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Abstract
The recent findings of hadronic molecules, such asX(3872) and Zb, are a topic of great
current interest in the hadron physics. Hadronic molecules are deuteron-like loosely
bound states or resonances of hadrons, appearing near the thresholds. Therefore,
such states cannot be reached by the standard quark model (for mesons of qq̄ and
baryons of qqq), and are new evidences of the exotic hadrons.

In the formation of the hadronic molecules, there are two important symmetries,
chiral symmetry and heavy quark symmetry. The pion as a Nambu-Goldstone bo-
son, exchanging between constituent hadrons, plays a significant role to generate a
strong attraction. Furthermore, the pion exchange interaction is enhanced by the
heavy quark symmetry. This symmetry manifests the mass degeneracy of a heavy
pseudoscalar meson (P ) and a heavy vector meson (P ∗). Therefore, for molecules
containing the heavy mesons, the one pion exchange potential (OPEP) produced by
the PP ∗π and P ∗P ∗π verticies becomes important when the P and P ∗ mesons are
degenerate.

Thanks to the presence of the attraction provided by the OPEP, we expect forma-
tion of new hadronic molecules, being meson-baryon states. The molecules formed by
a heavy meson (D̄ (B) or D (B̄) meson) and a nucleon N are interesting. The D̄N
and BN are manifestly exotic states whose minimal quark content is Q̄qqqq, where Q̄
(q) is a heavy antiquark (light quark). These states have never been found in exper-
iment in the heavy flavor region. On the other hand, the DN (B̄N) states have the
non-exotic flavor structure, and are coupled to the ordinary heavy hadrons such as Λc

and Σc. They are exotic baryon states in which the molecular component dominates
rather than the three-quark one. In addition, the attraction between a heavy meson
and a nucleon motivates us to explore not only two-body systems, but also few-body
systems as exotic nuclei with heavy quarks, such as D̄NN and BNN . Those systems
show us the interesting phenomena which cannot be seen in the normal nuclei.

In this thesis, the possible existence of the hadronic molecules, being D̄N (BN)
and DN (B̄N) for two-body systems, and D̄NN (BNN) for three-body systems, is
discussed. By solving the coupled-channel Schrödinger equations for PN and P ∗N ,
we obtain many bound and resonant states near the thresholds both in the charm
and bottom sectors. For these states, the OPEP between the heavy meson and the
nucleon plays a crucial role to produce a strong attraction. In particular, the tensor
force mixing the PN and P ∗N channels with different angular momenta, e.g. L and
L± 2, is dominant not only in the PN states, but also in the PNN states.

We also discuss the PN and PNN states in the heavy quark limit. The sup-
pression of spin-dependent forces between quarks leads to the spin degeneracy of the
states with heavy quarks. The degeneracy has been discussed in the normal heavy
hadrons. However, it can be generalized to the multi-hadron systems, such as hadronic
molecules. We find that the spin degeneracy is also realized in the PN and PNN
states as multi-hadron states.
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Chapter 1

Introduction

Many quarkonium-like states called X,Y, Z in the heavy flavor sectors have been
observed in several accelerator facilities such as KEK-Belle and SLAC-BaBar [1–4].
They are attracted a great deal of interest in hadron and nuclear physics, because
these states have exotic quantum numbers which cannot be explained by the standard
quark model describing mesons as a quark-antiquark state (qq̄) and baryons as a three-
quark state (qqq) [5]. Therefore, they are a new evidence of the exotic hadrons in
addition to candidates such as a0, f0 and Λ(1405) in the strangeness sector [6–8].

As new aspects of structures of these exotic mesons, there have been discussions
about the possibility of (i) a hadronic molecule which is a loosely bound state formed
by a heavy meson and antimeson such as DD̄∗, (ii) a tetraquark which is a tightly
bound four quark state, QQ̄qq̄, considering additional constituents, a light quark and
antiquark, and (iii) a quarkonium hybrid which has an additional gluonic constituent.
Here, Q and q denote a heavy quark (c, b) and a light quark (u, d, s), respectively.
The categories (i) and (ii) are classifies as multiquark states. Such states are also
expected to be seen in exotic baryon states as a hadronic molecule composed of a
meson and a baryon, and pentaquark which is a tightly five quark state. The study
of the exotic hadrons beyond the standard quark model provides us with information
to understand how the Quantum Chromodynamics (QCD) produces hadrons from
quarks and gluons.

1.1 Hadronic molecules
Recently, there have been progresses in the researches of hadronic molecules. In
experiment, the candidates of meson-antimeson molecules have been found, such
as X(3872) [9–13] and Zc(3900) [14–16] in the charm sector, and Zb(10610) and
Zb(10650) [17] in the bottom sector. These quarkonium-like states locate near the
threshold, DD̄∗ threshold for X(3872) and Zc(3900), and BB̄

∗ and B∗B̄∗ thresholds
for Zb(10610) and Zb(10650), respectively. Hence, these states are expected to be
a DD̄∗ bound state for X(3872) and resonance for Zc(3900), and BB̄∗ and B∗B̄∗

resonances for Zb(10610) and Zb(10650), respectively. In particular, charged states
Zc(3900), Zb(10610) and Zb(10650) should be multiquark states with non-zero isospin.

For the theoretical researches, meson-antimeson states with heavy quarks were first
discussed by M. B. Voloshin and L. B. Okun [18], and A. De Rujula, H. Georgi,
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and S. L. Glashow [19] in 1970s. They investigated the charmed meson-antimeson
molecules interacting via short-range forces. In 1994, N. A. Törnqvist investigated the
“deuson” systems [20], where the deuson is the deuteron-like meson-antimeson bound
states. The deuteron is a loosely bound state in which the one pion exchange potential
(OPEP) as a long-range force dominates. In the study, the author emphasized the
importance of the OPEP in the deuson as an analogue state of the deuteron. The
long-range force is easy to construct a loosely bound state with a small binding energy.
The state appearing near the threshold is necessary condition that the states can be
interpreted as hadronic molecules with keeping their identities as constituent hadrons.
The ideas of the hadronic molecules as a bound or resonant state of constituent
hadrons have been incorporated in the recent theoretical calculations of the observed
X,Y, Z states including X(3872), Zc(3900) and Zb’s, and other exotic states [21–32].

The hadronic molecular pictures being successfully applied to the meson-antimeson
states are also useful in the meson-baryon systems. Recently, a novel structure has
been suggested in manifestly exotic baryon states with a single heavy antiquark,
namely the D̄N and D̄∗N (BN and B∗N) states, whose minimal quark content is
uuddc̄ (uuddb̄) [33–41]. Therefore, they are genuinely exotic states whose bound states
are stable against a strong decay. Such states are analogue of the pentaquark Θ+

composed of uudds̄ in the strangeness sector [34,42–47]. Experimentally, the H1 col-
laboration reported the charmed pentaquark with the mass 3099 MeV at HERA [48],
which is about 150 MeV above the D̄∗N threshold, while it has not been confirmed
yet. However, the charmed and bottom pentaquark states are expected to be found
near the thresholds as a hadronic molecule in analogy with exotic meson sectors.

The hadronic molecules as a bound or resonant states formed a D or D∗ meson (B̄
or B̄∗ meson) and a nucleon for non-exotic channels are also interesting [49–66]. Since
the DN and D∗N (B̄N and B̄∗N) molecules have ordinary flavor structures of three
quarks, they are intimately related to the ordinary heavy baryons [67], Λc, Σc, Σ

∗
c

and their excited states for the charm sector, and Λb, Σb, Σ
∗
b and their excited states

for the bottom sector, while the D̄N and BN states are genuinely exotic states.
The excited states of the ordinary baryons have been studied in the quark model
extensively [68, 69]. However, near the DN and D∗N (B̄N and B̄∗N) thresholds, it
is expected that the properties of such baryon states are strongly affected by DN and
D∗N (B̄N and B̄∗N) states. There would be even such states that are dominated by
the molecular components.

The attraction between a heavy meson (D̄ or D (B or B̄)) and a nucleon motivates
us to explore the few-body problems in exotic nuclei with heavy quarks, because it
is naturally expected that the binding energy becomes larger as the baryon number
increases. In the light flavor sector, it has been studied that the hadron-nucleon
interaction gives us rich phenomena in few-body systems such as the impurity effects.
For instance, the modifications of the nuclear properties, such as size, shape, cluster
and shell structures, and collective motions, induced by bound hadrons as an impurity
can be investigated. The nuclear shrinking for hypernuclei, e.g. 6

ΛHe,
7
ΛLi and

9
ΛBe, has

been studied [70–72]. In K̄ nuclei, the attractive interaction between a K̄ meson and
a nucleon causes high density states [73,74] which have never been realized in normal
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nuclei. In the heavy flavor sector, we can also expect such impurity effects caused by
heavy mesons. In addition, since D̄ and D mesons (B and B̄ mesons) contain a light
quark, the mass modification of the heavy mesons can be observed as discussed in the
systems of vector mesons, ρ, ω and φ, in the nuclear matter. This is related to partial
restoration of chiral symmetry breaking in the nuclear medium [75]. There have been
many works for heavy mesons in nuclear matter with infinite volume [76–87] and in
atomic nuclei such as 12C, 40Ca and 208Pb with larger baryon numbers [81,83,88–91].
On the other hand, there have been a few studies for few-body systems of heavy
mesic nuclei so far in the literature [92, 93]. In particular, the D̄ and B nuclei are
manifestly exotic states whose bound states have no lower hadronic channel connected
by a strong decay. We emphasize that the counterpart of the K nuclei has not been
discussed due to the repulsive force between a K meson and a nucleon [94], while
the K̄ nuclei for the non-exotic channel is a topic of great current interest in the
strangeness sector. Therefore, the D̄ and B nuclei are unique as exotic meson-nucleus
systems.

1.2 Heavy quark spin symmetry and one pion

exchange potential
The hadronic molecules are expected to be a loosely bound or resonant states which
are spatially extended. Therefore, the one pion exchange potential (OPEP) as a long
range force is expected to be important. In particular, the tensor force of the OPEP
yields a strong attraction through mixing of L and L±2 waves, where L stands for an
orbital angular momentum. This mechanism is induced by the pseudoscalar nature
of the pion, and can be seen in the deuteron, where the tensor force mixing 3S1 and
3D1 channels generates a strong attraction [95, 96]. In the heavy meson systems,
the OPEP is enhanced by a new symmetry which emerges in the heavy quark limit
(mQ → ∞). This is called the heavy quark spin symmetry.

In the heavy flavor sector, the chiral symmetry and the heavy quark spin symmetry
are essential to provide the OPEP in systems containing heavy mesons Qq̄ (Qq̄). The
chiral symmetry is a symmetry for the light quarks whose masses are smaller than the
scale of a nonperturbative strong dynamics ΛQCD. The spontaneous breaking of chiral
symmetry provides the pion as a Nambu-Goldstone boson [97, 98]. In contrast, the
heavy quark spin symmetry appears when a quark mass is an infinite value [99–103].
This is applied approximately to a heavy quark whose mass is much larger than
ΛQCD. In the heavy quark limit (mQ → ∞), a spin-dependent force between quarks
is suppressed because it is proportional to inverse of the quark masses. Therefore, the
heavy quark spin sQ is decoupled from the total angular momentum j of the brown
muck. The brown muck is defined as everything other than the heavy quark in the
hadrons, e.g. light quarks and gluons. The spin decoupling leads to spin degeneracy
of the states. In a system with a single heavy quark, degenerate states with total
angular momentum and parity, (j − 1/2)P and (j + 1/2)P , emerge for j 6= 0, while
non-degenerate state emerges for j = 0 [103, 104]. For the heavy mesons, therefore,
a heavy pseudoscalar meson P with JP = 0− and a heavy vector meson P ∗ with
JP = 1− are degenerate. Indeed, the mass splitting between D (B) and D∗ (B∗)
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mesons is small, mD∗ −mD ∼ 140 MeV and mB∗ −mB ∼ 45 MeV. The small mass
splittings in the heavy flavor sectors should be compared with the large mass splittings
in the light flavor sectors, about 400 MeV for K and K∗ mesons and about 600 MeV
for ρ and π mesons.

Because the Yukawa vertices of PP ∗π and P ∗P ∗π generate the OPEP through
the PN − P ∗N mixings in the PN molecules, this interaction becomes important
especially when P and P ∗ mesons are degenerate. Here, we note that only P meson
cannot generate the OPEP because the PPπ vertex is forbidden due to the parity
conservation. For the light meson systems, the mixing effect is much suppressed
because of large mass splittings between π and ρ, and K and K∗. Therefore, the
OPEP plays a minor role in πN and KN systems.

1.3 Spin degenerate states in the heavy quark limit
The heavy quark spin symmetry manifests the spin degeneracy of the states with
heavy (anti-)quarks as mentioned in the previous section. In the state with a sin-
gle heavy (anti-)quark, existence of doublet states with (j − 1/2)P and (j + 1/2)P

for j 6= 0 and singlet states for j = 0 is expected. The doublet and singlet states
have been discussed in the ordinary heavy hadrons, e.g. Λc as the singlet state,
and D and D∗ mesons and Σc and Σ∗

c baryons with the small mass splittings as
the doublet states [69, 100, 101, 103, 105–108]. The degeneracy can be also general-
ized to multi-hadron systems such as the PN molecules and exotic nuclei with heavy
hadrons [104,109]. For such systems, the brown muck has a bit more complex struc-
ture composed not only of light quarks and gluons in the heavy hadrons, but also of
light hadrons, while the brown muck in the normal hadrons contains only the light de-
grees of freedom in the heavy hadrons. However, both in the normal and exotic heavy
hadrons, the brown muck is useful to classify the states with heavy quarks because
the total angular momentum j of the brown muck is conserved in the heavy quark
limit. This is expected to provide us with information to study the mass spectra,
decays and productions of the (non-)degenerate states in experiment.

In the thesis, the possible existences of the PN states, being D̄N (BN) for exotic
channels and DN (B̄N) for non-exotic channels, and the three-body PNN states,
being D̄NN (BNN) for the exotic channels, are investigated. Respecting the heavy
quark symmetry and chiral symmetry, the interaction Lagrangians for a heavy meson
with a light meson, π, ρ and ω, are constructed as shown in chapter 2. We consider
the one boson exchange potential produced by those Lagrangians. The tensor force of
the PN−P ∗N mixing component is expected to generate a strong attraction between
constituent hadrons. By solving the coupled-channel Schödinger equations for PN
and P ∗N channels, we obtain bound and resonant states numerically. The two-body
and three-body states are discussed in chapter 3 and in chapter 4, respectively.

For exotic channels, we emphasize that the D̄N (BN) and D̄NN (BNN) are
unique as genuinely exotic meson-baryon systems, because the counterparts of KN
and KNN in the strangeness sector do not exist due to the repulsive interaction
between a K meson and a nucleon.



1.3 Spin degenerate states in the heavy quark limit 5

For non-exotic channels, the DN and D∗N (B̄N and B̄∗N) channels only are
considered. In reality, however, such hadronic molecules do not necessarily correspond
to the observed states, because there should be couplings not only to three quark
states, Λc, Σc and Σ∗

c (Λb, Σb and Σ∗
b), but also to other meson-baryon states such as

πΛc, πΣc and πΣ
∗
c (πΛb, πΣb and πΣ∗

b). However, we may expect that such couplings
are small for DN and B̄N baryons near the thresholds. The reasons are that the wave
functions of hadronic molecules are spatially large as compared to the conventional
three quark states, and that the transitions, e.g. from DN (B̄N) to πΣc (πΣb), are
suppressed by a heavy quark exchange. From those points of view, in the present
discussion, we focus on the role of the DN and D∗N (B̄N and B̄∗N) sectors and
study the bound or resonant states generated by D(∗)N and B̄(∗)N .

Furthermore, we discuss the spin degeneracy of the exotic PN and PNN states in
the heavy quark limit in chapter 5. The brown muck is utilized to understand the
spin structures of the molecules states.

The final chapter is devoted to a summary of the thesis.
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Chapter 2

Heavy quark symmetry and

Effective Lagrangian for

heavy mesons.

2.1 Introduction
The heavy quark symmetry can be used to describe the properties of the hadrons
containing the heavy quarks Q [99–103]. The symmetry arises in the effective La-
grangian of QCD in the heavy quark limit (mQ → ∞), which is called Heavy quark
effective theory (HQET) [101–103, 110–112]. In the real world, this is applied to the
heavy quarks (Q = c, b and t) whose masses are much larger than the scale ΛQCD,
while there are corrections, of order ΛQCD/mQ. The heavy quark symmetry implies
that (i) the dynamics is independent of the heavy quark flavors, and (ii) the dynamics
is independent of the spin-flip of the heavy quarks. Thus, the flavor-spin symmetry
gives relations between properties of heavy hadrons, for instance D̄ and B mesons
which are pseudoscalar mesons with different heavy flavors, and D̄ and D̄∗ mesons
which are charmed mesons with different spins.

The effective Lagrangian for heavy mesons with light mesons is constructed by
the chiral perturbation theory as satisfying the heavy quark symmetry and chiral
symmetry. The spin symmetry for the heavy quarks leads to remarkable feature
that both heave pseudoscalar meson P and heavy vector meson P ∗ are considered
as fundamental degrees of freedom in the dynamics. Since the vertices of PP ∗π and
P ∗P ∗π generate the OPEP, the spin symmetry enhances the OPEP in the heavy
meson systems.

In this chapter, we introduce the heavy quark symmetry in the HQET, and the
chiral lagrangian which is used in the construction of the meson exchange potentials
in the systems of a heavy meson and a nucleon, addressed in the thesis.
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2.2 Heavy quark symmetry and heavy quark

effective theory
Heavy quark symmetry is manifested by the HQET being good approximation to
QCD, when the quark mass is much larger than ΛQCD. The HQET provides processes
where the heavy quark bound in a hadron interacts with light degrees of freedom by
exchanging the soft gluons.

Let us consider the heavy quark moving with the hadron at the velocity v, and
being almost on-shell. In the hadron, the heavy quark is surrounded by the brown
muck. The brown muck is defined as everything other than the heavy quark in the
hadron, i.e. light (anti-)quarks and gluons. The momentum of the heavy hadron is
given as

Pµ
H =MQv

µ, (2.1)

with the heavy hadron mass MQ. The four-velocity vµ satisfies v2 = 1. The heavy
quark mass mQ is expected to be nearly equal to the heavy hadron mass, namely
mQ ∼ MQ. The heavy quark also carries nearly all of momentum of the heavy
hadron, while the brown muck carries a small momentum qµ. The momentum of the
heavy quark can be written as

Pµ
Q = Pµ

H − qµ = mQv
µ + kµ , (2.2)

where k is the residual momentum expressed by

kµ = (MQ −mQ)v
µ − qµ , (2.3)

which is of order ΛQCD.
The heavy quark field Q(x) is separated into two components as

Q(x) = exp (−imQv · x) [hv(x) +Hv(x)] , (2.4)

where hv(x) and Hv(x) are upper and lower components of Q(x) defined as

hv(x) = exp (imQv · x)P+Q(x) , (2.5)

Hv(x) = exp (imQv · x)P−Q(x) . (2.6)

The phase factor is chosen to describe that the space-time dependence of the fields is
weak. P+ and P− are positive and negative energy projection operators:

P± =
1±6v
2

. (2.7)

The projection operators satisfy

P 2
± = P± , P±P∓ = 0 . (2.8)
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hv annihilates a heavy quark with velocity v, and Hv create a heavy antiquark with
velocity v. From Eq. (2.7), the fields hv and Hv are transformed by

6vhv = hv , 6vHv = −Hv . (2.9)

As for a hadron containing a heavy antiquark, the field is defined as

Q(x) = exp (imQv · x)
[
h−v (x) +H−

v (x)
]
, (2.10)

where

h−v (x) = exp (−imQv · x)P−Q(x) , (2.11)

H−
v (x) = exp (−imQv · x)P+Q(x) . (2.12)

The QCD Lagrangian for heavy quarks is written as

LQCD = Q̄ (i6D −mQ)Q , (2.13)

where the covariant derivative is given by Dµ = ∂µ + igAa
µT

a with the gluon field Aa
µ

and the generators of SU(3), T a. Inserting the field Q(x) in Eq. (2.4) into the QCD
Lagrangian, we obtain

LQCD = h̄viv ·Dhv − H̄(iv ·D + 2mQ)Hv + h̄vi6D⊥Hv + H̄vi6D⊥hv . (2.14)

The transverse part of the covariant derivative is written as

6D⊥ = γµ (gµν − vµvν)D
ν = 6D−6v(v ·D) , (2.15)

which is orthogonal to the velocity v, namely v·6D⊥ = 0.
As the next step, the field Hv is eliminated by using the equation of motion of QCD

as

(i6D −mQ)Q = 0

→ (i6D −mQ) exp (−imQv · x) [hv(x) +Hv(x)] = 0

→ i6Dhv + (i6D − 2mQ)Hv = 0 . (2.16)

Premultiplying it by P−, we obtain

i6D⊥hv − (iv ·D + 2mQ)Hv = 0 . (2.17)

This can be transformed into

Hv = (iv ·D + 2mQ − iε)−1i6D⊥hv . (2.18)

Substituting Eq. (2.18) into the QCD Lagrangian in Eq. (2.14) yields the effective
Lagrangian

Leff = h̄viv ·Dhv + h̄vi6D⊥(iv ·D + 2mQ − iε)−1i6D⊥hv . (2.19)
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The second term can be expanded in iD/mQ. Using the identity

i6D⊥i6D⊥ =

[
(iD⊥)

2 +
1

2
igσαβG

µν

]
, (2.20)

where [Dµ, Dν ] = igGµν is the gluon field strength tensor, we derive the effective
Lagrangian at tree level as

Leff = h̄viv ·Dhv + h̄v
(iD⊥)

2

2mQ
hv + h̄v

igσαβG
µν

2mQ
hv +O(1/m2

Q) . (2.21)

The leading term does not contain the dependence of heavy quark mass and spin.
Hence, in the heavy quark limit, the Lagrangian manifests spin and flavor symmetries,
namely heavy quark flavor and spin symmetries. The heavy flavor symmetry indicates
that dynamics is not changed under the exchange of heavy quark flavors. The heavy
quark spin symmetry indicates that dynamics is not changed by the spin flip of the
heavy quark. The second and third terms which are proportional to the inverse of
heavy quark mass mQ violate the heavy quark symmetry in the finite heavy quark
mass. The second term is the heavy quark kinetic energy which breaks the flavor
symmetry. The third term describes the spin-dependent interaction between the heavy
quark and the gluon field. Hence, this term violates both flavor and spin symmetries.

The heavy quark spin symmetry shows us remarkable feature in the heavy hadron
systems. Because the heavy quark spin symmetry emerges due to the suppression
of the spin-dependent forces such as the third term in Eq. (2.21), it leads to the
separation of the heavy quark spin sQ and the total angular momentum j of brown
muck. Thus, the spin symmetry induces the spin degeneracy of the heavy hadron.
For hadrons containing a single heavy quark (sQ = 1/2), the states with total angular
momentum and parity (j−1/2)P and (j+1/2)P for j 6= 0 are degenerate in the heavy
quark limit, while the non-degenerate states appear for j = 0. The spin degeneracy
has been discussed in the normal heavy hadrons as the observation of the small mass
splittings between the heavy hadrons with different spins in the charm and bottom
sectors. For the heavy mesons, the mass degeneracy of the heavy pseudoscalar and
vector mesons are present: the mass splitting of D and D∗ mesons for the charm
sector are about 140 MeV, and that of B and B∗ mesons for the bottom sector are
about 45 MeV. They can be compared with the splitting in the light quark sector:
mρ −mπ ∼ 600 MeV and mK∗ −mK ∼ 400 MeV. The small mass splittings are also
seen in the heavy hadrons with JP = 1/2+ and 3/2+ such as mΣ∗

c
−mΣc ∼ 65 MeV

and mΣ∗
b
− mΣb

∼ 20 MeV for the charm and bottom baryons, respectively. The
heavy quark spin symmetry also manifests the spin degeneracy in the multi-hadron
states with heavy quarks, such as hadronic molecules and exotic nuclei [104,109]. The
spin degeneracy for the hadronic molecules will be discussed in Chapter 5.

2.3 Heavy meson effective Lagrangian
In this section, we describe the effective Lagrangian for the heavy meson interacting
with the pion and the vector mesons (ρ and ω). For the hadronic molecules addressed
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in this study, the effective degrees of freedom are hadrons such as D̄ andB mesons, and
nucleon. From the effective Lagrangian, the one boson exchange potentials between
constituent hadrons are constructed.

First of all, the field operators of the heavy pseudoscalar meson P and the heavy
vector meson P ∗ are introduced in Sec. 2.3.1. Second, the chiral Lagrangian for the
heavy mesons with Nambu-Goldstone bosons is constructed in Sec. 2.3.2. Finally, in
Sec. 2.3.3, the effective Lagrangian for the heavy mesons with the light vector mesons
are obtained.

2.3.1 Heavy meson fields

The heavy mesons composed of Q̄q (Qq̄) with negative parity are represented by the
4× 4 matrix Ha [113–118] as

Ha =
1+6v
2

[
P ∗
aµγ

µ − Paγ5
]
, (2.22)

H̄a = γ0H
†
aγ0 =

[
P ∗†
aµγ

µ + P †
aγ5
] 1+6v

2
, (2.23)

which are written as a linear combination of the Pa and P ∗
a meson fields, where Pa

(P ∗
a ) is annihilation operator which destroys P (P ∗) mesons with the velocity v. The

pseudoscalar and vector meson fields are normalized as

〈0 P P (pµ)〉 =
√
p0 , (2.24)〈

0 P ∗
µ P ∗(pµ, λ)

〉
= ε(λ)µ

√
p0 , (2.25)

where ε(λ)µ is the polarization vector of P ∗ with polarization λ. The positive energy
projection operator (1+ 6v)/2 chooses the upper component of the heavy quark. The
subscript a is for light flavors (u, d, s).

Under the Lorenz transformation,

Ha → D(Λ)HaD(Λ)−1 , (2.26)

where D(Λ) is the Lorenz transformation matrix for spinors. Under the heavy quark
spin transformation,

Ha → SHa, (2.27)

where S belongs to SU(2), and satisfies [6v, S] = 0.

2.3.2 Effective Lagrangian with light pseudoscalar mesons

Let us show the effective Lagrangian for the heavy meson with the Nambu-Goldstone
(NG) bosons. The Lagrangian is described by the chiral perturbation theory [119–
123], where is consistent with the symmetries, namely the heavy quark and chiral
symmetries, and expressed as the expansion in terms of powers of Q/Λχ, with a small
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momentum or pion mass Q, and chiral symmetry breaking scale Λχ ∼ 1 GeV. The
NG bosons are expressed by

ξ =
√
Σ = exp (iM/fπ) , (2.28)

where fπ = 132 MeV is the pion decay constant and

M =



π0

√
2
+

η√
6

π+ K+

π− − π0

√
2
+

η√
6

K0

K− K̄0 −
√

2

3
η

 . (2.29)

The NG boson Σ builds up the chiral Lagrangian as

Lchiral =
1

8
f2πTr

[
∂µΣ∂µΣ

†] , (2.30)

at the lowest order in the derivatives, and in the massless limit. The Lagrangian is
invariant under the transformation of SU(3)L⊗SU(3)R,

Σ → gLΣg
†
R . (2.31)

Under this chiral transformations, ξ(x) and Ha are

ξ(x) → gLξ(x)U
†(x) = U(x)ξ(x)g†R (2.32)

Ha → HbU
†
ba . (2.33)

The matrix U(x) belongs to the SU(3)v subgroup. The NG bosons interact with the
heavy mesons through the covariant derivative

Dµ
ab = δab∂

µ + V µ
ab , (2.34)

with the vector current

V µ =
1

2

(
ξ†∂µξ + ξ∂µξ†

)
, (2.35)

and through the axial current

Aµ =
1

2

(
ξ†∂µξ − ξ∂µξ†

)
. (2.36)

The V µ and Aµ are transformed as

V µ → UV µU† + U∂µU† , (2.37)

Aµ → UAµU† . (2.38)
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At the leading order in the momentum expansion and in the 1/MQ expansion (MQ

is a mass of the heavy meson), the strong interactions of the heavy meson and NG
bosons [113–118] are described by

LpsHH = iTr
[
HbvµD

µ
baH̄a

]
+ igTr

[
Hbγµγ5A

µ
baH̄a

]
. (2.39)

The vector current in the first term in Eq. (2.39) leads to a coupling of even numbers
of the NG bosons with the heavy meson, while the second term with the axial current
expresses a coupling of odd numbers of the NG bosons. Hence, the one pion exchange
potential is constructed by the second term as shown in Sec. 3.2.

The second term in Eq. (2.39) includes the interactions of heavy mesons (P, P ∗)
with a light pseudoscalar meson Mps as vertices of PP ∗Mps and P ∗P ∗Mps:

LpsPP∗ = 2
g

fπ
(P †

aP
∗
bµ + P ∗†

aµPb)∂
µMba , (2.40)

LpsP∗P∗ = 2i
g

fπ
ενµαβvµP

∗†
aβP

∗
bν∂αMba . (2.41)

The PPMps vertex is forbidden due to the parity conservation. The coupling constant
g for the pion (expressed by gπ) can be fixed by the observed width of the D∗ → Dπ
decay. At the rest frame of the D∗ meson, the decay width Γ(D∗ → Dπ) is

Γ(D∗ → Dπ) =
|pπ|

8πmD∗
|M |2 , (2.42)

where

pπ =

√(
m2

D∗ −m2
D +m2

π

2mD∗

)2

−m2
π . (2.43)

The scattering amplitude |M | is obtained by the Lagrangian in Eq. (2.40), and there-
fore we obtain the decay widths [103,118]

Γ(D∗+ → D0π+) =
g2π

6πf2π
|pπ|3 , (2.44)

Γ(D∗+ → D+π0) =
g2π

12πf2π
|pπ|3 . (2.45)

From the experimental values, the D∗+ decay width Γ = 96 KeV, and the fractions
Γ(D∗+ → D0π+)/Γ = 0.677 and Γ(D∗+ → D+π0)/Γ = 0.307 [124], we obtain
|gπ| = 0.59. The coupling of the D∗Dπ vertex (gD∗Dπ) is also studied by other
approaches. The lattice QCD simulation in Ref [125] predicted gD∗Dπ = 18.8±2.3+1.1

−2.0

with systematic and statical errors. The definition is related to gπ through gD∗Dπ =
2
√
mDmD∗gπ/fπ, and therefore they obtained a large value, gπ = 0.67± 0.08+0.04

−0.06.
In the heavy quark limit, we can use gπ with the same value for Eqs. (2.40) and

(2.41) from the heavy quark spin symmetry. For finite heavy quark masses, however,
the 1/MQ corrections split the couplings for PP ∗π and P ∗P ∗π vertices as discussed
in Refs. [103,118,126–130].
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2.3.3 Effective Lagrangian with light vector mesons

The interaction Lagrangian for heavy mesons with light vector mesons is introduced
by the hidden gauge symmetry approach [131].

The pseudoscalar meson field Σ is written as

Σ = LR† . (2.46)

The chiral Lagrangian in Eq. (2.30) is invariant under the transformation of
SU(3)L⊗SU(3)R⊗SU(3)H ,

L→ glLh
† , (2.47)

R→ gRLh
† , (2.48)

where h ∈ SU(3)H is a local gauge transformation [118, 132]. When we chose the
gauge fixing L = R = ξ, this is the same as the Lagrangian in the previous section.
The vector and axial currents are then expressed as

V µ =
1

2

(
L†∂µL+R†∂µR

)
, (2.49)

Aµ =
1

2

(
L†∂µL−R†∂µR

)
, (2.50)

which are transformed as

V µ → hV µh† + h∂µh† , (2.51)

Aµ → hAµh† , (2.52)

under the local group SU(3)H . The heavy meson field Ha is transformed as

Ha → Hbh
†
ba . (2.53)

The covariant derivative is give byDµ = ∂µ+V µ with the vector current in Eq. (2.51).
The light vector mesons are introduced as the gauge bosons of the hidden local

symmetry. The vector meson field are defined as

ρµ = i
gV√
2
ρ̂µ , (2.54)

ρ̂µ =


ρ0√
2
+

ω√
2

ρ+ K∗+

ρ− − ρ0√
2
+

ω√
2

K∗0

K∗− K̄∗0 φ

 , (2.55)

where gV = mρ/fπ is the gauge coupling constant of the hidden local symmetry [131].
The field ρµ is transformed as the vector current,

ρµ → hρµh
† + h∂µh

† . (2.56)
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The strong interactions of the heavy meson and the light vector meson [118, 132]
are given

LvHH = −iβTr
[
Hbv

µ(ρµ)baH̄a

]
+ iλTr

[
Hbσ

µνFµν(ρ)baH̄a

]
, (2.57)

where the field tensor Fµν(ρ) is defined as

Fµν(ρ) = ∂µρν − ∂νρµ + [ρµ, ρν ] . (2.58)

This Lagrangian provides vPP , vPP ∗ and vP ∗P ∗ vertices as

LvPP = −
√
2βgV PbP

†
av · ρ̂ba , (2.59)

LvPP∗ = −2
√
2λgV vµε

µναβ(P †
aP

∗
bβ − P ∗†

aβPb)∂ν(ρ̂α)ba , (2.60)

LvP∗P∗ =
√
2βgV P

∗
b P

∗†
a v · ρ̂ba + i2

√
2λgV P

∗†
aµP

∗
bν(∂

µ(ρ̂ν)ba − ∂ν(ρ̂µ)ba) .
(2.61)

The coupling constant β = 0.9 is determined by the vector meson dominance as
discussed in Ref. [133]. Therefore, β can be related to the γρ coupling. The coupling
constants λ = 0.59 GeV−1 are obtained by a form factor of a semileptonic decay of a
heavy meson [117,133].
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Chapter 3

Exotic baryons formed by

heavy meson and nucleon

(2-body system)

3.1 Introduction
In this chapter, the possible existence of two-body hadronic molecules formed by a
heavy meson and a nucleon is discussed both in charm and bottom sectors. As for the
heavy meson, we consider both P (= D̄, B) meson and their antiparticles, P̄ (= D, B̄)
meson‡ . The heavy meson and the nucleon N would compose of the PN molecule for
the exotic channel, and the P̄N molecule for non-exotic channel, drawn in Fig. 3.1.

A unique feature of the D̄N (BN) states is their genuinely exotic flavor structure
with the minimal quark content Q̄qqqq [33–41], where Q̄ is a heavy antiquark and q’s
are light quarks. Therefore, the D̄N (BN) states have no lower channels coupled by
the strong decay and such molecules give us a new aspect of the pentaquark states
with a heavy antiquark. The counterpart, KN molecules, in the strangeness sector
doesn’t exist due to the repulsion between a K meson and a nucleon [94], while the
pentaquark state Θ+ has been investigated [34,42–47].

Fig.3.1 PN and P̄N molecules for the two-body systems.

‡ In this thesis, P (P̄ ) is defined as a meson Q̄q (Qq̄). (For clarity, the P̄ will sometimes be
omitted.)
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The DN (B̄N) states with the non-exotic flavor structure are intimately related
to the ordinary heavy baryons such as Λc and Σc (Λb and Σb). Heavy baryons have
been studied as Qqq states by the standard quark model [68,69]. Recently, the excited
baryon states with a composite structure are discussed. The Λc(2595) is studied as a
deeply quasi-bound state of DN in Ref. [49], which is analogous to the Λ(1405) as a
quasi-bound state of K̄N [8]. The DN interaction is expected to be stronger than the
D̄N interaction because the short-range forces, namely ρ and ω exchanges, for DN
produce a strong attraction, while the ρ exchange is attraction but the ω exchange
is repulsion for D̄N . This can be seen in the light flavor sector. The NN̄ and K̄N
interactions are known to produce the strong attraction rather than the NN and KN
interactions. In the deeply bound systems for DN (and also for B̄N), the couplings
to the three-quark states are not negligible because the size of such composite states
is expected to be small, and constituent hadrons overlap each other. Near the DN
(B̄N) threshold, however, it is expected that the DN (B̄N) molecular components
dominate because the spatially size is extended.

In the systems of a heavy meson and a nucleon, the one pion exchange potential
(OPEP) is expected to play a dominant role to produce a strong attraction because
it is enhanced by the heavy quark spin symmetry. This symmetry manifests in mass
degeneracy of heavy pseudoscalar mesons P = D̄, B (P̄ = D, B̄) and vector mesons
P ∗ = D̄∗, B∗ (P̄ ∗ = D∗, B̄∗) due to the suppression of the spin-dependent forces
between heavy quarks and light degrees of freedom in the heavy hadron [99, 100].
Indeed, the mass splitting between a D̄ (B) meson and a D̄∗ (B∗) meson is small;
140 MeV for D̄ and D̄∗ mesons and 45 MeV for B and B∗ mesons. The small mass
splittings in the heavy flavor sectors should be compared with the large mass splittings,
∼ 400 MeV for K̄ and K̄∗ mesons, and ∼ 600 MeV for π and ρ mesons, in the light
flavor sectors. Because of this, the heavy quark spin symmetry introduces the mixing
of PN and P ∗N states. Therefore, both P and P ∗ mesons are considered on the
same footing as fundamental degrees of freedom in the dynamics. For convenience,
in the following, we introduce a notation P (∗) to stand for P or P ∗. Thanks to the
PN −P ∗N mixing, the OPEP between a P (∗) meson and a nucleon N is supplied by
PP ∗π and P ∗P ∗π vertices [37,134–136].

The importance of the OPEP has been discussed in the nuclear physics. The pion
was introduced by H. Yukawa to explain the nuclear force [137]. The specific features
of the pion are the small mass and the pseudoscalar nature, coming from the fact
that it is a Nambu-Goldstone boson. The small mass of the pion provides the long-
range force, and the pseudoscalar nature leads to the presence of the tensor force
in the OPEP. The tensor force mixing the channels with different orbital angular
momenta is a driving force to produce the bound states of atomic nuclei. In the
deuteron, the tensor force inducing the 3S1−3D1 channel coupling generates a strong
attraction [95,96]. For the PN interaction, this mechanism also emerges through the
mixing of PN and P ∗N channels as shown in Fig. 3.2, and therefore we expect that
the OPEP plays an important role in the hadronic molecules including the heavy
meson. We note that the OPEP does not exist PN − PN only because the PPπ
vertex is forbidden by the parity conservation. The PN − P ∗N mixing becomes
important as the mass splitting between P and P ∗ mesons decreases. Therefore, the
OPEP is more essential in the heavy meson systems due to the heavy quark spin
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Fig.3.2 OPEP between two nucleons (left) and a heavy meson and a nucleon
(right). The tensor force emerges through the NN(3S1)−NN(3D1) mixing for
the deuteron, and the PN(2S1/2) − P ∗N(4D1/2) mixing for the PN state with

JP = 1/2−.

symmetry. In contrast, the mass splitting between K and K∗ mesons, and π and ρ
mesons are much larger than the heavy flavor sectors, mK∗ −mK ∼ 400 MeV, and
mρ − mπ ∼ 600 MeV. Hence, the nature of interactions is expected to be different
from the PN states, and KN (K̄N) and πN states.

Those P (∗)N states can be classified by total angular momentum J , parity P and
isospin I. In the present study, we investigate the states with JP = 1/2±, 3/2±, 5/2±,
7/2± and 9/2± for I = 0 and 1, as summarized in Table. 3.1. As mentioned above, the
channel couplings for PN and P ∗N become important in the P (∗)N states. Therefore,
it is necessary to solve coupled-channel equations for PN and P ∗N channels.

3.2 Heavy meson-Nucleon Interactions

3.2.1 Interaction Lagrangians and Form factors

In this section, we construct the one boson exchange potential between a P (∗) me-
son and a nucleon from the effective Lagrangian introduced in the previous chapter.
We employ the Lagrangians for a light meson (π, ρ, ω) and heavy mesons, given in
Eqs. (2.40)-(2.41) and (2.59)-(2.61), namely

LπPP∗ = 2
gπ
fπ

(P †
aP

∗
bµ + P ∗†

aµPb)∂
µπ̂ba , (3.1)

LπP∗P∗ = 2i
gπ
fπ
ενµαβvµP

∗†
aβP

∗
bν∂απ̂ba . (3.2)

for the pion and

LvPP = −
√
2βgV PbP

†
av · ρ̂ba , (3.3)

LvPP∗ = −2
√
2λgV vµε

µναβ(P †
aP

∗
bβ − P ∗†

aβPb)∂ν(ρ̂α)ba , (3.4)

LvP∗P∗ =
√
2βgV P

∗
b P

∗†
a v · ρ̂ba + i2

√
2λgV P

∗†
aµP

∗
bν(∂

µ(ρ̂ν)ba − ∂ν(ρ̂µ)ba) . (3.5)
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Table.3.1 Various coupled channels for a given quantum number JP in P (∗)N
systems. The channels for the JP state are specified by orbital angular momen-
tum L and total spin S as 2S+1LJ .

JP channels # of channels

1/2− PN(2S1/2) P ∗N(2S1/2,
4D1/2) 3

1/2+ PN(2P1/2) P ∗N(2P1/2,
4P1/2) 3

3/2− PN(2D3/2) P ∗N(4S3/2,
2D3/2,

4D3/2) 4

3/2+ PN(2P3/2) P ∗N(2P3/2,
4P3/2,

4F3/2) 4

5/2− PN(2D5/2) P ∗N (2D5/2,
4D5/2,

4G5/2) 4

5/2+ PN(2F5/2) P ∗N (4P5/2,
2F5/2,

4 F5/2) 4

7/2− PN(2G7/2) P ∗N (4D7/2,
2G7/2,

4G7/2) 4

7/2+ PN(2F7/2) P ∗N (2F7/2,
4F7/2,

4H7/2) 4

9/2− PN(2G9/2) P ∗N (2G9/2,
4G9/2,

4 I9/2) 4

9/2+ PN(2H9/2) P ∗N (4F9/2,
2H9/2,

4H9/2) 4

for the vector mesons, where the scrips π and v are for the pion and vector meson
(ρ and ω), respectively. For pion vertices, there is no πPP vertex due to parity
conservation. The pion and vector meson fields are

π̂ =


π0

√
2

π+

π− − π0

√
2

 =
~τ · ~π√

2
, (3.6)

ρ̂µ =


ρ0√
2
+
ω0

√
2

ρ+

ρ− − ρ0√
2
+
ω0

√
2

 =
~τ · ~ρµ√

2
. (3.7)

Here, ~τ are isospin matrices represented by Pauli matrices. Spherical components
(π±, π0) in Eq. (3.6) are related to cartesian components (π1, π2, π3) as

π± =
π1 ± iπ2√

2
, π0 = π3 . (3.8)

From the heavy quark spin symmetry, we use the coupling constants with same
value for Eqs. (3.1)-(3.2) for gπ, and for Eqs. (3.3)-(3.5) for β and γ. The couplings are
employed both in charm and bottom sectors due to the heavy quark flavor symmetry.
The values are summarized in Table 3.2.
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Table.3.2 Masses and coupling constants of mesons α(= π, ρ, ω) for D̄N and
BN systems [37,134–136]. For DN and B̄N , the signs of gπ, β and λ for vertices
of π and ω are reversed due to G-parity transformation.

Meson mα [MeV] gπ β λ [GeV−1] g2αNN/4π κ
π 137.27 0.59 — — 13.6 —
ρ 769.9 — 0.9 0.56 0.84 6.1
ω 781.94 — 0.9 0.56 20.0 0.0

Table.3.3 Cutoff parameter ΛN and low energy properties of the NN system,
namely binding energy EB , mixing ratio of 3D1 channel PD, relative distance〈
r2
〉1/2

, scattering length a and effective range re. Results for π potential and
πρω potential are compared.

Potential ΛN [MeV] EB [MeV] PD [%]
〈
r2
〉1/2

[fm] a [fm] re [fm]
π 837 2.22 5.4 3.7 5.27 1.50
πρω 846 2.22 5.3 3.7 5.23 1.49

The interaction Lagrangians for nucleons and a light meson are given by Bonn
model [138,139] as

LπNN =
√
2igπNN N̄γ5π̂N = igπNN N̄γ5~τN · ~π , (3.9)

LvNN =
√
2gvNN

[
N̄γµρ̂N +

κ

2mN
N̄σµν∂

ν ρ̂µN

]
, (3.10)

where N = (p, n)T is nucleon field and mN = 940 MeV is the mass of nucleon. The
coupling constants are determined by NN scattering data phenomenologically [139]
and summarized also in Table 3.2.

To parametrize internal structure of hadrons, we introduce dipole-type form factor

Fα(Λ, ~q ) =
Λ2
N −m2

α

Λ2
N + |~q |2

Λ2
P −m2

α

Λ2
P + |~q |2

(3.11)

with cutoff parameters Λ = ΛN ,ΛP , where mα and ~q are the mass and three mo-
mentum of the incoming meson α = π, ρ, ω, respectively. These cutoffs are fixed as
follows. First, the cutoff ΛN for the nucleon vertex is determined to reproduce the
properties of the deuteron, the binding energy, scattering length and effective range,
when we solve the nucleon-nucleon system for π exchange potential and πρω exchange
potentials. The NN potential is also constructed by Eqs. (3.9) and (3.10), and form
factor F (ΛN , ~q) = ((Λ2

N −m2
α)/(Λ

2
N + |~q |2))2. Then, we obtain ΛN = 837 MeV for π

potential, and ΛN = 846 MeV for πρω potential summarized in Table 3.3. We find
that these cutoffs can reproduce the low energy properties of the deuteron and NN
scattering as shown in Table 3.3.
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Second, we fix cutoff parameter ΛP for the heavy meson vertex. We assume the
relation ΛP /ΛN = rN/rP , where rN (rP ) is the matter radius of the nucleon (heavy
meson). From quark model estimation [37], we use ΛD = 1.35ΛN for D̄(∗) (D(∗))
meson, ΛB = 1.29ΛN for B(∗) (B̄(∗)), where rN = 0.58 fm, rD = 0.43 fm and
rB = 0.45 fm.

We would like to give a comment on the meson exchange interaction in our model.
In the present study, we doesn’t consider the σ exchange potential explicitly to sim-
plify our model calculation, while this plays non-negligible role in the realistic NN
potential model. In particular, the σ exchange potential cancels out the contribution
of vector meson (ω) exchange potential. However, we assume that the effect of the σ
exchange potential is in the small value of the cutoff ΛN in Table 3.3. In fact the cutoff
ΛN is smaller than in Bonn potential (over 1 GeV) [138,139], and close to the masses
of vector mesons, 769.9 MeV for ρ meson and 781.94 MeV for ω meson. Therefore, in
our model, the contribution of vector meson exchange potential is suppressed by the
small cutoff ΛN effectively (See Eq.(3.11)). In fact, our NN potential can reproduce
the properties of the deuteron without the σ exchange potential as seen in Table 3.3.

3.2.2 Meson exchange potentials between a heavy meson and

a nucleon

The meson exchange potentials between a heavy meson and a nucleon are obtained
by the second-order Feynman diagrams shown in Fig. 3.3. In the c.m system, the
Feynman amplitude for an α meson exchange is calculated as

−iV̄α(p′, p) = Γα
P ūN (−p′)Γα

NuN (−p) Pα

q2 −m2
α

, (3.12)

where uN is the Dirac spinor for the nucleon, p (p′) is a four-momentum in the initial

(final) state and Γ
(α)
i is a vertex obtained by interaction Lagrangians and the form

factor. Pα is a numerator in the meson propagator; Pα = i for a pseudo-meson and
Pα = −igµν for a vector meson. q is defined as q = p′ − p. Dirac spinors are given by

uN (p, s) =

√
Ep +mN

2mN

(
1

(~σ · ~p)/(Ep +mN )

)
χs , (3.13)

ūN (p, s) = u†(p, s)γ0 =

√
Ep +mN

2mN
χ†
s

(
1

~σ · ~p
Ep +mN

)(
1 0
0 −1

)
=

√
Ep +mN

2mN
χ†
s

(
1 − ~σ · ~p

Ep +mN

)
, (3.14)

with Ep =
√
m2

N + ~p 2 and a Pauli spinor χs. The Dirac spinors are normalized as
ūN (p)uN (p) = 1.

The potentials in the coordinate space are obtained from Eq. (3.12) by performing
the Fourier transformation. As a consequence, we obtain meson exchange potentials
for PN − PN , PN − P ∗N and P ∗N − P ∗N scatterings. Here we consider the static
approximation vµ = (1,~0) in the potentials.
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π, ρ, ω, · · ·

P (∗)(p)

P (∗)(p′)

N(−p)

N(−p′)

Fig.3.3 Feynman diagrams of one boson exchange potentials. Solid (dashed)

line denotes the P (∗) mesons and nucleons N (the exchanged bosons).

The one pion exchange potentials (OPEP) are given by LπPP∗ , LπP∗P∗ and LπNN

as

V π
PN−P∗N (r) = − gπgπNN√

2mNfπ

1

3

[
~ε † · ~σC(r;mπ) + SεT (r;mπ)

]
~τP ·~τN , (3.15)

V π
P∗N−P∗N (r) =

gπgπNN√
2mNfπ

1

3

[
~S · ~σC(r;mπ) + SST (r;mπ)

]
~τP ·~τN , (3.16)

where ~S is the spin-one operator of P ∗, defined by Si
λ′λ = iεijkε

(λ′)†
j ε

(λ)
k , and Sε (SS)

is the tensor operator SO(r̂) = 3( ~O · r̂)(~σ · r̂) − ~O · ~σ with r̂ = ~r/r and r = |~r | for
~O = ~ε (~S ), where ~r is the relative position vector between P (∗) and N . ~σ are Pauli
matrices acting on nucleon spin. ~τP (~τN ) are isospin operators for P (∗) (N). The
central and tensor forces, C(r) and T (r), are written by

C(r;m) =

∫
d3~q

(2π)3
m2

~q 2 +m2
ei~q·~rF (Λ, ~q ) (3.17)

=
m2

4πr

[
e−mr +

Λ2
N −m2

Λ2
P − Λ2

N

e−ΛP r +
Λ2
P −m2

Λ2
N − Λ2

P

e−ΛNr

]
, (3.18)

SO(r̂)T (r;m)

=

∫
d3~q

(2π)3
−~q 2

~q 2 +m2
SO(q̂)e

i~q·~rF (Λ, ~q ) (3.19)

= SO(r̂)
1

4πr3

[
(3 + 3mr +m2r2)e−mr +

Λ2
N −m2

Λ2
P − Λ2

N

(3 + 3ΛP r + Λ2
P r

2)e−ΛP r

+
Λ2
P −m2

Λ2
N − Λ2

P

(3 + 3ΛNr + Λ2
Nr

2)e−ΛNr

]
, (3.20)

respectively.
The vector meson exchange potentials (ρ and ω) are also obtained by LvPP , LvPP∗ ,
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LvP∗P∗ and LvNN as

V v
PN−PN (r) =

βgV gvNN√
2m2

v

C(r;mv)~τP · ~τN , (3.21)

V v
PN−P∗N (r) =

gV gvNNλ(1 + κ)√
2mN

1

3
[−2~ε · ~σC(r;mv) + SεT (r;mv)]~τP · ~τN ,

(3.22)

V v
P∗N−P∗N (r) =

βgV gvNN√
2m2

v

C(r;mv)~τP · ~τN

+
gV gvNNλ(1 + κ)√

2mN

1

3

[
2~S · ~σC(r;mv)− SST (r;mv)

]
~τP · ~τN .

(3.23)

The explicit forms of the meson exchange potentials for each JP are summarized
in Appendix B.2.

3.3 Numerical results of D̄(∗)N and B(∗)N (Exotic

states)
Let us discuss exotic channels for the PN − P ∗N system. To obtain bound and
resonant states, we solve the coupled-channel Schrödinger equations numerically for
PN and P ∗N channels. The total Hamiltonian HJP = KJP + VJP for each JP is
given by the kinetic term KJP summarized in the Appendix B.2 and the potentials
VJP between a P (∗) meson and a nucleon, introduced in the previous section. As for
a method to solve second order differential equations with the channel-couplings, we
apply the renormalized Numerov method developed by B. R. Johnson in Refs. [140–
142]. This method is also applied to P̄N systems for the non-exotic channels in
Sec.3.4.

Two potentials are employed in our calculations, the π potential and πρω potential,
and we discuss the importance of the OPEP in the hadronic molecules.

We present the results for the bound states in Sec. 3.3.1 and the resonances in
Sec. 3.3.2. The obtained energies are summarized in Tables 3.4 and 3.8, and also in
Fig. 3.8.

3.3.1 Bound states

In the present section, we discuss the bound states for the P (∗)N systems. We find
bound states in the (I, JP ) = (0, 1/2−) both for D̄(∗)N and B(∗)N . We emphasize
that they are stable against the strong decay, because there is no lower hadronic state.

The binding energies EB and relative distance between constituent hadrons
〈
r2
〉1/2

are summarized in Table. 3.4. We find that the results of π potential is almost same
as those of πρω potential. In Table. 3.4, the bound state of D̄(∗)N has the small
binding energy, about 2 MeV, which is close to D̄N threshold, and large relative
distance, over 3 fm. Hence, the D̄(∗)N states form a loosely bound state like the
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deuteron. For the bottom sector, the B(∗)N states have large binding energy, about
20 MeV. The corresponding relative distance, over 1 fm, is slightly large compared to
twice of typical hadron size, namely 1 fm.

Table.3.4 Binding energy EB and relative distance
〈
r2
〉1/2

for D̄(∗)N and B(∗)N
bound states. Results for π and πρω potentials are compared.

D̄(∗)N(π) D̄(∗)N(πρω) B(∗)N(π) B(∗)N(πρω)
EB [MeV] 1.6 2.1 19.5 23.0〈
r2
〉1/2

[fm] 3.5 3.2 1.3 1.2

The wave functions of the D̄(∗)N and B(∗)N are displayed in Fig. 3.4. We depict
only the results for the πρω potential because the difference between results for the
π and πρω potentials are small. In Fig. 3.4, the wave function of the D̄N(2S1/2) has
a long tail which is not negligible even at a distance of 10 fm. Both in the charm and
bottom sectors, the PN(2S1/2) channel is most dominant component in the bound
states, while the P ∗N channels are suppressed due to the excess of mass of about 140
MeV for the charm sector and about 45 MeV for the bottom sector. From the wave
functions, we obtain the mixing ratios of PN(2S1/2), P

∗N(2S1/2) and P ∗N(4D1/2)
channels listed in Table 3.5. The mixing ratios of the P ∗N channels are very small in
comparison with ratio of the PN(2S1/2) channel. However, the P ∗N(4D1/2) channel
plays an important role to form the bound state as will be shown later.

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  1  2  3  4  5  6  7  8  9  10

[f
m

-1
/2

]

r [fm]

—

DN(
2
S1/2)

—

D*N(
2
S1/2)

—

D*N(
4
D1/2)

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  1  2  3  4  5  6  7  8  9  10

[f
m

-1
/2

]

r [fm]

BN(
2
S1/2)

B*N(
2
S1/2)

B*N(
4
D1/2)

Fig.3.4 Wave functions of the D̄(∗)N and B(∗)N bound states for the (I, JP ) =
(0, 1/2−) state when the πρω potential is used [39].

To investigate how the bound states are formed, we estimate the energy expecta-
tion values of interaction matrix elements. The expectation values of the π, ρ and
ω exchange potentials, sandwiched by the obtained wave functions, are shown in Ta-
bles. 3.6 and 3.7. We find that the 〈PN(S) V P ∗N(D)〉 component of the π exchange
potential plays a dominant role both in the D̄(∗)N and B(∗)N states. This component
of the OPEP has the tensor force corresponding to the second term in Eq. (3.15) (see
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Table.3.5 Mixing ratios of each channel in the D̄(∗)N and B(∗)N bound states
when πρω potential is used.

PN(2S1/2) P ∗N(2S1/2) P ∗N(4D1/2)

D̄(∗)N 95.76 % 1.56 % 2.68 %
B(∗)N 79.02 % 10.82 % 10.16 %

Table.3.6 Energy expectation values of the D̄N(1/2−) potentials in the bound
states. Each component of π, ρ and ω potentials is listed. All values are in units
of MeV.

Components V π V ρ V ω〈
D̄N(S) V D̄N(S)

〉
0.0 −2.7 3.6〈

D̄N(S) V D̄∗N(S)
〉

−2.4 −5.2 1.0〈
D̄N(S) V D̄∗N(D)

〉
−35.2 3.4 −0.6〈

D̄∗N(S) V D̄∗N(S)
〉

0.4 0.7 0.1〈
D̄∗N(S) V D̄∗N(D)

〉
−5.0 0.6 −0.1〈

D̄∗N(D) V D̄∗N(D)
〉

3.7 −0.9 0.4
Total −38.5 −4.1 4.4

Table.3.7 Energy expectation values of the BN(1/2−) potentials in the bound
states. The same convention is used as Table. 3.6.

Component V π V ρ V ω

〈BN(S)|V |BN(S)〉 0 −5.4 7.0
〈BN(S)|V |B∗N(S)〉 −8.2 −16.4 3.1
〈BN(S)|V |B∗N(D)〉 −90.2 8.3 −1.5
〈B∗N(S)|V |B∗N(S)〉 2.0 3.2 0.6
〈B∗N(S)|V |B∗N(D)〉 −22.3 2.1 −0.4× 10−2

〈B∗N(D)|V |B∗N(D)〉 13.2 −3.2 1.4

Total −105.5 −11.4 10.6

also Eq. (B.16)). The tensor force causing the PN −P ∗N mixing of different angular
momenta by ∆L = 2 generates the strong attraction in the bound states. Although
the mixing ratio of the P ∗N(4D1/2) channel is very small, the channel-coupling of

PN(2S1/2) and P ∗N(4D1/2) is essential to form the bound states. This mechanism

is similar with the deuteron in which the tensor force causing the 3S1 −3 D1 mixing
produces a strong attraction [95,96]. The ratio of the 3D1 channel in the deuteron is
also no more than 5 %.

When the results of the D̄(∗)N and B(∗)N are compared, the B(∗)N state is more
bound than the D̄(∗)N . It is understood as follows. The tensor force mixing PN and
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P ∗N is enhanced , where P and P ∗ mesons degenerate in the heavy quark sector.
Furthermore, the large reduced mass suppresses the kinetic term.

Finally, we find no bound state in the other JP states and isotriplet states.

3.3.2 Scattering states and Resonances

Let us now move to the scattering state above the PN thresholds. We find several
resonances in the isosinglet channel (I = 0).

In the present study, we determine the resonance energy and decay width by ana-
lyzing the phase shift. When a decay width is relatively smaller than corresponding
resonance energy from the threshold, we identify the resonance at the position where
the phase shift crosses π/2. However, it will turn out that the decay widths are not
necessarily small. Hence, we define the resonance position Ere by an inflection point
of the phase shift as discussed in Ref. [143].

3.3.2.1 Negative parity states
First, the results of scattering states with negative parity are shown. In Fig. 3.5, we
present the phase shifts δ of PN(2S1/2), P

∗N(2S1/2) and P ∗N(4D1/2) channels in

the (I, JP ) = (0, 1/2−) when the πρω potential is used. Each phase shift is plotted
as a function of the scattering energy E in the center of mass system. The PN(2S1/2)
phase shift starts at δ = π because of the presence of the bound state shown in the
previous section. Otherwise the energy dependence of all the phase shifts is rather
smooth.

We show the total cross sections of D̄(∗)N and B(∗)N scatterings for the πρω
potential in Fig. 3.6. They start from the maximum value at the threshold and
decrease monotonically. For shallower bound state (for the D̄(∗)N system), the peak
value at the threshold is larger, due to the presence of the bound state near the
threshold. In the limit the binding energy EB → 0, the peak diverges as explained
by the zero-energy resonance.
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Fig.3.5 Phase shift of the D̄(∗)N and B(∗)N scattering states for the (I, JP ) =
(0, 1/2−) when πρω potential is used [39].
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Fig.3.6 Total cross section of the D̄N(2S1/2) and BN(2S1/2) scattering states

for (I, JP ) = (0, 1/2−) when the πρω potential is used [39].
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Fig.3.7 Phase shift of the D̄(∗)N and B(∗)N scattering states for the (I, JP ) =
(0, 3/2−) when πρω potential is used [39]. The D̄∗N and B∗N phase shifts
(shown in the right side) start from the D̄∗N and B∗N thresholds, respectively.
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Table.3.8 Properties of resonances of D̄(∗)N and B(∗)N systems for I = 0. The
energies E are complex as Ere−iΓ/2 where Ere is the resonance energy and Γ/2 is
the half-width. The resonance energies are measured from the lowest thresholds
(DN and B̄N).

JP Potential
D̄(∗)N B(∗)N
E [MeV] E [MeV]

3/2−
π 113.5− i9.7 8.4− i8.0× 10−2

πρω 113.2− i8.6 6.9− i4.7× 10−2

1/2+
π 26.1− i62.6 5.8− i2.9

πρω 26.8− i65.7 5.8− i3.0

3/2+
π 148.2− i5.0 32.3− i14.5

πρω 148.2− i5.0 31.8− i14.4

5/2+
π 177.1− i92.3 58.5− i26.1

πρω 176.0− i87.4 58.4− i24.8

Fig.3.8 Exotic states with negative parity (P = −) and positive parity (P = +)
for I = 0. The energies are measured from the lowest thresholds (D̄N and BN).
The binding energy is given as a real negative value, and the resonance energy
Ere and decay width Γ are given as Ere − iΓ/2, in units of MeV. The values are
given when the πρω potential is used [40].

In the (I, JP ) = (0, 3/2−) states, we obtain resonances above the PN thresholds.
The phase shifts of PN channels shown in Fig. 3.7 indicate the existence of a resonance
at the scattering energy Ere = 113.2 MeV for D̄N and at Ere = 6.9 MeV for BN
when the πρω potential is used. The corresponding half decay widths are 8.6 MeV
for D̄N and 4.7 ×10−2 MeV for BN . The results are also tabulated in Table 3.8 and
displayed in Fig. 3.8. The mechanism of the resonance can be understood by looking
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at the phase shifts in other channels; in particular, we find that those of P ∗N(4S3/2)
start from δ = π, indicating the presence of a bound state in these channels. Indeed,
we checked that, when the PN(2D3/2) channel is ignored and only the P ∗N(4S3/2),

P ∗N(4D3/2) and P ∗N(2D3/2) channels are considered, there are bound states at

EB = 11.5 MeV for D̄∗N and at EB = 21.7 MeV for B∗N , measured from D̄∗N and
B∗N thresholds. Therefore, these resonances are the Feshbach resonances.

We plot the cross section in the (I, JP ) = (0, 3/2−) states shown in Fig. 3.9.
Because there is a resonant state at Ere ∼ 113 MeV in the D̄N scattering and at
Ere ∼ 7 MeV in the BN scattering, the cross section becomes maximum at each
resonance energy.
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Fig.3.9 Total cross section of the D̄N and BN scattering states for (I, JP ) =
(0, 3/2−) when the πρω potential is used [39].

Finally, we note that there is no resonance in JP = 1/2−, 5/2−, 7/2− and 9/2−

for negative parity states.

3.3.2.2 Positive parity states
Now, let us discuss the results of (I, JP ) = (0, 1/2+), (0, 3/2+) and (0, 5/2+). In the
(I, JP ) = (0, 1/2+) channel, we find resonances in both D̄(∗)N and B(∗)N systems.
The phase shifts δ’s of PN(2P1/2), P

∗N(2P1/2) and P ∗N(4P1/2) channels obtained
for the πρω potential are shown in Fig. 3.10. The vertical dashed lines in the figures
represent the positions of D̄∗N and B∗N thresholds. The sharp increase of the phase
shift of the PN(2P1/2) channel indicates the existence of a resonance. A similar
behavior is obtained also when the π exchange potential is employed. The resonance
energies and half decay widths are summarized in Table 3.8 and in Fig. 3.8. We obtain
the resonance energy at 26.8 MeV for D̄(∗)N and at 5.8 MeV for B(∗)N , with the
half decay widths 65.7 MeV and 3.0 MeV, respectively, for the πρω potential. The
difference between two results by the π potential and the πρω potential is very small
and therefore the vector meson exchange interactions play a minor role as seen in the
negative parity states. The attractive force forming the resonance is mainly provided
by the π exchange potential in the PN −P ∗N mixing component. As a consequence,
the mixing effect yields the so-called shape resonance in the PN(2P1/2) channel with
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the p-wave centrifugal barrier. Finally, the total cross sections for the D̄(∗)N and
B(∗)N scatterings when the πρω potential is used are shown in Figs. 3.11 and 3.12,
respectively. The peaks are found at around each resonance energy, 26.8 MeV and
5.8 MeV, for D̄(∗)N and B(∗)N , respectively.
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Fig.3.10 Phase shift of the D̄(∗)N and B(∗)N scattering states for (I, JP ) =
(0, 1/2+) when the πρω potential is used [40].

In the (I, JP ) = (0, 3/2+) state, we find a resonance for each D̄(∗)N and B(∗)N
state. However, the structures of the resonances are different. For the D̄(∗)N state,
The phase shifts δ’s of D̄N(2P3/2), D̄

∗N(2P3/2), D̄
∗N(4P3/2) and D̄∗N(4F3/2) are

shown in Fig. 3.13. In the phase shift of D̄N(2P3/2), there is a small peak structure

at the D̄∗N threshold, which is interpreted as a cusp. Indeed we have checked nu-
merically that the location of the peak is precisely at the D̄∗N threshold. On the
other hand, the phase shift of D̄∗N(4P3/2) which rises sharply indicates the presence

of a resonance above the D̄∗N threshold in this channel. The resonance energies and
decay widths are summarized in Table 3.8 and in Fig. 3.8. When the D̄N−D̄∗N mix-
ing is ignored, there still exists a resonance at the resonance energy 145.5 MeV with
the decay width 6.1 MeV, which are close to the original values in the full channel-
couplings. Therefore, the obtained resonance is a shape resonance generated mainly
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Fig.3.11 Total cross section of the
D̄(∗)N scattering states for (I, JP ) =
(0, 1/2+) when the πρω potential is
used [40].
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Fig.3.12 Total cross section of the
B(∗)N scattering states for (I, JP ) =
(0, 1/2+) when the πρω potential is
used [40].

by the p-wave centrifugal barrier in the D̄∗N(4P3/2) states. In the resonance, the

D̄N − D̄∗N mixing effect is not significant. We show the cross section for D̄N(4P3/2)
for the πρω potential in Fig. 3.15, in which the peak appears at the resonance energy.
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Fig.3.13 Phase shifts of the D̄(∗)N scattering states with (I, JP ) = (0, 3/2+)
when the πρω potential is used [40].

For the BN state with (I, JP ) = (0, 3/2+), the phase shifts δ’s of BN(2P3/2),

B∗N(2P3/2), B
∗N(4P3/2) and B∗N(4F3/2) are plotted in Fig. 3.14. The sharp in-

crease of the phase shift passing through π/2 in BN(2P3/2) as an indication of a

resonance. We also find that the phase shift in B∗N(4P3/2) starts from π. There-

fore, we conclude that the resonance in the BN state with (I, JP ) = (0, 3/2+) is a
Feshbach resonance. Indeed, when we switch off the BN(2P3/2) channel, we obtain
a bound state of B∗N which energy is close to the original resonance position. The
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resonance energy is 31.8 MeV and the decay width is 28.7 MeV as summarized in
Table 3.8 and in Fig. 3.8. The resonance locates below the B∗N threshold, while the
D̄(∗)N resonance in the (I, JP ) = (0, 3/2+) is above the D̄∗N threshold. The total
cross section plotted in Fig. 3.16 also show a peak at around the resonance energy.
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Fig.3.14 Phase shifts of the B(∗)N scattering states with (I, JP ) = (0, 3/2+)
when the πρω potential is used [40].
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In the (I, JP ) = (0, 5/2+) state, we find a resonance for each D̄(∗)N and
B(∗)N above the P ∗N threshold. The phase shifts δ’s of PN(2F5/2), P

∗N(4P5/2),

P ∗N(2F5/2) and P ∗N(4F5/2) are shown in Fig. 3.17. Small peak structures in the

phase shifts of D̄N(2F5/2) and BN(2F5/2) are interpreted as cusps. Above the

P ∗N threshold, the phase shifts of D̄∗N(4P5/2) and B∗N(4P5/2) rise up and these
structures indicate the presence of resonances. The resonance energies are 176.0
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MeV for D̄∗N and 58.4 MeV for B∗N , and the decay widths are 174.8 MeV and
49.6 MeV, respectively. We summarize the results in Table 3.8 and in Fig 3.8.
When the PN − P ∗N mixing is ignored, the resonant states in the D̄∗N(4P5/2) and

B∗N(4P5/2) channels still exist at the resonance energies close to the values from
the full channel-couplings. Therefore, these resonant states are shape resonances
generated mainly by the p-wave centrifugal barrier in the P ∗N(4P5/2) channel.
In the resonance, the PN − P ∗N mixing effect plays a minor role. Finally, The
cross sections for D̄∗N(4P5/2) and B∗N(4P5/2) are plotted in Figs. 3.18 and 3.19,
respectively. They also have a peak structure around the resonance energies.
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Fig.3.17 Phase shifts of the D̄(∗)N and B(∗)N scattering states with (I, JP ) =
(0, 5/2+) when the πρω potential is used [40].

3.3.3 Summary and Discussion for D̄(∗)N and B(∗)N

Brief summary for results of D̄(∗)N and B(∗)N is given in this section. The exotic
states, being D̄(∗)N and B(∗)N , have been investigated. They have genuinely exotic
flavor structure whose minimal quark content is Q̄qqqq. We employ the π, ρ and
ω exchange potentials as an interaction between a heavy meson and a nucleon, and
the π and πρω potentials are compared. We have found the bound states in the
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(I, JP ) = (0, 1/2−) and the resonances in (I, JP ) = (0, 1/2+), (0, 3/2±) and (0, 5/2+)
both for D̄(∗)N and B(∗)N .

In each (I, JP ) state, we verify that the results of the π potential is similar to those
of the πρω potential. It means that both D̄(∗)N and B(∗)N systems are dominated
almost by the long range force due to the π exchange.

The mixing between PN and P ∗N channels is enhanced due to the heavy quark spin
symmetry and becomes important in the P (∗)N states (except for the states above
the P ∗N threshold). The effect of the mixing which induces the tensor force becomes
more significant for the bottom sector where the mass difference between PN and
P ∗N is smaller. This causes differences in results in the charm and bottom sectors.
For the (I, JP ) = (0, 1/2−), the tensor force in the PN(2S1/2)−P ∗N(4D1/2) mixing

component plays an important role in the P (∗)N bound states. The P (∗)N resonances
with (I, JP ) = (0, 1/2+) are generated with the p-wave centrifugal barrier in the PN
channel by the attraction induced from the PN − P ∗N mixing. The mixing effect
is also significant for the Feshbach resonances in the P (∗)N with (I, JP ) = (0, 3/2−)
and the BN with (I, JP ) = (0, 3/2+). Above the P ∗N threshold, however, the D̄N
resonance with (I, JP ) = (0, 3/2+) and the PN resonances with (I, JP ) = (0, 5/2+)
are generated with the p-wave centrifugal barrier in the P ∗N channel mainly by the
P ∗N interaction, in which the PN − P ∗N mixing effect plays a minor role. For the
resonances in the P (∗)N states, the combination of the centrifugal barrier in higher
partial wave and the attraction caused by the PN −P ∗N mixing yields more variety
of resonance structures. The mechanisms of the resonance structure are summarized
in Table 3.9.

To compare the result of the negative parity states with the result of the positive
parity states, energy levels for the exotic P (∗)N states , shown in Fig. 3.8, are useful.
We find that the bound states exist in the negative parity states, while no bound
state exists in the positive parity states. This is because the lowest state PN(2P1/2)

in JP = 1/2+ has a p-wave orbital angular momentum L = 1, while PN(2S1/2) in
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JP = 1/2− has an s-wave orbital angular momentum L = 0. In the same way, we see
that the resonance energies of the positive parity states tend to be higher than those
of the negative parity states.

Finally, let us discuss the isospin triplet channel. We find no bound and resonant
states in the isospin triplet state (I = 1), while many states are found in the isospin
singlet state (I = 0). The reason can be understood by the isospin factor ~τP · ~τN of
the meson exchange potentials. The isospin factor for I = 0 is ~τP · ~τN = −3, while
the absolute value of the isospin factor for I = 1 is small, ~τP · ~τN = 1. Due to the
small isospin factor, the attraction from isotriplet meson exchanges becomes weak.
In particular, the π exchange potential in which the off-diagonal terms play a crucial
role is sensitive to this factor. Therefore, the isospin triplet state cannot obtain the
strong attraction from the π exchange potential which dominates in the P (∗)N states.

Table.3.9 The mechanism to form the resonances in the D̄(∗)N and B(∗)N states
with (I, JP ) = (0, 1/2±), (0, 3/2+) and (0, 5/2+). All the shape resonances in
PN (P ∗N) with the positive parity are induced by the p-wave centrifugal barrier
in the PN (P ∗N) channel.

(I, JP ) D̄N states BN states

(0, 1/2−) Feshbach resonance
(0, 1/2+) shape resonance in PN
(0, 3/2+) shape resonance in P ∗N Feshbach resonance
(0, 5/2+) shape resonance in P ∗N

3.4 Numerical results of D(∗)N and B̄(∗)N

(Non-Exotic states)

In this section, we consider non-exotic states for the P̄N − P̄ ∗N systems, where P̄ (∗)

denotes D(∗) or B̄(∗) meson composed of Qq̄. The P̄ (∗) mesons are the antiparticle of
P (∗) discussed in Sec. 3.3. The P̄ (∗)N molecule should couple not only to three quark
states (Qqq) but also to other meson-baryon states such as πΛh, πΣh and πΣ∗

h, where

h = c,b. However, it is expected that such couplings are small for D(∗)N and B̄(∗)N
baryons near the thresholds. For the couplings to the three quark states, the wave
functions of P̄ (∗)N molecules are spatially large as compared to the conventional Qqq
states. For the couplings to other meson-baryon states, the transitions, e.g. from P̄N
to πΣh, are suppressed by a heavy quark exchange. From those points of view, in
the present section, we do not consider the channel couplings to other states such as
Qqq and πΣh as long as the relative distance between the P̄ meson and the nucleon
is large. We study the bound and resonant states generated by the D(∗)N and B̄(∗)N
states.

The meson exchange potentials employed in the P̄ (∗)N states are the same as
those in the P (∗)N states, except for the signs of coupling constants of π and ω in
Table 3.2, which are reversed due to G-parity transformation between D(∗) (B̄(∗))
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and D̄(∗) (B(∗)). To obtain the bound states and resonances, the coupled-channel
Schrödinger equations are solved by using the same method for the P (∗)N states as
discussed in Sec. 3.3. In the non-exotic channel, we also compare results for the π
potential with those for the πρω potentials.

First, the results for the isosinglet state (I = 0) are presented. We discuss the
states with JP = 1/2± and 3/2− in Sec. 3.4.1, and then those with JP = 3/2+, 5/2±

and 7/2± in Sec. 3.4.2. In fact, it will turn out that the results in those two categories
have different behaviors. The energies of bound and resonant states are summarized
in Table 3.10 and also presented in Figs. 3.20 and 3.21. The results are shown for the
π and πρω potentials, and the corresponding energy levels are connected by arrows
in Figs. 3.20 and 3.21. The numerical values are measured from the DN and B̄N
thresholds, respectively.

Second, we present the results for the isotriplet state (I = 1) in Sec. 3.4.3. The
energies are shown in Table 3.10 and Fig. 3.22.

3.4.1 JP = 1/2± and 3/2− for I = 0

For (I, JP ) = (0, 1/2−), we find bound states in both of D(∗)N and B̄(∗)N . For
D(∗)N , the binding energies are −14.4 MeV for the π potential and −82.5 MeV for
the πρω potential. The relative radii are 1.51 fm and 0.86 fm, respectively. As
expected, for a larger binding energy, the system becomes smaller. The tensor force
from the π exchange which is the main driving force of the DN -D∗N mixing plays an
important role to form the bound states. In fact, we have verified that neither bound
nor resonant state exists when the tensor force from the π exchange is switched off
and the DN -D∗N mixing is small. For JP = 1/2−, the results in the π and πρω
potentials are very different as indicated in Figs. 3.20 and 3.21. Since both the ρ and
ω exchanges are attractive for the D(∗)N (B̄(∗)N) system, the vector meson exchanges
contribute to form the deeply bound state of the binding energy around 80 MeV. This
contrasts with the result for the D̄(∗)N and B(∗)N systems of truly exotic channels
in Sec. 3.3, where the ρ and ω exchanges play a minor role due to the cancellation of
these two potentials.

We estimate the mixing ratio of various channels in the bound states as summa-
rized in Table 3.11. We observe that, for JP = 1/2− states, the most dominant
component is DN(2S1/2) with the fraction 71.8 %. The second dominant component

is D∗N(4D1/2) with the fraction 20.4 %. Therefore, the tensor force which mixes

the S-wave in DN(2S1/2) and the D-wave in D∗N(4D1/2) is important to provide a
strong attraction.

For B̄(∗)N of (I, JP ) = (0, 1/2−), we also obtain bound states. The binding energies
are −57.8 MeV for the π potential and −145.9 MeV for the πρω potential, and the
relative radii are 0.99 fm and 0.76 fm, respectively. Again the results of the two
potentials are very different with the same reason for the D(∗)N system. As compared
to the D(∗)N system, the binding energy in the B̄(∗)N system is much larger, because
heavier particles suppress kinetic energy. For the mixing ratios, we also find a similar
tendency as we discussed for the D(∗)N system; 56.1 % for B̄N(2S1/2), 13.3 % for

B̄∗N(2S1/2) and 30.6 % for B̄∗N(4D1/2).



38 Chapter 3 Exotic baryons formed by heavy meson and nucleon (2-body system)

Table.3.10 Properties of bound and resonant states of D(∗)N and B̄(∗)N sys-
tems. The energies E are either pure real for bound states or complex for resonant
states. The complex energies for resonances are written as Ere − iΓ/2 where Ere

is the resonance energy and Γ/2 is the half-width. The binding and resonance en-
ergies are measured from the lowest threshold (DN and B̄N). Relative distances
are shown only for bound states.

I(JP ) Potential
DN B̄N

E [MeV] 〈r2〉1/2 [fm] E [MeV] 〈r2〉1/2 [fm]

0(1/2−)
π −14.4 1.51 −57.8 0.99

πρω −82.5 0.86 −145.9 0.76

0(1/2+)
π 1.4− i0.2 — −83.8 0.92

πρω −81.5 0.85 −185.0 0.75

0(3/2−)
π 63.5− i7.9 — −38.7 0.99

πρω −13.7 0.89 −127.8 0.76

0(3/2+)
π 23.8− i118.1 — 12.9− i15.5 —

πρω 26.0− i44.2 — −2.6 1.81

0(5/2−)
π 153.6− i671.9 — 63.7− i177.6 —

πρω 160.0− i375.4 — 71.3− i102.8 —

0(5/2+)
π 160.8− i3.1 — 46.0− i1.1 —

πρω 137.0− i7.6 — 20.0− i0.2 —

0(7/2−)
π 217.7− i182.4 — 85.6− i74.5 —

πρω 220.8− i109.1 — 87.5− i46.7

0(7/2+)
π no — no —

πρω no — no —

1(1/2−)
π no — no —

πρω 147.2− i105.5 — 50.7− i75.5 —

Table.3.11 Mixing ratio of each channel in the bound D(∗)N and B̄(∗)N states
for JP = 1/2± and 3/2± with I = 0 when the πρω potential is employed.

1/2− PN(2S1/2) P ∗N(2S1/2) P ∗N(4D1/2) —
DN 71.8% 7.8% 20.4% —
B̄N 56.1% 13.3% 30.6% —
3/2− PN(2D3/2) P ∗N(4S3/2) P ∗N(4D3/2) P ∗N(2D3/2)

DN 19.8% 62.8% 14.2% 3.2%
B̄N 14.6% 64.7% 16.7% 4.0%

1/2+ PN(2P1/2) P ∗N(2P1/2) P ∗N(4P1/2) —
DN 38.8% 6.0% 55.2% —
B̄N 28.4% 7.7% 63.9% —
3/2+ PN(2P3/2) P ∗N(2P3/2) P ∗N(4P3/2) P ∗N(4F3/2)

DN — — — —
B̄N 71.2% 6.7% 7.5% 14.6%
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Fig.3.20 Energies of bound and resonant states of D(∗)N for I = 0 with positive
parity (P = +) and negative parity (P = −), quoted from Ref. [136]. The ener-
gies are measured from the DN threshold. The results for π and πρω potentials
are shown, where corresponding states are connected by arrows. The binding en-
ergies are given as real negative value, and the resonance energies Ere and decay
widths Γ are given as Ere − iΓ/2.

Let us move to (I, JP ) = (0, 1/2+) state. For D(∗)N , we find one resonance near
the DN threshold when the π potential is used. The resonance energy is 1.4 MeV
and the half decay width is 0.2 MeV as shown in Table 3.10. When the πρω potential
is used, however, we find a bound state with a binding energy −81.5 MeV and with
a relative radius 0.85 fm. Therefore, we also find large difference between the results
for the π and πρω potentials. Interestingly, in the mixing ratio of the bound state
shown in Table 3.11, the ratio of D∗N(4P1/2) channel is largest in the DN states for

(I, JP ) = (0, 1/2+), although the mass of D∗N is heavier than the mass of DN . This
is because the attraction of tensor force is the strongest for the D∗N(4P1/2) channel,
and hence this channel dominates in the state.

For B̄(∗)N of (I, JP ) = (0, 1/2+), we also find bound states for both cases when
the π and πρω potentials are used. The binding energies are large, −83.8 MeV for
the π potential and −185.0 MeV for the πρω potential, and the relative radii are 0.92
fm and 0.75 fm, respectively. In this case again, B̄∗N(4P1/2) is the most dominant
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Fig.3.21 Energies of bound and resonant states of B̄(∗)N for I = 0 with positive
parity (P = +) and negative parity (P = −), quoted from Ref. [136]. The
energies are measured from the B̄N threshold. The same convention is used as
Fig. 3.20.

component regardless of its heavy mass.
The behavior of the (I, JP ) = (0, 3/2−) states is also the same as the (0, 1/2−) and

(0, 1/2+) states. We find a resonant DN state for the π potential with the resonance
energy 63.5 MeV and the half decay width 7.9 MeV as shown in Table 3.10. In
contrast, for the πρω potential, we find a bound DN state with the binding energy
−13.7 MeV and the relative radius 0.89 fm. For the bound state, the mixing ratios
are 19.8 % for DN(2D3/2), 62.8 % for D∗N(4S3/2), 14.2 % for D∗N(4D3/2) and 3.2

% for D∗N(2D3/2). Thus, D
∗N(4S3/2) is the dominant channel although its mass is

heavier than the mass of DN(2D3/2); once again a large attraction due to the tensor
force is provided.

For B̄(∗)N state of (I, JP ) = (0, 3/2−), we obtain bound states for both cases the π
and πρω potentials are used. We also find the difference between the binding energies
for the π and πρω potentials, −38.7 MeV for the π potential and −127.8 MeV for the
πρω potential. The mixing ratios displayed in Table 3.11 indicates the dominance of
the B̄∗N(4S3/2) channel as seen in the D(∗)N state of (I, JP ) = (0, 3/2−).
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3.4.2 JP = 3/2+, 5/2± and 7/2− for I = 0

For (I, JP ) = (0, 3/2+), we find resonant states above the PN threshold. For D(∗)N ,
the resonance energies are 23.8 MeV for the π potential and 26.0 MeV for the πρω
potential. The half decay widths are 118.1 MeV and 44.2 MeV, respectively. As
compared to the cases of 1/2± and 3/2−, the results of the π and πρω potentials
are not very much different, as indicated in Fig. 3.20. Since the wave functions are
extended due to larger orbital angular momenta of P -wave (L = 1) and F -wave
(L = 3) for JP = 3/2+, the long range potential of the π exchange dominates, while
the short range potentials from ρ and ω exchanges are suppressed. For B̄(∗)N , when
the π potential is used, we find a resonant state whose resonance energy is 12.9 MeV
and half decay width is 15.5 MeV, while when the πρω potential is used, we find a
loosely bound state of a binding energy −2.6 MeV and a relative radius 1.81 fm. In the
mixing ratios in Table 3.11, we see that the most dominant component is B̄N(2P3/2),

71.2 %, and the second dominant one is B̄∗N(4F3/2), 14.6 %. This indicates that

the tensor force in the B̄N(2P3/2) − B̄∗N(4F3/2) component in Eq. (B.19) plays an

important role to form the B̄(∗)N bound state.
For (I, JP ) = (0, 5/2−), we obtain resonant states for both cases when the π and

πρω potentials are used. For D(∗)N , the resonance energies are 153.6 MeV for the π
potential and 160.0 MeV for the πρω potential, which are above the D∗N threshold.
The corresponding half decay widths are 671.9 MeV and 375.4 MeV, respectively. The
difference between the results of the π and πρω potentials is once again small, due to
the same reason as before with large angular momenta. For B̄(∗)N state, we also find
resonant states above the B̄∗N threshold. The resonance positions are 63.7 MeV for
the π potential and 71.3 MeV for the πρω potential. The corresponding half decay
widths are 177.6 MeV and 102.8 MeV, respectively. We observe from Table 3.10 that
the widths of the 5/2− states of both DN and B̄N are very large. The reason is that
there is only very weak attraction in these channels. Because of the very large widths
of order 1 GeV, it is not easy to interpret physically them as particle states.

For (I, JP ) = (0, 5/2+), we find resonant states with narrow widths for both cases
when the π and πρω potentials are used. For D(∗)N , when the π potential is used,
the resonance energy is 160.8 MeV and the half decay width Γ/2 = 3.1 MeV. When
the πρω potential is used, the resonance energy is 137.0 MeV and the half decay
width Γ/2 = 7.6 MeV. For B̄(∗)N , we also find resonances whose energies are 46.0
MeV for the π potential and 20.0 MeV for the πρω potential, with the corresponding
half decay widths 1.1 MeV and 0.2 MeV, respectively. Again, the results for the π
and πρω potentials are similar.

For (I, JP ) = (0, 7/2−), we obtain resonances above the D∗N and B̄∗N thresholds.
For D(∗)N , there exist resonances at 217.7 MeV for the π potential and at 220.8 MeV
for the πρω potential, with half decay widths 182.4 MeV and 109.1 MeV, respectively.
For B̄(∗)N , there also exist resonances whose energies are 85.6 MeV for the π potential
and 87.5 MeV for the πρω potential, with half decay widths 74.5 MeV and 46.7 MeV,
respectively.
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3.4.3 Isospin triplet (I = 1)

Let us move to the states of isospin triplet (I = 1). We summarize the results for
D(∗)N and for B̄(∗)N in Table 3.10 and show the energy levels in Fig. 3.22. As a result,
we find resonant states only for JP = 1/2− when the πρω potential is employed. For
D(∗)N , the resonance energy is 147.2 MeV and the half decay width is 105.5 MeV.
For B̄(∗)N state, we obtain the resonance whose energy is 50.7 MeV and half width
75.5 MeV. The reason that there are not many states in isospin triplet channel can be
understood as follows; as compared to the isosinglet channel, the attractive force in
the isotriplet channel is weak due to small isospin factor; ~τP · ~τN = −3 for isosinglet
and ~τP · ~τN = 1 for isotriplet.

Fig.3.22 Energies of bound and resonant states of D(∗)N and B̄(∗)N for I = 1
when the πρω potential is used [136]. The same convention is used as Fig. 3.20.

3.5 Summary and Discussion for D(∗)N and B̄(∗)N

A brief summary for results of D(∗)N and B̄(∗)N is given in this section. Non-exotic
baryon states with ordinary quantum number have been investigated. The π, ρ and
ω exchange potentials between a P̄ meson and a nucleon were employed, while we
did not consider the channel couplings to other hadronic channels such as Λc(Λb)
and πΣc(πΣb). By solving coupled channel Schrödinger equations for P̄N and P̄ ∗N
channels, we have found many bound and resonant states with 1/2±, 3/2±, 5/2± and
7/2− for I = 0 and few resonances with 1/2− for I = 1. For these states, the tensor
force of the π exchange potential plays a significant role to produce them.

The π exchange potential becomes more important in the bottom sector than in
the charm sector. The small mass difference between B̄ and B̄∗ mesons helps to yield
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the strong attraction because it induces the strong B̄N−B̄∗N mixing with the tensor
force. Furthermore, the B̄(∗)N has heavier reduced mass and hence the kinetic term
is suppressed. For these reasons, the binding energies of B̄(∗)N states are larger than
these of D(∗)N states.

When we compare the results of the π potential and of the πρω potential, they
are quite different for JP = 1/2±, 3/2− with I = 0, where the ρ and ω exchange
potentials become important to produce an attraction. For D(∗)N and B̄(∗)N states,
both ρ and ω exchange potentials are attractive, and hence they increase the binding
energy significantly. On the other hand, for JP = 3/2+, 5/2± and 7/2−, the results
for the πρω potential are similar to those for the π potential. For large J states, the
π exchange potential plays a dominant role to generate bound and resonant states,
while the ρ and ω exchanges play only a minor one. This is attributed to the fact
that these states have large orbital angular momenta. If relevant channels include
large orbital angular momenta, the wave functions tend to extend spatially, and the
long range force, namely the π exchange potential, becomes important while the short
range force is suppressed.

In the present study, we discuss the molecular structure formed by the P̄ (∗)N
bound and resonant states. However, the hadronic molecular picture is not applicable
to deeply bound states with small radii. For such states, the constituent hadrons,
namely the D(∗) (B̄(∗)) meson and the nucleon, overlap each other, and therefore we
have to consider short range effects such as an internal structure of hadrons, channel
couplings to conventional three quark states, etc. As a naive criterion for the hadronic
molecule, we have shown the relative radii of the bound states as discussed in Ref. [24].
If the size of the bound state is larger than twice of typical hadron size (namely 1
fm), the state could be well described by a molecular structure. For resonant states,
we identify the states as the hadronic molecule. According to the criterion, for the
πρω potential, only the bound state for JP = 3/2+ of B̄(∗)N constructs a hadronic
molecule, where the relative radius is 1.81 fm. Contrary to this, the bound states for
JP = 1/2± and 3/2− with I = 0 which have a small radius and a large binding energy
are not described as simple molecules. For such states, we need to consider the short
range effects including various channel couplings to do more realistic discussions.
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Chapter 4

Exotic dibaryons formed by

P (∗)NN (3-body system)

4.1 Introduction
In section 3.3, we investigated the exotic D̄(∗)N and B(∗)N states and saw that the
attraction coming from the OPEP was important to yield the bound and resonant
states. This attractive force between a heavy meson and a nucleon motivates us to
explore the few- and many-body problems in mesic nuclei with a heavy antiquark,
namely D̄ (B) nuclei. It is naturally expected that the binding energy increases as the
baryon number increases. In fact, in the hyperon-nucleon systems in the strangeness
sector, several Λ hypernuclei have been found in experiments [71], while the ΛN two-
body bound/resonant states are not observed. A unique feature of the D̄ (B) nuclei
is their genuinely exotic flavor structure. Therefore, their bound states have no lower
channels coupled by a strong interaction.

In the many-nucleon systems with heavy mesons as impurity, we can explore rich
phenomena which are not seen in the normal nuclei, as follows:

• The heavy meson plays a glue-like role, providing a strong attraction leading
to a more shrinking in nucleus as discussed in the hypernuclei [70–72] and the
K̄ nuclei [73, 74] in the strangeness sector.

• We expect the changes of the properties of the heavy meson, such as mass
modifications [77,84,85], which is related to the problems of the chiral symmetry
restoration.

Furthermore, we would extract the information about the interaction between a heavy
meson and a nucleon. In particular, we can study the few-body force, such as a three-
body PNN force, in the mesic nuclei as a few-body system.

There have been several works for the D̄(∗)(B(∗)) mesons in nuclear matter with
infinite volume [76–87] and the atomic nuclei with large nucleon number such as 12C,
40Ca and 208Pb [81,83,88–91], while few-body D̄(∗)(B(∗)) nuclei have not been stud-
ied in the literature so far. However, the OPEP enhanced by the heavy quark spin
symmetry appears in the D̄(B) nuclei as seen in the D̄(∗)N(B(∗)N) states. There-
fore, it is expected the existence of bound states and/or resonances of the few-body
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D̄(∗)(B(∗)) nuclei.
In this chapter, we discuss the possible existence of exotic dibaryons with a heavy

antiquark, being realized three-body systems, D̄(∗)NN and B(∗)NN as shown in
Fig. 4.1. We emphasize that in the strangeness sector, such exotic systems, i.e. K
nuclei, do not appear because of the repulsion between a kaon and a nucleon. We
introduce the OPEP between a P (∗)(= D̄(∗), B(∗)) meson and a nucleon. In this
study, we do not consider the vector meson exchange potential yet. However, we
expect that the results for the π exchange potential is valid because the long-range
force dominates in the loosely bound states whose size is sufficiently large. Indeed, we
saw the dominance of the OPEP in the exotic P (∗)N states in the previous chapter.

Fig.4.1 Three-body systems of PNN .

This chapter is organized as follows. In Sec. 4.2, we briefly summarize the in-
teractions of D̄(∗)N (B(∗)N) and NN . In Sec. 4.3, we show the method to solve
the D̄(∗)NN and B(∗)NN systems with appropriate three-body wave functions. In
Sec. 4.4, the numerical results are shown. we investigate bound and resonant states
both of D̄(∗)NN and B(∗)NN states with quantum numbers JP = 0− and 1−, and
I = 1/2. In Sec. 4.5, we summarize this chapter and give the discussions.

4.2 Interactions
Let us introduce the interactions of the P (∗)NN systems. In this study, We employ
only the OPEPs for PN − P ∗N and P ∗N − P ∗N , given in Eqs. (3.15) and (3.16).
As we have emphasized in the previous section for the P (∗)N two-body systems, the
OPEP is the basic ingredient to yield the strong attraction, thanks to the heavy quark
spin symmetry inducing the mass splitting between a P and P ∗ mesons.

We could also consider the short-range interaction such as the vector meson ex-
changes [38, 53, 54, 144] and the quark exchange model [41, 145, 146]. It is discussed
that the short-range interaction plays an important role for systems of a pseudscalar
meson and a baryon in the strangeness sector, e.g. a KN system [94], where the
π exchange causing the KN − K∗N mixing is not significant because of the large
mass difference of K and K∗ mesons. However, the short-range interaction would not
be as important as long-range interaction for loosely bound states, where the spatial
distance between constituent hadrons becomes large. In fact, we have found that
the dominant force in the two-body P (∗)N systems is the OPEP rather than the ρ
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and ω exchange potentials in the previous section. This situation is analogous to the
deuteron which is the loosely bound state of the proton and neutron [96,147].

For the nucleon-nucleon interaction, we employ the Argonne v′8 (AV8′) potential
which is the realistic NN potential developed by the Argonne group [148]. This
potential is written by the π exchange part, and the short- and intermediate-range
parts:

v′8(r) =v
π(r) +

∑
P=1,8

v′p(r)OP , (4.1)

with eight operators,

OP=1,··· ,8 =1, ~σ1 · ~σ2, ~τ1 · ~τ2, ~σ1 · ~σ2 ~τ1 · ~τ2,

S12, S12 ~τ1 · ~τ2, ~L · ~S, ~L · ~S ~τ1 · ~τ2 . (4.2)

The functions vπ(r) and v′p(r) are summarized in Appendix B.3.3. The AV8′ potential
is simpler than the more elaborated one of the Argonne v18 (AV18) potential [149],
which is the reason that we employ the former in the present study. The AV8′

is realistic because it reproduces NN phase shifts and deuteron properties. When
applied to three or more nucleon systems, however, the AV8′ provides slightly more
attraction than the AV18 potential [150,151]. In the D̄(∗)NN systems, however, there
are only two nucleons with the binding energy similar to that of the deuteron, and
therefore, the AV8′ gives essentially the same results as the AV18.

4.3 Hamiltonian and Three-body wave functions
The total Hamiltonian is given by

H = T + VP (∗)N + VNN , (4.3)

where T is the kinetic term, and VP (∗)N (VNN ) is the interaction potential between a
P (∗) meson and a nucleon (between two nucleons) as introduced above. We investigate
D̄(∗)NN and B(∗)NN with JP = 0− and 1− and I = 1/2 (total angular momentum
J , parity P and total isospin I).

The three-body wave function is described as a sum of the rearrange channel am-
plitudes (c = 1, 2) as functions of the Jacobi coordinates shown in Fig. 4.2:

ΨJM =

2∑
c=1

∑
nl1,Nl2,L

∑
s12S,I12

C
(c)
nl1,Nl2,L,s12S,I12I

A
{[[

φ
(c)
nl1m1

(~rc)ψ
(c)
Nl2m2

(~Rc)
]
L

×
[
[χs1χs2 ]s12 χs3

]
S

]
JM

[
[ηI1ηI2 ]I12 ηI3

]
I

}
. (4.4)

A is the anti-symmetrization operator for exchange between two nucleons. l1 and
l2 stand for the relative orbital angular momenta associated with the coordinates ~rc
and ~Rc, respectively. L is the total orbital angular momentum of the three-body
system. χsi (ηIi) with i = 1, 2, 3 is the spin (isospin) function of the particle with the



48 Chapter 4 Exotic dibaryons formed by P (∗)NN (3-body system)

spin si (isospin Ii). s12 (I12) is the spin (isospin) of two particles combined by the
relative coordinate ~rc, and S is the total spin of the three-body system. The functions

φnl1m1(~r ) and ψNl2m2(
~R ) are expressed by the Gaussian expansion method [152–154]

as

φnl1m1(~r ) =

√
2

Γ(l1 + 3/2)b3n

(
r

bn

)l1

exp

(
− r2

2b2n

)
Yl1m1(r̂) , (4.5)

ψNl2m2(
~R ) =

√
2

Γ(l2 + 3/2)B3
N

(
R

BN

)l2

exp

(
− R2

2B2
N

)
Yl2m2(R̂) . (4.6)

The Gaussian ranges bn and BN are given by the form of geometric series as

bn = b1a
n−1 , BN = B1A

N−1 . (4.7)

For the sum of Eq. (4.4), we consider all possible coupled channels to obtain so-
lutions with sufficiently good accuracy. For instance, we include orbital angular mo-
mentum space of l1, l2 ≤ 2. Furthermore, we consider two independent isospin states
to form the total isospin I = 1/2, the NN subsystems of I = 0 and 1 which are
combined with the D̄ meson of I = 1/2 for the total I = 1/2.

By diagonalizing the total Hamiltonian by using the three-body bases introduced

above, we obtain eigenenergies and coefficient C
(c)
nl1,Nl2,L,s12S,ItI

. We also calculate the

poles for resonances as complex eigenvalues by using the complex scaling method [155–
159].

4.4 Numerical Results of D̄(∗)NN and B(∗)NN

Let us present the results of D̄(∗)NN and B(∗)NN for JP = 0−. We obtain bound
states both of D̄(∗)NN and B(∗)NN . The energy levels are shown in Fig. 4.3. The
bound state of D̄(∗)NN with the binding energy −5.2 MeV, locates below the thresh-
old of D̄N(1/2−)+N . Here D̄N(1/2−) is the bound state of D̄(∗) and N with binding
energy −1.6 MeV for JP = 1/2− and I = 0 as discussed in Sec. 3.3 (See also Table 3.4
and Fig. 3.8). Therefore, the D̄(∗)NN three-body state is more deeply bound than

Fig.4.2 Jacobi coordinates (c = 1, 2) of the P (∗)NN systems.
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Fig.4.3 Energy levels of D̄(∗)NN , B(∗)NN with I = 1/2 and JP = 0− and
1− (solid lines) from Ref. [93]. The complex energies for resonances are given
as Ere − iΓ/2, where Ere is a resonance energy and Γ/2 is a half decay width.
Thresholds (subthresholds) are denoted by dashed (dashed-dotted) lines.

Table.4.1 Expectation values of central, tensor and LS forces of the D̄(∗)N
(B(∗)N) and NN potentials in the bound state of D̄(∗)NN (B(∗)NN). All values
are in units of MeV.

D̄(∗)NN 〈VD̄N−D̄∗N 〉 〈VD̄∗N−D̄∗N 〉 〈VNN 〉
Central −2.3 −0.1 −9.5
Tensor −47.1 0.7 −0.2
LS — — −0.03

B(∗)NN 〈VBN−B∗N 〉 〈VB∗N−B∗N 〉 〈VNN 〉
Central −6.5 0.3 −11.6
Tensor −92.0 −2.7 −1.0
LS — — −0.1

the D̄(∗)N two-body state, as naturally expected. We also find the B(∗)NN state
with the binding energy −26.2 MeV. The B(∗)NN state is more deeply bound than
the D̄(∗)NN state, because the mixing effect between PNN and P ∗NN is enhanced,
when P and P ∗ mesons become more degenerate.

Let us investigate how the bound states are formed. For this purpose, we analyze
various components of interaction matrix elements. In Table 4.1, we summarize the
expectation values of the potentials, VPN−P∗N , VP∗N−P∗N and VNN , sandwiched by
the obtained wave functions. In D̄(∗)NN , we find that the tensor force of VD̄N−D̄∗N
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mixing D̄NN and D̄∗NN is the dominant contribution. In contrast, VD̄∗N−D̄∗N is
very small. Thus, the tensor force of VD̄N−D̄∗N is a driving force giving bound states

in D̄(∗)NN . We note that the strong tensor force also provides a dominant attraction
in the two-body D̄(∗)N systems as discussed in Sec. 3.3. The same result holds also
to B(∗)NN .

For VNN , one may expect that the tensor force causing the 3S1 −3D1 mixing could
be the most dominant one, because it is a driving force giving a deuteron d. However,
the tensor force in VNN is almost irrelevant in the present systems. In fact, it is
shown in Table 4.1 that the tensor force is suppressed, while the central force is
rather dominant. This is reasonable because d does not exist in the main component
of D̄NN channel with JP = 0− due to limited combinations of quantum numbers,
which means that the combinations of 0− (D̄) and 1+ (d) cannot compose the quantum
number JP = 0−. It may exist in the D̄∗NN component, but the amplitude of the
D̄∗NN is small due to the excess of mass of about 140 MeV (∼ mD̄∗−mD̄). Thus, the
NN interaction provides only a weak attraction. Therefore, the tensor force mixing
D̄N and D̄∗N gives the most dominant term of attraction in the D̄(∗)NN state. The
same behavior is also found in the B(∗)NN state as shown in Table 4.1.

The quantum number 0− of the D̄(∗)NN state may be investigated in experiments
through two particle correlations. The D̄(∗)NN state can decay into K + π (orππ) +
N + N by the weak decay of a D̄ meson. The absence of d in the final NN state
will be an important signal suggesting 0−. In contrast, if d might be observed, the
quantum number would be 1−. It will be also the case for B(∗)NN .

In scattering states, we find resonances for JP = 1− and I = 1/2 as shown in
Fig. 4.3. The resonance energy for D̄(∗)NN is 111.2 MeV measured from the threshold
of D̄NN . The decay width is 18.6 MeV. We note that there are open channels of
the D̄NN and D̄ + d scattering states below the resonance, and of the D̄∗ + d and
D̄N(3/2−)+N scattering states above the resonance. Here D̄N(3/2−) is a Feshbach
resonance of D̄(∗) and N with JP = 3/2− and I = 0, which was found in Sec. 3.3.
We obtain a resonance also for B(∗)NN with much smaller resonance energy and
decay width, 6.8 MeV and 0.4 MeV, respectively. The mechanism of formation of
the resonances is interesting. When we ignore the D̄NN channel and consider only
the D̄∗NN channel, we obtain a bound state of D̄∗NN . Hence, the D̄∗NN channel
predominates. Therefore, the obtained resonance is a Feshbach resonance for the
three-body system, as in the case of the two-body D̄N(3/2−) system. These features
also hold for B(∗)NN .

From the above analysis, we see that the many features of the two-body P (∗)N
system survive in the three-body P (∗)NN system, because the P (∗)N interaction is
the dominant force which determines the main properties of the system rather than
the NN interaction.
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4.5 Summary and Discussion for D̄(∗)NN and

B(∗)NN

Let us summarize this chapter. We have investigated the possible existence of gen-
uinely exotic dibaryons of D̄(∗)NN and B(∗)NN for charm and bottom sectors. The
OPEP introduced by the heavy quark symmetry and chiral symmetry was employed
between a heavy meson and a nucleon. As for the NN interaction, the Argonne v′8 po-
tential was used. By solving the coupled channel Schrödinger equations for PNN and
P ∗NN channels, we have obtained bound states with JP = 0− and resonances with
JP = 1− for I = 1/2 both in D̄(∗)NN and B(∗)NN . We found that the resonances
was the Feshbach resonances in which the P (∗)NN components predominate. These
bound and resonant states are located below the subthresholds of D̄N(1/2−)+N and
D̄N(3/2−) + N , respectively. Therefore, the binding and resonance energies of the
three-body P (∗)NN systems are lower than those of the two-body P (∗)N systems.

In these states, the OPEP of the P (∗)N potential plays a dominant role to produce
a strong attraction. In particular, the role of the tensor force of the OPEP mixing
PN and P ∗N is essential. On the other hand, the contributions of the potential of
P ∗N − P ∗N components are small due to the excess of the mass.

For the contributions of theNN interaction in the bound states, the attraction from
the central force is stronger than that from the tensor force, while the tensor force is
the driving force giving the deuteron. However, theNN(1+) subsystem corresponding
to the deuteron is suppressed due to the limited combinations of angular momentum
in the bound states with JP = 0−. In all, the P (∗)N interaction dominates rather
than the NN interaction in the three-body P (∗)NN systems.

In this study, we introduced the OPEP only as the interaction between the heavy
meson and the nucleon because the dominance of the long-range force was expected
in the loosely bound states as seen in the two-body systems discussed in chapter. 3.
However, we could consider the vector and scalar meson exchange potentials as short-
and middle-range forces. To obtain the more accurate results, we employ these inter-
action in the future works.

In addition, we can also consider the few-body forces in the PNN systems. It is
known that the predictions using the two-body forces only underestimate the experi-
mental data for the atomic nuclei [160–164]. The few-body forces become important
as the particle number increases and therefore this effect is not negligible in the nu-
clear matter with large nucleon numbers [165]. Moreover, the few-body forces are
also discussed in the hypernuclei with the strangeness degree of freedom [166].

The basic idea of the few-body force was proposed by J. Fujita and H. Miyazawa in
1957 [167]. The three-nucleon potential called Fujita-Miyazawa force was described
phenomenologically by a 2π exchange among three nucleons with a ∆ excitation.
This idea has been employed in recent phenomenological models of the three-nucleon
force; the Urbana IX three-nucleon potentials [148, 168], the Tucson-Melbourne 2π-
exchange three-nucleon potential [169] and Illinois model [150]. The realistic NN
potentials combined with these three-nucleon force models are successfully reproduced
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the properties of the atomic nuclei. As for the different approaches to discuss the few-
body forces, there are several works by using the chiral effective field theory [170–173]
and the Lattice QCD simulation [174].

In the PNN systems, the 2π exchange among the three-particles can emerge via
the P ∗ excitation as well as via the ∆ excitation. Thanks to the small mass splitting
between P and P ∗ mesons, namely mD̄∗ − mD̄ ∼ 140 MeV and mB∗ − mB ∼ 45
MeV, the three-body forces from PN − P ∗N coupling effects are more important
than those from NN − N∆ coupling effects, where the mass difference between N
and ∆ is about 300 MeV. The three-body force becomes more important as number
of particles increases. Therefore, the effects of the PN − P ∗N mixing are expected
to be unignorable in the P (∗) nuclei with large baryon numbers.
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Chapter 5

Spin degeneracy of the

hadronic molecules

5.1 Introduction
For a hadron containing heavy quarks, the heavy quark symmetry appears due to
suppression of the spin-dependent interaction between quarks, caused by the large
heavy quark mass. Therefore, the heavy quark spin is decoupled from the light
degrees of freedom, called brown muck, in the heavy hadron. Brown muck is defined
as everything other than the heavy quark in the hadron [101], e.g. light quarks
and gluons. The spin decoupling leads to mass degeneracy of the states [103, 104].
For instance, for hadrons with a single heavy quark, the states with total angular
momentum and parity, (j − 1/2)P and (j + 1/2)P are degenerate for j 6= 0, where j
is the total angular momentum of the brown muck. For j = 0, non-degenerate states
emerge. In fact, the mass degenerate states are found as the doublet with small mass
splitting. For the heavy mesons, the small mass splitting between pseudoscalar and
vector mesons are found, such as mD∗ −mD ∼ 140 MeV and mB∗ −mB ∼ 45 MeV.
This values can be compared with the mass splittings of π and ρ, and K and K∗

mesons, namely mρ −mπ ∼ 600 MeV, and mK∗ −mK ∼ 400 MeV.
The degenerate multiplet has been also discussed for the normal heavy baryons

such as Λc (Λb), Σc (Σb), and these excited states, from the heavy quark effective
theory [69,100,101,103,105–108]. We can also see the degeneracy in the heavy baryon
states. The mass difference between Σc(1/2

+) (Σb(1/2
+)) and Σ∗

c(3/2
+) (Σ∗

b(3/2
+))

are small, namely about 65 (20) MeV, and hence they are considered to be doublet
states. On the other hand, Λc(1/2

+) (Λb(1/2
+)) is expected to be a non-degenerate

state.
The spin degeneracy is a general feature for heavy hadrons from the heavy quark

symmetry. This has been discussed not only for the normal heavy hadrons, but also
multi-hadron systems with heavy quarks [104, 109]. For the multi-hadron states, the
brown muck has a more complicated structure because it could contain light hadrons.
For example, in the systems formed by a heavy meson and a light baryon, the brown
muck is a composite system constructed by the light components in the heavy meson
and the light baryon. These brown mucks are called spin-complex. It is a useful object
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to discuss the multi-hadron systems with heavy quarks such as hadronic molecules
and exotic nuclei.

The spin degeneracy is expected to be applied to the exotic PN and PNN systems
with a heavy antiquark, discussed in chapters. 3 and 4. We investigate the hadronic
molecules in the heavy quark limit.

This chapter is organized as follows. In Sec. 5.2, general discussions about the heavy
quark spin symmetry are present briefly. In Sec. 5.3, wave functions and Hamiltonians
of the PQN states are discussed from the point of view of the spin-complex. Here,

the P
(∗)
Q meson is defined as a meson (Q̄q)spin0(1) with an infinite heavy quark mass.

In Sec. 5.4, numerical results of the PQN and PQNN states in the heavy quark limit
are shown. Finally, we summarize this chapter in Sec. 5.5.

5.2 Heavy quark symmetry and Spin degeneracy
Let us discuss the spin degeneracy from the heavy quark spin symmetry in the heavy
quark effective theory (HQET). The HQET was discussed in Sec. 2.2. The effective
Lagrangian of HQET is given in Eq. (2.21). We saw that the leading term of the
Lagrangian does not depend on a heavy quark mass and spin. Hence, in the heavy
quark limit (mQ → ∞), the HQET Lagrangian manifests spin and flavor symmetries,
namely heavy quark flavor and spin symmetry.

The absence of the spin-dependent interactions in the HQET Lagrangian in the
heavy quark limit leads to separation of the heavy quark spin sQ and total angular
momentum j of light degrees of freedom, namely brown muck. Then, the total angular
momentum of the system can be rewritten as

~J = ~L+ ~S = ~sQ +~j . (5.1)

The total angular momentum J is conserved, and the heavy quark spin sQ is also
conserved in the heavy quark limit. Therefore, the total angular momentum j of the
brown muck is also a conserved value. We can utilize sQ and j to classify the heavy
hadron states.

Let us consider a hadron with a heavy quark Q or a heavy antiquark Q̄. The
hadron with single Q (Q̄) is written as a superposition of various components with
light quarks q, qq̄ pairs and gluons g;

|HQ〉 = |Qqn〉+ |Qqnqq̄〉+ |Qqng〉+ · · · , (5.2)∣∣HQ̄

〉
=
∣∣Q̄qm〉+ ∣∣Q̄qmqq̄〉+ ∣∣Q̄qmg〉+ · · · , (5.3)

where n = 3B−1 and m = 3B+1 with baryon number B ≥ 0. The light components,
qn+ qnqq̄+ qng+ · · · (qm+ qmqq̄+ qmg+ · · · ), compose the brown muck whose total
angular momentum j is conserved. Due to the suppression of the spin-dependent
forces, the heavy quark spin sQ = 1/2 is decoupled from the total angular momentum
j of the light components.

This spin decoupling yields the degeneracy of the hadron HQ with total angular
momentum and parity, (j − 1/2)P , and their excited state H∗

Q with (j + 1/2)P for

j 6= 0. For the brown muck with j = 0, the singlet state HQ with 1/2P emerges. In
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this thesis, the degenerate states and singlet states are called the Heavy quark spin
(HQS) doublets and the HQS singlets, respectively.

For exotic hadrons, however, brown muck is composed not only of light quarks
and gluons, but also of light hadrons, and therefore the systems have a bit more
complicated structure than the normal heavy hadrons. For example, the brown muck
of the D̄N molecules is formed by the light degrees of freedom (light quarks and
gluons) in the D̄ meson, and the nucleon N as a hadronic degree of freedom. The
brown muck having such complex structures, is called “light spin-complex” (or “spin-
complex” in short) in Refs. [104, 109]. The spin-complex with conserved quantum
number jP is also decoupled from the heavy quark spin in the exotic states. Hence,
the HQS doublets for j 6= 0 and/or the HQS singlets can also emerge in the multi-
hadron systems with a single heavy (anti-)quark. The spin-complex is useful to classify
structures of the multi-hadron states such as hadronic molecules and exotic nuclei.

5.3 Hadronic molecules in the heavy quark limit
In this section, we discuss the degenerate states of the hadronic molecules as a concrete
example of the multi-hadron systems. The PQN and PQNN states formed by a heavy
meson and nucleons are heavy (di)baryons with a single heavy antiquark, where PQ is
defined as a heavy meson having an infinite heavy quark mass. The spin-complex has
composite structures containing a light quark q in the heavy meson, and a nucleon
as a hadronic degree of freedom, denoted by [qN ] ([qNN ]) for PQN (PQNN). The
internal spin structures of the PQN (PQNN) molecules become clear by introducing
the spin-complex [qN ] ([qNN ]).

5.3.1 Wave functions in the spin-complex-basis

Let us consider the wave functions of the PQN molecules in point of view of the

spin-complex. The wave functions in the P
(∗)
Q N state with JP = 1/2− are written in∣∣PQN(2S1/2)

〉
,
∣∣P ∗

QN(2S1/2)
〉
,
∣∣P ∗

QN(4D1/2)
〉

(5.4)

from Table 5.1. The heavy quark spin symmetry manifests that the heavy quark

Q̄ in the P
(∗)
Q meson is decoupled from the spin-complex, namely the light degrees

of freedom in the P
(∗)
Q meson and the nucleon N . Therefore, the wave functions

expressed by PQ and N (called particle basis) are expected to be rewritten as those
expressed by the heavy antiquark and spin-complex (called spin-complex basis).

In this study, we consider that the PQ and P ∗
Q mesons with the infinite heavy quark

mass are composed of P ∼ (Q̄q)spin0 and P ∗ ∼ (Q̄q)spin1, respectively. The P
(∗)
Q N

states are described as Q̄qN , where the spin-complex is constructed by the constituent
light quark q and the nucleon N . Here, we do not consider to include components

with more than one light quark, gluons, and hadrons in the P
(∗)
Q N system, such as

Q̄q · · · qN , Q̄q · · · qqq̄N Q̄q · · · qgN and Q̄q, · · · , qNHH̄, where H (H̄) is a hadron (an
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Table.5.1 Various coupled channels in the P
(∗)
Q N systems with quantum number

JP written in the particle basis (PN) and the spin-complex basis (SC).

JP basis channels
1/2− PN PQN(2S1/2) P ∗

QN(2S1/2) P ∗
QN(4D1/2) —

SC [Nq]0,S(0+)Q̄ [Nq]
(1,S)
1+ Q̄ [Nq]

(1,D)
1+ Q̄ —

3/2− PN PQN(2D3/2) P ∗
QN(4S3/2) P ∗

QN(2D3/2) P ∗
QN(4D3/2)

SC [Nq]
(1,S)
1+ Q̄ [Nq]

(1,D)
1+ Q̄ [Nq]

(0,D)
2+ Q̄ [Nq]

(1,D)
2+ Q̄

5/2− PN PQN(2D5/2) P ∗
QN(2D5/2) P ∗

QN(4D5/2) P ∗
QN(4G5/2)

SC [Nq]
(0,D)
2+ Q̄ [Nq]

(1,D)
2+ Q̄ [Nq]

(1,D)
3+ Q̄ [Nq]

(1,G)
3+ Q̄

7/2− PN PQN(2G7/2) P ∗
QN(4D7/2) P ∗

QN(2G7/2) P ∗
QN(4G7/2)

SC [Nq]
(1,D)
3+ Q̄ [Nq]

(1,G)
3+ Q̄ [Nq]

(0,G)
4+ Q̄ [Nq]

(1,G)
4+ Q̄

1/2+ PN PQN(2P1/2) P ∗
QN(2P1/2) P ∗

QN(4P1/2) —

SC [Nq]
(1,P )
0− Q̄ [Nq]

(0,P )
1− Q̄ [Nq]

(1,P )
1− Q̄ —

3/2+ PN PQN(2P3/2) P ∗
QN(2P3/2) P ∗

QN(4P3/2) P ∗
QN(4F3/2)

SC [Nq]
(0,P )
1− Q̄ [Nq]

(1,P )
1− Q̄ [Nq]

(1,P )
2− Q̄ [Nq]

(1,F )
2− Q̄

5/2+ PN PQN(2F5/2) P ∗
QN(4P5/2) P ∗

QN(2F5/2) P ∗
QN(4F5/2)

SC [Nq]
(1,P )
2− Q̄ [Nq]

(1,F )
2− Q̄ [Nq]

(0,F )
3− Q̄ [Nq]

(1,F )
3− Q̄

7/2+ PN PQN(2F7/2) P ∗
QN(2F7/2) P ∗

QN(4F7/2) P ∗
QN(4H7/2)

SC [Nq]
(0,F )
3− Q̄ [Nq]

(1,F )
3− Q̄ [Nq]

(1,F )
4− Q̄ [Nq]

(1,H)
4− Q̄

antihadron). We introduce the notation of the spin-complex component,

[Nq]
(sl,L)

jP
, (5.5)

in the wave function. sl is the total spin of N and q. L stands for the relative orbital
angular momentum between N and q. j and P are the total angular momentum and
the parity of the spin-complex. Then the wave function of the PQN states in the
spin-complex basis is written as∣∣∣[Nq](sl,L)

jP
Q̄
〉
JP

. (5.6)

For the P
(∗)
Q N state with JP = 1/2−, the wave functions in the particle basis in

Eq. (5.4) are using the formulas of the angular momentum recoupling [175, 176] as
transformed to those in the spin-complex basis by


∣∣PQN(2S1/2)

〉∣∣P ∗
QN(2S1/2)

〉∣∣P ∗
QN(4D1/2)

〉
 = U1/2−


∣∣∣[Nq](0,S)

0+ Q̄
〉
1/2−∣∣∣[Nq](1,S)

1+ Q̄
〉
1/2−∣∣∣[Nq](1,D)

1+ Q̄
〉
1/2−

 , (5.7)
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where the unitary matrix UJP is given by

U1/2− =

 − 1
2

√
3
2 0√

3
2

1
2 0

0 0 −1

 . (5.8)

Because the states contain the two spin-complex components with j = J − 1/2 and
J + 1/2 from Eq. (5.1), the wave functions for JP = 1/2− in the spin-complex basis
have the channels with jP = 0+ and 1+. The component with jP = 0+ corresponds to
the HQS singlet, while the component with jP = 1+ forms the HQS doublet together
with the JP = 3/2− state.

In a similar way, we obtain the wave functions in the spin-complex basis for other
JP states. For instance, we demonstrate the transformation for JP = 3/2− for a
negative parity state, and JP = 1/2+ and 3/2+ for a positive parity state. The wave
functions for JP = 3/2− is transformed to


∣∣PQN(2D3/2)

〉∣∣P ∗
QN(4S3/2)

〉∣∣P ∗
QN(4D3/2)

〉∣∣P ∗
QN(2D3/2)

〉
 = U3/2−



∣∣∣[Nq](1,S)
1+ Q̄

〉
3/2−∣∣∣[Nq](1,D)

1+ Q̄
〉
3/2−∣∣∣[Nq](0,D)

2+ Q̄
〉
3/2−∣∣∣[Nq](1,D)

2+ Q̄
〉
3/2−


(5.9)

with

U3/2− =


0

√
6
4

1
2

√
6
4

1 0 0 0
0 1√

2
0 − 1√

2

0 1
2
√
2

−
√
3
2

1
2
√
2

 (5.10)

The state for JP = 3/2− includes two spin-complex components with jP = 1+ and
2+. In comparison with the state for JP = 1/2−, both states in the spin-complex

basis have
∣∣∣[Nq](1,S)

1+ Q̄
〉
J−

and
∣∣∣[Nq](1,D)

1+ Q̄
〉
J−

. This result implies the appearance

of the spin degeneracy of the states with JP = 1/2− and 3/2−.
For the positive parity states, we obtain the


∣∣PQN(2P1/2)

〉∣∣P ∗
QN(2P1/2)

〉∣∣P ∗
QN(4P1/2)

〉
 = U1/2+


∣∣∣[Nq](1,P )

0− Q̄
〉
1/2+∣∣∣[Nq](0,P )

1− Q̄
〉
1/2+∣∣∣[Nq](1,P )

1− Q̄
〉
1/2+

 (5.11)

with

U1/2+ =


1
2

1
2

1√
2

1
2
√
3

−
√
3
2

1√
6√

2
3 0 − 1√

3

 (5.12)
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for 1/2+, and


∣∣PQN(2P3/2)

〉∣∣P ∗
QN(2P3/2)

〉∣∣P ∗
QN(4P3/2)

〉∣∣P ∗
QN(4F3/2)

〉
 = U3/2+



∣∣∣[Nq](0,P )
1− Q̄

〉
3/2+∣∣∣[Nq](1,P )

1− Q̄
〉
3/2+∣∣∣[Nq](1,P )

2− Q̄
〉
3/2+∣∣∣[Nq](1,F )

2− Q̄
〉
3/2+


, (5.13)

with

U3/2+ =


− 1

2
1

2
√
2

√
10
4 0

√
3
2

1
2
√
6

1
2

√
5
6 0

0
√

5
6 − 1√

6
0

0 0 0 −1

 , (5.14)

for 3/2+. We obtain that the states with JP = 1/2+ and 3/2+ include the common

components with jP = 1−, namely
∣∣∣[Nq](0,P )

1− Q̄
〉
J+

and
∣∣∣[Nq](1,P )

1− Q̄
〉
J+

.

The wave functions in the spin-complex basis are also summarized in Appendix C.1.

5.3.2 Hamiltonian in the spin-complex basis

The transformation discussed in the wave functions derives the Hamiltonian in the
spin-complex basis. In the heavy quark limit, the Hamiltonian in the JP = 1/2− and
3/2− states in the particle basis are given from Eqs. (3.16) and (3.16) as

H1/2− =

 K0

√
3V π

C −
√
6V π

T√
3V π

C K0 − 2V π
C −

√
2V π

T

−
√
6V π

T −
√
2V π

T K2 + V π
C − 2V π

T

 , (5.15)

H3/2− =


K2

√
3V π

T −
√
3V π

T

√
3V π

C√
3V π

T K0 + V π
C 2V π

T V π
T

−
√
3V π

T 2V π
T K2 + V π

C −V π
T√

3V π
C V π

T −V π
T K2 − 2V π

C

 , (5.16)

as summarized in Appendix B.2, where Kl is the kinetic term,

Kl = − 1

2µ

(
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

)
, (5.17)

with the reduced mass µ = mN , and V π
C (V π

T ) is the central (tensor) force of the
OPEP in Eq. (B.26). Here we suppress the vector meson exchange potentials for
simplicity’s sake. However, the discussions considering the OPEP only are essentially
same as those considering the π, ρ and ω exchanges.
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From unitary matrices in Eqs. (5.8) and (5.10), the Hamiltonians in Eqs. (5.15)
and (5.16) in the particle basis can be written as the Hamiltonians HSC

1/2− and HSC
3/2−

in the spin-complex basis:

HSC
1/2− = U−1

1/2−H1/2−U1/2−

=

 K0 − 3V π
C 0 0

0 K0 + V π
C −2

√
2V π

T

0 −2
√
2V π

T K2 + V π
C − 2V π

T


≡

 H
SC(0+)
1/2− 0

0 H
SC(1+)
1/2−

 , (5.18)

and

HSC
3/2− = U−1

3/2−H3/2−U3/2−

=


K0 + V π

C 2
√
2V π

T 0 0

2
√
2V π

T K2 + V π
C − 2V π

T 0 0
0 0 K2 − 3V π

C 0
0 0 0 K2 + V π

C + 2V π
T


≡

 H
SC(1+)
3/2− 0

0 H
SC(2+)
3/2−

 , (5.19)

where the H
SC(jP)

JP denotes the component for spin-complex with JP of the Hamil-

tonian HSC
JP . As seen in Eqs. (5.18) and (5.19), the Hamiltonians HSC

1/2− and HSC
3/2−

are written as the block-diagonalizing forms, and we obtain the H
SC(1+)
1/2− is consis-

tent with the H
SC(1+)
3/2− except for the sign of the off-diagonal terms. Therefore, the

eigenenergy of the H
SC(1+)
1/2− is also equal to the one of the the H

SC(1+)
3/2− , and they yield

spin degenerate states, namely the HQS doublet, of JP = 1/2− and 3/2−, containing

the spin-complex with jP = 1+. For the H
SC(2+)
3/2− , we expect the existence of the

partner with jP = 2+ in the JP = 5/2− state. In fact, the HSC
5/2− is decomposed to

the H
SC(2+)
5/2− and H

SC(3+)
5/2− , and the H

SC(2+)
5/2− coincides with the H

SC(3+)
5/2− as summa-

rized in Appendix C.2. On the other hand, the H
SC(0+)
1/2− in Eq. (5.18) does not have

the corresponding partner because this component contains the spin-complex with

JP = 0+. Thus, the H
SC(0+)
1/2− forms the HQS single.

For the JP = 1/2+ and 3/2+ states in the heavy quark limit, the Hamiltonian in
the particle basis can be written as

H1/2+ =

 K1

√
3V π

C −
√
6V π

T√
3V π

C K1 − 2V π
C −

√
2V π

T

−
√
6V π

T −
√
2V π

T K1 + V π
C − 2V π

T

 (5.20)



60 Chapter 5 Spin degeneracy of the hadronic molecules

and

H3/2+ =



K1

√
3V π

C

√
3

5
V π
T −3

√
3

5
V π
T

√
3V π

C K1 − 2V π
C

1√
5
V π
T −

√
3V π

T√
3

5
V π
T

1√
5
V π
T K1 + V π

C +
8

5
V π
T

6

5
V π
T

−3

√
3

5
V π
T −

√
3V π

T

6

5
V π
T K3 + V π

C − 8

5
V π
T


.

(5.21)

These Hamiltonians are rewritten by using unitary matrices in Eqs. (5.12) and (5.14):

HSC
1/2+ = U−1

1/2+H1/2+U1/2+

=

 K1 + V π
C − 4V π

T 0 0
0 K1 − 3V π

C 0
0 0 K1 + V π

C + 2V π
T


≡

 H
SC(0−)
1/2+ 0

0 H
SC(1−)
1/2+

 (5.22)

and

HSC
3/2+ = U−1

3/2+H3/2+U3/2+

=


K1 − 3V π

C 0 0 0
0 K1 + V π

C + 2V π
T 0 0

0 0 K1 + V π
C − 2

5V
π
T

6
√
6

5 V π
T

0 0 6
√
6

5 V π
T K3 + V π

C − 8
5V

π
T


≡

 H
SC(1−)
3/2+ 0

0 H
SC(2−)
3/2+

 . (5.23)

As a consequence, we find that the H
(SC)(1−)
1/2+ and H

(SC)(1−)
3/2+ form the HQS doublet.

The H
(SC)(0−)
1/2+ belongs to the HQS singlet, and the H

(SC)(2−)
3/2+ forms the HQS doublet

with the H
(SC)(2−)
5/2+ .

From the analysis above, we expect that in the PN states, the HQS doublet of
JP = (j − 1/2)P and (j + 1/2)P , having the common spin complex with jP emerges
as

H
SC(jP)

(j−1/2)P
≈ H

SC(jP)

(j+1/2)P
, (5.24)

where ≈ stands for equality of the eigenenergies. The HQS singlet appears when the
spin-complex takes j = 0. We emphasize that the formation of degenerate states or
singlet state depends on whether the interaction generates a strong attraction enough
to yield bound states and/or resonances.
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5.3.3 Fractions of the wave functions

The wave functions of the JP state have two components with j = (J − 1/2)−P and
(J +1/2)−P as discussed above. For the JP = 1/2− state, there are two components
|0+〉1/2− and |1+〉1/2− corresponding to the states with jP = 0+ and 1+, respectively.

The HQS singlet state |0+〉1/2− is written as

∣∣0+〉
1/2−

=
∣∣∣[Nq](0,S)

0+ Q̄
〉
1/2−

. (5.25)

The state with jP = 1+ is obtained by superpositions of [Nq]
(1,S)
1+ and [Nq]

(1,D)
1+ ,

namely∣∣1+〉
1/2−

= sin θ
∣∣∣[Nq](1,S)

1+ Q̄
〉
1/2−

+ cos θ
∣∣∣[Nq](1,D)

1+ Q̄
〉
1/2−

. (5.26)

These states are mixed by the mixing angle θ. The angle θ is not determined by the
heavy quark symmetry, while depends on the dynamics.

For JP = 3/2−, the states with jP = 1+ and 2+ are obtained by∣∣1+〉
3/2−

= sin θ
∣∣∣[Nq](1,S)

1+ Q̄
〉
3/2−

+ cos θ
∣∣∣[Nq](1,D)

1+ Q̄
〉
3/2−

, (5.27)∣∣2+〉
3/2−

= sin θ
∣∣∣[Nq](0,D)

2+ Q̄
〉
3/2−

+ cos θ
∣∣∣[Nq](0,D)

2+ Q̄
〉
3/2−

. (5.28)

The states |0+〉1/2− , |1+〉1/2− and |1+〉3/2− can be expressed by the wave functions

in the particle basis. From Eq. (5.7), the wave functions in the spin-complex basis,∣∣∣[Nq](0,S)
0+ Q̄

〉
1/2−

,
∣∣∣[Nq](1,S)

1+ Q̄
〉
1/2−

,
∣∣∣[Nq](1,D)

1+ Q̄
〉
1/2−

, for the JP = 1/2− state are

written as∣∣∣[Nq](0,S)
0+ Q̄

〉
1/2−

= −1

2

∣∣PQN(2S1/2)
〉
+

√
3

2

∣∣P ∗
QN(2S1/2)

〉
, (5.29)∣∣∣[Nq](1,S)

1+ Q̄
〉
1/2−

=

√
3

2

∣∣PQN(2S1/2)
〉
+

1

2

∣∣P ∗
QN(2S1/2)

〉
, (5.30)∣∣∣[Nq](1,D)

1+ Q̄
〉
1/2−

= −
∣∣PQN(4D1/2)

〉
. (5.31)

In a similar way, the states with jP = 1+ for the JP = 3/2− can be expressed by∣∣∣[Nq](1,S)
1+ Q̄

〉
3/2−

=
∣∣P ∗

QN(4S3/2)
〉
, (5.32)∣∣∣[Nq](1,D)

1+ Q̄
〉
3/2−

=

√
6

4

∣∣PQN(2D3/2)
〉
+

1√
2

∣∣P ∗
QN(4D3/2)

〉
+

√
2

4

∣∣P ∗
QN(2D3/2)

〉
,

(5.33)
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from Eq. (5.9). Therefore, the states |0+〉1/2− , |1+〉1/2− and |1+〉3/2− are described

by

∣∣0+〉
1/2−

= −1

2

∣∣PQN(2S1/2)
〉
+

√
3

2

∣∣P ∗
QN(2S1/2)

〉
(5.34)

for the HQS singlet, and

∣∣1+〉
1/2−

=sin θ

(√
3

2

∣∣PQN(2S1/2)
〉
+

1

2

∣∣P ∗
QN(2S1/2)

〉)
− cos θ

∣∣P ∗
QN(4D1/2)

〉
,

(5.35)∣∣1+〉
3/2−

=sin θ
∣∣P ∗

QN(4S3/2)
〉

+ cos θ

(√
6

4

∣∣PQN(2D3/2)
〉
+

1√
2

∣∣P ∗
QN(4D3/2)

〉
+

√
2

4

∣∣P ∗
QN(2D3/2)

〉)
,

(5.36)

for the HQS doublet.
The results in Eqs. (5.34)-(5.36) are related to the fractions of wave functions in

the particle basis. For the HQS singlet state, the fractions are given by Eq. (5.34) as

f(PQN(2S1/2)) : f(P
∗
QN(2S1/2)) = 1 : 3 . (5.37)

If we obtain the bound state with JP = 1/2− corresponding to the HQS singlet by
solving the eigenvalue problem, the mixing ratio of the eigenfunctions in the particle
basis is expected to be the fractions. For the HQS doublet with jP = 1+, the fractions
of the wave functions are obtained from Eqs. (5.35) and (5.36):

f(PQN(2S1/2)) : f(P
∗
QN(2S1/2)) = 3 : 1 , (5.38)

for JP = 1/2−, and

f(PQN(2D3/2)) : f(P
∗
QN(4D3/2)) : f(P

∗
QN(2D3/2)) = 3 : 4 : 1 , (5.39)

for JP = 3/2−. Interestingly, these fractions are obtained by the heavy quark sym-
metry directly, and independent of the dynamics. However, the mixing angle θ is
dependent on the dynamics, and hence, for JP = 1/2−, the ratio of PN(2S1/2)

(P ∗N(2S1/2)) to P
∗N(4D1/2) is not determined by the symmetry.

We also obtain the fractions in the positive parity states. The states |0−〉1/2+ and
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|1−〉1/2+,3/2+ are expressed by

∣∣0−〉
1/2+

=
1

2

∣∣PQN(2P1/2)
〉
+

1

2
√
3

∣∣P ∗
QN(2P1/2)

〉
+

√
2

3

∣∣P ∗
QN(4P1/2)

〉
,

(5.40)∣∣1−〉
1/2+

= sin θ

(
1

2

∣∣PQN(2P1/2)
〉
−

√
3

2

∣∣P ∗
QN(2P1/2)

〉)

+ cos θ

(
1√
2

∣∣PQN(2P1/2)
〉
+

1√
6

∣∣P ∗
QN(2P1/2)

〉
− 1√

3

∣∣P ∗
QN(4P1/2)

〉)
,

(5.41)∣∣1−〉
3/2+

= sin θ

(
−1

2

∣∣PQN(2P3/2)
〉
+

√
3

2

∣∣P ∗
QN(2P3/2)

〉)

+ cos θ

(
1

2
√
2

∣∣PQN(2P3/2)
〉
+

1

2
√
6

∣∣P ∗
QN(2P3/2)

〉
−
√

5

6

∣∣P ∗
QN(4P3/2)

〉)
.

(5.42)

For the |0−〉1/2+ state, we obtain

f(PQN(2P1/2)) : f(P
∗
QN(2P1/2)) : f(P

∗
QN(4P1/2)) = 3 : 1 : 8 . (5.43)

For the |1−〉1/2+,3/2+ states, the upper and lower components of the Hamiltonian

H
SC(1+)
1/2+,3/2+ in Eqs. (5.22) and (5.23) are not coupled. Hence, for |1−〉1/2+ states, the

we obtain two states with fractions

f(PQN(2P1/2)) : f(P
∗
QN(2P1/2)) = 1 : 3 (5.44)

and

f(PQN(2P1/2)) : f(P
∗
QN(2P1/2)) : f(P

∗
QN(4P1/2)) = 3 : 1 : 2 (5.45)

for first and second terms in Eq (5.41), respectively. For |1−〉3/2+ states, we find

f(PQN(2P3/2)) : f(P
∗
QN(2P3/2)) = 1 : 3 (5.46)

and

f(PQN(2P3/2)) : f(P
∗
QN(2P3/2)) : f(P

∗
QN(4P3/2)) = 3 : 1 : 20 (5.47)

for first and second terms in Eq (5.42), respectively.
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5.4 Numerical results in the heavy quark limit

5.4.1 Numerical results of PQN states

Let us show the numerical results of the PQN states in the heavy quark limit. By
solving coupled-channel Schrödinger equations, we study the existence of the spin

degeneracy in the P
(∗)
Q N molecular states. We investigate the states with JP = 1/2±

and 3/2± for I = 0. As for the interaction between the P (∗) meson and the nucleon
N , we employ two potentials, the π potential and πρω potential. These results are
compared. The meson exchange potentials are given in Eqs. (3.15) and (3.16) for the
π exchange, and Eqs. (3.21)-(3.23) for the vector meson exchanges, where we use the

cutoff ΛP = 1.12ΛN for the P
(∗)
Q meson with ΛN = 837 MeV (846 MeV) for the π

(πρω) potential [93].
First, the results of the negative parity states are shown. We obtain the degenerate

bound states of JP = 1/2− and 3/2− with same binging energy −34.1 MeV for the π
potential and −37.4 MeV for the πρω potential, displayed in Table 5.2. The results
of the π potential is almost same as those of the πρω potential as seen in the P (∗)N
states in the chapter 3. The degenerate states are considered as the HQS doublet
containing the spin-complex with jP = 1+. We also find that the equivalent relative
distances of the PQN bound states with JP = 1/2− and 3/2−, 1.2 fm for the π
potential and 1.1 fm for πρω potential.

For the positive parity states with JP = 1/2+ and 3/2+, we also fine the degenerate
states with binding energy −11.8 MeV for the π potential and −12.8 MeV for the πρω
potential, shown in Table 5.2. The degenerate bound states are considered to belong
to the HQS doublet containing the spin-complex with jP = 1−. The corresponding
relative radius is found, 1.6 fm for the π and πρω potentials.

We estimate mixing ratios of the obtained bound states with JP = 1/2± and 3/2±,
summarized in Table 5.3. In the results, we show the ratios for the π potential and
πρω potential. For the JP = 1/2− state, we obtain the ratios, 63.6 % (64.0 %) for
PQN(2S1/2), 21.2 % (21.3 %) for P ∗

QN(2S1/2) and 15.2 % (14.7 %) for P ∗
QN(4D1/2)

when the π (πρω) potential is used. For the results of PQN(2S1/2) and P
∗
QN(2S1/2),

we find that the fractions satisfy the ratio in Eq. (5.38), i.e. f(PQN(2S1/2)) :

f(P ∗
QN(2S1/2)) = 3 : 1. This indicates that the degenerate bound states do not

Table.5.2 Binding energy EB and relative distance 〈r2〉1/2 for degenerate bound
states with JP = 1/2−, 3/2− (P = −) and JP = 1/2+, 3/2+ (P = +) in the PQN
systems. Results for the π and πρω potentials are compared.

P = − (π) P = − (πρω) P = + (π) P = + (πρω)
EB [MeV] −34.1 −37.4 −11.8 −12.8

〈r2〉1/2 [fm] 1.2 1.1 1.6 1.6
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happen by accident but form as the HQS doublet with jP = 1+. The difference
between results of the π and πρω potentials are due to the mixing angle θ which is
dependent on the dynamics.

For the JP = 3/2− state, we find that the fractions of PQN(2D3/2), P
∗
QN(2D3/2)

and P ∗
QN(2D3/2) channels consist with the fractions in Eq. (5.39), namely

f(PQN(2D3/2)) : f(P ∗
QN(4D∗

3/2)) : f(P ∗
QN(4D3/2)) = 3 : 4 : 1 Therefore, we

emphasize again that the bound states of the JP = 1/2− and 3/2− belong to the
HQS doublet with jP = 1+.

We calculate the mixing ratios of the positive parity states, shown in Table 5.3.
For JP = 1/2+, the fractions are obtained as f(PQN(2P1/2)) : f(P ∗

QN(2P1/2)) :

f(P ∗
QN(4P1/2)) = 3 : 1 : 2 which corresponds to Eq. (5.45). We also obtain the

fractions for JP = 3/2+ as f(PQN(2P3/2)) : f(P
∗
QN(2P3/2)) : f(P

∗
QN(4P3/2)) = 3 :

1 : 20 corresponding to Eq. (5.47). The results indicate that the degenerate states for
JP = 1/2+ and 3/2+ belong to the HQS doublet with jP = 1−.

We note that there is no bound state corresponding to the HQS singlet from the

H
SC(0+)
1/2− and H

SC(0−)
1/2+ components. For these states, the attraction is not enough to

form the bound and resonant states. In addition, we find no state for the isotriplet
channel.

Table.5.3 Mixing ratio of each channel in the bound states with JP = 1/2± and
3/2± for I = 0. The results of the π and πρω potentials are compared.

1/2− PN(2S1/2) P ∗N(2S1/2) P ∗N(4D1/2) —
π 63.6 % 21.2 % 15.2 % —

πρω 64.0 % 21.3 % 14.7 % —
3/2− PN(2D1/2) P ∗N(4S1/2) P ∗N(4D1/2) P ∗N(2D1/2)
π 5.7 % 84.4 % 7.6 % 1.9 %

πρω 5.5 % 85.3 % 7.4 % 1.8 %

1/2+ PN(2P1/2) P ∗N(2P1/2) P ∗N(4P1/2) —
π 50.0 % 16.7 % 33.3 % —

πρω 50.0 % 16.7 % 33.3 % —
3/2+ PN(2P3/2) P ∗N(2P3/2) P ∗N(4P3/2) P ∗N(4F3/2)
π 12.5 % 4.2 % 83.3 % 0.0 %

πρω 12.5 % 4.2 % 83.3 % 0.0 %

Finally, let us compare the results in the heavy quark limit with those in the
charm and bottom sectors. Whereas the energy differences between the degenerate
bound states with JP = 1/2± and 3/2± are exactly zero, the differences between the
states with JP = 1/2± and 3/2± in the charm and bottom sectors are finite due to
the breaking of the heavy quark symmetry. For negative parity states, the energy
splitting of the bound states with JP = 1/2− and the resonances with JP = 3/2−

is 115.3 MeV for D̄N , and 29.9 MeV for BN as seen in Fig. 3.8 Therefore, we see
that the energy difference decreases as the heavy quark mass increases. The degrees
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of the energy splitting are comparable with the mass splittings of the P = D̄, B and
P ∗ = D̄∗, B∗ mesons. For the positive parity states, we also find the same behavior
as the negative parity states. The difference between the resonances with JP = 1/2+

and 3/2+ is 121.4 MeV for D̄N , and 26.0 MeV for BN .
The breaking of the heavy quark symmetry is also characterized by the mixing

ratio of the component with j = 0. In the heavy quark limit, the degenerate bound
states with the spin-complex with j = 1 do not contain the components with j = 0
because the angular momentum j of the spin-complex is conserved. For the D̄N and
BN states, however, the heavy quark symmetry is broken and therefore the spin-
complex components with j = 0 would be mixed. By using the wave functions in the
spin-complex basis for JP = 1/2− in Eq. (5.7), the mixing ratios of the bound states
with JP = 1/2− for D̄N and BN in Table 3.5 can be transformed into the ratios of
the wave functions in the spin-complex basis. As a results, for the D̄N bound state
when the πρω potential is used, we obtain the ratios, 83.3 % for j = 1 and 16.7 % for
j = 0, which are summarized in Table 5.4. For the BN states for the πρω potential,
we obtain the ratios, 97.3 % for j = 1 and 2.7 % for j = 0. Comparing the results of
D̄N and BN , the ratio of the components with j = 1 for BN is almost 100 %, while
the mixing ratio of the components with j = 0 for the D̄N is not small. Therefore,
we expect that the effects of the breaking of heavy quark symmetry is non-negligible
for the charmed hadrons.

Table.5.4 Mixing ratios of the states for (I, JP ) = (0, 1/2−) in the spin-complex
basis. The ratios of the spin-complex components with j = 1 and j = 0 are
compared.

D̄N BN PQN
j = 1 83.3 % 97.3 % 100 %
j = 0 16.7 % 2.7 % 0 %

5.4.2 Numerical results of PQNN states

Let us present the numerical results of the three-body PQNN states. The states with
JP = 0− and 1− with I = 1/2 in the heavy quark limit are investigated. As for the
interaction, the OPEP between a heavy meson and a nucleon, and AV8′ potential
between two nucleons are employed.

By solving the Schrödinger equations, where PQ and P ∗
Q are exactly degenerate

in mass, we find the bound states both for JP = 0− and 1− with the same binding
energy −38.5 MeV measured from PQNN threshold. Those numerical results indicate
that degenerate states are realized in the PQNN systems. This HQS doublet state
having JP = 0− and 1− contain the spin-complex component with jP = 1/2+ and
I = 1/2. As seen in the analysis of the two-body systems, the energy splitting
between the states with JP = 0− and 1− decrease as the mass of the heavy quark
increase, namely 116.4 MeV for D̄NN , 33.0 MeV for BNN and 0.0 MeV for PQNN
in the heavy quark limit. The energy splittings are expected to be characterized by
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the breaking of the heavy quark symmetry, namely the mass of the heavy quark, as
discussed in the two-body PQN states.

In the three-body PQNN states, we find no singlet state. We saw that the HQS
singlet was absent in the two-body PQN states because of the small attraction in
these channels. For the PQNN states, however, the situation is different. The HQS
singlet is corresponding to the eigenstate with the spin-complex with j = 0. Whereas
the Hamiltonian of the PQN states with JP = 1/2± contains these components as
seen in Eqs (5.18) and (5.22), the PQNN states do not have the corresponding one
because the spin-complex [qNN ]jP cannot take j = 0. In general, PQ nuclei with
even baryon numbers, e.g. PQNN , PQNNNN , PQNNNNNN , · · · , do not contain
the spin-complex with j = 0, and therefore no HQS singlet state is found.

5.5 Summary and Discussion
We have considered the PQN and PQNN systems in the heavy quark limit. The
heavy quark symmetry manifests the spin degeneracy with total angular momentum
and parity (j−1/2)P and (j+1/2)P in heavy hadron states containing a single heavy
quark. This is the universal phenomenon which appears not only in normal hadrons,
but also in multi-hadron states in the heavy quark limit.

Thanks to the suppression of the spin-dependent force in the heavy quark limit,
the spin configurations of these systems are separated into a heavy anitquark spin
and remaining light degrees of freedom. The light degrees of freedom, namely the
spin-complex, are composed of a light quark q in the heavy meson and nucleons N
in the systems. Then, the wave functions of the PQN states in the particle basis
can be transformed into those in the spin-complex basis. We saw that by using the
wave functions in the spin-complex basis, the Hamiltonians are rewritten as block-
diagonalizing forms with two components for j = J − 1/2 and j = J + 1/2.

By solving the coupled channel Schrödinger equations numerically, we have found
the degenerate bound states both in the PQN and PQNN states. In the two-body
PQN states, the doublet states with JP = 1/2− and 3/2−, and JP = 1/2+ and 3/2+

for I = 0 have been obtained. The lowest bound states found for JP = 1/2− and
3/2−, containing the spin complex with jP = 1+ and I = 0. The degenerate states
with JP = 1/2+ and 3/2+ contained the spin-complex with jP = 1− and I = 0. For
these bound states, the obtained mixing ratios also indicated they belonged the HQS
doublet. On the other hand, we found no HQS singlet because of the small attraction
in the corresponding channels.

By comparing the states for D̄N , BN and PQN in the heavy quark limit, we
discussed the breaking of the heavy quark symmetry in the charm and bottom sectors.
We saw that the energy splittings of the degenerate states increase as the heavy quark
mass decreases. For the charm sector, the effects of the breaking of the heavy quark
symmetry were expected to be non negligible.

For the PQNN states, the degenerate bound states have been present in the JP =
0− and 1− states with I = 1/2. The doublet contained the spin-complex with jP =
1/2+ and I = 1/2. We have not obtained a HQS singlet state. For the few-baryon
systems with a D̄ or B meson, the states with even baryon numbers cannot contain
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the spin-complex with j = 0 due to the limited combinations of angular momenta.
For instance, in the PQNN states, the total angular momentum of the spin-complex
[qNN ] should be half-integer and therefore not be zero.
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Chapter 6

Summary

In this thesis, the possible existence of the two-body PN and three-body PNN states
for charm and bottom sectors, and in the heavy quark limit has been explored.

In chapter 3, the D̄N and BN molecules for exotic channels, and the DN and B̄N
molecules for non-exotic channels have been investigated. As interactions between
a heavy meson and a nucleon, the one pion and vector exchange potentials are in-
troduced by the chiral and heavy quark symmetries. In the PN systems, the tensor
force of the OPEP mixing the PN and P ∗N channels was expected to play an im-
portant role to generate a strong attraction as discussed in the deuteron. Therefore,
the coupled-channel Schrödinger equations for PN and P ∗N with different angular
momentum states L and L± 2 have been solved numerically.

The D̄N and BN states were genuinely exotic states whose minimal quark content
was Q̄qqqq, called a pentaquark state. Therefore, their bound states were stable
against a strong decay. We have obtained the loosely bound states and resonances
near the D̄N and D̄∗N (BN and B∗N) thresholds for the isosinglet states. For the
(I, JP ) = (0, 1/2−) channel, the small binding energy and large relative distance of
the D̄N state indicate that this forms the loosely bound states. We found that the
tensor force of the OPEP was important to yield the bound states. In particular,
the PN −P ∗N mixing components produced the strongest attraction in the systems.
The tensor force was also essential to produce the resonances above the PN threshold.
Comparing the results of the π and πρω potentials, we found the OPEP dominance
in the PN molecules. Because the ρ exchange is attractive but the ω exchange
is repulsive, they are canceled out. In addition, the OPEP as a long-range force
becomes dominant in such loosely bound states which are expanded spatially. We
obtained that these features also held for the BN states. Comparing the charm and
bottom sectors, the BN states were more deeply bound that the D̄N states. This
was caused not only by the large reduced mass, but also by the small mass splitting
between B and B∗ mesons. The tensor force mixing the PN and P ∗N channels
became important when P and P ∗ mesons degenerated. Finally, we found no state
in the isotriplet channel. The attraction was not enough to form a bound or resonant
state due to the small isospin factor ~τP · ~τN .

The DN and B̄N states had an ordinary flavor structure. We have investigated
the P̄N and P̄ ∗N channels, but the couplings to three-quark states and other meson-
baryon states such as πΛc, πΣc, and πΣ

∗
c (πΛb, πΣb, and πΣ

∗
b) have not considered
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in the calculations. We expected the suppression of the transitions to there states
near the P̄ (∗)N thresholds because the heavy quark exchanges were needed. As a
consequence, we have obtained many bound and resonant states. The ω exchange
potential became an attractive force due to the G-parity transformation in the non-
exotic states, and therefore the attractions from the vector meson exchanges were
stronger than those in the exotic states. We have obtained the different behaviors in
the states with small and large orbital angular momenta. For the JP = 1/2± and
3/2− for I = 0, they formed deeply bound states. In particular, the binding energies
of JP = 1/2± states are over 80 MeV for DN , and over 100 MeV for B̄N . The large
difference between the results of the π and πρω potential indicated that the vector
meson exchange potentials produced the strong attraction. For these bound states,
the relative distances between the P̄ meson and the nucleon were small less than 1
fm and hence it was difficult to identify them as hadronic molecules. On the other
hand, the states with JP = 3/2+, 5/2± and 7/2− emerged near the thresholds. For
these states, the difference between the results of the π and πρω potentials were small
compared to deeply bound states. The OPEP played a dominant role in the states
with large orbital angular momenta.

In chapter 4, we have discussed the possible existence of the exotic dibaryons with
heavy antiquark, being realized three-body systems, D̄NN and BNN . The PNN
states were unique as few-body systems. The counterparts ofKNN in the strangeness
sector have not found due to the repulsive force between theK meson and the nucleon.
In the states, we have considered the OPEP between the heavy meson and the nucleon.
As for the NN interaction, the Argonne v′8 has been employed. For I = 1/2, we have
found the bound states with JP = 0− and the Feshbach resonances with JP = 1−

both in the D̄NN and BNN . The obtained energies of these states were larger than
those of the two-body D̄N and BN states. The energy expectation values of the
bound states showed that the tensor force of the PN − P ∗N mixing components
provided the strong attraction. This force dominated in the PNN systems as seen
in the two-body PN states. For the nucleon-nucleon interaction, the tensor force
which was important in the deuteron played a minor role, while the central force was
major. Therefore, the NN subsystem with JP = 0+ dominated in the bound states.
The resonances with JP = 1− formed the Feshbach resonances in which the P ∗NN
channels predominated. We found that the many features of the two-body systems
survived in the three-body systems, because the OPEP between the P meson and
the nucleon played a dominant force to determine the properties of the bound and
resonant states.

In chapter 5, the exotic PQN and PQNN states in the heavy quark limit have
been discussed. The heavy quark symmetry manifests the spin degeneracy of the
states with (j−1/2)P and (j+1/2)P with a single heavy (anti-)quark, because of the
suppression of the spin-dependent forces. This is a universal phenomena which emerge
not only in the normal heavy hadrons, but also in the multi-hadron systems such as
hadronic molecules and exotic nuclei. In order to see the spin degenerate states in the
PQN and PQNN states, we have introduced the spin-complex which was the brown
muck containing not only light quarks and gluons in the heavy meson, but also the
light hadrons, namely the nucleons. The wave functions of the PQN states expressed
by the particle basis were able to be transformed into those in the spin-complex basis.
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The spin-complex was useful object because the states and Hamiltonian were classified
by the total angular momentum of the spin-complex, which was the conserved value
in the heavy quark limit. For the PQN states, we have found the degenerate bound
states with JP = 1/2− and 3/2−, and JP = 1/2+ and 3/2+ in the heavy quark limit,
while we have found no singlet state. These results indicated that the bound and
resonant states obtained in the charm and bottom sectors had common origins which
were degenerate in the heavy quark limit.

By comparing the states for D̄N , BN and PQN in the heavy quark limit, the
breaking of the heavy quark symmetry in the charm and bottom sectors was discussed.
Whereas, in the heavy quark limit, the spin complex only with j = 1 was contained in
the degenerate bound states, the components with j = 0 existed in the D̄N and BN .
In particular, the mixing ratios of the spin-complex with j = 0 was not small in the
D̄N bound states and hence the effects of the breaking of the heavy quark symmetry
were expected to be non negligible in the charm sector.

The degenerate bound states have been also found in the PQNN state. The nature
of the three-body systems were similar to behavior of the two-body systems.

Finally, the hadronic molecular states discussed in the thesis, the two-body systems
as D̄N (BN) and DN (B̄N), and the three-body systems as D̄NN (BNN) can be
searched in experiments in hadron colliders. The understanding of production reac-
tions is important issue in the feature. The productions of the exotic hadrons will
be studied in relativistic heavy ion collisions in RHIC and LHC [177, 178]. Further-
more, the search for the charmed states would be also carried out in J-PARC and
GSI-FAIR.
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Appendix A

Notations and Conventions

A.1 Relativistic notation
Space-time four-vector is denoted by xµ (µ = 0, 1, 2, 3) with time component x0 = t
and space component xi (i = 1, 2, 3). The covvariant vector xµ = (x0,−xi) is defined
from the contravariant vector xµ as xµ = gµνx

µ, where the metric tensor gµν is defined
by

gµν = gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

The derivative operators are written by

∂µ =
∂

∂xµ
=

(
∂

∂t
,∇
)
, ∂µ =

∂

∂xµ
=

(
∂

∂t
,−∇

)
. (A.2)

A.2 Vector derivatives

A.2.1 Cartesian coordinates

dτ = dxdydz (A.3)

∇A =
∂A

∂x
x̂+

∂A

∂y
ŷ +

∂A

∂z
ẑ (A.4)

∇ · ~A =
∂Ax

∂x
+
∂Ay

∂y
+
∂Az

∂z
(A.5)

∇× ~A =

(
∂Az

∂y
− ∂Ay

∂z

)
x̂+

(
∂Ax

∂z
− ∂Az

∂x

)
ŷ +

(
∂Ay

∂x
− ∂Ax

∂y

)
ẑ (A.6)

∇2A =
∂2A

∂x2
+
∂2A

∂y2
+
∂2A

∂z2
(A.7)
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A.2.2 Spherical polar coordinates

dτ =r2 sin θdrdθdφ (A.8)

∇A =
∂A

∂r
r̂ +

1

r

∂A

∂θ
θ̂ +

1

r sin θ

∂A

∂φ
φ̂ (A.9)

∇ · ~A =
1

r2
∂

∂r
(r2Ar) +

1

r sin θ

∂

∂θ
(sin θAθ) +

1

r sin θ

∂Aφ

∂φ
(A.10)

∇× ~A =
1

r sin θ

[
∂

∂θ
(sin θAφ)−

∂Aθ

∂φ

]
r̂ +

1

r

[
1

sin θ

∂Ar

∂φ
− ∂

∂r
(rAφ)

]
θ̂

+
1

r

[
∂

∂r
(rAθ)−

∂Ar

∂θ

]
φ̂ (A.11)

∇2A =
1

r2
∂

∂r

(
r2
∂A

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂A

∂θ

)
+

1

r2 sin θ

∂2A

∂φ2
(A.12)

A.3 Pauli matrices
Pauli matrices, ~σ, are defined by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.13)

~σ provide the rising and lowering operators as

σ+ =
1

2
(σ1 + iσ2) =

(
0 1
0 0

)
, σ− =

1

2
(σ1 − iσ2) =

(
0 0
1 0

)
, (A.14)

respectively. The Pauli matrices satisfy the formulas,

σiσj = δij + iεijkσk , (A.15)

(~σ · ~a )(~σ ·~b ) = ~a ·~b+ i~σ · (~a×~b ) . (A.16)

A.4 Dirac matrices
In the Dirac-Pauli representation, γ matrices are given by

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, (A.17)

where σ are Pauli matrices. The matrices satisfy the anticommutation relations

{γµ, γν} = 2gµν . (A.18)
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The Hermitian conjugates and squares of γ matrices are summarized as follows.

(γµ)† = γ0γµγ0 , (A.19)

(γ0)† = γ0 , (A.20)

(γi)† = −γi (i = 1, 2, 3) , (A.21)

(γ0)2 = 1 , (A.22)

(γi)2 = −1 . (A.23)

A commutator of γ matrices is often expressed by tensor σµν as

σµν =
i

2
[γµ, γν ] = i (γµγν − gµν) . (A.24)

In this representation, γ5 matrix is written by

γ5 = iγ0γ1γ2γ3 =

(
0 1
1 0

)
. (A.25)

The γ5 matrix has the properties,

(γ5)† = γ5 , (A.26)

(γ5)2 = 1 , (A.27)

{γ5, γµ} = 0 . (A.28)

Finally, the alternative expression for the γ matrices, namely Weyl (Chiral) represen-
tation, are introduced,

γµ =

(
0 σµ

σ̄µ 0

)
, γ5 =

(
−1 0
0 1

)
, (A.29)

where

σµ = (1,σ), σ̄µ = (1,−σ). (A.30)

The γ’s also satisfy Eqs. (A.18)-(A.23) and (A.26)-(A.28).

A.5 Traces of γ matrices
Traces of γ matrices in 4-dimensions are summarized as follows:

tr(any odd number of γ ′s) = 0 (A.31)

tr(γµγν) = 4gµν (A.32)

tr(γµγνγργσ) = 4(gµνgρσ − gµρgνσ + gµσgνρ) (A.33)

tr(γ5) = 0 (A.34)

tr(γµγνγ5) = 0 (A.35)

tr(γµγνγργσγ5) = −4iεµνρσ (A.36)
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Appendix B

Meson exchange potentials

and Kinetic terms

B.1 Matrix elements of the Heavy meson-Nucleon

potentials
In this section, the matrix elements of the Heavy meson-Nucleon potentials are sum-
marized. In the π and vector meson exchange potentials in Eqs. (3.15)-(3.16) and

(3.21)-(3.23), there are four operators, ~ε · ~σ and ~S · ~σ for the central force, and Sε

and SS for the tensor force. The matrix elements can be calculated by using the
Wigner-Eckart theorem and several formulas for angular momentum.

For two-body systems, the matrix element of ~ε · ~σ for the central force is obtained
by

〈[l1, [s1, s2]s]J |(−
√
3)[0, [ε, σ]0]0| [l2, [s′1, s′2]s′ ]J〉

= δl1l2δss′(−1)s
′
1+s2+s

{
s1 s2 s
s′2 s′1 1

}
〈s1||ε||s′1〉〈s2||σ||s′2〉 . (B.1)

For s1 = 1, s′1 = 0 and s2 = s′2 = 1/2, Eq. (B.1) can be reduced to

〈[l1, [1, 1/2]s]J |(−
√
3)[0, [ε, σ]0]0| [l2, [0, 1/2]s′ ]J〉 = δl1l2δss′δs1/2

(
−
√
3
)
.

(B.2)

In the similar way, the matrix element of ~S · ~σ is calculated as

〈[l1, [s1, s2]s]J |(−
√
3)[0, [S, σ]0]0| [l2, [s′1, s′2]s′ ]J〉

= δl1l2δss′(−1)s
′
1+s2+s

{
s1 s2 s
s′2 s′1 1

}
〈s1||S||s′1〉〈s2||σ||s′2〉 (B.3)

For s1 = s′1 and s2 = s′2 = 1/2, we obtain

〈[l1, [1, 1/2]s]J |(−
√
3)[0, [S, σ]0]0| [l2, [1, 1/2]s′ ]J〉

= δl1l2δss′(−1)s+3/2 · 6
{

1 1/2 s
1/2 1 1

}
(B.4)
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Let us move to the matrix elements of the tensor operators in the two-body systems.

We use SO(r̂) = 3( ~O· r̂)(~σ · r̂)− ~O·~σ =
√
24π[Y2(r̂), [O, σ]2]0 for O = ε, S. The matrix

element of Sε is given by

〈[l1, [s1, s2]s]J |
√
24π[Y2, [ε, σ]2]0| [l2, [s′1, s′2]s′ ]J〉

= (−1)2l1+l2+s+J
√
30
√

(2l1 + 1)(2s+ 1)(2s′ + 1)〈s1||ε||s′1〉〈s2||σ||s′2〉

× ( l1 0 2 0|l2 0 )

{
l1 s J
s′ l2 2

} s1 s2 s
s′1 s′2 s′

1 1 2

 . (B.5)

For s1 = 1, s′1 = 0 and s2 = s′2 = 1/2,

〈[l1, [1, 1/2]s]J |
√
24π[Y2, [ε, σ]2]0| [l2, [0, 1/2]s′ ]J〉

= δs′1/2(−1)2l1+l2+s+J6
√
5
√

(2l1 + 1)(2s+ 1)

× ( l1 0 2 0|l2 0 )

{
l1 s J
s′ l2 2

}{
1 2 1
s 1/2 1/2

}
. (B.6)

The matrix elements of SS is also obtained by

〈[l1, [s1, s2]s]J |
√
24π[Y2, [S, σ]2]0| [l2, [s′1, s′2]s′ ]J〉

= (−1)2l1+l2+s+J
√
30
√

(2l1 + 1)(2s+ 1)(2s′ + 1)〈s1||S||s′1〉〈s2||σ||s′2〉

× ( l1 0 2 0|l2 0 )

{
l1 s J
s′ l2 2

} s1 s2 s
s′1 s′2 s′

1 1 2

 (B.7)

For s1 = s′1 = 1, s2 = s′2 = 1/2, we obtain

〈[l1, [1, 1/2]s]J |
√
24π[Y2, [S, σ]2]0| [l2, [1, 1/2]s′ ]J〉

= (−1)2l1+l2+s+J · 6
√
30
√

(2l1 + 1)(2s+ 1)(2s′ + 1)

× ( l1 0 2 0|l2 0 )

{
l1 s J
s′ l2 2

} 1 1/2 s
1 1/2 s′

1 1 2

 (B.8)

Finally, the matrix elements of these operators in the three-body systems are sum-
marized as follows:

〈[[s1, s2]s12 , s3]s |~ε · ~σ|
[
[s′1, s

′
2]s′12 , s

′
3

]
s′
〉

= δss′δmsms′ δs12s′12δs3s′3(−1)2s+3s12+2s3+1/2

{
s1 s′1 1
s′2 s2 s12

}
× 3

√
2 ,

(B.9)

〈[[s1, s2]s12 , s3]s |~S · ~σ|
[
[s′1, s

′
2]s′12 , s

′
3

]
s′
〉

= δss′δmsms′ δs12s′12δs3s′3(−1)2s+3s12+2s3+s1+s2

{
s1 s′1 1
s′2 s2 s12

}
× 6 ,

(B.10)
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〈[[s1, s2]s12 , s3]s ||[ε, σ]2||
[
[s′1, s

′
2]s′12 , s

′
3

]
s′
〉

= δs3s′3(−1)s
′+s3−1/2

√
5(2s+ 1)(2s′ + 1)(2s12 + 1)(2s′12 + 1)

×
{
s12 s s3
s′ s′12 2

} s1 s2 s12
s′1 s′2 s′12
1 1 2

× 3
√
2 , (B.11)

〈[[s1, s2]s12 , s3]s ||[S, σ]2||
[
[s′1, s

′
2]s′12 , s

′
3

]
s′
〉

= δs3s′3(−1)s
′+s3+s12

√
5(2s+ 1)(2s′ + 1)(2s12 + 1)(2s′12 + 1)

×
{
s12 s s3
s′ s′12 2

} s1 s2 s12
s′1 s′2 s′12
1 1 2

× 6 . (B.12)

B.2 Potentials and Kinetic terms in the systems of

a heavy meson and a nucleon

Let us show the explicit forms of the meson exchange potentials for each JP . The
potentials for the coupled channel systems are given in the matrix form of 3 × 3 for
JP = 1/2±,

V1/2± =

V
11
1/2+ V 12

1/2+ V 13
1/2+

V 21
1/2+ V 22

1/2+ V 23
1/2+

V 31
1/2+ V 32

1/2+ V 33
1/2+

 , (B.13)

(B.14)

and 4× 4 for the other JP states,

VJP =


V 11
JP V 12

JP V 13
JP V 14

JP

V 21
JP V 22

JP V 23
JP V 24

JP

V 31
JP V 32

JP V 33
JP V 34

JP

V 41
JP V 42

JP V 43
JP V 44

JP

 , (B.15)

in the basis given in Table 3.1 in the same ordering.
The π exchange potentials V π

JP for each JP are obtained by Eqs. (3.15) and (3.16)
as

V π
1/2− =

 0
√
3V π

C −
√
6V π

T√
3V π

C −2V π
C −

√
2V π

T

−
√
6V π

T −
√
2V π

T V π
C − 2V π

T

 , (B.16)

V π
1/2+ =

 0
√
3V π

C −
√
6V π

T√
3V π

C −2V π
C −

√
2V π

T

−
√
6V π

T −
√
2V π

T V π
C − 2V π

T

 , (B.17)
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V π
3/2− =


0

√
3V π

T −
√
3V π

T

√
3V π

C√
3V π

T V π
C 2V π

T V π
T

−
√
3V π

T 2V π
T V π

C −V π
T√

3V π
C V π

T −V π
T −2V π

C

 , (B.18)

V π
3/2+ =



0
√
3V π

C

√
3

5
V π
T −3

√
3

5
V π
T

√
3V π

C −2V π
C

1√
5
V π
T −

√
3V π

T√
3

5
V π
T

1√
5
V π
T V π

C +
8

5
V π
T

6

5
V π
T

−3

√
3

5
V π
T −

√
3V π

T

6

5
V π
T V π

C − 8

5
V π
T


, (B.19)

V π
5/2− =



0
√
3V π

C

√
6

7
V π
T − 6√

7
V π
T

√
3V π

C −2V π
C

√
2

7
V π
T −2

√
3

7
V π
T√

6

7
V π
T

√
2

7
V π
T V π

C +
10

7
V π
T

4

7

√
6V π

T

− 6√
7
V π
T −2

√
3

7
V π
T

4

7

√
6V π

T V π
C − 10

7
V π
T


, (B.20)

V π
5/2+ =



0
3

5

√
10V π

T

√
3V π

C −2

√
3

5
V π
T

3

5

√
10V π

T V π
C − 2

5
V π
T

√
6

5
V π
T

4

5

√
6V π

T

√
3V π

C

√
6

5
V π
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The coupling constants are tabulated in Table 3.2 and the functions C(r;m) and
T (r;m) are given by Eqs. (3.17) and (3.20).

The vector meson exchange potentials V v
JP (v = ρ, ω) are also given by Eqs. (3.21)-

(3.23),
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where V v ′
C , V v

C and V v
T are defined as
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For instance, the functional forms of potentials for JP = 1/2− and 3/2−, and I = 0
are shown in Fig. B.1-B.3. The dominance of the tensor force of the OPEP is seen
clearly in the potentials such as V 12

1/2− and V 23
1/2− .

Finally, the kinetic terms for each JP are given by
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Fig.B.1 Various components of the πρω exchange potential for (I, JP ) = (0, 1/2−).
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Fig.B.2 Various components of the πρω exchange potential for (I, JP ) = (0, 3/2−).
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Fig.B.3 Continued from Fig. B.2.
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where 4l = ∂2/∂r2 + (2/r)∂/∂r− l(l+1)/r2, m̃P (∗) = mNmP (∗)/(mN +mP (∗)), and
∆mPP∗ = mP∗ −mP . The total Hamiltonian is then given by HJP = KJP + VJP .

B.3 Nucleon-nucleon potentials
The nucleon-nucleon (NN) potential is one of the most basic interaction between two
hadrons. The long history of the NN interaction was started from the basic idea
by H. Yukawa in 1935 [137]. The pion predicted by Yukawa is the most essential
ingredient in the theory of nuclear forces. Based on his Meson Theory, the one
boson-exchange models have been developed, constructed from the NN scattering
data phenomenologically. Early models of the one boson-exchange potential (OBEP)
had been investigated by Hamada-Johnston [179,180], Reid [181], Bryan-Scott [182–
184], Minnesota group [185], etc. In addition, Y. Yamaguchi discussed the non-local
NN potential in 1954 [186, 187]. These potentials can describe the properties of the
deuteron and the NN phase shifts in low energy region.

In 1990s, high precision potentials were developed. CD-Bonn [188], Argonne
v18 [149], and Nijmegen potentials (Nijm93, Nijm I, Nijm II and Reid93) [189] are
able to reproduce the NN phase shifts with high accuracy, and called the realistic
NN potentials. They are utilized widely in the nuclear physics.

From the discovery of the Quantum chromodynamics (QCD), new approaches to
describe the NN interactions have been developed. S. Weinberg discussed that one
has to write down the general Lagrangian which is consistent with the assuming
symmetry, particularly the chiral symmetry of QCD [119]. The idea introduced the
effective field theory to the low-energy QCD. In this approach, the pion being the
Nambu-Goldstone boson also emerges as the effective degrees of freedom. The NN
forces based on the Chiral effective field theory (EFT) were discussed in Refs. [190–
194] and reviewed in Refs. [172, 173, 195]. These results reach success to obtain the
accurate NN phase shifts.

The NN interactions from QCD have been also studied by the Lattice QCD simu-
lations [196,197]. This approach succeeds in obtaining the central and tensor forces of
the NN interaction, while the calculations have not been done at the physical point
yet. However, the behaviors of the obtained potentials are essentially consistent with
those of the well-known realistic NN potentials.

The ideas of constructions of the NN interactions are utilized to study many-
nucleon forces [148,150,167–174], baryon-baryon interaction for the SU(3) flavor-octet
baryons [198–203], nucleon-antinucleon forces [204–214], etc.

In this appendix, the several phenomenological potential models are reviewed.
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B.3.1 Minnesota potential

The Minnesota potential was developed by the Minnesota group in Ref. [185]. Al-
though this potential has a simple form expressed by a sum of three Gaussian functions
and the coulomb term, it can describe the two-nucleon low-energy scattering data,
e.g. the scattering lengths and the effective ranges for 1S0 and 3S1 channels, and the
properties of the deuteron, triton and α particle. The Minnesota potential is given
by

V (r) =

(
VR +

1

2
(1 + Pσ)Vt +

1

2
(1− Pσ)Vs

)(
1

2
u+

1

2
(2− u)P r

)
+

1

2
(1 + τ1z)

1

2
(1 + τ2z)

e2

r
, (B.50)

where the potentials VR, Vt and Vs are

VR = V0Re
−κRr2 , Vt = −V0te−κtr

2

, Vs = −V0se−κsr
2

. (B.51)

The parameters V0 and κ are summarized in Table B.1. The spin-, isospin- and
space-exchange operators are defined by

Pσ =
1 + ~σ1 · ~σ2

2
, P τ =

1 + ~τ1 · ~τ2
2

, (B.52)

P r = −PσP τ =
(1 + ~σ1 · ~σ2)(1 + ~τ1 · ~τ2)

4
. (B.53)

The exchange-mixture parameter is chosen as u = 0.97. The last term in Eq. (B.50)
is the coulomb potential which survives only in the pp system with total isospin I = 1
as e2/r.

For the 1S0,
3S1,

1P1 and 3P0 channels, we obtain

(1S0) : V (r) = VR + Vs +
1

2
(1 + τ1z)

1

2
(1 + τ2z)

e2

r
, (B.54)

(3S1) : V (r) = VR + Vt , (B.55)

(1P1) : V (r) = (VR + Vs)(u− 1) , (B.56)

(3P0) : V (r) = (VR + Vs)(u− 1) +
1

2
(1 + τ1z)

1

2
(1 + τ2z)

e2

r
. (B.57)

Table.B.1 Parameters of the Minnesota potential, given in Ref. [185]

VR Vt Vs
V0 [MeV] 200.0 178.0 91.85
κ [fm−2] 1.487 0.639 0.465
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B.3.2 Bonn potential

The Bonn potential is based on the meson exchanges [138, 139, 215]. Masses of the
mesons, coupling constants on the Lagrangians, and cutoff parameters on the form
factors are determined to fit the world NN data.

The interaction Lagrangians for a meson and nucleons are given by

LPS
psNN = −gpsNN N̄iγ

5Nφ(ps) , (B.58)

LPV
psNN =

gpsNN

2mN
N̄γ5γµN∂µφ

(ps) , (B.59)

LvNN = gvN̄γ
µNφ(v)µ +

fv
4mN

N̄σµνN
(
∂µφ

(v)
ν − ∂νφ

(v)
µ

)
, (B.60)

LsNN = gsN̄Nφ
(s) , (B.61)

for pseudoscalar (ps), vector (v) and scalar (s) mesons, respectively. N (φ) is the

nucleon (meson) field. The field φ is replaced by ~τ · ~φ for an isovector meson, where
~τ are isospin matrices. For pseudoscalar mesons, two couplings can be considered,
pseudoscalar coupling LPS

psNN and pseudovector coupling LPV
psNN .

The lowest order interactions from Lagrangians in Eqs. (B.58)-(B.61) are given by
second-order Feynman diagrams. In the c.m system, the Feynman amplitude for an
α meson exchange, depicted in Fig. B.4, is

−iV̄α(p′, p) = ū1(p
′)Γα

1u1(p)ū2(−p′)Γα
2u2(−p)

Pα

q2 −m2
α

, (B.62)

where ui (i = 1, 2) is the Dirac spinor, p (p′) is a four-momentum in the initial (final)

state and Γ
(α)
i is a vertex obtained by interaction Lagrangians. Pα is a numerator

in the meson propagator; Pα = i for a (pseudo-)scalar meson and Pα = −igµν for a

π, ρ, ω, σ, · · ·

N(p)

N(p′)

N(−p)

N(−p′)

Fig.B.4 Feynman diagrams of one boson exchange potentials. Solid (dashed)
line denotes nucleons (exchanged bosons).
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vector meson. q is defined as q = p′ − p. Dirac spinors are given by

u(p, s) =

√
Ep +mN

2mN

(
1

(~σ · ~p)/(Ep +mN )

)
χs , (B.63)

ū(p, s) = u†(p, s)γ0 =

√
Ep +mN

2mN
χ†
s

(
1

~σ · ~p
Ep +mN

)(
1 0
0 −1

)
=

√
Ep +mN

2mN
χ†
s

(
1 − ~σ · ~p

Ep +mN

)
, (B.64)

with Ep =
√
m2

N + ~p 2 and a Pauli spinor χs. (In the following χs is omitted for
simplification.) The Dirac spinors are normalized as ū(p)u(p) = 1.

The non-local one boson exchange potential (OBEP) is defined by

Vα(p, p
′) =

√
mN

Ep

√
mN

Ep′
V̄α(p, p

′)F 2
α(p, p

′; Λ) . (B.65)

In Eq. (B.65), a square root factor mN/
√
EpEp′ and form factor Fα(p, p

′; Λα) with a
cutoff parameter Λα are included as customary. In the Bonn potential, the monopole
type form factor is employed:

Fα(p, p
′; Λα) =

Λ2
α −m2

α

Λ2
α + (~p ′ − ~p )2

. (B.66)

(i−1) Pseudoscalar meson exchange potential (Pseudoscalar coupling)
The interaction Lagrangian LPS

psNN in Eq. (B.58) provides the one pseudoscalar meson
exchange potential, the Feynman amplitude is

−iV̄ PS
ps (p, p′) = g2psNN ū1(p

′)γ5u1(p)ū2(−p′)γ5u2(−p)
i

q2 −m2
ps

= g2psNN

Ep′ +mN

2mN

Ep +mN

2mN

(
− ~σ1 · ~p ′

Ep′ +mN
1

)(
1

(~σ1 · ~p)/(Ep +mN )

)
×
(

~σ2 · ~p ′

Ep′ +mN
1

)(
1

−(~σ2 · ~p)/(Ep +mN )

)
i

q2 −m2
ps

= i

(
gpsNN

2mN

)2
(Ep′ +mN )(Ep +mN )

q2 −m2
ps

(
− ~σ1 · ~p ′

Ep′ +mN
+

~σ1 · ~p
Ep +mN

)
×
(

~σ2 · ~p ′

Ep′ +mN
− ~σ2 · ~p
Ep +mN

)
. (B.67)

From Eqs. (B.65) and (B.67), the non-local potential is derived by

V PS
ps (p, p′) = −

(
gpsNN

2mN

)2
(Ep′ +mN )(Ep +mN )

q2 −m2
ps

(
− ~σ1 · ~p ′

Ep′ +mN
+

~σ1 · ~p
Ep +mN

)
×
(

~σ2 · ~p ′

Ep′ +mN
− ~σ2 · ~p
Ep +mN

)
mN√
EpEp′

F 2
ps(q, q

′; Λps) . (B.68)
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If the static approximation Ep ∼ Ep′ ∼ mN is applied, the local potential is obtained,

V PS
ps (~q ) = −

(
gpsNN

2mN

)2
~σ1 · ~q ~σ2 · ~q
~q 2 +m2

ps

F 2
ps(~q ; Λps) (B.69)

= −
(
gpsNN

2mN

)2
1

3

[
~σ1 · ~σ2~q 2

~q 2 +m2
ps

+
S12(q̂)~q

2

~q 2 +m2
ps

]
F 2
ps(~q ; Λps)

=

(
gpsNN

2mN

)2
1

3

[
−~σ1 · ~σ2 +

~σ1 · ~σ2m2
ps

~q 2 +m2
ps

− S12(q̂)~q
2

~q 2 +m2
ps

]
F 2
ps(~q ; Λps) ,

(B.70)

where Fps(~q ; Λps) = (Λ2
ps + m2

π)/(Λ
2
ps − ~q 2). S12 is the tensor operator defined by

S12(q̂) = 3(~σ1 · q̂)(~σ2 · q̂)− ~σ1 · ~σ2 and one uses

(~σ1 · ~q)(~σ2 · ~q) =
1

3
~σ1 · ~σ2 ~q 2 +

1

3

[
3(~σ1 · ~q)(~σ2 · ~q)− ~σ1 · ~σ2 ~q 2

]
=

1

3
~σ1 · ~σ2 ~q 2 +

1

3
S12(q̂)~q

2 . (B.71)

The potential in the coordinate space is given by performing the Fourier transfor-
mation [216,217] as

V PS
ps (~r ) =

∫
d3q

(2π)3
V PS
ps (~q )F 2

ps(~q ; Λps)e
i~q·~r . (B.72)

When the form factor is not considered, Eq. (B.72) is written as

V PS
ps (~r ) = cps

∫
d3q

(2π)3

[
−~σ1 · ~σ2 +

(~σ1 · ~σ2)m2
ps

~q 2 +m2
ps

− S12(q̂)~q
2

~q 2 +m2
ps

]
ei~q·~r , (B.73)

where

cps ≡
(
gpsNN

2mN

)2
1

3
. (B.74)

The first term in Eq.(B.73) yields the δ function as

−cps(~σ1 · ~σ2)
∫

d3q

(2π)3
ei~q·~r = −cps(~σ1 · ~σ2)δ(3)(~r ) (B.75)

The second term in Eq.(B.73) is written as

cps
(2π)2r

∫ ∞

−∞
dq

[
(~σ1 · ~σ2)m2

ps

~q 2 +m2
ps

]
q sin qr . (B.76)

This is obtained by the complex integral∮
C

dz
zeizr

z2 +m2
. (B.77)
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The residue of the integrand is

a−1(im) = lim
z→∞

(z − im)
zeizr

z2 +m2
=
e−mr

2
. (B.78)

Therefore, one obtains

cps
(2π)2r

∫ ∞

−∞
dq

[
(~σ1 · ~σ2)m2

ps

~q 2 +m2
ps

]
q sin qr = (~σ1 · ~σ2)

m2
ps

4πr
cpse

−mpsr . (B.79)

The third term in Eq.(B.73) is rewritten by using the Rayleigh formula and S12(q̂) =√
24π [Y2(q̂), [σ1, σ2]2]0 as

cps

∫
d3q

(2π)3

[
− S12(q̂)~q

2

~q 2 +m2
ps

]
ei~q·~r

= −cps
∫

d3q

(2π)3
S12(q̂)~q

2

~q 2 +m2
ps

4π
∑
l

iljl(qr)Y
∗
l (q̂) · Yl(r̂)

=
cps
2π2

S12(r̂)

∫ ∞

0

dq
q4

q2 +m2
ps

j2(qr)

=
cps

4π2r3
S12(r̂)

∫ ∞

−∞
dq

(
3− (qr)2

)
q sin qr − 3q2r cos qr

q2 +m2
ps

. (B.80)

This is calculated by the complex integral as∮
C

dz

[(
3− (zr)2

)
zeizr

q2 +m2
− 3q2reizr

q2 +m2

]
= 2πi

[
3 +m2r2

2
− i

3mr

2

]
e−mr (B.81)

Therefore, the third term in Eq.(B.73) is obtained as

cps

∫
d3q

(2π)3

[
− S12(q̂)~q

2

~q 2 +m2
ps

]
ei~q·~r =

cps
4πr3

S12(r̂)
(
3 + 3mpsr + (mpsr)

2
)
e−mpsr .

(B.82)

Finally, the pseudoscalar meson exchange potential without the form factor in the
coordinate space is

V PS
ps (r) =

cps
4π

[
(~σ1 · ~σ2)

(
m2

ps

e−mpsr

r
− δ(3)(~r)

)
+ S12(r̂)

(
3 + 3mpsr + (mpsr)

2
) e−mpsr

r3

]
. (B.83)

In a customary way, however, the δ function is omitted because the nucleons are kept
apart due to the short-range repulsion.
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The potential with the form factor can be calculated in a similar way. The potential
in the momentum space is

V PS
ps (~r ) = cps

∫
d3q

(2π)3

[
−~σ1 · ~σ2 +

(~σ1 · ~σ2)m2
ps

~q 2 +m2
ps

− S12(q̂)~q
2

~q 2 +m2
ps

](
Λ2
ps −m2

ps

Λ2
ps + ~q 2

)2

ei~q·~r .

(B.84)

The first term in Eq. (B.84) is written as

− cps(~σ1 · ~σ2)
∫

d3q

(2π)3

(
Λ2
ps −m2

ps

Λ2
ps + ~q 2

)2

ei~q·~r = −(~σ1 · ~σ2)
cps
4π

(Λ2
ps −m2

ps)
2 e

−Λpsr

2Λps
.

(B.85)

The second term in Eq. (B.84) is

cps

∫
d3q

(2π)3

[
(~σ1 · ~σ2)m2

ps

~q 2 +m2
ps

](
Λ2
ps −m2

ps

Λ2
ps + ~q 2

)2

ei~q·~r

= cps(~σ1 · ~σ2)
m2

ps

4πr

(
e−mpsr − e−Λpsr − r

2Λps

(
Λ2
ps −m2

ps

)
e−Λpsr

)
, (B.86)

where one uses

1

q2 +m2

Λ2 −m2

Λ2 + q2
=

1

q2 +m2
− 1

q2 + Λ2
, (B.87)

1

q2 +m2

(
Λ2 −m2

Λ2 + q2

)
=

1

q2 +m2
− 1

q2 + Λ2
− Λ2 −m2

(q2 + Λ2)2
. (B.88)

The third term in Eq. (B.84) is

cps

∫
d3q

(2π)3

[
− S12(q̂)~q

2

~q 2 +m2
ps

](
Λ2
ps −m2

ps

Λ2
ps + ~q 2

)2

ei~q·~r

=
cps
4πr3

S12(r̂)
[(
3 + 3mpsr + (mpsr)

2
)
e−mpsr −

(
3 + 3Λpsr + (Λpsr)

2
)
e−Λpsr

+
m2

ps − Λ2
ps

2
(1 + Λpsr) r

2e−Λpsr

]
(B.89)

Let us summarize the pseudoscalar meson exchange potential in the coordinate
space. This is given as

V PS
ps (r) =

g2psNN

4π

1

12m2
N

[
~σ1 · ~σ2

(
m2

psY (r)−D(r)
)
+ S12(r̂)Z(r)

]
, (B.90)

where

D(r) =


4πδ(3)(~r ) (without form factor)(
Λ2
ps −m2

ps

)2 e−Λpsr

2Λps
(with form factor)

, (B.91)
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Y (r) =


e−mpsr

r
(without form factor)

e−mpsr

r
− e−Λpsr

r
−
(
Λ2
ps −m2

ps

)
2Λ

e−Λpsr (with form factor)

,

(B.92)

Z(r) =



(
3 + 3mpsr + (mpsr)

2
) e−mpsr

r3
(without form factor)(

3 + 3mpsr + (mpsr)
2
) e−mpsr

r3
−
(
3 + 3Λpsr + (Λpsr)

2
) e−Λpsr

r3

+
m2

ps − Λ2
ps

2
(1 + Λpsr)

e−Λpsr

r
(with form factor)

(B.93)

The potential for isovector mesons is obtained by inserting the isospin factor ~τ1 · ~τ2.

(i−2) Pseudoscalar meson exchange potential (Pseudovector coupling)
The potential for the pseudovector coupling is also yielded in the same manner as the
pseudoscalar coupling. When the static approximation is applied, the local potential
is provided from Eq. (B.59) as

V̄ PV
ps (q) = i× (−1)

(
gpsNN

2mN

)2

ū1(p
′)γ5γµu1(p)∂µψ

(ps)ū2(−p′)γ5γνu2(−p)∂νψ(ps)

=

(
gpsNN

2mN

)2

ū1(p
′)γ5γµu1(p)qµū2(−p′)γ5γνu2(−p)qν

1

q2 −m2
ps

.

(B.94)

In Eq. (B.94), the term with µ = ν = 0 is obtained by(
gpsNN

2mN

)2

ū1(p
′)γ5γ0u1(p)q0ū2(−p′)γ5γ0u2(−p)q0

1

q2 −m2
ps

=

(
gpsNN

2mN

)2(
~σ1 · ~p ′

2mN
+
~σ1 · ~p
2mN

)
q0

(
−~σ2 · ~p

′

2mN
− ~σ2 · ~p

2mN

)
q0

i

q2 −m2
ps

∼= 0 . (B.95)

The term with µ = i and ν = j (i, j = 1, 2, 3) is also calculated by(
gpsNN

2mN

)2

ū1(p
′)γ5γiu1(p)qiū2(−p′)γ5γju2(−p)qj

1

q2 −m2
ps

=

(
gpsNN

2mN

)2(
−~σ1 · ~p

′

2mN
σi
1

~σ1 · ~p
2mN

− σi
1

)
qi

(
−~σ2 · ~p

′

2mN
σj
2

~σ2 · ~p
2mN

− σj
2

)
qj

1

q2 −m2
ps

∼= −
(
gpsNN

2mN

)2
~σ1 · ~q ~σ2 · ~q
~q 2 +m2

ps

. (B.96)
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From Eqs. (B.95) and (B.96), therefore, we obtain the local potential for pseudovector
coupling;

V PV
ps (~q ) = −

(
gpsNN

2mN

)2
~σ1 · ~q ~σ2 · ~q
~q 2 +m2

ps

F 2(~q ; Λps) (B.97)

=

(
gpsNN

2mN

)2
1

3

[
−~σ1 · ~σ2 +

~σ1 · ~σ2m2
ps

~q 2 +m2
ps

− S12(q̂)~q
2

~q 2 +m2
ps

]
F 2(~q ; Λps) .

(B.98)

As seen in Eqs. (B.70) and (B.98), pseudoscalar and pseudovector couplings, LPS
psNN

and LPV
psNN , yield same result on-shell, while chiral symmetry is held when the pseu-

dovector coupling is used. The V PV
ps (r) is the same as V PS

ps (r) in Eq. (B.90).

(ii) Vector meson exchange potential
The local vector meson exchange potential is obtained by Eq. (B.60),

−iV̄v(q) =−
(
gvNN ū1(p

′)γµ~τ1u1(p) · ~φ (v)
µ +

fvNN

2mN
ū1(p

′)σµνu1(p)~τ1 · ∂µ~φ (v)
ν

)
×
(
gvNN ū2(−p′)γα~τ2u2(−p) · ~φ (v)

α +
fvNN

2mN
ū2(−p′)σαβu2(−p)~τ2 · ∂α~φ (v)

β

)
=− g2vNN ū1(p

′)γµ~τ1u1(p) · ~φ (v)
µ ū2(−p′)γα~τ2u2(−p) · ~φ (v)

α

− gvNNfvNN

2mN

(
ū1(p

′)γµ~τ1u1(p) · ~φ (v)
µ ū2(−p′)σαβu2(−p)~τ2 · ∂α~φ (v)

β

+ ū1(p
′)σµνu1(p)~τ1 · ∂µ~φ (v)

ν ū2(−p′)γα~τ2u2(−p) · ~φ (v)
α

)
−
(
fvNN

2mN

)2

ū1(p
′)σµνu1(p)~τ1 · ∂µ~φ (v)

ν ū2(−p′)σαβu2(−p)~τ2 · ∂α~φ (v)
β

(B.99)

First term in Eq. (B.99) is calculated as follows. With µ = α = 0, one obtains

− g2vNN ū1(p
′)γ0u1(p)ū2(−p′)γ0u2(−p)

−i
q2 −m2

v

~τ1 · ~τ2

= −g2vNN

(
1 +

~σ1 · ~p ′~σ1 · ~p
(2mN )2

)(
1 +

~σ2 · ~p ′~σ2 · ~p
(2mN )2

)
−i

q2 −m2
v

~τ1 · ~τ2

∼=
−ig2vNN

~q 2 +m2
v

[
1 +

~σ1 · ~p ′~σ1 · ~p
(2mN )2

+
~σ2 · ~p ′~σ2 · ~p
(2mN )2

]
~τ1 · ~τ2

=
−ig2vNN

~q 2 +m2
v

[
1 +

~k 2

2m2
N

− ~q 2

8m2
N

+
i

2m2
N

~S ·
(
~q × ~k

)]
~τ1 · ~τ2 , (B.100)
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where ~k = (~p ′ + ~p )/2 and ~S = (~σ1 + ~σ2 )/2, and one uses{
~p ′ = ~k + ~q/2

~p = ~k − ~q/2
, (B.101)

~σ · ~p ′~σ · ~p = ~p ′ · ~p+ iσ · (~p ′ × ~p) = ~k 2 − ~q 2/4 + iσ ·
(
~q × ~k

)
, (B.102)

ū(p′)γ0u(p) = 1 +
~σ · ~p ′~σ · ~p
(2mN )2

. (B.103)

With µ = i and α = j,

− g2vNN ū1(p
′)γiu1(p)ū2(−p′)γju2(−p)

iδij
q2 −m2

v

~τ1 · ~τ2

=
g2vNN

(2mN )2

(
2ki + i (~σ1 × ~q )

i
)(

2ki + i (~σ2 × ~q )
i
) i

q2 −m2
v

~τ1 · ~τ2

=
g2vNN

(2mN )2

[
4~k 2 + 2i~k · (~σ1 × ~q ) 2i~k · (~σ2 × ~q )− (~σ1 × ~q ) (~σ2 × ~q )

] i

q2 −m2
v

~τ1 · ~τ2

=
−ig2vNN

~q 2 +m2
v

[
~k 2

m2
N

+
i

m2
N

~S ·
(
~q × ~k

)
− 1

4m2
N

~σ1 · ~σ2~q 2 +
1

4m2
N

~σ1 · ~q ~σ2 · ~q

]
~τ1 · ~τ2 ,

(B.104)

where these formulas are uesd,

σjpjσi = pi + iεjikσkpj = pi + i (~σ × ~p )i , (B.105)

σiσjpj = pi + iεijkσkpj = pi − i (~σ × ~p )i , (B.106)

(~σ1 × ~q ) · (~σ2 × ~q ) = ~σ1 · ~σ2~q 2 − ~σ1 · ~q ~σ2 · ~q , (B.107)

and

ū(p′)γiu(p) =

(
~σ · ~p′

2mN
σi + σi ~σ · ~p

2mN

)
=

1

2mN

(
2ki + i (~σ × ~q)

i
)
, (B.108)

ū(−p′)γiu(−p) = − 1

2mN

(
2ki + i (~σ × ~q)

i
)
. (B.109)

From Eqs. (B.100) and (B.104), the first term in Eq. (B.99) is obtained by

−ig2vNN

~q 2 +m2
v

[
1 +

3~k 2

2m2
N

− ~q 2

8m2
N

+
3i

2m2
N

~S ·
(
~q × ~k

)
− 1

4m2
N

~σ1 · ~σ2~q 2

+
1

4m2
N

~σ1 · ~q ~σ2 · ~q
]
~τ1 · ~τ2

=
−ig2vNN

~q 2 +m2
v

[
1 +

3~k 2

2m2
N

− ~q 2

8m2
N

+
3i

2m2
N

~S ·
(
~q × ~k

)
− 1

6m2
N

~σ1 · ~σ2~q 2

+
1

12m2
N

S12(q̂)~q
2

]
~τ1 · ~τ2 . (B.110)
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Second term in Eq. (B.99) is given in a similar way. When µ = β = 0 and α = i,

gvNNfvNN

2mN

[(
1 +

~σ1 · ~p ′~σ1 · ~p
(2mN )2

)
ū2(−p′)γ0γiu2(−p)qi

+ ū1(p
′)γ0γiu1(p)(−qi)

(
1 +

~σ2 · ~p ′~σ2 · ~p
(2mN )2

)]
−i

q2 −m2
v

~τ1 · ~τ2

∼=
igvNNfvNN

~q 2 +m2
v

[
~q 2

2m2
N

− i

m2
N

~S ·
(
~q × ~k

)]
~τ1 · ~τ2 , (B.111)

where

ū(p′)γ0γiu(p) =

(
−~σ · ~p ′

2mN
σi + σi ~σ · ~p

2mN

)
= − 1

2mN

[
qi + 2i

(
~σ × ~k

)i]
,

(B.112)

ū(−p′)γ0γiu(−p) = 1

2mN

[
qi + 2i

(
~σ × ~k

)i]
. (B.113)

When µ = i, α = j and β = l, the second term in Eq. (B.99) is written by

− gvNNfvNN

2mN

(
2ki + i ( ~σ1 × ~q )

i

2mN
εjlkσk(−iqj)− εjlkσk(iqj)

2ki + i ( ~σ2 × ~q )
i

2mN

)

× iδil
q2 −m2

v

~τ1 · ~τ2

=
gvNNfvNN

(2mN )2

(
2(~σ1 + ~σ2) · (~q × ~k ) + 2i(~σ1 × ~q ) · (~σ2 × ~q )

) 1

~q 2 +m2
v

~τ1 · ~τ2

=
igvNNfvNN

~q 2 +m2
v

(
−i
m2

N

~S · (~q × ~k ) +
1

2m2
N

(
~σ1 · ~σ2~q 2 − ~σ1 · ~q ~σ2 · ~q

))
~τ1 · ~τ2 ,

(B.114)

where one uses

ū(p′)γiγju(p) ∼= −σiσj = −δjl − iεijkσk , (B.115)

ū(p′)σiju(p) = iū(p′)
(
γiγj + δij

)
u(p) ∼= εijkσk . (B.116)

From Eqs. (B.111) and (B.114), the second term in Eq. (B.99) is given by

−i
~q 2 +m2

v

gvNNfvNN

2m2
N

[
−~q 2 + 4i~S ·

(
~q × ~k

)
− ~σ1 · ~σ2~q 2 + ~σ1 · ~q ~σ2 · ~q

]
~τ1 · ~τ2

=
−i

~q 2 +m2
v

gvNNfvNN

2m2
N

[
−~q 2 + 4i~S ·

(
~q × ~k

)
− 2

3
~σ1 · ~σ2~q 2 +

1

3
S12(q̂)~q

2

]
~τ1 · ~τ2 .

(B.117)

Finally, the third term in Eq. (B.99) is calculated. When µ = i, ν = j, α = l and
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β = m,

−
(
fvNN

2mN

)2

ū1(p
′)σiju1(p)~τ1 · ∂i~φ (v)

j ū2(−p′)σlmu2(−p)~τ2 · ∂l~φ (v)
m

=
i

~q 2 +m2
v

(
fvNN

2mN

)2

(~σ1 × ~q ) · (~σ2 × ~q )~τ1 · ~τ2

=
−i

~q 2 +m2
v

(
fvNN

2mN

)2 [
−~σ1 · ~σ2 ~q 2 + ~σ1 · ~q ~σ2 · ~q

]
~τ1 · ~τ2

=
−i

~q 2 +m2
v

(
fvNN

2mN

)2 [
−2

3
~σ1 · ~σ2 ~q 2 +

1

3
S12(q̂)~q

2

]
~τ1 · ~τ2 . (B.118)

From Eqs. (B.110), (B.117) and (B.118), the local vector meson exchange potential
is obtained as

Vv(~q ) =

{
g2vNN

[
1 +

3~k 2

2m2
N

− ~q 2

8m2
N

+
3i

2m2
N

~S ·
(
~q × ~k

)
− 1

6m2
N

~σ1 · ~σ2~q 2 +
1

4m2
N

S12(q̂)~q
2

]

+
gvNNfvNN

2m2
N

[
−~q 2 + 4i~S ·

(
~q × ~k

)
− 2

3
~σ1 · ~σ2~q 2 +

1

3
S12(q̂)~q

2

]
(
fvNN

2mN

)2 [
−2

3
~σ1 · ~σ2~q 2 +

1

3
S12(q̂)~q

2

]}
−i

~q 2 +m2
v

~τ1 · ~τ2 (B.119)

The potential in the coordinate space is given by the Fourier transformation as seen
in the pseudoscalar meson exchange potential. One obtains

Vv(r) =
g2vNN

4π

1

2m2
N

[
−
(
1 +

1

3
~σ1 · ~σ2

)
D(r) +

(
2m2

N +m2
v +

1

3
m2

v~σ1 · ~σ2
)
Y (r)

−3~L · ~SZ1(r)−
3

2

(
∇2Y (r) + Y (r)∇2

)
− 1

6
S12(r̂)Z(r)

]
+
gvNNfvNN

4π

1

2m2
N

[
−
(
1 +

2

3
~σ1 · ~σ2

)
D(r) +

(
m2

v +
2

3
m2

v~σ1 · ~σ2
)
Y (r)

−4~L · ~SZ1(r)−
1

3
S12(r̂)Z(r)

]
+
f2vNN

4π

1

4m2
N

[
−2

3
~σ1 · ~σ2D(r) +

2

3
m2

v~σ1 · ~σ2Y (r)− 1

3
S12(r̂)Z(r)

]
,

(B.120)

where

Z1(r) =


(1 +mvr)

e−mvr

r3
(without form factor)

(1 +mvr)
e−mvr

r3
−
(
1 + Λvr +

Λ2
v −m2

v

2
r2
)
e−Λvr (with form factor)

.

(B.121)
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(iii) Scalar meson exchange potential
The amplitude of local scalar meson exchange potential is calculated by Eq. (B.61),

−iV̄ (~q ) = −g2s ū1(p′)u1(p)ū2(−p′)u2(−p)
i

q2 −m2
s

∼= −g2s
(
1− ~σ1 · ~p ′~σ2 · ~p

(2mN )2
− ~σ2 · ~p ′~σ2 · ~p

(2mN )2

)
i

q2 −m2
s

=
ig2s

~q 2 +m2
s

[
1−

~k 2

2m2
N

+
~q 2

8m2
N

− i

2m2
N

~S ·
(
~q × ~k

)]
. (B.122)

Therefore, the local scalar meson exchange potential is

Vs(~q ) = − g2s
~q 2 +m2

s

[
1−

~k 2

2m2
N

+
~q 2

8m2
N

− i

2m2
N

~S ·
(
~q × ~k

)]
. (B.123)

The potential in the coordinate space is

Vs(r) = − g2s
4π

[(
1− 1

4

(
ms

mN

)2
)
Y (r) +

1

4m2
N

(
∇2Y (r) + Y (r)∇2

)
+

1

2m2
N

~L · ~SZ1(r)

]
(B.124)

B.3.3 Agronne Potential

In this section, the Argonne v18 and v′8 potentials are reviewed. The Argonne v18
potential (AV18) is high-quality nucleon-nucleon potential developed by the Argonne
group in 1995 [149]. This potential is constructed by one pion exchange part and
short range force with 18 operators; 14 charge independent operators, additional
three charge dependent and one charge asymmetry operators. The AV18 includes 40
parameters which was fitted to the Nijmegen NN scattering data for pp and np in
the range 0− 350 MeV.

The Argonne v′8 potential (AV8′) is fairly realistic NN potential which is the sim-
plified version of AV18. The AV8′ is formed by a sum of 8 operators and hence it can
avoid to have large static errors rather than AV18. However, the AV8′ is a little more
attractive than the AV18 as discussed in Refs. [148,151].

For nuclear systems with nucleon numbers more than three, the AV8′ is more
attractive than the AV18, while the AV8′ is able to reproduce the deuteron properties.
The difference between the AV8′ and AV18 is about 0.15 MeV for triton (3H) and
about 1 MeV for 4He [148,150].

B.3.3.1 Argonne v18 potential (AV18)
The AV18 contains (i) one pion exchange potential, (ii) a charge independent part as
discussed in the Argonne v14 potential [188], and (iii) a charge independence breaking
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part which involves three charge dependent and one charge asymmetry operators [149].
In this section, one pion exchange and charge independent parts are shown, while the
charge independence breaking part is skipped.

(i) One pion exchange potential
The pion exchange potential terms having a charge dependence structure are given
by

vπ(pp) = f2ppvπ(mπ0) , (B.125)

vπ(np) = fppfnnvπ(mπ0) + (−1)T+12f2c vπ(mπ±) , (B.126)

vπ(nn) = f2nnvπ(mπ0) , (B.127)

where T is the total isospin and

vπ(m) =

(
m

mπ±

)2
m

3
[~σ1 · ~σ2Ym(r) + S12Tm(r)] . (B.128)

The Yukawa function Ym and tensor function Tm are written by

Ym(r) =
e−mr

mr

(
1− e−cr2

)
, (B.129)

Tm(r) =

(
1 +

3

mr
+

3

(mr)3
+

)
e−mr

mr

(
1− e−cr2

)2
(B.130)

with smooth Gaussian cutoffs that make them vanish at r = 0, The cutoff parameter

is taken to c = 2.1 fm−2. The
(
1− e−cr2

)2
in the Tm provides the effect of ρ meson

exchange which is not included explicitly in the model [188]. The coupling constant f
is chosen to be charge independent; f = fpp = −fnn with the recommended value f2 =
0.075 in the Nijmegen potential (Nijm93) [189]. This is in good agreement with the
πNN coupling constant obtained by the Goldberger-Treiman relation [218–220] which
is derived from the low energy theorem associated with the spontaneous breaking of
chiral symmetry.

(ii) The charge independent part
The charge independent short- and intermediate-range parts are formed by central,
L2, tensor, spin-orbit (LS) and quadratic spin-orbit ((LS)2) parts as labeled by i = c,
l2, t, ls, ls2, respectively. The potentials in different total spin S and total isospin T
states are given by

vRST (NN) =vcST,NN (r) + vl2ST,NN (r)L2 + vtST,NN (r)S12

+ vlsST,NN (r)~L · ~S + vlsST,NN (r)(~L · ~S)2 , (B.131)

where

viST,NN (r) = IiST,NNT
2
µ(r) +

[
P i
ST,NN + µrQi

ST,NN + (µr)2Ri
ST,NN

]
W (r) .
(B.132)
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The parameters IiST,NN , P i
ST,NN , Qi

ST,NN and Ri
ST,NN are determined by NN scat-

tering data given in Ref. [188]. The Woods-Saxon function W (r) produced the short
range core is given as

W (r) =
[
1 + e(r−r0)/a

]−1

(B.133)

with r0 = 0.5 fm and a = 0.2 fm.
These potentials in Eq. (B.131) can be projected as 14 operators:

vij =
∑

p=1,14

vp(rij)OP
ij , (B.134)

where the operators Op=1,14 are expressed by

Op=1,14
ij =1, ~τi · ~τj , ~σi · ~σj , (~σi · ~σj)(~τi · ~τj), Sij , Sij(~τi · ~τj), ~L · ~S, ~L · ~S~τi · ~τj ,

L2, L2(~τi · ~τj), L2(~σi · ~σj), L2(~σi · ~σj)(~τi · ~τj), (~L · ~S)2, (~L · ~S)2(~τi · ~τj)
(B.135)

which are denoted by c, τ , σ, στ , t, tτ , ls, lsτ , l2, l2τ , l2σ, l2στ , ls2 and ls2τ ,
respectively.

Let us consider to construct the potentials of c, τ , σ and στ parts from the potential
vcST,NN in Eq. (B.131). The charge independent potential vcST is introduced as

vcS1 =
1

3

(
vcS1,pp + vcS1,nn + vcS1,np

)
, vcS0 = vcS0,np . (B.136)

By using the relation

vcST =vc + [2T (T + 1)− 3]vτ + [2S(S + 1)− 3]vσ

+ [2S(S + 1)− 3][2T (T + 1)− 3]vστ , (B.137)

vc, vτ , vσ and vστ potentials are calculated as

vc =
1

16
(9vc11 + 3vc10 + 3vc01 + vc00) , (B.138)

vτ =
1

16
(3vc11 − 3vc10 + vc01 − vc00) , (B.139)

vσ =
1

16
(3vc11 + vc10 − 3vc01 − vc00) , (B.140)

vστ =
1

16
(vc11 − vc10 − vc01 + vc00) . (B.141)

In a similar way, the potentials vl2, vl2τ , vl2σ and vl2στ can be obtained by the the
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L2 part in Eq. (B.131):

vl2 =
1

16

(
9vl211 + 3vl210 + 3vl201 + vl200

)
, (B.142)

vl2τ =
1

16

(
3vl211 − 3vl210 + vl201 − vl200

)
, (B.143)

vl2σ =
1

16

(
3vl211 + vl210 − 3vl201 − vl200

)
, (B.144)

vl2στ =
1

16

(
vl211 − vl210 − vl201 + vl200

)
, (B.145)

where

vl2S1 =
1

3

(
vl2S1,pp + vl2S1,nn + vl2S1,np

)
, vl2S0 = vl2S0,np . (B.146)

The remaining Sij , ~L · ~S and (~L · ~S)2 terms in Eq. (B.131) are rewritten as

vx =
1

4
(3vx11 + vx10) , (B.147)

vxτ =
1

4
(vx11 − vx10) , (x = t, ls, ls2) (B.148)

by the projection

vx1T = vx + [2T (T + 1)− 3]vxτ . (B.149)

B.3.3.2 Argonne v′
8 potential

The Argonne v′8 potential has more simply form than the Argonne v18 potential. This
potential is written by a sum of the π exchange term given in Eqs. (B.125)-(B.127)
and remaining terms having 8 operators:

v′8(r) = vπ(r) +
∑

P=1,8

v′P (r)OP , (B.150)

where

OP=1,8 = [1, ~σ1 · ~σ2, S12, ~L · ~S]⊗ [1, ~τ1 · ~τ2] , (B.151)

which are denoted by c, τ , σ, στ , t, tτ , ls and lsτ . The function v′P (r) is determined
such that it is equal to the AV18 in the all S- and P - waves, and 3D1, namely 1S0,
3S1,

3D1,
1P1,

3P0,
3P1 and 3P2 channels, and the 3S1 −3 D1 mixing term. Then we
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obtain the eight equations:

(1S0) : v′c + v′τ − 3v′σ − 3v′στ = vc + vτ − 3vσ − 3vστ (B.152)

(3S1) : v′c − 3v′τ + v′σ − 3v′στ = vc − 3vτ + vσ − 3vστ , (B.153)

(3S1 −3 D1) : v′t − 3v′tτ = vt − 3vtτ , (B.154)

(3D1) : v′c − 3v′τ + v′σ − 3v′στ − 2v′t + 6v′tτ − 3v′ls + 9v′lsτ ,

= vc − 3vτ + vσ − 3vστ − 2vt + 6vtτ − 3vls + 9vlsτ

+ 6vl2 − 18vl2τ + 6vl2σ − 18vl2στ + 9vls2 − 27vls2τ , (B.155)

(1P1) : v′c − 3v′τ − 3v′σ + 9v′στ

= vc − 3vτ − 3vσ + 9vστ + 2vl2 − 6vl2τ − 6vl2σ + 18vl2στ ,
(B.156)

(3P0) : v′c + v′τ + v′σ + v′στ − 4v′t − 4v′tτ − 2v′ls − 2v′lsτ

= vc + vτ + vσ + vστ − 4vt − 4vtτ − 2vls − 2vlsτ

+ 2vl2 + 2vl2τ + 2vl2σ + 2vl2στ + 4vls2 + 4vls2τ , (B.157)

(3P1) : v′c + v′τ + v′σ + v′στ + 2v′t + 2v′tτ − v′ls − v′lsτ

= vc + vτ + vσ + vστ + 2vt + 2vtτ − vls − vlsτ

+ 2vl2 + 2vl2τ + 2vl2σ + 2vl2στ + vls2 + vls2τ , (B.158)

(3P2) : v′c + v′τ + v′σ + v′στ − 2

5
v′t −

2

5
v′tτ + v′ls + v′lsτ

= vc + vτ + vσ + vστ − 2

5
vt −

2

5
vtτ + vls + vlsτ

+ 2vl2 + 2vl2τ + 2vl2σ + 2vl2στ + vls2 + vls2τ . (B.159)

By solving the simultaneous equations, we obtain the function v′P (r) as

v′c = vc +
5

4
vl2 +

3

4
vl2τ +

3

4
vl2σ +

9

4
vl2στ +

3

4
vls2 +

3

4
vls2τ , (B.160)

v′τ = vτ +
1

4
vl2 +

3

4
vl2τ +

3

4
vl2σ − 3

4
vl2στ +

1

4
vls2 +

1

4
vls2τ , (B.161)

v′σ = vσ +
1

4
vl2 +

3

4
vl2τ +

3

4
vl2σ − 3

4
vl2στ +

1

4
vls2 +

1

4
vls2τ , (B.162)

v′στ = vστ +
1

4
vl2 −

1

4
vl2τ − 1

4
vl2σ +

5

4
vl2στ +

1

12
vls2 +

1

12
vls2τ , (B.163)

v′t = vt −
5

16
vls2 −

5

16
vls2τ (B.164)

v′tτ = vtτ − 5

48
vls2 −

5

48
vls2τ (B.165)

v′ls = vls −
1

2
vl2 +

3

2
vl2τ − 1

2
vl2σ +

3

2
vl2στ − 9

8
vls2 +

15

8
vls2τ , (B.166)

v′lsτ = vlsτ +
1

2
vl2 −

3

2
vl2τ +

1

2
vl2σ − 3

2
vl2στ +

5

8
vls2 −

19

8
vls2τ . (B.167)
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Appendix C

Transformation into the

spin-complex basis

C.1 Wave functions of the PQN states

The wave functions in the particle basis can be transformed into those in the spin-
complex as

 ∣∣PN(2S1/2)
〉∣∣P ∗N(2S1/2)
〉∣∣P ∗N(4D1/2)
〉
 = U1/2−


∣∣∣[Nq](0,S)

0+ Q̄
〉
1/2−∣∣∣[Nq](1,S)

1+ Q̄
〉
1/2−∣∣∣[Nq](1,D)

1+ Q̄
〉
1/2−

 , (C.1)

U1/2− =

 − 1
2

√
3
2 0√

3
2

1
2 0

0 0 −1

 , (C.2)


∣∣PN(2D3/2)

〉∣∣P ∗N(4S3/2)
〉∣∣P ∗N(4D3/2)
〉∣∣P ∗N(2D3/2)
〉
 = U3/2−



∣∣∣[Nq](1,S)
1+ Q̄

〉
3/2−∣∣∣[Nq](1,D)

1+ Q̄
〉
3/2−∣∣∣[Nq](0,D)

2+ Q̄
〉
3/2−∣∣∣[Nq](1,D)

2+ Q̄
〉
3/2−


, (C.3)

U3/2− =


0

√
6
4

1
2

√
6
4

1 0 0 0
0 1√

2
0 − 1√

2

0 1
2
√
2

−
√
3
2

1
2
√
2

 , (C.4)
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
∣∣PN(2D5/2)

〉∣∣P ∗N(2D5/2)
〉∣∣P ∗N(4D5/2)
〉∣∣P ∗N(4G5/2)
〉
 = U5/2−



∣∣∣[Nq](0,D)
2+ Q̄

〉
5/2−∣∣∣[Nq](1,D)

2+ Q̄
〉
5/2−∣∣∣[Nq](1,D)

3+ Q̄
〉
5/2−∣∣∣[Nq](1,G)

3+ Q̄
〉
5/2−


, (C.5)

U5/2− =


− 1

2
1√
6

1
2

√
7
3 0

√
3
2

1
3
√
2

√
7
6 0

0
√
7
3 −

√
2
3 0

0 0 0 −1

 , (C.6)


∣∣PN(2G7/2)

〉∣∣P ∗N(4D7/2)
〉∣∣P ∗N(2G7/2)
〉∣∣P ∗N(4G7/2)
〉
 = U7/2−



∣∣∣[Nq](1,D)
3+ Q̄

〉
7/2−∣∣∣[Nq](1,G)

3+ Q̄
〉
7/2−∣∣∣[Nq](0,G)

4+ Q̄
〉
7/2−∣∣∣[Nq](1,G)

4+ Q̄
〉
7/2−


, (C.7)

U7/2− =


0

√
7
4

1
2

√
5
4

1 0 0 0

0 1
4

√
7
3 −

√
3
2

1
4

√
5
3

0 1
2

√
5
3 0 − 1

2

√
7
3

 , (C.8)

 ∣∣PN(2P1/2)
〉∣∣P ∗N(2P1/2)
〉∣∣P ∗N(4P1/2)
〉
 = U1/2+


∣∣∣[Nq](1,P )

0− Q̄
〉
1/2+∣∣∣[Nq](0,P )

1− Q̄
〉
1/2+∣∣∣[Nq](1,P )

1− Q̄
〉
1/2+

 , (C.9)

U1/2+ =


1
2

1
2

1√
2

1
2
√
3

−
√
3
2

1√
6√

2
3 0 − 1√

3

 , (C.10)
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
∣∣PN(2P3/2)

〉∣∣P ∗N(2P3/2)
〉∣∣P ∗N(4P3/2)
〉∣∣P ∗N(4F3/2)
〉
 = U3/2+



∣∣∣[Nq](0,P )
1− Q̄

〉
3/2+∣∣∣[Nq](1,P )

1− Q̄
〉
3/2+∣∣∣[Nq](1,P )

2− Q̄
〉
3/2+∣∣∣[Nq](1,F )

2− Q̄
〉
3/2+


, (C.11)

U3/2+ =


− 1

2
1

2
√
2

√
10
4 0

√
3
2

1
2
√
6

1
2

√
5
6 0

0
√

5
6 − 1√

6
0

0 0 0 −1

 , (C.12)


∣∣PN(2F5/2)

〉∣∣P ∗N(4P5/2)
〉∣∣P ∗N(2F5/2)
〉∣∣P ∗N(4F5/2)
〉
 = U5/2+



∣∣∣[Nq](1,P )
2− Q̄

〉
5/2+∣∣∣[Nq](1,F )

2− Q̄
〉
5/2+∣∣∣[Nq](0,F )

3− Q̄
〉
5/2+∣∣∣[Nq](1,F )

3− Q̄
〉
5/2+


, (C.13)

U5/2+ =


0 1

2

√
5
3

1
2

1√
3

1 0 0 0

0
√
5
6 −

√
3
2

1
3

0 2
3 0 −

√
5
3

 , (C.14)

and


∣∣PN(2F7/2)

〉∣∣P ∗N(2F7/2)
〉∣∣P ∗N(4F7/2)
〉∣∣P ∗N(4H7/2)
〉
 = U7/2+



∣∣∣[Nq](0,F )
3− Q̄

〉
7/2+∣∣∣[Nq](1,F )

3− Q̄
〉
7/2+∣∣∣[Nq](1,F )

4− Q̄
〉
7/2+∣∣∣[Nq](1,H)

4− Q̄
〉
7/2+


, (C.15)

U7/2+ =


− 1

2

√
3
4

3
4 0√

3
2

1
4

√
3
4 0

0
√
3
2 − 1

2 0
0 0 0 −1

 . (C.16)

The U−1
JP is given by U t

JP .
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C.2 Hamiltonian of the PQN states

In the heavy quark limit, the Hamiltonians of the PQN states in the spin-complex
basis are given as follows. For the negative parity states, the Hamiltonians are

HSC
1/2− = U−1

1/2−H1/2−U1/2−

=

 K0 + C ′ − 3C 0 0

0 K0 + C ′ + C −2
√
2T

0 −2
√
2T K2 + C ′ + C − 2T


≡

 H
SC(0+)
1/2− 0

0 H
SC(1+)
1/2−

 , (C.17)

HSC
3/2− = U−1

3/2−H3/2−U3/2−

=


K0 + C ′ + C 2

√
2T 0 0

2
√
2T K2 + C ′ + C − 2T 0 0
0 0 K2 + C ′ − 3C 0
0 0 0 K2 + C + 2T


≡

 H
SC(1+)
3/2− 0

0 H
SC(2+)
3/2−

 , (C.18)

HSC
5/2− = U−1

5/2−H5/2−U5/2−

=


K2 + C ′ − 3C 0 0 0

0 K2 + C ′ + C + 2T 0 0

0 0 K2 + C ′ + C − 4
7T

12
7

√
3T

0 0 12
7

√
3T K4 + C ′ + C − 10

7 T


≡

 H
SC(2+)
5/2− 0

0 H
SC(3+)
5/2−

 , (C.19)

HSC
7/2− = U−1

7/2−H7/2−U7/2−

=


K2 + C ′ + C − 4

7T
12
7

√
3T 0 0

12
7

√
3T K4 + C ′ + C − 10

7 T 0 0
0 0 K4 + C ′ − 3C 0
0 0 0 K4 + C ′ + C + 2T


≡

 H
SC(3+)
7/2− 0

0 H
SC(4+)
7/2−

 . (C.20)
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The kinetic term Kl is defined as

Kl = − 1

µ

(
∂2

∂r2
+

2

r

∂

∂r
− l(l + 1)

r2

)
, (C.21)

with the reduced mass µ = mN . The potentials C ′, C and T are written by

C ′ = V ρ′
C + V ω′

C , (C.22)

C = V π
C + 2(V ρ

C + V ω
C ) , (C.23)

T = V π
T − (V ρ

T + V ω
T ) , (C.24)

where V π
C , V π

T , V v′
C , V v

C and V v
T (v = ρ, ω) are given in Eqs. (B.26) and (B.37)-(B.39).

We obtain that the H
SC(0+)
1/2− belongs to the HQS singlet. The HQS doublet states

with jP = 1+, 2+, 3+ are expected to emerge as

H
SC(1+)
1/2− ≈ H

SC(1+)
3/2− , (C.25)

H
SC(2+)
3/2− ≈ H

SC(2+)
5/2− , (C.26)

H
SC(3+)
5/2− ≈ H

SC(3+)
7/2− . (C.27)

For positive parity states, the Hamiltonians in the spin-complex basis in the heavy
quark limit are given as

HSC
1/2+ = U−1

1/2+H1/2+U1/2+

=

 K1 + C ′ + C − 4T 0 0
0 K1 + C ′ − 3C 0
0 0 K1 + C ′ + C + 2T


≡

 H
SC(0−)
1/2+ 0

0 H
SC(1−)
1/2+

 , (C.28)

HSC
3/2+ = U−1

3/2+H3/2+U3/2+

=


K1 + C ′ − 3C 0 0 0

0 K1 + C ′ + C + 2T 0 0

0 0 K1 + C ′ + C − 2
5T

6
5

√
6T

0 0 6
5

√
6T K3 + C ′ + C − 8

5T


≡

 H
SC(1−)
3/2+ 0

0 H
SC(2−)
3/2+

 , (C.29)
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HSC
5/2+ = U−1

5/2+H7/2+U5/2+
K1 + C ′ + C − 2

5T
6
5

√
6T0 0

6
5

√
6T K3 + C ′ + C − 8

5T0 0
0 0 K3 + C ′ − 3C 0
0 0 0 K3 + C ′ + C + 2T


≡

 H
SC(2−)
5/2+ 0

0 H
SC(3−)
5/2+

 , (C.30)

HSC
7/2+ = U−1

7/2+H7/2+U7/2+

=


K3 + C ′ − 3C 0 0 0

0 K3 + C ′ + C + 2T 0 0

0 0 K3 + C ′ + C − 2
3T

4
3

√
5T

0 0 4
3

√
5T K5 + C ′ + C − 4

3T


≡

 H
SC(3−)
7/2+ 0

0 H
SC(4−)
7/2+

 . (C.31)

As analysis above, the eigen state of the H
SC(0−)
1/2+ component is the HQS singlet state,

while the HQS doublet states with jP = 1−, 2−, 3− are formed as

H
SC(1−)
1/2+ ≈ H

SC(1−)
3/2+ , (C.32)

H
SC(2−)
3/2+ ≈ H

SC(2−)
5/2+ , (C.33)

H
SC(3−)
5/2+ ≈ H

SC(3−)
7/2+ . (C.34)
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Appendix D

Few-body problems and

Gaussian expansion method

D.1 Variational Method
The variational method is one of the dominant tool to solve the quantum few-body
problems. Let us consider the eigenfunction

Huk = Ekuk , (D.1)

where integer k (≥ 0) is a set of several quantum numbers. The state with k = 0
corresponds to the grand state in the system. When an arbitrary function ψ can be
expanded in terms of uk,

ψ =
∑
k

Ckuk , (D.2)

the energy expectation value of H is obtained by

〈H〉 = 〈ψ H ψ〉
〈ψ ψ〉

=

∑
k

Ek|Ck|2∑
k

|Ck|2
(D.3)

Since the energy Ek is greater than or equal to the grand states E0,

〈H〉 =

∑
k

Ek|Ck|2∑
k

|Ck|2
≥
E0

∑
k

|Ck|2∑
k

|Ck|2
= E0 . (D.4)

Therefore, the energy of the grand state E0 satisfies

E0 ≤ 〈ψ H ψ〉
〈ψ ψ〉

(Ritz Theorem) . (D.5)
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D.2 Matrix diagonalization
To obtain the eigenenergies in the few-body problems we often perform diagonaliza-
tion of the matrix equation

HC = ENC , (D.6)

where,

Hij = 〈φi| −
h̄2

2m
4+V |φj〉 , (D.7)

Nij = 〈φi φj〉 , (D.8)

φ(~r ) =
n∑

i=1

ciφi(~r ). (D.9)

Because the φ(~r ) is a non-orthogonal function, we diagonalize both H and N due to
the norm Nij 6= δij . The norm N is diagonalized by unitary matrix y as

Ny = µy, (D.10)

where µ is the eigenvalue. Then, we define the diagonal matrix B;

B =

 1/
√
µ1

. . .

1/
√
µN

 , B−1 =


√
µ1

. . . √
µN

 (D.11)

From Eqs.(D.10) and (D.11), Eq.(D.6) can be written by(
y−1Hyy−1 − Ey−1Nyy−1

)
C = 0

→
(
By−1HyBB−1y−1 − EBµy−1

)
C = 0

→
(
By−1HyBB−1y−1 − EB−1y−1

)
C = 0 . (D.12)

Therefore, by diagonalizing the matrix By−1HyB, we obtain the eigenenergy E and
the eigenvector B−1y−1C. The coefficient C is also gained from the eigenvector as
yBB−1y−1C = C.

D.3 Two-body systems

D.3.1 Gaussian expansion method

When diagonalizing the matrix equation in Eq (D.6) is performed, the wave function
expanded in terms of gaussian functions is useful. A set of the gaussian basis can
describe both short-range and long-range regions of wave functions accurately. More-
over, the gaussian makes the calculation of matrix elements easy because the gaussian
integrations can be solved analytically.
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In the Gaussian expansion method [154], a wave function of the spatial part in the
two-body systems is expressed by

ψlm(~r) =
∑
i

Ciφilm(~r ) , (D.13)

φilm(~r ) =

√
2

Γ(l + 3/2)b3i

(
r

bi

)l

exp(− r2

2b2i
)Ylm(θ, φ) . (D.14)

From Eq.(D.14), the matrix elements are obtained as follows. Here, we consider
only a radial part for simplicity. The radial part of the wave function is expressed by

rRil(r) =

√
2

Γ(l + 3/2)b3i

(
rl+1

bli

)
exp(− r2

2b2i
) . (D.15)

(i) Norm

Let us show the matrix element of the norm in the two-body systems. It is easily
obtained by

〈rRil1 |rRjl2〉 =
∫ ∞

0

dr
2√

Γ(l1 + 3/2)Γ(l2 + 3/2)

rl1+l2+2

b
l1+3/2
i b

l2+3/2
j

exp

(
−r

2

2

b2i + b2j
b2i b

2
j

)
.

(D.16)

Since l1 + l2 is even number, we define n = (l1 + l2)/2 + 1 and then Eq (D.16) is
written by,

〈rRil1 |rRjl2〉 =
2√

Γ(l1 + 3/2)Γ(l2 + 3/2)

1

b
l1+3/2
i b

l2+3/2
j

∫ ∞

0

drr2n exp

(
−r

2

2

b2i + b2j
b2i b

2
j

)

=
1√

Γ(l1 + 3/2)Γ(l2 + 3/2)

1

b
l1+3/2
i b

l2+3/2
j

Γ(n+
1

2
)

(
2b2i b

2
j

b2i + b2j

) 2n+1
2

=
Γ((l1 + l2)/2 + 3/2)√
Γ(l1 + 3/2)Γ(l2 + 3/2)

(
bi
bj

) l2−l1
2

(
2bibj
b2i + b2j

) l1+l2+3
2

.

(D.17)

For l = l1 = l2, Eq. (D.17) is simplified by

〈rRil|rRjl〉 =

(
2bibj
b2i + b2j

)l+3/2

. (D.18)
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(ii) Kinetic term

The matrix element of kinetic energy is obtained by

〈rRil| 4 |rRjl〉 = 〈rRil|
∂2

∂r2
− l(l + 1)

r2
|rRjl〉 . (D.19)

By using

∂2

∂r2
rRil =

√
2

Γ(l + 3/2)

(
1

b
l+3/2
i

)[
l(l + 1)rl−1 − (2l + 3)

rl+1

b2i
+
rl+3

b4i

]
exp

(
− r2

2b2i

)
,

(D.20)

the first term of Eq.(D.19) is given by

〈rRil|
∂2

∂r2
|rRjl〉

=
2

Γ(l + 3/2)

1

(bibj)l+3/2

×
∫ ∞

0

dr

[
l(l + 1)r2l − (2l + 3)

r2(l+1)

b2i
+
r2(l+2)

b4i

]
exp

(
−r

2

2

b2i + b2j
b2i b

2
j

)
.

(D.21)

In Eq.(D.21), the first term cancels out the centrifugal barrier term in Eq.(D.19). The
integrations of the second and third terms of Eq.(D.21) are calculated by using the
Gaussian integrals;

2

Γ(l + 3/2)

1

(bibj)l+3/2

∫ ∞

0

dr

[
−(2l + 3)

r2(l+1)

b2i
+
r2(l+2)

b4i

]
exp

(
−r

2

2

b2i + b2j
b2i b

2
j

)

=
2

Γ(l + 3/2)

1

(bibj)l+3/2

√
π

2

{2(l + 1)}!
22(l+1)(l + 1)!

(2l + 3)

(
2b2i b

2
j

b2i + b2j

)l+3/2

×

[
− 1

b2j
+

1

2b4j

2b2i b
2
j

b2i + b2j

]

=
2l + 3

(bibj)l+3/2

(
2b2i b

2
j

b2i + b2j

)l+3/2

× −1

b2i + b2j

= − 2l + 3

b2i + b2j

(
2bibj
b2i + b2j

)l+3/2

. (D.22)

Hence, we obtain the matrix element of the kinetic energy in the two-body systems
as

〈rRil| 4 |rRjl〉 = − 2l + 3

b2i + b2j

(
2bibj
b2i + b2j

)l+3/2

. (D.23)
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(iii) Potentials

In the section, the matrix elements of several potentials are shown. For a gaussian
potential, the matrix element can be obtained in the same way as seen in norm.

〈rRil1 |e−αr2 |rRjl2〉

=
Γ((l1 + l2)/2 + 3/2)√
Γ(l1 + 3/2)Γ(l2 + 3/2)

(
bi
bj

)(l2−l1)/2
(
b2i + b2j
2bibj

+ bibjα

)−(l1+l2+3)/2

.

(D.24)

For l = l1 = l2, Eq. D.24 can be written simply as

〈rRil|e−αr2 |rRjl〉 =

(
b2i + b2j
2bibj

+ bibjα

)−(l+3/2)

. (D.25)

A matrix element of a Coulomb potential (1/r) is given by

〈rRil1 |
1

r
|rRjl2〉

=
Γ((l1 + l2)/2 + 1)√

Γ(l1 + 3/2)Γ(l2 + 3/2)

(
bi
bj

)(l2−l1)/2 1√
bibj

(
2bibj
b2i + b2j

)(l1+l2)/2+1

,

(D.26)

=
Γ(l + 1)

Γ(l + 3/2)

1√
bibj

(
2bibj
b2i + b2j

)l+1

(l = l1 = l2) . (D.27)

For a potential which is proportional to rm (m is integer.),

〈rRil1 |rm|rRjl2〉

=
Γ((l1 + l2 +m+ 3)/2)√
Γ(l1 + 3/2)Γ(l2 + 3/2)

(
bi
bj

)(l2−l1)/2

(bibj)
m/2

(
2bibj
b2i + b2j

)(l1+l2+m+3)/2

,

(D.28)

=
Γ(l + (m+ 3)/2)

Γ(l + 3/2)
(bibj)

m/2

(
2bibj
b2i + b2j

)l+(m+3)/2

(l = l1 = l2) . (D.29)

When we choose m = 2 in Eqs.(D.28) and (D.31), the matrix element of the harmonic
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oscillator potential is obtained,

〈rRil1 |r2|rRjl2〉

=
Γ((l1 + l2 + 5)/2)√

Γ(l1 + 3/2)Γ(l2 + 3/2)

(
bi
bj

)(l2−l1)/2

bibj

(
2bibj
b2i + b2j

)(l1+l2+5)/2

,

(D.30)

=
Γ(l + 5/2)

Γ(l + 3/2)
bibj

(
2bibj
b2i + b2j

)l+5/2

(l = l1 = l2) . (D.31)

D.4 Three-body problem

D.4.1 Jacobi coordinate

The Jacobi coordinates in the three-body systems for the particles N1, N2 and N3

are given in Fig. D.1.

Fig.D.1 Jacobi coordinates in the three-body system

The coordinates (1), (2) and (3) are written by the single-particle coordinates xi
and the mass mi as follows.

(1) 
~r1 = ~x2 − ~x1

~R1 = ~x3 −
m1~x1 +m2~x2
m1 +m2

~G1 = ~G =
m1~x1 +m2~x2 +m3~x3

m1 +m2 +m3

(D.32)

 ~r1
~R1

~G1

 =

 −1 1 0
− m1

m12
− m2

m12
1

m1

m123

m2

m123

m3

m123

 ~x1
~x2
~x3

 ≡ U1

 ~x1
~x2
~x3

 (D.33)

→

 ~x1
~x2
~x3

 =

 − m2

m12
− m3

m123
1

m1

m12
− m3

m123
1

0 m12

m123
1

 ~r1
~R1

~G1

 = U−1
1

 ~r1
~R1

~G1

 (D.34)
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where m12···i = m1 +m2 + · · ·+mi.

(2) 
~r2 = ~x3 − ~x2

~R2 = ~x1 −
m2~x2 +m3~x3
m2 +m3

~G2 = ~G =
m1~x1 +m2~x2 +m3~x3

m1 +m2 +m3

(D.35)

 ~r2
~R2

~G2

 =

 −1 1 0
− m2

m23
− m3

m23
1

m2

m123

m3

m123

m1

m123

 ~x1
~x2
~x3

 ≡ U2

 ~x1
~x2
~x3

 (D.36)

→

 ~x1
~x2
~x3

 =

 0 m23

m123
1

− m3

m23
− m1

m123
1

m2

m23
− m1

m123
1

 ~r2
~R2

~G2

 = U−1
2

 ~r2
~R2

~G2

 (D.37)

(3) 
~r3 = ~x1 − ~x3

~R3 = ~x2 −
m1~x1 +m3~x3
m1 +m3

~G3 = ~G =
m1~x1 +m2~x2 +m3~x3

m1 +m2 +m3

(D.38)

 ~r3
~R3

~G3

 =

 −1 1 0
− m3

m13
− m1

m13
1

m3

m123

m1

m123

m2

m123

 ~x1
~x2
~x3

 ≡ U3

 ~x1
~x2
~x3

 (D.39)

→

 ~x1
~x2
~x3

 =

 m3

m13
− m2

m123
1

0 m13

m123
1

− m1

m13
− m2

m123
1

 ~r1
~R1

~G1

 = U−1
3

 ~r1
~R1

~G1

 (D.40)

The coordinates transformations form (r,R) to (r′, R′) are related to the matrix
Ui,  ~ri

~Ri

~Gi

 = Ui

 ~x1
~x2
~x3

 = UiU
−1
j

 ~rj
′

~Rj
′

~Gj
′

 . (D.41)
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For instance, the transformation from (r1, R1) to (r2, R2) is obtained by ~r1
~R1

~G1

 = U1

 ~x1
~x2
~x3

 = U1U
−1
2

 ~r2
~R2

~G2


=

 −1 1 0
− m1

m12
− m2

m12
1

m1

m123

m2

m123

m3

m123

 0 m23

m123
1

− m3

m23
− m1

m123
1

m2

m23
− m1

m123
1

 ~r2
~R2

~G2


=

 − m3

m23
−1 0

m2m123

m23m12
− m1

m12
0

0 0 1

 ~r2
~R2

~G2

 . (D.42)

Therefore,
~r1 = − m3

m23
~r2 − ~R2

~R1 = −m2m123

m12m23
~r2 −

m1

m12

~R2

~G1 = ~G2

. (D.43)

D.4.2 Coordinate transformation (r,R → r′, R′) of wave func-

tion

φ(~r, ~R) = N exp

(
−1

2
a1r

2 − 1

2
a2R

2

)[
Yl1(~r)⊗ Yl2(

~R)
]
LM

(D.44)

N =

√
2a

l1+3/2
1

Γ(l1 + 3/2)

√
2a

l2+3/2
1

Γ(l2 + 3/2)
(D.45)

Transformation{
~r = a11~r

′ + a12 ~R
′

~R = a21~r
′ + a22 ~R

′ (D.46)

− 1

2
a1r

2 − 1

2
a2R

2

=
1

2

[
(a1a

2
11 + a2a

2
21)r

′2 + (a1a
2
12 + a2a

2
22)R

′2 + 2(a1a11a12 + a2a21a22)~r
′ · ~R′

]
(D.47)



D.4 Three-body problem 119

[
Yl1(~r)⊗ Yl2(

~R)
]
LM

=

l1∑
l′1=0

√
4π(2l1 + 1)!

(2l′1 + 1)!(2l1 − 2l′1 + 1)!

l2∑
l′2=0

√
4π(2l2 + 1)!

(2l′2 + 1)!(2l2 − 2l′2 + 1)!

×
[[

Yl′1
(~r ′)⊗ Yl1−l ′1

(~R′)
]
l1m1

⊗
[
Yl′2

(~r ′)⊗ Yl2−l ′2
(~R′)

]
l2m2

]
LM

=

l1∑
l′1=0

l2∑
l′2=0

√
4π(2l1 + 1)!

(2l′1 + 1)!(2l1 − 2l′1 + 1)!

√
4π(2l2 + 1)!

(2l′2 + 1)!(2l2 − 2l′2 + 1)!

× (a11r
′)l

′
1(a12R

′)l1−l′1(a21r
′)l

′
2(a22R

′)l2−l′2

×
[[
Yl′1(r̂

′)⊗ Yl1−l′1
(R̂′)

]
l1m1

⊗
[
Yl′2(r̂

′)⊗ Yl2−l′2
(R̂′)

]
l2m2

]
LM

(D.48)

where

YLM (~x1 + ~x2) =
L∑

l=0

√
4π(2L+ 1)!

(2l + 1)!(2L− 2l + 1)!
[Yl(~x1)⊗ YL−l(~x2)]LM (D.49)

and [[
Yl′1(r̂

′)⊗ Yl1−l′1
(R̂′)

]
l1m1

⊗
[
Yl′2(r̂

′)⊗ Yl2−l′2
(R̂′)

]
l2m2

]
LM

=
∑
Q1Q2

√
(2l′1 + 1)(2(l1 − l′1) + 1)(2l1 + 1)(2l′2 + 1)(2(l2 − l′2) + 1)(2l2 + 1)

(4π)2

× ( l′1 0 l′2 0|Q1 0 )( l1 − l′1 0 l2 − l′2 0|Q2 0 )

 l′1 l′2 Q1

l1 − l′1 l2 − l′2 Q2

l1 l2 L


×
[
YQ1(r̂

′)⊗ YQ2(R̂
′)
]
LM

. (D.50)

Therefore, the coordinate transformation from (r,R) to (r′, R′) is obtained as[
Yl1(~r)⊗ Yl2(

~R)
]
LM

= (2l1 + 1)(2l2 + 1)
∑

l′1l
′
2Q1Q2

√
2l1C2l′1 2l2C2l′2

( l′1 0 l′2 0|Q1 0 )( l1 − l′1 0 l2 − l′2 0|Q2 0 )

× (a11)
l′1(a12)

l1−l′1(a21)
l′2(a22)

l2−l′2(r′)l
′
1+l′2(R′)l1+l2−(l′1+l′2)

×

 l′1 l′2 Q1

l1 − l′1 l2 − l′2 Q2

l1 l2 L

[YQ1
(r̂′)⊗ YQ2

(R̂′)
]
LM

. (D.51)
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D.4.3 Norm

Nij = 〈φi|φj〉 (D.52)

If the Jacobi coordinate of φi(r
′, R′) is different from that of φj(r,R), we should carry

out the coordinate transformation φi(r
′, R′) → φi(r,R).

Nij =

∫
d3r

∫
d3Rrν1Rν2 exp (−β1r2 − β2R

2 + γ ~r · ~R)

×
[
Yl1(r̂)⊗ Yl2(R̂)

]
LM

[
Yl3(r̂)⊗ Yl4(R̂)

]
L′M ′

(D.53)

From Rayleigh formula

exp (i~r · ~R) = 4π
∞∑
λ=0

iλjλ(kr)Y
∗
λ (r̂) · Yλ(R̂) , (D.54)

exp (γ ~r · ~R) = 4π
∞∑
λ=0

iλjλ(−iγrR)Y ∗
λ (r̂) · Yλ(R̂) (D.55)

= 4π

√
π

2γrR

∞∑
λ=0

Iλ+1/2(γrR)Y
∗
λ (r̂) · Yλ(R̂) (D.56)

where jl is the spherical bessel function, and Il+1/2 is the modified spherical bessel
function of the first kind.

Nij =

∫ ∞

0

dr

∫ ∞

0

dRrν1+2Rν2+2 exp (−β1r2 − β2R
2)4π

√
π

2γrR

∞∑
l=0

Il+1/2(γrR)

×
〈[
Yl1(r̂)⊗ Yl2(R̂)

]
LM

Y ∗
λ (r̂) · Yλ(R̂)

[
Yl3(r̂)⊗ Yl4(R̂)

]
L′M ′

〉
(D.57)

The angular part is calculated as〈[
Yl1(r̂)⊗ Yl2(R̂)

]
LM

Y ∗
λ (r̂) · Yλ(R̂)

[
Yl3(r̂)⊗ Yl4(R̂)

]
L′M ′

〉
= δLL′δMM ′(−1)L

′+l3+l2

{
l1 l2 L
l4 l3 λ

}
〈l1||Yλ(r̂)||l3〉 〈l2||Yλ(R̂)||l4〉

(D.58)

= δLL′δMM ′
(−1)L

′+l3+l2

4π

{
l1 l2 L
l4 l3 λ

}
× (2λ+ 1)

√
(2l3 + 1)(2l4 + 1) ( l3 0 λ 0|l1 0 )( l4 0 λ 0|l2 0 ) . (D.59)



D.4 Three-body problem 121

For The spatial part, first, one integrates over R:∑
λ

√
π

2γ

∫ ∞

0

dr

∫ ∞

0

dR rν1+3/2Rν2+3/2e−β1r
2

e−β2R
2

Iλ+1/2(γrR)

=
∑
λ

√
π

∫ ∞

0

dr rν1+λ+2e−β1r
2 Γ

(
ν2+λ+3

2

)
γλ

2λ+2Γ (λ+ 3/2)
√
βν2+λ+3
2

× 1F1

(
ν2 + λ+ 3

2
;λ+

3

2
;
(γr)2

4β2

)
(D.60)

Since the confluent hypergeometric function 1F1 is written as

1F1

(
ν2 + λ+ 3

2
;λ+

3

2
;
(γr)2

4β2

)
= exp

(
(γr2)

4β2

)
1F1

(
λ− ν1

2
;λ+

3

2
;− (γr2)

4β2

)
= exp

(
(γr2)

4β2

) ∞∑
n=0

((λ− ν2)/2)n
(λ+ 3/2)n

1

n!

(
− (γr2)

4β2

)n

(D.61)

where (α)n ≡ α(α+ 1) · · · (α+ n− 1), the gaussian integral is applied to the integral
over r.

(D.60) =
∑
λ

√
π

Γ
(
ν2+λ+3

2

)
γλ

2λ+2Γ (λ+ 3/2)
√
βν2+λ+3
2

∞∑
n=0

((λ− ν2)/2)n
(λ+ 3/2)n

1

n!

(
− γ

4β2

)n

×
∫ ∞

0

dr rν1+λ+2n+2 exp

(
−β1r2 +

γ2r2

4β2

)
=
∑
λ,n

√
π

23
(−1)n

n!

Γ
(
ν2+λ+3

2

)
Γ
(
ν1+λ+2n+3

2

)
Γ(λ+ 3/2)

((λ− ν2)/2)n
(λ+ 3/2)n

×

(
γ√

2β′
12β2

)λ+2n
1

(β′
1)

ν1+3
2 β

ν2+3
2

2

(D.62)

where β′
1 ≡ β1 − γ2/4β2. Then, Γ functions in (D.62) is rewritten as

(λ+ 3/2)nΓ(λ+ 3/2) = Γ(λ+ n+ 3/2) , (D.63)

Γ(λ+ n+ 3/2) =
(2(λ+ n) + 1)!!

2λ+n+1

√
π , (D.64)

Γ((ν1 + λ+ 2n+ 3)/2) =
(ν1 + λ+ 2n+ 1)!!

2(ν1+λ+2n)/2+1

√
π , (D.65)

Γ((ν2 + λ+ 3)/2) =
(ν2 + λ+ 1)!!

2(ν2+λ)/2+1

√
π , (D.66)



122 Appendix D Few-body problems and Gaussian expansion method

and one obtain

(D.62) =
∑
λ,n

π

2

(−1)n

n!

(ν2 + λ+ 1)!!(ν1 + λ+ 2n+ 1)!!

(2(λ+ n) + 1)!!

(
λ− ν2

2

)
n

×

(
γ√

2β′
12β2

)λ+2n
1

(2β′
1)

(ν1+3)/2(2β2)(ν2+3)/2
(D.67)

=
∑
λ,n

π

2

1

n!

(ν2 + λ+ 1)!!(ν1 + λ+ 2n+ 1)!!

(2(λ+ n) + 1)!!

((ν2 − λ)/2)!

((ν2 − λ)/2− n)!

×

(
γ√

2β′
12β2

)λ+2n
1

(2β′
1)

(ν1+3)/2(2β2)(ν2+3)/2
. (D.68)

From the spatial part (D.68) and the angular part (D.59), the norm is described as

Nij =
∑
λ,n

π

2

1

n!

(ν2 + λ+ 1)!!(ν1 + λ+ 2n+ 1)!!

(2(λ+ n) + 1)!!

((ν2 − λ)/2)!

((ν2 − λ)/2− n)!

×

(
γ√

2β′
12β2

)λ+2n
1

(2β′
1)

(ν1+3)/2(2β2)(ν2+3)/2

× δLL′δMM ′
(−1)L

′+l3+l2

4π

{
l1 l2 L
l4 l3 λ

}
× (2λ+ 1)

√
(2l3 + 1)(2l4 + 1) ( l3 0 λ 0|l1 0 )( l4 0 λ 0|l2 0 ) . (D.69)

The summation of λ is restricted by the Clebsch-Gordan coefficients as |l1− l3| ≤ λ ≤
l1 + l3 and |l2 − l4| ≤ λ ≤ l2 + l4.

D.4.4 Kinetic term

The kinetic term is calculated as

∇2rl exp

(
−1

2
ar2
)
Yl(r̂) =

(
∂2

∂r2
− l(l + 1)

r2

)
rl+1 exp

(
−1

2
ar2
)
Yl(r̂)

= [a2r2 − a(2l + 3)] rl+1 exp

(
−1

2
ar2
)
Yl(r̂) . (D.70)

Therefore, it is calculated in the same manner as the norm.
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Appendix E

Least squares method

The least squares method is useful when one expresses an obtained function, having a
complicated shape generally, as a sum of well-known functions. In this appendix, let
us show that the obtained function v(r) given by n set of (ri, v(ri)) (i = 1, 2, · · · , n)
fits in a sum of the Gaussian functions V (r) as

V (r) = α1e
−β1r

2

+ α2e
−β2r

2

+ · · ·+ αme
−βmr2 . (E.1)

The parameter βi (m = 1, 2, · · · ,m) in Eq. (E.1) is given by geometric series as

βi =
1

2b2i
, bi = b1γ

i−1 , (E.2)

where b1 and γ are the initial value and the geometric ratio, respectively. The coef-
ficients αi are determined to minimize the sum of square of difference between v(ri)
and V (ri):

S =
n∑

i=1

(v(ri)− V (ri))
2
. (E.3)

Since the function S is a quadratic function of αj (1 ≤ j ≤ m),

∂S

∂αj
= −2

n∑
i=1

(v(ri)− V (ri)) e
−βjr

2
i = 0 (E.4)

→
n∑

i=1

[
v(ri)−

(
α1e

−β1r
2
i + · · ·+ αje

−βjr
2
i + · · ·αme

−βmr2i

)]
e−βjr

2
i = 0

→ α1

n∑
i=1

e−(β1+βj)r
2
i + · · ·αj

n∑
i=1

e−2βjr
2
i + · · ·+ αm

n∑
i=1

e−(βj+βm)r2i (E.5)

=

n∑
i=1

v(ri)e
−bir

2
i . (E.6)

For α1 · · ·αm, one obtains the simultaneous linear equations of αi,
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

n∑
i=1

e−2β1r
2
i

n∑
i=1

e−(β2+β1)r
2
i · · ·

n∑
i=1

e−(βm+β1)r
2
i

n∑
i=1

e−(β1+β2)r
2
i

n∑
i=1

e−2β2r
2
i · · ·

n∑
i=1

e−(βm+β2)r
2
i

...
...

. . .
...

n∑
i=1

e−(β1+βm)r2i

n∑
i=1

e−(β2+βm)r2i · · ·
n∑

i=1

e−2βmr2i




α1

α2

...
αm



=



n∑
i=1

v(ri)e
−β1r

2
i

n∑
i=1

v(ri)e
−β2r

2
i

...
n∑

i=1

v(ri)e
−βmr2i


. (E.7)

By solving this equations, the coefficients αi are obtained, and hence the function
v(r) is transformed into a sum of the Gaussian functions.
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Appendix F

Special Function

F.1 Gamma Function

Definition

Γ(z) =

∫ ∞

0

e−ttz−1dt. (F.1)

For n = 0, 1, 2, · · · ,

Γ(−n) = ±∞ (F.2)

Γ(n+ 1) = n! (F.3)

Γ

(
n+

1

2

)
=

(2n)!

22nn!

√
π (F.4)

Γ

(
−n+

1

2

)
=

(−4)nn!

(2n)!

√
π (F.5)

Recurrence formula

Γ(n+ 1) = nΓ(n) (F.6)

Γ

(
(n+ 1) +

1

2

)
=

(
n+

1

2

)
Γ

(
n+

1

2

)
(F.7)

Γ

(
−(n+ 1) +

1

2

)
=

−2

2n+ 1
Γ

(
−n+

1

2

)
(F.8)
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F.2 Spherical Bessel Function

Definition

jn(z) = zn
(
−1

z

d

dz

)n
sin z

z
(F.9)

j0(z) =
sin z

z
(F.10)

j1(z) =
sin z − z cos z

z2
(F.11)

j2(z) =
(3− z2) sin z − 3z cos z

z3
(F.12)

j3(z) =
(15− 6z2) sin z − z(15− z2) cos z

z4
(F.13)

j4(z) =
(105− 45z2 + z4) sin z − z(105− 10z2) cos z

z5
(F.14)

j5(z) =
(945− 420z2 + 15z4) sin z − z(945− 105z2 + z4) cos z

z6
(F.15)

Recurrence formula

jn−1(z) + jn+1(z) =
2n+ 1

z
jn(z) (F.16)

F.3 Neumann Function

Definition

nn(z) = −zn
(
−1

z

d

dz

)n
cos z

z
(F.17)

n0(z) = −cos z

z
(F.18)

n1(z) = −cos z + z sin z

z2
(F.19)

n2(z) = − (3− z2) cos z + 3z sin z

z3
(F.20)

n3(z) = − (15− 6z2) cos z + z(15− z2) sin z

z4
(F.21)

n4(z) = − (105− 45z2 + z4) cos z + z(105− 10z2) sin z

z5
(F.22)

n5(z) = − (945− 420z2 + 15z4) cos z + z(945− 105z2 + z4) sin z

z6
(F.23)
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Recurrence formula

nn−1(z) + nn+1(z) =
2n+ 1

z
nn(z) (F.24)

F.4 Modified Spherical Bessel Function (First

Kind)

Definition

In+1/2(z) =
1√
2πz

[
ez

n∑
r=0

(−1)r(n+ r)!

r!(n− r)!(2z)r
+ (−1)n+1e−z

n∑
r=0

(n+ r)!

r!(n− r)!(2z)r

]
(F.25)

I−n−1/2(z) =
1√
2πz

[
ez

n∑
r=0

(−1)r(n+ r)!

r!(n− r)!(2z)r
+ (−1)ne−z

n∑
r=0

(n+ r)!

r!(n− r)!(2z)r

]
(F.26)

I1/2(z) =

√
2

πz
sinh z (F.27)

I3/2(z) =

√
2

πz

(
cosh z − 1

z
sinh z

)
(F.28)

I5/2(z) =

√
2

πz

[(
1 +

3

z2

)
sinh z − 3

z
cosh z

]
(F.29)

I7/2(z) =

√
2

πz

[
−
(
6

z
+

15

z3

)
sinh z +

(
1 +

15

z2

)
cosh z

]
(F.30)

I9/2(z) =

√
2

πz

[(
1 +

45

z2
+

105

z4

)
sinh z −

(
10

z
+

105

z3

)
cosh z

]
(F.31)

I11/2(z) =

√
2

πz

[
−
(
15

z
+

420

z3
+

945

z5

)
sinh z +

(
1 +

105

z2
+

945

z4

)
cosh z

]
(F.32)

Another representation

il(z) =

√
π

2z
Il+1/2(z) = (−i)ljl(iz) (F.33)
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Recurrence formula

Iν−1(z)− Iν+1(z) =
2ν

z
Iν(z) (F.34)

F.5 Modified Spherical Bessel Function (Third

Kind)

Definition

Kn+1/2(z) = K−n−1/2(z) =

√
π

2z
e−z

n∑
r=0

(n+ r)!

r!(n− r)!(2z)r
(F.35)

K1/2(z) =

√
π

2z
e−z (F.36)

K3/2(z) =

√
π

2z

(
1 +

1

z

)
e−z (F.37)

K5/2(z) =

√
π

2z

(
1 +

3

z
+

3

z2

)
e−z (F.38)

K7/2(z) =

√
π

2z

(
1 +

6

z
+

15

z2
+

15

z3

)
e−z (F.39)

K9/2(z) =

√
π

2z

(
1 +

10

z
+

45

z2
+

105

z3
+

105

z4

)
e−z (F.40)

K11/2(z) =

√
π

2z

(
1 +

15

z
+

105

z2
+

420

z3
+

945

z4
+

945

z5

)
e−z (F.41)

Recurrence formula

Kν−1(z)−Kν+1(z) = −2ν

z
Kν(z) (F.42)

F.6 Legendre function

Definition

Pl(x) =
1

2ll!

dl

dxl
(x2 − 1)l =2 F1(−l, l + 1, 1;

1− x

2
) (l = 0, 1, 2, · · · ) (F.43)

Pl(x) is a solution of differential equation

((1− x2)
d2

dx2
− 2x

d

dx
+ l(l + 1))Pl(x) = 0 . (F.44)
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Orthogonality relation

2l + 1

2

∫ 1

−1

dxPl(x)Pl′(x) = δll′ (F.45)

Recurrence formula

lPl(x) = (2l − 1)xPl−1(x)− (l − 1)Pl−2(x) (F.46)

F.7 Spherical Harmonics

Definition

Ylm(θ, φ) =

√
2l + 1

4π

(l −m)!

(l +m)!
(−1)mPm

l (cos θ)eimφ (F.47)

Ylm(0, φ) = Ylm(0, 0) =

√
2l + 1

4π
δm0 (F.48)

Solid spherical harmonics YLM (~r ) is often used.

YLM (~r ) = rLYLM (r̂) (F.49)

Orthogonality relation

∫ π

0

dθ sin θ

∫ 2π

0

dφ Y ∗
l′m′(θ, φ)Ylm(θ, φ) = δll′δmm′ (F.50)

Useful formulas

(Yl(r̂1) · Yl(r̂2)) =
l∑

m=−l

Y ∗
lm(r̂1) · Ylm(r̂2) = (−1)l

√
2l + 1 [(Yl(r̂1)⊗ Yl(r̂2))]00

(F.51)

[Yl(r̂)⊗ Yl′(r̂)]LM = C(ll′;L)YLM (r̂), (F.52)

where

C(ll′;L) =

√
(2l + 1)(2l′ + 1)

4π(2L+ 1)
( l 0 l′ 0|L 0 ) (F.53)
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[[
Yl′1(r̂1)⊗ Yl′2(r̂2)

]
L′M ′ ⊗

[
Yl′′1 (r̂1)⊗ Yl′′2 (r̂2)

]
L′′M ′′

]
LM

=
∑
l1l2

√
(2l′1 + 1)(2l′2 + 1)(2L′ + 1)(2l′′1 + 1)(2l′′2 + 1)(2L′′ + 1)

(4π)2

× ( l′1 0 l′′1 0|l1 0 )( l′2 0 l′′2 0|l2 0 )

 l′1 l′′1 l1
l′2 l′′2 l2
L′ L′′ L

 [Yl1(r̂1)⊗ Yl2(r̂2)]LM

(F.54)

YLM (~x1 + ~x2) =

L∑
l=0

√
4π(2L+ 1)!

(2l + 1)!(2L− 2l + 1)!
[Yl(~x1)⊗ YL−l(~x2)]LM (F.55)

F.8 Confluent Hypergeometric Function

Definition

1F1(α; γ; z) =
∞∑

n=0

α(α+ 1) · · · (α+ n− 1)

γ(γ + 1) · · · (γ + n− 1)

zn

n!
≡

∞∑
n=0

(α)n
(γ)n

zn

n!
(F.56)

= 1 +
∞∑

n=1

(α)n
(γ)n

zn

n!
(F.57)

1F1(α; γ; z) = ez 1F1(γ − α; γ;−z) (γ is not negative value) (F.58)

= ez
∞∑

n=0

(γ − α)n
(γ)n

(−z)n

n!
(F.59)

(α)nΓ(α) = Γ(α+ n) (F.60)

F.9 Error Function

Definition

erf(x) =
2√
π

∫ x

0

e−t2dt =
2√
π
e−x2

∞∑
n=0

2n

1 · 3 · · · (2n+ 1)
x2n+1 (F.61)

erfc(x) = 1− erf(x) =
e−x2

√
πx

(
1 +

∞∑
n=1

1 · 3 · · · (2n− 1)

(−2x2)n

)
(F.62)
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inerfc(x) =
2√
π

∫ ∞

x

(t− x)n

n!
e−t2dt (F.63)

=

∞∑
n=0

(−1)kxk

2n−kk!Γ (1 + (n− k)/2)
(F.64)
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Appendix G

Integrals and useful formulas

G.1 Gaussian Integrals

∫ ∞

0

e−ax2

dx =
1

2

√
π

a
(G.1)∫ ∞

0

x2e−ax2

dx =
1

2
· 1
2

√
π

a3
(G.2)∫ ∞

0

x4e−ax2

dx =
1

2
· 1
2

3

2

√
π

a5
(G.3)∫ ∞

0

x2ne−ax2

dx =
1

2
· 1
2

3

2
· · · 2n− 1

2

√
π

a2n+1
=

1

2
· (2n)!
22nn!

√
π

a2n+1
(G.4)

=
1

2
· Γ(n+

1

2
)

√
1

a2n+1
(G.5)∫ ∞

0

x2n+1e−ax2

dx =
1

2
· n! 1

an+1
=

1

2
· Γ(n+ 1)

1

an+1
(G.6)∫ ∞

−∞
e−ax2+bx+cdx = exp

(
b2

4a
+ c

)√
π

a
(G.7)∫ ∞

−∞
eic{(x−a)2+(b−x)2}dx = exp

(
ic(a− b)2

2

)√
iπ

2c
(G.8)

∫ ∞

−∞
eic{(x1−a)2+(x2−x1)

2+···+(b−xn)
2}dx1 · · · dxn = exp

(
ic(a− b)2

n+ 1

)√
inπn

(n+ 1)cn

(G.9)
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G.2 Useful Integrals

∫
dx√
a2 − x2

= arcsin
x

a
(G.10)∫

dx√
x2 + a2

= ln (x+
√
x2 + a2) (G.11)∫

dx

x2 + a2
=

1

a
arctan

x

a
(G.12)∫

dx

(x2 + a2)3/2
=

1

a2
x√

x2 + a2
(G.13)∫

xdx

(x2 + a2)3/2
= − 1√

x2 + a2
(G.14)∫ ∞

0

e−ax2

xµIν(bx)dx =
Γ(µ+ν+1

2 )bν

2ν+1a
µ+ν+1

2 Γ(ν + 1)
1F1

(
µ+ ν + 1

2
; ν + 1;

b2

4a

)
(G.15)

G.3 Dirac delta function

δ(3)(~r) =

∫
d3k

(2π)3
ei

~k·~r (G.16)∫
all space

f(~r)δ(3)(~r − ~a)d3r = f(~a) (G.17)

∇ ·
(
r̂

r2

)
= 4πδ(3)(~r ) (G.18)

∇2 1

r
= −4πδ(3)(~r ) (G.19)

∇2 e
−mr

r
= m2 e

−mr

r
− 4πe−mrδ(3)(~r ) (G.20)∫ ∞

−∞
δ(cx)f(x)dx =

f(0)

|c|
(G.21)

When the function g(x) has roots a1, a2, · · · , an,

δ(g(x)) =
n∑

i=1

δ(x− ai)

|∂g/∂x|x=ai

(G.22)
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G.4 Rayleigh Formula

ei
~k·~r =

∞∑
l=0

(2l + 1)iljl(kr)Pl(cos θ) (G.23)

= 4π

∞∑
l=0

iljl(kr)Y
∗
l (Ω1) · Yl(Ω2) (G.24)

G.5 Vector identities

Cross product with εijk

( ~A× ~B)i = εijkAjBk (G.25)

Triple Products

~A · ( ~B × ~C) = ~B · (~C × ~A) = ~C · ( ~A× ~B) (G.26)

~A× ( ~B × ~C) = ~B( ~A · ~C)− ~C( ~A · ~B) (G.27)

G.6 Double factorial

(2n+ 1)!! = (2n+ 1) · (2n− 1) · · · 3 · 1 =
(2n+ 1)!

2nn!
(G.28)

(2n)!! = 2n · (2n− 2) · · · 4 · 2 = 2nn! (G.29)

G.7 Clebsch-Gordan Coefficients
The Clebsch-Gordan Coefficients ( j1 m1 j2 m2|j m ) satisfies

|j1 − j2| ≤ j ≤ j1 + j2 (the triangular conditions) , (G.30)

and

m1 +m2 = m. (G.31)
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G.7.1 Explicit forms of the Clebsch-Gordan Coefficients

( a α b β|c γ )

= δγ,α+β∆(abc) [(a+ α)!(a− α)!(b+ β)!(b− β)!(c+ γ)!(c− γ)!(2c+ 1)]
1/2

×
∑
z

(−1)z

z!(a+ b− c− z)!(a− α− z)!(b+ β − z)!(c− b+ α+ z)!(c− a− β + z)!
,

(G.32)

where

∆(abc) =

[
(a+ b− c)!(a− b+ c)!(−a+ b+ c)!

(a+ b+ c+ 1)!

]1/2
. (G.33)

Because factorial of negative values diverges, the summation of z becomes restricted.
The minimum of z is 0, b − b − α or a + β − c and the maximum of z is a + b − c,
a− α or b+ β.

G.7.2 Special values

(a 0 b 0|c 0) =

{
0, if a+ b+ c = 2g + 1,

(−1)g−c√2c+1g!
(g−a)!(g−b)!(g−c)!

[
(2g−2a)!(2g−2b)!(2g−2c)!

(2g+1)!

]1/2
, if a+ b+ c = 2g,

(G.34)

where g is positive integer.

(aα b β|0 0) = (−1)a−α δabδα,−β√
2a+ 1

(G.35)

(aα 0 0|c γ) = δacδαγ (G.36)

(aα b β|a+ b α+ β) =

√
(2a)!(2b)!(a+ b+ α+ β)!(a+ b− α− β)!

(2a+ 2b)!(a+ α)!(a− α)!(b+ β)!(b− β)!
(G.37)

G.7.3 Symmetry properties

(aα b β|c γ) = (−1)a+b−c(b β aα|c γ) = (−1)a−α ĉ

b̂
(aα c − γ|b − β)

= (−1)a−α ĉ

b̂
(c γ a − α|b − β) = (−1)b+β ĉ

â
(c − γ b β|a − α)

= (−1)b+β ĉ

â
(b − β c γ|aα) = (−1)a+b−c(a − α b − β|c − γ)

(G.38)
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G.7.4 Two Particle with Arbitrary Spin

|[j1, j2]jm〉 =
∑

m1m2

(j1m1 j2m2|j m)|j1m1〉|j2m2〉 (G.39)

|j1m1〉|j2m2〉 =
∑
j

(j1m1 j2m2|j m)||[j1, j2]jm〉 (G.40)

| [ [j1j2]J12 , j3]JM 〉 =
∑
J23

U(j1j2Jj3;J12J23)|[j1, [j2, j3]J23 ]JM 〉 (G.41)

| [ [j1j2]J12 , j3]JM 〉 = (−1)j1+j2−J12 | [ [j2j1]J12 , j3]JM 〉 (G.42)

G.7.5 Unitary Racah coefficient

A unitary Racah coefficient is given by the overlap of two basis states as

U(j1j2Jj3;J12J23) = 〈[j1, [j2, j3]J23 ]JM [ [j1, j2]J12 , j3]JM 〉 (G.43)

= (−1)j1+j2+J+j3
√

(2J12 + 1)(2J23 + 1)

{
j1 j2 J12
j3 J J23

}
(G.44)

=
∑

m1m2m3M12M23

( j1 m1 j2 m2|J12 M12 )(J12 M12 j3 m3|J M )

× ( j2 m2 j3 m3|J23 M23 )( j1 m1 J23 M23|J M ) .
(G.45)

When J12 or J23 is equal to zero,

U(j1, j2, j1, j2;J120) = U(j1j1j2j2; 0J12) = (−1)j1+j2−J12

√
2J12 + 1

(2j1 + 1)(2j2 + 1)

(G.46)
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G.8 Angular momentum recoupling

|j1j2(J12), j3;JM〉 =
∑
J23

U(j1j2Jj3;J12J23) |j1, j2j3(J23);JM〉 (G.47)

|j1, j2j3(J23);JM〉 =
∑
J12

U(j1j2Jj3;J12J23) |j1j2(J12), j3;JM〉 (G.48)

|j1j2(J12), j3;JM〉 = (−1)j1+j2−J12 |j2j1(J12), j3;JM〉 (G.49)

= (−1)j1+j2−J12

∑
J13

U(j2j1Jj3;J12J13) |j2, j1j3(J13);JM〉

(G.50)

=
∑
J13

(−1)j1+J−J12−J13U(j2j1Jj3;J12J13) |j1j3(J13), j2;JM〉

(G.51)

G.9 6j Symbol

G.9.1 Relation between the Clebsch-Gordan coefficient and 6j

symbol∑
m1,m2,m3,m12,m23

( j12 m12 j3 m3|j m )( j1 m1 j2 m2|j12 m12 )

× ( j1 m1 j23 m23|j′ m′ )( j2 m2 j3 m3|j23 m23 )

= δjj′δmm′(−1)j1+j2+j3+j
√
(2j12 + 1)(2j23 + 1)

{
j1 j2 j12
j3 j j23

}
(G.52)

The 6j symbol satisfies

|j1 − j2| ≤ j12 ≤ j1 + j2 , |j2 − j3| ≤ j23 ≤ j2 + j3 ,

|j12 − j3| ≤ j ≤ j12 + j3 , |j1 − j23| ≤ j ≤ j1 + j23 . (G.53)

G.9.2 Explicit forms of 6j symbols{
a b c
d e f

}
= ∆(abc)∆(cde)∆(aef)∆(bdf)

∑
z

(−1)z(z + 1)!

F(abcdef ; z)
, (G.54)

where

F(abcdef ; z) =(z − a− b− c)!(z − c− d− e)!(z − a− e− f)!(z − b− d− f)!

× (a+ b+ d+ e− z)!(a+ c+ d+ f − z)!(b+ c+ e+ f − z)! .
(G.55)
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G.9.3 Symmetry properties of the 6j symbols

The 6j symbol is invariant under any permutation of its columns or under interchange
of the upper and lower arguments in each of any two columns.{

j11 j12 j13
j21 j22 j23

}
=

{
j11 j13 j12
j21 j23 j22

}
=

{
j12 j11 j13
j22 j21 j23

}
=

{
j12 j13 j11
j22 j23 j21

}
=

{
j13 j11 j12
j23 j21 j22

}
(G.56)

=

{
j21 j22 j13
j11 j12 j23

}
=

{
j11 j22 j23
j21 j12 j13

}

G.9.4 One of arguments is equal to zero{
0 b c
d e f

}
= (−1)b+e+d δbcδef√

(2b+ 1)(2e+ 1)
, (G.57){

a b c
0 e f

}
= (−1)a+b+e δbfδce√

(2b+ 1)(2c+ 1)
, (G.58){

a 0 c
d e f

}
= (−1)a+d+e δacδdf√

(2a+ 1)(2d+ 1)
, (G.59){

a b c
d 0 f

}
= (−1)a+b+d δafδcd√

(2a+ 1)(2c+ 1)
, (G.60){

a b 0
d e f

}
= (−1)a+e+f δabδde√

(2a+ 1)(2d+ 1)
, (G.61){

a b c
d e 0

}
= (−1)a+b+c δaeδbd√

(2a+ 1)(2b+ 1)
. (G.62)

G.9.5 One of arguments is equal to the sum of two others{
a b a+ b
a b a+ b

}
= (−1)2a+2b (2a)!(2b)!

(2a+ 2b+ 1)!
, (G.63){

a b a+ b
a b f

}
= (−1)2a+2b (2a)!(2b)!

(a+ b− f)!(a+ b+ f + 1)!
, (G.64){

a b a+ b
b a f

}
= (−1)2a+2b (2a)!(2b)!√

(2a− f)!(2a+ f + a)!(2b− f)!(2b+ f + 1)!
,

(G.65){
a b a+ b
a b a+ b− 1

}
= (−1)2a+2b (2a)!(2b)!

(2a+ 2b)!
, (G.66){

a b a+ b
a b a− b

}
= (−1)2a+2b 1

2a+ 1
. (G.67)
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G.10 9j Symbol

G.10.1 Relation between the Clebsh-Gordan coefficients and

9j symbols

∑
mimik

( j1 m1 j2 m2|j12 m12 )( j3 m3 j4 m4|j34 m34 )( j12 m12 j34 m34|j m )

× ( j1 m1 j3 m3|j13 m13 )( j2 m2 j4 m4|j24 m24 )( j13 m13 j24 m24|j′ m′ )

= δjj′δmm′ Ĵ12Ĵ13Ĵ24Ĵ34

 j1 j2 j12
j3 j4 j34
j13 j24 j

 (G.68)

The 9j symbol satisfies

|j1 − j2| ≤ j12 ≤ j1 + j2 , |j3 − j4| ≤ j34 ≤ j3 + j4 , |j13 − j24| ≤ j ≤ j13 + j24 ,

|j1 − j3| ≤ j13 ≤ j1 + j3 , |j2 − j4| ≤ j24 ≤ j2 + j4 , |j12 − j34| ≤ j ≤ j12 + j34 .
(G.69)

G.10.2 Explicit forms of 9j symbols

 a b c
d e f
g h i

 =
∆(abc)∆(def)∆(beh)∆(ghj)

∆(adg)∆(cfj)

(a+ d− g)!(c+ f − j)!(g + h+ j + 1)!

(a+ d+ g + 1)!

× 1

(a− b+ c)!(−a+ b+ c)!(d− e+ f)!(−d+ e+ f)!(b− e+ h)!(−b+ e+ h)!

×
∑
xyzt

(−1)a−c+e−g+j+x+y+z+t (2a− x)!(2b− y)!(2d− z)!(2e− t)!

x!y!z!t!

× (−a+ b+ c+ x)!(−b+ e+ h+ y)!(−d+ e+ f + z)!

(a+ b− c− x)!(b+ e− h− y)!(d+ e− f − z)!

× (b− e+ g − j + t)!

(b+ e− g + j − t)!(a+ d− g − x− z)!(e− b+ h+ y − t)!(−d+ e+ f + z − t)!

× (−a− e+ f + g + x+ t)!(c− d+ e+ j + z − t)!

(b− e+ g − j − y + t)!(−a+ c− e+ g − j + x+ t)!

× 1

(−a+ c− d+ f + g + j + 1 + x+ z)!
(G.70)
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G.10.3 Relation between 9j symbols and 6j symbols

9j symbols can be expressed by 6j symbols: a b c
d e f
g h i

 =
∑
z

(−1)2z(2z + 1)

{
a b c
f j z

}{
d e f
b z h

}{
g h j
z a d

}
.

(G.71)

The summation of z is restricted by the conditions of 6j symbols.

G.10.4 Symmetry properties of the 9j symbols

 j11 j12 j13
j21 j22 j23
j31 j32 j33

 = ε

 j1i j1k j1l
j2i j2k j2l
j3i j3k j3l

 , (G.72)

 j11 j12 j13
j21 j22 j23
j31 j32 j33

 = ε

 ji1 ji2 ji3
jk1 jk2 jk3
jl1 jl2 jl3

 , (G.73)

 j11 j12 j13
j21 j22 j23
j31 j32 j33

 =

 j11 j21 j31
j12 j22 j32
j13 j23 j33

 (G.74)

where

ε =

{
1 for cyclic permutation

(−1)R for non-cyclic permutation
, (G.75)

R =
3∑

i,k=1

jik (G.76)

Even permutations of columns or rows; j11 j12 j13
j21 j22 j23
j31 j32 j33

 =

 j21 j22 j23
j31 j32 j33
j11 j12 j13

 =

 j31 j32 j33
j11 j12 j13
j21 j22 j23


=

 j12 j13 j11
j22 j23 j21
j32 j33 j31

 =

 j13 j11 j12
j23 j21 j22
j33 j31 j32

 (G.77)
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G.10.5 One of the arguments is equal to zero

 a b c
d e f
g h 0

 = δcfδgh
(−1)b+c+d+g√
(2c+ 1)(2g + 1)

{
a b c
e d g

}
(G.78)

 a b c
d e f
0 0 0

 =
δadδbeδcf√

(2a+ 1)(2b+ 1)(2c+ 1)
(G.79)

G.11 Wigner-Eckart theorem

〈J ′M ′ Oκµ JM〉 = ( J M κ µ|J ′ M ′ )√
2J ′ + 1

〈J ′ Oκ J〉 (G.80)

The matrix element for the orbital angular momentum and spin coupled with wave
function is reduced by〈

Ψ(L′S′)JM V ( ~ri − ~ri ) (Oκ(space) ·Oκ(spin)) Ψ(LS)JM

〉
= (−1)κ

U(LκJS′;L′S)√
(2L′ + 1)(2S + 1)

〈L′ V ( ~ri − ~ri )Oκ(space) L〉 〈S′ Oκ(spin) S〉

(G.81)

= (−1)L+2κ+J+S′
{

L κ L′

S′ J S

}
× 〈L′ V ( ~ri − ~ri )Oκ(space) L〉 〈S′ Oκ(spin) S〉 (G.82)

G.12 Reduced matrix element

〈[j1j2]J ||[k1k2]k||[j′1j′2]J
′
〉 = Ĵ k̂Ĵ ′

 j1 j2 J
j′1 j′2 J ′

k1 k2 k

 〈j1||k1||j′1〉〈j2||k2||j′2〉

(G.83)

〈jm| [Pa, Qb]cγ |j
′m′〉

=
( j′ m′ c γ|j m )√

2j + 1
〈jm|| [Pa, Qb]cγ ||j

′m′〉 (G.84)

=
( j′ m′ c γ|j m )√

2j + 1
(−1)j+j′−c

√
2c+ 1

∑
J

{
a b c
j′ j J

}
〈j||Pa||J〉 〈J ||Qb||j′〉

(G.85)
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〈[j1, j2]j |Oαa(1) |[j′1, j′2]j′〉

= δj2j′2(−1)j
′+j1+j′2−α

√
2j + 1 ( j′ m′ α a|j m )

{
j′1 j′2 j′

j α j1

}
〈j1||Oα(1) ||j′1〉

(G.86)

〈[j1, j2]j ||Oα(1)|| [j′1, j′2]j′〉

= δj2j′2(−1)j
′+j1+j′2+α

√
(2j + 1)(2j′ + 1)

{
j1 j j2
j′ j′1 α

}
〈j1||Oα(1)||j′1〉

(G.87)

〈[j1, j2]j ||Oα(2)|| [j′1, j′2]j′〉

= δj1j′1(−1)j+j1+j′2+α
√

(2j + 1)(2j′ + 1)

{
j2 j j1
j′ j′2 α

}
〈j2||Oα(2)||j′2〉

(G.88)

G.13 Tensor products

[Ok1 , Ok2 ]km =
∑

m1m2

( k1 m1 k2 m2|k m )Ok1m1Ok2m2 (G.89)

~A · ~B = −
√
3[A,B]00 (G.90)

( ~A× ~B)µ = −i
√
2[A,B]1µ (G.91)

G.14 Matrix Elements of Basic Tensor Operator

G.14.1 Unit operator Î

〈λ′|Î|λ〉 = 〈λ|λ′〉 = δλλ′ (G.92)

〈l||Î||l〉 =
√
2l + 1 (G.93)

〈l′s′J ||Î||lsJ〉 =
√
2J + 1δll′δss′ (G.94)
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G.14.2 Spherical harmonics Yk

〈l||Yk||l′〉 = (−1)2l−k

√
(2l + 1)(2k + 1)

4π
( l 0 k 0|l′ 0 ) (G.95)

= (−1)2l
√

(2l′ + 1)(2k + 1)

4π
( l′ 0 k 0|l 0 ) (G.96)

= (−1)l
′

√
(2l + 1)(2l′ + 1)

4π
( l 0 l′ 0|k 0 ) (G.97)

〈
[Yl1(r̂)⊗ Yl2(R̂)]L [Yk1(r̂)⊗ Yk2(R̂)]K [Yl′1(r̂)⊗ Yl′2(R̂)]L′

〉
= (−1)l

′
1+l′2

√
(2K + 1)(2L+ 1)(2L′ + 1)(2k1 + 1)(2k2 + 1)

× C(l1l
′
1; k1)C(l2l

′
2; k2)

 l1 l2 L
l′1 l′2 L′

k1 k2 K

 (G.98)

=
(−1)l

′
1+l′2

4π

√
(2K + 1)(2L+ 1)(2L′ + 1)(2l1 + 1)(2l2 + 1)(2l′1 + 1)(2l′2 + 1)

× ( l1 0 l′1 0|k1 0 )( l2 0 l′2 0|k2 0 )

 l1 l2 L
l′1 l′2 L′

k1 k2 K

 (G.99)
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[74] A. Doté, T. Hyodo, and W. Weise, Phys. Rev. C 79, 014003 (2009).
[75] R. S. Hayano and T. Hatsuda, Rev. Mod. Phys. 82, 2949 (2010).
[76] K. Tsushima and F. Khanna, Phys.Lett. B552, 138 (2003), arXiv:nucl-

th/0207036.
[77] A. Mishra, E. L. Bratkovskaya, J. Schaffer-Bielich, S. Schramm, and H. Stöcker,
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