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Abstract

We present the X-ray study of luminous supermassive black holes (SMBHs) in the
brightest cluster galaxies (BCGs). Our aim is to investigate whether or not there are
significant differences in the properties of the luminous SMBHs in the BCGs from those
in field galaxies. By referring both the Planck SZ cluster catalogue and the Swift /BAT 70-
Month catalogue, we search for luminous SMBHs hosted by BCGs with X-ray luminosity
of Lx > 1x 10¥ ergs~! in the 14 — 195keV band. We find two clusters out of 861 clusters
sample. One is the Phoenix cluster (z = 0.596), and the other is H 18214643 (z = 0.297).

Using the X-ray spectra obtained with the Suzaku /XIS & HXD, we detect a neutral
iron K-line (Fe I) from both AGNs. The equivalent width (EW) of Fe I is 150740 eV
and 82 + 7eV, respectively. The Fe I line indicates that a large amount of cold gas, i.e.,
the torus, surrounds the luminous SMBHs. In particular, we measure that the column
density (Ng) of the torus is 3.210-2 x 102 cm™2 for the SMBH in the BCG of the Phoenix
cluster. This values of Ny indicates that it is heavily obscured, i.e., it is classified as the
type 2 quasi-stellar object (QSO). In the case of H 18214643, we obtain the upper limit
of the Ny, i.e., luminous SMBH in its BCG is classified as the type 1 QSO.

We also analyze other three samples. One is in the BCG of IRAS 0910444109, which
is not included in both catalogues but the mass of the cluster and the X-ray luminosity of
the type 2 QSO are below with the sensitivity limit of the surveys of Planck and Swift. The
others are located in the field galaxies of ESP 39607 (z = 0.201) and 3C 433 (z = 0.102).
By analyzing the X-ray spectra obtained with the Suzaku /XIS & HXD, we identify that
they are heavily obscured and luminous AGNs. i.e., type 2 QSO. The EW of Fe I of each
type 2 QSO is 539 4 150eV, 124753 eV, and 57730 eV, respectively.

We first focus on the environment of four type 2 QSOs with the Ny and the EW of
Fe 1. The relation of the Ny and the EW for four type 2 QSOs shows a similar trend to
that expected from local AGNs in field. This result indicates that four type 2 QSOs have
similar torus geometry of field AGNs even if the type 2 QSOs exist in the BCGs.

On the other hand, we also focus on the EW —Lx relation, i.e., the X-ray Baldwin
effect. Our data of the QSOs in the BCGs are a little far away from the trend obtained
from local type 2 AGNs. Since there are some causes to deviate the data points from the
trend, we evaluate the standard deviation of the fluctuation by using a total of 59 type
2 AGNs in field. Thus, we obtain the standard deviation of 1oge,, = 0.47 dex. Although
the type 2 QSO in the Phoenix cluster and that in IRAS 09104+4109 have the difference
that are larger than logey. significance (1.904ex, and 2.904ex. significance, respectively), the
others are below loge,. significance. The probability to obtain two sources out of three

those that have deviations larger than 4+1.904ex. and +2.904ex. is 2 x 107%; we can reject
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the hypothesis that the the three QSOs in BCGs follow the same with a significance level
of ~ 0.02%. If we focus on the two QSOs in the Phoenix cluster and H 1821+643, we
should refer the probability to obtain one source out of two those that has deviations
larger than +1.904cy., which is 6%.

We also investigate the difference between the type 2 fraction for the QSOs in the
BCGs and for those in field galaxies. By referring both catalogues, we find two samples,
i.e., one is the type 1 QSO and the other is the type 2 QSO, meaning that the type 2
fraction is 50 %. On the contrary, we measure the reflection fraction (R; R = Q/2m) of
the torus of both QSOs. The mean values of the reflection fraction is 0.797035, which
indicates that the type 2 fraction for QSOs in BCGs is 80 % (at least over 40 %).

Overall, the EW— L relation, type 2 fraction, and reflection fraction of our sample of
luminous AGNs in the BCGs suggest that covering factor is larger for those objects than
than expected. If we assume a tours, its opening angle can be smaller than that expected
in luminous AGNs in field galaxies.

We estimate the time scale of the AGN feedback of radiative mode. Since we find two
clusters including luminous SMBHs (Lx > 1 x 10% ergs™ in the 14 — 195keV band) in
their BCGs, we estimate the time scale to be 23 Myr assuming that the age of cluster is
10 Gyr. We quantitatively obtain the time scale, for the first time.

To evaluate the effect of radiation heating, we evaluate the heating and cooling energy
of three clusters. The total radiative energies in the Phoenix cluster, H1821+643, and
IRAS 0910444109 are many orders of magnitude smaller than the total cooling energy
of each cluster estimated by the bolometric luminosity of the ICM. The total mechanical
energy in TRAS09104+4109 overcomes the total cooling energy of the ICM, while the
total mechanical energy in H 18214643 is about a factor of 2 smaller than the total
cooling energy of the its ICM. Since we have no data of the total mechanical energy in
the Phoenix cluster, we can not discuss the case of the Phoenix cluster.

We estimate the mass of the torus in the Phoenix cluster and IRAS 09104+4109 to be
1.1 x 10% M, and 9.8 x 107 M, for the outer radius of 100 pc, respectively. If both SMBHs
keep constant accretion rate during 23 Myr, the total accretion masses are estimated to
be 2.5 x 10° My, and 1.2 x 108 M, respectively, which are larger than those of the tori.
To maintain the mass of the torus, some mechanisms need to supply the cold gas. The
cooling flow may supply the cooled gas and then the torus may play a role in a reservoir

of cooled gas.
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Chapter 1
Introduction

Clusters of galaxies are structures that consist of tens or hundreds of galaxies distributed
in a few Mpc region. They are known to be the largest gravitationally bound objects in
the Universe. The mass is evaluated from the velocity dispersion of the member galaxies
in a cluster. It is typically 10**—10' M, which is larger than the sum of those of member
galaxies by one order of magnitude. This fact is recognized as the missing mass problem,

in which the concept of a dark matter is introduced.

One of the greatest works in the history of X-ray astronomy is the discovery of the
diffuse thermal X-ray emission from an intracluster medium (ICM); inter-galactic space is
filled with a hot plasma of which temperature is 107 — 108 K and the gas number density
is 1072 — 10°ecm 3. The X-ray spectra of clusters show fluorescent lines of various
elements, indicating that the ICM partly consists of the gas originated from member
galaxies, though there may be some contributions of the primordial gas left over directly
from the Big Bang. Although the ICM is basically in hydrostatic equilibrium with the
gravitational potential primarily formed with dark matters, the cooling time of the ICM
at the core of a cluster is much shorter than the age of the Universe. This result leads to
the idea of the cooling flow, that is, the cooled gas should flow toward the center of the
cluster. However, detailed X-ray spectroscopy and multi-wavelength study of the cores of

clusters indicate that the cooling flow is significantly suppressed in most of the clusters.

One of the most promising models accounting for the suppression of the cooling flow
is the heating of the ICM by radiations and jets from active galactic nuclei (AGNs), so-
called the AGN feedback. The most luminous galaxy in a cluster is called a brightest
cluster galaxy (BCG). The BCG is normally located at the center of the cluster. The
BCG is usually a giant elliptical galaxy, often classified as a cD galaxy, where the suffix
¢ indicates the fact that the galaxy is very large and the D denotes that the galaxy is
diffuse. The BCGs often host AGNs with various levels of activity, and must play an

1



2 CHAPTER 1. INTRODUCTION

important role of the AGN feedback.

Some of the supermassive black holes (SMBHs) in the BCGs have the mass of the order
of 109 M, which is at the highest end of that of SMBHs in galaxies. This is a natural
consequence of the well-known relation between the velocity dispersion of stars or gas in
the bulge of a galaxy and the mass of SMBH at its center, so-called the Mgy — o relation.
The co-evolution of galaxies and SMBHs in them is one of the most extensively studied
topics in the astronomy at present. The evolution of the BCGs and SMBHs in them
may be just an extreme case of those for galaxies in general or significantly different from
those for field galaxies. If there is a difference between the BCGs and the field galaxies,
the evolution must be heavily affected by their environment. Therefore, the studies of
the BCGs and the SMBHs in them are important to understand the co-evolution among
three classes of objects, i.e., clusters, BCGs, and SMBHs. Note that the mechanism of
the co-evolution is not only one-direction from a large scale to a small scale but also the

inverse direction that must be important for the AGN feedback.

The origin of the SMBHs in the central galaxies has been a long standing issue before
the recognition of the Mpy — o relation. However, it is clear that the SMBHs are growing
when gas accretions occur, although galaxy mergers might be another mechanism to
increase the mass. We can see the scene of the growth of the SMBHs in AGNs. We thus
study the luminous AGNs in the BCGs. We focus on the X-ray spectra of those sources,
as they provide us the most accurate estimate of the intrinsic radiation power from the
SMBHs, and their surrounding structure, such as an accretion torus, from the spectral
shape including iron lines. With X-ray observations, we also measure various properties
of the ICM (temperature, density, and abundance) surrounding the BCGs. While the
extensive studies have been made for AGNs and for clusters of galaxies, they have been
done rather separately by the experts of each field. We try to explore new fields combined

AGNs with clusters in X-ray astronomy.

Our aim is to investigate whether there are significant differences in the properties of
the luminous SMBHs in the BCGs from those in field galaxies. For this purpose, we have to
be careful about the sample selection. We hence employ the Planck Sunyaev-Zel’dovich
(SZ) cluster catalogue for a complete sample of clusters of galaxies. This catalogue is
published in 2013. For a complete sample of the AGNs, we employ the Swift/BAT 70-
Month catalogue. The cross correlation of these two catalogues, as the first attempt,
provides us the fraction of luminous AGNs in the BCGs. Detailed X-ray properties of
those AGNs are studied with the X-ray astronomy satellites, Chandra, XMM-Newton,

and Suzaku.

Outline of this work is as follows. We first introduce brief reviews of clusters of



galaxies, AGNs, and its feedback in Chapter 2. As our theme includes a wide range of
objects, we have to focus on the topic directly relevant to our study. In Chapter 3, we
introduce the X-ray observatories using in this work. We then pick up the sample of
the luminous AGNs in BCGs by referring both the Planck Sunyaev-Zel’dovich cluster
catalogue and the Swift/BAT 70-Month catalogue in Chapter 4. As a result, we find only
two cases that the BCG is a luminous AGN. One is the Phoenix cluster having a very
luminous type 2 quasar in its central galaxy and the other is H 18214643 including a
very luminous type 1 quasar. In Chapter 5, we analyze the X-ray spectra of both quasars
obtained with the X-ray observations. Note that our results on the Phoenix cluster with
Suzaku and Chandra have already been published (Ueda et al. 2013a). We extend our
analysis to three type 2 quasars observed with Suzaku in Chapter 6. One is in a BCG
but has been omitted in Chapter 4 because its X-ray luminosity and the SZ effect are
just below the thresholds of both catalogues. The other two are in the field galaxies. We
propose a hypothesis that the AGNs in the BCG tend to have larger equivalent widths
of neutral iron lines than those expected from their X-ray luminosity. Discussions are

described in Chapter 7, and summary is in Chapter 8.






Chapter 2

Review

2.1 Overview of Clusters of Galaxies

Clusters of galaxies, in which dark matters were first noticed by Zwicky (1933), are the
largest gravitational bound objects in the Universe. Clusters are thus important targets
for cosmology as for the cosmic microwave background (CMB; Penzias & Wilson 1965).
For example, cosmological models employing cold dark matter and dark energy, such as
the ACDM model (e.g., Riess et al. 1998; Perlmutter et al. 1999; Komatsu et al. 2011),
can be examined with statistical studies of clusters of galaxies (e.g., Vikhlinin et al. 2009;
Rozo et al. 2010; Vanderlinde et al. 2010). In this review, we briefly overview the history
and current status of cluster studies.

Systematic observational studies of clusters were initiated by Abell, who picked up
rich clusters of galaxies by examining the photographic plates obtained in the Palomar
Observatory Sky Survey (POSS). This work was later extended to the southern sky and
was summarized in the Abell catalogue of rich clusters of galaxies (Abell 1958; Abell et al.
1989), in which a total of 4073 clusters in the sky are listed.

Extensive studies of clusters were triggered by a discovery of X-ray emission from these
objects. The first indication of the X-ray emission from clusters of galaxies was reported
by Boldt et al. (1966) and Felten et al. (1966), who detected X-rays from the direction
of the Coma cluster. Uhuru (Giacconi et al. 1971), the first X-ray astronomy satellite
launched in 1970, revealed that the X-rays from clusters are diffuse emission (Forman
et al. 1972). Mitchell et al. (1976) discovered a strongly ionized iron K-line (i.e., Fe XXV)
in the X-ray spectrum of the Perseus cluster with Ariel 5. They revealed that the emission
comes from optically thin thermal plasmas. These results indicate that the inter-galactic
space is, surprisingly, filled with the intracluster medium (ICM) consisting of hot plasma

with T ~ 107 — 10® K in which heavy elements are included. X-ray luminosities of clusters

5



6 CHAPTER 2. REVIEW

range typically in 10% — 10% ergss=! with Hy = 50kms~! Mpc~! (e.g., Jones & Forman
1984), and thus clusters are significant populations of extragalactic X-ray sources as for
active galactic nuclei (AGNS).

X-ray surface brightness profiles of clusters were systematically studied with imaging
instruments in sounding rockets, the Einstein X-ray Observatory (Giacconi et al. 1979),
and ROSAT. These X-ray surface brightness profiles are usually fitted with so-called [
model (e.g., King 1962; Ettori 2000). It is one of the methods to estimate the total
gravitational mass within each radius under the assumption that the X-ray emitting
thermal plasma is in hydrostatic equilibrium. A total mass of a cluster derived in this
way is typically 10 — 10 M, (e.g., Jones & Forman 1984), indicating there needs dark
matters in a cluster. It is also found that the X-ray surface brightness profiles are different
for clusters with or without cD galaxies at their centers; the clusters with ¢D galaxies show
strong, sharp, and centered peaks (e.g., Gorenstein et al. 1977, 1978, 1979; Jones & Forman
1984; White et al. 1994), while those without do not. These peaks were interpreted as
evidence of the cooling flow, which is described separately in Section 2.1.2.

Clusters of galaxies are important targets for currently working X-ray astronomy
satellites, and a huge amount of studies has been accumulated. Common properties of

clusters established in these X-ray studies can be summarized as follows.

e Clusters consist of galaxies, ICM (i.e., X-ray emitting plasma), and dark matters.
The mass fraction of dark matter in a cluster is ~ 80 % (e.g., David et al. 1995; Sato
et al. 2012; Ichikawa et al. 2013). Stars and interstellar medium (ISM) in member
galaxies account for only a few percent of the total mass, while the ICM contributes
more than (~ 20 % of total mass; Sato et al. 2012).

e The ICM contains heavy elements such as oxygen, silicon, and iron (e.g. Fujita
et al. 2008; Hoshino et al. 2010; Matsushita 2011; Simionescu et al. 2012; Sakuma
et al. 2011; Ueda et al. 2013b). The heavy elements are distributed not only in the
central regions but also in the outskirts of clusters. The iron abundance is uniform
distribution with ~ 0.3solar in the outskirts of clusters (e.g., Fujita et al. 2008;
Simionescu et al. 2012; Ueda et al. 2013b; Matsushita et al. 2013).

New observational techniques using other wavelength bands other than X-rays have
been established these days. One is the gravitational lensing (e.g., Einstein 1936; Zwicky
1937), in which target clusters function as gravitational lenses of background galaxies, and
those lensed images usually in optical band can be used to estimates the mass distribution
in the clusters (e.g., Turner et al. 1984; Narayan et al. 1984; Grossman & Narayan 1988,
1989; Miralda-Escude & Babul 1995; Mahdavi et al. 2008). The gravitational lens not
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only provides measurements of cluster mass independent to those with X-ray observations
but also enable us to map the three-dimensional distribution of dark matter with some
assumptions. The other one is the cluster searches through the Sunyaev-Zel’dovich effect
observed in the CMB (Sunyaev & Zeldovich 1972, 1980). The Sunyaev-Zel’dovich effect
is modification of the the CMB spectrum due to inverse-Compton scattering by electrons
in the ICM. The effect is proportional simply to the optical depth and ICM temperature
(e.g., Barbosa et al. 1996; Nagai et al. 2007), and thus more efficient to search for distant
clusters than usual survey in optical or in X-rays band (e.g., Williamson et al. 2011;
Planck Collaboration et al. 2014). In fact, we will employ some of the products of those

surveys in Chapter 5.

2.1.1 Radiative Processes in X-ray Band

In this section, we briefly summarize radiative processes involved in X-ray emission
from clusters of galaxies. More comprehensive descriptions are presented in e.g., Ry-
bicki & Lightman (1985); Sarazin (1988), and also in the Atomic data for astrophysicists
(ATOMDB!; Smith et al. 2001; Foster et al. 2012).

As mentioned above, the density and temperature of the ICM are typically ~ 1072 —
10~°cm™ and 107 — 10®K, respectively. Therefore, the ICM is a hot, collisionally-
dominated optically-thin plasma. Involved radiative processes include thermal bremsstrahlung
(i.e., free-free transitions), radiative recombination, dielectric recombination, one-electron
radiative transitions, and so on. The emissivity (e//) of thermal bremsstrahlung in the

CGS unit (ergs™'em ™3 Hz™!) is

hv

1 _
el = 6.8 x 1075322, T, 7 Mogy,, (2.1)

where 7 is the atomic number, n, is electron number density, n; is the number density
of ions, T} is temperature of the plasma, k is the Boltzmann constant (kK = 1.38 x
107 erg K™'), h is the Planck constant (h = 6.63 x 107*" ergs), v is frequency, and gys
is a velocity averaged Gaunt factor, respectively. Assuming that n. equals to n;, the
emissivity (e//) depends on square of the electron number density, i.e., !/ o ngT*%.
The value of g is of order unity for hv/kT ~ 1, and is 1 to 5 for 107* < hv/kT < 1
(Figure 5.3 of Rybicki & Lightman 1985). Evaluating Equation 2.1 with Z = 1 yields,

. 2, KT, \—35 _tw
e/l =6.3 x 10_48(10*;lcm*3> <10kg\/> ‘e "Toger ergs lem P Hz . (2.2)

The X-ray luminosity of thermal bremsstrahlung in the frequency range v < v < s is

thttp:/ /www.atomdb.org/
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given by integrating Equation 2.1 in all volume, which is

LX:/dV/ el dv. (2.3)

Assuming spherical symmetry, the bolometric luminosity of thermal bremsstrahlung is
expressed as

20 kT, \3 v
L ol,bremss — 1.7 1045( fe > ( g > ( > 2.4
bol.b . 103ecm—3/ \10keV/ \IE(1Mpc)3/’ 24)

where pc is 3.09 x 10'® cm and V' is a volume of emission region, respectively.

Processes other than thermal bremsstrahlung depend on the ionization states of atoms.
A temperature T of 107K or 10® K corresponds to energy kT ~ 1keV or kT ~ 10keV,
respectively, which are comparable to the K-shell binding energies of heavy elements such
as oxygen, neon, magnesium, silicon, sulfur, and iron. Therefore, most of the atoms are
highly ionized, i.e., He-like, H-like and fully-ionized ions, in the ICM. Fractions of each
ionization state for each element in the plasma with a given temperature can be calculated
with the Saha equation (Rybicki & Lightman 1985). Transition probabilities of various
processes in such a plasma can be calculated with some database for atomic level, and thus
emission spectrum can be predicted. As an example, we show the equivalent width (EW)
of an He-like iron K-shell line (Fe XXV, 6.7keV) as a function of plasma temperature in
Figure 2.1. The EW of Fe XXV is maximum at the temperature of > 2 x 10" K. We show
the flux ratio of Fe XXV to Fe XXVI with temperatures in Figure 5.8. For optically-thin
plasma in collisional ionization equilibrium (CIE), the Raymond-Smith model (Raymond
& Smith 1977), the MEKAL model (Kaastra & Mewe 1993; Liedahl et al. 1995), and the
APEC model (Smith et al. 2001) are available in the X-ray spectral analysis software,
XSPEC (Arnaud 1996). We employ the APEC model, in which the ATOMDB (Smith
et al. 2001; Foster et al. 2012) are used, in our X-ray spectral analysis.

2.1.2 Cooling Flow

In this subsection, we add some explanations on cooling flows in clusters of galaxies,
which are mentioned above and may play important roles in co-evolution of BCGs and
clusters. More detailed descriptions are given in Sarazin (1988); Fabian (1994); McNamara
& Nulsen (2007); Fabian (2012).

The cooling efficiency of a plasma is dominated by thermal bremsstrahlung at high
temperatures (T, > 2 x 107 K, left panel of Figure 2.2; Gehrels & Williams 1993) and by
line emissions at low temperatures (right panel of Figure 2.2; Foster et al. 2012).

When thermal bremsstrahlung is the dominant process, the X-ray luminosity of ICM

1
is proportional to square of the number density of electrons (Lx o< n?T¢#) as mentioned
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Figure 2.1: Equivalent width (EW) of He-like iron K-shell line (Fe XXV) as a function of
plasma temperature (Figure 1 of Bahcall & Sarazin 1978). The EW is maximum at the
plasma temperature > 2 x 10" K. (©AAS. Reproduced with permission.

in Section 2.1.1. We define the radiative cooling time (teo01) 88 teoot = (dInT,/dt)~t. If

the ICM cools isobarically, this cooling time is expressed in

~ 10 e “lr Ty N2
feoot 7 8.5 % 10 (10_3cm—3> (1081{) v (2:5)

For the ICM with n, ~ 107*em™ and T, ~ 10® K, the cooling time is longer than the age

of Universe. However, at the central regions of clusters of galaxies (typically r < 100kpc),
the electron number density is sometimes larger than 102 cm™3. Then, the cooling time
gets shorter than the age of Universe or the age of clusters of galaxies, for which we assume
1010 yr.
Adiabatic sound speed (c,) in a gas is defined as
= or _ 75, (2.6)
dp Py
where P is a pressure, p, is a gas density, and 7 is an adiabatic index (v for the monoatomic
gas is 5/3), respectively. For an ideal gas, P is given by P = p,kT,/pm,, where p is a
mean molecular mass (¢ = 0.60 in this work; Rosati et al. 2002) and m,, is a mass of
proton, respectively. In this case, ¢, is given by

5 kT, \ 4 T
= (2 %1500( g )
¢ (3Mmp) 108K

N

kms™ ', (2.7)

Using the virial radius (ryi.) of clusters, the sound crossing time t is estimated to be

/ —2rVir~13x1o9< i )( c )1 r (2.8)
° Cs ' 1 Mpc/ \1500 km s—! yr '
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Figure 2.2: Cooling Curve as a function of the ICM temperature. Left: Temperature
dependence of the cooling efficiency for each process in an optically-thin plasma of the
cosmic abundance of Allen (1973) reported by Gehrels & Williams (1993). Right: Cooling
function as a function of temperature for each element with the solar abundance of Anders
& Grevesse (1989) reported by Foster et al. (2012). (©AAS. Reproduced with permission.

This is shorter than the age of clusters, and thus we can assume that the ICM is in
hydrostatic equilibrium. The pressure is therefore balanced with the gravitational force.

Thus, with a spherical symmetry,

Q
dr Py

where G is the Gravitational constant and M(r) is a total mass within 7.

GM (r)

=0
r2 ’

(2.9)

At the central regions of clusters, ICM is cooled by X-ray radiation with a shorter
time scale than the age of clusters. The decrease in the temperature of the ICM causes the
depletion in the pressure, which leads to a mass flow from the outer region to the central
region so that the hydrostatic equilibrium (2.9) is satisfied. This flow is called ”cooling
flow” (Cowie & Binney 1977; Fabian & Nulsen 1977; Mathews & Bregman 1978; Fabian
1994). We define the radius r.,. as the size of a cool core. The mass deposition rate
(or sometimes called cooling flow rate, M ) Across T'eool 18 determined with the bolometric
luminosity (Lpo) within reee and the temperature of the ICM (dT}) at 7c01 - If we assume
the system is spherically symmetric and the cooling is only due to radiation from the ICM

plus the PdV work done on the ICM, the following equation is obtained.

5 M
L(T,) = 3o KT, (2.10)
p
This leads I - I
. Q,um bol bol —
M:—p—z46()( g ) ( ) M.yt 2.11
5 kI, 18K/ \10%ergs 1/ 7 (2.11)
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In a typical cluster, this mass deposition rate can be ~ 100 Mg yr—1.

If such a cooling
flow is maintained for 10 Gyr, the total accreted mass amount to ~ 10'2 M, which is
comparable to that of a galaxy. The temperature of the accreted gas must be much lower
than Tj in the core of a cluster. Therefore, it is expected that the cooling flow induces a
massive starburst in the center of a cluster (i.e., in its central galaxy).

Nevertheless, we have little observational evidence of the expected levels of cooling
flows in clusters. The total mass of cooled dust in and around the central galaxy is many
orders of magnitude smaller than expected value from the cooling flow (Edge 2001). The
star formation rate in central galaxies in clusters is 10 % or smaller of the cooling flow rate
(e.g., O'Dea et al. 2008). Signatures of cooling flows can also be examined by observing X-
ray emission lines below 1keV including various Fe L-shell lines from which the amount of
low-temperature plasma is measured (Bohringer et al. 2002). However, observations with
the XMM-Newton/Reflection Grating Spectrometer (RGS) revealed that no significant
Fe XVII line at ~ 1keV is found in X-ray spectra of A 1835 (Peterson et al. 2001) and
A 1795 (Tamura et al. 2001). The prominent Fe XVII line at 12 A in low-temperature
plasma is either weak or absent in cooling flow clusters (Peterson et al. 2003), although
there is a hint of the Fe XVII line emission in the A 2597, whose flux is consistent with
a cooling rate of ~ 100 Mg yr~! (Morris & Fabian 2005). Extensive discussions have
been made to account for this contradiction on cooling flows, so called the ”cooling flow
problem” (Fabian 1994). At present, it is believed that cooling flows are not as strong
as that expected from the simplified estimate, as mentioned above. This indicates that
some heating mechanism function at the center of the cluster to suppress the cooling flow.
One of the most promising heating mechanisms is the AGN feedback (Peterson & Fabian
2006; McNamara & Nulsen 2007). Note that even if there is no cooling flow, energy loss

by radiation must take place. We thus use the mass deposition rate (M) defined above

but with a different name, i.e., cooling rate.
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2.2 Overview of Active Galactic Nuclei (AGNs)

Active galactic nuclei (AGNs) are core regions of the galaxies that have significantly
higher luminosities than those in normal galaxies. Their luminosities are in some cases
comparable to those of the whole galaxies, and their spectra of the radiation range over
various wavelength (e.g., Peterson 1997; Beckmann & Shrader 2012b). A pioneering work
on this subject was performed by Seyfert (1943), who obtained optical spectra of six spiral
galaxies of which cores are very bright and found emission lines from them. This emission
component, however, remained a mystery. Later in 1960’s, Schmidt (1963) identified the
radio source 3C 273 with an optical counter part of which spectrum shows a huge redshift
of z = 0.158. Since this source and its similar sources were not resolved at that time, they
were called quasi-stellar objects (QSOs) or quasars (Burbidge & Burbidge 1966; Burbidge
1967). With extensive discussions on the nature of these objects, huge amount of radiation
generated by accretion onto supermassive black holes (SMBHs) in distant galaxies was
recognized s the most promising explanation for these objects (Hoyle & Fowler 1963;
Salpeter 1964; Zel’dovich 1964; Lynden-Bell 1969; Lynden-Bell & Rees 1971). The cores

of the galaxies observed by Seyfert are believed to have the same origin.

AGNs have been extensively observed in all wavelength bands, from radio to v-ray,
sometimes simultaneously. There are various schemes of classifications of AGNs, each
focusing on their properties in some wavelength band. Although it is beyond the scope
of this review to cover all those classifications, we know that many properties of AGNs
are different in those with strong radio emission and those without; the former are called
radio-loud AGNs and the latter radio-quiet AGNs (Peterson 1997; Beckmann & Shrader
2012b, and references therein). Radio-loud AGNs are characterized with prominent jets
and the radiation associated with them, while those features are not significant in radio-
quiet AGNs. Radio-quiet AGNs are major population in the AGNs. Those in the local
Universe are called Seyfert galaxies (to be precise the nuclei of Seyfert galaxies), and those
in the distant Universe are (radio-quiet) QSOs. Nomenclature of AGNs is not well-defined,
but we call luminous AGNs QSOs in this work.

Among various wavelength bands, the X-ray band has of special importance for AGN
studies. Elvis et al. (1978) discovered that Seyfert galaxies are as X-ray sources for the
first time. For most of the (radio-quiet) AGNs, the X-ray band is the highest energy end
of their spectrum detected so far (Peterson 1997; Beckmann & Shrader 2012b). It means
that matters in the vicinity of the SMBHs can be extracted with X-ray observations for
those AGNs. The strong penetration power of X-rays enforce this point. Spectra of

emissions from AGNs are relatively flat; there are almost equal power for each wavelength
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band, very much different from stars, of which spectra peak at the optical band (Peterson
1997; Beckmann & Shrader 2012b). As a result, when we observe a galaxy hosting an
AGN with X-rays, contamination from stars in the host galaxies are negligibly small. In
fact, the AGNs are most abundant X-ray sources in the sky. A significant fraction of
the cosmic X-ray background (CXB; e.g., Giacconi et al. 1962; Boldt 1987; Gruber et al.
1999) is also composed of unresolved distant AGNs (e.g., Mushotzky et al. 2000; Brandt
& Hasinger 2005).

There are various aspects in AGN studies. Some researchers are interested in physics
of accretion onto the SMBHSs, of which mass ranges from 10° M, to 10° M. Although
there found or assumed many structures around SMBHs, such as accretion disks, broad
line regions, torus, narrow line regions, and relativistic jets (e.g., Urry & Padovani 1995;
Beckmann & Shrader 2012b), whole picture has not yet been established. Another aspect
of the AGN studies is to focus rather on the origin and evolution of the SMBHs, which
is one of the biggest issues in astronomy today. It is widely believed that almost all the
galaxies have an (or a few) SMBH at its center. Small fraction of them are active, i.e.,
AGNs, but others are dormant. In addition, the Mgy —o relation discovered by Magorrian
et al. (1998) and followed by extensive studies (e.g., Ferrarese & Merritt 2000; Gebhardt
et al. 2000; Tremaine et al. 2002; Giiltekin et al. 2009; Sadoun & Colin 2012; Salviander &
Shields 2013; McConnell & Ma 2013) is important. This is a strong correlation between
a mass of the SMBH at the center of a galaxy (Mpy) and the velocity dispersion of gas
or stars in the bulge of the galaxy (o). Since the velocity dispersion, o, is also positively
correlated with the mass of the bulge of the galaxy or whole the galaxy, this relation can
be expressed as the mass of an SMBH and that of the host galaxy is strongly correlated;
the mass of an SMBH is ~ 0.2 % of the bulge of host galaxy (e.g., Marconi & Hunt 2003;
Héring & Rix 2004; Kormendy & Ho 2013). Although mechanism to make this correlation
has not yet been fully understood, it is clear that those two kinds of structures, of which
sizes are different by roughly ten orders of magnitude, have close interaction each other

in their evolution, i.e., co-evolution (e.g. Kormendy & Ho 2013).

The Mgy — o relation and related studies on the co-evolution of SMBHs and galaxies
motivated us to examine the possible co-evolution with a large scale, i.e., clusters. We
focus on luminous AGNs in BCGs. We would attempt a statistical study to evaluate how
much fraction of the SMBHs is active in the BCGs at first. We then search for any unique
properties of the luminous AGNs in BCGs that are different from AGNs in field galaxies.
In the second step, we employ X-ray observations of those sources, with which intrinsic
activity of the SMBHs are best evaluated and geometry of surrounding structures, in

particular, accretion torus can be examined. The accretion torus is a key structure in the
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AGN unification model. We introduce the model in the next subsection.

2.2.1 The AGN Unification Model

Seyfert (1943) showed that some galaxies indicate broad emission lines in the optical
spectra, while other exhibited only narrow ones. The former are classified as type 1 and
the latter as type 2. The optical spectra of type 2 AGNs show strong permitted and
forbidden lines that line widths are < 1000kms™! and the flux ratio of [O IIIJA5007 to
Hp is ~ 10 (e.g., Antonucci 1993). The spectra of type 1 AGNs exhibit permitted lines
with broad line widths of 1000 ~ 10,000kms~! in addition to the narrow lines that are
seen in those of type 2 AGNs (e.g., Peterson 1997; Beckmann & Shrader 2012b). Extensive
studies of these emission lines revealed that there are two kinds of line emitting clouds of
which distances from the central SMBHs are different and thus their velocities are different
(Peterson 1997; Beckmann & Shrader 2012b). The region from which narrow lines are
emitted is called a narrow-line region (NLR), while broad lines are emitted from a broad-
line region (BLR). Clouds in both regions are photoionized by strong ultraviolet (UV) and
X-ray continuum radiation from the vicinity of the SMBH, though the BLR clouds have
much higher density than those in the NLR regions (Netzer 1990, and references therein).
Note that the locations of the BLR clouds in some AGNs are accurately measured with
so-called reverberation mapping (e.g., Blandford & McKee 1982; Peterson 1993; Peterson
et al. 2004) and those results yield one of the most reliable estimates on the masses of
SMBHs (e.g., Hayashida et al. 1998; Czerny et al. 2001).

Antonucci & Miller (1985) discovered broad permitted lines, as seen in type 1 AGNs,
in the optical spectrum of polarized photons from the nuclear region of a type 2 AGN,
NGC 1068. The broad lines in the polarized light spectra are considered to be originated
from a hidden BLR and scattered at the surface of an absorber that hides the BLR
from our line of sight (Antonucci & Miller 1985; Miller & Goodrich 1990; Miller et al.
1991; Antonucci 1993). The absorber must have a hole for the scattered light to pass
through. An obscuring dust structure with a toroidal geometry, i.e., torus, was introduced
to account for the observational results of NGC 1068. Based on this model, the BLR could
be observed, and thus the AGN could be classified as type 1, if our line of sight is along
the direction of a hole in the absorber. In this case, there should be no essential difference
between type 1 AGNs and type 2 AGNs. This is sometimes called the AGN unification
model.

Strong support for this unification model came from X-ray observations; a heavily ab-
sorbed component (column density is higher than 10?* cm~2) is found in the X-ray spectra
of many type 2 AGNs (e.g., Awaki et al. 1990, 1991b; Koyama et al. 1992; Iwasawa et al.
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1993). These results are not only the evidence of the absorbers assumed in the unification
model but also can be the measure for physical parameters of absorbers. Furthermore,
not only type 2 AGNs but also type 1 AGNs exhibit a reflection component in their X-
ray spectra, which is characterized with a flat continuum with a hard X-ray bump and
strong fluorescence K-shell lines of neutral atoms, in particular iron (e.g., Mushotzky et al.
1993; Miller 2007). The continuum is well reproduced with a model in which a power-law
continuum injected to a matter with an infinite optical depth are Compton scatted and
emerged from the surface (e.g., Beckmann & Shrader 2012b).

In the simplest case in which energy shift in the scattering is ignored and only single
scattering is considered, the spectral shape of the reflection component can be described
as

,Uscat -T
Fret(Ey) = X fXNxE_", (2.12)
¢ Mabs(Ex) + Mscat(Ey)

where Fif(E,) is the spectra emerging from the surface of the matter, E, is an X-ray
energy, lscat 18 the absorption coefficient for scattering, pas is that for pure absorption,
f is a factor determined from the geometry of the matter and the irradiation source, N
is the normalization of the incident spectrum, and I" is a power-law (photon) index of
the incident spectrum, respectively. The spectrum of the reflection continuum should be
different from that suffered by absorption. That is, if we neglect the contribution from

scatted X-rays,

Fabs(Eac) = eXp<_(Mabs(Ez) + Mscat(Ea:)) X NH> X N x E;F7 (213>

where F,,5(FE,) is the spectra passing through an absorber of the hydrogen column density
of Ng. Although both reflection continuum and absorption continuum have absorption
edge features, especially that associated with the iron K edge at 7.1keV, the shapes of
the continuum are different. On the other hand, the intensities of the fluorescence K-shell
lines are proportional to the abundance of elements and to integrated flux of the incident

photons of which energies are above the absorption edge of the corresponding element.

[e.9]

Fre—x < fiy ><f></

(1 — exp(Zre X Nyt X ;Labs(EI))>(N x EN)dE,,  (2.14)
Ex —cdge
where Fre_k is the intensity of the iron K fluorescence line (Fe I), Ex_eqge is the K-edge
energy (7.1keV; Henke et al. 1993), fr, is the fluorescence yield of iron (0.3; Bambynek
et al. 1972), and Z, is the metallicity of iron of matters, respectively. The K-shell photo-
ionization cross section per iron atom against an X-ray with energy above 7.1keV is
6.0 x 107'8(E/1keV)~2%% cm? (Henke et al. 1982).

Considering these processes and assuming geometry and abundance of a torus, loca-

tion of the primary source with a power-law X-ray spectrum, and the direction of our
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Figure 2.3: Sketch of the AGN unification model (Figure 1 of Beckmann & Shrader
2012a). ”Graphic: Beckmann & Shrader (2012)” http://adsabs.harvard.edu/abs/
2012agn. .book. . ... B, reproduced with permission, (¢) Dr. Volker Beckmann, private

communication.

line of sight. One can calculate the X-ray spectra that are composed of several com-
ponents (direct, reflected, absorbed, and fluorescent lines) and compare with observed
ones. In most cases, the direct component is dominant in the X-ray spectra of type 1
AGNs, while it is seldom observed in those of type 2 AGNs This was a strong support for
the AGN unification model (e.g., Awaki et al. 1991a; Antonucci 1993; Urry & Padovani
1995). As mentioned above, type 1 and type 2 classifications were originally introduced
from optical spectroscopy. However, X-ray spectra have also been used for the type 1
and 2 classifications. The X-ray spectral models have sophisticated by employing Monte
Carlo simulations. For example, Ikeda et al. (2009) examined X-ray spectra expected by
alternating the opening angle of the torus and the inclination angle of the line of sight.
In the case of Fe I, an equivalent width of Fe I with Ny of 10?® cm™2 is decreases from
~ 80eV to ~ 20eV when the opening angle changes 20° to 80° even the same inclination
angle (Ikeda et al. 2009).

The AGN unification model is illustrated in Figure 2.3 , with various structures other
than the accretion torus (Beckmann & Shrader 2012a). The illustration is an interpreta-

tion based on various observations of AGNs, but not from the direct imaging.
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X-ray Baldwin Effect

Baldwin (1977) reported that the luminosity of C IVA1550 is inversely correlated with the
luminosity of continuum of 1450 A for 20 QSOs. Iwasawa & Taniguchi (1993) discovered
similar anti-correlation between the equivalent widths of neutral iron K-line (Fe I) and
the intrinsic (absorption corrected) X-ray luminosity of AGNs. This trend is called ”the
X-ray Baldwin effect” or ”the Iwasawa-Taniguchi effect” (e.g., Bianchi et al. 2007). The
X-ray Baldwin effect has been recently confirmed with not only type 1 AGNs but also
with type 2 AGNs (Fukazawa et al. 2011). If we assume that a torus covers some fraction
of the solid angle from the primary continuum source, the ratio of height to inner radius
or the opening angle of the torus is the parameter to control the covering factor. When
X-ray luminosity of the central engine gets high, the inner torus is photoionized by X-
rays and evaporated, leading to a reduction in the covering factor (e.g., Page et al. 2004;
Zhou & Wang 2005). Higher luminosity AGNs should have larger opening angle of tori.
Observations and simulations supporting this idea have been presented (e.g., Page et al.
2004; Bianchi et al. 2007; Ricci et al. 2013). Figure 2.4 shows the relation between EW of
Fe I and X-ray luminosity in 2 — 10keV obtained from the Chandra/HETG observations
(Shu et al. 2010) and simulations reported by Ricci et al. (2013). As will be mentioned in
the next Subsubsection, type 2 fraction as a function of X-ray luminosity is also consistent
with this point of view.

Using the ionization parameter (£; Tarter et al. 1969), we describe the relation of the
AGN luminosity and the region that enable to emit the Fe I line.

L
Ngas = m7

(2.15)

where 7,5 is a number density of the gas, L; is an ionizing luminosity, and 7y, is the inner

radius to emit the Fe I. Thus, we estimate the inner radius to be

= U107 () o () (=) e a9)

10% ergs—! 1 10 cm—3

Equation 2.16 shows 7, o Li1 / 2, which indicates that the EW of Fe I decreases when the
AGN becomes bright with a similar torus geometry. Because the size of the region to
emit the Fe I is reduced by the radiation from the SMBH.

Type 2 Fraction in the Universe

The AGN unification model introduced in Section 2.2.1 is basically approved by re-
searchers. However, some results have been presented that type 1 and type 2 AGNs

may have intrinsic difference in their statistical properties (e.g., Wu et al. 2009). In other
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words, not all the AGNs have the same geometry of the torus, as is suggested in the X-ray
Baldwin effect. The type 2 AGN fraction is defined as ny/(n; + ny), where ny and ny are
number densities of type 1 AGNs and type 2 AGNs. This fraction tells us the (averaged)
opening angle (£2) of tori of all the AGNs in the AGN unification model with the relation
of Q = 4mns/(ny + ny)str. Ueda et al. (2003) revealed that the type 2 fraction in the
Universe depends on an intrinsic X-ray luminosity of AGN. The type 2 fraction is smaller
for more luminous AGNs. This is consistent with a trend, in different notations, that
lower luminosity AGNs have systematically have higher column density or higher fraction
to be obscured AGNs (e.g., Lawrence & Elvis 1982; Lawrence 1991; Steffen et al. 2003;
Simpson 2005; Hasinger 2008; Lusso et al. 2013).

Figure 2.5 shows the type 2 fraction obtained with X-ray and also infrared obser-
vations (Hasinger 2008). The type 2 fraction is smaller for higher luminosities as was
presented by Ueda et al. (2003). The fraction is 20 % or less for AGNs with the 2 —10keV

X-ray luminosity of 10% erss=1.

Extensive studies supporting similar trend have been
obtained by other researchers employing various wavelength data with various data re-
duction methods (Steffen et al. 2003; Barger et al. 2005; Akylas et al. 2006; Treister &
Urry 2006; Gilli et al. 2007; Treister & Urry 2012). However, as pointed out by Urry &
Treister (2007) and Treister & Urry (2012), this trend is very sensitive to selection bias.
In particular, highly obscured (sometimes called Compton thick Ny > 10**cm™2) type
2 AGN might have been missed in infrared, optical, UV, and soft X-ray surveys. Hard
X-ray surveys with higher sensitivity may be required for this issue.

The redshift dependence of the type 2 fraction is less clear. Note that mean AGN
luminosity is higher for larger redshift and the type 2 fraction can be smaller even if the

type 2 fraction of a given luminosity is independent on the redshift.
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Figure 2.4: The dependence of EW of Fe I on X-ray luminosity in 2—10keV with the data
obtained from the observations and simulations (Figure 7 of Ricci et al. 2013). The EW
of Fe I versus X-ray luminosities and predicted trends obtained for different values of the
equatorial column density of the torus (Ricci et al. 2013). The data points are reported
by Shu et al. (2010) and obtained by averaging multiple Chandra/HETG observations
of AGNs. The two blue dash-dotted lines are the fits to the simulations of the X-ray
Baldwin effect using the 8oy — Lx relationship of Hasinger (2008) for the Seyfert regime
(logEW = 1.01 — 0.17log Lx 44 for log Nif = 22.5, and logEW = 2.05 — 0.08 log Lx 44
for log Nii = 25), where 0pa is a half-opening angle and N} is an equational column
density (Ricci et al. 2013). The blue long-dashed lines represent the EW — L,.,, x relations
obtained in the quasar regime (logEW = 1.11 — 0.73log Lx 44 for log Njj = 22.5, and
log EW = 2.14 — 0.391og Lx 44 for log Nt = 25) using the relationship of Hasinger (2008),
while the green dashed lines represent those attained using the relationship of Burlon
et al. (2011). The intercepts obtained in the quasar regime have been modified to match
those obtained at lower luminosities (Ricci et al. 2013). (Ricci et al., A&A, vol. 553, A29,
2013, reproduced with permission (© ESO.)
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Figure 2.5: Type 2 fraction in the Universe (Figure 10 of Hasinger 2008). Left: Type 2
fraction as a function of X-ray luminosity. Right: Type 2 fraction as a function of the
redshift. The filled black data points with thick error bars correspond to the combined
optical /X-ray classification. The green data points with open squares and thin error bars
have been derived using a purely optical spectroscopic classification, where only broad-
line AGN are classified as type 1 objects. Red data points with dotted error bars are from
Treister et al. (2008) for the left panel and from Treister & Urry (2006) for the right panel,
respectively. (Hasinger, A&A, 490, 905, 2008, reproduces with permission (©) ESO.)
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2.3 Brightest Cluster Galaxies and Quasars

Brightest cluster galaxies (BCGs) host SMBHs at their nuclei as for other galaxies. BCGs
and their SMBHs are located at the highest end of the Mgy — 0 mentioned in McConnell
et al. (2011). However, a large scatter and/or deviation of the Mgy — o relation extrap-
olated from the non-BCG sample were found for a few SMBHs in BCGs (e.g., Hopkins
et al. 2007; Giiltekin et al. 2009; McConnell et al. 2011, 2012; McConnell & Ma 2013;
Graham & Scott 2013). This may indicate SMBHs of the highest mass (~ 10 M) and
their host BCGs undergo some unique history of merging and/or accretion processes, as
is also predicted by numerical simulations by e.g., Zubovas & King (2012) and Volonteri
& Ciotti (2013).

McConnell et al. (2011) estimated the number density of SMBHs in the highest mass
limit (10 — 10'° M) by employing the My — L relation (e.g. Ferrarese & Merritt 2000;
McLure & Dunlop 2002; Marconi & Hunt 2003) and the luminosity function of nearby
galaxies. They found the number density is consistent with that of nearby BCGs. Mec-
Connell et al. (2011) suggest that local BCGs host the remnants of highly luminous
QSOs. This idea is supported by some numerical simulations indicating that luminous
high-redshift QSOs end up as SMBHs in the BCGs of rich clusters at the local Universe,
as is shown in Figure 2.6 (e.g., Springel et al. 2005, 2006; Li et al. 2007; Angulo et al.
2012). Observationally, De Lucia & Blaizot (2007) shows that high-redshift BCGs belong
to the same populations of local BCGs in their massive end, and Husband et al. (2013)
indicate that the luminous QSOs at z ~ 5 likely represent an early stage in building up

massive low-redshift clusters.

The number density of distant QSOs is larger than that of nearby QSOs (Richards
et al. 2006). QSOs would be very active in the early Universe, possibly at z = 2—4.5, but
are dormant at present (e.g., Richards et al. 2006; Vestergaard et al. 2008). For example,
the prominent radio-jet galaxy M87 that is the BCG of the Virgo cluster hosts an SMBH
with 6.3 x 10° M, (McConnell et al. 2011), but the present luminosity is many orders
of magnitude lower than the Eddington limit (Rafferty et al. 2006), which is much lower
than those of typical AGNs.

Detailed study of the active phase of the SMBHs in BCGs is difficult for the sources at
z > 1, but there are exceptional cases in which QSOs are found in the BCGs of clusters at
lower redshift. In such sources, SMBHs are surely growing by gas accretion (e.g., Salpeter
1964; Hopkins et al. 2005), while strong radiation and/or jets from the SMBHs might
affect the ICM in clusters (e.g., Fabian 2012). Therefore, those sources are of extreme

importance for the study of the feeding and feedback processes in SMBHs, BCGs, and
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Figure 2.6: Snapshots of environment of first quasar candidate at high and low redshifts
(Figure 3 of Springel et al. 2005). The two panels on the left side show the projected dark
matter distribution in a cube of co-moving sidelength 10h~! Mpc, color-coded according
to density and local dark matter velocity dispersion. The panels on the right side show
the galaxies of the semi-analytic model overlaid on a greyscale image of the dark matter
density. The volume of the sphere representing each galaxy is proportional to its stellar
mass, and the chosen color encode the rest frame stellar B-V color index. While at z = 6.2
(two top panels) all galaxies appear blue owing to ongoing star formation, many of the
galaxies that have fallen into the rich cluster at z = 0 (two bottom panels) have turned
red. Reprinted by permission from Macmillan Publishers Ltd: Nature (Springel et al.,
2005, Nature, Volume 435, Issue 7042, pp. 629-636), copyright 2005.
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clusters.

Several such candidates, i.e., QSOs in BCGs, include H1821+643 (or E1821+643)
(Kii et al. 1991; Yamashita et al. 1997; Jiménez-Bailén et al. 2007; Russell et al. 2010),
3C 186 (Siemiginowska et al. 2010), PKS 1229-021 (Russell et al. 2012), IRAS 09104+4109
(Iwasawa et al. 2001; Vignali et al. 2011; O’Sullivan et al. 2012), IRAS F15307+3252
(Iwasawa et al. 2005), and the Phoenix cluster (McDonald et al. 2012, 2013a; Ueda et al.
2013a). Note, however, that the number of the sources is very limited, and thus systematic
studies have little been done. We attempt to do such a study in our work, with a particular
interest on the AGN fraction and type 2 fraction of the SMBHs in BCGs.
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2.4 AGN Feedback to the Intracluster Medium

As mentioned in Section 2.1.2, cooling flows in most of clusters of galaxies are suppressed
by some mechanisms. Heating of the ICM by radiation or jets from AGNs is considered to
be one of the most promising explanation for it. This mechanism, the AGN feedback, is
classified into two modes; one is radiative mode, the other is kinetic mode (Fabian 2012).

The kinetic mode operates for AGNs with powerful jets. We know many radio-lound
AGNs with jets in the BCGs of clusters in the local Universe, e.g., NGC 1275, PKS 0745-
191, Hydra A, M 87, and so on (e.g., Valentijn & Bijleveld 1983; Jones & Forman 1984;
Pedlar et al. 1990; Ball et al. 1993; Fabian 1994; Rafferty et al. 2006). Therefore, the
kinetic mode is considered to be the primary AGN feedback at least in the local Universe.
A relic of heating of the ICM by jets can be observed as an X-ray cavity in the ICM at
the center, which is lower luminosity than surrounding region, i.e., the electron density
is relatively small. The X-ray cavity was first discovered around NGC 1275, a ¢D galaxy
and also the BCG of the Perseus cluster, with Einstein (Branduardi-Raymont et al. 1981;
Fabian et al. 1981). Similar structures were found with the ROSAT /HRI in other bright
clusters with ¢D galaxies (e.g., Carilli et al. 1994; Rizza et al. 2000). Chandra high angular
resolution images have enabled us to observe more details of such structures, resulting
in discovery of the X-ray bubbles in the ICM (e.g., Fabian et al. 2000; McNamara et al.
2000). The detection frequency of an X-ray cavity around a cD galaxy at the center is
~ 20 — 30% (Birzan et al. 2004; Rafferty et al. 2006). The detection rate is as high as
~ 70% (12/17) if we limit the sample to the clusters with a strong cooling rate (Dunn
et al. 2005). Note that a significant fraction of clusters have a low temperature component
in their cores, called a cool-core. The cool-core has a short cooling time, i.e., strong cooling
rate. In some cases, the term of cooling flow rate has been used instead of the cooling
rate, though it does not mean there is a cooling flow.

The energy required to create an X-ray cavity in ICM is the sum of the pV work
required to displace the ICM at the region and the internal energy E of the hot gas
remained in the cavity. This could be called enthalpy H denoted as

H=FE+pV = #pv, (2.17)

where p is the pressure of the surrounding ICM, V' is the volume of the cavity, and ~ is
the adiabatic index of the hot gas inside the cavity, respectively. If relativistic particles
are filled in the cavity v = 4/3 and thus H = 4pV’ is expected, whereas if it is dominated
by non-relativistic gas v = 5/3 and H = 2.5pV are predicted. The cavity may also be
dominated by magnetic field, in which case H = 2pV should be valid (e.g., Dunn &
Fabian 2004; Birzan et al. 2004). The mechanical power of a cavity is defined as H/t,ge,
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where t,qe is the time scale of the formation of the cavity. Rafferty et al. (2006) reported
that the mean cooling rate is 6.45 x 10* ergs~! for a sample of clusters, while the mean
mechanical power of their cavities is estimated to be 1.01 x 10% ergs™! by assuming 4pV .
It indicates that heating of the particles from AGNs can balance or overcome the ICM
cooling. Extensive works (e.g., Nulsen et al. 2007; McNamara & Nulsen 2007; Hlavacek-
Larrondo et al. 2012; Fabian 2012) have suggested this point of view is basically correct.
Furthermore, McNamara & Nulsen (2007) examined the relation between the mechanical
power of cavities and the luminosity of the ICM within .., at which the cooling time is
7.7 x 10° yr. The relation is consistent with the assumption of H = 4pV in most of the
cases, supporting the idea that the ICM cooling can be balanced by the AGN mechanical
power (e.g., Rafferty et al. 2006; McNamara & Nulsen 2007; Hlavacek-Larrondo et al.
2012).

According to Fabian (2012), the other radiative mode is considered to be the effective
feedback for AGNs of which luminosity is within two orders of magnitude of the Eddington
limit. The Eddington limit (or Eddington luminosity, Lgqq) is described as

ArGM M,
Lgad = M =1.25 x 10% (%) ergsfl, (2.18)

oT ®

where o7 is the Thomson cross section (o7 = 6.65 x 107 cm™2). The radiative mode
should be important at z = 2 ~ 3, where QSOs activities are peaked (e.g., Richards
et al. 2006). On the other hand, since most of the AGNs in the BCGs of clusters at the
local Universe has much lower luminosities than the Eddington limit (e.g., NGC 1275 is
~ 0.4 %; Rafferty et al. 2006), the radiative mode may not be important.

We, however, estimate the heating power in the radiative mode by the following
discussions by King (2009) and Siemiginowska et al. (2010). The amount of required
energy to heat the ICM within a cool-core of a cluster is of the order of 1keV per baryon,
e.g.,

1keV M,
Bhpons ~ <—>M 2178 1059<ﬂ> , 2.19
heat M \TGev ) et o) U8 (2.19)

where Mo is the ICM mass within the core. Sazonov et al. (2005) suggest that photoion-
ization and Compton heating are the dominant processes for radiation to heat the ICM.

If we assume, for example, a QSO with luminosity of 10" ergs=!

, which corresponds to
the Eddington limit of an SMBH of 10° M, the radiation energy is orders of magnitude
larger than typical luminosity of a cluster core. However, the opacity of the ICM is very
small. We evaluate the opacity, 7, of the ICM in the core only for Compton scattering,

as the lower limit,

n r
= Melcore =1.03 10_1( - > < f ) ) 2.20
T MeleoreOT 8 1072em=3/ \50 kpc % (2.20)
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where n, is the electron density of the core, r... is the radius of the cluster core, re-
spectively. Therefore, the radiative heating energy balances with the ICM cooling rate if
the ICM luminosity is 0.1 % of the QSO luminosity. This is, however, an instantaneous
balance. We also have to care about the time scale of the QSO activity. The time scale
is not certain, in particular, for QSOs in BCGs, as the sample is very limited. We would
attempt to estimate in our study and will show the radiative mode is important in some

cases.



Chapter 3
Instruments

We mainly use the data obtained from the Suzaku/XIS & HXD, the Chandra/ACIS, and
the XMM-Newton/EPIC for the analyses in this work. We mention a brief introduction
to these satellites and instruments installed on them in this section. More details are

described in

e Suzaku: Mitsuda et al. (2007); Koyama et al. (2007b); Takahashi et al. (2007);
Kokubun et al. (2007),

e Chandra: Weisskopf et al. (2002); Garmire et al. (2003), and
o XMM-Newton: Jansen et al. (2001); Turner et al. (2001); Striider et al. (2001),

respectively.

3.1 Suzaku

3.1.1 Overview

Suzaku' (Mitsuda et al. 2007) is the Japanese fifth X-ray observatory. Suzaku was de-
veloped by the Institute of Space and Astronautical Science (ISAS) of Japan Aerospace
Exploration Agency (JAXA) in collaboration with the National Aeronautics and Space
Administration’s Goddard Space Flight Center (NASA/GSFC) and many other insti-
tutions. It was launched on July 10, 2005 by JAXA with the M-V rocket (Japanese
solid-fueled rocket) from the Uchinoura Space Center (USC). After deploying its solar
paddles and the extensible optical bench (EOB), Suzaku was put into a low earth orbit at
570 km altitude with an inclination angle of 31° . The orbital period is about 96 minutes.

Figure 3.1 shows the schematic views of the Suzaku satellite.

'http://www.astro.isas. jaxa.jp/suzaku/doc/suzaku_td/

27
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Figure 3.1: Schematic views of Suzaku (Figure 1 and 2 of Mitsuda et al. 2007).

Suzaku includes three scientific instruments; four X-ray CCD cameras (X-ray Imaging
Spectrometer, XIS; Koyama et al. 2007b), the Hard X-ray Detector (HXD; Takahashi
et al. 2007; Kokubun et al. 2007), and the X-ray micro-calorimeter (XRS; Kelley et al.
2007). Each of the XIS is on a focal plane of an X-ray Telescope (XRT}; Serlemitsos et al.
2007) that is installed on the top plate of the EOB. The effective energy band of the
XIS is 0.2 — 12keV (Koyama et al. 2007b), while the HXD extends the bandpass of the
observatory to much higher energies (10 — 600 keV Takahashi et al. 2007; Kokubun et al.
2007). Although the XRS has a superior energy resolution (7eV in the energy range of
0.3 — 12keV), the system became inoperable due to a thermal short between the helium

and neon tanks, which resulted in the vent of the liquid helium coolant into space.

3.1.2 X-ray Imaging Spectrometer (XIS)

The XIS consists of four sensors (XIS0, 1, 2, and 3). All sensors were developed through
the collaboration among the Center for Space Research at Massachusetts Institute of
Technology (MIT), ISAS/JAXA, Osaka University, Kyoto University, Rikkyo University,
Kogakuin University, and Ehime University. The XIS employs sensitive silicon charge-
coupled device (CCD), which is operated in a photon counting mode (Tanaka et al. 1994).

The left panel of Figure 3.2 shows a sketch image of the Suzaku/XIS camera body,
while the right panel of Figure 3.2 displays the sensor sketch of the XIS CCD (Koyama
et al. 2007b). Each sensor has a single CCD chip with an array of 1024 x1024 pixels, and
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Figure 3.2: Cross section of the Suzaku /XIS camera body (left panel) and the schematic

view of the XIS CCD (right panel) (Figure 2 and 3 of Koyama et al. 2007b).

a field of view (FOV) of the XIS is 17/.8 x 17’.8 region on the sky combined with the
XRT. Each pixel size is 24 um square, and the size of the CCD is 25mm x 25mm. A
back-illuminated (BI) CCD is adopted for XIS1, while the others (XIS0, XIS2, and XIS3)
are the front-illuminated (FI) CCDs. Figure 3.3 shows the effective area of the XIS+XRT.

The basic properties of the XIS are summarized in Table 3.1.

Table 3.1: Basic Performance of the XIS

Energy range

Energy resolution (FWHM)

Field of view
Effective area
PSF (HPD)
CCD format

Timing resolution

0.2 —12keV
~ 130eV at 5.9keV
17.8 x 17'.8

2/

330 cm? (FI), 370 cm? (BI) at 1.5keV

1024 x1024

8s (normal mode)

Since XIS2 was damaged on November 9, 2006, 1:03 UT by a micrometeorite, about

2/3 of the imaging area became suddenly unusable. The anomalous area was flooded with
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Figure 3.3: Effective area of the XIS (Figure 3 of Mitsuda et al. 2007). The black solid
line shows the effective area of the XIS FI CCD. The red dashed line shows that of the
XIS BI CCD (i.e. XIS1).

a large amount of charge. In spite of efforts by the Suzakuteam, XIS2 has not yet been

recovered. Therefore, we used only XIS0, 1, and 3 data in this work.
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3.1.3 Hard X-ray Detector (HXD)

The Hard X-ray Detector (HXD; Takahashi et al. 2007; Kokubun et al. 2007) is a non-
imaging, collimated detector covering a high energy band of 10 — 600keV. It has been
developed jointly by the University of Tokyo, Aoyama Gakuin University, Hiroshima Uni-
versity, ISAS/JAXA, Kanazawa University, Osaka University, Saitama University, SLAC,
and RIKEN. The HXD consists of two detectors, i.e. the HXD-PIN and the HXD-GSO.
The energy band of the HXD-PIN is below 60 keV, while that of the HXD-GSO is above
40keV. The effective areas of the HXD-PIN and the HXD-GSO are ~ 160 cm? at 20 keV,
and ~ 260 cm? at 100 keV, respectively. The basic performance of the HXD is summarized
in Table 3.2.

Table 3.2: Basic Performance of the HXD

Energy range 10 — 600 keV

Energy resolution (FWHM) ~ 4.5keV (PIN) and 7.6/v/Eyev% (GSO)

Field of view 4.°5 x 4.°5 2 100keV and 34" x 34’ < 100keV
Effective area ~ 160 cm? at 20keV (PIN) and ~ 260 cm? at 100keV (GSO)

Timing resolution 61 pus
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3.2 Chandra

3.2.1 Overview

The Chandra X-ray Observatory? (Weisskopf et al. 2002), named in honor of Dr. Sub-
rahmanyan Chandrasekhar, is the X-ray satellite of NASA’s four Great Observatories.
Chandra was launched and deployed by NASA’s Space Shuttle Columbia on July 23,
1999. It was released into an elliptical orbit, whose the apogee is ~138,800 km and the
perigee is ~10,100 km. An uninterrupted exposure time is larger than 170ks due to its

orbital period is 63.5 hours. The outline image of Chandra is shown in Figure 3.4.
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Figure 3.4: Schematic and expanded view of Chandra. The top panel shows the labelled
sketch of Chandra (http://chandra.harvard.edu/chronicle/080999/weekend.html).
The bottom panel shows the expanded view of the Chandraflight system (Figure 1 of
Weisskopf et al. 2002).

Chandra includes four types of scientific instruments: the Advanced CCD Imaging

http://chandra.harvard.edu/press/fact1.html
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Spectrometer (ACIS; Garmire et al. 2003), the High Resolution Camera (HRC; Murray
et al. 1998), the Low Energy Transmission Grating Spectrometer (LETGS; Brinkman et al.
2000), and the High Energy Transmission Grating Spectrometer (HETGS; Canizares et al.
2005). The ACIS is one of the two instruments installed on a focal plane, which is an
array of CCDs. The HRC is another instrument used at the focus of the High Resolution
Mirror Assembly (HRMA; van Speybroeck et al. 1997; Weisskopf & O’dell 1997; Zhao
et al. 1997). The LETGS and the HETGS are activated by swinging an assembly into
position behind the mirrors. The LETGS is designed to cover an energy range of 0.08 to
2keV, while the HETGS functions in 0.4 — 10keV. Among these instruments, we used the
data obtained with the ACIS. In the following section, we present a brief introduction to
the ACIS.

3.2.2 Advanced CCD Imaging Spectrometer (ACIS)

The Advanced CCD Imaging Spectrometer (ACIS; Garmire et al. 2003) consists of ten
CCDs manufactured by MIT Lincoln Laboratory. Those are three-phase frame transfer
CCDs (Burke et al. 1997). Four of the ten chips are 2 x 2 mosaic array on a focal plane
used for imaging (ACIS-I), the others form 1 x 6 array used either as an imaging or a
grating detector (ACIS-S). Figure 3.5 shows schematic views of the ACIS-T and the ACIS-
S. Two BI CCDs are used for the ACIS-S, while the rest of the ACIS-S and all of the
ACIS-T are FI CCDs. There are two choices for the on-axis position of the HRMA, i.e.,
one is ACIS-S3 and another is ACIS-I3. Due to the telemetry limits, only six chips can
be activated in observation. Since a BI CCD has superior quantum efficiency in the low
energy band, it is adopted at the nominal aim point of the ACIS-S. The ACIS-S has the
benefit to observe a target whose spectrum is dominated by low energy emission. The
most valuable performance of the ACIS is an angular resolution of 0.5” in 0.2 — 10keV
combined with the HRMA. The FOV is 17" x 17'. Other characteristics are summarized
in Table 3.3 and the effective areas for the on-axis ACIS (i.e. ACIS-I3 and ACIS-S3) are
shown in Figure 3.6.

The ACIS was damaged by cosmic soft proton (~ 100keV) after the ACIS door was
opened on day 252 of 1999. Since the radiation damage caused a serious increase of the
charge transfer inefficiency (CTI) for the FI CCDs (Garmire et al. 2003), their energy
resolution were degraded from the pre-launch values of about 150eV to about 260eV (at
the summer of 2009) even after the CTI correction. However, the angular resolution of
the ACIS is not degraded by the radiation damage. The X-ray imaging quality of the
ACIS is significantly higher than any other X-ray observatories at the time of writing.
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Figure 3.5: Schematic views of the ACIS-I and the ACIS-S (top view) (http://cxc.
harvard.edu/proposer/P0G/html/ACIS.html).

Table 3.3: Basic Performance of the ACIS

Energy resolution

~ 150eV, ~ 280V after damaged at 5.9 keV

Field of view 16’.9 x 16".9

Effective area 600 cm? at 1.5 keV, 40 cm? at 8.0keV
PSF (FWHM) 0.5"

CCD format 1024 x 1024

Time resolution

3.2 sec (full frame)
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3.3 XMM-Newton

3.3.1 Overview

X-ray Multi-Mirror Mission (XMM) - Newton (hereafter XMM-Newton?; Jansen et al.
2001) is the second X-ray astronomy mission of European Space Agency (ESA). It was
launched on December 10, 1999, by ESA with Ariane 504 from the Guiana Space Centre,
Europe’s space port (French Guiana) and put into a highly elliptical orbit with an apogee
of about 115,000 km and a perigee of 6,000 km with an inclination angle of 54.3° . The
orbital period is 47.9 hours. Figure 3.7 shows the sketch of the XMM-Newton.

Figure 3.7: Sketch of the XMM-Newton observatory. To the left the three mirror modules
(with the Reflection Gration Arrays mounted behind two of them) can be seen, while at
the right the back-end of the instrument platform with all the radiators is visible (Figure 1
of Jansen et al. 2001).

XMM-Newton includes three types of scientific instruments: European Photon Imag-
ing Camera (EPIC; Turner et al. 2001; Striider et al. 2001), Reflection Grating Spec-
trometer (RGS; den Herder et al. 2001), and Optical/UV Monitor (OM; Mason et al.
2001). The EPIC has the performance of X-ray imaging and moderate energy resolu-
tion. The EPIC consists of two different types of CCD camera called MOS (Metal Oxide
Semi-conductor; Turner et al. 2001) and PN (Striider et al. 2001). The RGS includes two
essentially identical spectrometers for high-resolution X-ray spectroscopy and spectro-
photometry. Both the EPIC and the RGS are on the focal plane of the X-ray telescopes,
while the OM has its own telescope. The OM is a optical/UV detector for imaging and

grism spectroscopy. Among these instruments, we used the data obtained with the EPIC.

3http://xmm.esac.esa.int/external/xmm user_support/documentation/technical/
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The overview of the EPIC is described in the following section.

3.3.2 European Photon Imaging Camera (EPIC)

The EPIC consists of three cameras: two MOS cameras (called MOS1 and MOS2) and
one PN camera. FI CCDs are used for the MOS, while the PN employs BI CCDs. Figure
3.8 shows schematic views of the FOV of the EPIC; MOS (left) and PN (right). The QE
and the timing resolution of PN CCD are better than those of MOS CCDs, while MOS
CCDs has better spectral resolution than that of PN CCD. Figure 3.9 shows the effective
area of each camera. The basic properties of the EPIC are summarized in Table 3.4.

The event on March 9, 2005 caused an anomaly of the MOS1 CCD-6. Thus, the
MOST1 is currently operated with the power of the CCD-6 off. Since the reason of this
anomaly is unknown, the instruments team of the MOS considered that a micrometeorite
impacted the MOS1 CCD-6.

CCDNR 3

EPIC MO5 EFIC pn
7 CCDs each 109 x 109 areminutes 12 CCDs each 13.6 x 4 4 arcmin

Figure 3.8: Schematic views of the FOV of the EPIC. The shaded circle shows
a 30'diameter area. The left panel shows the FOV of the MOS, while the right
panel shows that of the PN. (http://xmm.esac.esa.int/external/xmm user_support/

documentation/uhb/epic.html)
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Figure 3.9: Effective area of the EPIC. The left panel shows the effective area of the
MOS, while the right panel shows that of the PN (http://xmm.esac.esa.int/external/

xmm_user_support/documentation/technical/EPIC/index.shtml).

Table 3.4: Basic Performance of the EPIC

EPIC MOS EPIC PN
[Nlumination type Front illuminated Back illuminated
Energy range 0.15 — 12keV 0.15 — 15keV

~ 170eV at 5.9keV
30" diameter
15//
398 x 384
73.4ms (full frame)

~ 140eV at 5.9keV
30" diameter
14//
600x 600
2.5sec (full frame)

Energy resolution (FWHM)
Field of view

PSF (HPD)

CCD format

Timing resolution




Chapter 4

Search for Luminous AGNs in the
Brightest Cluster (zalaxies

In this chapter, we search for luminous AGNs in the BCGs by referring both the Planck
SZ cluster catalogue and the Swift/BAT 70-Month catalogue. Both the catalogues are
complete enough for us to find our targets without suffering sample bias. We then obtain
a fraction that the SMBHs in the BCGs are highly luminous AGNs with the largest and
least biased sample ever used. We briefly introduce both the catalogues and the procedure
of the collation, and show a list of 18 candidates. Examination of those candidates yields

two BCGs hosting luminous AGNSs.

4.1 Planck SZ Cluster Catalogue

The Planck satellite (Planck Collaboration et al. 2011, 2013a) is a mission of European
Space Agency (ESA) to measure the spatial anisotropies in temperatures of the cosmic
microwave background (CMB; Penzias & Wilson 1965) with improved resolution and sen-
sitivity. Planck was launched on 2009 May 14 and had been scanning the all-sky for nearly
4.5 years since August 2009. The satellite carried two kinds of scientific instruments; one
is the High Frequency Instrument (HFI) consisting of 52 bolometric detectors senetitive
to 83~1000 GHz, and the other is the Low Frequency Instrument (LFI) which is an array
of 22 radio receivers sensitive to 22~77 GHz. Only the LFI was operated in the last stage
of the mission. The mission aimed to reveal the early history of the Universe, to test the
inflation cosmology (e.g., Sato 1981; Guth 1981), and to determine the Hubble constant.
Measurement of the Sunyaev-Zel’dovich (SZ) effect (Sunyaev & Zeldovich 1972, 1980), in
particular, toward clusters of galaxies was also the target.

The SZ effect is a distortion of CMB spectrum with inverse Compton scattering of
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CMB photons by electrons in the hot gas along the line of sight. The distortion is
proportional to the pressure of hot gas integrated along the line of sight, not depend on the
distance of the hot gas. Therefore cluster search through the SZ effect has an advantage
over X-ray or optical surveys to detect distant clusters. An all sky catalogue of such
SZ sources was recently released by Planck Collaboration et al. (2014) !. The catalogue
contains 1227 sources, in which 683 sources of previously known clusters, 178 sources of
Planck new clusters, and 366 sources of cluster candidates are included, derived from the
SZ effect detections using the first 15.5-Month of Planck observations. As was expected,
the catalog contains distant clusters up to z ~ 1, of which mass range from 0.1 x 10
to 1.6 x 10'® M. Although the catalogue consists of several tables with slightly different
criteria, we employ the Planck SZ cluster catalogue of COM_PCCS_SZ-union R1.11.fits.

Since our aim is to search for luminous AGNs (radio-quiet or radio-loud) in BCGs
in lusters, we need special care about point-source contamination in compilation of the
Planck SZ catalogue. In prior to the SZ detection of sources, point-sources were masked
from the Planck maps of each HFI frequency channel. The size of mask was 1.28 FWHM
of the beam size, which ranges from about 6’ to 12’ (Planck Collaboration et al. 2013b,
2014). According to Planck Collaboration et al. (2014), however, bright radio sources
at the center of clusters have steep spectra and hence are not bright in high frequency
channels. The Perseus cluster was one exception, with a point source that is so bright that
the cluster was masked and thus not included in the catalogue. In Planck Collaboration
et al. (2014), the Planck SZ catalogue was compared with various catalogues of X-ray
or optical surveys of clusters. Comparison with the Meta-Catalogue of X-ray detected
Clusters of galaxies (MCXC; Piffaretti et al. 2011) indicated that 11 clusters that should
have been detected in the Planck SZ catalogue but were not. Because they are due to the
point-source masks. For other two X-ray clusters, RXC J1253.6-3931 and RXC J1958.2-
3011, the Planck SZ detections were hampered by contaminations of radio sources. In
the case of RXC J1253.6-3931, Plagge et al. (2010) reported that it is associated with a
radio bright Parkes-MIT-NRAO Survey source that would have been difficult to remove
from the SZ maps measured by SPT. Several other clusters expected to be detected but
not included in the Planck SZ catalogue should be regarded as overestimation of the
SZ signals from the X-ray data owing to contaminations of X-ray flux from AGNs or
prominent cool cores of clusters. We should examine these missing clusters in more detail
with referring the point sources detected listed in the Planck catalogue of compact sources
(Planck Collaboration et al. 2013c).

Significant fraction (19 out of 25) of nearest (z < 0.03) MCXC clusters were not

lhttp://www.sciops.esa.int/index.php?project=planck&page=Planck_Legacy_Archive
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included in the Planck SZ catalogue (Planck Collaboration et al. 2014), either. Some of
them fell into the point-source masks (the Perseus cluster, Abell 1060 (the Hydra cluster)
and so on) or into the galactic plane mask (the Ophiuchus cluster and 3C 129.1). Remain-
ing, including the Virgo cluster, were below the SZ detection threshold. However, since
we know very luminous AGNs are not found in these nearby clusters, our results are not

affected by these nearby clusters not included in the Planck SZ catalogue.

4.2 Swift/BAT 70-Month Catalogue

The Swift satellite (Gehrels et al. 2004) is a multiwavelength observatory for gamma-ray
burst (GRB; Klebesadel et al. 1973) astronomy projected by NASA. Swift was launched
on 2004 November. The Burst Alert Telescope (BAT; Barthelmy et al. 2005) on board
Swift is a wide field of view (1.4sr) hard X-ray detectors with a coded mask, design to
detect GRBs and localize the burst direction to an accuracy of 1—4 arcmin within 20 s after
the start of the event. The BAT has a sensitivity limit of a few times 10~ ergem 257! in
the 14—195keV band with a medium positional uncertainty of 1.7" (Barthelmy et al. 2005).
While searching for GRBs, the Swift/BAT performs an all-sky hard X-ray survey. The
Swift /JBAT team have published several complete catalogues so far; 3-Month catalogue
(Markwardt et al. 2005), 9-Month catalogue (Tueller et al. 2008), 22-Month catalogue
(Tueller et al. 2010), 39-Month catalogue (Cusumano et al. 2010a), 54-Month catalogue
(Cusumano et al. 2010b), and 70-Month catalogue (Baumgartner et al. 2013), respectively.

In this chapter, we employ the Swift/BAT 70-Month catalogue?.

The Swift/BAT 70-Month catalogue contains 1171 hard X-ray sources in the 14 —
195keV band (Baumgartner et al. 2013), which is the most complete hard X-ray source
catalogue at present. The 70 month Swift /BAT survey covers sources brighter than 1.03 x
107" ergem=2s71 over 50 % of the sky, and those brighter than 1.34 x 10~ ergecm 2571
over 90 % of the sky (Baumgartner et al. 2013). Baumgartner et al. (2013) reported that
the 50 sensitivity of the 70 month survey is 0.38 mCrab or 9.2 x 1072 ergcm™2s7! using
the medium exposure time of 9.45Ms, where 1 Crab corresponds to a flux of 2.386 X

107 %ergem 2571,

’nttp://swift.gsfc.nasa.gov/results/bs70mon/
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4.3 Search for Luminous AGNs in the Planck SZ

Clusters

We search for luminous AGNs hosted by BCGs in the Planck SZ clusters by collating the
Planck SZ cluster catalogue (Planck Collaboration et al. 2014) with the Swift/BAT 70-
Month catalogue (Baumgartner et al. 2013). The Planck SZ cluster catalogue, the most
complete cluster catalogue through the SZ effect at present, is less affected by selection bias
and covers distant clusters than those of optical or X-ray surveys. We consider that hard
X-ray surveys are appropriate for detecting AGNs by their intrinsic power and Swift is
the best choice for at present. Note, however, that the angular resolution of Swift/BAT
is not enough to separate an AGN component, the high energy tail of an ICM thermal
component and a possible ICM non-thermal component. Without any other information,
the Swift /BAT flux should be regarded as the upper limit of the AGN flux.

4.3.1 Search for AGN Candidates in BCGs in Clusters

We employ 861 clusters in the Planck SZ cluster cataloguethat were confirmed in follow-
up observations (Planck Collaboration et al. 2014) and in the Sloan Digital Sky Survey
(SDSS; York et al. 2000) galaxy catalogue. We search for luminous AGNs in Swift hard

X-ray sources that have a Planck SZ cluster as a counterpart with the following procedure.

1. We calculate an angular separation (64) between a Planck source and a Swift source,
and select the sources with 84 < 0.2°. A total of 20 Planck sources have their counter

parts in this way, while the 20 Swift sources have their counter parts.

2. We then apply further selection by their redshifts; sources of which redshifts in two
catalogues, the redshift (z,) listed in Planck SZ cluster catalogue and that (z) in
Swift /BAT 70-Month catalogue, matches within 0.05, i.e., 2, —0.05 < z < z,+0.05,
are selected. The number of the sources selected at this stage is 18. The others are

not consistent with the redshift of sources each other.

3. We finally identify counterpart AGNs with sources in the 13th AGN & QSO cata-
logue?® (Véron-Cetty & Véron 2010). To identify the counterparts, we calculate the
angular separation 64 between one Planck source and one source in the 13th AGN
& QSO catalogue, and select the AGNs with 64 < 0.2°. In the selection, we also
limit the redshift difference less than 0.05, that is, z, — 0.05 < z < 2, + 0.05.

3http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/518/A10
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A total of 18 Planck SZ clusters detected by the Swift/BAT are selected in this pro-
cedure. We obtain a total of 19 candidate AGNs in the BCGs as their counterparts as

summarized in Table 4.1.

4.3.2 Selection of Luminous AGNs in BCGs in Clsuters

We further examine the 19 AGN candidates we have selected. For the Planck SZ cluster
PSZ1 G006.454+50.56 (that corresponds to Abell 2029), there are two candidates AGNs.
We consider that 2MASX J15110641+0541228 likely corresponds to the BCG with its
smaller separation (f3) from the center of the cluster (column 14 of Table 4.1) than
that of 2MASX J15113367+0545479, though further information is needed to conclude
it. Nevertheles, the hard X-ray luminosity of the source derived from the Swift/BAT
catalogue provides the upper limit of that of an AGN in the BCG of the cluster, in any
case.

We note that the redshifts of Planck SZ cluster, also listed in the column 5 of Table 4.1,
do not exactly match those of AGNs in it. For example, the redshift of PSZ1(G339.69-
69.34 (i.e., the Phoenix cluster) is 0.62 in the Planck SZ source catalogue, while that of its
BCG is 0.596 with optical spectroscopy (McDonald et al. 2012). We thus have employed
a margin of 0.05 in redshift in the selection procedure mentioned above. The name of
the AGNs, column 10 of Table 4.1, are referred to the NASA /Infrared Processing and
Analysis Center (IPAC) Extragalactic Database (NED)*,

We next evaluate contamination of thermal and non-thermal emission from ICM to
the hard X-ray flux measured with the Swift/BAT. Ajello et al. (2009) and Ajello et al.
(2010) examined possible non-thermal emission in clusters detected with the Swift /BAT.
They evaluated excess hard X-ray emission of the clusters by subtracting the ICM thermal
component and the sum of point source contribution, both were evaluated with the XMM-
Newton observations of the clusters, from the observed Swift/BAT spectra. Evidence of
the hard excess emission was found inly in the Bullet cluster and Abell 3667 among the
sample they selected. According to their analysis, the hard X-ray excess in the Bullet
cluster can be due to non-thermal emission from the ICM, while that in Abell 3667 is a
high temperature (KT" ~ 13keV) thermal emission. For other sources, we estimate the
thermal and non-thermal emission from the ICM based on previous X-ray observations,
and subtract the contribution from the observed flux to derive the AGN flux or its upper
limit for each source, where the AGN spectrum is assumed to be a simple power law with

a photon index of 2.0.

“http://ned.ipac.caltech.edu/
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We finally find only two Planck SZ clusters in which the BCGs hosts luminous AGNs
(log Lx 14-195 > 45); one is H 18214643 and the other is the Phoenix cluster. The source
next to these two is Abell 1914, for which only the upper limit of logLx 14-195 < 44.65 is
obtained. In fact, the temperature of the ICM in this cluster is ~ 9keV (Baldi et al. 2007;
Maughan et al. 2008) and the X-ray luminosity in 0.6—9keV is 3.3x10% ergs~! (Maughan
et al. 2008). However, Barrena et al. (2013) reported that A 1914 shows a clear recent
cluster merger by measuring the spatial and velocity dispersion of 89 member galaxies
with optical observation. We thus conclude that the fraction of very luminous AGNs in
BCGs in clusters is 2/861. This fraction is important to study evolution of SMBHs in
BCGs in clusters. If we simply assume each SMBH get active as these two during a period
of its life, the period must be 23 Myr assuming its life is 10 Gyr. Alternatively, these two
source may be very peculiar case that AGN activities occurred in the past (z = 2 — 4.5;
Richards et al. 2006) and stopped later are are happening at the local (z < 1) Universe
by some reason. We will discuss more details in Chapter 7. We study the X-ray spectra
of the Phoenix cluster and H 18214643 in the following chapter .
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Chapter 5

Luminous AGNs in Brightest

Cluster Galaxies

In this chapter, we present the results of the X-ray observations of the AGNs in the
Phoenix cluster and H 1821+643. These two sources have been selected as the only cases
whose luminous AGNs (Lx 14195 > 1x10% ergs™!) reside in the BCGs of clusters based on

our collation of the Planck SZ cluster catalogue and the Swift/BAT 70-Month catalogue.

5.1 Type 2 QSO in the Central Galaxy of the Phoenix
Cluster

In this section, we present the analyses and results of the Phoenix cluster observed with
Suzaku, Chandra, and XMDM-Newton. The Phoenix cluster is one of the two sources in
which luminous AGNs reside in the BCGs of clusters (see Chapter 4.3.2). We have
already published the results of the X-ray observations of this source with Suzaku and
Chandra (Ueda et al. 2013a).

5.1.1 Previous Studies on the Phoenix Cluster

The Phoenix cluster was discovered by the South Pole Telescope (SPT; Ruhl et al. 2004;
Padin et al. 2008; Staniszewski et al. 2009) via the Sunyaev-Zel’dovich effect, and named
as SPT-CL J2344-4243 (Williamson et al. 2011). However, several previous all-sky surveys
detected the Phoenix cluster as a point-like source. An X-ray emission from the Phoenix
cluster was first reported as 1RXS J234444.1-424319 in the ROSAT All-Sky Survey Bright
Source Catalogue! (Voges et al. 1999).

'http://www.xray.mpe.mpg.de/cgi-bin/rosat/src-browser
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This source is classified as Seyfert 2 in the Quasar and AGN Catalog 10th Edition by
Véron-Cetty & Véron (2001). The Two Micron All Sky Survey (2MASS; Skrutskie et al.
2006; Huchra et al. 2012) found an extended source 2MASX J23444387-423124, while the
Palermo Swift/BAT hard X-ray catalog source, 2PSBC J2344.8-4245 (or Swift J2344.6-
4246%), is identified as 2MASX J23444387-423124 (Cusumano et al. 2010b). The 14 —
150 keV band luminosity was extremely high as 1.4 + 0.9 x 106 ergs™.
located at (R.A.,Dec.) = (23h44m43.9s, —42d43m12s), a direction of the Phoenix con-

stellation in the southern sky, and thus its host cluster is called the Phoenix cluster. The

The galaxy is

redshift of the cluster is z = 0.596, and one arcsec corresponds to 6.7 kpc at its distance.

With radio, infrared, optical, ultraviolet, and X-ray observations of the Phoenix clus-
ter, McDonald et al. (2012) reported that the X-ray luminosity within 7509 and the total
mass within 799 of this cluster are 8.2 x 10¥ergs™ in 2 — 10keV and 2.5 x 10'° M,
respectively. The ra09 (or r500) is the radius for which enclosed average density is 200 (or
500) times the critical density of the Universe. Both are exceptionally large compared to
the other known clusters.

Using Hubble Space Telescope and Chandra data (the same data as McDonald et al.
2012), McDonald et al. (2013a) estimated that the star formation rate (SFR) and cooling
rate are 798 & 42 M, yr~! and 2700 + 700 M, yr~! (also from White et al. 1997), respec-
tively. Thus, the SFR is 30 & 8 % of the cooling rate, which is one of the highest among
typical cool-core clusters in the local Universe. McDonald et al. (2012) also reported that
the central AGN has a luminosity of ~ 3x 10%° ergs™ (2—10keV) with a large absorption
of ~ 3.9 x 10® cm—2.

Apart from these general features of the Phoenix cluster, no detailed X-ray spec-
troscopy, especially for the central AGN has been examined so far, probably due to the
limited statistics in the previous observations. Furthermore, the Swift/BAT hard X-ray,
a key band to evaluate the intrinsic luminosity of the AGN, would be contaminated by
the thermal plasma in the cluster depending on the plasma temperature. We therefore
examined the high-quality data of the deep Suzaku observation. To separately examine

the central AGN component from the thermal emission of the ICM, we also employed the
Chandra and XMM-Newton-Newton archival data

5.1.2 X-ray Observations of the Phoenix Cluster

A Suzaku (Mitsuda et al. 2007) observation of the Phoenix cluster was performed on
2010 November 15-16 (ObsID: 70549010, PI: W. Baumgartner). After the standard data

’nttp://swift.gsfc.nasa.gov/results/bs58mon/SWIFT_J2344.6-4246
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reduction described in section 5.1.3, the exposure times were 62 ks and 47 ks for the XIS
and the HXD, respectively.

The XIS data were extracted from the circular region with a radius of 3’ centered on
the BCG of the Phoenix cluster as shown in the top panel of Figure 5.1. For the extracted
data, we made the NXB-subtracted light curve of XIS0, 1, and 3 in the 0.4 — 10keV band
from the r < 3’ region with the time bin size of 1024 s. All the data points are within the
range of £3 0 (£0.10 countss™') of the mean (1.08 countss™'), and hence no significant
variability (no anomaly) in the data is found, and no flickering event is included.

We also used the Chandra archival data of the Phoenix cluster, which are the same
data used by McDonald et al. (2012). The observation was carried out on 2011 Septem-
ber 19 (ObsID: 13401, PI: G. Garmire). After standard data reduction mentioned in
section 5.1.3, an exposure time of the ACIS-I is 12ks. The bottom panel of Figure 5.1
shows the central region of the Phoenix cluster observed with the ACIS-I. In addition, we
employed the data obtained in the XMM-Newton observation of this source performed on
2012 May 28 for an exposure time of 23.4ks (ObsID: 0693661801, PI: M. Arnaud).

5.1.3 Dara Reductions for the Data of Each X-ray Satellite

In this section, we summarize the procedures of data reduction and spectral analysis for
the X-ray data obtained with Suzaku, Chandra, and XMM-Newton. The same procedures
are used not only for the data of the Phoenix cluster but also for those of other AGNs

whose results are described in following sections and chapters.

Suzaku

All the Suzaku /XIS data were reduced with the HEASOFT? version 6.12. We reprocessed
the data by applying xispi to the unfiltered event files with the latest calibration data
base (CALDB), Reduction procedures as described in the document provided by the

4 were followed. We used xselect to extract X-ray images, light curves,

Suzaku team
and X-ray spectra from the cleaned event data. We excluded regions illuminated by
calibration source (°’Fe), which is shown in Figure 3.2. The redistribution matrix files
(RMFs) and ancillary response files (ARFs) of the XIS were generated with xisrmfgen®
and xissimarfgen (Ishisaki et al. 2007), respectively. The non X-ray background (NXB)
of the XIS was estimated by using the database of night earth observations with xisnxbgen

(Tawa et al. 2008).

Shttp://heasarc.gsfc.nasa.gov/lheasoft/
‘http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/abc/
Shttp://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/xisrmfgen.html
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Figure 5.1: X-ray images of the Phoenix cluster in the 0.4 —10keV band. The background

is not subtracted and the vignetting effect is not corrected. The unit of the color bar is

counts pixel™!. Top panel: X-ray image of Suzaku/XIS3. The yellow circle shows the

region of r < 3'. Bottom panel: the Chandra/ACIS-1 image of the central region of the

Phoenix cluster. The image is smoothed with a two-dimensional Gaussian of o = 3 pixels.

The black line is the r = 2" circle.
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The Suzaku/HXD data were also reduced with the HEASOFT of the same version
as for the XIS data. We carried out the data reprocessing with the latest CALDB and
the software aepipeline. The following reduction was based on the document by the
Suzaku team®. The modeled NXB data distributed by the Suzaku/HXD team in their
Web page” were employed. The response (RSP) files were also distributed for each ob-
servation epoch 8; we employed ae_hxd _pinXXXXXe9.20100731.rsp for the analysis of
the Phoenix cluster and 3C 433, ae_hxd_pinXXXXXe10.20101013.rsp for ESP 39607, and
ae_hxd pinXXXXXel11.20110601.rsp for H 1821+643 and IRAS 0910444109, where XXXXX
denotes either of xinom, hxnom, or flat. The RSP files with xinom in their name are for
the observations at the XIS nominal position, that with hxnom are for the the HXD

nominal position, whereas that with flat are for the CXB flux.

Chandra

We used the Chandra archival data of the Phoenix cluster to separate its ICM thermal
component and the AGN component. We reprocessed and reduced the level 2 Chan-
dra/ACIS-I event data by using the Chandra Interactive Analysis of Observations (CIAO)
version of 4.4.1 and the CALDB version 4.5.3. The RMFs and ARFs were generated by

using specextract.

XMM-Newton

We also employed the XMM-Newton archival data to measure the temperature and abun-
dance of the ICM in the Phoenix cluster. The XMM-Newton data were reduced with the
XMM-Newton Science Analysis System (SAS) of version 13.0.1 and the current calibration
files (CCFs) available at the time of analysis. We extracted X-ray images, light curves,
and X-ray spectra with evselect. The RMFs and ARFs for the EPIC were generated

by using rmfgen and arfgen, respectively.

5.1.4 Procedures of Spectral Analyses

All the X-ray spectra were analyzed with the XSPEC software (Arnaud 1996) version
6.12. The cosmic X-ray background (CXB, e.g. Giacconi et al. 1962) was modeled with
a cut-off power-law model whose parameters were given by Boldt (1987). The normal-

ization of the CXB for the HXD was fixed at the value explicitly supplied by the HXD

Shttp://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/abc/
"http://www.astro.isas.jaxa.jp/suzaku/analysis/hxd/pinnxb/
8http://www.astro.isas.jaxa.jp/suzaku/caldb/hxd/
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team? from . Other X-ray background components, the Milky Way halo (MWH) and the
local hot bubble (LHB), were reproduced with the APEC models (Smith et al. 2001)
of 0.23keV and 0.07 keV, respectively, following Ueda et al. (2013b). The abundances of
both the components are fixed at 1solar and the redshifts at 0. These X-ray background
components and the Galactic absorption (wabs model, Morrison & McCammon 1983)
were included in the spectral models used for each spectrum of targets.

The relative normalization of the XIS spectra and that of the HXD were adjusted to
the values determined from the cross-calibration based on the observations of the Crab
nebula. According to the SuzakuMemo '°, the normalization for the HXD-PIN spectrum
should be 1.164 times that for the XISO spectrum obtained in observations at the XIS
nominal position, while the factor is 1.181 for observations at the HXD nominal position.

In this work, we adopt the abundance table of Anders & Grevesse (1989), the Hubble
constant of Hy = 70 kms~' Mpc™!, Qu = 0.27, and Q4 = 0.73. Unless otherwise specified,
all errors in the text and tables represent at 90 % confidence level (90 % CL), while error

bars in plots of X-ray spectra are those at 68 % CL.

5.1.5 X-ray Spectral Analyses and Their Results on the Phoenix
Cluster

In the analysis of the X-ray spectra obtained with Suzaku, the NXB is subtracted. The
emission models of the CXB, the MWH, and the LHB are described in section 5.1.3,
respectively. A column density of the Galactic absorption (Np) is estimated to be 1.52 x
10*° cm™2 with (Kalberla et al. 2005) and we fixed the column density to this value in

spectral fitting. Other information is presented in Section 5.1.3.

Suzaku /XIS & HXD Spectra in the r < 3' Region

We show the Suzaku /XIS image of the Phoenix cluster field in the top panel of Figure 5.1.
The spectra are extracted from the r < 3’ region (the solid circle in the top panel of
Figure 5.1); those from XIS0 and XIS3 are restricted to the 0.4 — 10keV range, while the
XIS1 spectrum is restricted to 0.4 — 7keV. In the rest frame of z = 0.596, 3’ corresponds
to 1.2 Mpc, and hence the r < 3’ circle includes the major fraction of the cluster emission.

Since the Suzaku/HXD is a non-imaging instrument, the spectral data are from the
PIN field of 34" x 34. We employ the energy range of 16 — 40keV. The HXD count
rate from the source (the NXB and the CXB subtracted) is (1.5 + 0.2) x 1072 countss™*

‘http://heasarc.gsfc.nasa.gov/docs/suzaku/analysis/abc/node10.html
Onttp://www.astro.isas. jaxa.jp/suzaku/doc/suzakumemo/suzakumemo—2008-06 . pdf



5.1. TYPE 2 QSO IN THE CENTRAL GALAXY OF THE PHOENIX CLUSTER 53

in 16 — 40keV, which corresponds to 7.3% of the NXB, significantly larger than the
systematic error in the NXB of 2.1% — 2.7% (1o) (Takahashi et al. 2010).

In addition to the X-ray background model (see Section 5.1.3), we apply a single-
temperature (1T) thin thermal plasma model (APEC) as the spectrum of the Phoenix
cluster. Then, we obtain the gas temperature, abundances, and redshift of the Phoenix
cluster, as 16.7)3keV, 0.81 + 0.09solar, and 0.6567590%, respectively. This 1T model,
however, shows the overall spectral shape with the concave residual, in excess at the low-
and high-energy bands (see the top left panel of Figure 5.2). Furthermore, the best-fit
redshift z = 0.656 is inconsistent with the optical observations (McDonald et al. 2012). We
also find a line-like residual at 4.3keV, which corresponds to ~ 7keV after correcting the
redshift of 0.656. Thus, the residual may be either due to misidentification of the K-shell
lines, and hence gave a larger plasma temperature as 16.7keV, or due to an additional
iron K-shell line.

The excess at the low-energy band may indicate the presence of another thin ther-
mal plasma component with a low temperature. Two-temperature structure is already
suggested in the 1T fitting of the spatially resolved Chandra/ACIS-1 spectra (McDonald
et al. 2012), which shows a low temperature in the inner region of » < 100kpc and a
high temperature in the outer region. The excess at the high-energy band suggests the

presence of a power-law component at the cluster center.

Chandra /ACIS-I Spectra from the Inner and Outer Regions

We show the Chandra/ACIS-T image to highlight the core and surrounding envelope of the
Phoenix cluster in the bottom panel of Figure 5.1. Then, we extract the Chandra/ACIS-1
spectra from the inner region of r < 2” and the outer region of the 2” < r < 3’ annulus.

To examine the high temperature plasma in the outer region, we fit the spectrum
with an APEC model fixing the redshift to z = 0.596. This model gives a nice fit with
x?%/dof = 89/122, as is shown in the top right panel of Figure 5.2. The best-fit temperature
and abundance are constrained to be 10.971%keV and 0.33%)1% solar, respectively. They
are roughly consistent with those obtained by McDonald et al. (2012).

We then examine the spectrum from the inner region of r < 2”. As is shown in the
bottom left panel of Figure 5.2, this spectrum has a local minimum at about 2 keV, which
indicates the presence of a soft component plus highly absorbed hard component. The
former would be a low-temperature plasma, while the latter is likely an AGN. We therefore
fit the spectrum with an APEC model (for low-temperature plasma) plus an absorbed
power-law (absPL) continuum (for AGNs). This model is accepted with x?/dof = 45/42.

We thus conclude that the X-rays from the inner region of the Phoenix cluster consist of
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a low-temperature component and an AGN power-law component. However, the physical
parameters are only loosely constrained. The best-fit photon index and absorption column
density for the power-law component are I' = 0.717582 and Ng= 1.9733 x 10 cm~2,
respectively, while the temperature and abundance for the low-temperature plasma are
4.89790TkeV and 1.48723% solar, respectively. Table 5.1 summarizes the best-fit values of

these fittings.

Suzaku /XIS Fit in the 3.5-5.0keV

In the 1T model fit for the Suzaku spectra (Section 5.1.5), we also found a significant
line-like residual at the energy of ~4keV. Converting it to the rest frame, the line energy
corresponds to either the K-shell lines from neutral iron (Fe I), He-like Fe XXV or H-
like Fe XXVI. We therefore zoom up the XIS spectrum in the 3.5 — 5.0keV range, and
fit with a power-law continuum plus three Gaussian lines, in which the line energies are
fixed to those of the K-shell transition from Fe I, Fe XXV, and Fe XXVTI at the redshift
z = 0.596. The spectrum and the best-fit results are shown in the bottom right panel of
Figure 5.2. The Fe I line is detected at 3.50 level. The equivalent width (EW) defined
to the summed continuum of the thermal (i.e., the ICM emissions) and non-thermal (i.e.,
the central AGN emission) components is 237} eV at the observer frame. Since a thin
thermal plasma cannot emit the Fe I line, the most likely origin is an AGN in the BCG.

As we suggest in Section 5.1.5, we find that the 1T model fit of the wide-band spectra
misidentified the Fe XXV line to that of Fe XXVI and Fe I to Fe XXV, and hence misled

to a larger redshift of 0.656 and higher temperature of kT ~ 17keV.

Simultaneous Fit for the Suzaku/XIS & HXD and Chandra/ACIS-I Spectra
in the r < 3’ Region

We finally carry out the simultaneous fit for the X-ray spectra extracted in the same
r < 3 region from the Suzaku/XIS & HXD and Chandra/ACIS-I. The model includes
all the components found in the previous subsections. Schematically the spectral model
is given as wabs x (APEC,,, + APEC,,, + zwabs x power-law + zgauss). We
fix the temperature and abundance of the APEC,,;,, component as those obtained in
the spectral fit with the Chandra/ACIS-I spectrum of the 2” < r < 3’ region. The line
center energy was fixed at 6.40keV (i.e., the Fe I line) at the rest frame. Since other
parameters determined in the previous subsections are not well constrained, we treat
them as free parameters. This model (2T+4absPL+Fe I) nicely reproduces the over-all
spectra with x?/dof = 790/732. The best-fit model and the data residual are shown in
Figure 5.3, while the best-fit parameters are summarized in Table 5.1. All the best-fit
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parameters are consistent with those determined by the individual spectral fit given in
Sections 5.1.5 and 5.1.5, but are more accurately determined. For comparisons with the
previous results, we calculate the 10 — 50keV and 14 — 150keV band luminosities for
the power-law component as 9.4707 x 10% ergs™ and 2.17)7 x 10* ergs™!, respectively.
The EW of the Fe I line defined to the continuum emission of the central AGN (i.e., the

absorbed power-law component) is 149713% eV at the rest frame.
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Figure 5.2: X-ray spectra of the Phoenix cluster. The ratios of the data to the model

are plotted in the bottom panels. Top left panel: Suzaku/XISO (black), XIS1 (red), XIS3
(green), HXD (blue) spectra in the r < 3’ regions centered at the BCG fitted with a 1T
model. The dashed lines show the best-fit model of the ICM for XISO and the HXD. The
dotted lines represent the X-ray background model consisting of CXB, MWH, and LHB
for XISO and HXD. Top right panel: Chandra/ACIS-I spectrum fitted with a 1T model.
The region is 2” < r < 3. Bottom left panel: Chandra/ACIS-I spectrum in the core
region (r < 2") fitted with a 1T model and an absorption power-law model. Bottom right
panel: Suzaku/XIS spectra in 3.5—5.0keV fitted with a power-law continuum and three

Gaussian lines.
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Figure 5.3: Suzaku/XIS & HXD and Chandra/ACIS-1 spectra simultaneously fitted with
a 2T+absPL+Fe I model expressing the cluster thermal emission and the central AGN
emission. The same colors and lines are used as those in Figure 5.2 for the Suzaku/XISO0,
XIS1. XIS3, and HXD data. The Chandra/ACIS-1 data are plotted in cyan. The solid
lines show an absorbed power-law component and a neutral iron K-line (Fe I) for XIS0O
and HXD.
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5.1.6 Discussion on the Phoenix Cluster

With the simultaneous fit of the Suzaku /XIS & HXD and the Chandra/ACIS-1 data, we
have discovered that the X-ray spectrum of the Phoenix cluster can be approximated
by three components: two thin thermal plasma components with different temperatures
and spatial distributions, and a power-law component in the cluster center. We also
determine the redshift of the Phoenix cluster as z = 0.5997000¢ by the X-ray spectra alone.
This value is consistent with the mean value (z = 0.596 £ 0.002) of 26 member galaxies
(McDonald et al. 2012). In the following subsections, we separately discuss the thermal
emission from the ICM and the power-law component of the AGN. We then discuss
possible interactions between these components through the viewpoint of the feeding and
feedback processes in the cluster, BCG, and SMBH. We refer all the physical parameters

at the rest frame of z = 0.596 unless otherwise specified.

Thermal Emission from the ICM

Although the ICM may consist of multi-temperature plasmas in pressure equilibrium, it
can be nicely approximated by two temperature plasma: the low-temperature plasma
of 2.957023keV and the high temperature plasma of 10.971%keV. The X-ray luminosity
in the 2 — 10keV band within 1.2Mpc is Lxjow = 1.0703 x 10% ergs™" and Ly pign =
7.0707 x 10% ergs~! for the low-temperature and high-temperature plasmas, respectively.
The high-temperature plasma is prevailing in the whole cluster with the abundances
of 0.33%518 solar, typical value for clusters. The low-temperature plasma has a higher
abundance of 0.76705} solar and is confined in the core of the cluster. Possibly in the
cluster core, a large amount of metals is supplied from supernovae in the BCG. These
features are commonly observed in nearby cool-core clusters with c¢D galaxies (i.e., BCG)
at their centers (e.g., Matsushita 2011).

Following White et al. (1997), which is the same method as McDonald et al. (2013a),

we estimate the cooling rate to be 22907125° M yr~—!. This value is consistent with that

of McDonald et al. (2013a).

Radial Profiles of Temperature and Abundance of the ICM

We can obtain the radial profiles of temperature and abundance of the ICM by using
the data obtained with Chandra/ACIS-1 and XMM-Newton/EPIC more accurately than
those with Suzaku. The top panel of Figure 5.4 shows the radial profile of temperature
of the ICM, while the bottom panel of Figure 5.4 shows that of abundance of the ICM.
The Chandra results are consistent with those of XMM-Newton. The ICM temperature
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increases from the central region (~ 6keV) toward the outer region (~ 16keV) , and
the abundance distribution of the ICM is centrally peaked in the Phoenix cluster. These
distributions are qualitatively typical for those observed in nearby cool-core clusters (e.g.,
Matsushita 2011).

What Is the Origin of the Fe I Line?

As mentioned in Section 5.1.5, we discover the Fe I line at the rest frame in the redshift
of z = 0.596. We discuss whether the Fe I line is due to the central AGN or to other
possibilities.

One possibility is due to gain error of the Suzaku /XIS. The gain error of the Suzaku /XIS
is ~ 0.1% at 6keV (6eV for the Fe I line), which is estimated using several targets and
Mn I Ko lines from the calibration source of %Fe (e.g., Koyama et al. 2007a; Ota et al.
2007; Ozawa et al. 2009; Tamura et al. 2011). The energy difference between Fe I and
Fe XXV at the observer’s frame is ~ 200eV, which is significantly larger than the gain
error of the Suzaku /XIS.

A second possibility is velocity-broadened (e.g., bulk motion and/or turbulence of the
ICM) Fe XXV line (6.7keV at the rest frame), which may partly mimic the Fe I line. We
fitted the X-ray spectra (the lower right panel of Figure 5.2) with a broadened line of the
Fe XXV line. Then, we obtain the line width of Fe XXV to be ~ 188eV at the observer’s
frame, which corresponds to a velocity of ~ 13,000kms™! at the rest frame (Ota 2012).
This velocity is too huge for the realistic motion of the ICM. Furthermore, McDonald
et al. (2012) reported that the X-ray surface brightness of the Phoenix cluster shows a
relaxed morphology of the ICM, suggesting that bulk motion is not prominent.

A third possibility is a contamination of other point sources than the AGN in the BCG
within 3’ radius. We evaluate such an amount by examining the 2 — 10keV intensity of
the sources based on using the Chandra 11.9ks observation. The emission within 2” from
the central AGN contains a total of 501 counts in the 2 — 10keV band. Based on our
fitting result shown in the lower left panel of Figure 5.2, we estimate that 361 counts are
owing to the central AGN and the rest primarily consists of the ICM thermal emission.
On the other hand, there are six other point sources within 3’ radius around the central
AGN. The most intense one has 8 counts in the 2 — 10keV band, and the sum of the
counts from the six point sources is only 15 counts, which is 4% of that of the central
AGN. Supposing that most of the six point sources are type I AGNs with typical Fe T EW
of ~ 100eV (see, e.g., the black triangles in the right panel of Figure 5.6), the possible
contribution for the Fe T EW of the central AGN is only 4eV.

As discussed above, we can reject three possibilities for the origin of the Fe I line. We
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Figure 5.4: Radial profiles of temperature and abundance of the ICM obtained with Chan-
dra/ACIS-1 and XMM-Newton/MOS & PN. Top panel: Radial profile of temperature of
the ICM. The red diamonds show the ICM temperatures obtained with Chandra. The
blue dashed diamonds are that obtained with XMM-Newton. Bottom panel: the same as
the top panel but for the abundance of the ICM.
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hence regard the most natural idea as that the Fe I line comes from the central AGN in
the BCG of the Phoenix cluster.

Properties of the Type 2 QSO at the Center

We have discovered that the power-law component in the cluster center has a Fe I K-shell
line with EW of 149713 eV. The power-law photon index, I, is determined for the first

2 is consistent with,

time as 1.547037. The absorption column density of 3.270% x 10%% cm™~
but is more accurate than that in previous work (McDonald et al. 2012). The absorption-
corrected luminosity of (4.7 4 0.7) x 10% ergs™ (2 — 10keV) is slightly higher than that
in McDonald et al. (2012), but their consistency cannot be examined because they did
not mention its error.

A large Ny, a photon index in the range of 1.5—2.0, and a strong Fe I line are common
features in type 2 AGNs (Awaki et al. 1991a). Together with an extremely high X-ray
luminosity, the central AGN of the Phoenix cluster can be regarded as a type 2 QSO.
This is the second case of a type 2 QSO in a cluster after IRAS 0910444109 (Kleinmann
et al. 1988; O’Sullivan et al. 2012).

The X-ray luminosity of 2.170%x 10% erg s~ (14—150keV) is similar to the Swift /BAT
result of (1.4 £ 0.9) x 10% ergs™! within errors (Cusumano et al. 2010b). As is seen in
Figure 3, the power-law component (AGN) is dominated over the ICM plasma in the
14 — 150keV band. Therefore the luminosity given by Cusumano et al. (2010b) is surely
due to the type 2 QSO, and we see no large time variability in the type 2 QSO during the
Swift /BAT (2004 - 2010) and the Suzaku observation (2010). Note that the luminosity
estimated from the Chandra/ACIS-1 spectrum by us is Lx = (4.0 £ 0.5) x 10 ergs™! in
2 — 10keV with the Ny and I" fixed to the best-fit parameters of Table 5.1, which is also
consistent with the result of a simultaneous fit. We also confirm these results with the
XMDM-Newton observations.

Although the X-ray luminosity is exceptionally large as 10" ergs™ (2 — 10keV), the
Ny and EW are on the general trend of the correlation shown in Fukazawa et al. (2011),
who compiled the Suzaku results of 88 AGNs. The X-ray spectra of the type 1 and type 2
AGNs are interpreted in the unified scheme of AGNs. The differences in the observational
properties of type 1 and type 2 AGNs are primarily due to observers’ line of sight: face-
on (type 1) or edge-on (type 2) to the molecular torus surrounding the nucleus. In this
scheme, the X-ray spectra of type 2 AGNs consist of two components; one is penetrating
through the torus, and the other is scattered at the surface of the torus. The former is
called a direct component, and the latter is a reflection component. The Fe I line is mainly

associated with the reflection component. Since our spectral fit in Section 5.1.5 implicitly
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assumed that the continuum flux of the AGN is dominated by the direct component
only, we try the two-component structure of the type 2 QSO with the pexmon model
(Nandra et al. 2007) in XSPEC. The pexmon model represents an exponentially cut-off
power-law spectrum reflected from neutral material. The direct, reflection components,
and the fluorescent lines of Fe-K and Ni-K are included in a self-consistent manner. We
assume the inclination angle, the cut-off energy of the power-law component, and the Fe
abundance to be 6; = 60°, 300keV, and 1solar, respectively. Then, the X-ray spectra
of the AGN component are reproduced with the best-fit value for the reflection fraction
(R) of 0.7775:3% where R is defined as the ratio of the solid angle of the reflector 2 to
27 steradian, i.e., R = Q/2r. This R value and the initial assumption of viewing angle
of 8; = 60° are consistent with the type 2 AGN picture of the torus edge-on geometry.
Figure 5.5 shows the fitting results of X-ray spectra simultaneously fitted with the cluster
thermal emission, absorbed power-law component (i.e., direct component), and a reflection

component from the torus.

Ricci et al. (2011) derived R values for 165 Seyfert galaxies using the hard X-ray
spectra with INTEGRAL (Winkler et al. 2003) /IBIS (Ubertini et al. 2003) & ISGRI
(Lebrun et al. 2003). They showed that Seyfert galaxies with 10%* cm™2 < Nyg< 10** cm ™2
(Compton thin AGNs), have R of 2.271% on average, which is consistent with the type
2 QSO in the Phoenix cluster within large uncertainties. Ikeda et al. (2009) performed
Monte Carlo simulations of the X-ray spectra in various torus geometries. The absorption
column density and the EW of the Fe I line for the type 2 QSO (149113? eV) in the Phoenix
cluster are consistent with those from the simulation for the torus half-opening angle of
30° (see the left panel of Figure 13 in Ikeda et al. 2009). Then, the expected EW of the
FeT line is ~ 200 eV.

The top panel of Figure 5.6 shows a relation of the EW of the Fe I line and the
absorption column density (/Ny) for our results of the Phoenix cluster and 86 Seyfert
galaxies data (Fukazawa et al. 2011, but we excluded the AGN data of which no significant
Ny, X-ray luminosity, and EW of Fe I were determined). The type 2 QSO in the Phoenix
cluster is on the same trend of these type 1 and type 2 AGNs. In general, a higher X-ray
luminosity AGN exhibits a smaller EW of the Fe I line, known as the X-ray Baldwin
effect (Iwasawa & Taniguchi 1993). The bottom panel of Figure 5.6 shows the X-ray
Baldwin effect by Fukazawa et al. (2011) (the data selection is the same as the left panel
of Figure 5.6). The type 2 QSO in the Phoenix cluster has exceptionally larger flux than
any other high luminosity AGNs. Extrapolation of these data points by a linear function
to the higher luminosity of ~ 10 ergs™!, gives an EW no larger than a few 10eV, far
smaller than that of the type 2 QSO in the Phoenix cluster of EW = 149713 eV. These



64 CHAPTER 5. LUMINOUS AGNS IN BRIGHTEST CLUSTER GALAXIES

001 |

normalized countsskeV!

Tl S

10+

| 'j M! “ll ‘1 i\ | IIP[ | ul'l'l Wl 4»'

ratio
=
7 —
E

|
TH T 1 Il J.. ]'”{ ‘mlil II f”‘ il ]ﬂn' ~|»||+
0.5 1 2 Eneray (kevf; 10 20

Figure 5.5: Suzaku /XIS & HXD and Chandra/ACIS-1 spectra simultaneously fitted with
the cluster thermal emission, absorbed power-law component (i.e., direct component),
and a reflection component from the torus. The same colors and lines are used as those
in Figure 5.3 for the Suzaku/XIS0, XIS1. XIS3, HXD, and Chandra/ACIS-I data. The
solid lines show a reflection component from the torus. The dashed and dotted lines show

an absorbed power-law component.
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indicate that the type 2 QSO in this cluster has a torus of larger covering factor than
those of the general trend of bright AGNs (see Figure 5 of Fukazawa et al. 2011).

Type 2 QSO - ICM Interaction

In Section 5.1.6, we show that the AGN in the BCG of the Phoenix cluster is a type
2 QSO with an unobscured X-ray luminosity of (4.7 £ 0.7) x 10¥ ergs™ (2 — 10keV).
The EW of the Fe I line of ~ 150€V is exceptionally large for objects with such high
luminosity. Furthermore, since the type 2 fraction is smaller for higher luminosity (e.g.,
Ueda et al. 2003; Hasinger 2008), type 2 QSO in the Phoenix cluster is a rare case. This
may be related to other extraordinary properties of this object, i.e., a very active SMBH
in the BCG, a huge cooling rate of the ICM, and a large SFR in the BCG.

Assuming the bolometric correction factor of 130 (Marconi et al. 2004), the bolometric
luminosity of this type 2 QSO is Lyoqso = (6.2+0.9) x 10*7 ergs™!, which corresponds to
~ 27 % of the Eddington limit. Adopting the accretion efficiency of 7 = 0.1, the accretion
rate is estimated to be ~ 110 M yr~!. This is ~ 5% of the ICM cooling rate. Another
35 % of the cooled gas may be consumed by the violent star formation (~ 798 My yr™1,
McDonald et al. 2013a) in the BCG. We denote these two rates as €,.. and egspg. The
sum of €, and espr (40 %) is larger than typical cool-core clusters.

The mass of the torus can be estimated using the observed column density of 3.2 x
10% cm ™2 and assuming a spherical ring with the inner radius of 0.9 pc. The inner radius
of the torus is given by the 0.03LJ7 pc relation (Suganuma et al. 2006, where Lz is

0% ergs™!). The estimated torus mass is however largely

X-ray luminosity in unit of 1
dependent on the assumed outer radius, such as 3.0 x 10* M, 1.2 x 105 M, 1.1 x 108 M,
and 1.1 x 10'° M, for the outer radius of 1pc, 10pc, 100 pe, and 1000 pc, respectively.
If the accretion rate of 110 M, yr—! has been constantly supplied by the torus, the torus
mass is exhausted within 3 x 102 to 1 x 108 yr, shorter than the evolution time of a SMBH,
BCG, and cluster. Furthermore, if the outer radius is smaller than 1000 pc, the lifetime
of this torus is shorter than the nominal QSO lifetime of 10 — 20 Myr reported by Hopkins
et al. (2005). Possibly, some fraction of the cooling gas would be supplied continuously
to the torus. Taniguchi et al. (1997) applied this idea to IRAS09104+4109 as a dust-
enshrouded type 2 QSO in the center of a massive cooling-flow cluster (e.g., Fabian &
Crawford 1995; Crawford & Vanderriest 1996; O’Sullivan et al. 2012) and estimated the
mass of the torus to be ~ 1 x 107 M, for a compact torus less than 10 pc, or ~ 1 x 10°
M, for an extended torus of ~ 100 pc. Fabian & Crawford (1990) shows that a QSO in
the cluster center can be fueled in a self-sustaining way through Compton cooling of the

surrounding ICM. In the type 2 QSO of the Phoenix cluster, the cooled gas would be also
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Figure 5.6: Top panel: relation of the EW of the Fe I line and absorption column density
(Nu). The black triangles are AGNs with X-ray luminosity in 10 — 50keV (Lx 10-50) of
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(Fukazawa et al. 2011, but we excluded the AGN data of which no

significant Ny, X-ray luminosity, and EW of Fe I were determined), while the red circles

are Lx 10-50 > 10" ergs™. The blue square shows the type 2 QSO in the Phoenix cluster

(this work). Bottom panel: relation of the EW of the Fe I line and the X-ray luminosity
in 10 — 50keV. The black triangles represent the AGNs with Ny < 10?2cm™2, the red

circles are Ny > 1022 cm™2

, and the blue square is the type 2 QSO in the Phoenix cluster.
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supplied continuously to the torus and would finally accrete on the SMBH.

In idealized cool-core clusters, a large cooling rate should be converted to the cooling
flow, which finally should appear as significant cold gas near the cluster center. However
no clear evidence for the fate of cold gas has been observed (e.g., Makishima et al. 2001;
Tamura et al. 2001; Peterson et al. 2001). This is called the ”cooling flow problem” (e.g.,
Fabian 1994). Some unknown mechanisms to suppress the cooling flow should be working.
The most plausible explanation for the suppression of the cooling flow is heating by the
AGN activity (called the ”AGN feedback”; e.g., Fabian 1994; McNamara & Nulsen 2007).
Its alternative is conduction of heat from the outer part of the ICM (e.g., Fabian 2003).

As we noted, the masses responsible for the violent star formation and accretion on
the SMBH are 40 % of the cooling rate. The remaining 60 % of the gas may be cooled and
deposited in the ICM within 100 kpc to the BCG scale. The point here is that the fraction
of 40% is significantly higher than those of other nominal cool-core clusters (~ 10% or
less, Blanton et al. 2003; McDonald et al. 2011, 2012). A question is why the cooling
flow suppression, i.e., the AGN feedback, in the Phoenix cluster is less effective than the
other cool-core clusters. As one possibility, McDonald et al. (2012) proposed that the
Phoenix cluster is in a very rare epoch in the SMBH, BCG, and cluster evolution, where
the SMBH is powered by the cooling flow, but has not yet fully coupled with the ICM.
Hence the quenching fraction of the total cooling is smaller than those in typical nearby
cool-core clusters. If the AGN feedback is mainly due to jet interaction with the ICM
(Perucho et al. 2011), the so-called kinetic mode (Fabian 2012), the time from the latest
onset of AGN activity must be shorter than the light-crossing time of the cluster core,
i.e., ~ 0.3Myr. This is very short compared with the typical timescale of AGN activity,

and the Phoenix cluster must be in a very rare epoch.

Alternatively, the AGN feedback to the ICM can take place through radiation from
the QSO, called the radiative-mode or quasar-mode (Fabian 2012). As mentioned in
Fabian (2012), this mode must be very important in the distant Universe but hard to
be observed in the nearby Universe. The Phoenix cluster is thus an exceptional and
possibly very important case. On this point, we suggest that inefficient AGN feedback
in the Phoenix cluster is related to the larger EW of the Fe I line than that predicted
from the general trend of the X-ray Baldwin effect. Possible explanation of the X-ray
Baldwin effect is that strong X-rays from the central AGN would reduce the mass of the
torus by the X-ray evaporation (Pier & Voit 1995; Kallman et al. 2004; Fukazawa et al.
2011), and hence reduce the EW of the Fe I line. As mentioned above, we suggest that
some fractions of the massive cooling flow are supplied to the torus to compensate such

an evaporation. Then, at least, a significant part of the torus is maintained (i.e., not
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evaporated all neutral materials yet) against an intense irradiation of bright SMBH. This
torus may shield the radiation from the SMBH to suppress the heating of the ICM further.
Although we have little observational evidence of radiative-mode AGN feedback from a
central AGN to ICM, the shielding effect by the torus might be an important mechanism
in SMBH and BCG evolution.

5.1.7 Summary of Our X-ray Study of the Phoenix Cluster and
the Type 2 QSO in its BCG

We have studied the X-ray spectra of the Phoenix cluster observed with the Suzaku /XIS &
HXD, the Chandra/ACIS-1, and the XMM-Newton /EPIC and have separately determined
the ICM components and the central AGN component. We confirmed that the ICM
can be approximated by low-temperature (kT = 2.95t8;;’;§ keV) and high-temperature
(KT = 10.97}keV) components. The low-temperature component is concentrated at

the cluster core and has a high abundance of 0.7675:53 solar, while the high-temperature

component distributes over the cluster and has a abundance of 0.33701%solar. These
properties of the ICM are similar to those observed in nearby cool-core clusters. The
major difference is its huge cooling rate of Myoga = 229071260 M7 yr—1.

The X-ray spectrum of the central AGN in the Phoenix cluster is characterized with
an strongly absorbed (Ny = 3.210% x10%* cm~2) power-law continuum plus the K-shell line
from a neutral iron (Fe T). The EW of the Fe I line (149713 eV) and the absorption column
density are typical for Compton-thin type 2 AGNs. However the EW is significantly larger
than that of the general trend of the X-ray Baldwin effect, extrapolated to a luminosity
as high as that of the type 2 QSO in the Phoenix cluster.

The high X-ray luminosity and large EW of the Fe I line motivated us to examine
a possibility that luminous AGNs in BCGs may have unique properties reflecting their
environment. We particularly focus on the Fe I line and the absorption column density
that provide information of surrounding matter around SMBHs. We will discuss this
point in Chapter 7 after presenting the other two AGNs in BCGs and also the other type

2 QSOs in field (not in clusters).
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5.2 Typel QSO in the Central Galaxy of H 18214643

In this section, we study the X-ray properties of the luminous AGN in the BCG of
H 1821+643, which is the second source selected in Chapter 4.3.2 by referring both the
Planck SZ cluster catalogue with the Swift/BAT 70-Month catalogue. We analyze the
X-ray spectra of the AGN, which should be classified as a type 1 QSO, obtained with
Suzaku /XIS & HXD. Surrounding matter around the SMBH in this type 1 QSO suggested
from the X-ray observation will be discussed in Chapter 7, together with those in other
QSOs studied in this work.

5.2.1 Previous Observations of H1821+643

H 18214643 (or E 18214+643) was first discovered with Einstein X-ray observatory and
later identified as a radio-quiet type 1 QSO at the redshift z = 0.297 (Pravdo & Mar-
shall 1984). Following multi-wavelength (far-IR, optical, UV, and X-ray) observations
of this source (Neugebauer et al. 1986; Kolman et al. 1991; Kii et al. 1991) revealed
that this source is a highly luminous QSOs. Hutchings & Neff (1991) suggested that the
host galaxy of H 18214643 is a giant elliptical galaxy, and Schneider et al. (1992) found
that the host galaxy is the central galaxy in a rich clusters of galaxies, and Lacy et al.
(1992) reproted the cluster has an Abell richness class greater than 2. A radio luminosity
of H1821+643 at 5GHz is 102 WHz !sr~! and that at 151 MHz is 10%3 W Hz !sr!
(Blundell & Rawlings 2001), leading to the classification of this source as a radio-quiet
quasar. However, H 18214643 is also classified as a FR I radio galaxy with a jet like
structure of 300 kpc (Blundell & Rawlings 2001). The mass of its SMBH is estimated to
be ~ 3 x 10° M, (Kolman et al. 1993; McGill et al. 2008).

Kii et al. (1991) observed this source with the Large Area Counters (LAC) (Turner
et al. 1989) onboard Ginga satellite (Makino 1987) and first detected an iron K-line,
whose center energy was 6.6 + 0.3keV and the EW was 275 + 105¢eV at rest frame. The
energy resolution of the LAC was, however, not high enough to identify the line was
Fe I or Fe XXV. With ASCA (Tanaka et al. 1994), Yamashita et al. (1997) observed this
source and reported that the center energy of the iron K-line was 6.58 = 0.05keV and its
EW was consistent with that reported by Kii et al. (1991). Since the line center energy
indicates the line is originated in moderately ionized matter, and they found the line was
marginally broad with an upper limit of 180eV in Gaussian width, they concluded that
the origin of iron K-line was the QSO.

However, Hall et al. (1997) found the evidence of extended X-ray emission around
H 18214643 with ROSAT, indicating the presence of thermal emission from ICM. Fang
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et al. (2002) observed this source with the Chandra/HETG and detected two separate iron
K-lines, one at 6.44 & 0.04keV and the other at 6.94700> keV. The EW of the lines were
113732 eV and 49+ 31 eV at the rest frame, respectively. Fang et al. (2002) also measured
the X-ray spectrum of extended emission from the ICM; the ICM has a temperature
of kT = 10.87 3keV and an abundance of Z, = 0.35 + 0.08solar) in a circular region
of 3" < r < 100”. The X-ray luminosity of the ICM in 2 — 10keV within this region
is Lxa 10 = 2.54 x 10% ergs™!. Jiménez-Bailén et al. (2007) observed this source with
the XMM-Newton/EPIC and found similar iron-K line features to those reported by
Fang et al. (2002). They provided the temperature of the ICM of kT = 8"1* keV with
the Raymond-Smith model (Raymond & Smith 1977) by fixing the metal abundance at
0.3 solar. The X-ray luminosity of the thermal emission of the ICM within r < 20" region

! which corresponds to 30 &6 % of the total luminosity

was Lxo 10 = 1.1703 x 10* ergs™
in this band. The X-ray luminosity of the QSO was Lx 219 = 3441508 x 10% ergs™!

(Jiménez-Bailén et al. 2007).

The origin of two line features with the center energies of ~ 6.4keV and ~ 6.9keV is
still not clear. Fang et al. (2002) attributed ~ 6.4keV line to the Fe I line from neutral
iron in an accretion disk or in a torus, while the other to highly ionized iron K-line
(i.e., Fe XXV and Fe XXVI complex) from optically thin atmosphere atop the accretion
disc. On the other hand, Yaqoob & Serlemitsos (2005) reanalyzed the data obtained with
the Chandra/HETG to conclude that the feature could be explained with a broad iron
emission line with an absorption line superimposed on the red wing of the broad line.
The absorption line was attributed to the resonance absorption of highly ionized iron,
either in inflowing matter or in an outflow that is strongly gravitationally redshifted and
located very closed to the accretion disc (Yaqoob & Serlemitsos 2005). However, Jiménez-
Bailén et al. (2007) found an absorption line at 6.571955 keV, which was not consistent
with that obtained by Yaqoob & Serlemitsos (2005). The contribution from the ICM
thermal emission to the ~ 6.9keV line was considered to be negligible by Fang et al.
(2002), while Jiménez-Bailén et al. (2007) suggested that the measured flux of that line
with XMM-Newton could be fully explained with the thermal emission from the ICM.

Russell et al. (2010) investigated the ICM in this source more in detail with the
Chandra/ACIS-S. According them, the ICM temperature decreases from 9.0 + 0.6 keV in
a 23.6” < r < 29.5” region down to 1.3 +0.2keV in a 3.4” < r < 4.2” region. The metal
abundance of the ICM is uniform over the entire region of the clusters with ~ 0.3 solar,
where 749 corresponds to 2.573 Mpc. A radiative cooling time of the central region is
1.0 0.1 Gyr, which is typical of a strong cool-core cluster (e.g., Peterson & Fabian 2006).
Russell et al. (2010) suggested that the QSO had not significantly affected the large-scale
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ICM properties, i.e., the AGN feedback to the ICM is not apparently seen in this object.

5.2.2 Swuzaku Observations of H1821-+643

H 18214643 is located on (R.A., Dec.) = (18h21m57.3s, +64d20m36s). An 1” corresponds
to 4.5kpc at the rest frame of z = 0.297. Suzaku observations of H 18214643 were
performed on 2013 April 16 and 20 (ObsID: 708037010 and 708037020, PI: C.S. Reynolds).
After the standard data reduction described in section 5.1.3, total exposures of 374.8 ks
and 360.0ks for the XIS and the HXD, respectively, were obtained. The XIS data were
extracted from a circular region with a radius of 3’ centered on the target. We employed
the ARF of the HXD for the XIS nominal position. For the CXB, the ARF for the flat

sky was used.

5.2.3 Analyses of the Suzaku X-ray Spectra of H1821+643

We followed the data reduction procedures presented in Section 5.1.3. We subtracted the
NXB spectra of the XIS and the HXD from the X-ray spectra within the r < 3’ region. A
column density of the Galactic absorption toward this source is 3.4 x 10?° cm 2 (Kalberla
et al. 2005) and the redshift of H 18214643 is z = 0.297. We fixed these values in our
spectral fits.

After the subtraction of the NXB, the count rate of the HXD in the 16 — 40keV
band is (4.56 £ 0.08) x 1072 counts™!, which corresponds to 18.9% of the NXB. Since
the contribution of the CXB in this band is 5.9 %, the source flux of the HXD is 13 %,
which is significantly larger than that of systematic errors in the NXB model, (Fukazawa
et al. 2009; Takahashi et al. 2010). Since Fang et al. (2002) reported a presence of a soft
X-ray excess below 1keV, we ignored the X-ray band below 1keV in the XIS spectra to
exclude a contamination from the soft X-ray excess. We hence used the X-ray spectra in
1.0 — 40keV in the spectral analyses.

Figure 5.7 shows the X-ray spectra obtained with the Suzaku /XIS in the iron K-band
at the observer’s frame. We detect the lines of Fe I, Fe XXV, and Fe XXVI clearly for
the first time. The EW of Fe I is 42*%eV at the rest frame, while the EW of Fe XXV
is 7712 eV at the rest frame. The EW of Fe I is smaller than 113732 eV obtained by the
Fang et al. (2002) with Chandra/HETG. This might be due to source variability or to the
fact that a contribution of the Fe XXV line was neglected in the analysis by Fang et al.
(2002). In fact, we obtain the sum of EWs of Fe I plus Fe XXV is ~ 120eV, which is
consistent with the EW of Fe I reported by them.

The X-ray emission from H 1821+643 should consist of many components, i.e., thermal
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Figure 5.7: X-ray spectra in Fe K-band at observer’s frame obtained with Suzaku/XIS.

0 The line colors are the same as the bottom right panel of Figure 5.2.

emissions from the ICM in the center (low temperature component), in the entire region
(high temperature component), and the emission from the central QSO. To determine the
temperature of the thermal emission from the ICM in the entire region, which is dominant
in the ICM thermal emission, we calculate the temperature with the line flux ratio of
Fe XXV to Fe XXVI. Since the line flux of Fe XXV is 1.807)13 x 10~° photonscm 2 s~
and that of Fe XX VT is 8.907 133 x 1076 photons cm~2s~!, the flux ratio becomes 0.4930-0z.
Figure 5.8 shows the flux ratio of Fe XXV to Fe XXVT as a function of plasma temperature
in the kT range of 2 — 16 keV. Observed flux ratio of ~ 0.5 corresponds to k7" ~ 8.0keV.
We thus fixed the ICM temperature of the entire region at 8.0 keV in our spectral analysis.
We also fixed the metal abundance of the ICM to 0.3 solar, which is typical for clusters
(e.g., Matsushita 2011) and is consistent with the previous result of this source obtained
by Russell et al. (2010).

We show the Suzaku/XIS & HXD spectra in 1 — 40keV in Figure 5.9. To fit the
X-ray spectra of the XIS and the HXD, we employ two temperature model for the ICM
in the center and in the entire region, and a (direct) power-law component plus a single
Gaussian line from Fe I for the emission from the QSO. The model is schematically given
as wabs x (APEC,,, + APEC,;,, + zwabs x power-law + zgauss). As mentioned

above, we fixed some parameters for APEC,;,, model. Moreover, to describe the thermal
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Figure 5.8: Flux ratio of Fe XXV to Fe XXVI as a function of plasma temperature in the
kT range of 2 — 16 keV. The flux ratio is calculated with the APEC model in XSPEC.

emission from the cluster center, we fixed the abundance of APEC,,,, to 0.5solar, which
is typical for a low temperature component in cluster cores and is consistent with that
obtained by Russell et al. (2010). The fit shows the temperature of low-temperature
(low-T) plasma to be kT = 1.141)5¢keV, the photon index to be I' = 1.75 + 0.02, and
the EW of the Fe I to the power-law component of the type 1 QSO is 82 + 7eV at the
rest frame. The upper limit of the absorption column density at the QSO rest frame is
obtained as Ny < 10?° cm™2. We, however, find an excess of the data to the model in the
HXD band of 16 — 25keV, which may indicate presence of a Compton hump, which is a

feature expected for a reflection component (e.g., Miller 2007).

We hence apply a reflection model of pexmon. The bottom panel of Figure 5.9
shows the X-ray spectra fitted with a model wabs x (APEC,., + APEC,, + zwabs
x power-law + pexmon). The cut-off energy of the reflection component is fixed at
300keV, and the abundance of pexmon is 1solar including that of iron. The inclination
angle (6;) is also fixed to 30°. The spectral fit with this model yields the temperature of the
low-T plasma to be kT = 1.0475:0> keV, and the photon index of the power law component
to be I' = 1.88 & 0.02, and the reflection fraction (|R| = Q/27) to be |R| = 0.8070%. If
we fix 0; to 0°, |R| becomes 0.75700f. Table 5.2 summarizes the best-fit results of the

spectral fitting.
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Figure 5.9: X-ray spectra of H1821+4643in 1 — 40keV obtained with the Suzaku/XIS
& HXD. Top panel: X-ray spectra fitted with two thermal components, a power-law
component, and a Gaussian line representing Fe I. The same colors and lines are used as
in Figure 5.3. We found an excess in the HXD band of 16 —25 keV, which suggest presence
of the Compton hump, i.e., a reflection component. Bottom panel: X-ray spectra fitted
with two thermal emissions, a direct power-law component, and a reflection component.

The same colors and lines are used as in Figure 5.5.
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Table 5.2: Best-fit Results of the Spectral Fitting with the Suzaku/XIS & HXD in the
1 —40keV band.

Fitting model The ICM emission Type 1 QSO emission x%/d.o.f.

2APEC+PL+zgauss  kThign (keV) 8.0 (fix)  Photon index 1.75+£0.02 3307/1790

Zonignh (solar) 0.3 (fix) EW of FeI (eV) 82+7

kTow (keV) 1.14750¢ Ny (102 cm™2) <1

Zolow (solar) 0.5 (fix)

Redshift 0.297 (fix)

2APEC+PL+pexmon kT, (keV) 8.0 (fix) Photon index 1.88+0.02 3048/1791

Zonign (solar) 0.3 (fix) Ny (102 cm™?) <1

kT ow (keV) 1.04100° |R|(= Q/2n) 0.8070 02

Zolow (solar) 0.5 (fix) Zg (solar) 1.0 (fix)

Redshift 0.297 (fix) cut-off (keV) 300 (fix)

5.2.4 Discussion and Summary on the X-ray Properties of H 1821+643

With the X-ray spectra in the 1.0 — 40keV band obtained with the Suzaku /XIS & HXD,
we have revealed the X-ray properties of the type 1 QSO in the BCG of H 18214-643and
the ICM of the cluster hosting it. The thermal emission from the ICM consists of two
temperature plasmas; one has a temperature of ~ 8.0keV, which dominates the ICM
thermal emission in the entire cluster, and the other has a temperature of ~ 1.0keV,
which is distributed within the cluster core. Both temperatures are consistent with those
obtained by Russell et al. (2010) with the Chandra/ACIS-S. The X-ray luminosity of the
ICM in the 2 — 10keV band was (2.1 4 0.2) x 10" ergs™! within r < 3’ region.

We clearly detected the lines of Fe I, Fe XXV, and Fe XXVI separately, for the first
time. The latter two are attributed to the thermal emission from the ICM, while the
Fe T line is most likely a fluorescence line from neutral matter around the SMBH, e.g.,
an accretion disk and/or a tours. The EW of Fe I was 82 £ 7eV at the rest frame, while
only the upper limit of the intrinsic absorption was obtained; Ng< 1 x 10?° cm~2, which
is consistent with that reported by Fang et al. (2002). The X-ray luminosity of the type
1 QSO in 2 — 10keV was (2.16 & 0.02) x 10% ergs™!, leading to the accretion rate of
~ 37 My yr~! assuming the accretion efficiency of 0.1, which corresponds to the 57 % of
the Eddington luminosity. This is consistent with that derived in Russell et al. (2010).
In the discussion in following chapters, we refer the X-ray luminosity in 10 — 50keV is
(3.240.1) x 10% ergs~! obtained by us.
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The spectral fit with a reflection model enables us to evaluate the geometry of the
reflector, possibly a torus. The reflection fraction (R) of the reflector is obtained as
R = 0.8070 0% assuming the inclination angle (6;) of 30°. If we fix ; = 0°, the R becomes
0.75700%. These indicate that the covering factor of the reflector larger than 0.7 even if
we observe this type 1 QSO in a face on geometry. The values of R for H 1821+643in
these assumptions are comparable to that obtained for the type 2 QSO in the BCG of
the Phoenix cluster. We will discuss more details of the properties of the type 1 QSO in
the BCG of H 18214643 in Chapter 7.



Chapter 6

Other Sample of Type 2 QSOs

In this chapter, we describe the results of the Suzaku observations of three type 2 QSOs.
The first target is in the central galaxy of clusters of galaxies IRAS 0910444109 and the
second and third are ESP 39607 and 3C 433, respectively, which are in filed galaxies.

IRAS 0910444109 is the first type 2 QSO that was discovered in the BCG of a rich
cluster of galaxies was (e.g., Kleinmann et al. 1988; Iwasawa et al. 2001). Although
extensive studies have been made on this source, the source was not included in our sample
of luminous AGNs in BCGs described in Chapter 4. This is because, IRAS 09104+4109 is
not included either in the Planck SZ cluster catalogue and the Swift/BAT 70-Month
catalogue. As will be explained in Section 7.5.1, the hard X-ray luminosity of this QSO
is just below the sensitivity limit of the Swift/BAT 70-Month catalogue, and the mass
of the host cluster of IRAS 09104+4109estimated from the X-ray observations is also just
below the threshold of the Planck SZ cluster catalogue. We hence have enough reason to

add this source to supplementary sample of luminous AGNs in BCGs.

We also search for type 2 QSOs in field galaxies as control sample. By referring the
1210 sources in the Swift/BAT 70-Month catalogue and the target list observed with we
find 16 sources included in both at redshift of z > 0.2. Among them, the number of
sources identified with type 2 AGNs based on the column 20 of the Swift/BAT 70-Month
catalogue is 2. One is the Phoenix cluster, and the other is ESP 39607. If we limit those
sources of which redshift z > 0.1, we obtain the Phoenix cluster, ESP 39607, and 3C 433.
As will be examined in Section 6.4, ESP 39607 and 3C 433 do not reside in rich clusters.
We thus add these two source to the control sample of type 2 QSOs in field galaxies not
in BCGs of clusters.

7



78 CHAPTER 6. OTHER SAMPLE OF TYPE 2 QSOS

6.1 Previous Results

6.1.1 IRAS0910444109

IRAS 0910444109 was first discovered as one of the hyper-luminous infrared galaxies de-
tected by the infrared satellite JRAS survey (Kleinmann et al. 1988). This "galaxy” is
located in redshift z = 0.442 (Kleinmann et al. 1988). A series of infrared (IR) observa-
tions clarified that a dust-enshrouded and luminous SMBH (i.e., type 2 QSO) exists in the
central nuclear region (e.g., Kleinmann et al. 1988; Taniguchi et al. 1997). On the other
hand, the ROSAT /High Resolution Imager (HRI) observation of this source revealed an
spatial extended X-ray emission from the ICM, which indicated that this galaxy resides
at the center of a cluster of galaxies (Fabian & Crawford 1995). IRAS09104+4109 is the
first case of a type 2 QSO in the BCGs of clusters of galaxies. ROSAT observations also
showed that this cluster has a massive cooling flow (Fabian & Crawford 1995; Crawford
& Vanderriest 1996). The star formation rate of the BCG of IRAS 0910444109 is esti-
mated to be 41 + 12 M, yr~! (Bildfell et al. 2008). Hereafter, we call the host cluster
IRAS 0910444109 in this work.

Iwasawa et al. (2001) discovered a strong neutral iron K-line (Fe I) for the first time
in the X-ray spectrum of this the type 2 QSO with Chandra. The Fe I line is originated
in a fluorescence line from surrounding matter around the SMBH, most likely a torus.
With XMM-Newton 14ks observations, Piconcelli et al. (2007) obtained the EW of Fe I
of ~ 400eV to the direct power law component at the rest frame and the column density
(Ng) of 5 x 10® cm™2. Vignali et al. (2011) confirmed the EW of Fe I is ~ 400eV at
the rest frame based on the 76.2ks observation of this source with Chandra. They also
reported that the Ny of the torus is ~ 3 x 10?* cm™2, which is almost consistent with
that by Piconcelli et al. (2007). The X-ray luminosity of the type 2 QSO in 2 — 10keV
(Lx2-10%ev) is ~ 3x 10* ergs™! according to Vignali et al. (2011). Piconcelli et al. (2007)
estimated that the mass of SMBH in the BCG is ~ 2.4 x 10° M. The mass of the putative
torus of which size is ~ 100 pc is estimated to be ~ 1 x 10 M (Taniguchi et al. 1997).

Iwasawa et al. (2001) also reported that the temperature of the ICM near the central
region is ~ 3.3keV, which was consistent with that measured by Piconcelli et al. (2007).
The abundance of the ICM was determined to be 0.47 & 0.10solar by Piconcelli et al.
(2007). O’Sullivan et al. (2012) investigated the radial profiles of temperature and abun-
dance of the ICM. They obtained a maximum temperature of 7.7+ keV at ~ 200 kpc, and
a minimum temperature of 3.9 +0.3keV in the central region (5” ~ 28kpc). In the outer
region (~ 250 —900 kpc) the temperature was measure to be about 7keV. The abundance
of the ICM is 0.6solar, almost constant over the entire region. O’Sullivan et al. (2012)
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evaluated the total mass of (5.83 4 1.69) x 10 M, and (8.10 & 2.64) x 10* M, within
r500 and 7999, where 1509 and r99g correspond to ~ 1.09 Mpc and ~ 1.65 Mpc, respectively.
O’Sullivan et al. (2012) estimated the cooling rate of ~ 235 M yr~! within 27 kpc with
Equation 2.11.

A hard X-ray component from the type 2 QSO was detected with BeppoSAX (Boella
et al. 1997) by Iwasawa et al. (2001). Nevertheless, Piconcelli et al. (2008) suggested that
it might be a contamination from other AGNs around TRAS09104+4109. Vignali et al.
(2011) claimed that contamination from NGC 2785, a nearby (z = 0.009) type 2 AGN lo-
cated only 17’ apart from IRAS 0910444109, could be significant based on the Swift /BAT
54-Month catalogue (Cusumano et al. 2010b). Chiang et al. (2013) investigated the hard
X-ray component and its origin further with Suzaku. They carried out the Suzaku ob-
servations by shifting the pointing direction to 6" west from the center and taking a roll
angle that minimizes the contamination from NGC 2785. As a result, Chiang et al. (2013)
could not detected a significant flux from of the the type 2 QSO in IRAS 09104+4109with
the Suzaku/HXD. The upper limit of the background-subtracted source flux provided by
them was ~ 4.25 x 1072 ergem 257! in 14 — 45keV.

6.1.2 ESP 39607

ESP 39607 is a galaxy at redshift z = 0.201 discovered in the European Southern Obser-
vatory (ESO) Slice Project (ESP; Vettolani et al. 1997, 1998). Although ESP 39607 was
not detected in the ROSAT All-Sky Survey, the source was detected in hard X-ray all-sky
surveys, including the INTEGRAL/IBIS 7-year All-Sky Hard X-Ray Survey (Krivonos
et al. 2010) and the Swift/BAT 70-Month catalogue (Baumgartner et al. 2013). This fact
implies that X-ray emission from the SMBH might be heavily absorbed, though detailed
X-ray spectrum has not yet been obtained in pointing observations. Masetti et al. (2010)
carried out an optical spectroscopy of ESP 39607 with the 1.5 m R-C Spectrograph at the
Cerro Tololo Interamerican Observatory (CTIO) and classified the source as type 2 AGN.

6.1.3 3C433

3C 433 is one of narrow-line radio galaxies (NLRG) at low-redshift z = 0.102 (Schmidt
1965). 3C433 has an unusual extended radio emissions (van Breugel et al. 1983), with
which (Wills et al. 2002) classified this source as Fanaroff-Riley Class I/II (FR I/II;
Fanaroff & Riley 1974) .

As defined by Fanaroff & Riley (1974), FR I sources have prominent jets in central

region tapering toward outer regions, whereas FR II sources show collimated jets termi-
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nating in luminous hotspots and complex lobes and have higher radio luminosity than FE
I sources. Very small fraction (less than 1%) radio sources have both FR I jet and FR
IT lobe on the opposite sides of the core (Gawronski et al. 2006). Gopal-Krishna & Wiita
(2000) suggested that such structure, i,e,, hybrid morphology radio sources (HYMORS)
they named, is most plausibly due to the propagation of twin jets into an asymmetric
medium. 3C 433 has a luminous FR II lobe toward southern direction including a primary
hot-spot and bright outer ridges (Miller & Brandt 2009). On the other hand, a knotty
FR I jet is observed toward northern direction and it stretches perpendicularly to the east
direction (Miller & Brandt 2009). Black et al. (1992) found that there are two core-like
components (C1 and C2) separated by only 1kpc into northern direction and suggested
that the CI knot is most likely an inner jet knot.

The complex southern FR II lobe contains considerable cold gases, as indicated by H I
measurements (e.g., Mirabel 1989; Morganti et al. 2003) (Ogle et al. 2006) found strong
silicate absorption features in the mid-IR spectrum of this source obtained with Spitzer,
where Spitzer is the infrared observatory of NASA’s Great mission (Werner et al. 2004).
Ogle et al. (2006) suggested that it is evidence for a kpc scale screen of cold dust in the
host galaxy. The SFR in 3C 433 was measured to be also 1 ~ 2 M, yr~! based on the
Spitzer observation of this source by Ogle et al. (2010).

3C 433 was not detected in the ROSAT All-Sky Survey, while the sources was de-
tected with Swift in hard X-ray band (Baumgartner et al. 2013). With Chandra 37.2ks
observations of this source, Miller & Brandt (2009) found a heavily absorbed component
from the nuclear region, whose absorption column density was Ny = 8.3 x 10?2 cm~2. This
indicates that 3C 433 is classified as a type 2 AGN, though Fe I line was not significantly
detected by Miller & Brandt (2009). The upper limit of the EW of the Fe I line was

obtained as 85 eV at the rest frame.

A soft X-ray excess seen in the X-ray spectrum of the nuclear region could be re-
produced either with a power-law model of I' = 2.2 £ 0.8 or a thermal bremsstrahlung
of kT = 1.27%*keV (they noted that the upper limit for the temperature was poorly

constrained).

Moreover, Miller & Brandt (2009) revealed a soft diffuse emission, which surrounds
the nuclear region and extends particularly toward the northeast direction by ~ 9—11 kpc.
This diffuse emission, reproduced with a thermal bremsstrahlung of kT = 1.3773:5 keV,
could be associated with a hot gas often observed around FR II lobes (Miller & Brandt
2009). Miller & Brandt (2009) suggested that the hot gas may be experiencing a quasi-
continuous heating by the northern jet. Miller & Brandt (2009) further found that the
X-ray spectrum of the CI region is dominated by hard X-ray flux, indicating that heavily



6.2. OBSERVATIONS AND DATA REDUCTIONS 81

absorption (Ng > 1,7 x 10?2 cm™2) is significant even at ~ 1kpc from the core. This is
much larger than typically assumed size of a torus (e.g., Maiolino & Risaliti 2007; Maiolino
2008). However, Miller & Brandt (2009) suggested that the location of the CI knot is
well within the scale of the dust structures seen in the host galaxy of 3C433. The CI
knot may happen to lie along a line of sight that passes though a dense dust cloud or lane
(Miller & Brandt 2009).

6.2 Observations and Data Reductions

We study X-ray properties of the type 2 QSOs in IRAS 0910444109, ESP 39607, and
3C433, by employing the archival data of Suzaku observations. We summarize the log
of Suzaku observations of these sources in Table 6.1. The effective exposure time for
the XIS and the HXD, column 6 of Table 6.1, are obtained after applying the standard
data reduction described in Chapter 5.1.3. The PI of each observation is C. Chiang for
IRAS 0910444109 and W. Baumgartner for ESP 39607 and 3C 433.

For all the three targets, the XIS data were extracted from a circular region with
a radius of 3’ centered on the coordinate of each target. We employed the HXD ARF's
supplied for observations at the XIS nominal position for ESP 39607 and 3C433. On
the other hand, as mentioned Section 6.1.1, since the aim point of the XRT during the
observation of IRAS 0910444109 is not at the XIS nominal position, we employed the
HXD ARF for the HXD nominal position, following the procedure adopted by Chiang
et al. (2013). For the CXB, we applied the ARF of the flat sky for all targets.

The redshifts of IRAS 0910444109, ESP 39607, and 3C 433 are z = 0.442,0.201, and
0.102, respectively. Thus, an 1” at each target corresponds to 5.7 kpc, 3.3 kpe, and 1.9 kpc,

respectively.

Table 6.1: Summary of Suzaku Observations of the Type 2 QSOs in IRAS 0910444109,
ESP 39607, and 3C 433.

Target ObsID Obs. Date R.A.! Dec.! Exposure?

IRAS 0910444109 706038010 2011-Nov-18 09h13m45.5s +40d56m28s 113ks 71.3ks
ESP 39607 705048010 2010-Dec-19 00h46m20.6s —40d05m49s 60.7ks 45.3ks
3C 433 705050010 2010-Nov-06 21h23m44.5s +25d04ml12s 62.5ks 41.3ks

. Coordinate of the target not the aim point of the XRT.
2. Effective exposure times of the XIS (left) and the HXD (right).
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6.3 Spectral Analyses and Results

Similar procedures were applied to fit the X-ray spectra obtained with the Suzaku /XIS
& HXD. The NXB spectra of the XIS and the HXD were subtracted. A column density
(Ng) of the Galactic absorption toward IRAS 0910444109, ESP 39607, and 3C433 was
estimated to be 1.42 x 102 cm™2, 3.2 x 10*°cm~2, and 7.8 x 10?° cm ™2, respectively, by
Kalberla et al. (2005). We fixed Ny to these values in our spectral fitting. We also fixed
the redshift at z = 0.442,0.201, and 0.102 for IRAS 09104+4109, ESP 39607, and 3C 433,

respectively.

In the case of IRAS 0910444109, we found that the HXD count rate after subtracting
the NXB was 1.6 x 1072 ctss™! in 16 — 40keV, which corresponds to 6.9 % of the NXB.
Since the CXB flux for the HXD is estimated to be 5.9% of the NXB, the source flux
from the type 2 QSO corresponds to only 1.0 % of the NXB, smaller than systematic
uncertainty of the NXB model (Takahashi et al. 2010). We thus confirmed the result by
Chiang et al. (2013), i.e., no significant hard X-ray flux was detected in this source.

In the cases of ESP 39607 and 3C 433, the count rate of the HXD in the 16 — 40 keV
band after subtracting the NXB was (2.1 £ 0.2) x 1072 counts™! and (2.2 £ 0.3) x
1072 count s}, respectively. They correspond to 8.7 % of the NXB and 8.9 % of the NXB.
Since the contribution of the CXB in this band is 5.9 %, the hard X-ray (16—40keV) source
flux is 2.8 % and 3.0 % of the NXB, which is slightly larger than the systematic errors of
the NXB model (e.g., Takahashi et al. 2010). Although the two sources ESP 39607 and
3C 433were not detected with the HXD significantly, we include the HXD spectrum in

the spectral fitting for these sources.

We generated the NXB of the XIS by using xisnxbgen for IRAS 0910444109, and
modeled the CXB, MWH, and LHB component in the spectral fit as mentioned in Sec-
tion 5.1.4. On the other hand, Chiang et al. (2013) extracted background spectra from a
circular region with a radius of 180” where there are no apparent sources and employed
them as the spectra representing the NXB, CXB, MWH, and LHB. The extraction region
of the source spectra are also different in our analysis and that in Chiang et al. (2013); we
set the radius of the region to be r < 3’, while Chiang et al. (2013) set it to be r < 110"
region.

Figure 6.1 shows the X-ray images of IRAS09104+4109, ESP 39607, and 3C433 in
the 0.4 — 10keV band obtained with Suzaku/XIS3. Each image shows a point source
and no apparent diffuse emission is found. As mentioned above, only in the case of
IRAS 0910444109, the aim point of the observation was not at the coordinate of the
target.
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Declination

IRAS 09104+4109 1

Declination

9:14:00.0 13:00.0 0:47:00.0 46:00.0 45:30.0
Right ascension Right ascension
]
0.074 022 052 1.1 23 46 93 19 37 0.027 0.081 0.19 0.41 084 1.7 34 69 14

Declination

30.0 21:24:00.0 30.0 23:00.0

Right ascension

L —
0.047 0.14 033 0.7 14 29 59 12 24

Figure 6.1: X-ray images of IRAS09104+4109 (top left), ESP 39607 (top right), and
3C 433 (bottom) in the 0.4 — 10keV band obtained with Suzaku/XIS3. The yellow circle

shows the region extracted X-ray spectra. In all the images, irradiation regions of the

calibration sources of *°Fe are excluded.
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Figure 6.2: X-ray spectra of IRAS 09104+4109 obtained with the Suzaku/XIS. The ra-
tios of the data to the model are plotted in the bottom panels. Top: X-ray spectra of
IRAS 0910444109 in iron K-band at the observer’s frame. The Fe I, Fe XXV, and Fe XXVI
lines are detected clearly. Bottom: X-ray spectra of IRAS 0910444109 in 0.4 — 10keV.
The XISO, 1, and 3 are shown in black, red, and green, respectively. The solid lines
show the AGN emission, which consists of an absorbed power-law component and an Fe I
line. The dashed line and dotted line represent the ICM thermal emission and the X-ray
background models (Chapter 5.1.3), respectively.
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Figure 6.3: X-ray spectra of ESP 39607 with the Suzaku/XIS & HXD. The ratios of the
data to the model are plotted in the bottom panels. Top panel: X-ray spectra in the iron
K-band at the observer’s frame. Bottom panel: X-ray spectra of ESP 39607 in 0.4—40keV.
The same colors and lines are used as those in Figure 6.2 for the Suzaku/XIS0, XIS1, and
XIS3, respectively. The blue data points and lines show those for the HXD.
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Figure 6.4: X-ray spectra of 3C 433 with the Suzaku /XIS & HXD. The ratios of the data to
the model are plotted in the bottom panels. Top panel: X-ray spectra of 3C 433 in the iron
K-band at the observer’s frame. Bottom panel: X-ray spectra of 3C 433 in 0.4 — 40keV.
The same colors and lines are used as those in Figure 6.3 for the Suzaku/XIS0, XIS1,
XIS3, and the HXD, respectively.
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We show the X-ray spectra of IRAS09104+4109, ESP 39607, and 3C 433 obtained
with the Suzaku/XIS & HXD. The top panels of Figure 6.2, Figure 6.3, and Figure 6.4
show the X-ray spectra in the iron K-band at the observer’s frame. For IRAS 09104+4109,
we detect a lump of emission lines consisting of Fe I, Fe XXV, and Fe XXVI. On the other
hand, the Fe I line and a hint of the iron K-edge are observed in the X-ray spectra of
ESP 39607 and 3C433. No apparent indication of the emission lines of Fe XXV and
Fe XXVI in the X-ray spectra of of ESP 39607 and 3C 433 suggests that the ICM thermal

emission as found in rich clusters are not significant in these sources.

We next perform model fitting of wide band X-ray spectra of these sources. We show
the X-ray spectra in the 0.4 — 40keV band (0.4 — 10keV for IRAS 09104+4109) in the
bottom panels of Figure 6.2, Figure 6.3, and Figure 6.4, respectively. To fit the X-ray
spectrum of IRAS 09104+4109, we employ an emission model from a optically-thin single-
temperature plasma (APEC) for the ICM thermal emission, and an absorbed power-law
component and an Fe I line to reproduce the emission from the type 2 QSO in the BCG.
Schematically the model is given as wabs x (APEC + zwabs X power-law + zgauss).
We fixed a width of the Gaussian to 0 eV and its line energy is 6.40 keV at the rest frame.
The same model is applied to the X-ray spectra of ESP 39607 and 3C 433, although the
APEC model in these cases represents not necessarily the emission from the ICM but
that from halo of the BCG. We hence fixed the abundance of the thermal emission to

1solar.

We summarize the best-fit results of the wide band spectral analyses in Table 6.2 for
IRAS 09104+4109, ESP 39607, and 3C 433, respectively. The temperature and abundance
of the ICM in IRAS09104+4109 is determined to be kT = 4.657030keV and Z, =
0.34 + 0.05solar, respectively. On the other hand, thermal emission in ESP 39607and
in 3C433, is reproduced with that with lower temperatures, i.e., kKT = 0.29t8;3? keV for
ESP 39607 and kT = 0.96703° keV for 3C433. The X-ray spectrum of the type 2 QSO
in IRAS 0910444109 is characterized with an absorbed power-law model with a photon
index of I' = 1.137}2¢ and a column density of Ng = 2.97% x 10* cm~2, plus an Fe I
line with an EW of 540 £ 150eV at the rest frame. The type 2 QSO in ESP 39607has
an X-ray spectrum consisting of an absorbed power-law model with a photon index of
I' = 1.42%513, and a column density of Ny = 2.84:0.3x10% cm ™2, and an Fe I line with an
EW of Fe I of 124737 eV at the rest frame. That in 3C 433 is characterized with a similar
model but with different parameters, i.e., I' = 1.74 £ 0.10, Ny = (9.2 4+ 0.6) x 10?2 cm~2,
and the EW=57130¢V.
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Table 6.2: Best-fit Results of the Spectral Fitting for IRAS 0910444109, ESP 39607, and
3C 433 with Suzaku.

Target Thermal emission AGN components x%/d.o.f.
IRAS09104+4109 kT (keV)  4.65%0% Ny (x10%2cm—2?) 29128 597/578
Zg (solar) 0.34 £0.05 Photon index 1.13%5 %
Redshift 0.442 (fix) EW of FelI (eV) 540 £ 150
ESP 39607 ET (keV) 0297939 Ny (x102em™2) 2843  239/209
Zg (solar) 1.0 (fix)  Photon index 1.42*01%
Redshift ~ 0.201 (fix) EW of Fel (eV) 124753
3C 433 ET (keV)  0.96750¢ Ny (x10%2cm™2) 9.2+40.6 343/311

Zg (solar) 1.0 (fix)  Photon index 1.74+0.10
Redshift  0.102 (fix) EW of FeI (eV) 57150

6.4 Discussion on the X-ray Properties of the Three
Type 2 QSOs

We find that X-ray spectra of IRAS 0910444109, ESP 39607, and 3C 433 extracted from
the r < 3 region at the center are well-reproduced with a combination of a thermal
component from the ICM or from the halo of the galaxies and an AGN component, which
is described with an absorbed power-law component plus an Fe I line. We separately

discuss these components here.

6.4.1 Thermal Emission from IRAS 0910444109, ESP 39607, and
3C433

We detected Fe XXV and Fe XXVTI lines in the X-ray spectra of IRAS 0910444109, (top
panel of Figure 6.2), which should have ICM in their origin. In fact, we have shown
the wide band X-ray spectrum in 0.4 — 10keV requires an thermal emission component
of which temperature of kT = 4.65703) keV, which is consistent with that reported by
Vignali et al. (2011). We also derived the metal abundance of the ICM to be 0.34 +
0.05solar for the first time in this source; this value is typical for a rich cluster (e.g.,
Matsushita 2011).

On the other hand, since there found no apparent Fe XXV and Fe XXVT lines in the
X-ray spectra of ESP 39607 and 3C 433 (top panels of Figure 6.3 and Figure 6.4), the
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thermal emission is not significant or with a lower temperature in these sources. Out
wide band X-ray spectral analysis show the latter is more likely. As shown in Table 6.2,
the temperatures of the thermal components in these sources are lower than 1keV. We
suggest that these thermal components do not have their origin in the ICM but in halo
of the host galaxies. We note that the temperature of k7" = 0.96155¢ keV obtained by us
for 3C 433 is consistent with that reported by Miller & Brandt (2009) for the extended
emission around the FR II lobe in this source. The X-ray luminosities in 2 —10keV of the
thermal emission components in ESP 39607 and 3C 433 are 4 ~ 5 orders of magnitudes
lower than the intrinsic luminosity of the AGN components. We consider the results

justify our selection of these sources as type 2 QSOs in field galaxies not in rich clusters.

6.4.2 AGN Component in the Three Type 2 QSOs

Our analysis of the wide-band X-ray spectra obtained with the Suzaku/XIS & HXD
revealed that three sources commonly have an absorbed power law component with an
Fe I line, which is typical for type 2 AGNs.

We obtained the unobscured X-ray luminosities in the 2 — 10keV band of Lx o109 =
51705 x 10 ergs™, Lxy 10 = 4.7T55x10% ergs™!, and Lx o 10 = (1.24£0.1)x10* ergs™,
for IRAS 0910444109, ESP 39607, and 3C 433, respectively. The X-ray luminosity in
2 —10keV of (the QSO in) IRAS 0910444109 derived by us was not only consistent with
that reported by Chiang et al. (2013), but also was within the range of previous observa-
tions, i.e., from (~ 3 x 10 ergs™; Vignali et al. 2011) to (~ 8 x 10* ergs™!; Piconcelli
et al. 2007). We note that the X-ray luminosity of 3C433 was also consistent with that
reported by Miller & Brandt (2009) with Chandra and ASCA. We also estimate the X-ray
luminosity in the 10 — 50keV band for following discussions. Assuming that the AGN
component has a simple power law spectrum with the photon index obtained by us in this
energy range, the luminosities converted are Lx 19_50 = 1.5 07 x 10 ergs™, Lx 19_50 =
1.2753 x 10% ergs™, and Lx10-50 = (1.8 & 0.2) x 10* ergs™, for IRAS 0910444109,
ESP 39607, and 3C 433, respectively.

We can also estimate the accretion rate (Macc) of each type 2 QSO by following
Marconi et al. (2004) and assuming the accretion efficiency of 0.1. The accretion rate
M, derived in this way is 5 Mg yr=t, 4.8 My yr—t, and 0.7 Mg yr—, for IRAS 09104+4109,
ESP 39607, and 3C 433, respectively.

The EW of Fe I and Ny are also key parameters in following discussions. We first verify
the consistency of the EW of Fe I derived by us and that reported by Chiang et al. (2013)
for IRAS0910444109. The EW reported by Chiang et al. (2013) is that to the summed

continuum of the thermal component and the AGN (power-law) component. The EW
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we obtain with the same definition is 10775) eV, which is consistent with that .reported
by Chiang et al. (2013). The EW of Fe I line to the AGN component is more important
for our discussion; that for IRAS 09104+4109 is 539 + 150eV. The EW of Fe I line to
the AGN component for ESP 39607, and 3C 433 is 124Jj§% eV, and 573(7) eV, respectively.
Note that the Fe I line was detected in ESP 39607 and 3C 433 for the first time and the
EW of the line derived by us for 3C 433 is below its upper limit determined by Miller &
Brandt (2009). The column densities of the AGN component are 2.9758 x 1023 cm =2 for
TRAS 09104+4109, (2.8 + 0.3) x 102 cm~2 for ESP 39607, and (9.2 & 0.6) x 1022 cm™2 for
3C 433, respectively. The Ny values for IRAS 09104+4109 and 3C 433 are consistent with
those reported by Vignali et al. (2011) and Miller & Brandt (2009), respectively.

6.5 Type 2 QSOs in BCGs versus Those in Field

Galaxies

We have studied X-ray spectra of three type 2 QSOs in this chapter. One is that in
IRAS 0910444109, a type 2 QSO in a BCG of a rich cluster, which is supplementary
sample of that in the Phoenix cluster. We also studied the other two type 2 QSOs not
in rich clusters as control sample. Our goal is to find any systematic differences in the
properties of QSOs in BCGs of rich clusters and those in field galaxies.

The unobscured X-ray luminosity Lx of AGNs is important to measure intrinsic ac-
tivity of the SMBH in them. The column density Ny and the EW of Fe I line can provide
the information on surrounding matter around the SMBH. As mentioned in Section 7.3,
there is a anti-correlation between the EW of Fe I line and the X-ray luminosity (Lx)
known as the X-ray Baldwin effect, at least for the sources with lower luminosities. We
should pay attention to the fact that the two type 2 QSOs in BCGs of rich clusters,
IRAS 0910444109 and the Phoenix cluster have extremely high luminosities among type
2 QSOs, but has relatively large EW of Fe I. We will examine significance of some of
the possible differences between type 2 QSOs in BCGs and in field galaxies in the next
Chapter. We will also discuss possible implications of each hypothesis.



Chapter 7
Discussion

In this chapter, we first summarize the observed properties of QSOs studied in this work.
Second, we discuss the Ny — EW of Fe I relation of four type 2 QSOs, which reflects
the torus geometry around the SMBH. Next, we discuss the relation between the EW
and the X-ray luminosity, the X-ray Baldwin effect, for four type 2 QSOs and one type
1 QSO studied in this work. After that, we discuss the implication of our results on the
association among cooling flow, star formation, and torus. Finally, we remark the future

prospects based on our view point.

7.1 Observed Properties of Luminous AGNs in the
BCGs and in the Field Galaxies

One of our aim is to search for luminous AGNs, i.e., QSOs, in BCGs of clusters of
galaxies. By referring both the Planck SZ cluster catalogue and the Swift /BAT 70-Month
catalogue, we find two clusters out of 861 clusters sample in which luminous AGNs with

log Lx 14—195 > 45 reside in their BCGs.
1. One is the Phoenix cluster, and the other is H 18214643 (Table 4.1).
2. The fraction of such clusters is 2/861, i.e., 0.23 %.

Next, we analyze the X-ray spectra of the Phoenix cluster with the Suzaku/XIS &
HXD, Chandra/ACIS-1, and XMM-Newton/EPIC and H 1821+643 with the Suzaku/XIS
& HXD (Section 5.1 and Section 5.2). Either spectra consist of a thermal emission from
the ICM and a non-thermal emission from the AGN. The AGN component is characterized

as follows.

1. We detect the Fe I line in the AGN component of the X-ray spectra.

91
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. The power law continuum suffers heavy absorption for the AGN in the Phoenix

cluster, but not for H1821+4-643. This is consistent with the classification as type 2
QSO for the former and type 1 QSO for the latter.

. The type 2 QSO in the Phoenix cluster has the EW of Fe I of 149713 eV and the

X-ray luminosity of Lx o 19 = (4.7 4+ 0.7) x 10" ergs™".

. The type 1 QSO in H 18214643 has the EW of Fe I of 82 4+ 7eV and the X-ray

luminosity of Lxz 10 = (2.16 +0.02) x 10" ergs™.

. When we included the reflection component in the fitting model, the reflection

fractions (|R| = €/27) were determined to be |R| = 0.77703% and |R| = 0.807005,
for the Phoenix cluster and H 18214643, respectively.

In Chapter 6, we also analyze the X-ray spectra of three type 2 QSOs in IRAS 09104+4109,

ESP 39607, and 3C 433. IRAS 0910444109 is supplementary sample of the type 2 QSOs
in the BCG of a rich cluster, as for the Phoenix cluster, while the type 2 QSOs of
ESP 39607 and 3C 433 are in field galaxies and should be regarded as control sample.

We summarize observed properties of all the QSOs obtained in our study in Table 7.1.

In the following sections, we attempt to find systematic differences between the properties
of QSOs in the BCGs and those in field galaxies
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7.2 EW — Ny Relation of Type 2 QSOs

There found correlations between the EW of Fe T and the column density Ny for the power
law component at least for nearby AGNs (e.g., Guainazzi et al. 2005; Fukazawa et al. 2011).
The relation is characterized differently for Ny < 10?3 cm~2 and for Ny > 10?3 cm™2; the
EW is almost constant for Ny < 10?3 cm™2, while the EW is roughly proportional to
Ny for Ny > 10?3 ecm™2. Proportionality between the EW and the Ny is expected if we
assume a illuminating source surrounded by a sphere of a uniform density. On the other
hand, the constant EW is expected for the reflection, i.e., an obscured source illuminating
some optically thick matter. To realize both the relations in different regimes, a torus
geometry is most plausible; we are observing X-rays through the torus and those reflected
off the inner wall of the torus, as suggested by Ghisellini et al. (1994) and Krolik et al.
(1994). Note that fluorescence iron K lines should be generated at the surface of accretion
disk, though those should be broad and have unique profile called disk-line. We assume
the Fe I line we observed are narrow and contribution from the disk-line is not significant,
though it might not be valid for type 1 AGN, such as H 18214-643.

The EW of Fe I of four type 2 QSOs was determined to be 1497337 eV, 539 4+ 150 eV,
124132 eV, and 57730 eV, respectively. We plot these result overlaid with the data points
derived by Fukazawa et al. (2011) for Seyfert galaxies, i.e., nearby radio-quiet AGNs

observed with Suzaku in Figure 7.1.

As summarized in Table 7.1, we obtain the value of Ny as 3.2709 x 10 em™2, 2.9758 x
10¥em™2, (2.8 4+ 0.3) x 10® em™2, and (9.2 + 0.6) x 1022 cm™2 for the Phoenix cluster,
IRAS 0910444109, ESP 39607, and 3C 433, respectively. The EW of Fe I of four type 2
QSOs was determined to be 149757 eV, 5394150 eV, 124152 eV, and 57730 eV, respectively.
We plot these result overlaid with the data points derived by Fukazawa et al. (2011) for
AGNs in field observed with Suzaku in Figure 7.1.

The EW — Ny relation for AGNs in field is consistent with what we mention above,
which support the Fe I line is originated in the torus. The four data points based on our
analysis of the type 2 QSOs are also on a similar trend to that for AGNs in field. This
implies that torus geometry is also valid for our sample of the type 2 QSOs. There found
no significant difference between the type 2 QSOs in the BCGs and those in filed galaxies.
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Figure 7.1: Relation of the EW of Fe T and the Ny. The black triangles and circles
are AGNs with X-ray luminosity in 10 — 50keV (Lx 10-50) of Lx 10-50 < 10* ergs~! and
Lx10-50 > 10Mergs™t
squares show the type 2 QSOs in the BCG of the Phoenix cluster and IRAS 091044-4109.
The red diamonds show the type 2 QSOs in the field galaxy of ESP 39607 and 3C 433,

respectively.

, respectively. The data are the same as Figure 5.6. The blue
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7.3 EW —Lx relation and Type 2 Fraction for QSOs
in BCGs

7.3.1 EW —Lx Relation (the X-ray Baldwin Effect)

We next investigate the relation between the EW of Fe I and the X-ray luminosity. There
found the X-ray Baldwin effect, anti-correlation between these two parameters. Figure 7.2
shows the relation between the EW of Fe I and the X-ray luminosity in the 10 — 50 keV
band. We plot our results on four type 2 QSOs and one type 1 QSO overlaid with those
of Seyfert galaxies derived by Fukazawa et al. (2011). The data points (red diamonds)
of ESP 39607 and 3C433 are also on the trend of the X-ray Baldwin effect of AGNs
in field. On the contrary, the data points (blue squares) of the Phoenix cluster and
IRAS 0910444109 are offset in upward directions.

Figure 7.2 shows the relation between EW of Fe I and X-ray luminosity in the 10 —
50keV band.
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Figure 7.2: Relation between EW of Fe I and X-ray luminosity in the 10 — 50 keV band.
The data are based on the bottom panel of Figure 7.1 but we put four bright field AGNs
reported by Fukazawa et al. (2011) and the EW of H 18214643 we obtained. Not only
type 2 QSOs in the BCG but also type 1 QSO of H 18214643 have the large EW of Fe I
despite more luminous SMBH than field galaxies. The solid line describes the EW—Lx
relation from the fitting with the data of type 2 AGNs (black circles).
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In order to perform statistical argument, we model the X-ray Baldwin effect. We
adopt a simple power-law model for it. The parameters of the model are determined by
fitting the data points of Type 2 AGNs (black circles in Figure 7.2) reported by Fukazawa
et al. (2011). We obtain

EW = 4300725% Lx 10-50 —0.4079:99 y N
— —2300 X W eV, ( | )

where Lx 19-50 is the X-ray luminosity in 10 — 50keV. The goodness of fit is x* = 7029
for d.o.f. = 57, indicating that there are systematic errors larger than statistical errors
by one order of magnitude.

These systematic errors are likely due to intrinsic variation of sources from the ideal
relation assumed. Possible causes of the intrinsic variation in the EW for a given Lx
includes the abundance of iron in the torus, the inclination, opening angle, and column
density of the torus and so on. According to the simulation by Tkeda et al. (2009), the
opening angle and inclination angle affects the EW by about factor of two.

We calculate the standard deviation of the data points of Type 2 AGNs in logarithmic
space, that is 1oge,. = 0.47dex. We use this value as the systematic error of our model,
including a typical statistical error of the data. The uncertainties of parameters of the
power-law model shown above are derived by taking this systematic errors into account.

We then examine the deviation of the EW (the most probable value) obtained by
us from that expected with the model in the unit of o4e.. The deviation is +1.90gey.,
+0.510gex., +2.904ex. for the Phoenix cluster, H 18214643, and IRAS 09104+4109, respec-
tively. On the other hand, the deviation is +0.5304cx. and —0.06004e,. for ESP 39607and
3C 433, respectively. We summarize these values in Tab 7.3. The probability to obtain
two sources out of three those that have deviations larger than +1.904cx. and +2.90 ey, is
2 x 10™%; we can reject the hypothesis that the the three QSOs in BCGs follow the same
with a significance level of ~ 0.02 %. If we focus on the two QSOs in the Phoenix cluster
and H 18214643, we should refer the probability to obtain one source out of two those
that has deviations larger than +1.90gey., which is 6%.

We also perform a similar test with an alternative model of the X-ray Baldwin effect
given by Ricci et al. (2013). They simulated the effect by assuming a torus geometry
and a luminosity-dependent covering factor and succeeded in reproducing the observed
EW-—Lx relation obtained with Chandra/HETG by Shu et al. (2010), as we already
showed in Figure 2.4. We calculate expected EW for each source in our sample by using
the models provided by Ricci et al. (2013), one in which the column density Ny (along
the equatorial plane of a torus) is assumed to be 10?*5 cm™2 and the other in which that
is assumed to be 10%° cm~2. The results are listed in Table 7.2. We find the model with
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Ny = 10?%% cm~2 underestimate the EW for all the five sources, and hence refer the model
with Ny = 10?° cm 2. We also assume the systematic error of the model is the same as
that evaluated above. We then obtain the deviation of +1.004ey., +0.180 gex., +1.604ex. for
the Phoenix cluster, H 18214643, and IRAS 0910444109, respectively. The deviation is
+0.0990 4ex. and —0.1804ex. for ESP 39607and 3C 433, respectively. We summarize these
values in Tab 7.3. The probability to obtain two sources out of three those that have
deviations larger than +1.004cx. and +1.604ey. is ~ 3%. The probability to obtain one
source out of the two, the Phoenix cluster and H 1821+643, is 32 %.

Table 7.2: EW—Lx Relation from X-ray Observations and Expected EW from Simula-

tions.
Name Obs. EW (eV) Exp. EW! (eV) Exp. EW? (eV) Exp. EW? (eV)
Phoenix cluster 149713 17 1 31
H1821+643 827 26 2 42
TRAS 09104+4109 539 + 150 36 5 73
ESP 39607 124757 39 5 75
3C 433 57150 84 10 111

1 From Equation 7.1 based on the data of type 2 AGNs reported by Fukazawa et al.

(2011).

2. From simulations of quasar regime by Ricci et al. (2013) with the value of equatorial
column density (Ng) as N = 10%2° cm™2 but only that of Seyfert regime in the case of
3C433.

3. Same as Expected EW? but for the N = 10% cm™2.

These statistical tests indicate that QSOs in the BCGs have significantly differ-
ent EW—Lx relation than for nearby Type 2 AGNs plus type 2 QSOs in field galax-
ies, if we focus on the sample of three QSOs in the Phoenix cluster, H 18214643, and
IRAS 09104+44109. This difference is less significant if we limit the sample to the two
QSOs selected from complete catalogues.

However, we have to consider various issues which may affect this results. Although we
already have systematic error of the model taken into account, the models representing
the X-ray Baldwin effect that we used above are based directly and indirectly on the
observations of less luminous AGNs than ours. Therefore, the systematic error may be
larger than for very luminous AGNs. Apparently we need larger sample especially that

of very luminous AGNs in field galaxies before obtaining a firm conclusion.



7.3. EW —Lx RELATION AND TYPE 2 FRACTION FOR QSOS IN BCGS 99

Table 7.3: Significance of the Difference of the Observed EW from the Model Line.

Name Obs. EW (eV) Exp. EW! (eV) Dev.? (04ex.) Exp. EW3 (eV) Dev.! (04ex.)
Phoenix cluster 149113 17 +1.9 31 +1.0

H 18214643 82+ 7 26 +0.51 42 +0.18
IRAS09104+4109 539 4 150 36 +2.9 73 +1.6
ESP 39607 124752 39 +0.53 75 +0.099
3C433 57150 84 —0.060 111 —0.18

1+ From Equation 7.1 based on the data of type 2 AGNs reported by Fukazawa et al.

(2011).

2 Significance for the difference of observed EW from the model line (column 3).

3. From simulations of quasar regime by Ricci et al. (2013) with the value of equatorial
column density (N{) as Ni = 10 cm™2 but only that of Seyfert regime in the case of
3C433.

1. Same as column 4 but for N = 10% cm™2

(column 5).

7.3.2 Type 2 Fraction and Opening Angle of a Torus

Type 2 fraction is defined as a fraction of the type 2 AGNs to type 1 plus 2 AGNs, as
mentioned in Section 2.2.1. Hasinger (2008) showed that the type 2 fraction is smaller
for higher luminosity and that for the X-ray luminosity Lx s 19 ~ 2 x 10% ergs™, corre-
sponding to our sample, is ~ 10 %. According to Burlon et al. (2011), the type 2 fraction
with Lx > 10*ergs™t in 15 — 55keV is ~ 20 %. These values should be compared with
the fact that one type 2 QSO, which in the Phoenix cluster, and one type 1 QSO, which
in H 18214643, are selected in our collation of the Planck SZ cluster catalogue with the
Swift/BAT 70-Month catalogue in Chapter 5. The probability to obtain such pairs is
18 %, if the type 2 fraction is 10 %. We can little constrain the type 2 fraction of luminous

AGNs in BCGs in clusters only with the two sources, as anticipated.

In the frame work of the AGN unification model (e.g., Antonucci 1993; Bianchi et al.
2012), the type 2 fraction should be determined by the opening angle of a torus. On
this point, we note that the reflection fractions of the type 2 QSO in the Phoenix cluster
and the type 1 QSO in H18214+643 are R = 0.77753% and R = 0.807)95, respectively.
The reflection fraction is a fractional solid angle of the surrounding matter around a
illuminating source, and thus should simply equal to the type 2 fraction. Therefore,
the high reflection fractions we obtained is consistent with a larger type 2 fraction than

expected for luminous AGNs in BCGs in clusters.
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Overall, the EW— Lx relation, type 2 fraction, and reflection fraction of our sample
of luminous AGNs in BCGs suggest that covering fraction is larger for those objects
than expected. If we assume a tours, its opening angle can be smaller than expected in
luminous AGNs in field galaxies. Although we apparently need larger sample, we discuss
possible relations of this hypothesis with phenomenon in cluster scale, e.g., cooling flow,

in the next section.
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7.4 Cooling Flow, Star Formation, and Torus

We obtain the difference of the torus geometry (i.e., the opening angle) in the QSOs in
the BCGs from those in the field galaxies. We assume that this difference is generated
by mechanisms that function for only BCG. We discuss here the relation among cooling

flow, star formation, and torus from the point of view of our assumption.

7.4.1 Time Scales of AGN feedback

As mentioned in Section 7.1, we find two clusters out of 861 samples, whose BCGs have
luminous AGNs (Lx 14195 > 10% ergs™). Its fraction is 2/861 or 0.23 %.

Our results enable us to estimate a time scale of the AGN feedback of radiative mode.
They indicate that the time scale is 23 Myr assuming that the age of clusters is 10 Gyr.
In other words, the time scale of kinetic mode is estimated to be 9.977 Gyr, because the
fraction of the others that their BCGs have no luminous AGNs is 859/861. We consider

that their AGNs function the kinetic mode, i.e., they are in typical cool-core clusters.

7.4.2 Energy Transfer from SMBHs in BCGs

We discuss here the energy transfer from SMBHs in BCGs to the ICM, i.e., the AGN
feedback, in the Phoenix cluster, H 18214643, and TRAS09104+4109. To evaluate the
relation of the cooling flow and the AGN feedback of radiative mode and kinetic mode,
we investigate the observational properties of clusters, BCGs, and tori by using the data
of the Phoenix cluster, H 18214643, and TRAS 09104+4109.

We summarize the observed properties of the QSOs in the Phoenix cluster, H 18214643,
and TRAS 09104+4109 involved the cooling flow and the AGN feedback in Table 7.4.
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First, the cooling rate of each cluster shown in Table 7.4 is estimated to be ~
2300 M, yr~! (Ueda et al. 2013a), ~ 300 M, yr~! (Russell et al. 2010), and ~ 235 M yr—!
(O’Sullivan et al. 2012) for the Phoenix cluster, H 18214643, and IRAS 09104+4109, re-
spectively. The cooling radius (r.) and mass of the ICM within r. for each cluster are
referred to the same papers.

Next, the SFR in the BCG of the Phoenix cluster is measured by McDonald et al.
(2013a) and that of IRAS09104+4109 is obtained by Bildfell et al. (2008). In the case
of H1821+643, we estimate the SFR in its BCG to be 9.1 M yr~! by using [O II] A3727
(Kolman et al. 1991) with Kennicutt (1998) and Kewley et al. (2004).

The accretion rate of each SMBH is estimated by the X-ray luminosity obtained in
this work. The mass of each SMBH is referred to McDonald et al. (2012), Kolman et al.
(1993), McGill et al. (2008), and Piconcelli et al. (2007). The €., represents the ratio
defined by (SFR + accretion rate) / cooling rate.

The radiative power of the AGN in each BCG shown in Table 7.4 is estimated by

L M
Praa = 1.25 1044(L> (i)( B"l)( BI ) -1 7.9
d s 0.01/\0.1/ \Tpaa/ \ 10002, ) 8% (7:2)

where P,,q is the radiative power, 7 is the opacity estimated by Equation 2.20, f is the
fraction of the amount of available photons, Lg, is the bolometric luminosity, and Lggq
is the Eddington luminosity. We assume that the f is 0.1 (10 %) mentioned in Siemigi-
nowska et al. (2010). The total radiative energy represents the value that is integrated
the radiative power during the time scale of AGN feedback of radiative mode, i.e., 23 Myr.

On the other hand, the mechanical power of each AGN is measured by Russell et al.
(2010) for H 18214643 and O’Sullivan et al. (2012) for IRAS 09104+4109. We summarize
their results in Table 7.4. However, no measurement of the mechanical power is found for
the AGN in the BCG of the Phoenix cluster. The total mechanical energy describes the
value that is integrated the mechanical power during the time scale of AGN feedback of
kinetic mode, i.e., 9.977 Gyr.

We estimate the total cooling energy by using the bolometric luminosity of the ICM
in each cluster. They represent the energy that is integrated the luminosity of the
ICM during the cooling time; the cooling time of the Phoenix cluster is 1.0 Gyr, that
of H1821+4643 is 7.7 Gyr, and that of IRAS 09104+4109 is 1.0 Gyr.

The €001, (SFR + accretion rate) / cooling rate, of three clusters is larger then 10 %
(see Table 7.4), that is a typical value in nearby cool-core clusters (e.g., McDonald et al.
2011). The type 1 QSO of H1821+643 and type 2 QSO of IRAS 09104+4109 have radio
structures (i.e., jets) surrounding their BCGs (Russell et al. 2010; O’Sullivan et al. 2012).

The mechanical powers in them are larger than the radiative heating power and required
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heating powers in their clusters, while we have no data of mechanical power in the Phoenix
cluster.

In all cases of three clusters, the total radiative energy is many orders of magnitude
smaller than the total cooling energy. For the Phoenix cluster, although it has the largest
total radiative energy, the total radiative energy contributes only 0.01 % to balance the
total cooling energy.

The total mechanical energy of IRAS 0910444109 is two orders of magnitude larger
than the total cooling energy. This result indicates that the heating overcomes the cooling.
In the case of H1821+4-643, the total mechanical energy is a factor of 2 smaller than the
cooling energy. This results is suggested by Russell et al. (2010). They consider that
some hidden cavities exist in this cluster to balance the cooling. We have no data of the
mechanical energy in the Phoenix cluster. To discuss the balance of the heating to the
cooling, we have to measure the mechanical power with radio observatory in the future.

In this work, we show that the radiative power of each QSO in the BCG does not
contribute the heating. Moreover, the torus may block the radiation from the SMBH, i.e.,
the radiative power passed through the torus that is effective power to heat the ICM by
radiation is smaller than that of the original power.

However, to generate the most powerful AGN feedback, McNamara et al. (2011)
reported that the fueling of cold gas is required. However, the high accretion rate of
three QSOs in the BCGs indicates an existence of a large amount of cooled gas near the
SMBHs. Perhaps, it must be the torus. We will discuss this content in Section 7.4.3.

7.4.3 Mass Transfer from 1ICM

Changing the point of view, we discuss here the mass transfer from ICM to BCG, i.e.,
works of the cooling flow. Whereas, we do not have direct evidence of a presence of the
cooling flow in three clusters.

We have already summarized the observed properties involved the mass transfer in
Table 7.4. The SFRs of three BCGs are estimated to be 798 My yr—t, 9.1 My yr—!, and
41 M, yr~! for the Phoenix cluster, H 18214643, and IRAS 0910444109, respectively. We
also estimate the accretion rates of three SMBHs to be 110 My yr—t, 37 M, yr—!, and
5 My yr~t, respectively. Therefore, the €., becomes 40 %, 17 %, and 20 %, respectively.

The €001 Of each cluster is larger than that of typical cool-core cluster, i.e., 10% (e.g.,
McDonald et al. 2011). The Phoenix cluster has the largest accretion rate in three clusters
in this work, and it also has the largest €., in three clusters. Although we have no idea
to explain these reason, we consider that these results are a hint for understanding the

fate of cooled gas from the ICM, i.e., the cooling flow.
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Next, we estimate the mass of the torus. As described in Section 5.1.6, we obtain the
mass of the torus of the type 2 QSO in the Phoenix cluster assuming a spherical ring with
the inner radius of 0.9 pc and the column density of 3.2 x 10?* cm™2 (Ueda et al. 2013a).
Although the estimated torus mass is largely dependent on the assumed outer radius, it is
estimated to be 3.0 x 10* My 1.2 x 10% M, and 1.1 x 108 M, for the outer radius of 1 pc,
10 pc, and 100 pe, respectively (Ueda et al. 2013a). Burtscher et al. (2013) measure the
outer radius of the torus of 23 AGNs including 3C 273. Although the radius with 300 K
of several AGNs including 3C 273 is larger than 100 pc, all the mid-IR half-light radii are
smaller than 10pc (Burtscher et al. 2013). Therefore, we consider that the mass of the

torus with the outer radius of 100 pc is the maximum value.

We apply this method to estimate the mass of the torus of the type 2 QSO in
IRAS09104+4109. When the inner radius is 0.4pc and the column density is 2.9 x
10% cm ™2, the mass is estimated to be 1.5 x 10* M, 1.0 x 10% M, and 9.8 x 107 M, for
the outer radius of 1pc, 10 pc, and 100 pc, respectively.

As mentioned above, we obtain that the time scale of AGN feedback of radiative mode
is 23 Myr. Assuming that the accretion rates of both the type 2 QSOs are maintained
continuously during 23 Myr, the masses of accreted gas onto the SMBHs reach 2.5 x
109 M, for the Phoenix cluster and 1.2 x 10% My, for IRAS 09104+4109. Both the masses

are larger than the estimated masses of the tori with the outer radii of 100 pc.

This result indicates that a large amount of cold/cooled gas is required to maintain
the accretion rate during the time scale of AGN feedback of radiative mode, when the gas
accrete onto the SMBH through the torus. The cold/cooled gas should be supplied from
the outside region of the torus. Furthermore, the cold/cooled gas is needed to keep the
massive starburst in the BCG during at least 108 yr (e.g., Kennicutt 1998). We discuss
as follows that a merger with member galaxies is one of the possibilities of the origin of

the amount of required gas.

Following McDonald et al. (2013a), we estimate a number of required mergers with
gas-rich galaxies. Corbelli et al. (2012) measure the cold gas mass of the galaxies in the
Virgo cluster. According to Corbelli et al. (2012), the most gas-rich galaxy they measured
has the cold gas of ~ 5 x 10° M. The required gas, i.e., the total mass of accreted gas
onto the SMBH during 23 Myr and fuel of the starburst during 108 yr in the Phoenix
cluster and TRAS 0910444109, reaches 8 x 10'° M, and 4 x 10° M, respectively. The
amount of required gas for IRAS 09104+4109 is consistent with the mass of the cold gas
in the gas-rich galaxy in the Virgo cluster. However, in the case of the Phoenix cluster,

the amount of required gas is significantly larger than its.

On the contrary, the cooling flow enables to supply the required gas within 3.5 x 107 yr
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for the Phoenix cluster and 1.7 x 107 yr for IRAS 09104+4109. This time scale is roughly
consistent with that of AGN feedback of radiative mode.

In the case of IRAS0910444109, we can explain that the origin of the amount of
required gas is the gas-rich mergers. However, for the Phoenix cluster, the amount of
required gas may be mainly supplied from the cooling flow. This statement has been
already claimed by McDonald et al. (2013a). From this point of view, we consider the
torus plays a role in a reservoir of the cooled gas to accrete onto the SMBH finally.

The latest studies of the central galaxy of clusters of galaxies are unveiling the ex-
istence of the cold gas (i.e., the molecular gas) of a few kpc scale around the SMBHs.
For example, Fujita et al. (2013) and Hamer et al. (2014) discover a dust lane rotating
around the AGN in Hydra A, the BCG of the Hydra cluster (z = 0.055). In the case of
the Phoenix cluster, McDonald et al. (2013b) detect a molecular gas of ~ 2 x 10! M, in
the BCG. Perhaps, these results support our assumption.

Figure 7.3 shows the mass (or energy) transfer from the ICM to the SMBH through
the torus (with the cooling flow in this work) in the case of the Phoenix cluster based
on Ueda et al. (2013a). We consider that a part of the cooled gas from the cooling flow
transfers to the torus so that it accretes onto the SMBH. Several indirect evidence show
its concept. In fact, to maintain the starburst and the torus, a large amount of cooled
gas is required. When this system is maintained in steady-state, the BCG need a total

! at least during 107 yr.

mass of cooled gas of ~ 900 My yr~

Figure 7.4 shows a sketch of a distance from an SMBH in the BCG and a scale of
each region. Simultaneously, we denote the energy flow around SMBH in Figure 7.4. In
previous studies, the cooling flow reaches the star-forming region (see Figure 7.4). In this
work, we suggest that a part of the cooled gas to maintain the torus is supplied from the

cooling flow.
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7.5 Future Prospects

We list future prospects to develop our study.

1. Find more samples that clusters have luminous AGNs in their BCGs to study the
EW — Lx relation and the type 2 fraction for AGNs in BCGs.

2. Radio observations of the Phoenix cluster to measure mechanical powers and to

evaluate molecular gas in its BCG.

3. Search for the Fe I line from BCGs in nearby cool-core clusters and measurement of
its EW.

4. Theoretical study to understand the mass transfer from ICM to SMBH.

First statement is the simplest idea to extend our study. By referring both the updated
Planck SZ cluster catalogue and Swift hard X-ray source catalogue, we can search for the
samples easily with our method.

Second one is to fully understand the energy transfer from the SMBH to the ICM. It
is important to reveal the balance of the heating to the cooling.

Third one is new point of view to study the evolution of SMBHs (and tori) in nearby
cool-core clusters. We have to investigate an existence of the torus in AGN with kinetic
mode. Since ASTRO-H (Takahashi et al. 2012) has a performance to detect the Fe I line
from SMBHs in nearby coo-core cluster, we can study it with ASTRO-H.

Final one is a point of view from the theoretical study. Some researchers start to
this study with numerical simulations (e.g., Li & Bryan 2012; Gaspari et al. 2013; Li &
Bryan 2013, 2014; Guo & Mathews 2014). However, the contribution of the torus is not
considered in their works. Since we show in this work that the torus may play a role in a

reservoir of cooled gas, we hope to include observational indication of our works.

7.5.1 Why Did IRAS 0910444109 Go the Missing Cluster?

TRAS 09104+4109 is not included in the Planck SZ cluster catalogue and the Swift /BAT
70-Month catalogue. We discuss why IRAS 0910444109 is not included in them.

A sensitivity of Planck for SZ clusters is roughly (0.1 —1.0) x 10 M, within rsgy but
with the redshift dependence. Figure 7.5 shows the sensitivity limit of Planck survey at
each redshift. At the redshift of z = 0.442 corresponding to that of IRAS 0910444109,
the sensitivities of Planck are over 0.4 x 10'® M, for the deep survey area covering 2.7 %

of the sky, over 0.5 x 10'® M, for the medium-deep survey area covering 41.3 % of the sky,
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and over 0.6 x 10 M, for the shallow survey are covering 56 % of the sky, respectively
(Planck Collaboration et al. 2014). The total mass of IRAS09104+4109 within rsgq is
estimated to be (5.83 &+ 1.69) x 10'* M, (O’Sullivan et al. 2012), which is equivalent to
the sensitivities of Planck at the redshift of z = 0.442. Therefore, it is possible that
Planck survey did not find the SZ effect of IRAS 09104+4109 significantly.

On the other hand, a flux sensitivity of Swift is 1.34 x 10~ ergs™*cm™2 in the
14 — 195keV band covering 90% of the sky (Baumgartner et al. 2013). Figure 7.6
shows the 5o sensitivity limit of Swift survey. We estimate a flux of the type 2 QSO
in IRAS 0910444109 with the parameters obtained in Section 6.3. Thus, we obtain the
upper limit of the flux to be 1.37 x 10~ ergs~! cm~2 in the 14 — 195keV band, which is
consistent with the flux sensitivity of Swift.

Therefore, IRAS 0910444109 and the type 2 QSO in its BCG may fall below the
sensitivities of each satellite. If the Planck team and the Swift/BAT team release new

catalogue in the future, we will be able to add in the samples of luminous AGNs in BCGs.

7.5.2 Future X-ray Observatory Missions

To verify one of our assumption, i.e., type 2 fraction for QSOs in BCGs is larger than
that for AGNs in field, we have to search for more samples of such clusters. However,
perhaps, as mentioned by (Urry & Treister 2007; Treister & Urry 2012), the type 2
fraction in previous study (e.g., Hasinger 2008) is affected by the selection biases. The
type 2 fraction for QSOs in BCGs we obtained is may be well-described for "true” type
2 fraction in the Universe.

A hard X-ray survey is one method hardly affected by the selection bias. Because
we can detect heavily obscured AGNs (Compton thick AGNs) directly. In particular, the
thermal emission from ICM pollutes the emission from AGNs in BCGs in soft X-ray band.

Since Swift is kept observing, it is likely possible that we obtain updated data of hard
X-ray source in the all-sky, i.e., new candidates of luminous AGNs in the BCGs. On the
other hand, new hard X-ray observatory (e.g., NuSTAR; Harrison et al. 2013) may play
a powerful role in the hard X-ray survey. NuSTAR has a factor of 100 higher sensitivities
than that of Swift. Moreover, the observable energy range of NuSTAR is 3 — 80keV
(Harrison et al. 2013). However, the energy resolution of hard X-ray detectors onboard
NuSTAR is about 2 times worse than that of X-ray CCD at 10keV (Harrison et al. 2013).
Then, it is difficult to resolve lines of Fe I, Fe XXV, and Fe XXVI.

ASTRO-H X-ray observatory (Takahashi et al. 2012) is likely the most powerful X-
ray observatory to reveal X-ray natures of AGNs and clusters. The Hard X-ray Imager
(HXT; Kokubun et al. 2012) onboard ASTRO-H shows similar performances of NuSTAR.
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Furthermore, the Soft X-ray Spectrometer (SXS; Mitsuda et al. 2010) has a performance
of X-ray high resolution spectroscopy of several eV at 6keV. Combining the HXI with
the SXS, we will be able to measure the EW of Fe I and X-ray luminosity in the hard

X-ray band simultaneously and accurately even if the AGNs are embedded in the central

galaxies of clusters.
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Figure 7.5: Sensitivity limits of the Planck SZ cluster catalogue (Figure 28 of Planck Col-

laboration et al. 2014). Upper left: average mass limit computed from the average noise

over the sky. Upper right: same for the deep survey zone corresponding to 2.7 % sky cov-

erage centred at the Ecliptic polar regions. Lower left: same for the medium-deep survey

area covering 41.3% of the sky. Lower right: same for the shallow-survey area covering

56 % of the sky. In each panel, only detections in the corresponding areas are plotted. The
lines dotted, dashed and solid lines show the Planck mass limit at 80, 50 and 20 % com-
pleteness, respectively (Planck Collaboration et al. 2014). Reproduced with permission,

Dr. Nabila Aghanim (Planck Collaboration et al. 2014), private communication.
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Figure 7.6: Measured 50 Swift/BAT sensitivity limit for pixels in the all-sky map as a
function of effective exposure time, 7', for the 3 month (red; Markwardt et al. 2005)), 9
month (green; Tueller et al. 2008), 22 month (blue; Tueller et al. 2010), and 70 month
(purple; Baumgartner et al. 2013) survey analyses. The contours are linearly spaced and
indicate the number of pixels with a given sensitivity and effective exposure. The black
dashed line represents a lower limit to the expected Poisson noise level (Baumgartner et al.

2013). The median achieved sensitivity is within 13 % of the predicted value. (©AAS.

Reproduced with permission.



Chapter 8
Summary

We summarize the results obtained in this work.

Our aim is to investigate whether or not there are significant differences in the prop-
erties of the luminous SMBHs in the BCGs from those in field galaxies. By referring
both the Planck SZ cluster catalogue and the Swift /BAT 70-Month catalogue, we search
for clusters including such BCGs. Thus, we find two clusters out of 861 clusters sample,
which have luminous AGNs in their BCGs with X-ray luminosities of 1 x 10% ergs=!
in the 14 — 195keV band. One is the Phoenix cluster (z = 0.596), and the other is
H 18214643 (z = 0.297).

We detect the Fe I line from both AGNs with the Suzaku/XIS. The EW of Fe I is
149113 eV and 82+ 7eV, respectively. The Fe I line indicates that a large amount of cold
gas, i.e., the torus, surrounds the luminous SMBH. In particular, we measure that the
column density (Ny) of the torus of the AGNs in the Phoenix cluster is 3.210-2 x 102 cm ™2,
meaning that it is heavily obscured. On the other hand, we obtain that the value of Ny of
that in H 18214643 is below 1 x 10%** cm=2. We classify the AGNs in the Phoenix cluster
and H 18214643 as the type 2 QSO and the type 1 QSO with X-ray observations of the
Suzaku /XIS & HXD, respectively.

We also analyze other three type 2 QSOs to investigate the difference. One exists in
the BCG of IRAS09104+4109 (z = 0.442), which is not included in both catalogues but
the mass of the cluster and the X-ray luminosity of its AGN are below the sensitivity limit
of the surveys each other. The others are in the field galaxies of ESP 39607 (z = 0.201)
and 3C 433 (z = 0.102). With the Suzaku/XIS & HXD, we identify that they are heavily
obscured and luminous AGNs; the value of Ny as the type 2 QSO in IRAS 0910444109 is
2.9728 x 1022 cm—2, that of ESP 39607 is (2.8 4 0.3) x 102 cm~2, and that of 3C 433 is
(9.240.6) x 102 cm~2. The EW of Fe I of each type 2 QSO is 539 4 150eV, 124737 eV,

and 57750 eV, respectively.
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For our purpose, by using four type 2 QSOs and one type 1 QSO, we investigate the
difference between QQSOs in the BCGs and those in field galaxies. We also examine the
AGN feedback of radiative mode and the cooling flow by using the observed properties of
the Phoenix cluster, H 18214643, and IRAS 09104+41009.

We first focus on the environment of the SMBHs with four type 2 QSOs. The relation
of the Ny and EW indicates that the origin of the Fe I is the torus. We find that no
significant difference of this relation for four type 2 QSOs from that obtained from field
galaxies. Therefore, we suggest that the torus geometry of four type 2 QSOs is similar to
that obtained from field galaxies even if the type 2 QSO are in the BCG.

We then investigate the EW —Lx relation. X-ray observations showed that the EW
of Fe T is anti-correlated with the X-ray luminosity, which is called the X-ray Baldwin
effect.

Since there are some causes to deviate the data points from the trend, we evaluate the
fluctuations by using a total of 59 type 2 AGNs in field. We estimate that the standard
deviation of the fluctuations is logex. = 0.47dex. Thus, the difference of the data from
the model line for the Phoenix cluster is estimated to be 1.904.. significance. Similarly,
those of each QSO are estimated to be 0.5104ex., 2.904ex., and 0.300qex. significance for
H 18214643 and TRAS 0910444109, respectively. The probability to obtain two sources
out of three those that have deviations larger than +1.904ex. and +2.904ex. is 2 x 107%;
we can reject the hypothesis that the the three QSOs in BCGs follow the same with a
significance level of ~ 0.02%. If we focus on the two QSOs in the Phoenix cluster and
H 1821+643, we should refer the probability to obtain one source out of two those that

has deviations larger than +1.90 .., which is 6%.

From the point of view of the type 2 fraction, we also investigate the difference between
the QSOs in the BCGs and those in field galaxies. By referring both the Planck SZ cluster
catalogue and the Swift /BAT 70-Month catalogue, we find one type 1 QSO and one type
2 QSO, meaning that the type 2 fraction is 50%. On the contrary, we measure the
reflection fraction of them (i.e., the covering factor). We obtain that the mean values of
the covering factor is 0.791)35  which indicates that the type 2 fraction for QSOs in BCGs
is expected to be 80 % (at least over 40 %). Since it is estimated to be 10 — 20 % that is
the type 2 fraction for AGNs in field on the same X-ray luminosity as the Phoenix cluster
and H 18214643, the type 2 fraction for QQSOs in BCGs obtained by us is larger than that
obtained by previous studies. Whereas, we have only two samples such QSOs. We need
more samples to determine whether or not the type 2 fraction for QSOs in BCGs is larger
than that for field galaxies.

Overall, the EW— Lx relation, type 2 fraction, and reflection fraction of our sample of
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luminous AGNs in the BCGs suggest that covering factor is larger for those objects than
than expected. If we assume a tours, its opening angle can be smaller than that expected
in luminous AGNs in field galaxies.

We discuss the AGN feedback of radiative mode in the cluster including luminous
AGN in its BCG. We find two samples of such a cluster out of 861 clusters. Assuming
that the cluster age is 10 Gyr, we can estimate the time scale of the AGN feedback of
radiative mode to be 23 Myr. We quantitatively obtain the time scale, for the first time.

To evaluate the effect of radiation heating, we evaluate the heating and cooling energy
of three clusters. The total radiative energies in the Phoenix cluster, H1821+643, and
IRAS09104+4109 are many orders of magnitude smaller than the total cooling energy
of each cluster estimated by the bolometric luminosity of the ICM. The total mechanical
energy in TIRAS09104+4109 overcomes the total cooling energy of the ICM, while the
total mechanical energy in H 18214643 is about a factor of 2 smaller than the total
cooling energy of the its ICM. Since we have no data of the total mechanical energy in
the Phoenix cluster, we can not discuss the balance of the heating to the cooing in the
Phoenix cluster.

We estimate the mass of the torus in the Phoenix cluster and TRAS 09104+4109 to be
1.1 x 108 M, and 9.8 x 10" M, for the outer radius of 100 pc, respectively. If both SMBHs
keep constant accretion rate during 23 Myr, the total accretion masses are estimated to
be 2.5 x 10° My, and 1.2 x 108 M, respectively, which are larger than those of the tori.
To maintain the mass of the torus, some mechanisms need to supply the cold gas. The
cooling flow may supply the cooled gas and then the torus may play a role in a reservoir
of cooled gas.

Our work is the first step to verify the co-evolution among cluster, BCG, and SMBH.
In order to reveal it, we have to search for such clusters and QSOs. The future work of
Swift and several high quality hard X-ray surveys (e.g., NuSTAR and ASTRO-H but they
do not perform the all-sky survey) may discover new candidates. In particular, ASTRO-H
will perform the high resolution spectroscopy with the SXS, which may detect the Fe I
line from QSOs in AGNs in BCGs in nearby cool-core cluster.
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