の濃度効 果を確認した。溶媒の量を一定に設定すると、基質濃度を高くなるつれ、不均一な溶液に なった([75a] ≥ 0.7 M)。そこで反応系が均一且つ、再現性の確認が出来る飽和濃度に近 い領域で、原料転化率の経時変化から反応初速度を算出た(Table S7)。75aの濃度を横軸 にしてグラフ化した結果、飽和曲線が得られた(Figure 2-2C)。この結果は基質と触媒の間 での前駆平衡の存在を支持している。最後にSPRIX配位子の濃度効果を確認した。10 mol % の Pd(OAc)2 に対して 5~30 mol %の配位子を適用し、これまでと同様に反応初速度を算出 した(Table S8)。その結果、本反応の反応初速度は SPRIX 配位子の濃度に依存せず 0 次で あると確認できた(Figure 2-2D)。したがって本反応の活性種が1対1の Pd-SPRIX 錯体で あることが示された。

Figure 2-2. Kinetic Studies.

(A) For catalyst.

Reaction conditions; [75a] = 0.1 M, $[Pd(OAc)_2] = 0.001-0.05$ M, $[SPRIX] = 1.5 \times [Pd(OAc)_2]$ M, [p-benzoquinone] = 0.2 M. Yields were determined by ¹H NMR analysis. And initial reaction rates were calculated by the method of least squares of yields.

(B) For *p*-benzoquinone.

Reaction conditions; [75a] = 0.1 M, $[Pd(OAc)_2] = 0.01$ M, [SPRIX] = 0.015 M, [p-benzoquinone] = 0-1.0 M. Yields were determined by ¹H NMR analysis. And initial reaction rates were calculated by the method of least squares of yields.

Reaction conditions; [75a] = 0.05-0.50 M, $[Pd(OAc)_2] = 0.01$ M, [SPRIX] = 0.015 M, [p-benzoquinone] = 0.2 M; Yields were determined by ¹H NMR analysis. And initial reaction rates were calculated by the method of least squares of yields.

(C) For SPRIX ligand.

Reaction conditions; [75a] = 0.1 M, $[Pd(OAc)_2] = 0.01$ M, [SPRIX] = 0.005-0.03 M, [p-benzoquinone] = 0.2 M. Yields were determined by ¹H NMR analysis. And initial reaction rates were calculated by the method of least squares of yields.

次に、*p*-ベンゾキノンが触媒サイクルにどう関わっているのかを明らかにするため、対 照実験として Pd(0)の再酸化剤として分子状酸素の適用を試みた。Scheme 2-29 で示される ように、Pd(0)の再酸化は、触媒サイクル中では π-アリル Pd 中間体が環化し、γ-ラクトン が生成してから起こるステップである。したがって酸化効率の差で収率に変化が見られた としても、エナンチオ選択性は *p*-ベンゾキノンを用いた場合と同様の値が得られると予想 した。

比較対象として、*p*-ベンゾキノンを加えずに窒素雰囲気下で反応を行ったところ、痕跡 量の目的生成物は確認されたものの、触媒的に反応は進行しなかった(Entry 1)。次に空気 雰囲気下で反応を行った(Entry 2)。しかしながら窒素雰囲気下と同様に、ほとんど反応が 進行しなかった。そこで1気圧の酸素を酸化剤として用いて反応を行った(Entry 3)。その 結果、反応は収率 53%で進行したものの、当初の予想と反して不斉誘起は全く観測されず 得られた生成物 76a はラセミ体であった。不斉誘起は酸化剤として *p*-ベンゾキノンを用い た時にのみ観測された(Entry 4)。

Table 2-1. Effects of Oxidation Conditions.

	Ph Ph Ph Ph Oxidat	s) ₂ (10 mol %) -SPRIX (15 mol %) <i>ion conditions</i>	Ph Ph	
	О ^{∽^} ОН DCM (0.1	M), 25 °C, 48 h	0, 0	
	75a		76a	
Entry	Oxidation conditions	Time (h)	Yield (%) ^a	Ee (%) ^b
1	N ₂ balloon (1 atm)	60	trace	ND
2	air	60	trace	ND
3	O ₂ balloon (1 atm)	60	53	rac
4	<i>p</i> -benzoquinone (2.0 equiv	r) 12	>98	76

^{a)} Isolate yield. ^{b)} Determined by HPLC analysis.

この結果は、*p*-ベンゾキノンの持つ役割が Pd(0)の再酸化だけではないことを示している。 そこでさらなる反応性、及びエナンチオ選択性の向上を期待して、様々なベンゾキノン誘 導体を検討した(Table 2-2)。2位に Me 基を有する 88(Entry 3)では、無置換の 87 の場 合(Entry 1)と同じく、定量的に 76% ee の光学収率で目的の生成物が得られた。しかしな がら 89(Entry 4)、90(Entry 5)、91(Entry 6)のように、*p*-ベンゾキノンのオレフィン上 の置換基が多くなるにつれて収率及びエナンチオ選択性が低下した。一方、2位に Ph 基を 有する 92 では大幅に反応速度が向上し、25 °C において 4 時間で定量的に 70% ee の光学 純度で生成物を与えた(Entry 7)。0 °C においても反応速度は向上し、無置換の 87 を用い た時(Entry 2)と比べて大幅に反応時間が短縮された(Entry 8)。2位に MeO 基を有する 93 からは 25℃においてもっとも高いエナンチオ選択性を観測したものの、84%と収率は若 干低下した(Entry 9)。2位に CO₂Me 基を有する 94 では定量的に生成物が得られたものの、 選択性は 54%にまで低下した(Entry 10)。1,4-ナフトキノン 95 では反応性が著しく低下し た(Entry 11)。

	Pd(OAc); (<i>P,R,R</i>)-i-Pr-S <i>quinone</i> 75a	2 (10 mol %) SPRIX (15 mol [•] e (2.0 equiv)	%)	6a	
	DCM, 2	25 °C, 24 h			
Entry	Quinones	Temp. (°C)	Time (h)	Yield (%) ^a	Ee (%) ^b
1	<i>p</i> -benzoquinone 87	25	12	>98	76
2	<i>p</i> -benzoquinone 87	0	60	>98	82
3	2-Me- <i>p</i> -benzoquinone 88	25	12	>98	76
4	2,6-di-Me- <i>p</i> -benzoquinone 89	25	24	>98	64
5	2,3-di-Me- <i>p</i> -benzoquinone 90	25	48	82	78
6	2,3,5,6-tetra-Me- <i>p</i> -benzoquinone 91	25	48	37	-6
7	2-Ph- <i>p</i> -benzoquinone 92	25	4	>98	70
8	2-Ph- <i>p</i> -benzoquinone 92	0	18	>98	82
9	2-MeO- <i>p</i> -benzoquinone 93	25	48	84	79
10	2-CO ₂ Me- <i>p</i> -benzoquinone 94	25	24	>98	54
11	1,4-naphthoquinone 95	25	48	11	68

 Table 2-2. Effects of Quinones.

^{a)} Isolate yield. ^{b)} Determined by HPLC analysis.

使用したベンゾキノンの種類によってエナンチオ選択性が変化するため、*p*-ベンゾキノンがエナンチオ選択性の決定段階に関与していることが示唆された。実際、White らはアリル位エステル化反応においても、π-アリル Pd 錯体 96 に *p*-ベンゾキノンが配位することで Pd 中心の求電子性が高まり、アリル位官能基化が進行する機構を提唱している³⁶ (Scheme 2-30)。

Scheme 2-30. Acceleration of C-H Functionalization with *p*-Bnenzoquinone.

筆者の系も、Scheme 2-31 に示されるように p-ベンゾキノンが π -アリル Pd に配位して、 π -アクセプターとして働き Pd 中心の電子密度を下げ、カルボキシ基の求核攻撃を促進して いると推察される ³⁷⁾。その際、SPRIX 配位子は単座配位子として Pd に配位している可能 性がある ³⁸⁾。

Scheme 2-31. Speculation of the Role of *p*-Benzoquinone as a Cyclization Promoter.

2010年、Liu らはアリル位 C-H 結合アミノ化を報告しており、その中で 1,4-ナフトキノ ンが C-H 結合活性化を促進する機構を提唱している ³³)。筆者の系でも、2 位に Ph 基を有 する*p*-ベンゾキノン 92 を用いた際、反応時間が大幅に短縮されている (Table 2-2. Entry 7)。 したがって Scheme 2-32 で示すように、*p*-ベンゾキノンがオレフィン錯体の Pd 中心に配位 し、アリル位 C-H 結合活性化を促進している可能性がある。

Scheme 2-32. Speculation of the Role of *p*-Benzoquinone as a C–H Activation Promoter.

第六項 推定反応機構の考察

これまでの反応機構解析の結果から、本反応は Scheme 2-33 に示すように進行すると考 えられる。まず、Pd-SPRIX 錯体が基質のカルボキシ基と配位子交換し、オレフィンが Pd に配位することでオレフィン錯体 II を生成する。ここまでが前駆平衡である。続いて律速 段階のアリル位 C-H 結合活性が *trans* 位の Me 基上にて進行し、 π -アリル Pd 中間体 III が 生成する。続いて III に p-ベンゾキノンが π アクセプターとして配位し、Pd 中心の電子密 度が低下する。このようにして活性化された IV に、分子内のカルボキシ基が求核攻撃し、 目的の γ -ラクトンが得られ、Pd(0)は p-ベンゾキノンによって再酸化され、Pd(II)触媒が再 生する。

エナンチオ選択性はキレート錯体を形成する際、中間体 I から Pd 中心に配位する基質の オレフィンの面選択で一時的に決まり、エナンチオ選択性を保持したままアリル位 C-H 結 合活性化が進行し、 π -アリル Pd 中間体 III が形成する。分子内のカルボキシ基による求核 攻撃が p-ベンゾキノンによって促進されると、青矢印の平衡で示されるような π -アリル Pd の π - σ - π 異性化が最小限に抑えられ、一時的に決まっていたエナンチオ選択性が保持 されて環化が進行し、高いエナンチオ選択性を保って環化が進行すると考えられる。一方、 Scheme 2-32 で示したように、p-ベンゾキノンがアリル位 C-H 結合活性化を促進している 機構も考えられる。 Scheme 2-33. Plausible Catalytic Cycle.

第七項 立体選択性の発現機構にの考察

立体選択性の発現機構を明らかにするために、生成物である γ-ラクトンの絶対配置の決定を試みた。種々の溶媒を検討したものの、単結晶が得られなかったため、誘導体へと導き、その単結晶を採取し X 線構造解析を行った。

91% ee (AD-H; flow 1.0 ml/min, hexane/IPA = 20/1) の生成物 76a に水素雰囲気下で Adams' 触媒を作用させたところ定量的に反応が進行し、オレフィンが還元された誘導体 97 が得ら れた (Scheme 2-34)。この誘導体 97 の光学純度は 91% ee (IB; flow 1.0 ml/min, hexane/DCM = 10/1) のままであり、誘導体化による光学純度の変化は見られなかった。76a の HPLC chart に示される最初に観測されるピークは、(*P,R,R*)-*i*-Pr-SPRIX を反応に用いた際に主生成物として得られるエナンチオマーである。したがって、誘導体 97 の HPLC chart に示される 2 番目に観測されるピークは、(*P,R,R*)-*i*-Pr-SPRIX を反応に用いた際に主生成物として得られるエナンチオマーである。97 の光学異性体の 2 つ目のピークを分取して 99% ee 以上の 97 を得た。Et₂O / ヘキサンから再結晶をしたところ 97 の良好な単結晶が得られたため、X 線構造解析を行った(Figure 2-3)。その結果、97 の絶対配置が Flack Parameter より *R* 体であると判明した。76a から 97 への誘導体化でエナンチオ選択性の変化が見られなかったことから、基質 75a の環化反応に(*P,R,R*)-*i*-Pr-SPRIX を反応に用いた際に、主生成物として得られる γ -ラクトン誘導体も *R* 体であることが明らかとなった。

Space Group $P2_1$ (#4) Z = 2 R = 0.0354, Rw = 0.1094 GOF = 0.999Flack Parameter = -0.0 (3)

Figure 2-3. X-ray Crystallographic Analysis of Compound 97.

この絶対配置の情報を基に、立体選択性の発現機構を推定した(Figure 2-3)。Pd-SPRIX がオレフィンの面選択をする際、N-Pd-N面に対してアキシャル方向に位置する SPRIX 配 位子の *i*-Pr 基(緑色)と、基質の C5 位に結合している *cis* 位の Me 基(赤色)との立体障 害を避けるように配位した方が有利になる。続くアリル位 C-H 結合活性化が *trans* 位の Me 基上で進行し π -アリル Pd が生成する。そして分子内のカルボキシ基が π -アリル面の Pd と反対側から求核攻撃した場合、生成物の絶対配置は R になり、X 線で決定した絶対配 置と一致する。

Figure 2-4. Mode of Enantioselectivity.

実際、オレフィン上の *cis* 位の Me 基を持たない基質(*E*)-81 を用いて反応を行った際、エ ナンチオ選択性が著しく低下したことも、この機構を支持している(Scheme 2-27)。

第三節 基質一般性の検討

Pd 触媒によるエナンチオ選択的な酸化的環化反応が様々な基質で効率よく進行すれば、光学活性 γ-ラクトンの実用的合成法となり得る。そこで、基質適用範囲を検討した。置換基の効果を理解しやすく説明する OH R^1 、 R^2 、 R^3 とする。まず、 R^1 の置換基効果を検討した(Table 2-3)。

	R ¹ 0 ОН 75	Pd(OAc) ₂ (10 mol ⁰ (<i>M</i> , <i>S</i> , <i>S</i>)- <i>i</i> -Pr-SPRIX (15 <i>p</i> -benzoquinone (2.0 e DCM (0.1 M)	$\begin{array}{c} Pd(OAc)_{2} (10 \text{ mol }\%) \\ (M,S,S)-i-Pr-SPRIX (15 \text{ mol }\%) \\ \hline p-\text{benzoquinone } (2.0 \text{ equiv}) \\ \hline DCM (0.1 \text{ M}) \end{array} \xrightarrow{\textbf{R}^{1}} \overrightarrow{\textbf{R}^{1}} \\ \hline \textbf{R}^{1} \\ \hline $				
Entry	Substrate	\mathbb{R}^1	Time (h)	Yield (%) ^a	Ee (%) ^b		
1°	75a	Ph	60	>98	82		
2	75a	Ph	12	>98	76		
3	75b	1,1'-biphenyl-2,2'diyl	10	>98	78		
4	75c	-(CH ₂)5-	60	>98	68		
5	75d	Me	60	>98	40		
6	75e	Н	60	>98	5		
7	75f	p-FC ₆ H ₄	14	>98	86		
8	75g	<i>p</i> -ClC ₆ H ₄	14	>98	88		
9	75h	<i>p</i> -BrC ₆ H ₄	12	>98	85		
10	75i	<i>p</i> -MeOC ₆ H ₄	10	>98	67		

Table 2-3. Effect of Substituent on the R¹.

^{a)} Isolate yield. ^{b)} Determined by HPLC analysis. ^{c)} At 0 °C.

当初の条件検討で用いた基質 75a は 25 °C においては、定量的に 76% ee で目的とする γ -ラクトンを与えている (Entry 2)。9H-フルオレン環やシクロへキサン環がスピロ縮合して いる基質 75b、75c でも反応は円滑に進行し、対応する γ -ラクトン 76b、76c をそれぞれ定 量的に 78% ee、68% ee で与えた (Entries 3 and 4)。R¹が Me 基の場合でも反応は定量的に 進行し 40% ee であった (Entry 5)。R¹が水素の場合は上記の基質 75d と同様に反応が進行 したものの、エナンチオ選択性は 5% ee だった (Entry 6)。嵩高い置換基が結合している程 反応性が高いのは、Thorpe-Ingold effect により環化が促進されたためだと考えられる。そ して嵩高いほどエナンチオ選択性が高く観測されたのは、分子内のカルボキシ基の求核攻 撃が促進されることで、 π -アリル Pd の π - σ - π 異性化が抑制され、キレート錯体を形成した 際に一時的に決定された選択性を保ったまま環化が進行しやすくなった為だと考えられる (Figure 2-4)。

Figure 2-4

能性がある (Scheme 2-34)。

次に求核部位であるカルボキシ基の電子的な効果を確認するため、R¹の芳香環の p-位に ハロゲン及び MeO 基を導入した基質を検討した (Entries 7-10)。p-位に F 基を導入した基 質 75f では無置換の Ph 基の場合 (Entry 2) と比較すると反応時間は僅かに長時間化したも のの、エナンチオ選択性は向上し、86% ee で対応する γ-ラクトン 76f を定量的に与えた (Entry 7)。同様に p-位に Cl 基を導入した基質 75g からも 88% ee と高い不斉収率で生成物 76g が得られた (Entry 8)。Br 基を有する基質 75h も適用可能であり、85% ee で対応する 生成物 76h が得られた (Entry 9)。電子供与性の MeO 基を p-位に持つ基質 75i では反応時 間は短縮されたものの、エナンチオ選択性は 67% ee にまで低下した。Figure 2-6 の Hammett plot で示されるように、R¹の芳香環上の置換基の σ 値と反応初速度 (Table S9) に相関が 見られ、芳香環の電子密度が高い基質ほど反応性が高かった。電子求引基を有する基質 (Entries 7-9) は電離度が高いと考えられる。それ故、青矢印の平衡で示されるような基質 と触媒間の前駆平衡の段階で Pd 中心に基質が 2 分子配位した中間体の濃度が高まった可

Figure 2-6. Hammet plot (for initial reaction rate)

さらに Figure 2-7 に示すように、エナンチオ選択性にも相関が見られ、芳香環の *p*-位に 電子求引基であるハロゲンを有する電子不足な基質からは最高 88% ee の高いエナンチオ 選択性が観測されたものの、電子供与基である MeO 基を有する電子豊富な基質では 67% ee にまでエナンチオ選択性が低下した。電子求引性の置換基を有する基質 75f-h では、分子 内のカルボキシ基の電離度が高いと予想される。そのため赤矢印の平衡で示されるような、 π-アリル Pd 中間体のカルボキシラートアニオンのプロトン化が起こりにくいと考えられる。したがってカルボン酸の状態よりも求核性が高いまま環化が進行し易いため、高いエナンチオ選択性が観測されたのだと考えている(Scheme 2-35)。

Scheme 2-35. Non-Productive Ligand Exchange Pathways.

続いて、R²に芳香環を導入し基質適用範囲の拡充を試みた(Table 2-4)。R²に Ph 基を導入した基質 98a~c を用いて反応を行うと、R¹が Ph 基 (Entry 1)、Me 基 (Entry 2)、H (Entry 3) に関わらず原料の転化率は約 60%に低下した。しかしながら、副生成物は認められず 望みの γ -ラクトン 99a~c が 55~56%で得られた。R²は Ph 基以外に *p*-MeC₆H₄基 (Entry 4) や *p*-BrC₆H₄基 (Entry 5)、2-naph 基 (Entries 6 and 7) も適用可能であり、中程度の収率、 エナンチオ選択性で目的とする γ -ラクトン 99d~g を与えた。

	R ¹ OOH 98		Pd(C (<i>M</i> ,S,S)-i- <i>p</i> -benzc DCf	DAc) ₂ (10 mol %) .Pr-SPRIX (15 mo oquinone (2.0 equ M (0.1 M), 25 °C	bl %) iv) O	$\rightarrow \qquad \begin{array}{c} R^{1} \\ R^{1} \\ 0 \\ 0 \\ \end{array} \\ \begin{array}{c} R^{2} \\ R^{2} \\ 99 \end{array}$		
Entry	Substrate	\mathbb{R}^1	R ²	Time (h)	Conv. (%) ^a	Yield (%) ^b	Ee (%) ^c	
1	98a	Ph	Ph	100	61	55	67	
2	98b	Me	Ph	100	62	55	37	
3	98c	Н	Ph	105	60	56	40	
4	98d	Н	<i>p</i> -MeC ₆ H ₄	100	70	68	30	
5	98e	Н	<i>p</i> -BrC ₆ H ₄	100	45	38	29	
6	98f	Ph	2-naph	100	63	53	61	
7	98g	Me	2-naph	100	65	47	63	

 Table 2-4. Effect of Substituent on the R².

^{a)} Determined by 1H NMR.^{b)} Isolate yield. ^{c)} Determined by HPLC analysis.

上述の通り、オレフィン上に芳香環を導入すると原料の転化率が低下した。そこで筆者は この原因を明らかにしようと試みた(Scheme 2-36)。

Scheme 2-	-36. (Checki	ng a	Catal	ytic A	Activity.
			<u> </u>		~	

	Pd(OAc) ₂ (10 mol %) (<i>rac)-i</i> -Pr-SPRIX (15 mol %) <i>p</i> -benzoquinone (2.0 equiv)	75a (1.0 equiv)	99a ; >98% +
98a ⁻	DCM (0.1 M), 25 °C, 80 h		76a ; >98%

基質 98a を最適条件に付し反応を TLC で追跡した結果、反応開始から 60~80 時間で 99a の生成が止まり、98a の減少が確認できなくなった。次に反応が停止した系に基質 75a を 1 当量加えたところ 76a が速やか生成し、さらに止まっていた 98a の環化も進行し始めた。 以上の結果から、少なくとも Pd-SPRIX 触媒は失活していなかったと確認できた。Pd-SPRIX 錯体がどのような形で捕捉されていたかは現段階では不明であるものの、生成物による反応阻害があった可能性がある。 次に R²は Me 基のまま、R³に Me 基を導入し、四置換オレフィンを有する基質 100 で検 討した(Table 2-5)。その結果、R¹に Ph 基を持つ基質 100a では収率が極端に低下し、得 られた生成物 101a もラセミ体であった(Entry 1)。R¹が Me 基の基質 100b では反応が進行 しなかった(Entry 2)。このように R³に Me 基が存在すると反応性が極端に低下した。現 段階では、キレート錯体を形成する際、立体障害が大きくなりオレフィンが Pd 中心に近 づきにくくなった為だと考えている。

	R ¹	Me OH 100	Pd(OAc) ₂ (1 (<i>M,S,S</i>)- <i>i</i> -Pr-SPR <i>p</i> -benzoquinone DCM (0.1 M), 2	0 mol %) IX (15 mol %) e (2.0 equiv) 5 °C, 100 h	01
Entry	Substrate	\mathbb{R}^1	Conv. (%) ^a	Yield (%) ^b	Ee (%) ^c
1	100a	Ph	10	9	rac
2	100b	Me	0	0	_

 Table 2-5. Effect of Substituent on the R³.

^{a)} Determined by 1H NMR.^{b)} Isolate yield. ^{c)} Determined by HPLC analysis.

第四節 まとめ

以上の通り筆者は、4-アルケン酸を基質とするエナンチオ選択的な酸化的環化反応を達成した。本反応は合成化学的に重要なγ-ラクトン誘導体を最高 88% ee で与える有用性の高い反応である。ここで、これまでの反応機構解析(第二節 第一項~第七項)及び基質一般性の検討(第三節)によって得られた反応機構に関する知見をまとめる。

- 4-アルケン酸のオレフィン上のδ位に Me 基を持たない基質 78 で環化反応が進行せず、基質 83 の環化がアリル位で進行した為、本反応は Wacker 型機構ではなく、π-アリル機構で進行していると推察された。(第二節 第一項)。
- ② カルバメート求核部位を持つ基質 84 を用いて量論反応をした際、キレート錯体と思われる錯体 86 が得られた為、4-アルケン酸基質でも同様にキレート錯体を経由していると類推された(第二節 第二項)。
- ③ 独立系で観測した速度論的同位体効果の値は 1.8 であるため、アリル位 C-H 結合活 性化が律速段階に関与している可能性が高い。混合系では 1.1 となり、ほとんど観測 されなかった。したがって C-H 結合活性化の前に、触媒-基質間に配位平衡が存在す ることが示唆された。さらに、(E)-81 及び(Z)-81 を用いて反応性と選択性の差を確認 したところ、(E)-81 は反応性が高いものの選択性が悪く、(Z)-81 は反応性が悪いもの の選択性は中程度観測された。したがって、本反応の C-H 結合活性化は trans 位の 末端 Me 基上で優先的に進行すると推察された(第二節 第三項)。
- ④ Kinetic studyの結果、本反応は Pd-SPRIX 触媒に対して一次であること、律速段階は Pd(0)の再酸化ではないこと、及びアリル位 C-H 結合活性化の段階に p-ベンゾキノン が関与していないことが示された。さらに本反応の活性種が Pd と SPRIX の1対1 の錯体であることが示された(第二節 第四項)。
- ⑤ 本反応において p-ベンゾキノンを加えない系では不斉誘起が観測されなかったため、 p-ベンゾキノンは Pd(0)の再酸化剤という役割だけではなく、π-アクセプターとして 働き、環化を促進する働きがあると推察された。本系ではこの環化促進作用によっ て π-σ-π 異性化を抑制し、高い光学収率を達成していると考えられる(第二節 第五 項)。
- ⑥ 生成物の絶対配置の情報を元に、本反応の立体選択性の発現機構を推定した。まず 基質の cis 位の末端 Me 基と SPRIX 配位子の i-Pr 基が立体反発を避けるようにキレー ト錯体を形成する。続くアリル位 C-H 結合活性化が進行した後、π-アリル Pd を分子 内のカルボキシ基が Pd の反対側から求核攻撃することで生成物の主エナンチオマ ーを与える機構が推察された(第二節 第七項)。
- ⑦ 基質 75a~e で、カルボニルα位の置換基が嵩高いほど高い Ee が観測された。これは 環化が促進されると π-アリル Pd の π-σ-π 異性化が抑制され環化が促進されたため、

キレート錯体を形成した際に一時的に決定していた選択性を保ったまま環化が進行 し、高い不斉誘起が観測されたと説明できる(第三節)。

- ⑧ 基質 75f~iにおいて電子不足な基質程反応性が低かった。これらの基質のカルボン酸の電離度は高い。そのため、基質と触媒間の前駆平衡の段階で Pd 中心に基質が2分子配位した中間体の濃度が高まった可能性がある(第三節)。
- ⑨ 基質 75f~iにおいて電子不足な基質程エナンチオ選択性が高かった。これらの基質の カルボン酸の電離度は高い。そのためπ-アリル Pd 中間体のカルボキシラートアニ オンのプロトン化が起こりにくいと考えられる。したがってカルボン酸の状態より も求核性が高いまま環化が進行し易いため、高いエナンチオ選択性が観測されたの だと考えられる(第三節)。

以上の知見から、本反応は第二節 第六項 (Scheme 2-31) で示す機構で進行しているものと推察された。これは単一のキラル Pd 触媒による、エナンチオ選択的酸化的アリル位 C-H 結合官能基化の初めての例である。

参考文献

- (a) C. G. Frost, J. Howarth, J. M. J. Williams, *Tetrahedron Asymmetry*, **1992**, *3*, 1089; (b) B. M. Trost, D. L. Van Vranken, *Chem. Rev.*, **1996**, *96*, 395; (c) B. M. Trost, M. L. Crawley, *Chem. Rev.*, **2003**, *103*, 2921.
- 2) S. Hansson, A. Heumann, T. Rein, B. Aakermark, J. Org. Chem., 1990, 55, 975.
- Allylic C-H oxidations; (a) M. S. Chen, M. C. White, J. Am. Chem. Soc. 2004, 126, 1346. (b)
 M. S. Chen, N. Prabagaran, N. A. Labenz, M. C. White, J. Am. Chem. Soc. 2005, 127, 6970. (c)
 K. J. Fraunhoffer, N. Prabagaran, L. E. Sirois, M. C. White, J. Am. Chem. Soc. 2006, 128, 9032.
 (d) J. H. Delcamp, M. C. White, J. Am.Chem. Soc. 2006, 128, 15076. (e) D. J. Covell, M. C.
 White, Angew. Chem., Int. Ed. 2008, 47, 6448. (f) T. Mitsudome, T. Umetani, N. Nosaka, K.
 Mori, T. Mizugaki, K. Ebitani, K. Kaneda, Angew.Chem., Int. Ed. 2006, 45, 481. (g) L. T.
 Pilarski, N. Selander, D. Bose, K. Szabo, J. Org. Lett. 2009, 11, 5518. (h) B.-L. Lin, J. A.
 Labinger, J. E. Bercaw, Can. J. Chem. 2009, 87, 264. (i) E. Thiery, C. Aouf, J. Belloy, D.
 Harakat, J. Le Bras, J. Muzart, J. Org. Chem. 2010,75, 1771. (j) W. H Henderson, C. T. Check, N. Proust, J. P. Stambuli, Org. Lett. 2010, 12, 824.
- Allylic C-H aminations; (a) S. A. Reed, M. C. White, J. Am. Chem. Soc. 2008, 130, 3316. (b) R. C. Larock, T. R. Hightower, L. A. Hasvold, K. P. Peterson, J. Org. Chem. 1996, 61, 3584.(c) K. J. Fraunhoffer, M. C. White, J. Am. Chem. Soc. 2007, 129,7274. (d) G. Liu, G. Yin, L. Wu, Angew. Chem., Int. Ed. 2008, 47, 4733. (e) G. T. Rice, M. C. White, J. Am. Chem. Soc. 2009, 131, 11707. (f) S. A. Reed, A. R. Mazzotti, M. C. White, J. Am. Chem.Soc. 2009, 131, 11701. (g) F. Nahra, F. Liron,; G. Prestat, C. Mealli, A. Messaoudi, G. Poli, Chem. Eur. J. 2009, 15, 11078. (h) Y. Shimizu, Y. Obora, Y. Ishii, Org. Lett. 2010, 12, 1372.
- Allylic C-H alkylations; (a) S. Lin, C-X. Song, G-X. Cai, W-H. Wang, Z-J. Shi, J. Am. Chem. Soc. 2008, 130, 12901. (b) M. S. Chen, M. C. White, J. Am. Chem. Soc. 2004, 126, 1346. (c) A. J. Young, M. C. White, J. Am. Chem. Soc. 2008, 130, 14090.
- 6) Allylic C-H Fluorination; M. G. Braun, A. G. Doyle, J. Am. Chem. Soc., 2013, 135, 12990.
- 7) K. J. Fraunhoffer, M. C. White, J. Am. Chem. Soc. 2007, 129, 7274.
- 8) (a) E. M. Stang, M. C. White, *Nature Chem.* 2009, *1*, 547. (b) K. F. Fraunhoffer, N. Prabagaran, L. E. Sirois, M. C. White, *J. Am. Chem. Soc.* 2006, *128*, 9032.
- 9) D. J. Covell, M. C. White, Angew. Chem., Int. Ed. 2008, 47, 6448.
- 10) Z. Chai, T. J. Rainey, J. Am. Chem. Soc., 2012, 134, 3615.
- 11) B.M. Trost, D. A. Thaisrivongs, E. J. Donckele, Angew. Chem., Int. Ed. 2013, 125, 1563.
- 12) (a) M. A. Arai, T. Arai, and H. Sasai, *Org. Lett.* **1999**, *1*, 1795. (b) M. A. Arai, M. Kuraishi, T. Arai, and H. Sasai, *J. Am. Chem. Soc.* **2001**, *123*, 2907.
- 13) S. D. Sokolov, G. B. Tikhomirova, K. F. Turchin, Chemistry of Heterocyclic Compounds. 1985,

21, 507.

- 14) G. R. Porter, H. N. Rydon, J. A. Schofield, Nature. 1958, 182, 927.
- 15) (a) T. Hosokawa, K. Maeda, K. Koga, I. Moritani, Tetrahedron Lett. 1973, 10, 739. (b) T. Hosokawa, M. Hirata, S. Murahashi, A. Sonoda, Tetrahedron Lett. 1976, 21, 1821. (c) T. Hosokawa, S. Yamashita, S. Murahashi, A. Sonoda, Bull. Chem. Soc. Jpn. 1976, 49, 3662. (d) T. Hosokawa, S. Miyagi, S. Murahashi, A. Sonoda, J. Org. Chem. 1978, 43, 2752. (e) T. Hosokawa, S. Miyagi, S. Murahashi, A. Sonoda, J. Chem. Soc. Chem. Commun. 1978, 687. (f) T. Hosokawa, T. Uno, S. Murahashi, J. Chem. Soc. Chem. Commun. 1979, 475. (g) T. Hosokawa, T. Uno, S. Inui, S. Murahashi, J. Am. Chem. Soc. 1981, 103, 2318. (h) T. Hosokawa, C. Okuda, S. Murahashi, J. Org. Chem. 1985, 50, 1282. (i) T. Hosokawa, Y. Imada, S. Murahashi, Bull. Chem. Soc. Jpn. 1985, 58, 3282. (j) T. Hosokawa, T. Kono, T. Shinohara, S. Murahashi, J. Organomet. Chem. 1989, 370,; For review, see; (k) T. Hosokawa, S. Murahashi, Acc. Chem. Res. 1990, 23, 49.; Wacker-type cyclization of alkenyl alcohol, see: (1) T. Hosokawa, H. Ohkata, I. Moritani, Bull. Chem. Soc. Jpn. 1975, 48, 1533.; Wacker-type cyclization of alcohols or oximes, and related Pd-catalyzed reaction, see: (m) T. Hosokawa, M. Hirata, S. Murahashi, A. Sonoda, Tetrahedron Lett. 1976, 21, 1821. (n) K. Maeda, T. Hosokawa, S. Murahashi, I. Moritani. Tetrahedron Lett. 1975, 51, 5075. (o) T. Hosokawa, N. Shimo, K. Maeda, A. Sonoda, S. Murahashi, Tetrahedron Lett. 1976, 5, 383. (p) T. Hosokawa, T. Kono, T. Uno, S. Murahashi, Bull. Chem. Soc. Jpn. 1986, 59, 2191.
- A. Miyashita, A. Yasuda, H. Tanaka, K. Toriumi, T. Ito, T. Souchi, and R. Noyori, J. Am. Chem. Soc. 1980, 102, 7932.
- (a) Y. Uozumi, K. Kato, T. Hayashi, J. Am. Chem. Soc. 1997, 119, 5063. (b) Y. Uozumi, K. Kato, T. Hayashi, J. Org. Chem. 1998, 63, 5071. (c) Y. Uozumi, H. Kyota, K. Kato, M. Ogasawara, T. Hayashi, J. Org. Chem. 1999, 64, 1620. (d) T. Hayashi, K. Yamasaki, M. Mimura, Y. Uozumi, J. Am. Chem. Soc. 2004, 126, 3036.; Synthesis of other boxax ligands, see: (e) H. Hocke, Y. Uozumi, Synlett 2002, 2049. (f) H. Hocke, Y. Uozumi, Tetrahedron 2003, 59, 619.
- (a) D. A. Evans, K. A. Woerpel, M. M. Hinman, M. M. Faul, J. Am. Chem. Soc. 1991, 113, 726.
 (b) E. J. Corey, N. Imai, H.-Y. Zhang, J. Am. Chem. Soc. 1991, 113, 728.
- 19) S. Ikeda, D.-M. Cui, Y. Sato, J. Am. Chem. Soc. 1999, 121, 4712.
- 20) K. Takenaka, Y. Tanigaki, M. L. Patil, C. V. L. Rao, S. Takizawa, T. Suzuki, H. Sasai, *Tetrahedron Asymmetry*, **2010**, *21*, 767.
- 21) K. Takenaka, S. C. Mohanta, M. L. Patil, C. V. L. Rao, S. Takizawa, T. Suzuki, H. Sasai, Org. Lett. 2010, 12, 3480.
- 22) T. Tsujihara, T. Shinohara, K. Takenaka, S. Takizawa, K. Onitsuka, M. Hatanaka, H. Sasai, J. Org. Chem. 2009, 74, 9274

- 23) (a) T. Tsujihara, K. Takenaka, K. Onitsuka, M. Hatanaka, H. Sasai, J. Am. Chem. Soc. 2009, 131, 3452. For racemic reactions. See; (b) X. Tong, M. Beller, M. K. Tse, J. Am. Chem. Soc. 2007, 129, 4906. (c) L. L.Welbes, T. W. Lyons, K. A.Cychosz, M. S.Sanford, J. Am. Chem. Soc. 2007, 129, 5836.
- 24) K. Takenaka, S. Hashimoto, S. Takizawa, H. Sasai, Adv. Synth. Catal. 2011, 353, 1067.
- 25) Y. Li, D. Song, V. M. Dong, J. Am. Chem. Soc., 2008, 130, 2962.
- 26) K. Takenaka, Y. D. Dhage, H. Sasai, Chem. Commun., 2013, 49, 11224.
- 27) A. Kasahara, T. Izumi, K. Sato, M. Maemura, T. Hayasaka, Bull. Chem. Soc. Jpn., 1977, 50, 1899.
- 28) G. B. Bajracharya, P. S. Koranne, R. N. Nadaf, R. K. M. Gabr, K. Takenaka, S. Takizawa, H. Sasai, *Chem. Commun.* **2010**, 9064.
- 29) R. C. Rarock, T. R. Hightower, J. Org. Chem, 1993, 58, 5298.
- 30) Y. Tanigaki. Thesis, graduate school of sience, Osaka University, 2009.
- H. Rudler, P. Harris, A. Parlier, F. Cantagrel, B. Denise, M. Bellassoued, J. Vaissermann, J. Organomet. Chem. 2001, 624, 186.
- 32) X. Ye, G. Liu, B. V. Popp, and S. S. Stahl, J. Org. Chem. 2011, 76, 1031
- 33) G. Yin, Y. Wu, G. Liu, J. Am. Chem. Soc. 2010, 132, 11978.
- 34) S. Lin, C-X. Song, G-X. Cai, W-H. Wang, Z-J. Shi, J. Am. Chem. Soc. 2008, 130, 12901.
- 35) F. Kakiuchi, Y. Matsuura, S. Kan, N. Chatani, J. Am. Chem. Soc. 2005, 127, 5936
- 36) S. A. Reed, A. R. Mazzotti, M. C. White, J. Am. Chem. Soc. 2009, 131, 11701
- 37) J. E. Baeckvall, S. E. Bystroem, R. E. Nordberg, J. Org. Chem. 1984, 49, 4619.
- 38) R. K. Gabr, T. Hatakeyama, K. Takenaka, S. Takizawa, Y. Okada, M. Nakamura, H. Sasai, *Chem. Eur. J.* 2013, 19, 9518

実験項

General considerations

All reactions were carried out with standard Schlenk technique under a nitrogen atmosphere. All NMR spectra were recorded at 25 °C on a JEOL ECS400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C). Chemical shifts are reported in δ ppm referenced to an internal tetramethylsilane standard for ¹H NMR. Chemical shifts of ¹³C NMR are given relative to CDCl₃ (δ 77.0), CD₂Cl₂ (δ 53.1), or CD₃OD (δ 49.0). ESI and APCI mass spectra were recorded on a Thermo Fisher, LTQ ORBITRAP XL. Melting points were measured using a Yanaco melting point apparatus MP-S9 and were uncorrected. IR spectra were obtained using a JASCO FT/IR-4100 instrument. Optical rotations were measured with a JASCO P-1030 polarimeter. HPLC analyses were performed on JASCO HPLC system (JASCO PU 2080 pump and MD-2010 UV/Vis detector). Anhydrous diethyl ether, THF and toluene were purchased from Kanto Chemicals and were used without further purification. Other solvents were purified prior to use by standard techniques. *p*-Benzoquinone was purified by sublimation under vacuum. SPRIXs were prepared according to the methods reported by our laboratory. All other chemicals were purchased from commercial suppliers and used as received. Column chromatography was conducted on Kishida Silica Gel (spherical, 63–200 µm).

Compound data

General procedure for the preparation of 4-alkenoic acids derivatives 75, 98, 81, 83 and 100.

To a solution of diisopropylamine (21 mmol) in THF (21 mL) was added *n*-BuLi (2.6 M solution in hexane; 8.1 mL) slowly at 0 °C, which was stirred at that temperature for 30 min. To this solution was added a solution of corresponding diphenylacetic acid (10.0 mmol) in THF (10 mL). The reaction mixture was allowed to warm to rt and stirred for an additional 30 min. Then corresponding allyl chrolide or homoallyl chroride (11 mmol) was added dropwise at 0 °C and the resulting solution was stirred at rt for 16 h. After being quenched by the addition of 1 M aq HCl, the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. After removal of the volatiles under reduced pressure, the residue was purified by column chromatography on silica gel (hexane/EtOAc = 5/1, R_f 0.2) and recrystallization from hexane/EtOAc to give desired 4-alkenoic acids derivatives **75**, **98**, **81**, **83** or **100**.

5-Methyl-2,2-diphenylhex-4-enoic acid (75a). 85% yield. Colorless crystal. Mp: 139–141 °C. HRMS (ESI): calcd for $C_{19}H_{20}NaO_2$: *m/z* 303.1360 ([M+Na]⁺), found: *m/z* 303.1353. ¹H NMR (CDCl₃): δ 7.34–7.18 (m, 10H), 5.03 (t, 1H, *J* = 7.1 Hz), 3.07 (d, 2H, *J* = 7.1 Hz), 1.55 (s, 3H), 1.24 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 180.0 (C=O), 142.1 (C), 135.1 (CH), 129.2 (4CH), 127.8 (4CH), 126.9 (2CH), 119.2 (CH), 60.5 (C), 36.7 (CH₂), 25.8 (CH₃), 17.5 (CH₃). IR (KBr): 3060, 3037, 2969, 2927, 2911, 2856, 2808, 2686, 2637, 2589, 1692, 1302, 1244, 954, 723, 698, 657 cm⁻¹.

5-Methyl-2,2-diphenylhex-4-enoic acid- d_6 (75a-d6). 85% yield. Colorless crystal. Mp: 139–141 °C. HRMS (ESI): calcd for C₁₉H₁₄D₆NaO₂: m/z 309.1737 ([M+Na]⁺), found: m/z 309.1722. ¹H NMR (CDCl₃): δ 7.30–7.26 (m, 10H), 5.04 (t, 1H, J = 7.1 Hz), 3.08 (d, 2H, J = 7.1 Hz). ¹³C{¹H} NMR (CDCl₃): δ 179.7 (C=O), 142.1 (2C), 129.1 (4CH), 127.8 (4CH), 126.9 (2CH), 119.2 (CH), 60.4 (C), 36.6 (CH₂) (signals of the deuterated carbons could not be detected). IR (KBr): 2962, 2927, 2874, 2861, 1790, 1467, 1379, 1161, 1066, 884, 758, 724, 697, 513, 505, 496, 481, 468, 450, 431, 421, 407 cm⁻¹.

9-(3-Methylbut-2-enyl)-9H-fluorene-9-carboxylic acid (75b). 78% yield. Light yellow needle. Mp: 129–131 °C. HRMS (ESI): calcd for C₁₉H₁₈NaO₂: *m/z* 301.1204 ([M+Na]⁺), found: *m/z* 301.1197. ¹H NMR (CDCl₃): δ 7.71 (d, 2H, *J* = 7.2 Hz), 7.58 (d, 2H, *J* = 7.2 Hz), 7.39 (t, 2H, *J* = 7.2 Hz), 7.30 (t, 2H, *J* = 7.2 Hz), 4.82 (t, 1H, *J* = 7.2 Hz), 2.92 (d, 2H, *J* = 7.2 Hz) 1.53 (s, 3H), 1.38 (s, 3H). ¹³C {¹H} NMR (CDCl₃): δ 179.4 (C=O), 144.7 (C), 140.7 (C), 135.4 (C), 128.1 (CH), 127.3 (CH), 125.1 (CH), 119.9 (CH), 118.2 (CH), 61.0 (C), 36.5 (CH₂), 25.7 (CH₃), 18.6 (CH₃). IR (KBr): 3064, 3021, 2968, 2935, 2879, 2637, 2517, 1699, 1687, 1678, 1656, 1648, 1638, 1449, 1402, 1272, 739, 680 cm⁻¹.

1-(3-Methylbut-2-enyl)cyclo-hexanecarboxylic acid (75c). 67% yield. Colorless crystal. Mp: 102–104 °C. HRMS (APCI): calcd for $C_{12}H_{21}O_2$: *m/z* 197.1542 ([M+Na]⁺), found: *m/z* 197.1537. ¹H NMR (CD₃OD): δ 5.09 (t, 1H, *J* = 8.0 Hz), 2.19 (d, 2H, *J* = 8.0 Hz), 2.02 (d, 2H, *J* = 16.0 Hz), 1.68 (s, 3H), 1.60–1.18 (m, 13H). ¹³C{¹H} NMR (CD₃OD): δ 181.4 (C=O), 135.7 (C), 121.3 (CH), 49.4 (C), 40.8 (CH₂), 35.8 (CH₂), 27.9 (CH₂), 27.0 (CH₃), 25.3 (CH₂), 18.9 (CH₃). IR (KBr): 2970, 2928, 2855, 2727, 2631, 1735, 1718, 1701, 1686, 1678, 1656, 1648, 1457, 1380, 1330, 1250, 1192, 1138, 969, 951, 932, 840 cm⁻¹.

2,2,5-Trimethylhex-4-enoic acid (75d). 91% yield. Colorless liquid. HRMS (APCI): calcd for C₉H₁₆O₂: m/z 157.1229 ([M+Na]⁺), found: m/z 157.1222. ¹H NMR (CDCl₃): δ 5.13 (t, 1H, J = 7.5 Hz), 2.25 (d, 2H, J = 7.5 Hz), 1.71 (s, 3H), 1.61 (s, 3H), 1.18 (s, 6H). ¹³C{¹H} NMR (CDCl₃): δ 185.0 (C=O), 134.5 (C), 119.6 (CH), 42.7 (C), 38.4 (CH₂), 26.0 (CH₃), 24.5 (2CH₃), 17.9 (CH₃). IR (KBr): 2972, 2929, 2876, 2725, 2671, 2619, 1701, 1474, 1453, 1409, 1385, 1379, 1315, 1265, 1241, 1201, 1163, 944, 782, 768, 601, 555 cm⁻¹.

2,2-bis(4-fluorophenyl)-5-methylhex-4-enoic acid (75f). 85% yield. White solid, Mp: 161–163 °C. calcd for C₁₉H₁₈F₂O₂: m/z 317.1353 ([M+H]+), found: m/z 317.1347 ¹H NMR (CDCl₃) d 7.24-7.22(m, 4H; Ar-*H*), 7.01-6.96(m, 4H; Ar-*H*), 4.99(t, 1H, $J_{HH} = 7.1$; CH₂C*H*=C), 3.02(d, 2H, $J_{HH} = 7.1$; CH₂), 1.57(s, 3H; CH₃), 1.24(s, 3H; CH₃) ¹³C NMR (CDCl₃) 180.0(*C*=O), 161.7(d, $J_{CF} = 247.1$; Ar-C), 137.6(d, $J_{CF} = 3.1$; Ar-C), 135.8(CMe₂), 130.7(d, $J_{CF} = 7.8$; Ar-C), 118.6(CH₂CHC=C), 114.6(d, $J_{CF} = 21.2$; Ar-C), 59.4(CAr₂), 36.8(CH₂), 25.8(CH₃), 17.6(CH₃) IR (KBr): 2971, 2923, 2872, 1702, 1605, 1508, 1234, 1161, 829, 410 cm–1.

2,2-bis(4-chlorophenyl)-5-methylhex-4-enoic acid (75g). 85% yield. White solid, Mp: 171–173 °C. calcd for C₁₉H₁₉Cl₂O₂: m/z 349.0762 ([M+H]⁺), found: m/z 349.0758 ¹H NMR (CDCl₃) 7.27(d, 4H, $J_{HH} = 8.7$; Ar-H), 7.20(d,, 4H, $J_{HH} = 8.7$; Ar-H), 4.97(t, 1H, $J_{HH} = 7.0$; CH₂CH=C), 3.02(d, 2H, $J_{HH} = 7.0$; CH₂), 1.58(s, 3H; CH₃), 1.26(s, 3H; CH₃) ¹³C NMR (CDCl₃) 179.2(C=O), 140.2(Ar-C), 136.0(CMe₂), 133.2(Ar-C), 130.4(Ar-C), 128.0(Ar-C), 118.3(CH₂CHC=C), 59.7(CAr₂), 36.5(CH₂), 25.9(CH₃), 17.6(CH₃) IR (KBr): 2972, 2924, 1702, 1492, 1399, 1250, 1094, 1013, 823, 761, 508 cm–1.

2,2-bis(4-bromophenyl)-5-methylhex-4-enoic acid (75h). 85% yield. White solid, Mp: 167–169 °C. calcd for C₁₉H₁₈Br₂O₂: m/z 438.9723 ([M+H]⁺), found: m/z 438.9732 ¹H NMR (CDCl₃) δ 7.42(d, 4H; Ar-*H*), 7.14(d, 4H; Ar-*H*), 4.96(t, 1H; CH₂C*H*=C), 3.01(d, 2H; C*H*₂), 1.57(s, 3H; C*H*₃), 1.26(s, 3H; C*H*₃) ¹³C NMR (CDCl₃) 179.1, 140.6, 136.1, 131.0, 130.8, 121.4, 118.2, 59.8, 36.4, 25.9, 17.6. IR (KBr): 2966, 2917, 2861, 1701, 1489, 1439, 1400, 1263, 1072, 1010, 817, 739, 418 cm–1.

2,2-bis(4-methoxyphenyl)-5-methylhex-4-enoic acid (75i). 85% yield. Pale yellow wax. calcd for C₂₁H₂₄O₄Na: m/z 363.1572 ([M+Na]+), found: m/z 363.1569 ¹H NMR (CDCl₃) δ 7.22(d, 4H, $J_{\text{HH}} = 8.8$; Ar-*H*), 6.83(d, 4H, $J_{\text{HH}} = 8.8$; Ar-*H*), 5.03(t, 1H, $J_{\text{HH}} = 6.9$; CH₂C*H*=C), 3.81(s, 6H; OC*H*₃), 3.03(d, 2H, $J_{\text{HH}} = 6.9$; CH₂), 1.59(s, 3H; CH₃), 1.30(s, 3H; CH₃) ¹³C NMR (CDCl₃) 180.9(*C*=O), 158.2(Ar-*C*), 134.8(Ar-*C*), 134.4(*C*Me₂), 130.2(Ar-*C*), 119.4(CH₂CH=C), 113.0(Ar-*C*), 59.1(CAr₂), 55.2(OCH₃), 36.8(CH₂), 25.9(CH₃), 17.6(CH₃). IR (KBr): 2939, 1765, 1605, 1511, 1461, 1294, 1253, 1164, 1034, 827, 448, 406 cm–1.

(*E*)-2,2-Diphenylhex-4-enoic acid (81). 85% yield (*E*/*Z* = 86:14). White crystalline solid. Mp: 114–116 °C. HRMS (ESI): calcd for C₁₈H₁₈NaO₂: *m*/*z* 289.1204 ([M+Na]⁺), found: *m*/*z* 289.1188. For *E* isomer, ¹H NMR (CDCl₃): δ 7.31–7.22 (m, 10H), 5.31–5.19 (m, 2H), 3.08 (d, 2H, *J* = 6.4 Hz), 1.50 (dd, 3H, *J* = 5.6 Hz, *J* = 0.9 Hz). ¹³C{¹H} NMR (CDCl₃): δ 179.9 (C=O), 142.1 (CH), 129.3 (2C), 129.1 (4CH), 127.8 (4CH), 126.9 (2CH), 125.9 (CH), 60.5 (C), 41.3 (CH₂), 18.0 (CH₃). IR (KBr): 3087, 3062, 3030, 2969, 2913, 2853, 2804, 2730, 2525, 1701, 1294, 1270, 1240, 965, 937, 920, 761, 699, 660, 638, 494 cm⁻¹.

2,2-Diphenylhex-5-enoic acid (83). 85% yield. White crystalline solid. Mp: 132–134 °C. HRMS (ESI): calcd for C₁₈H₁₈NaO₂: m/z 289.1204 ([M+Na]⁺), found: m/z 289.1188. ¹H NMR (CDCl₃): δ 7.34–7.25 (m, 10H), 5.75 (ddt, 1H, J = 17.0 Hz, J = 10.2 Hz, J = 6.5 Hz), 4.95 (dd, 1H, J = 17.0 Hz, J = 1.6 Hz), 4.91 (dd, 1H, J = 10.2 Hz, J = 1.6 Hz), 2.45 (m, 2H), 2.45 (m, 2H). ¹³C{¹H} NMR (CDCl₃): δ 179.7 (C=O), 142.2 (2C), 138.1 (CH), 129.0 (4CH), 128.0 (4CH), 127.0 (2CH), 114.6 (CH₂), 60.0 (C), 37.1 (CH₂), 29.6 (CH₂). IR (KBr): 3077, 3019, 3000, 2973, 2934, 2901, 2636, 2503, 1703, 1495, 1447, 1399, 1262, 911, 759, 700, 656 cm⁻¹.

(*E*)-2,2,5-Triphenylhex-4-enoic acid (98a). 30% yield. White solid. Mp: 143–145 °C. HRMS (ESI): calcd for C₂₄H₂₂NaO₂: *m/z* 365.1517 ([M+Na]⁺), found: *m/z* 365.1510. ¹H NMR (CDCl₃): δ 7.35–7.13 (m, 15H), 5.63 (t, 1H, *J* = 7.1 Hz), 3.28 (d, 2H, *J* = 7.1 Hz), 1.66 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 180.3 (C=O), 144.0 (C), 141.9 (C), 138.0 (C), 129.2 (4CH), 128.0 (2CH), 127.9 (4CH), 127.1 (2CH), 126.6 (CH), 125.7 (2CH), 123.3 (CH), 60.6 (C), 37.3 (CH₂), 15.8 (CH₃). IR (KBr): 3074, 3021, 2979, 2937, 2915, 2872, 2810, 2639, 2516, 1698, 1599, 1493, 1450, 1443, 1408, 1271, 1249, 1029, 941, 912, 905, 869, 761, 741, 723, 699, 680 cm⁻¹.

(E)-2,2-Dimethyl-5-phenylhex-4-enoic acid (98b). To a solution of disopropylamine (2.0 mL, 14.0 mmol) in THF (14 mL) was added *n*-BuLi (2.6 M solution in hexane; 5.4 mL, 14.0 mmol) slowly at 0 °C, which was stirred at that temperature for 30 min. To this solution was added carboxylic acid methyl isobutyrate (1.19 g, 11.7 mmol). The reaction mixture was allowed to warm to rt and stirred for an additional 30 min. Then (E)-(4-chlorobut-2-en-2-yl)benzene (2.34 g, 14.1 mmol) was added dropwise at 0 °C and the resulting solution was stirred at rt for 24 h. After being quenched by the addition of 1 M aq HCl, the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over Na2SO4. After removal of the volatiles under reduced pressure, the residue was redissolved in EtOH. To this solution was added 5 M aq LiOH and the mixture was refluxed for 44 h. After being cooled to rt, the mixture was extracted with EtOAc. The organic layer was washed with brine and dried over Na₂SO₄. The crude product was purified by column chromatography on silica gel (hexane/EtOAc = 5/1, R_f 0.3) to give **98b** (1.99 g, 9.13 mmol) in 78% yield. Colorless liquid. HRMS (ESI): calcd for C₁₄H₁₈NaO₂: m/z 241.1204 ([M+Na]⁺), found: m/z 241.1194. ¹H NMR (CDCl₃): δ 7.35 (d, 2H, J = 7.2 Hz), 7.29 (dd, 2H, J = 7.7 Hz, J = 7.2 Hz), 7.22 (d, 1H, J = 7.7 Hz), 5.75 (t, 1H, J = 7.6 Hz), 2.48 (d, 2H, J = 7.6 Hz), 2.03 (s, 3H), 1.26 (s, 6H). ${}^{13}C{}^{1}H$ NMR (CDCl₃): δ 184.5 (C=O), 144.0 (C), 137.6 (C), 128.1 (2CH), 126.7 (CH), 125.8 (2CH), 123.4 (CH), 42.9 (C), 39.0 (CH₂), 24.7 (2CH₃), 16.1 (CH₃). IR (KBr): 2974, 2923, 2878, 1698, 1473, 1445, 756, 698, 625, 608, 549, 505, 496, 466, 453, 445 cm⁻¹.

4,5-Dimethyl-2,2-diphenylhex-4-enoic acid (100a). 79% yield. White crystalline solid. Mp: 135–137 °C. HRMS (ESI): calcd for $C_{20}H_{22}NaO_2$: m/z 317.1517 ([M+Na]⁺), found: m/z 317.1509. ¹H NMR (CDCl₃): δ 7.25 (m, 10H), 3.24 (s, 2H), 1.58 (s, 3H), 1.44 (s, 3H), 0.80 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 180.0 (C=O), 142.5 (2CH), 130.9 (C), 129.1 (4CH), 127.5 (4CH), 126.8 (2CH), 122.9 (C), 59.9 (C), 42.4 (CH₂), 20.6 (CH₃), 19.6 (CH₃), 19.1 (CH₃). IR (KBr): 3089, 3064, 3024, 2995, 2925, 2796, 2730, 2710, 2683, 2640, 2596, 1698, 1494, 1445, 1300, 1231, 1190, 1128, 911, 727, 698, 652, 632 cm⁻¹.

General procedure for the preparation of γ -lactone derivatives 76, 99 and 101.

A solution of Pd(OAc)₂ (1.1 mg, 0.005 mmol, 10 mol %) and (*P*,*R*,*R*)-*i*-Pr-SPRIX (2.8 mg, 0.0075 mmol, 15 mol %) in DCM (0.25 mL) was stirred at 25 °C for 2 h. To this solution was added *p*-benzoquinone (10.8 mg, 0.10 mmol, 2 equiv) and **75**, **98** or **100** (0.05 mmol) in DCM (0.25 mL), and the mixture was stirred. The reaction mixture was directly filtered through a short pad of silica gel, which was rinsed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash column chromatography on silica gel (hexane/EtOAc = 5/1 or DCM) to afford desired product.

3,3-Diphenyl-5-(prop-1-en-2-yl)dihydrofuran-2(3*H***)-one (76a). >98% yield. Pale yellow wax. HRMS (ESI): calcd for C₁₉H₁₈NaO₂:** *m/z* **301.1205 ([M+H]⁺), found:** *m/z* **301.1261. ¹H NMR (CDCl₃): \delta 7.39–7.25 (m, 10H), 5.11 (s, 1H), 4.98 (s, 1H), 4.73 (dd, 1H,** *J* **= 11.0 Hz,** *J* **= 5.1 Hz), 3.06 (dd, 1H,** *J* **= 13.0 Hz,** *J* **= 5.1 Hz), 2.78 (dd, 1H,** *J* **= 13.0 Hz,** *J* **= 11.0 Hz), 1.80 (s, 3H). ¹³C{¹H} NMR (CDCl₃): \delta 176.9 (C=O), 141.9 (C), 141.3 (C), 139.5 (C), 129.0 (2CH), 128.4 (2CH), 127.8 (CH), 127.7 (2CH), 127.4 (2CH), 127.3 (CH), 113.3 (CH₂), 79.2 (CH), 58.3 (C), 42.5 (CH₂), 17.5 (CH₃). IR (KBr): 3451, 3065, 2938, 1761, 1645, 1496, 1446, 1386, 1327, 1175, 1047, 1010, 964, 924, 759, 699, 646, 495 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AD-H, hexane/***i***-PrOH = 40/1, flow rate = 0.5 mL/min, \lambda = 227 nm: 24.1 min, 29.4min) to be 82% ee. [\alpha]_D¹⁵ +85.8 (***c* **0.70, CHCl₃).**

3,3-Diphenyl-5-(prop-1-en-2-yl)dihydrofuran-2(3*H***)-one-***d***₅ (76a-***d***5). >98% yield. Pale yellow wax. HRMS (ESI): calcd for C₁₉H₁₃D₅NaO₂:** *m/z* **306.1518 ([M+H]⁺), found:** *m/z* **306.1507. ¹H NMR (CDCl₃): \delta 7.39–7.24 (m, 10H), 4.74 (dd, 1H,** *J* **= 11.0 Hz,** *J* **= 5.0 Hz), 3.06 (dd, 1H,** *J* **= 12.9 Hz,** *J* **= 5.0 Hz), 2.78 (dd, 1H,** *J* **= 12.9 Hz,** *J* **= 11.0 Hz). ¹³C{¹H} NMR (CDCl₃): \delta 176.9 (C=O), 141.9 (C), 141.0 (C), 139.5 (C), 129.0 (2CH), 128.4 (2CH), 127.8 (CH), 127.7 (2CH), 127.4 (2CH), 127.2 (CH), 79.2 (CH), 58.3 (C), 42.5 (CH₂) (signals of the deuterated carbons could not be detected). IR (KBr): 2958, 2925, 2872, 1766, 1496, 1457, 1447, 1321, 1278, 1172, 964, 766, 750, 698, 605, 562, 544, 524, 490, 466, 453, 446, 429, 415 cm⁻¹.**

5'-(Prop-1-en-2-yl)-4',5'-dihydro-2'*H***-spiro[fluorene-9,3'-furan]-2'-one (76b).** >98% yield. White wax. HRMS (ESI): calcd for C₁₉H₁₆NaO₂: *m/z* 299.1047 ([M+H]⁺), found: *m/z* 299.1040. ¹H NMR (CDCl₃): δ 7.76 (m, 2H), 7.53–7.25 (m, 6H), 5.42 (t, 1H, *J* = 2.8 Hz), 5.29 (s, 1H), 5.10 (s, 1H), 2.81 (d, 2H, *J* = 8.0 Hz), 1.92 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 176.7 (C=O), 146.0 (C), 145.1 (C), 142.0 (C), 141.4 (C), 140.7 (C), 128.84 (CH), 128.79 (CH), 128.3 (CH), 128.0 (CH), 123.5 (CH), 122.8 (CH), 120.7 (CH), 120.4 (CH), 113.1 (CH₂), 80.3 (CH), 58.8 (C), 40.5 (CH₂), 17.4 (CH₃). IR (KBr): 3065, 2954, 2928, 1781, 1764, 1725, 1477, 1449, 1320, 1276, 1167, 1068, 1055, 1006, 970, 911, 769, 756, 733, 620, 423, 411 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AS-H, hexane/*i*-PrOH = 50/1, flow rate = 1.0 mL/min, λ = 267 nm: 59.8 min, 71.0 min) to be 78% ee. [α]_D¹⁷ -71.6 (*c* 0.34, CHCl₃).

3-(Prop-1-en-2-yl)-2-oxaspiro-[4.5]decan-1-one (76c). >98% yield. White wax. HRMS (ESI): calcd for C₁₂H₁₈NaO₂: *m/z* 217.1204 ([M+H]⁺), found: *m/z* 217.1196. ¹H NMR (CDCl₃): δ 5.08 (s, 1H), 4.93 (s, 1H), 4.80 (t, 1H, *J* = 9.2 Hz), 2.39 (dd, 1H, *J* = 13.0 Hz, *J* = 6.8 Hz), 1.84–1.27 (m, 14H). ¹³C{¹H} NMR (CDCl₃): δ 181.4 (C=O), 142.4 (C), 112.1 (CH₂), 79.3 (CH), 44.8 (CH₂), 38.2 (C), 34.1 (CH₂), 31.7 (CH₂), 25.3 (CH₂), 22.2 (CH₂), 22.2 (CH₂), 17.4 (CH₃). IR (KBr): 2933, 2858, 1766, 1656, 1450, 1377, 1326, 1282, 1264, 1191, 1164, 1135, 1109, 1095, 1063, 1034, 1005, 970, 939, 903, 467, 411, 404 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AD-3, hexane/*i*-PrOH = 50/1, flow rate = 0.5 mL/min, λ = 208 nm: 10.8 min, 11.4 min) to be 68% ee. $[\alpha]_D^{19}$ +6.3 (*c* 0.23, CHCl₃).

3,3-Dimethyl-5-(prop-1-en-2-yl)dihydrofuran-2(3*H***)-one (76d). >98% yield. Colorless liquid. HRMS (ESI): calcd for C₉H₁₄NaO₂: m/z 177.0891 ([M+H]⁺), found: m/z 177.0883. ¹H**

NMR (CDCl₃): δ 5.09 (s, 1H), 4.94 (s, 1H), 4.82 (dd, 1H, J = 9.9 Hz, J = 6.5 Hz), 2.21 (dd, 1H, J = 12.6 Hz, J = 6.5 Hz), 1.92 (dd, 1H, J = 12.6 Hz, J = 9.9 Hz), 1.75 (s, 3H), 1.30 (s, 6H). ¹³C{¹H} NMR (CDCl₃): δ 181.7 (C=O), 142.1 (C), 112.2 (CH₂), 78.9 (CH), 42.2 (CH₂), 40.4 (C), 25.0 (CH₃), 24.4 (CH₃), 17.4 (CH₃). IR (KBr): 2970, 2930, 1772, 1455, 1388, 1324, 1120, 1153, 1121, 1048, 996, 917, 503, 473, 440, 426, 414 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AD-3, hexane/*i*-PrOH = 50/1, flow rate = 0.5 mL/min, λ = 217 nm: 9.0 min, 9.7 min) to be 55% ee. [α]_D¹⁷ +2.4 (*c* 0.75, CHCl₃).

5-(Prop-1-en-2-yl)dihydrofuran-2(3*H***)-one (76e).** >98% yield. Colorless liquid. HRMS (ESI): calcd for C₇H₁₀NaO₂: *m/z* 149.0578 ([M+H]⁺), found: *m/z* 149.0571. ¹H NMR (CDCl₃): δ 5.30 (s, 1H), 4.95 (s, 1H), 4.89 (t, 1H, J = 7.4 Hz), 2.58–2.54 (m, 2H), 2.41–2.36 (m, 1H), 2.07–2.02 (m, 1H), 1.77 (s, 3H). ¹³C{¹H} NMR (CDCl₃): δ 177.0 (C=O), 142.0 (C), 112.4 (CH₂), 82.5 (CH), 28.5 (CH₂), 27.0 (CH₂), 17.5 (CH₃). IR (KBr): 2924, 1774, 1655, 1458, 1326, 1298, 1219, 1180, 1143, 1049, 1008, 980, 922, 683, 661, 522, 500, 194, 476, 467, 459, 451, 429, 414, 405 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AD-3, hexane/*i*-PrOH = 50/1, flow rate = 0.5 mL/min, λ = 211 nm: 16.3 min, 17.2 min) to be 18% ee.

3,3-bis(4-fluorophenyl)-5-(prop-1-en-2-yl)dihydrofuran-2(3H)-one (75f). >98% yield. Collorless wax, calcd for C₁₉H₁₆F₂O₂: m/z 337.1015 ([M+Na]⁺), found: m/z 337.1006 ¹H NMR (CDCl₃) d 7.33-7.37(m, 2H; Ar-*H*), 7.6.98-7.10(m, 2H; Ar-*H*), 5.12(s, 1H; terminal-C*H*₂), 5.01(s, 1H; terminal-C*H*₂), 4.72(dd, 1H, $J_{HH} = 5.0$, $J_{HH} = 11.4$; OC*H*), 3.01(dd, 1H, $J_{HH} = 5.0$, $J_{HH} = 12.8$; aliphatic-C*H*₂), 2.73(dd, 1H, $J_{HH} = 11.4$, $J_{HH} = 12.8$; aliphatic-C*H*₂), 1.81(s, 3H; C*H*₃). ¹³C NMR (CDCl₃) 176.6(*C*=O), 163.3(d, $J_{CF} = 31.4$; Ar-*C*), 160.8(d, $J_{CF} = 30.3$; Ar-*C*), 140.9(*C*Me), 137.5(d, $J_{CF} = 2.9$; Ar-*C*), 135.1(d, $J_{CF} = 3.7$; Ar-*C*), 129.3(d, $J_{CF} = 7.9$; Ar-*C*), 129.0(d, $J_{CF} = 8.1$; Ar-*C*), 122.3(d, $J_{CF} = 21.8$; Ar-*C*), 121.8(d, $J_{CF} = 21.2$; Ar-*C*), 113.6(*C*H₂), 79.2(*C*-O), 57.2(*C*Ar₂), 42.6(*C*H₂), 17.5(*C*H₃), IR (KBr): 2927, 1766, 1605, 1509, 1235, 1162, 1014, 967, 835, 581, 521, 442, 418 cm-1.The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralcel AS-H, hexane/i-PrOH = 50/1, flow rate = 1.0 mL/min, l = 205 nm: 15.1 min, 19.4 min) $[\alpha]_D^9$ +85.0 (c 0.40, CHCl₃).

3,3-bis(4-chlorophenyl)-5-(prop-1-en-2-yl)dihydrofuran-2(3H)-one (76g). >98% yield. Pale yellow wax. calcd for C₁₉H₁₆Cl₂NaO₂: m/z 369.0424 ([M+Na]⁺), found: m/z 369.0421 ¹H NMR (CDCl₃) δ 7.37-7.22(m, 8H; Ar-*H*), 5.12(s, 1H; terminal-C*H*₂), 5.01(s, 1H; terminal-C*H*₂), 4.72(dd, 1H, *J*_{HH} = 5.0, *J*_{HH} = 10.8; OC*H*), 2.99(dd, 1H, *J*_{HH} = 5.0, *J*_{HH} = 12.9; aliphatic-C*H*₂), 2.73(dd, 1H, *J*_{HH} = 10.8, *J*_{HH} = 12.9; aliphatic-C*H*₂), 1.81(s, 3H; C*H*₃). ¹³C NMR (CDCl₃) 176.1(*C*=O), 140.8(*C*Me), 139.9(Ar-*C*), 137.8(Ar-*C*), 134.1(Ar-*C*), 133.6(Ar-*C*), 129.3(Ar-*C*), 129.0(Ar-*C*), 128.7(Ar-*C*), 113.7(CH₂), 79.2(*C*-O), 57.3(CAr₂), 42.2(aliphatic-CH₂), 17.5(*C*H₃), IR (KBr): 2917, 1761, 1493, 1402, 171, 1095, 1013, 966, 824, 669, 528, 466, 433, 415 cm–1.The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralcel AS-H, hexane/i-PrOH = 50/1, flow rate = 1.0 mL/min, 1 = 224 nm: 13.4 min, 16.1 min) [α]_D⁹+55.0 (c 0.15, CHCl₃).

3,3-bis(4-bromophenyl)-5-(prop-1-en-2-yl)dihydrofuran-2(3H)-one (76h). >98% yield. White wax. calcd for C₁₉H₁₆Br₂NaO₂: m/z 458.9394 ([M+Na]+), found: m/z 458.9386 ¹H NMR (CDCl₃) d 7.51(d, 2H, J_{HH} = 8.6; Ar-*H*), 7.45(d, 2H, J_{HH} = 8.7; Ar-*H*), 7.24(d, 2H, J_{HH} = 8.6; Ar-*H*), 7.17(d, 2H, J_{HH} = 8.7; Ar-*H*), 5.12(s, 1H; terminal-C*H*₂), 5.01(s, 1H; terminal-C*H*₂), 4.71(dd, 1H, J_{HH} = 5.0, J_{HH} = 10.8; OC*H*), 2.99(dd, 1H, J_{HH} = 5.0, J_{HH} = 13.0; aliphatic-C*H*₂), 2.72(dd, 1H, J_{HH} = 10.8, J_{HH} = 13.0; aliphatic-C*H*₂), 1.80(s, 3H; C*H*₃). ¹³C NMR (CDCl₃) 175.9, 140.8, 140.3, 138.2, 132.3, 129.3, 129.0, 122.3, 121.8, 113.7, 79.2, 57.5, 42.1, 17.5, IR (KBr): 2923, 1762, 1489, 1397, 1171, 1078, 967, 807, 499, 485, 459, 434 cm–1.The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralcel AS-H, hexane/i-PrOH = 50/1,

flow rate = 1.0 mL/min, 1 = 230 nm: 15.3 min, 18.8 min) $[\alpha]_D^{11}$ +69.0 (c 0.14, CHCl₃).

3,3-bis(4-methoxyphenyl)-5-(prop-1-en-2-yl)dihydrofuran-2(3H)-one (76i). >98% yield. Pale yellow wax. HRMS (ESI): calcd for C₂₁H₂₂NaO₄: m/z 361.1415 ([M+Na]+), found: m/z 361.1411. ¹H NMR (CDCl₃): δ 7.31(d, 2H, *J*_{HH} = 8.7; Ar-*H*), 7.19(d, 2H, *J*_{HH} = 8.7; Ar-*H*), 6.90(d, 2H, *J*_{HH} = 8.7; Ar-*H*), 6.83(d, 2H, *J*_{HH} = 8.7; Ar-*H*), 5.11(s, 1H; terminal-C*H*₂), 4.98(s, 1H; terminal-C*H*₂), 4.72(dd, 1H, *J*_{HH} = 5.0, *J*_{HH} = 11.0; OC*H*), 3.87(s, 3H; OC*H*₃), 3.78(s, 3H; OC*H*₃), 2.99(dd, 1H, *J*_{HH} = 5.0, *J*_{HH} = 12.8; aliphatic-C*H*₂), 2.72(dd, 1H, *J*_{HH} = 11.0, *J*_{HH} = 12.8; aliphatic-C*H*₂), 1.81(s, 3H; C*H*₃). ¹³C{1H} NMR (CDCl₃): δ 177.4(C=O), 159.0(Ar-C), 158.6(Ar-C), 141.4(CMe), 134.4(Ar-C), 131.5(Ar-C), 128.8(Ar-C), 128.5(Ar-C), 114.2(Ar-C), 113.7(Ar-C), 113.2(CH₂), 79.2(C-O), 57.1(CAr₂), 55.30(OC*H*₃), 55.26(OC*H*₃), 42.8(aliphatic-CH₂), 17.5(CH₃) IR (KBr): 2923, 1697, 1510, 1251, 1182, 826, 422 cm-1. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AS-H, hexane/i-PrOH = 50/1, flow rate = 2.0 mL/min, λ = 229 nm: 24.3 min, 45.4 min) to be 67% ee. [α]_D¹¹ +59.0 (c 0.40, CHCl₃).

3,3-Diphenyl-5-vinyldihydrofuran-2(3*H***)-one (82).** >98% yield. Pale yellow wax. HRMS (ESI): calcd for C₁₈H₁₆NaO₂: *m/z* 287.1047 ([M+H]⁺), found: *m/z* 287.1047. ¹H NMR (CDCl₃): δ 7.39–7.23 (m, 10H), 5.92 (m, 1H), 5.40 (d, 1H, *J* = 16.8 Hz), 5.30 (d, 1H, *J* = 10.7 Hz), 4.77 (m, 1H), 3.11 (dd, 1H, *J* = 13.0 Hz, *J* = 5.1 Hz), 2.75 (dd, 1H, *J* = 13.0 Hz, *J* = 10.5 Hz). ¹³C{¹H} NMR (CDCl₃): δ 176.8 (C=O), 141.7 (C), 139.6 (C), 134.9 (C), 129.0 (2CH), 128.4 (2CH), 127.8 (CH), 127.7 (2CH), 127.3 (CH), 127.3 (2CH), 118.9 (CH₂), 77.5 (CH), 58.1 (C), 43.8 (CH₂). IR (KBr): 3061, 3056, 2921, 1771, 1495, 1447, 1167, 697, 505, 458, 447, 441 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralcel OD-H, hexane/*i*-PrOH = 50/1, flow rate = 0.5 mL/min, λ = 219 nm: 22.1 min, 28.6 min) to be 15% ee. [α]_D¹⁹+38.6 (*c* 0.55, CHCl₃).

(Z)-2,2-diphenylhex-4-enoic acid (81-Z). 82% yield. White solid, Mp: 152-155 °C. calcd for $C_{18}H_{18}NaO_2$: m/z 289.1204 ([M+Na]+), found: m/z 289.1201 ¹H NMR (CDCl₃) d 7.30-7.25(m,10H; Ar-*H*), 5.48-5.38(m, 1H; CH₂C*H*=C), 5.24-5.32(m, 1H; CH₂C*H*=C), 3.14(d, 2H, $J_{HH} = 7.0$; C*H*₂), 1.34(d, 3H, $J_{HH} = 7.0$; C*H*₃) ¹³C NMR (CDCl₃) 178.9(C=O), 142.0(Ar-C), 129.1(Ar-C), 127.9(Ar-C), 127.2(CH₂CH=C), 127.0(Ar-C), 125.3(CH₂CH=C), 60.1(CAr₂), 35.6(CH₂), 12.7(CH₃) IR (KBr): 3033, 2917, 2622, 1700, 1600, 1495, 1447, 1395, 1370, 1257, 1036, 1004, 915, 764, 742, 700, 661, 638 cm-1.

3,3-Diphenyl-5-(prop-1-en-2-yl)dihydrofuan-2(3*H***)-one (99a). 55% yield. Pale yellow solid. Mp: 142–144 °C. HRMS (ESI): calcd for C₂₄H₂₀NaO₂:** *m/z* **360.1360 ([M+H]⁺), found:** *m/z* **363.1352. ¹H NMR (CDCl₃): \delta 7.40–7.21 (m, 15H), 5.54 (s, 1H), 5.42 (s, 1H), 5.28 (dd, 1H,** *J* **= 10.2 Hz,** *J* **= 5.2 Hz), 3.14 (dd, 1H,** *J* **= 13.2 Hz,** *J* **= 5.2 Hz), 2.73 (dd, 1H,** *J* **= 13.2 Hz,** *J* **= 10.2 Hz). ¹³C{¹H} NMR (CDCl₃): \delta 176.7 (C=O), 145.6 (C), 141.7 (C), 139.5 (C), 138.0 (C), 129.0 (2CH), 128.7 (CH), 128.3 (2CH), 128.2 (2CH), 127.8 (CH), 127.7 (CH), 127.3 (2CH), 127.2 (2CH), 126.8 (2CH), 114. 5 (CH₂), 77.4 (CH), 58.2 (C), 43.7 (CH₂). IR (KBr): 3058, 2927, 1770, 1727, 1599, 1495, 1447, 1324, 1285, 1054, 1021, 962, 911, 779, 768, 754, 725, 697, 670, 651, 613, 407 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AD-3, hexane/***i***-PrOH = 50/1, flow rate = 0.5 mL/min, \lambda = 221 nm: 23.4 min, 25.9 min) to be 67% ee. [\alpha]_D¹⁹-63.0 (***c* **0.33, CHCl₃).**

3,3-Dimethyl-5-(1-phenylvinyl)-dihydrofuran-2(3*H***)-one (99b). 55% yield. Colorless liquid. HRMS (ESI): calcd for C₁₄H₁₆NaO₂: m/z 239.1047 ([M+H]⁺), found: m/z 239.1040. ¹H NMR (CDCl₃): \delta 7.38–7.31 (m, 5H), 5.48 (s, 1H), 5.39 (s, 1H), 5.36 (dd, 1H, J = 9.1 Hz, J = 6.8 Hz), 2.26 (dd, 1H, J = 12.9 Hz, J = 6.8 Hz), 1.87 (dd, 1H, J = 12.9 Hz, J = 9.1 Hz), 1.31 (s, 3H), 1.24 (s, 3H). ¹³C{¹H} NMR (CDCl₃): \delta 181.7 (C=O), 146.6 (C), 138.1 (C), 128.6 (2CH), 128.2 (2CH),** 126.8 (CH), 113.4 (CH₂), 77.0 (CH), 43.2 (CH₂), 40.2 (C), 25.1 (CH₃), 24.8 (CH₃). IR (KBr): 2969, 2930, 1772, 1496, 1457, 1388, 1326, 1250, 1228, 1201, 1153, 1122, 1039, 1006, 908, 779, 699, 607, 524, 513, 483, 474, 454, 436, 420 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AD-H, hexane/*i*-PrOH = 50/1, flow rate = 0.5 mL/min, λ = 234 nm: 22.8min, 24.5 min) to be 37% ee. [α]_D²⁰ +18.8 (*c* 0.15, CHCl₃).

5-(1-Phenylvinyl)dihydrofuran-2(3*H***)-one (99c).** 56% yield. Colorless liquid. HRMS (ESI): calcd for C₁₂H₁₂NaO₂: *m/z* 211.0734 ([M+H]⁺), found: *m/z* 211.0726. ¹H NMR (CD₃OD): δ 7.32–7.22 (m, 5H), 5.47 (t, 1H, *J* = 7.1 Hz), 5.31 (s, 1H), 5.27 (s, 1H), 2.52–2.35 (m, 3H), 1.87–1.82 (m, 1H). ¹³C{¹H} NMR (CD₃OD): δ 180.6 (C=O), 149.4 (C), 140.3 (C), 130.5 (2CH), 130.1 (CH), 128.7 (2CH), 114.1 (CH₂), 83.0 (CH), 29.83 (CH₂), 29.80 (CH₂). IR (KBr): 2958, 2926, 2855, 1784, 1728, 1461, 1262, 1178, 1122, 1098, 1073, 1039, 1028, 803, 472, 451, 412, 401 cm⁻¹. The enantiomeric excess was determined by HPLC analysis using a chiral stationary phase column (Daicel Chiralpak AD-3, hexane/*i*-PrOH = 50/1, flow rate = 0.5 mL/min, λ = 236 nm: 25.8 min, 27.2min) to be 41% ee. [α]_D¹⁸ +3.3 (*c* 0.15, CHCl₃).

Kinetic studies

Kinetic isotope effects

Reactions were run in triplicate under the optimal conditions and were stopped at the desired time (30 min, 60 min and 120 min) and analyzed by ¹H NMR spectroscopy. To determine the initial rates, each individual data point for a certain substrate was plotted in Microsoft Excel. The data was plotted in terms of product yield (%) vs. time (min) to give rates in terms of mM/min. Under the typical conditions, initial substrate concentration is 100 mM, therefore a product yield of 10 % is equivalent to 10 mM. Using the Excel, a standard linear regression with y-intercept set to zero was performed on the plotted data.

SM Yield (%) Yield (%) Yield (%) Initial rate KIE Yield (%) 30 min 60 min 120 min 0 min (mmol / min) Η 0 18 25 52 0.000438 1.80 7 0.000243 D 0 13 30

Table S-1. Kinetic isotope effect (Independent system; Run 1)

Figure S-1. Kinetic isotope effect (Independent system; Run 1)

SM	Yield (%)	Yield (%)	Yield (%)	Yield (%)	Initial rate	KIE
	0 min	30 min	60 min	120 min	(mmol / min)	
Н	0	20	26	56	0.000470	1.00
D	0	9	11	33	0.000259	1.82

Table S-2. Kinetic isotope effect (Independent system; Run 2)

Figure S-2. Kinetic isotope effect (Independent system; Run 2)

SM	Yield (%)	Yield (%)	Yield (%)Yield (%)		Initial rate	KIE
	0 min	30 min	60 min	120 min	(mmol / min)	
Н	0	15	26	47	0.000405	1.05
D	0	15	26	44	0.000386	1.05

Table S-3. Kinetic isotope effect (Competitive system; Run 1)

Figure S-3. Kinetic isotope effect (Competitive system; Run 1)

		1	1 5	, ,		
SM	Yield (%)	Yield (%)	Yield (%)	Yield (%)	Initial rate	KIE
	0 min	30 min	60 min	120 min	(mmol / min)	
Н	0	9	18	31	0.000268	1 1 1
D	0	8	18	27	0.000241	1.11

Table S-4. Kinetic isotope effect (Competitive system; Run 2)

Figure S-4. Kinetic isotope effect (Competitive system; Run 2)

Concentration effects

For catalyst

Catalyst loadings of 1, 5, 10, 30 and 50 mol % were used. Aliquots were removed periodically (30, 60, 90 and 120 min) and analyzed by ¹H NMR analysis after short column chromatography. (In this reaction, the conversion of a substrate was exactly same as Yields.) To determine the initial rates, each individual data point for a certain substrate was plotted in Microsoft Excel. The data was plotted in terms of product yield (%) vs. time (min) to give rates in terms of mM/min. Under the typical conditions, initial substrate concentration is 100 mM, therefore a product yield of 10 % is equivalent to 10 mM. Using the Excel, a standard linear regression with y-intercept set to zero was performed on the plotted data.

Catalyst	Concentration	Yield	Yield	Yield	Yield	Yield	Initial Data
Loading	Concentration	(%)	(%)	(%)	(%)	(%)	Initial Kate
$(mal \theta/)$	(mM)	Omin	30	60	90	120	(mmol/min)
(11101 %)	(IIIVI)	UIIIII	min	min	min	min	
1	0.001	0	2	6	9	11	0.0001
5	0.005	0	7	15	22	29	0.00024
10	0.03	0	14	26	36	43	0.00036
30	0.01	0	42	80	95	100	0.0009
50	0.05	0	52	87	100	100	0.00145

Table S5. Time Cource for Kinetic Study (catalyst).

Figure S5. Time Cource for Kinetic Study (catalyst).

Figure S6. Kinetic Study (catalyst).

For *p*-benzoquinone

p-Benzoquinone loadings of 0, 0.25, 0.5, 1.0, 2.0, 4.0 and 10 equiv were used. Aliquots were removed periodically (30, 60, 90 and 120 min) and analyzed by ¹H NMR analysis after short column chromatography. (In this reaction, the conversion of a substrate was exactly same as Yields.) To determine the initial rates, each individual data point for a certain substrate was plotted in Microsoft Excel. The data was plotted in terms of product yield (%) vs. time (min) to give rates in terms of mM/min. Under the typical conditions, initial substrate concentration is 100 mM, therefore a product yield of 10 % is equivalent to 10 mM. Using the Excel, a standard linear regression with y-intercept set to zero was performed on the plotted data.

<i>p</i> -benzoquinone	Concentration	Yield	Yield	Yield	Yield	Yield	Initial Data
Loading	Concentration	(%)	(%)	(%)	(%)	(%)	minal Kale
(aquiv)	(mM)	0	20	60	00	120	(mmol /
(equiv)	(IIIIVI)	0	30	60	90		min)
0	0	0	1	4	8	10	0.00009
0.25	0.025	0	10	18	26	31	0.00025
0.5	0.05	0	9	15	22	30	0.00024
1	0.1	0	15	31	45	60	0.0004
2	0.2	0	14	26	36	43	0.00043
4	0.4	0	12	30	45	53	0.00046
10	1	0	20	40	48	58	0.00048

Table S6. Time Cource for Kinetic Study (p-benzoquinone).

Figure S7. Time Cource for Kinetic Study (p-benzoquinone).

Figure S8. Kinetic Study (p-benzoquinone).

For SPRIX ligand

SPRIX loadings of 5, 10, 15, 20 and 30 mol % were used. Aliquots were removed periodically (30 and 60 min) and analyzed by 1H NMR analysis after short column chromatography. (In this reaction, the conversion of a substrate was exactly same as Yields.) To determine the initial rates, each individual data point for a certain substrate was plotted in Microsoft Excel. The data was plotted in terms of product yield (%) vs. time (min) to give rates in terms of mM / min. Under the typical conditions, initial substrate concentration is 100 mM, therefore a product yield of 10 % is

equivalent to 10 mM. Using the Excel, a standard linear regression with y-intercept set to zero was performed on the plotted data.

SPRIX	Concentration	Vield (%)	Vield (%)	Vield (%)	Vield (%)	Initial Pate
Loading	Concentration	1 leiu (70)	1 leiu (70)	1 leiu (70)	1 leiu (70)	Initial Rate
(mol %)	(mM)	0	30	60	90	(mmol / min)
5	0.005	0	17	30	-	0.0005
10	0.01	0	19	32	-	0.00053
15	0.015	0	14	26	36	0.00043
20	0.02	0	21	39	-	0.00065
30	0.03	0	22	37	-	0.00062

Table S7. Time Cource for Kinetic Study (SPRIX ligand).

Figure S9. Time Cource for Kinetic Study (SPRIX Ligand).

Figure S10. Kinetic Study (SPRIX Ligand)

For Substrate

Substrate loadings of 0.05, 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6 M were used. Aliquots were removed periodically (30, 60, 90 and 120 min) and analyzed by ¹H NMR analysis after short column chromatography. (In this reaction, the conversion of a substrate was exactly same as Yields.) To determine the initial rates, each individual data point for a certain substrate was plotted in Microsoft Excel. The data was plotted in terms of product yield (%) vs. time (min) to give rates in terms of mM / min. Using the Excel, a standard linear regression with y-intercept set to zero was performed on the plotted data.

Loading	Yield (%)	Initial Rate				
(M)	0	30	60	90	120	(mmol / min)
0.05	0	8	15	20	25	0.00021
0.1	0	14	26	36	43	0.00036
0.2	0	20	36	50	66	0.00054
0.3	0	30	55	77	96	0.00080
0.4	0	37	68	93	109	0.00091
0.5	0	35	64	89	113	0.00093
0.6	0	33	64	91	116	0.00097

 Table S8. Time Cource for Kinetic Study (substrate).

Figure S11. Time Cource for Kinetic Study (substrate).

Figure S12. Kinetic Study (substrate).

Hammet plot study

Aliquots were removed periodically (30, 60, 90 and 120 min) and analyzed by ¹H NMR analysis after short column chromatography in each substrate. To determine the initial rates, each individual data point for a certain substrate was plotted in Microsoft Excel. The data was plotted in terms of product yield (%) vs. time (min) to give rates in terms of mM / min. Under the typical conditions, initial substrate concentration is 100 mM, therefore a product yield of 10 % is equivalent to 10 mM. Using the Excel, a standard linear regression with y-intercept set to zero was performed on the

plotted data.

Substituent	σ	Yield	Yield	Yield	Yield	Initial Rate	Ee(%)
		(%)	(%)	(%)	(%)		
		0	30	60	90	(mmol /	
		U	50	00	70	min)	
MeO	-0.268	0	15	29	42	0.000474	67
Н	0	0	14	26	36	0.000414	76
F	0.062	0	11	21	31	0.000348	86
Cl	0.227	0	10	18	28	0.000310	88
Br	0.232	0	10	19	27	0.000307	85

 Table S9. Time Cource for Hammet Plot Study.

Figure S13. Time Cource for Hammet Plot Study.

Figure S14. Hammet Plot Study (Initial reaction rate).

Figure S15. Hammet Plot Study (Enantioselectivity).

X-ray crystallographic data for compound 97.

Experimental

Data Collection

A colorless block crystal of $C_{19}H_{20}O_2$ having approximate dimensions of 0.200 x 0.164 x 0.092 mm was mounted on a glass fiber. All measurements were made on a Rigaku R-AXIS RAPID 191R diffractometer using filtered Cu-Ka radiation.

The crystal-to-detector distance was 191.00 mm.

Cell constants and an orientation matrix for data collection corresponded to a primitive monoclinic cell with dimensions:

а	=	6.4728(2) Å	
b	=	14.8866(3) Å	$b = 107.677(8)^{0}$
c	=	8.4185(6) Å	
V	=	772.89(7) Å ³	

For Z = 2 and F.W. = 280.37, the calculated density is 1.205 g/cm³. Based on the reflection conditions of:

0k0:
$$k = 2n$$

packing considerations, a statistical analysis of intensity distribution, and the successful solution and refinement of the structure, the space group was determined to be:

The data were collected at a temperature of $-180 \pm 1^{\circ}$ C to a maximum 2q value of 136.4°. A total of 72 oscillation images were collected. A sweep of data was done using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 0.0°. The exposure rate was 2.0 [sec./°]. A second sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 60.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to

260.0° in 20.0° step, at c=54.0° and f = 120.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 180.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 240.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 320.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 320.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 320.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=54.0° and f = 320.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=20.0° and f = 320.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=20.0° and f = 120.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=20.0° and f = 120.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=20.0° and f = 120.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=20.0° and f = 120.0°. The exposure rate was 2.0 [sec./°]. Another sweep was performed using w scans from 80.0 to 260.0° in 20.0° step, at c=20.0° and f = 120.0°. The exposure rate was 2.0 [sec./°]. The crystal-to-detector distance was 191.00 mm. Readout was performed in the 0.100 mm pixel mode.

Data Reduction

Of the 15658 reflections that were collected, 2796 were unique ($R_{int} = 0.0311$); equivalent reflections were merged.

The linear absorption coefficient, m, for Cu-Ka radiation is 6.037 cm⁻¹. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods¹ and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were refined using the riding model. The final cycle of full-matrix least-squares refinement² on F^2 was based on 2796 observed reflections and 211 variable parameters and converged (largest parameter shift was 0.00 times its esd) with unweighted and weighted agreement factors of:

$$R1 = S ||Fo| - |Fc|| / S |Fo| = 0.0337$$

$$wR2 = [S (w (Fo^2 - Fc^2)^2)/S w (Fo^2)^2]^{1/2} = 0.1094$$

The standard deviation of an observation of unit weight³ was 1.00. A Sheldrick weighting

scheme was used. Plots of S w (|Fo| - |Fc|)² versus |Fo|, reflection order in data collection, sin q/l and various classes of indices showed no unusual trends. The maximum and minimum peaks on the final difference Fourier map corresponded to 0.78 and -0.55 e⁻/Å³, respectively. The absolute structure was deduced based on Flack parameter, -0.0(3), refined using 1341 Friedel pairs.⁴

Neutral atom scattering factors were taken from Cromer and Waber⁵. Anomalous dispersion effects were included in Fcalc⁶; the values for Df and Df' were those of Creagh and McAuley⁷. The values for the mass attenuation coefficients are those of Creagh and Hubbell⁸. All calculations were performed using the CrystalStructure^{9,10} crystallographic software package.

References

(1) <u>SIR92</u>: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. Burla, G. Polidori, M. Camalli. *J. Appl. Cryst.*, **1994**, *27*, 435.

(2) Least Squares function minimized:

$$Sw(F_0^2-F_c^2)^2$$
 where w = Least Squares weights.

(3) Standard deviation of an observation of unit weight:

 $[Sw(F_0^2-F_c^2)^2/(N_0-N_v)]^{1/2}$

where: N_0 = number of observations N_V = number of variables

(4) H. D. Flack, Acta Cryst. 1983, A39, 876-881.

(5) D. T. Cromer, J. T. Waber, "International Tables for X-ray Crystallography", **1974**, Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A.

(6) J. A. Ibers, W. C. Hamilton, Acta Crystallogr., 1964 17, 781.

(7) D. C. Creagh, W. J. McAuley, "International Tables for Crystallography", **1992**, Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8, pages 219-222.

(8) D. C. Creagh, J. H. Hubbell, "International Tables for Crystallography", **1992**, Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3, pages 200-206.

(9) <u>CrystalStructure 4.0</u>: Crystal Structure Analysis Package, Rigaku Corporation (2000-2010). Tokyo 196-8666, Japan.

(10) <u>CRYSTALS Issue 11</u>: J. R. Carruthers, J. S. Rollett, P. W. Betteridge, D. Kinna, L. Pearce, A. Larsen, E. Gabe, Chemical Crystallography Laboratory, Oxford, UK. **1999.**

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula	$C_{19}H_{20}O_{2}$
Formula Weight	280.37
Crystal Color, Habit	colorless, block
Crystal Dimensions	0.200 X 0.164 X 0.092 mm
Crystal System	monoclinic
Lattice Type	Primitive
Lattice Parameters	a = 6.4728(2) Å
	b = 14.8866(3) Å
	c = 8.4185(6) Å
	b = 107.677(8) ^o
	$V = 772.89(7) \text{ Å}^3$
Space Group	P2 ₁ (#4)
Z value	2
D _{calc}	1.205 g/cm ³
F000	300.00
m(CuKa)	6.037 cm ⁻¹

B. Intensity Measurements

Diffractometer	R-AXIS RAPID 191R
Radiation	CuKa (l = 1.54187 Å)
Voltage, Current	45kV, 55mA
Temperature	-180.0 ^o C
Detector Aperture	783 x 382 mm
Data Images	72 exposures
w oscillation Range (c=54.0, f=0.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
w oscillation Range (c=54.0, f=60.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
w oscillation Range (c=54.0, f=120.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
w oscillation Range (c=54.0, f=180.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
w oscillation Range (c=54.0, f=240.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
w oscillation Range (c=54.0, f=320.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
w oscillation Range (c=20.0, f=0.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
w oscillation Range (c=20.0, f=120.0)	80.0 - 260.0 ⁰
Exposure Rate	2.0 sec./ ⁰
Detector Position	191.00 mm
Pixel Size	0.100 mm
2q _{max}	136.4 ^o
No. of Reflections Measured	Total: 15658
	Unique: 2796 (R _{int} = 0.0311)
	Friedel pairs: 1341
Corrections	Lorentz-polarization

C. Structure Solution and Refinement

Structure Solution	Direct Methods (SIR92)
Refinement	Full-matrix least-squares on F ²
Function Minimized	$S \le (Fo^2 - Fc^2)^2$
Least Squares Weights	$1/[0.0021Fo^2+1.0000s(Fo^2)]/(4Fo^2)$
2q _{max} cutoff	136.40
Anomalous Dispersion	All non-hydrogen atoms
No. Observations (All reflections)	2796
No. Variables	211
Reflection/Parameter Ratio	13.25
Residuals: R1 (I>2.00s(I))	0.0337
Residuals: R (All reflections)	0.0354
Residuals: wR2 (All reflections)	0.1094
Goodness of Fit Indicator	0.999
Flack Parameter (Friedel pairs = 1341)	-0.0(3)
Max Shift/Error in Final Cycle	0.000
Maximum peak in Final Diff. Map	0.78 e ⁻ /Å ³
Minimum peak in Final Diff. Map	-0.55 e ⁻ /Å ³

atom	Х	у	Z	Beq
01	1.3697(2)	0.9530(1)	0.4626(2)	2.49(3)
O2	1.2575(2)	1.02022(8)	0.6563(2)	1.73(3)
C1	1.2251(3)	0.9673(2)	0.5223(2)	1.70(4)
C2	1.0580(3)	1.0287(2)	0.7035(2)	1.52(4)
C3	0.8816(3)	1.0011(1)	0.5457(2)	1.36(3)
C4	0.9950(3)	0.9298(1)	0.4684(2)	1.57(4)
C5	1.0453(3)	1.1230(1)	0.7676(3)	1.85(4)
C6	0.8343(3)	1.1329(2)	0.8120(3)	2.30(4)
C7	1.2426(4)	1.1430(2)	0.9162(3)	2.80(5)
C8	0.9000(3)	0.9195(1)	0.2793(2)	1.53(4)
С9	0.6861(3)	0.9453(2)	0.1977(2)	1.88(4)
C10	0.5997(4)	0.9337(2)	0.0265(3)	2.25(4)
C11	0.7211(3)	0.8975(2)	-0.0656(2)	2.07(4)
C12	0.9344(3)	0.8708(2)	0.0143(3)	1.96(4)
C13	1.0206(3)	0.8806(2)	0.1853(2)	1.71(4)
C14	0.9935(3)	0.8381(1)	0.5537(2)	1.58(4)
C15	0.7945(3)	0.7965(2)	0.5362(2)	1.87(4)
C16	0.7847(4)	0.7152(2)	0.6142(3)	2.44(5)
C17	0.9715(4)	0.6739(2)	0.7106(3)	2.45(5)
C18	1.1705(4)	0.7139(2)	0.7276(3)	2.64(5)
C19	1.1817(3)	0.7952(2)	0.6491(2)	2.09(4)
_				

Table S10. Atomic coordinates and $\mathrm{B}_{iSO}/\mathrm{B}_{eq}$

 $B_{eq} = \frac{8}{3} p^2 (U_{11}(aa^*)^2 + U_{22}(bb^*)^2 + U_{33}(cc^*)^2 + 2U_{12}(aa^*bb^*)\cos g + 2U_{13}(aa^*cc^*)\cos b + 2U_{23}(bb^*cc^*)\cos a)$

Table S11. Atomic coordinates and $\mathrm{B}_{\mathrm{iSO}}$ involving hydrogen atoms

atom	Х	у	Z	Biso
H1	1.0620	0.9858	0.7927	1.85
H2	0.8345	1.0524	0.4726	1.65
H3	0.7585	0.9758	0.5731	1.60
H4	1.0420	1.1657	0.6782	2.23
H5	0.8232	1.1926	0.8517	2.89
H6	0.8355	1.0903	0.8980	2.89
H7	0.7123	1.1212	0.7158	2.92
H8	1.2331	1.2030	0.9549	3.34
H9	1.2471	1.1011	1.0039	3.33
H10	1.3721	1.1370	0.8840	3.30
H11	0.6029	0.9708	0.2585	2.29
H12	0.4567	0.9500	-0.0266	2.64
H13	0.6630	0.8915	-0.1805	2.44
H14	1.0170	0.8455	-0.0473	2.43
H15	1.1611	0.8612	0.2387	2.04
H16	0.6675	0.8237	0.4713	2.28
H17	0.6509	0.6883	0.6012	3.18
H18	0.9647	0.6199	0.7643	3.06
H19	1.2977	0.6866	0.7915	3.02

Table 12 Anisotropic displacement parameters						
atom			1133	U12	1113	1123
	0.0217(7)	022	0.0202(7)	0.12	013	023
01	0.021/(7)	0.0452(9)	0.0302(7)	-0.0050(6)	0.0110(5)	-0.0110(7)
O2	0.0186(6)	0.0253(7)	0.0216(6)	-0.0019(5)	0.0061(5)	-0.0046(5)
C1	0.0240(9)	0.0236(9)	0.0177(8)	0.0003(7)	0.0074(7)	-0.0005(7)
C2	0.0159(8)	0.0222(9)	0.0200(8)	0.0020(7)	0.0060(7)	0.0017(7)
C3	0.0102(8)	0.0191(8)	0.0222(8)	0.0001(6)	0.0046(6)	-0.0007(7)
C4	0.0181(9)	0.023(1)	0.0192(9)	0.0022(7)	0.0065(7)	-0.0004(7)
C5	0.022(1)	0.0216(9)	0.0254(9)	-0.0024(7)	0.0058(7)	0.0002(7)
C6	0.033(1)	0.023(1)	0.035(1)	0.0006(8)	0.0155(9)	-0.0054(8)
C7	0.038(2)	0.029(1)	0.038(1)	0.0023(9)	0.0078(9)	-0.0133(9)
C8	0.0199(9)	0.0189(9)	0.0197(9)	-0.0010(7)	0.0067(7)	0.0021(6)
C9	0.0224(9)	0.0278(9)	0.0218(9)	0.0007(8)	0.0074(7)	-0.0005(8)
C10	0.034(1)	0.029(1)	0.0197(9)	0.0007(8)	0.0036(8)	0.0019(7)
C11	0.035(1)	0.026(1)	0.0169(8)	-0.0038(8)	0.0067(8)	0.0008(7)
C12	0.030(1)	0.022(1)	0.0251(9)	-0.0001(8)	0.0138(8)	-0.0024(7)
C13	0.0228(9)	0.0201(9)	0.0218(8)	-0.0003(7)	0.0063(7)	0.0006(7)
C14	0.025(1)	0.0217(9)	0.0141(7)	0.0033(7)	0.0079(6)	-0.0023(7)
C15	0.0230(9)	0.026(1)	0.0235(8)	0.0022(8)	0.0086(7)	-0.0005(7)
C16	0.042(2)	0.025(1)	0.035(1)	-0.0041(9)	0.0239(9)	-0.0022(8)
C17	0.051(2)	0.021(1)	0.0244(9)	0.0041(9)	0.0182(9)	0.0004(8)
C18	0.047(2)	0.028(1)	0.0213(9)	0.0140(9)	0.0043(9)	0.0042(8)
C19	0.028(1)	0.028(1)	0.0224(8)	0.0029(8)	0.0047(7)	-0.0029(8)

0.8210

1.3159

0.6593

2.47

The general temperature factor expression: $exp(-2p^2(a^{*2}U_{11}h^2 + b^{*2}U_{22}k^2 + c^{*2}U_{33}l^2 + 2a^{*}b^{*}U_{12}hk + 2a^{*}c^{*}U_{13}hl + 2b^{*}c^{*}U_{23}kl))$

Table S13. Bond lengths (Å)

H20

atom	atom	distance	atom	atom	distance
O1	C1	1.208(3)	O2	C1	1.340(2)
O2	C2	1.467(3)	C1	C4	1.524(3)
C2	C3	1.522(2)	C2	C5	1.515(3)
C3	C4	1.543(3)	C4	C8	1.531(3)
C4	C14	1.544(3)	C5	C6	1.529(3)
C5	C7	1.521(3)	C8	C9	1.399(3)
C8	C13	1.395(3)	C9	C10	1.390(3)
C10	C11	1.370(3)	C11	C12	1.397(3)
C12	C13	1.385(3)	C14	C15	1.396(3)
C14	C19	1.394(3)	C15	C16	1.388(3)
C16	C17	1.380(3)	C17	C18	1.387(3)
C18	C19	1.390(3)			

atom	atom	distance	atom	atom	distance
C2	H1	0.98	C3	H2	0.97
C3	H3	0.97	C5	H4	0.98
C6	H5	0.96	C6	Н6	0.96
C6	H7	0.96	C7	H8	0.96
C7	Н9	0.96	C7	H10	0.96
C9	H11	0.93	C10	H12	0.93
C11	H13	0.93	C12	H14	0.93
C13	H15	0.93	C15	H16	0.93
C16	H17	0.93	C17	H18	0.93
C18	H19	0.93	C19	H20	0.93

Table S14. Bond lengths involving hydrogens (\AA)

Table S15. Bond angles (0)

atom	atom	atom	angle	atom	atom	atom	angle
C1	02	C2	110.67(13)	01	C1	02	120.69(15)
01	C1	C4	128.50(16)	02	C1	C4	110.78(16)
O2	C2	C3	103.25(14)	02	C2	C5	108.87(15)
C3	C2	C5	116.99(14)	C2	C3	C4	103.12(13)
C1	C4	C3	99.78(13)	C1	C4	C8	113.19(16)
C1	C4	C14	109.18(13)	C3	C4	C8	114.54(13)
C3	C4	C14	109.96(15)	C8	C4	C14	109.76(13)
C2	C5	C6	108.97(15)	C2	C5	C7	110.57(14)
C6	C5	C7	111.69(17)	C4	C8	C9	120.56(17)
C4	C8	C13	120.93(15)	C9	C8	C13	118.44(15)
C8	C9	C10	120.11(19)	C9	C10	C11	121.08(17)
C10	C11	C12	119.48(16)	C11	C12	C13	119.84(19)
C8	C13	C12	121.01(16)	C4	C14	C15	118.63(15)
C4	C14	C19	123.08(17)	C15	C14	C19	118.30(16)
C14	C15	C16	120.68(16)	C15	C16	C17	120.6(2)
C16	C17	C18	119.31(19)	C17	C18	C19	120.40(18)
C14	C19	C18	120.68(18)				

Table S16.Bond angles involving hydrogens (⁰)

atom	atom	atom	angle	atom	atom	atom	angle
02	C2	H1	109.3	C3	C2	H1	109.4
C5	C2	H1	108.8	C2	C3	H2	110.4
C2	C3	H3	110.5	C4	C3	H2	111.8
C4	C3	H3	111.3	H2	C3	H3	109.5
C2	C5	H4	108.5	C6	C5	H4	108.2
C7	C5	H4	108.8	C5	C6	H5	109.9
C5	C6	H6	108.5	C5	C6	H7	110
H5	C6	H6	109.4	H5	C6	H7	109.4
H6	C6	H7	109.4	C5	C7	H8	109.7
C5	C7	H9	109.1	C5	C7	H10	109.7
H8	C7	H9	109.4	H8	C7	H10	109.4

H9	C7	H10	109.4	C8	C9	H11	119.6
C10	C9	H11	120.3	C9	C10	H12	119.6
C11	C10	H12	119.3	C10	C11	H13	120.4
C12	C11	H13	120.1	C11	C12	H14	119.9
C13	C12	H14	120.3	C8	C13	H15	119.3
C12	C13	H15	119.7	C14	C15	H16	119.4
C16	C15	H16	119.9	C15	C16	H17	119.7
C17	C16	H17	119.7	C16	C17	H18	120.6
C18	C17	H18	120.1	C17	C18	H19	120.2
C19	C18	H19	119.4	C14	C19	H20	119.5
C18	C19	H20	119.9				

Table S17. Torsion Angles(0)

(Those h	naving bond angle	es > 160 or < 20 o	degrees are excluded.)	
1				

atom1	atom2	atom3	atom4	angle
C1	O2	C2	C3	-19.39(16)
C2	O2	C1	O1	178.88(14)
01	C1	C4	C3	-158.70(17)
01	C1	C4	C14	86.0(2)
O2	C1	C4	C8	145.24(13)
02	C2	C3	C4	32.86(15)
O2	C2	C5	C7	-58.52(17)
C3	C2	C5	C7	-175.00(14)
C2	C3	C4	C1	-33.19(15)
C2	C3	C4	C14	81.48(15)
C1	C4	C8	C13	46.2(2)
C1	C4	C14	C19	-6.3(3)
C3	C4	C8	C13	159.67(14)
C3	C4	C14	C19	-114.87(16)
C8	C4	C14	C19	118.27(16)
C14	C4	C8	C13	-76.10(19)
C4	C8	C13	C12	179.63(14)
C13	C8	C9	C10	-1.4(3)
C9	C10	C11	C12	0.8(3)
C11	C12	C13	C8	-2.1(3)
C4	C14	C19	C18	177.92(15)
C19	C14	C15	C16	1.1(3)
C15	C16	C17	C18	-0.7(3)
C17	C18	C19	C14	0.7(3)
C1	O2	C2	C5	-144.37(12)
C2	O2	C1	C4	-2.73(17)
01	C1	C4	C8	-36.5(3)
O2	C1	C4	C3	23.07(16)
O2	C1	C4	C14	-92.18(16)
02	C2	C5	C6	178.36(10)
C3	C2	C5	C6	61.87(19)
C5	C2	C3	C4	152.39(15)

C2	C3	C4	C8	-154.39(13)
C1	C4	C8	C9	-136.82(15)
C1	C4	C14	C15	172.98(14)
C3	C4	C8	C9	-23.3(3)
C3	C4	C14	C15	64.46(17)
C8	C4	C14	C15	-62.4(2)
C14	C4	C8	C9	100.92(17)
C4	C8	C9	C10	-178.48(14)
C9	C8	C13	C12	2.6(3)
C8	C9	C10	C11	-0.3(3)
C10	C11	C12	C13	0.4(3)
C4	C14	C15	C16	-178.30(14)
C15	C14	C19	C18	-1.4(3)
C14	C15	C16	C17	0.0(3)
C16	C17	C18	C19	0.4(3)

Table S18. Intramolecular contacts less than 3.60 Å

atom	atom	distance	atom
01	C2	3.455(3)	01
01	C8	3.004(2)	01
01	C14	3.252(3)	01
O2	C7	2.874(3)	O2
O2	C19	3.384(3)	C1
C1	C13	3.031(3)	C1
C2	C14	3.081(3)	C3
C3	C9	2.937(3)	C3
C3	C19	3.592(3)	C8
C8	C15	3.065(3)	C9
C9	C14	3.444(3)	C9
C10	C13	2.761(3)	C13
C14	C17	2.803(3)	C15
C16	C19	2.766(3)	

Table S19. Intramolecular contacts less than 3.60 Å involving hydrogens

atom	atom	distance	atom	atom	distance
O1	H15	2.387	01	H20	2.66
O2	H2	2.747	O2	H3	3.16
O2	H4	2.613	O2	H9	3.184
O2	H10	2.527	O2	H20	2.989
C1	H1	2.799	C1	H2	2.744
C1	H3	3.179	C1	H4	3.578
C1	H15	2.786	C1	H20	2.45
C2	H5	3.312	C2	H6	2.651
C2	H7	2.655	C2	H8	3.323
C2	H9	2.679	C2	H10	2.677
C2	H20	3.587	C3	H4	2.76
C3	H6	3.344	C3	H7	2.72
C3	H11	2.58	C3	H16	2.96

C4	H1	2.76	C4	H11	2.686
C4	H15	2.684	C4	H16	2.65
C4	H20	2.737	C5	H2	2.66
C5	H3	3.014	C6	H1	2.671
C6	H2	3.099	C6	H3	3.025
C6	H8	2.705	C6	H9	2.711
C6	H10	3.348	C7	H1	2.68
C7	H5	2.705	C7	H6	2.709
C7	H7	3.349	C8	H2	2.676
C8	H3	3.006	C8	H12	3.253
C8	H14	3.258	C8	H16	2.897
C9	H2	2.734	C9	H3	3.084
C9	H13	3.243	C9	H15	3.24
C9	H16	2.96	C10	H14	3.228
C11	H11	3.239	C11	H15	3.246
C12	H12	3.229	C13	H11	3.242
C13	H13	3.247	C14	H1	2.922
C14	H2	3.358	C14	H3	2.587
C14	H11	3.558	C14	H15	3.174
C14	H17	3.255	C14	H19	3.253
C15	H3	2.706	C15	H11	3.461
C15	H18	3.245	C15	H20	3.236
C16	H19	3.229	C17	H16	3.24
C17	H20	3.246	C18	H17	3.227

Table S20. Intramolecular contacts less than 3.60 Å involving hydrogens (continued)

				•	· ·
atom	atom	distance	atom	atom	distance
C19	H1	3.269	C19	H15	3.555
C19	H16	3.236	C19	H18	3.248
H1	H2	2.829	H1	Н3	2.257
H1	H4	2.835	H1	H5	3.546
H1	H6	2.479	H1	H7	2.951
H1	H8	3.553	H1	Н9	2.5
H1	H10	2.958	H1	H20	3.332
H2	H4	2.496	H2	H7	2.617
H2	H11	2.309	H2	H16	3.571
H3	H4	3.339	Н3	H6	3.132
H3	H7	2.536	Н3	H11	2.532
H3	H16	2.43	H4	H5	2.357
H4	H6	2.823	H4	H7	2.345
H4	H8	2.348	H4	Н9	2.827
H4	H10	2.345	Н5	H8	2.533
Н5	H9	2.981	H5	H10	3.577
H6	H8	2.987	Н6	Н9	2.545
H6	H10	3.58	H7	H8	3.575
H7	H9	3.585	H11	H12	2.318
H11	H16	2.78	H12	H13	2.296
H13	H14	2.327	H14	H15	2.315

H15	H20	3.427	H16	H17	2.311
H17	H18	2.314	H18	H19	2.32
H19	H20	2.31			

Table S21. Intermolecular contacts less than 3.60 Å

atom	atom	distance	atom	atom	distance
01	C3 ¹	3.252(2)	O1	C9 ¹	3.457(3)
O1	C15 ¹	3.512(3)	O2	C10 ²	3.476(2)
C3	O1 ³	3.252(2)	C9	O1 ³	3.457(3)
C10	$O2^4$	3.476(2)	C15	O1 ³	3.512(3)

Symmetry Operators:

(1)	X+1,Y,Z	(2)	X+1,Y,Z+1
(3)	X-1,Y,Z	(4)	X-1,Y,Z-1

Table S22. Intermolecular contacts less than 3.60 Å involving hydrogens.

atom	atom	distance	atom	atom	distance
01	$H2^{1}$	3.331	01	H3 ¹	2.427
01	$\mathrm{H7^{1}}$	3.585	01	$H11^{1}$	2.622
01	H13 ²	3.163	01	H16 ¹	2.709
01	H17 ³	3.54	01	H18 ³	3.463
O2	H31	3.581	O2	$H7^{1}$	3.206
O2	H12 ²	2.791	O2	H13 ²	3.203
O2	H17 ³	3.477	C1	H3 ¹	3.35
C1	H13 ²	3.356	C1	H18 ³	3.27
C2	H12 ²	3.104	C2	H14 ⁴	3.5
C3	H13 ⁴	3.458	C3	H18 ³	3.536
C4	H18 ³	3.496	C6	H10 ⁵	3.228
C6	H15 ³	3.427	C6	H18 ⁶	3.41
C7	H12 ²	3.162	C7	H18 ⁶	3.368
C7	H19 ⁷	3.299	C8	H18 ³	3.161
C9	H18 ³	3.396	C9	H19 ³	3.594
C10	H1 ⁸	3.526	C10	H6 ⁹	3.152
C10	H8 ¹⁰	3.589	C10	H9 ⁸	3.346
C10	H10 ⁸	3.421	C10	H20 ⁸	3.506
C11	H1 ⁹	3.102	C11	H3 ⁹	3.335
C11	H6 ⁹	3.003	C11	H8 ¹⁰	3.028

C11	H20 ⁸	3.139	C12	H1 ⁹	2.834
C12	H5 ¹⁰	3.114	C12	H6 ⁹	3.416
C12	H8 ¹⁰	2.765	C13	H4 ¹⁰	3.464
C13	H5 ¹⁰	3.024	C13	H8 ¹⁰	3.146
C13	H18 ³	3.585	C14	H4 ¹⁰	3.191
C14	H14 ⁴	3.317	C15	H4 ¹⁰	3.055
C15	H13 ⁴	3.105	C15	H14 ⁴	3.44
C15	H20 ⁵	3.571	C16	H4 ¹⁰	3.089
C16	H13 ⁴	3.364	C16	H14 ⁴	3.397
C16	H20 ⁵	3.54	C17	H2 ¹⁰	2.899
C17	H4 ¹⁰	3.251	C17	H5 ¹¹	3.527
C17	H6 ¹¹	3.386	C17	H8 ¹¹	3.484
C17	H9 ¹¹	3.319	C17	H14 ⁴	3.225
C18	H2 ¹⁰	2.931	C18	H4 ¹⁰	3.35
C18	H5 ¹¹	3.544	C18	H14 ⁴	3.091
C18	$H17^{1}$	3.599	C19	H4 ¹⁰	3.314
C19	H13 ²	3.333	C19	H14 ⁴	3.144

Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
C19	$H17^{1}$	3.558	H1	C10 ²	3.526
H1	C11 ⁴	3.102	H1	C12 ⁴	2.834
H1	H12 ²	2.601	H1	H13 ⁴	3.008
H1	H14 ⁴	2.55	H2	O1 ⁵	3.331
H2	C17 ³	2.899	H2	C18 ³	2.931
H2	H18 ³	2.873	H2	H19 ³	2.917
Н3	O1 ⁵	2.427	H3	O2 ⁵	3.581
Н3	C1 ⁵	3.35	H3	C11 ⁴	3.335
Н3	H13 ⁴	2.653	H4	C13 ³	3.464
H4	C14 ³	3.191	H4	C15 ³	3.055
H4	C16 ³	3.089	H4	C17 ³	3.251
H4	C18 ³	3.35	H4	C19 ³	3.314
H4	H15 ³	3.353	H4	H16 ³	3.478
H4	H17 ³	3.527	Н5	C12 ³	3.114
Н5	C13 ³	3.024	Н5	C17 ⁶	3.527
Н5	C18 ⁶	3.544	Н5	H10 ⁵	3.125
Н5	H14 ³	2.816	Н5	H15 ³	2.634
Н5	H18 ⁶	3.287	Н5	H19 ⁶	3.327
H6	C10 ⁴	3.152	Н6	C11 ⁴	3.003

H6	C12 ⁴	3.416	H6	C17 ⁶	3.386
H6	H10 ⁵	3.046	H6	H12 ⁴	3.424
H6	H13 ⁴	3.162	H6	H18 ⁶	2.777
H6	H19 ⁶	3.316	H7	O1 ⁵	3.585
H7	O2 ⁵	3.206	H7	H10 ⁵	2.967
H7	H13 ⁴	3.567	H7	H17 ¹²	3.136
H8	C10 ³	3.589	H8	C11 ³	3.028
H8	C12 ³	2.765	H8	C13 ³	3.146
H8	C17 ⁶	3.484	H8	H13 ³	3.34
H8	H14 ³	2.914	H8	H15 ³	3.491
H8	H17 ⁶	3.588	H8	H18 ⁶	3.255
H8	H19 ⁷	3.147	H9	C10 ²	3.346
Н9	C17 ⁶	3.319	H9	H11 ²	3.265
Н9	H12 ²	2.68	H9	H17 ⁶	3.44
Н9	H18 ⁶	2.718	H9	H19 ⁷	3.191
H10	C6 ¹	3.228	H10	C10 ²	3.421
H10	H5 ¹	3.125	H10	H6 ¹	3.046
H10	$H7^{1}$	2.967	H10	H12 ²	2.893

Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H10	H19 ⁷	3.005	H11	O1 ⁵	2.622
H11	H9 ⁸	3.265	H11	H15 ⁵	3.252
H11	H19 ³	3.328	H12	$O2^8$	2.791
H12	C2 ⁸	3.104	H12	C7 ⁸	3.162
H12	$H1^{8}$	2.601	H12	H6 ⁹	3.424
H12	H9 ⁸	2.68	H12	H10 ⁸	2.893
H12	H14 ⁵	3.201	H12	H20 ⁸	3.169
H13	O1 ⁸	3.163	H13	$O2^8$	3.203
H13	C1 ⁸	3.356	H13	C3 ⁹	3.458
H13	C15 ⁹	3.105	H13	C16 ⁹	3.364
H13	C19 ⁸	3.333	H13	H1 ⁹	3.008
H13	H3 ⁹	2.653	H13	H6 ⁹	3.162
H13	H7 ⁹	3.567	H13	H8 ¹⁰	3.34
H13	H16 ⁹	3.108	H13	H17 ⁹	3.528
H13	H20 ⁸	2.475	H14	C2 ⁹	3.5
H14	C14 ⁹	3.317	H14	C15 ⁹	3.44
H14	C16 ⁹	3.397	H14	C17 ⁹	3.225
H14	C189	3.091	H14	C19 ⁹	3.144

H14	H1 ⁹	2.55	H14	H5 ¹⁰	2.816
H14	H8 ¹⁰	2.914	H14	H12 ¹	3.201
H14	H19 ⁹	3.498	H14	H20 ⁹	3.588
H15	C6 ¹⁰	3.427	H15	H4 ¹⁰	3.353
H15	H5 ¹⁰	2.634	H15	H8 ¹⁰	3.491
H15	H11 ¹	3.252	H15	H16 ¹	3.315
H16	O1 ⁵	2.709	H16	$H4^{10}$	3.478
H16	H13 ⁴	3.108	H16	H15 ⁵	3.315
H16	H20 ⁵	3.142	H17	O1 ¹⁰	3.54
H17	O2 ¹⁰	3.477	H17	C18 ⁵	3.599
H17	C19 ⁵	3.558	H17	$H4^{10}$	3.527
H17	H7 ¹³	3.136	H17	H8 ¹¹	3.588
H17	H9 ¹¹	3.44	H17	H13 ⁴	3.528
H17	H19 ⁵	3.165	H17	H20 ⁵	3.08
H18	O1 ¹⁰	3.463	H18	C1 ¹⁰	3.27
H18	C3 ¹⁰	3.536	H18	C4 ¹⁰	3.496
H18	C6 ¹¹	3.41	H18	C7 ¹¹	3.368
H18	C8 ¹⁰	3.161	H18	C9 ¹⁰	3.396
H18	C13 ¹⁰	3.585	H18	H2 ¹⁰	2.873

Intermolecular contacts less than 3.60 Å involving hydrogens (continued)

atom	atom	distance	atom	atom	distance
H18	H5 ¹¹	3.287	H18	H6 ¹¹	2.777
H18	H8 ¹¹	3.255	H18	H9 ¹¹	2.718
H19	C7 ¹⁴	3.299	H19	C9 ¹⁰	3.594
H19	H2 ¹⁰	2.917	H19	H5 ¹¹	3.327
H19	H6 ¹¹	3.316	H19	H8 ¹⁴	3.147
H19	H9 ¹⁴	3.191	H19	H10 ¹⁴	3.005
H19	H11 ¹⁰	3.328	H19	H14 ⁴	3.498
H19	$H17^{1}$	3.165	H20	C10 ²	3.506
H20	C11 ²	3.139	H20	C15 ¹	3.571
H20	C16 ¹	3.54	H20	H12 ²	3.169
H20	H13 ²	2.475	H20	H14 ⁴	3.588
H20	H16 ¹	3.142	H20	H17 ¹	3.08

Symmetry Operators:

(1) X+1,Y,Z

(3) -X+2,Y+1/2,-Z+1

- (5) X-1,Y,Z
- (7) -X+3,Y+1/2,-Z+2
- (9) X,Y,Z-1
- (11) -X+2,Y+1/2-1,-Z+2
- (13) -X+1,Y+1/2-1,-Z+1

- (2) X+1,Y,Z+1
- (4) X,Y,Z+1
- (6) -X+2,Y+1/2,-Z+2
- (8) X-1,Y,Z-1
- (10) -X+2,Y+1/2-1,-Z+1
- (12) -X+1,Y+1/2,-Z+1
- (14) -X+3,Y+1/2-1,-Z+2

第三章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応の開発 第一節 緒言

第一項 遷移金属触媒による 2-ナフトール類の酸化的不斉ホモカップリング反応

光学活性な BINOL 誘導体は不斉合成において幅広 く用いられている不斉配位子である¹⁾。さらに BINOL 102 は様々な不斉反応に有効な BINAP 46 等の不斉配 位子や、リン酸エステルに代表される不斉有機分子触 媒に容易に変換²⁾できるため、BINOL の不斉合成の開 発はきわめて重要である。これまでに BINOL の触媒 的不斉合成は多くの研究者によって盛んに研究されている³⁾。

BINOL 誘導体の初めての不斉合成は 1978 年、Wynberg らによって化学量論量の

BINOL 誘導体の初めての小角合成は 1978 年、Wyiberg ちにようて化学重調重の Cu(NO₃)₂·3H₂O と(S)-phenylethylamine を用いて達成されている ⁴⁾。しかしこの反応によっ て得られる BINOL のエナンチオ過剰率はわずか 3% ee であり実用的な反応とは言えなか った (Scheme 3-1)。1983 年、Brussee らは(S)-phenylethylamine を 2-ナフトールに対して 8 当量用いることにより不斉収率を 96% ee にまで改善している ⁵⁾。しかしながら遷移金属及 びキラル源を大過剰に用いている等、大きな課題が残されていた (Scheme 3-2)。

Scheme 3-1. First Asymmetric BINOL Synthesis.

Scheme 3-2. First Example of Asymmetric BINOL Synthesis with High Enantioselectivity.

BINOL の触媒的不斉合成は 1992 年 Kocovsky らによって達成されている⁶。10 mol %の CuCl₂, 20 mol %の(–)-sparteine 及び酸化剤として 1.1 当量の AgCl を用いて、化学収率 70%、 不斉収率 3% ee で BINOL が得られている。しかしながら依然として不斉収率が低かった (Scheme 3-3)。

Scheme 3-3. First Example of Enantioselective BINOL Synthesis.

高エナンチオ選択性且つ実用的な BINOL 誘導体の触媒的不斉合成は、1999 年古賀らに よって達成されている⁷)。彼らはキラルなプロリンから誘導されるジアミンを不斉配位子 に用いて Cu(I)錯体による 2-ナフトール誘導体の酸化的な触媒的不斉カップリング反応に 成功している (Scheme 3-4)。3-位にエステル置換基を有する基質 27 からは高いエナンチ オ選択性が観測され、最高 78% ee で(S)-BINOL 誘導体 28 が得られている。さらに Cu の酸 化剤として分子状の酸素を用いているため、環境負荷が小さくクリーンな反応といえる。

Scheme 3-4. Enantioselective Homo-Coupling of 2-Naphthol Derivative Catalyzed by Chiral Cu Complex.

2001 年には Kozlowski らは 1,5-diaza-cis-decaline 104 を配位子とする Cu(I)錯体を開発し、基質 27 を用いて不斉収率を 93% ee にまで向上さ せている⁸⁾ (Scheme 1-12)。しかしながら、2-ナフトールの3位にエス テル基を持たない基質では不斉誘起は観測されていない。このように 1,5-diaza-cis-decaline 基質適用範囲が限られるものの、BINOL 誘導体の触媒的不斉合成黎明期は主としてキラル Cu 触媒によって開拓されてきた。

一方、2000 年香月らはキラル Ru(salan)触媒 105 を用いて、紫外線照射下において、6 位 に Br 基を持つ 2-ナフトール誘導体 106 の酸化的不斉ホモカップリング反応で最高 71% ee の不斉誘起を達成している⁹⁾ (Scheme 3-5)。本触媒は、2-ナフトールの3位にエステル置 換基を必要としないという点で、前述した Cu 触媒系とは全く異なる。

(S,S)

104

Scheme 3-5. Enantioselective Homo-Coupling of 2-Naphthol Derivative Using Ru(salan) Complex.

Cu や Ru の他にも、2001 年に Chen^{10a)}らと Uang^{11a)}らはそれぞれ独立して、2-ナフトール 誘導体の不斉カップリング反応に有効なオキソバナジウム(IV)錯体 108 を報告している (Figure 3-1)。アルデヒドとアミノ酸と VOSO4 から合成される 108 は 3,6,7 位に置換基を 有する様々な BINOL 誘導体を中程度のエナンチオ選択性 (up to 68% ee) で与える。しか しながら触媒活性が低く、反応終了までに 2~15 日の時間を要するという問題を抱えてい る。Uang らは TMSCI のようなルイス酸の添加^{11a)} や、触媒にブレンステッド酸部位を導 入した触媒 109 を用いることでエナンチオ選択性を改善し^{11b)}、不斉収率を 73% ee にまで 向上させている。さらに Chen らは、*N*-ketopinidene-α-amino acid から誘導されるバナジウ ム(IV)触媒 110 を開発し、不斉収率を最高 87% ee にまで向上させている^{10b}。

Figure 3-1. Various Vanadium Catalysts for Oxidative Coupling Reaction of 2-Naphthol Derivatives.

2001 年、Gong らは二つのバナジウム原子が酸素原子で架橋された二核バナジウム(V)錯体 111 が 2-ナフトール誘導体の不斉ホモカップリング反応に有効であると報告している¹²⁾ (Scheme 3-6)。0 ℃酸素雰囲気下でカップリング反応が進行し、最高 97% ee と高いエナ ンチオ選択性で 3,6,7 位に様々な置換基を有する BINOL 誘導体を与える。

Scheme 3-6. Enantioselective Homo-Coupling of 2-Naphthol Derivative Promoted by Gong's Catalyst.

筆者の研究室でも Scheme 3-7 で示した、「二重活性化機構」に基づく二核バナジウム(V) 触媒 (*R_a,S,S*)-112 を開発している¹³)。本触媒は同一分子内の二つのバナジウム金属がそれ ぞれ 2-ナフトールを活性化し、分子内カップリング反応を促進して、高収率、高エナンチ オ選択的に目的物の(*S*)-BINOL誘導体を与える。例えば、2-ナフトール類を基質として DCM 溶媒中で反応させると、定量的に最高 97 % ee で(*S*)-BINOL 誘導体を与える。本触媒は活 性が高く、空気雰囲気下でも反応が進行する(Scheme 3-8)。本系は基質や生成物が不安定 でこれまで不斉カップリング反応が困難であった基質 113~116 のにおいても高いエナンチ オ選択的に反応を促進する(Figure 3-2)^{13h}。

Scheme 3-7. A Model of Dual Activation Catalysis.

Scheme 3-8. Enantioselective Homo-Coupling of 2-Naphthol Derivative Catalyzed by (R_a, S, S) -112.

Figure 3-2. Chiral Polycyclic Biphenol Derivatives.

近年の元素戦略の観点から、本カップリング反応においてもより安価で安全な金属触媒 を用いる反応の開発が展開されている。2009 年香月らは、Fe-Salan 触媒 117 を用いて、2-ナフトール誘導体の酸化的不奋カップリング反応において最高 97% ee の高いエナンチオ 選択性を達成している^{14a)} (Scheme 3-9)。安価で低毒性な Fe 触媒を用いているものの、系 中に触媒活性種を発生させるには 60 ℃ にまで昇温する必要があった。本触媒は異なる種 類の基質どうしのヘテロカップリング反応にも応用されている^{14b)} (Scheme 3-10)。電子的 性質が異なる二種類の 2-ナフトール類のヘテロカップリング反応を高選択的に促進し、C3、 C3'及び C6'位に種々の置換基をもつ光学活性な C1 対称ビナフトール類の簡便な合成法 を確立している。

Scheme 3-9. Enantioselective Oxidative Homo-Coupling of 2-Naphthols Catalyzed by Fe-Salan Complex **117**.

Scheme 3-10. Enantioselective Oxidative Hetero-Coupling of 2-Naphthols Catalyzed by Fe-Salan Complex.

このように光学活性な BINOL 誘導体を与える、2-ナフトール類の酸化的不斉カップリン グ反応は、キラル Cu、Ru、V 及び Fe 触媒によって達成されている。

第二項 キラル Mn 触媒による不斉酸化反応の報告例

Mn(III)の酸化力は強く、標準酸化還元電位は+1.51 である¹⁵⁾。それゆえ Mn は酸化反応 において興味深い活性を示し、これまでに様々な不斉酸化反応が開発されている¹⁶⁾ (Figure 3-3)。Mn-Salen 錯体 118 を用いるエポキシ化反応は、穏和な条件で合成中間体として重要 なエポキサイドを高い光学純度で与える。他にもオレフィンのアジリジン化、ベンジル位 の酸化反応、スルフィドのスルホキシド化等も報告されており、いずれの反応においても 高いエナンチオ選択性が達成されている。

Figure 3-3. Enantioselective Oxidations Catalyzed by Mn-Salen Complex.

上述したように Mn 触媒による不斉酸化反応において、C-O または C-N 結合形成反応は 多数報告があるものの、C-C 結合形成反応は限られていた⁸。ごく最近、高橋らは Scheme 3-11 で示されるように、2-ナフトールの酸化的ホモカップリング反応を Mn 触媒によって 達成しているものの、本反応で得られる BINOL はラセミ体である¹⁷⁾。そこで筆者は Mn 触媒によるエナンチオ選択的な C-C 結合形成反応を開拓するべく、キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応の開発に着手した。

第二節 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応の検討 第一項 反応条件の検討

2-ナフトールに 10 mol %の Mn(acac)₂•2H₂O と様々なキラル配位子から系中にて錯体を調 製し、25 ℃ の DCE 溶媒中、酸素雰囲気下で 5 時間撹拌した(Table 3-1)。酸化的条件に安 定な SPRIX 配位子 48 を用いても反応はせず、多くの配位子に活性は見られなかったもの の、2 級のジアミン配位子 119a を用いた際に収率 78%、不斉収率 12% ee で生成物が得ら れた。また、ビスイミダゾリン配位子 123 を用いると収率が 43%に低下したものの、不斉 収率 9% ee で生成物が得られた。他にも様々なキラル配位子を検討したものの、これら 119a 及び 123 のデータを上回るものは無かった。

Table 3-1. Ligand Screening.

触媒活性を示したキラル配位子 119a と 123 について、それぞれ類似の部分構造を持つ配 位子を検討した(Table 3-2)。エナンチオ選択性の向上を期待して 119a の窒素上の置換基 効果を検討した。Bn 基を有するジアミン配位子 119b を用いた場合ではエナンチオ選択性 の改善は見られず、収率も 42%に低下した。置換基を *i*-Pr に変更した 119c ではさらに収率 が低下し、得られた生成物 102 もラセミ体であった。このように、N 上の置換基の立体障 害が大きいほど、収率及びエナンチオ選択性が低下したことから、置換基の立体障害によ って、ジアミン配位子が Mn にキレート配位しにくくなったのではないかと考えた。そこ で N 原子に置換基を持たない配位子 119d を検討したものの、複雑な混合物が得られた。 次に、ビスイミダゾリン配位子 123 を用いた時に不斉誘起が観測されたことを受けて、リ ンカーをピリジンに変えた三座配位子 136 及び PyBox 配位子 137 を検討した。その結果、 触媒活性が低下し、痕跡量の生成物を与えるのみであった。次にピリジン部位とイミダゾ リン部位を有する非対称なキラル配位子 138 を検討したところ、収率 44%で生成物が得ら れたものの得られた BINOL はラセミ体であった。

ビスイミダゾリン配位子 123 は不斉誘起を示したものの、TLC で反応を追跡した結果、 生成物 102 以外のスポットも多く見られた。それらのスポットの多くがニンヒドリンで呈 色されたことから、筆者はこれらの副生成物が窒素原子を含む配位子由来のものであると 考えた。そこで配位子の安定性を Scheme 3-12 で示す方法で確認した。123 の DCE 溶液に 1 当量の Mn(acac)₂·2H₂O を加え、酸素雰囲気下 0 ℃ 及び 25 ℃ で 5 時間攪拌させた。次に、 Mn から配位子を遊離させるために、キレート剤として多用される EDTA と水を加えて 1 時間攪拌させた。その後、有機層を抽出し、TLC を確認した。その結果、25 ℃ で攪拌し た系では配位子 123 はほぼ完全に消費され、配位子由来と考えられるスポットがいくつも 確認された。一方、0 ℃ で攪拌した場合は 123 のスポットのみ観測された。この結果から、 ビスイミダゾリン配位子は、25 ℃ では、酸化力の強い Mn(III)によって酸化された可能性 がある。可能性として、イミダゾリン部位がイミダゾールに酸化されたものや、芳香環が 酸化された可能性も考えられる。それ故、以降の反応条件の検討には、同様の手法で 25 ℃ の本系に安定であることを確認出来た配位子 119a を使用した。

Scheme 3-12. Stability of Ligand 123.

TLC check 25 °C; Some spots were observed. 0 °C; Only a spot of **123** was ovserved. 配位子 **119a** を用いた場合の溶媒のスクリーニングの結果を Table 3-3 に示す。DCE 及び Toluene を用いた際に不斉誘起が観測され、それぞれ不斉収率 12% ee, 14% ee で目的の BINOL **102** が得られた(Entries 1 and 2)。MeCN、 DMA 及び MeOH 溶媒中では反応性が 著しく低下し、得られた生成物もラセミ体であった(Entries 3, 4 and 5)。配位子を加えず にバックグラウンド反応が進行するか確認した結果、25 ℃ では反応は進行しなかった (Entry 6)。

	103	Mn(acac) ₂ ·2H ₂ O (10 mol %) 119a (10 mol %)	102
		Solvent, 25 °C, O ₂ , 5 h	
Entry	Solvent	Yield (%) ^a	Ee (%) ^b
1	DCE	78	12
2	Toluene	69	14
3	MeCN	25	rac
4	DMA	22	rac
5	MeOH	20	rac
6 ^c	DCE	0	-
7 ^{c,d}	DCE	62	-

^a Isolate yield. ^b Determined by HPLC analysis. ^c Without chiral ligand. ^d At 50 °C.

次に Mn 塩の検討を行った(Table 3-4)。Mn(acac)₂·2H₂O を用いた際、高反応性を示した (Entry 1)。Mn(OAc)₂·4H₂O (Entry 2)、MnCl₂·4H₂O (Entry 3)、MnBr₂ (Entry 4)、MnI₂ (entry 5)を用いた際、反応性は著しく低下し得られた生成物もラセミ体であった。

Table 3-4. Screening of Mn Salts.

	103	Mn source (10 mol %) 119a (10 mol %)	102	
		DCE, 25 °C, O ₂ , 5 h		
Entry	Mn Source	Yield (%) ^a		Ee (%) ^b
1	$Mn(acac)_2 \cdot 2H_2O$	78		12
2	$Mn(OAc)_2 \cdot 4H_2O$	trace		-
3	MnCl ₂ •4H ₂ O	trace		-
4	MnBr ₂	trace		-
5	MnI_2	23		rac

^a Isolate yield. ^b Determined by HPLC analysis.

そこで Mn(acac)₂·2H₂O とキラル配位子の比を検討した(Table 3-5)。119a を Mn(acac)₂· 2H₂O と同じく 10 mol %用いた時に 78%、12% ee で生成物 102 が得られた(Entry 1)。119a の添加量を増やしたところ、20 mol %では収率 55%に(Entry 2)、30 mol %では 42%(Entry 3)、50 mol %では 19%にまで収率が低下した(Entry 4)。これらの結果から、119a を Mn(acac)₂ ·2H₂O に対して1当量用いた場合系中には主として Mn-119a の1対1の錯体が存在し、119a を過剰量用いると本反応に対して低活性である、Mn に対して 119a が複数個配位した錯体 の割合が増加したため、収率が低下したと考えている。

	Mr	n(acac) ₂ ·2H ₂ O (10 mol %) 119a (X mol %)	
	103 —	DCE, 25 °C, O ₂ , 5 h	
Entry	119a (mol %)	Yield ^a (%)	Ee ^b (%)
1	10	78	12
2	20	55	5
3	30	42	4
4	50	19	4

Table 3-5. Effects of Mn-119a ratio.

^a Isolate yield. ^b Determined by HPLC analysis.

103

第二項 触媒構造解析の試み

本錯体の単結晶 X 線構造解析をするために、蒸気拡散法を用いて再結晶を試みた (Scheme 3-14)。良溶媒として MeOH, DCE, DMF, Toluene, EtOAc、貧溶媒として Hexane, Et₂O, MeCN を選択し検討したものの単結晶は得られなかった。

Scheme 3-14. Recrystalyzation of Mn-119a Complex.

そこでキラル配位子 119a の配位形式だけでも明らかにするために、本来の触媒系とは異なるものの Mn(OAc)₂•4H₂O を用いて単結晶の作成に取り組んだ(Scheme 3-15)。50 µmol の Mn(OAc)₂•4H₂O に対して 75 µmol (1.5 当量)のキラル配位子を MeOH 溶媒中で作用させ、25 °C で 5 時間攪拌させた。その後溶媒を減圧留去し、残渣を Et₂O で洗浄した。この粗結晶を DCM / Et₂O の溶媒系で再結晶すると紫色の針状結晶が得られた。この結晶の質量分析を高分解能の FAB-MS を用いて行ったところ m/z 355.1230 のピークが観測され、理論値 m/z 355.1218 [M+H]⁺とほぼ一致した。現在、X 線を測定できる程度の大きさまで単結晶を成長させようと試みている。予め多めに加えていたキラル配位子が、Et₂O で洗浄した際 24.6 µmol 回収されたことから、119a は Mn に対して 2 分子以上配位しないと推察された。

Scheme 3-15. Preparation of Mn-119a Complex Using Mn(OAc)₂·2H₂O.

現段階では触媒の直接的な構造は確認できていないものの、上述した MS 解析によって、 Mn にキラル配位子が1分子配位した1対1の錯体が、Mn(acac)2·2H2O を用いる本来の触 媒系でも発生していることが示唆された。
本系において Mn とキラル配位子が適切に錯形成しているか確認するため、触媒構造解 析を試みた。まず、Mn(acac)₂·2H₂O にキラル配位子 119a を 25 °C の DCE 溶液中、5 時間 攪拌した後質量分析を行った(Scheme 3-13)。ESI-MS を測定したところ、フラグメント化 したピークのみ観測され解析が困難であった。そこでより穏やかな条件で測定するべく FAB-MS による解析を行った。

Scheme 3-13. Mass spectrometry of Mn(acac)₂· 2H₂O with Ligand 119a.

その結果、Figure 3-4 に示すとおり、Mn と配位子 119a 及び acac が 1:1:1 の組成で錯形成 したと思われるピーク (m/z 394) が観測された。さらに、Mn と配位子 119a 及び acac が 1:1:1 の組成で錯形成したと考えられるピーク (m/z 494) も観測された。したがって純度 は不明であるものの、系中で Mn とキラル配位子の 1:1 の錯体が発生していることが推察 された。

第三節 まとめ

<u>キラル配位子及び反応条件の検討に関するまとめ</u>

これまで報告が無かったキラル Mn 触媒を用いるエナンチオ選択的 C-C 結合形成反応の 開拓として、筆者は2-ナフトールの酸化的不斉ホモカップリング反応の検討を行った。様々 なキラル配位子を検討した結果、ジアミン系の配位子 119a を用いた際に最高 14% ee の不 斉誘起が観測された (Scheme 3-16)。

Scheme 3-16. Oxidative Homo-Coupling of 2-Naphthol Catalyzed by Chiral Mn-Complex.

現段階では、第二級アミン配位部位を有するキラル配位子 119a が最も良い触媒活性を示 している。しかしながらエナンチオ選択性には改良の余地がある。ビスイミダゾリン配位 子 123 のように、不斉誘起を示すものの本系に不安定である場合があるため、キラル配位 子が反応条件に耐え得るか、Scheme 3-12 に示す方法を用いて評価する必要がある。

触媒構造解析のまとめ

Mn(acac)₂·2H₂O にキラル配位子 119a を作用させ FAB-MS を測定し た結果、Mn とキラル配位子 119a が 1 対 1 の組成で錯形成していると 推察されるピークが観測された。さらに Mn 塩とキラル配位子 119a の 比を検討したところ、モル比 1 対 1 で用いた時に最も高い活性を示し た。したがって、本触媒系でも Mn にキラル配位子 119a がキレート配 位した右に示すような錯体が活性種であると推察された。

今後の展望 ~酸化的脱芳香族化反応への応用~

2012 年香月らは、Fe-(salan)触媒 117 を用いて 2-ナフトール誘導体 139 の C-C 結合形成 による不斉酸化的脱芳香族化反応の開発に成功している¹⁸⁾ (Scheme 3-17a)。穏和な条件で 2-ナフトール類を一電子酸化するキラル Mn 触媒の特性を生かし、2-ナフトール類の酸化 的脱芳香族化反応への適用を検討すべく同条件下に Mn 錯体を用いたところ、Fe-(salan)触 媒 117 の時とは全く異なり、酸素が挿入した生成物 141 が得られた (Scheme 3-17b)。本系 は反応温度 0 ℃ でも活性種が生じ、Fe-(salan)触媒 117 では見られなかった C-O 結合形成 が起こる新規な脱芳香族化反応であり、これら Mn 触媒の不斉反応の展開に興味がもたれ る。

参考文献

- (a) J. M. Brunel, *Chem. Rev.* 2005, *105*, 857. (b) B. E. Love, *Curr. Org. Synth.* 2006, *3*, 169. (c) M. Terada, *Chem. Commun.* 2008, 4097.
- 2) M. Berthod, G. Mignani, G. Woodward, M. Lemaire, Chem. Rev, 2005, 105, 1801.
- 3) H. Wang, *Chirality* **2010**, *22*, 827.
- 4) B. Feringa, H. Wynberg, *Bioorg Chem* 1978, 7, 397.
- (a) J. Brussee, J. L. G. Groenendijk, J.M. Koppele, A. C. A. Jansen, *Tetrahedron* 1985, 41, 3313. (b) J. Brussee, A. C. A. Jansen, *Tetrahedron Lett* 1983, 24, 3261.
- 6) M. Smrcina, J. Polakova, S. Vsykocil, P. Kocovsky, J Org Chem 1993, 58, 4534.
- M. Nakajima, I. Miyoshi, K. Kanayama, S. Hashimoto, M. Noji, K. Koga, J. Org. Chem. 1999, 64, 2264.
- 8) X. Li, J. Yang, M. C. Kozlowski, Org. Lett, 2001, 3, 1137.
- 9) R. Irie, K. Masutani, T. Katsuki, Synlett, 2000, 1433.
- 10) (a) S-W. Hon, C-H. Li, J-H. Kuo, N. B. Barhate, Y-H. Liu, Y. Wang, C-T. Chen, Org. Lett, 2001, 3, 869. (b) N. B. Barhate, C-T. Chen, Org. Lett., 2002, 4, 2529.
- 11) (a) C-Y. Chu, D-R. Hwang, S-K. Wanga, B-J. Uang, *Chem. Commun.*, 2001, 980. (b) C-Y. Chu, B-J. Uang, *Tetrahedron Asymmetry*, 2003, 14, 53.
- (a) Z. Luo, Q. Liu, L. Gong, X. Cui, A. Mi, Y. Jiang, *Angew. Chem. Int. Ed.* 2002, *41*, 4532. (b)
 Z. Luo, Q. Liu, L. Gong, X. Cui, A. Mi, Y. Jiang, *Chem. Commun.*, 2002, 914.
- (a) H. Somei, Y. Asano, T. Yoshida, S. Takizawa, H. Yamataka, H. Sasai. *Tetrahedron Lett.* 2004, 45, 1841. (b) S. Takizawa, T. Katayama, C. Kameyama, K. Onitsuka, T. Suzuki, T. Yanagida, T. Kawai, H. Sasai, *Chem. Commun.*, 2008, 1810. (c) S. Takizawa, T. Katayama, C. Kameyama, K. Onitsuka, T. Suzuki, T. Yanagida, T. Kawai, H. Sasai, *Chem. Commun.*, 2008, 1810. (d) S. Takizawa, T. Katayama, H. Sasai, *Chem. Commun.*, 2008, 4113. (e) S. Takizawa, D. Rajesh, T. Katayama, H. Sasai, *Synlett*, 2009, 1667. (f) S. Takizawa, *Chem. Pharm. Bull.* 2009, 57, 1179. (g) S. Takizawa, F. A. Arteaga, Y. Yoshida, J. Kodera, Y. Nagata, H. Sasai, *Dalton Trans.* 2013, 42, 11787. (h) S. Takizawa, J. Kodera, Y. Yoshida, M. Sako, S. Breukers, D. Enders, H. Sasai, *Tetrahedron*, 2014, in press, doi; 10.1016/j.tet.2014.01.017
- 14) (a) H. Egami, T. Katsuki, J. Am. Chem. Soc. 2009, 131, 6082. (b) H. Egami, K. Matsumoto, T. Oguma, T. Kunisu, T. Katsuki, J. Am. Chem. Soc. 2010, 132, 13633.
- 15) S. Kihara, Z. Yoshida, H. Aoyagi, K. Maeda, O. Shirai, Y. Kitatsuji, Y. Yoshida, *Pure Appl. Chem.*, **1999**, *71*, 1771.
- 16) T. Katsuki, Synlett 2003, 3, 281.
- 17) S. Zhang, Y. Wang, Z. Song, K. Nakajima, T. Takahashi, Chem. Lett. 2013, 42, 697.
- 18) T. Oguma, T. Katsuki, J. Am. Chem. Soc. 2012, 134, 20017.

実験項

General Procedure.

To a solution of $Mn(acac)_2 \cdot 2H_2O$ (2.9 mg, 0.01 mmol) and chiral ligand **119a** (2.4 mg, 0.01 mmol) in DCE (1.0 mL) was added 2-Naphthol **103** (14.4 mg, 0.1 mmol) at 25 °C, which was stirred at that temperature for 5 hours under O₂. Reaction mixture was purified by column chromatography on silica gel (DCM, Rf 0.3) to give product **102** (11.1 mg, 0.039mmol) as a white solid in 78% yield.

総括

本論文をまとめるとこのようになる。

第二章 キラル Pd 触媒による酸化的アリル位 C-H 結合エステル化反応の反応機構解析

- ① 4-アルケン酸を基質とするエナンチオ選択的な酸化的アリル位 C-H 結合エステル化反応の反応機構を詳細に検討した。その結果、本反応は Wacker 型機構ではなく、Pd-SPRIX触媒がアリル位の C-H 結合を活性化して生じた π-アリル Pd 中間体を経る機構で進行しているものと推察された単一のキラル Pd 触媒による、エナンチオ選択的酸化的アリル位 C-H 結合官能基化の初めての例である。
- ② 種々の速度論解析を行った。その結果、C-H 結合活性化の段階は本反応の律速段階に 関与していること、及び触媒-基質間に配位平衡が存在することが示唆された。さらに 本反応は Pd-SPRIX 触媒に対して一次依存であること、Pd(0)の再酸化は律速段階では ないこと、及びアリル位 C-H 結合活性化の段階に p-ベンゾキノンが関与していないこ とが示された。
- ③ *p*-ベンゾキノンが触媒サイクル中で Pd(0)の再酸化以外にも、環化を促進する働きがあり、本反応の不斉誘起に必要不可欠な要素であることが示された。
- ④ 生成物の誘導体の絶対配置を単結晶 X 線構造解析により決定した。この情報を元に、 基質のオレフィンが Pd-SPRIX 錯体に配位する際の立体選択性の発現機構を考察した。

本研究の一部は下記の一報により既に公開されている。

"Enantioselective Cyclization of 4-Alkenoic Acids via an Oxidative Allylic C–H Esterification" Takenaka, K.; Akita, M.; Tanigaki, Y.; Takizawa, S.; Sasai, H. *Org. Lett.*, **2011**, *13*, 3506.

第三章 キラル Mn 触媒による 2-ナフトールの酸化的不斉カップリング反応の開発

- ① キラル Mn 触媒による 2-ナフトールの酸化的不斉ホモカップリング反応において、ジアミン系の配位子 119a が室温下でも効果的に反応を促進することを見出した。現段階では不斉収率に改善の余地が残されており、触媒構造の解析を行うとともに、本反応に適したキラル配位子の設計が課題である。
- ② 強い酸化力を有するキラル Mn 触媒を酸化的脱芳香族化反応に適用した。その結果 C-C 結合形成が報告されている Fe 触媒とは異なり、酸素の挿入に伴う C-O 結合形成によって脱芳香族化された生成物が得られた。さらに 0℃ において活性種が発生するという興味深い触媒活性を確認した。

謝辞

本研究を行うにあたり、大変な御理解を頂き御指導、御鞭撻を賜りました大阪大学産業科 学研究所 笹井宏明教授に厚く御礼申し上げます。

本研究を通じて、直接有益な御指導、御助言を頂きました大阪大学産業科学研究所 滝澤 忍准教授、竹中和浩助教に心より深く感謝いたします。

本研究を進めるにあたり、有益な御助言、御指導を頂きました大阪大学産業科学研究所 鈴 木健之准教授に感謝いたします。

本研究を行うにあたり親身な御助言を頂き、公私にわたり大変お世話になりました井上直 人博士(広栄化学工業株式会社)に感謝いたします。

機器分析にあたり、ご協力頂きました、大阪大学産業科学研究所・総合解析センターの周 大揚様、朝野芳織様、松崎剛様、羽子岡仁志様、嵩原綱吉様に感謝します。

日常の事務や雑務等においてお世話して下さいました、事務補佐員の岸朋子さん、渡辺婦 美世さん、本多綾香さんに深く感謝します。

実験や普段の生活面でお世話になり、楽しい研究生活を過ごさせて下さった大阪大学産業 科学研究所・機能物質化学研究分野の皆様: Priyabrata Prio Das 博士、Sridharan Vellaisamy 博士、Doss Rajesh 博士、Kazem Ghozati 博士、Gabr Randa Kassem Mohamed 博士、Mohanta Suman Chandra 博士、André Grossmann 博士、Stefanie Breukers 修士、Yogesh Dhage 修士、 Fan Lulu 修士、Fernando Arteaga Arteaga 修士、Ismiyarto 修士、Mohamed Ahmed Abozeid Hussein 修士、脇田和彦修士、箱井雄太郎修士、橋本慎太郎修士 杦本啓輔修士、高谷修平 修士、村上真耶修士、Nguyen, Tue Minh-Nhat 修士、林賢今修士、吉田泰志修士、家喜健太 学士、渕田(石坂)友香学士、趙冬林学士、小寺純平修士、小林勇太学士、佐古真学士、 重信匡志学士、鈴木通孝学士、永田佳大学士、岸鉄馬学士、武内芳樹学士、村上卓也学士、 東千尋学士、土井貴祐君に感謝いたします。 筆者が大阪教育大学に在籍していた時から教師になる夢を応援して下さり、また進路を変 更した際も研究に打ち込めるよう配慮して下さった京進スクール・ワン 阪急茨木教室の山 本孝史先生に心より深く感謝いたします。研究で思うような結果が得られなかったり、私 生活において様々な問題が生じた時も親身に相談に乗って頂きました。毎週土曜日の夕方 だけですが、筆者の心の平穏を保つために必要不可欠な時間となりました。9 年間、本当 にありがとうございました。

最後になりましたが、いつも筆者の体調を気遣いあたたかく見守ってくれた祖母、親に代 わって筆者を我が子のように可愛がってくれた叔父叔母に深く感謝します。

平成 26 年