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CHAPTER 1

Introduction

1.1. Damped wave equations

The damped wave equation

utt − ∆u+ ut = 0

is a model which describes the propagation of the wave with friction. This equation
is also known as the telegraph equation developed by Oliver Heaviside(1850-1925).

It has been investigated by many mathematicians that the solution of the
damped wave equation has so-called diffusion phenomenon, that is, the solution
behaves like that of the corresponding heat equation

vt − ∆v = 0

as t→ +∞.
In this thesis we are concerned with the damped wave equation with variable

coefficients
utt − ∆u+ a(t, x)ut = f(u).

Our aim is to study whether this equation still has a diffusive structure. Here
a(t, x) denotes a coefficient of the damping depending on time and space variables
and f(u) is a nonlinear term.

Roughly speaking, it is expected that if a(t, x) does not decay fast, then the
damping is effective and the solution behaves like that of the corresponding heat
equation

−∆v + a(t, x)vt = f(v);
if a(t, x) decays sufficiently fast, then the damping becomes non-effective and the
solution behaves like that of the wave equation without damping

wtt − ∆w = f(w).

There are many literature on the damped wave equation with variable coefficients
and the above conjecture has been confirmed in several situations. In this thesis,
we focus on the damping of the form

a(t, x) = (1 + |x|2)−α/2(1 + t)−β

with α, β ≥ 0. In this case, roughly speaking, it is known that if α + β < 1, then
a(t, x) is effective damping and if α+ β > 1, then a(t, x) is non-effective damping.

Here we give an intuitive observation for understanding the diffusion phenom-
enon. Consider the linear damped wave equation

(1.1.1) utt − ∆u+ ut = 0

with initial data (u, ut)(0, x) = (0, g)(x). Using the Fourier transform, we have

ûtt + |ξ|2û+ ût = 0.

5



6 1. INTRODUCTION

Solving this ordinary differential equation, one can obtain

û(t, ξ) =
1√

1 − 4|ξ|2
(
e−t(1−

√
1−4|ξ|2)/2 + e−t(1+

√
1−4|ξ|2)/2

)
ĝ(ξ).

When |ξ| is sufficiently small, we can consider

1 −
√

1 − 4|ξ|2
2

=
2|ξ|2

1 +
√

1 − 4|ξ|2
∼ |ξ|2

and hence, if t is sufficiently large, ignoring some terms decaying exponentially, we
can see that

û(t, ξ) ∼ e−t|ξ|
2
ĝ(ξ).

The right-hand side is of course the Fourier transform of the solution of the cor-
responding heat equation with initial data g. Thus, we can naturally expect the
diffusion phenomenon.

We also give an another observation by scaling argument. For a solution u(t, x)
of (1.1.1), putting

u(t, x) = φ(λt, λ1/2x), λt = s, λ1/2x = y

with a parameter λ > 0, we have

λφss(s, y) − ∆φ(s, y) + φs(s, y) = 0.

Thus, letting λ→ 0, we obtain the heat equation

−∆φ+ φs = 0.

We note that λ→ 0 is corresponding to t→ +∞.
This observation is also applicable to variable coefficient cases. Let u(t, x) be

a solution of
utt − ∆u+ |x|−αt−βut = 0.

When −1 < β < 1, α < 2 and α+ β < 1, we put

u(t, x) = φ(λ1/(1+β)t, λ1/(2−α)x), λ1/(1+β)t = s, λ1/(2−α)x = y

with a parameter λ > 0 and have

λ2/(1+β)φss(s, y) − λ2/(2−α)∆φ(s, y) + λα/(2−α)+1|y|−αs−βφs(s, y) = 0.

We can rewrite this equation as

λ2/(1+β)−2/(2−α)φss − ∆φ+ |y|−αs−βφs = 0.

Note that
2

1 + β
− 2

2 − α
=

2(1 − α− β)
(1 + β)(2 − α)

> 0.

Therefore, letting λ→ 0 again, we obtain the corresponding heat equation

−∆φ+ |y|−αs−βφs = 0.

On the other hand, when α+ β > 1, we put

u(t, x) = φ(λt, λx), λt = s, λx = y

and have
φss(s, y) − ∆φ(s, y) + λα+β−1|y|−αs−βφs(s, y) = 0.

In this case, letting λ→ 0, we obtain the wave equation without damping

φss − ∆φ = 0.
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This indicates that the asymptotic behavior of solutions essentially depends on the
behavior of the coefficient of damping. In this thesis, we investigate in what way
the damping influences the behavior of solutions.

This thesis is organized as follows. In the next section, we introduce selected
results described in the following chapters. Then, in Section 1.3, we give a review
of previous results related to ours. We also explain the method used for the proof
of main results in Section 1.4.

In Chapter 2, we introduce some basic results on the study of damped wave
equations, including solution representation formula, asymptotic behavior of solu-
tions and some semilinear problems.

Chapter 3 concerns with the diffusion phenomena for the linear wave equation
with space-dependent damping. We prove the asymptotic profile of the solution is
given by a solution of the corresponding heat equation in the L2-sense. We also
give weighted energy estimates of solutions for higher order derivatives.

Chapter 4 is devoted to the existence of global solutions for the semilinear wave
equation with damping depending on time and space variables. In this case we can
find an appropriate weight function related to the corresponding heat kernel and
we can obtain an a priori estimate of the solution by a weighted energy method.
As a corollary of this a priori estimate, we can see that the energy of the solution
is concentrated in some parabolic region much smaller than the light cone. This
behavior is quite a contrast to that of the wave equation without damping.

In Chapter 5, we consider the critical exponent problem to the semilinear wave
equation with scale-invariant damping µ

1+tut with µ > 0. This equation is invariant
under the hyperbolic scaling and known as the threshold between effective and
non-effective damping. In this case the asymptotic behavior of the solution is very
delicate and the coefficient µ plays an essential role. We prove an L2 − L1 type
decay estimate of solutions and a small data global existence result for sufficiently
large µ. We also show some blow-up results for all µ > 0 by using a modified test
function method. Moreover, we prove that when µ < 1, the critical exponent is
larger than that of the corresponding heat equation. This shows that the equation
loses the parabolic structure and recovers its hyperbolic structure as µ gets smaller.

Chapter 6 concerns with the blow-up of solutions to the one-dimensional semi-
linear wave equation with time and space variables. In this case we cannot apply
the test function method directly. However, in one-dimensional case, we can con-
struct an appropriately multiplier function by the method of characteristics. We
prove that when the damping is non-effective, the critical exponent agrees with that
of the wave equation without damping, that is, the small data blow-up holds for
any power of the nonlinearity.

In Chapter 7, we prove upper estimates of the lifespan of solutions to the
semilinear wave equation with several types of damping in subcritical case. In
particular, our results give almost optimal estimates of the lifespan from both above
and below in the constant and time-dependent coefficient cases. This is a joint work
with Mr. Masahiro Ikeda.

In Chapter 8, we prove the Lp-Lq estimates of the solution to the linear damped
wave equation. These estimates, which show the diffusion phenomenon, has been
already proved by several mathematicians. In this chapter we introduce an im-
provement of these estimates in higher dimensional cases and give a simpler proof
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by using the solution representation formula. This is a joint work with Mr. Shige-
hiro Sakata.

Finally, in Appendix, we explain the notation used in this thesis, some useful
lemmas, definitions of solutions and the proof of local existence theorem.

1.2. Results

In this section, we collect the selected results described in this thesis. For
the sake of simplicity, we introduce only simplified results. We state the results
more precisely in the following chapters. We consider the Cauchy problem of the
semilinear damped wave equation

(1.2.1)
{
utt − ∆u+ a(t, x)ut = f(u), (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where u = u(t, x) is real-valued unknown, a(t, x) is nonnegative smooth function
and f(u) = 0 or |u|p. In what follows, we assume that 1 < p and (u0, u1) ∈
C∞

0 (Rn) × C∞
0 (Rn).

The first result is about the asymptotic profile of solutions to the linear wave
equation with the damping having the form 〈x〉−α with 0 ≤ α < 1. In this case
the damping can be seen as effective and it is conjectured the asymptotic profile is
given by a solution of the corresponding heat equation. The following result gives
an affirmative answer and is explained in Chapter 3:

Theorem 1.1 ([112]). Let f(u) = 0 and a(t, x) = 〈x〉−α with 0 ≤ α < 1 and
let u be the solution of (1.2.1). Then we have

‖u(t, ·) − v(t, ·)‖L2 = o(t−
n−2α
2(2−α) )

as t→ +∞, where v(t, x) is the solution of the corresponding heat equation

〈x〉−αvt − ∆v = 0

with the initial data v(0, x) = u0(x) + a(x)−1u1(x).

The second result is the existence of global solutions to the semilinear wave
equation with damping depending on time and space variables. We consider the
damping of the form 〈x〉−α(1 + t)−β with α, β ≥ 0, α+ β < 1 and the nonlinearity
|u|p. We prove that if p > 1 + 2/(n − α), then the global solution exists for small
data having the finite weighted energy. We note that the exponent 1 + 2/(n − α)
agrees with the critical exponent of the corresponding heat equation.

Theorem 1.2 ([109]). Let f(u) = |u|p and a(t, x) = a0〈x〉−α(1 + t)−β with
a0 > 0, α, β ≥ 0, α+ β < 1, and let

ψ(t, x) = A
〈x〉2−α

(1 + t)1+β
, A =

(1 + β)a0

(2 − α)2(2 + δ)
with δ > 0. If

1 +
2

n− α
< p ≤ n

n− 2
(n ≥ 3), 1 +

2
n− α

< p <∞ (n = 1, 2),

then there exists a small positive number δ0 > 0 such that for any 0 < δ ≤ δ0 the
following holds: If

I2
0 :=

∫
Rn

e2ψ(0,x)(u0(x)2 + |∇u0(x)|2 + u1(x)2)dx
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is sufficiently small, then there exists a unique solution u ∈ C([0,∞);H1(Rn)) ∩
C1([0,∞);L2(Rn)) to (1.2.1) satisfying∫

Rn

e2ψ(t,x)u(t, x)2dx ≤ CδI
2
0 (1 + t)−(1+β)n−2α

2−α +ε,∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx ≤ CδI
2
0 (1 + t)−(1+β)(n−α

2−α+1)+ε,

where

ε = ε(δ) :=
3(1 + β)(n− α)
2(2 − α)(2 + δ)

δ

and Cδ is a constant depending on δ.

The following two theorems are about the critical exponent problem for the
semilinear wave equation with the scale-invariant damping a = µ/(1+t). It is known
that if µ is sufficiently large (resp. small), the solution of the equation with f(u) = 0
behaves like the corresponding heat equation (resp. the free wave equation). We
give a global existence result for p > 1 + 2/n, provided that µ is sufficiently large.
The exponent 1 + 2/n is known as critical for the corresponding heat equation.
Thus, in view of the linear problem, the assumption on µ is reasonable. We also
give a blow-up result for all µ > 0. We remark that if µ < 1, then the blow-up
result holds even when p > 1 + 2/n. This phenomena can be interpreted as that
if µ is small, then the equation recover the hyperbolic structure and the critical
exponent rises.

Theorem 1.3 ([110]). Let f(u) = |u|p and a(t, x) = µ
1+t with µ > 0, and let

ψ(t, x) = A
|x|2

(1 + t)2
, A =

µ

2(2 + δ)
.

If 1 + 2
n < p ≤ n/(n − 2) (n ≥ 3), 1 + 2

n < p < ∞ (n = 1, 2) and 0 < ε <

2n(p − (1 + 2
n ))/(p − 1), then there exist constants δ > 0 and µ0 > 1 having the

following property: if µ ≥ µ0 and

I2
0 =

∫
Rn

e2ψ(0,x)(u0(x)2 + |∇u0(x)|2 + u1(x)2)dx

is sufficiently small, then there exists a unique solution u ∈ C([0,∞);H1(Rn)) ∩
C1([0,∞);L2(Rn)) of (1.2.1) satisfying∫

Rn

e2ψ(t,x)u(t, x)2dx ≤ Cµ,εI
2
0 (1 + t)−n+ε,∫

Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx ≤ Cµ,εI
2
0 (1 + t)−n−2+ε

for t ≥ 0, where Cµ,ε is a positive constant depending on µ and ε.

Theorem 1.4 ([110]). Let f(u) = |u|p and a(t, x) = µ
1+t , µ > 0.

(i) 1 < p ≤ 1 + 2/n and µ > 1. Moreover, we assume that

lim inf
R→∞

∫
|x|<R

(µ− 1)u0 + u1dx > 0.

Then there is no global solution for (1.2.1).
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(ii)Let 0 < µ ≤ 1 and

1 < p ≤ 1 +
2

n+ (µ− 1)
.

We also assume

lim inf
R→∞

∫
|x|<R

u1(x)dx > 0.

Then there is no global solution for (1.2.1).

The next one is a blow-up result for the one-dimensional semilinear wave equa-
tion with damping depending on time and space variables. We consider a non-
effective damping and prove a blow-up result for any 1 < p < ∞. This is corre-
sponds to the result of the corresponding semilinear wave equation without damp-
ing.

Theorem 1.5 ([111]). Let n = 1 and f(u) = |u|p, and assume that a(t, x) ∈
C∞([0,∞) × R) satisfies

|∂αt ∂βxa(t, x)| ≤
δ

(1 + t)k+α
(α, β = 0, 1)

with some k > 1 and sufficiently small δ > 0. If 1 < p <∞ and

u0 = 0, u1 ≥ 0, lim inf
R→∞

∫
|x|<R

u1(x)dx > 0,

then there is no global solution (1.2.1).

The following result is about estimates of the lifespan of solutions to the semi-
linear wave equation with time or space dependent damping. Even for the constant
damping case, to obtain the estimates of lifespan was open problem for higher
dimensional case n ≥ 4. Here we give the optimal estimate from above for the
constant and time-dependent damping case. We also give an upper estimate for
space-dependent damping, which does not seem to be optimal, but the first result
for this area.

Theorem 1.6 ([26]). Consider the initial data ε(u0, u1) instead of (u0, u1) in
(1.2.1), where ε > 0 is small parameter. Let f(u) = |u|p and a(t, x) = 〈x〉−α(1 +
t)−β with α ∈ [0, 1), β ∈ (−1, 1), αβ = 0, and let 1 < p < 1+2/(n−α). We assume
that the initial data (u0, u1) satisfy

lim inf
R→∞

∫
|x|<R

(〈x〉−αBu0(x) + u1(x))dx > 0,

where

B =
(∫ ∞

0

e−
R t
0 (1+s)−βdsdt

)−1

.

Then there exists C > 0 depending only on n, p, α, β and (u0, u1) such that the
lifespan Tε is estimated as

Tε ≤ C


ε−1/κ if 1 + α/(n− α) < p < 1 + 2/(n− α),
ε−(p−1)(log(ε−1))p−1 if α > 0, p = 1 + α/(n− α),
ε−(p−1) if α > 0, 1 < p < 1 + α/(n− α)
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for any ε ∈ (0, 1], where

κ =
2(1 + β)
2 − α

(
1

p− 1
− n− α

2

)
.

The final result is the Lp-Lq estimate of the solution to the linear damped
wave equation. This has already shown by Marcati and Nishihara [58], Hosono
and Ogawa [23] and Nishihara [78] for the case n = 1, 2, 3, respectively. Narazaki
[73] proved the same type estimate with arbitrary small loss of decay rate ε. In this
thesis we prove that the loss ε can be removed and give a simper proof by using
the solution representation formula. Let u, v be the solutions to the linear damped
wave equation and the corresponding heat equation{

utt − ∆u+ ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (0, g)(x), x ∈ Rn,{

vt − ∆v = 0, (t, x) ∈ (0,∞) × Rn,
v(0, x) = g(x), x ∈ Rn,

respectively.

Theorem 1.7 ([98]). For 1 ≤ q ≤ p ≤ ∞ and t ≥ 1, we have

‖u(t) − v(t) − e−t/2Wn(t)g‖Lp ≤ Ct−
n
2 ( 1

q−
1
p )−1‖g‖Lq ,

where

W1(t)g(x) =
1
2

∫ x+t

x−t
g(s)ds

if n = 1,

Wn(t)g =
1

(n− 2)!!|Sn−1|

(n−3)/2∑
l=0

1
8l

1
l!

(
1
t

∂

∂t

)(n−3)/2−l
(

1
t

∫
|x−y|=t

g(y)dSy

)

if n ≥ 3 and an odd number,

Wn(t)g =
1

(n− 1)!!|Sn|

(n−2)/2∑
l=0

1
8l

1
l!

(
1
t

∂

∂t

)(n−2)/2−l

×
∫
|x−y|≤t

1
1
2

√
t2 − |x− y|2

g(y)dy

if n is an even number, where |Sn| denotes the measure of the n-dimensional unit
sphere.

1.3. A review of some previous results

In this section, we give a review of previous study for the damped wave equation
with variable coefficients from the view point of the diffusion phenomenon. We
clarify the relation between the results stated in the previous section and some
earlier literature.
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1.3.1. Linear damped wave equations. We consider the linear damped
wave equation

(1.3.1)
{
utt − ∆u+ a(t, x)ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where u = u(t, x) is a real-valued unknown function and (u0, u1) is given initial
data. The simplest case is the constant coefficient case, that is

(1.3.2)
{
utt − ∆u+ ut = 0,
(u, ut)(0, x) = (u0, u1)(x).

As we mentioned in the first section, it is well-known that the solution of (1.3.2)
has the diffusion phenomenon. This means that the solution of (1.3.2) behaves like
the solution of the corresponding heat equation

(1.3.3)
{
vt − ∆v = 0,
v(0, x) = u0(x) + u1(x)

as t→ +∞. First, we note that by the Duhamel principle, the solution u of (1.3.2)
is expressed by

u(t, x) = Sn(t)(u0 + u1) + ∂t(Sn(t)u0),

where Sn(t) denotes the solution operator of the Cauchy problem{
utt − ∆u+ ut = 0 (t, x) ∈ R × Rn,
(u, ut)(0, x) = (0, g)(x) x ∈ Rn,

that is, Sn(t)g is the solution to the above problem.
The asymptotic behavior of solutions to the equation (1.3.2) has been initi-

ated by Matsumura [59]. He proved the following estimates by using the Fourier
transform:∥∥∂it∂αxSn(t)g∥∥L∞ ≤ C(1 + t)−n/(2m)−i−|α|/2(‖g‖Lm + ‖g‖H[n/2]+i+|α|),(1.3.4) ∥∥∂it∂αxSn(t)g∥∥L2 ≤ C(1 + t)n/4−n/(2m)−i−|α|/2(‖g‖Lm + ‖g‖Hi+|α|−1),

where 1 ≤ m ≤ 2. The decay rates above are the same as those of the corresponding
heat equation (1.3.3).

The study of the precise asymptotic profile of solutions to (1.3.2) was triggered
by the observation by Hsiao and Liu [24]. They considered a system of hyperbolic
conservation laws with damping Vt − Ux = 0,

Ut + p(V )x = −αU,
(V,U)(0, x) = (V0, U0)(x) → (V±, U±), x→ ±∞,

(1.3.5)

where (t, x) ∈ (0,∞) × R, α > 0, p(V ) > 0, p′(V ) < 0 for V > 0 and V0, V± > 0.
They proved that the asymptotic profile of the solution (V,U) of (1.3.5) is given by
a solution of a system given by Darcy’s law:{

V̄t = − 1
αp(V̄ )xx,

p(V̄ )x = −αŪ, i.e.,
{
V̄t − Ūx = 0,
p(V̄ )x = −αŪ(1.3.6)

with V̄ (0,±∞) = V±. By putting W (t, x) =
∫ x
−∞(V (t, y)− V̄ (t, y+x0)− V̂ (t, y))dy

with some auxiliary function V̂ and suitably chosen x0, they reduced the system
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(1.3.5) to a quasilinear second order hyperbolic equation with damping

(1.3.7)
{
Wtt + αWt + (p(Wx + V̄ + V̂ ) − p(Wx))x = 1

αp(V̄ ),
(W,Wt)(0, x) = (W0,W1)(x) → 0 as x→ ±∞.

Using this formalization, they obtained

‖(V − V̄ )(t)‖L∞∩L2 = O(t−1/2), t→ +∞,

here ‖f‖L∞∩L2 := max{‖f‖L∞ , ‖f‖L2}. Under the additional assumption

(V0, U0)(±∞) = (V∞, 0),
∫ ∞

−∞
(V0(x) − V∞)dx = 0

with some V∞ > 0, this convergence rate was improved by Nishihara [76] to

‖(V − V̄ )(t)‖L∞ = O(t−1).

Moreover, he also consider in [77] a generalization of (1.3.7) in one space dimension

(1.3.8)
{
utt + αut − (a(ux))x = 0,
(u, ut)(0, x) = (u0, u1)(x)

and proved that the solution of (1.3.8) behaves like that of the corresponding linear
parabolic problem {

αvt − a′(0)vxx = 0,
v(0, x) = u0(x) + 1

αu1(x)

as t→ +∞.
Yang and Milani [121] further extended the result of Nishihara [77] to any

space dimension. In particular, for the linear damped wave equation (1.3.2), using
Matsumura’s estimates (1.3.4), they showed that

‖u(t) − v(t)‖L∞(Rn) = O(t−n/2−1) (t→ +∞),

where u is the solution of (1.3.2) with (u0, u1) ∈ (H [n/2]+3(Rn) ∩ L1(Rn)) ×
(H [n/2]+2(Rn) ∩ L1(Rn)) and v is the solution of (1.3.3). In general, ‖v(t)‖L∞

does not decay faster than t−n/2. Therefore, the estimate above shows that the
asymptotic profile of u is actually given by v.

After that, Marcati and Nishihara [58] proved the following Lp-Lq decay esti-
mates of the difference of u and v in the one-dimensional case n = 1:

(1.3.9) ‖u(t)−v(t)−e−t/2(u0(·+ t)+u0(·− t))/2‖Lp ≤ Ct−
1
2 ( 1

q−
1
p )−1‖(u0, u1)‖Lq

for t ≥ 2 and 1 ≤ q ≤ p ≤ ∞. The estimate above implies that u can be expressed
asymptotically by

u(t, x) ∼ v(t, x) + e−t/2
u0(x+ t) + u0(x− t)

2

as t→ +∞. Here the term (u0(x+ t)+u0(x− t))/2 is the solution of the free wave
equation

wtt − wxx = 0

with the initial data (u0(x), 0). Noting that in the estimate (1.3.4), we need some
regularity on (u0, u1), we can interpret that the term e−t/2(u0(x+ t)+u0(x− t))/2
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has the singularity of u. The estimate (1.3.9) was extended by Hosono and Ogawa
[23] to n = 2 and by Nishihara [78] to n = 3. More precisely, they obtained∥∥∥∥u(t, ·) − v(t, ·) − e−t/2

((
1
2

+
t

8

)
Wn(t)u0 + ∂tWn(t)u0 +Wn(t)u1

)∥∥∥∥
Lp

≤ Ct−
n
2 ( 1

q−
1
p )−1‖(u0, u1)‖Lq

for 1 ≤ q ≤ p ≤ ∞, where Wn(t)g denotes the solution of the Cauchy problem of
the free wave equation{

wtt − ∆w = 0, (t, x) ∈ (0,∞) × Rn,
(w,wt)(0, x) = (0, g)(x), x ∈ Rn

In particular, we obtain the following decomposition formula of Sn(t) as t→ +∞:

Sn(t)g ∼ et∆g + e−t/2Wn(t)g,

where et∆ denotes the evolution operator of the heat equation. For higher dimen-
sional cases, the corresponding Lp-Lq estimates were given by Narazaki [73]. He
proved the following estimate for the lower frequency of the difference of solutions
to the damped wave equation and the heat equation when n ≥ 2:

‖F−1{χ(ξ)(û(t) − v̂(t))}‖Lp ≤ C(1 + t)−
n
2 ( 1

q−
1
p )−1+ε‖(u0, u1)‖Lq ,(1.3.10)

where 1 ≤ q ≤ p ≤ ∞, ε is an arbitrary small positive number and χ(ξ) is a com-
pactly supported smooth radial function satisfying χ(ξ) = 1 near ξ = 0. Moreover,
in the case where 1 < q < p < ∞, (p, q) = (2, 2) or (p, q) = (∞, 1), we may take
ε = 0. He also proved the following high frequency estimate

‖F−1{(1 − χ(ξ))(û(t) − e−t/2(M0(t, ·)û0 + M1(t, ·)û1))}‖Lp ≤ Ce−δt‖(u0, u1)‖Lq

where δ > 0, 1 < q ≤ p <∞, χ(ξ) is as above and

M1(t, ξ) =
1√

|ξ|2 − 1/4

sin(t|ξ|)
∑

0≤k<(n−1)/4

(−1)k

(2k)!
t2kΘ(ξ)2k

− cos(t|ξ|)
∑

0≤k<(n−3)/4

(−1)k

(2k + 1)!
t2k+1Θ(ξ)2k+1

 ,

M0(t, ξ) = cos(t|ξ|)
∑

0≤k<(n+1)/4

(−1)k

(2k)!
t2kΘ(ξ)2k

+ sin(t|ξ|)
∑

0≤k<(n−1)/4

(−1)k

(2k + 1)!
t2k+1Θ(ξ)2k+1 +

1
2
M1(t, ξ)

with Θ(ξ) = |ξ| −
√

|ξ|2 − 1/4. We note that his proof is based on an argument
using the Fourier transform and there is a loss ε of decay rate in (1.3.10). Theorem
1.7 shows that the loss ε can be removable and in Chapter 8, we shall give a simpler
proof based on the representation of the solution.

Matsumura [60] also investigated when the energy of solutions to (1.3.1) decays
to 0 as t→ +∞. He proved that if a(t, x) satisfies

a0(1 + |x| + t)−1 ≤ a(t, x) ≤ a1
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with some a0, a1 > 0 and at(t, x) ≤ 0, then the energy of the solution

E(t) :=
1
2

∫
Rn

(ut(t, x)2 + |∇u(t, x)|2)dx

tends to 0 as t→ +∞. This result was extended by Mochizuki and Nakazawa [66].
They put the following condition on a(t, x):

(1.3.11) a0{(em+ |x|+ t) log(em+ |x|+ t) · · · log[m](em+ |x|+ t)}−1 ≤ a(t, x) ≤ a1

with some a0, a1 > 0 and m ∈ Z≥0, where

e0 := 1, e1 := e, . . . , em := eem−1 ,

log[0] y := y, log[1] y := log y, . . . , log[m] y := log(log[m−1] y).

They proved that if a(t, x) satisfies (1.3.11) and at(t, x) ≤ 0, then the energy of
solution decays as

‖(∇u, ut)(t)‖L2 ≤ C{log[m](em + t)}−min{a0/2,1}.

On the other hand, for (1.3.1), Mochizuki [63] proved if n 6= 2 and a(t, x)
satisfies

0 ≤ a(t, x) ≤ C(1 + |x|)−1−δ

with some δ > 0 and at(t, x) is bounded and continuous, then the energy of solution
does not decay in general. Moreover, he proved that the Møller wave operator exists
and not identically zero. The scattering solution u(t, x) is asymptotically equivalent
to a solution w(t, x) of the free wave equation in the following sense:

lim
t→∞

‖(∇u, ut)(t) − (∇w,wt)(t)‖L2 = 0.

For the case n = 2, we refer the reader to [72]. When n ≥ 3, this result was also
extended by [66] to a(t, x) satisfying

0 ≤ a(t, x)

≤ a2

{
(em + |x|) log(em + |x|) · · · log[m−1](em + |x|)

[
log[m](em + |x|)

]γ}−1

with some a2 > 0, γ > 1 and m ∈ Z≥0.
The energy decay problem in general exterior domain Ω ⊂ Rn has been in-

vestigated for a long time. It is well known that for the wave equation without
damping, if Ω is nontrapping, then the local energy

ER(t) :=
1
2

∫
Ω∩BR

(ut(t, x)2 + |∇u(t, x)|2)dx

decays exponentially fast if n is odd and polynomially fast if n is even, where
BR := {x ∈ Rn | |x| < R}, R > 0. This is reasonable because the energy
propagates along the wave front and the motion in the bounded region stops after
time passes. Shibata [100] considered the initial-boundary value problem of the
damped wave equation

(1.3.12)

 utt − ∆u+ ut = 0, (t, x) ∈ (0,∞) × Ω,
u = 0, (t, x) ∈ (0,∞) × ∂Ω,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Ω,
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where n ≥ 3 and ∂Ω is smooth and bounded. Let R > 0 be a constant such that
Ωc ⊂ BR. He proved the following estimate of the local energy:

ER(t) + ‖u(t)‖2
L2(Ω∩BR) ≤ C(1 + t)−n(‖u0‖2

H4(Ω) + ‖u1‖2
H3(Ω)),

provided that supp (u0, u1) ⊂ Ω∩BR. We note that his result does not require any
geometrical condition of Ω. Because the trapped energy also decreases by virtue of
the dissipation term ut. After that, Dan and Shibata [9] extended the result above
to n ≥ 2 and improved the estimate as

ER(t) + ‖u(t)‖2
L2(Ω∩BR) ≤ C(1 + t)−n(‖u0‖2

H1 + ‖u1‖2
L2),

provided that supp (u0, u1) ⊂ Ω ∩ BR. Nakao [68] considered (1.3.12) with the lo-
calized dissipation a(x)ut instead of ut, where a(x) ≡ 0 for |x| > L with sufficiently
large L > 0 and a(x) ≥ c > 0 with some constant c > 0 on a neighborhood of the
closure of

(1.3.13) Γ(x0) = {x ∈ ∂Ω | ν(x) · (x− x0) > 0}

with some x0 ∈ Rn. Here ν(x) denotes the unit outward normal vector of Ω at the
point x ∈ ∂Ω. We note that if Ωc is star-shaped with respect to x0, then Γ(x0) is
empty. He proved that if supp (u0, u1) ⊂ BL, then the local energy decays as

EL+εt(t) ≤ Cε,δ(1 + t)−1+δ

with arbitrary 0 < ε, δ < 1. Moreover, for the case of odd dimensions, the local
energy decays exponentially. This result says that we need only the dissipation on
a part of ∂Ω for the local energy decay. Matsuyama [62] considered a dissipation
depending on time and space variables a(t, x)ut and removed δ in the above rate
and relaxed the assumption on a(t, x) as 0 ≤ a(t, x) ≤ a1{(em + |x|) log(em +
|x|) · · · [log[m](em + |x|)]γ}−1 with some a1 > 0, γ > 1 satisfying a1 < γ−1(γ −
1), instead of the condition a ≡ 0 for large |x|. Moreover, under some suitable
additional assumptions on a(t, x) and the initial data, he proved that the total
energy of solutions does not decay in general and the solution is asymptotically free
as t→ +∞.

For the total energy decay of solutions to utt − ∆u+ a(x)ut = 0, (t, x) ∈ (0,∞) × Ω,
u = 0, (t, x) ∈ (0,∞) × ∂Ω,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Ω

with an exterior domain Ω ⊂ Rn has been also considered by Nakao [69] (see also
[71]). He put the following assumptions on a(x): (i) a(x) ≥ c > 0 holds on some
neighborhood of the closure of Γ(x0) with some c > 0 and x0 ∈ Rn. Here Γ(x0)
is defined by (1.3.13). (ii) a(x) ≥ c > 0 for all |x| ≥ L with some c, L > 0. Under
these assumptions, he proved

‖u(t)‖L2 ≤ C(‖u0‖H1
0

+ ‖u1‖L2),

E(t) ≤ CE(0)(1 + t)−1,

where E(t) is the total energy of u, that is,

E(t) :=
1
2

∫
Ω

(ut(t, x)2 + |∇u(t, x)|2)dx.



1.3. A REVIEW OF SOME PREVIOUS RESULTS 17

When Ωc includes the origin and is star-shaped with respect to the origin and
a(x) ≥ c > 0 holds for all |x| ≥ L with some c, L > 0, Ikehata [28] improved the
decay rates in the above estimates as

‖u(t)‖2
L2 ≤ C(1 + t)−1(‖(u0, u1)‖2

H1×L2 + ‖d(·)(u1 + a(·)u0)‖2
L2),

E(t) ≤ C(1 + t)−2(‖(u0, u1)‖2
H1×L2 + ‖d(·)(u1 + a(·)u0)‖2

L2),

where

d(x) =

{
|x| (n ≥ 3),
|x| log(B|x|) (n = 2)

with some constant B > 0 satisfying B infx∈Ω |x| ≥ 2.
Ikehata [30] considered the special dissipative term a0|x|−αut with 0 ≤ α < 1.

He obtained the boundedness of the weighted energy∫
Ω

e2a0(2−α)−2 |x|2−α
t (ut(t, x)2 + |∇u(t, x)|2)dx ≤ C.

Todorova and Yordanov [107] improved the above estimate by introducing a new
weighted energy method. They considered the Cauchy problem for the wave equa-
tion with space-dependent damping

(1.3.14)
{
utt − ∆u+ a(x)ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

They assumed that

a(x) ≥ a0(1 + |x|)−α

with some α ∈ [0, 1) and there exists a solution of the Poisson equation

(1.3.15) ∆A(x) = a(x)

having the following properties:

A(x) ≥ 0,(a1)

A(x) = O(|x|2−α) as |x| → +∞,(a2)

m(a) := lim inf
|x|→∞

a(x)A(x)
|∇A(x)|2

> 0.(a3)

It is known that such solutions A(x) exist if a(x) is radially symmetric and satisfies
a0(1 + |x|)−α ≤ a(x) ≤ a1(1 + |x|)−α with some a0, a1 > 0 and α ∈ [0, 1). Using
the function A(x), they constructed a weight function of the form

e(m(a)−ε)A(x)/t

and obtained the following weighted energy estimates:∫
Rn

e(m(a)−ε)A(x)/ta(x)u(t, x)2dx ≤ Cε(‖∇u0‖2
L2 + ‖u1‖2

L2)t−m(a)+ε,(1.3.16) ∫
Rn

e(m(a)−ε)A(x)/t(ut(t, x)2 + |∇u(t, x)|2)dx(1.3.17)

≤ Cε(‖∇u0‖2
L2 + ‖u1‖2

L2)t−m(a)−1+ε
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for large t > 0 and any ε > 0, provided that the data (u0, u1) have compact support.
In particular, if a(x) is radially symmetric and behaves like a(x) ∼ a0|x|−α as
|x| → +∞, then it follows that

A(x) ∼ a0

(2 − α)(n− α)
|x|2−α as |x| → +∞,

m(a) =
n− α

2 − α

and hence,∫
Rn

e2ψ(t,x)a(x)u(t, x)2dx ≤ Cε(‖∇u0‖2
L2 + ‖u1‖2

L2)t−
n−α
2−α+ε,∫

Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx ≤ Cε(‖∇u0‖2
L2 + ‖u1‖2

L2)t−
n−α
2−α−1+ε

for large t > 0 and any ε > 0, where

ψ(t, x) =
a0|x|2−α

2(2 − α+ ε)2t
.

Their method is also applicable to the corresponding heat equation

a(x)vt − ∆v = 0

and we can obtain the same decay rate. This indicates that in this case the equation
(1.3.14) still has the diffusive structure. However, the precise asymptotic profile
was remained as an open problem. Recently, Nishiyama [88] proved the diffusion
phenomenon for the abstract damped wave equation

u′′ +Au+Bu′ = 0.

His result includes space-dependent damping which does not decay near infinity.
Due to the authors knowledge, Theorem 1.1 stated in the previous section is the first
result for the precise asymptotic profile of solutions to the damped wave equation
with space-dependent decaying potential.

We also mention that the above result by Todorova and Yordanov was extended
to damping depending on time and space variables a(t, x) = a(x)b(t) satisfying

a0(1 + |x|)−α ≤ a(x) ≤ a1(1 + |x|)−α, b0(1 + t)−β ≤ b(t) ≤ b1(1 + t)−β

with α ∈ [0, 1), β ∈ [0, 1), α+ β ∈ [0, 1) by J. S. Kenigson and J. J. Kenigson [45].
Recently, Ikehata, Todorova and Yordanov [37] considered the critical case

a0〈x〉−1 ≤ a(x) ≤ a1〈x〉−1.

They obtained several optimal energy estimates of solutions with compactly sup-
ported data. More precisely, they proved

‖(ut,∇u)(t)‖L2 = O(t−
1
2 min(a0,n)+ε)

as t → +∞, where ε is arbitrary small positive number. When n ≥ 3, 1 < a0 < n
or n = 1, 2, n < a0, we can remove ε in the above estimate. Moreover, if a(x) is
radially symmetric, a(x) ∼ a0|x|−1 as |x| → ∞ and 0 < a0 < n, then the decay rate
−a0/2 in the above inequality is optimal. We note that when a0 ≥ n, the decay rate
−n/2 agrees with that of the corresponding heat equation. Therefore, we expect
that this decay rate is also optimal. However, this optimality is still open and the
asymptotic profile of solutions is completely open as far as the author’s knowledge.
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For the time dependent damping cases, more specific asymptotic behavior of
solutions was investigated by Wirth [114, 115, 116, 117, 119]. He considered the
linear damped wave equation

(1.3.18) utt − ∆u+ b(t)ut = 0.

For simplicity, we assume that b(t) is positive, smooth, monotone and satisfies∣∣∣∣ dkdtk b(t)
∣∣∣∣ ≤ Ck(1 + t)−kb(t)

for k ∈ Z≥0. A typical example of b(t) is (1 + t)−β with β ∈ R. We also consider
the free wave equation

(1.3.19) wtt − ∆w = 0

and the corresponding heat equation

(1.3.20) b(t)vt − ∆v = 0.

We denote by

λ(t) = exp
(

1
2

∫ t

0

b(s)ds
)

an auxiliary function. He determine the behavior of solutions to (1.3.18) as time
tends to infinity in the following five cases:

(i) (scattering) If b(t) ∈ L1((0,∞)), then the solution to (1.3.18) is asymptot-
ically free. More precisely, there exists an isomorphism W+ on Ḣ1(Rn) × L2(Rn)
such that for the solution u(t, x) to (1.3.18) with initial data (u0, u1) and the solu-
tion w(t, x) to (1.3.19) with the initial data W+(u0, u1), the asymptotic equivalence

lim
t→∞

‖(∇u, ut)(t) − (∇w,wt)(t)‖L2 = 0

holds.
(ii) (non-effective dissipation) If lim supt→∞ tb(t) < 1, then the solution u to

(1.3.18) satisfies the Lp-Lq estimate

‖(∇u, ut)(t)‖Lp ≤ C

λ(t)
(1 + t)−

n−1
2 ( 1

q−
1
p )(‖u0‖W s+1,q + ‖u1‖W s,q )

for p ∈ [2,∞), q is the dual of p and s > n(1/q − 1/p). Moreover, λ(t)u is
asymptotically free in the sense that there exists a solution w of (1.3.19) satisfying

lim
t→∞

‖λ(t)(∇u, ut)(t) − (∇w,wt(t))‖L2 = 0.

(iii) (scale-invariant weak dissipation) If b(t) = µ/(1 + t) with µ > 0, then the
solution u of (1.3.18) satisfies the Lp-Lq estimate

‖(∇u, ut)(t)‖Lp ≤ C(1 + t)max{−n−1
2 ( 1

q−
1
p )−µ

2 ,−n( 1
q−

1
p )−1}(‖u0‖W s+1,q + ‖u1‖W s,q )

for p ∈ [2,∞), q is the dual of p and s > n(1/q − 1/p).
(iv) (effective dissipation) If tb(t) → +∞ as t → +∞, then the solution u of

(1.3.18) satisfies the Lp-Lq estimate

‖(∇u, ut)(t)‖Lp ≤ C

(
1 +

∫ t

0

b(s)−1ds

)−n
2 ( 1

q−
1
p )− 1

2

(‖u0‖W s+1,q + ‖u1‖W s,q )
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for p ∈ [2,∞), q is the dual of p and s > n(1/q − 1/p). Moreover, if b(t)−3 /∈
L1((0,∞), then the lower frequency part of the solution u of (1.3.18) is asymptoti-
cally equivalent to that of a solution v of (1.3.20) in the L2-sense. This is called the
local diffusion phenomenon. It is also follows that when b(t)−3 ∈ L1((0,∞)), u is
for each frequency asymptotically equivalent to that of v. This is called the global
diffusion phenomenon.

(v) (overdamping) If b(t)−1 ∈ L1((0,∞)), then the solution u of (1.3.18) with
data from L2(Rn) ×H−1(Rn) converges as t→ ∞ to the asymptotic state

u(∞, x) = lim
t→∞

u(t, x)

in L2(Rn). Furthermore, this limit is non-zero for non-zero initial data.
He also treated in [119] the time periodic dissipation, that is, b(t+T ) = b(t) > 0

for t ≥ 0 with some T > 0, and proved that Matsumura’s estimates are still true in
this case.

We remark that for the time-dependent speed and damping case

utt − a(t)∆u+ b(t)ut = 0,

recently, D’Abbicco and Ebert [6] gave an extension of the results (i) and (ii) above.
We also mention the abstract damped equation

(1.3.21)
{
u′′ + u′ +Au = 0,
u(0) = u0, u

′(0) = u1

and the corresponding the heat equation

(1.3.22)
{
v′ +Av = 0,
v(0) = u0 + u1

in a separable Hilbert space H. Here A is a closed, self-adjoint and nonnegative
operator on H with a dense domain D(A). The diffusion phenomenon for the
abstract equation (1.3.21) is closely related to the problem on exterior domains.
Ikehata [27] considered the concrete case H = L2(Ω), A = −∆, D(A) = H2(Ω) ∩
H1

0 (Ω) with an exterior domain Ω ⊂ Rn having compact smooth boundary, and
proved for solutions u to (1.3.21) and v to (1.3.22) that

‖u(t) − v(t)‖L2(Ω) = O((
√
t log t)−1)

as t → +∞. After that, Ikehata and Nishihara [32] considered abstract case and
improved the above estimate as

‖u(t) − v(t)‖H = O(t−1(log t)1/2+ε)

with arbitrary small ε > 0. They conjectured the optimal rate is given by O(t−1).
Chill and Haraux [3] solved this conjecture. They proved that

(1.3.23) ‖u(t) − v(t)‖D(A1/2) ≤ Ct−1(‖u0‖D(A1/2) + ‖u1‖H)

for t ≥ 1, where ‖·‖D(A1/2) denotes the graph norm of A1/2 (note that this operator
is well-defined):

‖u‖2
D(A1/2) := ‖A1/2u‖2

H + ‖u‖2
H .
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Moreover, they proved the decay rate above is optimal. Radu, Todorova and Yor-
danov [97] obtained the following estimates, which are stronger than (1.3.23):

‖u(t) − v(t)‖H ≤ Ct−1(‖e−tA/2u0‖H + ‖e−tA/2u1‖H)

+ Ce−t/16(‖u0‖H + ‖(A1/2 + 1)−1u1‖H),

‖Ak(u(t) − v(t))‖H ≤ Ct−1−k(‖e−tAu0‖H + ‖e−tAu1‖H)

+ Ce−t/16(‖Aku0‖H + ‖(A1/2 + 1)−1Aku1‖H)

for any t ≥ 1 and k ≥ 0. These estimates allow us to transfer the decay from the
heat equation to the hyperbolic equation. They applied these estimates to operators
A generating a Markov semigroup on L1(Ω, µ) with some σ-finite measure space
(Ω, µ). They obtained faster decay of the difference u(t) − v(t) with L1 data and
they also proved an abstract version of Matsumura’s estimates (1.3.4). Recently,
Ikehata, Todorova and Yordanov [38] proved similar estimates for the strongly
damped wave equation

u′′ +Au+Au′ = 0.
Yamazaki [120] extended the results of Chill and Haraux [3] to time-dependent

damping cases:

(1.3.24)
{
u′′ + b(t)u′ +Au = 0,
u(0) = u0, u

′(0) = u1

and

(1.3.25)
{
b(t)v′ +Av = 0,
v(0) = v0,

where b(t) is a C1 function satisfying

b0(1 + t)−β ≤ b(t) ≤ b1(1 + t)−β , 0 < β < 1, |b′(t)| ≤ b2(1 + t)−β−1

and

v0 = u0 +
u1

b(0)
− u1

∫ ∞

0

b′(s)
b(s)2

exp
(
−
∫ s

0

b(σ)dσ
)
ds.

Let k, l ≥ 0 and (u0, u1) ∈ (D(Ak+1/2) ∩ R(Al)) × (D(Ak) ∩ R(Al)), where R(Al)
denotes the range of Al. Then she proved that

‖Ak(u(t) − v(t))‖D(A1/2)

≤ Ctβ−1−(1+β)(k+l)(‖u0‖D(Ak+1/2) + ‖ũ0‖H + ‖u1‖D(Ak) + ‖ũ1‖H),

‖Ak(u(t) − v(t))‖H
≤ Ctβ−2−(1+β)(k+l)(‖u0‖D(Ak+1/2) + ‖ũ0‖H + ‖u1‖D(Ak) + ‖ũ1‖H)

for t ≥ 1, where ‖ · ‖D(Ak+1/2), ‖ · ‖D(Ak) are the graph norm of Ak+1/2, Ak, respec-
tively, and ũ0, ũ1 are elements of H such that Alũ0 = u0, A

lũ1 = u1, respectively.
Wirth [118] treated the critical case 0 ≤ b(t) ≤ b1(1 + t)−1. He proved that if b(t)
satisfies |b′(t)| ≤ b2(1+ t)−2, b /∈ L1((0,∞)), lim supt→∞ tb(t) < 1 and kerA = {0},
then for the solution u(t) of (1.3.24), it holds that

lim
t→∞

‖λ(t)(u(t), u′(t)) − (w(t), w′(t))‖E = 0,

where w(t) is the a solution of the free wave equation

w′′ +Aw = 0,
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λ(t) = exp(
∫ t
0
b(s)ds) and ‖(φ, ψ)‖E is the energy norm ‖(φ, ψ)‖2

E = ‖A1/2φ‖H +
‖ψ‖H . Moreover, the operator mapping (u0, u1) to (w(0), w′(0)) is injective.

1.3.2. Damped wave equations with nonlinear source terms. We con-
sider the Cauchy problem for the semilinear damped wave equation

(1.3.26)
{
utt − ∆u+ a(t, x)ut = f(u), (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where f(u) denotes the nonlinear term. Here we treat source semilinear terms,
namely

f(u) = f1(u) = |u|p−1u or f2(u) = |u|p

with p > 1. First we mention the constant coefficient case a(t, x) ≡ 1. In this case,
for the corresponding semilinear heat equation

(1.3.27)
{
vt − ∆v = f(u), (t, x) ∈ (0,∞) × Rn,
v(0, x) = v0(x), x ∈ Rn,

there are many literature on the structure of solutions. In particular, it is well
known that there is the critical exponent

pF = 1 +
2
n

dividing the behavior of solutions into the following way (see [13, 15, 52, 10]):
(i)If p > pF , then for any small data v0 ∈ L1(Rn) ∩ L∞(Rn) there is a unique

global solution v of (1.3.27) satisfying

v(t, x) ∼ θ0G(t, x)

as t→ +∞, where

θ0 =
∫
Rn

v0(x)dx+
∫ ∞

0

∫
Rn

f(v)(t, x)dxdt.

(ii)If p ≤ pF , then for the data v0 satisfying v0 ≥ 0 and v0 6= 0, the locally-in-
time solution v(t, x) blows up in finite time, that is,

lim
t→T∗

v(t, x) = +∞

for some x ∈ Rn and T ∗ > 0. Moreover, for the data εv0 with small parameter
ε > 0 and fixed v0, the lifespan of the solution

Tε = sup{T ∈ (0,∞] | v(t, x) < +∞ for t ∈ [0, T ]}
is estimated as

(1.3.28) Tε ∼

{
eCε

−(p−1)
(p = pF ),

Cε−1/κ (1 < p < pF )

with
κ =

1
p− 1

− n

2
and some C > 0.

From the viewpoint of the diffusion phenomenon, it is expected that for the
damped wave equation

(1.3.29)
{
utt − ∆u+ ut = f(u), (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,
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the same results hold. For f1(u) = |u|p−1u, existence of classical solutions has been
investigated for a long time (see [99, 59, 60]). For weak solutions, it is well known
that if (u0, u1) ∈ H1(Rn)×L2(Rn) and 1 < p ≤ n/(n− 2) (1 < p <∞ if n = 1, 2),
then there are some T > 0 and a unique solution

u ∈ C([0, T );H1(Rn)) ∩ C1([0, T );L2(Rn)).

Moreover, the finite propagation speed property holds, that is, if

suppu0 ∪ suppu1 ⊂ {x ∈ Rn | |x| < L}
with some L > 0, then it is true that

suppu(t) ⊂ {x ∈ Rn | |x| < t+ L}
(see [101, 39]). Levine [51] proved that if the initial data satisfy

1
2
(‖u1‖2

L2 + ‖∇u0‖2
L2) −

1
p+ 2

‖u0‖p+2
Lp+2 < 0,

then the local solution blows up in finite time. This result shows that the existence
of global solution requires some smallness condition on the data. Nakao and Ono
[67] proved the existence of global solutions with suitably small and compactly
supported data in H1(Rn) × L2(Rn) when

1 +
4
n
≤ p <

n+ 2
n− 2

.

Their proof was based on the so-called (modified) potential well method which was
originally introduced by Payne and Sattinger [94]. When n ≤ 3, Ikehata, Miyaoka
and Nakatake [31] proved that if the initial data (u0, u1) ∈ (H1 ∩ L1) × (L2 ∩ L1)
are sufficiently small and

1 +
2
n
< p <∞ (n = 1, 2), 2 < p ≤ n

n− 2
(n = 3),

then there exists a unique global solution satisfying the decay estimates

‖u(t)‖L2 ≤ C(1 + t)−n/4,

‖(ut,∇u)(t)‖L2 ≤ C(1 + t)−n/4−1/2.

Their method is also applicable for f2(u) = |u|p. We note that there is a gap
between the exponent p = 2 and the critical exponent p = pF = 1 + 2/3 when
n = 3. Moreover, in view of Matsumura’s estimate (1.3.4), we can expect that the
decay rate of ‖ut(t)‖L2 is faster than that of ‖∇u(t)‖L2 . On the other hand, Li
and Zhou [53] obtained small data blow-up results for f1 and f2 when n = 1, 2 and
1 < p ≤ 1 + 2/n. These results show that when n = 1, 2, the critical exponent for
(1.3.29) with the nonlinearity f1 and f2 is actually given by pF = 1 + 2/n. After
that, Nishihara [78, 79] determined the critical exponent for (1.3.29) with f1, f2
when n = 3. He proved that if the initial data

(u0, u1) ∈ (W 1,1 ∩W 1,∞) × (L1 ∩ L∞)

are sufficiently small and p > 1 + 2/3, then the Cauchy problem (1.3.26) admits a
unique global solution

u ∈ C([0,∞);L1 ∩ L∞) ∩ C([0,∞);H1) ∩ C1([0,∞);L2)

satisfying the decay estimates

‖u(t)‖Lq ≤ C(1 + t)−
3
2 (1− 1

q )
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for 1 ≤ q ≤ ∞ and

‖∇u(t)‖L2 ≤ C(1 + t)−3/4−1/2,

‖ut(t)‖L2 ≤ C(1 + t)−3/4−1.

Taking into account the linear estimates described in the previous subsection, we
can expect the above decay estimates are optimal. When n = 2, Hosono and Ogawa
[23] obtained the corresponding results. They proved that if the initial data

(u0, u1) ∈ (B1
2,1 ∩W 1,1) × (B0

2,1 ∩ L1)

are sufficiently small and p > 2, then there exists a unique global solution

u ∈ C([0,∞);H1 ∩ L∞) ∩ C1([0,∞);L2)

of (1.3.26) satisfying

‖u(t)‖Lq ≤ C(1 + t)−(1− 1
q )

for 1 ≤ q ≤ ∞ and
‖∇u(t)‖L2 ≤ C(1 + t)−1.

Here Bs2,1 denotes the Besov space defined by

Bs2,1(R
n) :=

f : Rn → R; ‖f‖Bs2,1 :=
∑
j≥0

2js‖φj ∗ f‖L2 < +∞

 ,

where {φj} is the Littlewood-Paley dyadic decomposition (see [1] for detail).
Ono [92] relaxed the assumption on the data of [78] to (u0, u1) ∈ (H1 ∩ L1)×

(L2 ∩ L1) and proved that the problem (1.3.26) admits a unique global solution
u ∈ C([0,∞);H1 ∩ L1) ∩ C1([0,∞);L2) satisfying

‖u(t)‖Lq ≤ C(1 + t)−
n
2 (1− 1

q ),(1.3.30)

‖∇u(t)‖L2 ≤ C(1 + t)−
n
4 −1/2,(1.3.31)

‖ut(t)‖L2 ≤ C(1 + t)−
n
4 −1(1.3.32)

for 1 ≤ q ≤ ∞ when n ≤ 3 and p > 1 + 2/n.
For n = 4, 5, Narazaki [73] obtained the global existence results for f1, f2. He

proved that if pF < p ≤ n/(n− 2), p < 2 and the initial data satisfy

(u0, u1) ∈ (H2 ∩W 1,p/(p−1) ∩W 1,p ∩ L1) × (H1 ∩ Lp/(p−1) ∩ Lp ∩ L1)

and sufficiently small, then there exists a unique global solution

u ∈ C([0,∞);H2 ∩ Lp/(p−1) ∩ Lp) ∩ C1([0,∞);H1) ∩ C2([0,∞);L2)

satisfying the estimates (1.3.30)-(1.3.32) for p ≤ q ≤ p/(p− 1). Ono [93] obtained
the estimate (1.3.30) for 1 ≤ q ≤ 2n/(n− 2) under the assumption

(u0, u1) ∈ (H1 ∩W 2,1) × (L2 ∩W 1,1).

For higher dimensional cases with f2(u) = |u|p, Todorova and Yordanov [105,
106] developed a new weighted energy method and proved the existence of global
solutions with small and compactly supported data when pF < p ≤ n/(n − 2)
(pF < p <∞ when n = 1, 2) and local solution blows up in finite time if the initial
data satisfy ∫

Rn

ui(x)dx > 0
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for i = 0, 1 and 1 < p < pF . After that, Qi S. Zhang [122] and Kirane and
Qafsaoui [47] proved that the critical exponent p = pF belongs to the blow-up
case. In particular, Kirane and Qafsaoui [47] obtained blow-up results for more
general semilinear dissipative wave equation of the form

utt + (−1)m|x|α∆mu+ ut = f(t, x)|u|p + w(t, x),

where m ≥ 1, p > 1, f(t, x) ≥ 0 satisfies f(R2t, R1/mx) ≥ CRλ for large R > 0 with
some λ ≥ 0, 0 ≤ α < m(λ+ 2), and w(t, x) satisfies |x|−αw(t, x) ∈ L1([0,∞)×Rn)
and

∫∫
|x|−αw(t, x)dxdt ≥ 0. In this case, they proved that if 1 < p ≤ 1 + (m(λ+

2) − α)/n and
∫
Rn |x|−α(u0 + u1)dx > 0, then there is no global-in-time solution.

The method by Todorova and Yordanov [106] for proving the global existence
result is a weighted energy estimate by using a weight function of the form eψ(t,x).
They pointed out the following identity:

e2ψut(utt − ∆u+ ut) = ∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u)

+
e2ψ

−ψt
|ψt∇u− ut∇ψ|2 + e2ψ

(
1 +

|∇ψ|2

−ψt
+ (−ψt)

)
u2
t .

They chose the weight function ψ so that

ψt < 0, ψt + |∇ψ|2 − ψ2
t = 0.

More precisely, they put

ψ(t, x) =
1
2

(
t+ ρ−

√
(t+ ρ)2 − |x|2

)
with ρ > 0. To make sense the definition of ψ, they need the compactness of the
support of the data, that is, supp (u0, u1) ⊂ {x ∈ Rn | |x| ≤ ρ}. Ikehata and
Tanizawa [35] chose the function ψ as

ψ(t, x) =
|x|2

4(1 + t)

and succeeded to remove the assumption on the compactness of the data.
For the estimate of the lifespan in the critical and subcritical cases 1 < p ≤ pF ,

Li and Zhou [53] and Nishihara[79] obtained the same estimate as (1.3.28) when
n = 1, 2 and n = 3, respectively. Theorem 1.6 described in the previous section
shows when the subcritical case 1 < p < pF , the same estimate as (1.3.28) holds for
solutions to (1.3.29) with f = f2. However, to estimate the lifespan in the critical
case p = pF with n ≥ 4 remains open.

The asymptotic profile of the global solution in supercritical cases p > pF was
investigated by Nishihara [78], Hosono and Ogawa [23] and Hayashi, Kaikina and
Naumkin [16]. Nishihara [78] and Hosono and Ogawa [23] proved that for suitably
small data, the corresponding solutions behave as

‖u(t) − θG(t)‖Lq = o(t−
n
2 (1− 1

q ))

for 1 ≤ q ≤ ∞ when n = 3 and n = 2, respectively. Here

G(t, x) = (4πt)−n/2e−|x|2/(4t)

and

θ =
∫
Rn

(u0 + u1)(x)dx+
∫ ∞

0

∫
Rn

f(u)dxdt.



26 1. INTRODUCTION

Hayashi, Kaikina and Naumkin [16] extended these results to any space dimen-
sions. Let H l,m be a weighted Sobolev space defined by

H l,m = {φ ∈ L2 | ‖〈x〉m〈i∂x〉lφ‖L2 <∞}.

They proved that for f1 and f2, if p > pF and the initial data belong to

(1.3.33) u0 ∈ Hα,0 ∩H0,δ, u1 ∈ Hα−1,0 ∩H0,δ

and sufficiently small, where δ > n
2 , [α] < p; α ≥ n

2 − 1
p−1 for n ≥ 2 and α ∈

[ 12 − 1
2(p−1) , 1) for n = 1, then there exists a unique solution

u ∈ C([0,∞);Hα,0 ∩H0,δ)

satisfying

(1.3.34) ‖u(t) − θG(t, x)‖Lq ≤ Ct−
n
2 (1− 1

q )−min(1, δ2−
n
4 ,
n
2 (p−1)−1)

for t > 0 and q ∈ [2, 2n/(n− 2α)] (α < n/2), q ∈ [2,∞) (α = n/2), q ∈ [2,∞] (α >
n/2). We note that their result also does not require the compactness of the support
of the data. Kawakami and Ueda [43] obtained more precise asymptotic expansion
of solutions to (1.3.26) when n ≤ 3. For k ≥ 0 and l ∈ Z≥, we define

‖φ‖L1
k

=
∫
Rn

(1 + |x|)k|φ(x)|dx,

‖φ‖W l,1
k

=
∑

|α|≤l ‖∂αxφ‖L1
k

and L1
k = {φ ∈ L1 | ‖φ‖L1

k
< +∞}, W l,1

k = {φ ∈
W l,1 | ‖φ‖W l,1

k
. They proved that if (u0, u1) ∈ (W 1,∞ ∩W 1,1

k ) × (L∞ ∩ L1
k) and

u ∈ C([0,∞);L1) ∩ L∞(0,∞;L∞) is a solution of (1.3.26), then it follows that

t
n
2 (1− 1

q )‖u(t) − V0(t)‖Lq

=

{
O(t−k/2) +O(t−

n
2 (p−1)−1) +O(t−1) (n2 (p− 1) − 1 6= k

2 ),
O(t−k/2 log t) +O(t−1) (n2 (p− 1) − 1 = k

2 )

as t→ +∞ for q ∈ [1,∞]. Here

V0(t) :=
∑

|α|≤[k]

Mα(v(t), t)gα(t, x),

where gα(t, x) := (−1)|α|

α! ∂αxG(1 + t, x),

M0(v(t), t) :=
∫
Rn

v(t, x)dx,

Mα(v(t), t) :=
∫
Rn

xαv(t, x)dx (|α| = 1),

Mα(v(t), t) :=
∫
Rn

xαv(t, x)dx

−
∑
β<α

Mβ(v(t), t)
∫
Rn

xαgβ(t, x)dx (|α| ≥ 2),

and v(t, x) is the solution of the inhomogeneous linear heat equation{
vt − ∆v = f(u), (t, x) ∈ (0,∞) × Rn,
v(0, x) = u0(x) + u1(x), x ∈ Rn.
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We also mention the critical exponent for (1.3.26) with initial data not be-
longing to L1(Rn). Ikehata and Ohta [34] proved that if the initial data belong
to

(1.3.35) (u0, u1) ∈ (H1 ∩ Lm) × (L2 ∩ Lm)

and

1 +
2m
n

< p <∞ (n = 1, 2), 1 +
2m
n

< p ≤ n

n− 2
(3 ≤ n ≤ 6),

where m lies in

1 ≤ m ≤ 2 (n = 1, 2),
√
n2 + 16n− n

4
≤ m < min

(
2,

n

n− 2

)
(3 ≤ n ≤ 6),

then there exists a unique global solution u ∈ C([0,∞);H1) ∩ C1([0,∞);L2) of
(1.3.26) satisfying

‖u(t)‖L2 ≤ C(1 + t)−
n
2 ( 1

m− 1
2 ),

‖(ut,∇u)(t)‖L2 ≤ C(1 + t)−
n
2 ( 1

m− 1
2 )−1/2.

Moreover, they also showed the nonexistence of global solution even for small data
in the subcritical case 1 < p < 1+2m/n for all n ≥ 1. This indicates that the critical
exponent of (1.3.26) for the data belonging to (1.3.35) is given by pc = 1 + 2m/n
at least when n ≤ 6. We expect that this is also true for higher dimensional cases.
After that, Narazaki and Nishihara [75] considered the initial data satisfying

u0, u1 = O(〈x〉−kn)

as |x| → +∞ with some k ∈ (0, 1]. For the corresponding heat equation (1.3.27),
Lee and Ni [50] determined the critical exponent as

pc = 1 +
2
kn

for the data satisfying v0 = O(〈x〉−kn) as |x| → +∞. Narazaki and Nishihara [75]
obtained the asymptotic profile of the solution v of (1.3.27) with the initial data
satisfying v0 ∈ C(Rn), 〈x〉knv0(x) ∈ L∞ and lim|x|→∞〈x〉knv0(x) = c1 6= 0. They
proved that the profile of v is given by V0(t, x) = c1

∫
Rn G(t, x− y)〈y〉−kndy, where

G denotes the heat kernel G = (4πt)−n/2e−|x|2/(4t). They also proved that if the
initial data (u0, u1) ∈ C [n/2](Rn)×C(Rn) satisfies 〈x〉kn|∂αx u0| ∈ L∞ (|α| ≤ [n/2]),
〈x〉knu1 ∈ L∞ and p > 1 + 2/(kn), then the problem (1.3.26) admits a unique
global solution u ∈ C([0,∞) × Rn) satisfying 〈x〉knu(t, x) ∈ L∞(Rn) for all t ≥ 0.
Moreover, if the initial data satisfy lim|x|→∞〈x〉kn(u0, u1)(x) = c1 6= 0, then the
asymptotic profile of u is also given by V0(t, x) defined above.

Next, we consider the variable coefficient cases. Ikehata, Todorova and Yor-
danov [36] considered the semilinear wave equation with space-dependent damping

(1.3.36)
{
utt − ∆u+ a(x)ut = |u|p, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

Under the assumption that a(x) is radially symmetric and a(x) ∼ a0|x|−α as |x| →
+∞, they proved that the critical exponent is given by

pc = 1 +
2

n− α
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for compactly supported initial data (the global existence part is also true for
f1(u) = |u|p−1u). This exponent agrees with that of the corresponding heat equa-
tion. The proof of global existence part is based on a weighted energy method by
using the weight function

w(t, x) = t−m(a)/2−εe−(m(a)/2−ε/2)A(x)/t,

where ε is arbitrary positive number, A(x) is the positive solution of the Poisson
equation (1.3.15) satisfying (a1)-(a3) and m(a) is defined by (a3). The proof of
the blow-up part is done by the test function method developed by Qi S. Zhang
[122]. This method requires the positivity of the nonlinearity and is not applicable
to f1(u) = |u|p−1u. We mention that Theorem 1.6 gives an estimate of the lifespan
from above.

For the time-dependent damping case

(1.3.37)
{
utt − ∆u+ b(t)ut = |u|p, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn

with b(t) = b0(1 + t)−β , −1 < β < 1, Nishihara [83] and Lin, Nishihara and Zhai
[56] determined the critical exponent as

pc = 1 +
2
n
,

which also coincides with that of the corresponding heat equation

(1.3.38) b(t)vt − ∆v = |v|p.

Note that for (1.3.38), by changing the variable as

s = B(t) :=
∫ t

0

b(s)−1ds, u(t, x) = φ(s, x) = φ(B(t), x),

the equation (1.3.38) is reduced to

φs − ∆φ = |φ|p.

The global existence part was proved by a weighted energy method by using a
weight function

w(t, x) = B(t)−n/4+ε/2e|x|
2/(4(2+δ)B(t)),

where ε is arbitrary small positive number and δ is a suitably chosen small positive
parameter. To obtain the blow-up result, they introduced a modified test function
method. By multiplying the equation (1.3.37) by a nonnegative function g(t) ∈
C1([0,∞)), it follows that

(g(t)u)tt − ∆(gu) − (g′(t)u)t + (−g′(t) + b(t)g(t))u = g(t)|u|p.

They chose g(t) by the solution of the Cauchy problem of the ordinary differential
equation {

−g′(t) + b(t)g(t) = 1,
g(0) =

∫∞
0

exp
(
−
∫ t
0
b(s)ds

)
dt.

Then we can obtain the equation of the divergence form and so we can apply the test
function method by Zhang [122]. D’Abbicco and Lucente [7] applied this method to
more general dissipative wave equations with time-dependent coefficients. This idea
is also based on Theorem 1.5 in which we consider the one-dimensional semilinear
wave equation with damping depending on time and space variables. D’Abbicco,
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Lucente and Reissig extended the global existence result in the above one [56] to
more general effective damping.

The author [110] considered the critical exponent problem for the critical case
b(t) = µ

1+t with µ > 0 and proved that if p > pF and µ is sufficiently large depending
on p, then there exists a unique global solution for the small data decaying very
fast near the infinity (see Theorem 1.3). After that, D’Abbicco [5] improved the
global existence result for µ ≥ n+ 2 and p > pF .

For the semilinear damped wave equation with time and space dependent co-
efficients

(1.3.39)
{
utt − ∆u+ a0〈x〉−α(1 + t)−βut = |u|p, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

the author [109] proved the small data global existence of solutions under the
assumption

α, β ≥ 0, α+ β < 1, p > 1 +
2

n− α
,

provided that the initial data decay sufficiently fast near the infinity (see Theorem
1.2). Recently, a similar result is obtained by Khader [46]. The exponent above
is expected to be critical. However, this problem is still open. The difficulty is
that when the damping depends on time and space variables, we cannot apply the
test function method directly. The author [111] proved that in the one dimensional
case, if the damping term decays sufficiently fast as t→ +∞, then we can transform
the equation into divergence form and apply the test function method (see Theorem
1.5).

1.3.3. Damped wave equations with nonlinear absorbing terms. Here
we consider the semilinear damped wave equation with absorbing nonlinearity

(1.3.40)
{
utt − ∆u+ ut = −|u|p−1u, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

In this case, there is a unique global solution any large data in L1(Rn). For the
corresponding heat equation

(1.3.41)
{
vt − ∆v = −|v|p−1v, (t, x) ∈ (0,∞) × Rn,
v(0, x) = v0(x), x ∈ Rn,

it is known that the asymptotic behavior of solutions divide in the following way:

p > pF ⇒ v(t, x) ∼ θ0G(t, x),

p = pF ⇒ v(t, x) ∼ θ0(log t)−n/2G(t, x),

p < pF ⇒ v(t, x) ∼ wb(t, x) = t−1/(p−1)fb(x/
√
t),

where pF = 1 + 2/n, G(t, x) = (4πt)−n/2e−|x|2/(4t),

θ0 =
∫
Rn

v0(x)dx−
∫ ∞

0

∫
Rn

|v|p−1vdxdt

and wb(t, x) (b ≥ 0) is the self-similar solution with the profile fb(t, x) satisfying

−f ′′ −
(
r

2
+
n− 1
r

)
f ′ + |f |p−1f =

1
p− 1

f, lim
r→∞

r2/(p−1)f(r) = b.
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For (1.3.40), it is expected that the same results hold. Kawashima, Nakao
and Ono [44] proved that if (u0, u1) ∈ H1 × L2, then there exists a unique global
solution

u ∈ C([0,∞);H1) ∩ C1([0,∞);L2)
for (1.3.40). Moreover, if u0, u1 ∈ L1 and p > 1 + 4/n, then the solution decays as

‖u(t)‖L2 ≤ C(1 + t)−n/4

for n ≤ 4. Using this result, Karch [40] proved

‖u(t) − θ0G(t)‖L2 = o(t−n/4)

as t→ +∞ when p > 1 + 4/n. After that, Nishihara and Zhao [87], Nishihara [80]
and Ikehata, Nishihara and Zhao [33] improved the results above as follows:

(i)Let (u0, u1) ∈ H1 × L2 satisfy

u0, u1,∇u0, |u0|(p+1)/2 ∈ H0,m,

where
m =

2
p− 1

− n− δ

2
with some δ > 0. We assume that 2m > n if p > 1 + 2/n. If 1 < p < n/[n − 2]+
and p ≤ 1 + 4/n, then the solution decays as

(1.3.42) ‖u(t)‖Lq ≤ C(1 + t)−1/(p−1)+n/(2q)

for 1 ≤ q ≤ ∞, 1 ≤ q < ∞, 1 ≤ q ≤ 2n/(n − 2) when n = 1, n = 2, n ≥ 3,
respectively.

(ii)If n ≤ 3 (resp. n = 4), (u0, u1) ∈ H2 × H1 (∆u0,∇u1) ∈ H0,m and
pF < p ≤ 1 + 4/n (resp. pF < p < 1 + 4/n), then it follows that

‖u(t) − θ0G(t, x)‖Lq = o(t−
n
2 (1−1/q))

for 1 ≤ q ≤ ∞, where

θ0 =
∫
Rn

(u0 + u1)(x)dx−
∫ ∞

0

∫
Rn

|u|p−1udxdt.

The decay rate in (1.3.42) agrees with that of the self-similar solution wb(t, x).
Thus, we expect this rate is optimal in the subcritical case 1 < p < pF .

Hayashi, Kaikina and Naumkin [16, 17, 18, 19, 20, 21] and Hayashi, Naumkin
and Rodriguez-Ceballos [22] proved several results on the asymptotic profile of
solutions. In [16], it is proved that for the initial data satisfying (1.3.33), the
solution u satisfies (1.3.34) (the condition on α, δ, p are the same as before). This
result shows that our expectation in the supercritical case is true. In the subcritical
case with n = 1 and p ∈ (3 − ε, 3) for some small ε > 0, in [18] they obtained the
following asymptotic behavior:

u(t, x) ∼ (tη)−1/(p−1)V (x/
√
t) +O(t−1/(p−1)−γ)

for the small data satisfying

(u0, (1 + ∂−1
x u1)) ∈ (L∞ ∩ L1,a) × (L∞ ∩ L1,a)

with a ∈ (0, 1), where γ = 1
2 min(a, 1 − p−1

2 ), V ∈ L∞ ∩ L1,a is the solution of the
integral equation

V (ξ) =
1

(4π)1/2
e−ξ

2/4 − 1
η(4π)1/2

∫ 1

0

1
z(1 − z)1/2

∫
R

e(ξ−y
√
z)2/(4(1−z))F (y)dydz,
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η =
p− 1

1 − (p− 1)/2

∫
R

V (y)pdy

and

F (y) = V (y)p − V (y)
∫
R

V (ξ)pdξ.

Here L1,a denotes the weighted Lebesgue space

L1,a = {φ ∈ L1 | ‖〈·〉aφ‖L1 <∞}.

In the critical case, they considered in [17] the initial-boundary value problem
on a half line

(1.3.43)

 utt − uxx + ut + |u|u = 0, (t, x) ∈ (0,∞) × (0,∞)
(u, ut)(0, x) = (u0, u1)(x), x ∈ (0,∞),
u(t, 0) = 0, t ∈ (0,∞).

They put the following assumption on the initial data

u0 ∈ Hα,0
0 ∩H0,2, u1 ∈ H0,2

and

θ = 2
∫ ∞

0

x(u0(x) + u1(x))dx > 0,

where
Hα,0

0 = {φ ∈ L2 | ‖〈i∂x〉αφ‖L2 <∞, φ(0) = 0}.
Under the above assumption, they proved if the data are sufficiently small, then
there exists a unique global solution u ∈ C([0,∞);Hα,0

0 ∩H0,2) satisfying∥∥∥u(t) − θ(4π)−1/2 x

2t
(log t)−1e−

x2
4t

∥∥∥
Lq(0,∞)

≤ C(log t)−2(1 + t)−1+1/(2q)

as t → +∞, where 1 ≤ q ≤ 2/(1 − 2α) if 0 ≤ α < 1/2, 1 ≤ q < ∞ if α = 1/2, and
1 ≤ q ≤ ∞ if 1/2 < α ≤ 1.

For the Cauchy problem on the whole space in the critical case

(1.3.44)
{
utt − ∆u+ ut + |u|2/nu = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

they proved in [19, 20, 21] that if the initial data are in u0 ∈ H2,k(Rn) ∩ C(Rn),
u1 ∈ H1,k(Rn) with k > n/2 + 1, then there exists a unique global solution u ∈
C([0,∞);H1,k(Rn) ∩ C1([0,∞);H0,k(Rn)) having the only one of the following
asymptotic behavior as t→ ∞:∥∥∥∥∥(log t)n/2+γ

(
u(t) −

(
n

2η

)n/2
(log t)−n/2G(t, x)

)∥∥∥∥∥
X

≤ C

or
‖(log t)n/2+1u(t)‖X ≤ C,

where η = (4π)−1(1 + 2/n)−n/2, 0 < γ < 1/n and

‖φ‖X = sup
t≥0

(
〈t〉n/4−k/2‖φ(t)‖H0,k + 〈t〉n/4‖φ(t)‖L2 + 〈t〉n/4+1/2−k/2‖∇φ(t)‖H0,k

+〈t〉n/4+1/2‖∇φ(t)‖L2

)
.
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Hayashi, Naumkin and Rodriguez-Ceballos [22] obtained the asymptotic for-
mula for the periodic problem

(1.3.45)

 utt − uxx + ut + |u|p−1u = 0, (t, x) ∈ (0,∞) × [−π, π],
(u, ut)(0, x) = (u0, u1)(x), x ∈ [−π, π],
u(t, x) = u(t, 2π + x), (t, x) ∈ (0,∞) × [−π, π].

They proved for the initial data (u0, u1) ∈ H1 × L2, where

H1 = {φ ∈ L2([−π, π]) |
∞∑
−∞

(1 + |n|)2|φ̂(n)|2 <∞},

there exists a unique global solution u ∈ C([0,∞);H1) satisfying

‖u(t)‖L∞ ≤ C(1 + t)−1/(p−1), ‖∂u(t)‖L∞ ≤ C(1 + t)−1/(p−1)−1/2.

Moreover, if the initial data are sufficiently small and φ̂(0) > 0, then the solution
has the asymptotic formula

u(t, x) = At−1/(p−1) +O(t−1/(p−1)−1/2)

with A = 2(2/(p− 1))1/(p−1).
Next, we consider the variable coefficient damping cases. Nishihara and Zhai

[86] and Nishihara [84] treated the time-dependent damping

(1.3.46)
{
utt − ∆u+ b(t)ut + |u|p−1u = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where 1 < p < (n + 2)/[n − 2]+, b(t) = b0(1 + t)−β , b0 > 0, β ∈ (−1, 1) and the
initial data (u0, u1) ∈ H1 ×L2 have compact support. They obtained the existence
of global solution and the decay estimates

‖u(t)‖L1 ≤ C(1 + t)−(1/(p−1)−n/2)(1+β),

‖u(t)‖L2 ≤

{
C(1 + t)−(1/(p−1)−n/4)(1+β) (1 < p ≤ 1 + 2/n),
C(1 + t)−(1+β)n/4+ε (1 + 2/n < p < (n+ 2)/[n− 2]+)

with arbitrary small ε > 0. Moreover, in one-dimensional case, Nishihara [84]
proved the asymptotic profile of the solution with small data is given by θGB(t, x),
where

GB(t, x) = (4πB(t))−n/2e−|x|2/(4B(t)), B(t) =
∫ t

0

b(s)−1ds

and

θ =
∫
R

(
1
b0
u1(x) +

(
1 − β

b0

)
u0(x)

)
dx

+
∫ ∞

0

[
β(1 − β)

b0
(1 + τ)−(2−β)

∫
R

u(τ, x)dx− 1
b0

(1 + τ)β
∫
R

|u|p−1udx

]
dτ.

Nishihara [81] considered the space-dependent damping case

utt − ∆u+ a(x)ut + |u|p−1u = 0

with compactly supported initial data (u0, u1) ∈ H1 × L2, where 1 < p < (n +
2)/[n− 2]+ and a(x) satisfies

a0〈x〉−α ≤ a(x) ≤ a1〈x〉−α
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with some a0, a1 > 0 and α ∈ [0, 1). He proved that there exists a unique global
solution

u ∈ C([0,∞);H1(Rn)) ∩ C1([0,∞);L2(Rn))
satisfying

‖u(t)‖L2 ≤


C(1 + t)−

1
p−1+ α

2(2−α) (1 < p < 1 + 2α
n−α ),

C(1 + t)−
1
p−1+ α

2(2−α) log(2 + t) (p = 1 + 2α
n−α ),

C(1 + t)−
2

2−α ( 1
p−1−

n
4 ) (1 + 2α

n−α < p < n+2
[n−2]+

).

Lin, Nishihara and Zhai [54, 55] further extended the above results to space and
time dependent damping

utt − ∆u+ a(x)b(t)ut + |u|p−1u = 0

with a(x) = a0〈x〉−α, b(t) = (1 + t)−β , α ∈ [0, 1), β ∈ [0, 1), α + β ∈ [0, 1) and
a0 > 0. They obtained

‖u(t)‖L2 ≤


C(1 + t)−( 1

p−1−
α

2(2−α) )(1+β) (1 < p < 1 + 2α
n−α ),

C(1 + t)−( 1
p−1−

α
2(2−α) )(1+β) log(2 + t) (p = 1 + 2α

n−α ),
C(1 + t)−

2
2−α ( 1

p−1−
n
4 )(1+β) (1 + 2α

n−α < p ≤ 1 + 2
n−α ),

C(1 + t)−
n−2α
2(2−α) (1+β)+ε (1 + 2

n−α < p < n+2
[n−2]+

).

We expect that the above decay rates are almost optimal (if we can remove ε,
then the decay rate will be optimal). However, the optimality of the above decay
estimates and the precise asymptotic profiles are still open.

1.3.4. Systems of damped wave equations. First, we consider the weakly
coupled system of damped wave equations

(1.3.47)

 utt − ∆u+ ut = g(v),
vtt − ∆v + vt = f(u),
(u, ut, v, vt)(0, x) = (u0, u1, v0, v1)(x),

where u = u(t, x), v = v(t, x) are real-valued unknown functions of (t, x) ∈ (0,∞)×
Rn and (f(u), g(v)) denotes the nonlinear term.

We also consider the corresponding system of heat equations

(1.3.48)

 ut − ∆u = g(v),
vt − ∆v = f(u),
(u, v)(0, x) = (u0, v0)(x).

Escobedo and Herrero [11] proved for (1.3.48) that when the data (u0, v0) is non-
negative, bounded continuous, (f(u), g(v)) = (up, vq) with p, q > 0, pq > 1, the
exponents p, q satisfying

(1.3.49) α := max
{
p+ 1
pq − 1

,
q + 1
pq − 1

}
=
n

2

are critical. Here the “critical” means that (i) if α < n/2, then the local-in-time
solution can be extended globally for suitably small data and (ii) if α ≥ n/2, then
every local-in-time solution blows up in finite time. We remark that they also proved
the existence of global solutions when 0 < pq ≤ 1 without smallness assumption on
the data and the blow-up of solutions for large data when pq > 1, α < n/2.

Sun and Wang [103] obtained the corresponding results to that of [11] for
(1.3.47) for (f(u), g(v)) = (|u|p, |v|q) with p, q > 1 in the one and three dimensional
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cases (for the case n = 2, see Narazaki [74] ). Nishihara [85] considered the
asymptotic behavior of solutions to (1.3.47) and (1.3.48). For (1.3.48) with small
data and the nonlinear term (f(u), g(u)) satisfying

|f(u) − f(v)| ≤ C(|u| + |v|)p−1|u− v|, |g(u) − g(v)| ≤ C(|u| + |v|)q−1|u− v|,
he assorted the supercritical case to two cases. The first one is the case p, q >
1 + 2/n. In this case he proved that the asymptotic profile of solution is given
by a constant multiple of the Gaussian. In the second case α > n/2 and q >
1+2/n ≥ p (without loss of generality, we may assume that p ≤ q), he proved that
the asymptotic profile of v is given by a constant multiple of the Gaussian and that
of u is given by the solution of the linear heat equation with the data u0 in some
sense. He also obtained the same results for the system of damped wave equations
(1.3.47) when n ≤ 3.

Takeda [104] considered a generalization of (1.3.47)
∂2
t u1 − ∆u1 + ∂tu1 = |uk|p1 ,
∂2
t u2 − ∆u2 + ∂tu2 = |u1|p2 ,

...
∂2
t uk − ∆uk + ∂tuk = |uk−1|pk ,

(1.3.50)

where k ≥ 2 and pj > 1 for j = 1, . . . , k. We put

P =


0 0 · · · 0 p1

p2 0 · · · 0 0
0 p3 · · · 0 0
...

...
. . .

...
...

0 0 · · · pk 0


and

α = (α1, . . . , αk) = (P − Id)−1 · t(1, . . . , 1), αmax = max(α1, . . . , αk).

He proved that when n ≤ 3, the critical exponent of the system (1.3.50) is given by

αmax = n/2,

that is, if αmax < n/2, then there exists a unique global solution for small data; if
αmax ≥ n/2, then the local-in-time solution blows up in finite time (see [108] for
the corresponding result for the system of heat equations). Moreover, he obtained
blow-up results for any space dimensions. Ogawa and Takeda [90] further extended
the above result to the strongly coupled system of damped wave equations

utt − ∆u+ ut = F (u),(1.3.51)

where u = (u1, . . . , uk), F (u) = (F1(u), . . . , Fk(u)) and

Fj(u) =
k∏
l=1

|ul|pj,l .

As before, we put P = (pj,l)1≤j,l≤k and α = (P − Id)−1 · t(1, . . . , 1), αmax =
max(α1, . . . , αk). When n ≤ 3, they proved that if pj,l ∈ [1,∞)∪{0},

∑k
l=1 pj,l > 1,

det(P − Id) 6= 0 and 0 < αj < n/2, then the system (1.3.51) admits a unique
global solution for suitably small data. Moreover, they obtained blow-up results
for max1≤j≤k αj ≥ n/2 and all n ≥ 1. In [91] they also obtained the decay estimates
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of global solutions and that the asymptotic profile is given by a constant multiple
of the Gaussian under the condition

min
1≤j≤k

k∑
l=1

pj,l > 1 + 2/n.

We conjecture that the above results can be suitably extended to higher dimen-
sional cases n ≥ 4. We are also interested in the damping depending on variable
coefficients 

∂2
t u1 − ∆u1 + a1(t, x)∂tu1 = F1(u),
∂2
t u2 − ∆u2 + a2(t, x)∂tu2 = F2(u),

...
∂2
t uk − ∆uk + ak(t, x)∂tuk = Fk(u).

However, as of now, these problems are open as far as the author’s knowledge.

1.3.5. Other nonlinearities. Here we mention some results on other nonlin-
earities. We first consider the wave equation with nonlinear damping

(1.3.52)
{
utt − ∆u+ |ut|p−1ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where p > 1. It is known that for the initial data (u0, u1) belonging to H2 ×
(H1∩L2p), there exists a unique global solution u ∈ C([0,∞);H1)∩C1([0,∞);L2)
satisfying the energy identity

E(t) +
∫ t

0

∫
Rn

|ut(s, x)|p+1dxds = E(0),

where

E(t) =
1
2

∫
Rn

(ut(t, x)2 + |∇u(t, x)|2)dx

(see Lions and Strauss [57]). Mochizuki and Motai [64, 65] considered the energy
decay problem for (1.3.52) and proved the following.

(i) If n ≥ 1 and 1 < p ≤ 1 + 2/n, then limt→∞E(t) = 0.
(ii) If n ≥ 2 and p > 1 + 2/(n − 1), then the energy does not decay to 0 in

general. Moreover, if

1 +
2

n− 1
< p <

{
∞ (1 ≤ n ≤ 6),
n

n− 6
(n ≥ 7),

the solution is asymptotically free as t→ +∞.
Recently, Katayama, Matsumura and Sunagawa [41] proved that if n = 2 and p = 3
(note that in this case p = 1+2/(n− 1) holds), then the energy of solutions decays
to 0 as t → +∞. From this, we expect that the threshold of the energy decay
problem is given by p = 1 + 2/(n− 1). However, the problem that whether or not
the energy decays to 0 when 1+2/n < p ≤ 1+2/(n−1) in general space dimensions
is still open.

Mochizuki and Motai [64, 65] also considered more general nonlinear wave
equations

(1.3.53)
{
utt − ∆u+ λu+ β(t, x, ut(t, x))ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,
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where λ ≥ 0 and β is given by

(1.3.54) β(t, x, ut) = b(t, x)|ut(t, x)|p−1

with b ≥ 0, p > 1 or

(1.3.55) β(t, x, ut) = (|x|−γ ∗ u2
t ) =

∫
Rn

|x− y|−γut(t, y)2dy

with 0 < γ < n. They investigated when the energy of solutions

Eλ(t) =
1
2

∫
Rn

(ut(t, x)2 + |∇u(t, x)|2 + λu(t, x)2)dx

decays to 0. They proved that for the power type nonlinear damping (1.3.54),
(i) if n ≥ 1, 1 < p ≤ 1 + 2(1 − δ)/n and

b1(1 + t+ |x|)−δ ≤ b(t, x) ≤ b2

with some b1, b2 > 0 and δ ∈ [0, 1), then the energy of solutions decays to
0 as t→ +∞;

(ii) if 
p > 1 +

2(1 − δ)
n− 1

(n ≥ 2, λ = 0),

p > 1 +
2(1 − δ)

n
(n ≥ 1, λ > 0)

and
0 ≤ b(t, x) ≤ b3(1 + |x|)−δ

with some δ ∈ [0, 1], then the energy of solutions does not decay to 0 in
general.

This result shows that in the case that λ > 0, the number

p = 1 +
2(1 − δ)

n

is a critical value which divides the energy decay and nondecay. However, in the
case that λ = 0, the problems remain unsolved for

1 +
2(1 − δ)

n
< p ≤ 1 +

2(1 − δ)
n− 1

.

For the non-local nonlinear damping (1.3.55), they proved that
(i) if n ≥ 1 and 0 < γ < n, γ ≤ 1, then the energy decay occurs;
(ii) if {

n
n−1 < γ < n (n ≥ 3, λ = 0),
1 < γ < n (n ≥ 2, λ > 0),

then the energy does not decay to 0 in general.
This result indicates that in the case that λ > 0, the number γ = 1 is critical.
However, in the case that 1 < γ ≤ n/(n − 1), the energy decay problem is still
open.

Racke [95] considered the following nonlinear damped wave equation in un-
bounded domain Ω: utt − ∆u+ ut = f(t, x, u, ut,∇u,∇ut,∇2u), (t, x) ∈ (0,∞) × Ω,

u = 0, (t, x) ∈ (0,∞) × ∂Ω,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Ω,
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where Ω = R3 or Ω ⊂ R3 is an unbounded domain with bounded star-shaped
complement and smooth boundary. He proved that if f(t, x, λ) is smooth and

f(t, x, λ) = O(|λ|3)

near λ = 0, then there exists a unique global solution for sufficiently small and
smooth suitable initial data.

Recently, Watanabe [113] considered damped wave equations with nonuniform
dissipative term and quasilinear term{

utt − ∆u+B(x)ut = N(u, u), (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where u = (u1, . . . , un), N(u, u) is a quasilinear term whose i-th component has
the form

(N(u, u))i =
n∑

j,k,a,b,c=1

N ijk
abc∂xa(∂xbu

j∂xcu
k),

and B(x) is a smooth, bounded, nonnegative, symmetric n×n matrix-valued func-
tion satisfying B(x) ≥ c0 for |x| ≥ R with some c0, R > 0. He proved the existence
of global classical solution for small data and some energy decay estimates of solu-
tions.

The damped wave equation with nonlinear memory

(1.3.56)
{
utt − ∆u+ ut =

∫ t
0
(t− s)−γ |u(s, ·)|pds, (t, x) ∈ (0,∞) × Rn,

(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn

has been also investigated. Here γ ∈ (0, 1) and p > 1. We note that it holds that

lim
γ→1

Γ(1 − γ)
∫ t

0

(t− s)−γ |u(s, x)|pds = |u(t, x)|p

almost everywhere x ∈ Rn. Therefore, it is expected that as γ → 1, the structure of
the equation (1.3.56) gets close to the damped wave equation with the power non-
linearity |u|p. The Cauchy problem (1.3.56) is related to that of the corresponding
heat equation

(1.3.57)
{
vt − ∆v =

∫ t
0
(t− s)−γv(s, ·)pds, (t, x) ∈ (0,∞) × Rn,

v(0, x) = v0(x) ≥ 0, x ∈ Rn.

Cazenave, Dickstein and Weissler [2] proved that the critical exponent for (1.3.57)
is given by

p̄(n, γ) := max{pγ(n), γ−1},
where

pγ(n) := 1 +
2(2 − γ)

[n− 2(1 − γ)]+
,

that is, if p > p̄(n, γ) then the global-in-time solution exists for small data; if
1 < p ≤ p̄(n, γ), then there exists no global-in-time solution in general even for
small data. Fino [12] proved that when p ∈ (1, pγ ] and p̄(n, γ) = pγ(n), there is
no global-in-time solution. He also gives a partial result for the global existence
of solutions in the case that n ≤ 3. After that, D’Abbicco [4] remarked that the
blow-up results still holds when p ∈ (1, n/(n − 2)] and p̄(n, γ) = γ−1 by the same
proof of [12]. He also improved the global existence result of [12] to any p > p̄(n, γ)
and n ≤ 5.
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1.4. Methods for proof

For the convenience of the reader, we introduce some methods used for the
proof of the results. We give only very simple examples but it might well suffice to
make out the idea.

1.4.1. Weighted energy method. We first introduce a weighted energy
method which was originally developed by Todorova and Yordanov [105, 106].
This method will be used to prove the existence of global solutions and to obtain
time-decay estimates of the solution. We consider the linear heat equation

(1.4.1)
{
vt − ∆v = 0 (t, x) ∈ (0,∞) × Rn,
v(0, x) = v0(x) x ∈ Rn.

We use a weight function e2ψ(t,x) with

ψ(t, x) =
|x|2

8(1 + t)
.

For the sake of simplicity, we assume that v0 ∈ C∞
0 (Rn). We will show how to

determine the weight function ψ in the proof of the following proposition.

Proposition 1.8. Let v0 ∈ C∞
0 (Rn). Then it is true that

(1 + t)n/2
∫
Rn

e2ψ(t,x)

2
v2(t, x)dx ≤

∫
Rn

e2ψ(0,x)

2
v2
0(x)dx.

Proof. By multiplying (1.4.1) by e2ψv, one can obtain

∂t

[
e2ψ

2
v2

]
−∇ ·

(
e2ψv∇v

)
+ e2ψ{(−ψt)v2 + |∇v|2 + 2∇ψ · v∇v} = 0.

We note that

2e2ψ∇ψ · v∇v = 4e2ψ∇ψ · v∇v − 2e2ψ∇ψ · v∇v

= 4e2ψ∇ψ · v∇v −∇ ·
(
e2ψ∇ψv2

)
+ 2e2ψ|∇ψ|2v2 + e2ψ(∆ψ)v2.

Substituting this, we have

∂t

[
e2ψ

2
v2

]
−∇ ·

(
e2ψ(v∇v + ∇ψv2)

)
+ e2ψ{|∇v|2 + 4∇ψ · (v∇v) + ((−ψt) + 2|∇ψ|2)v2 + (∆ψ)v2} = 0.

We assume that

(1.4.2) −ψt ≥ 2|∇ψ|2.
Then we obtain

∂t

[
e2ψ

2
v2

]
−∇ ·

(
e2ψ(v∇v + ∇ψv2)

)
+ e2ψ{|∇v|2 + 4∇ψ · (v∇v) + 4|∇ψ|2v2 + (∆ψ)v2} = 0.

Noting
|∇v|2 + 4∇ψ · (v∇v) + 4|∇ψ|2v2 = |∇v + 2(∇ψ)v|2 ≥ 0,

we have

∂t

[
e2ψ

2
v2

]
−∇ ·

(
e2ψ(v∇v + ∇ψv2)

)
+ e2ψ(∆ψ)v2 ≤ 0.
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Integrating the above inequality, we obtain

d

dt

∫
Rn

e2ψ

2
v2dx+

∫
Rn

e2ψ(∆ψ)v2dx ≤ 0.

Multiplying this by (1 + t)k with k ≥ 0, one can see that

d

dt

[
(1 + t)k

∫
Rn

e2ψ

2
v2dx

]
− k

2
(1 + t)k−1

∫
Rn

e2ψv2dx+ (1 + t)k
∫
Rn

(∆ψ)v2dx ≤ 0.

We also assume that

(1.4.3) ∆ψ(t, x) ≥ k

2(1 + t)
.

Then we obtain
d

dt

[
(1 + t)k

∫
Rn

e2ψ

2
v2dx

]
≤ 0.

and hence,

(1 + t)k
∫
Rn

e2ψ(t,x)

2
v(t, x)2dx ≤

∫
Rn

e2ψ(0,x)

2
v0(x)2dx.

Therefore, it suffices to find ψ and k such that both (1.4.2) and (1.4.3) hold. We
put

ψ(t, x) =
k|x|2

4n(1 + t)
.

Then (1.4.3) holds with equality. We calculate

−ψt(t, x) =
k|x|2

4n(1 + t)2
, ∇ψ(t, x) =

kx

2n(1 + t)
, |∇ψ(t, x)|2 =

k2|x|2

4n2(1 + t)2
.

Therefore, (1.4.2) is true if
k ≤ n

2
.

Thus, taking k = n
2 and ψ(t, x) = |x|2

8(1+t) , we completes the proof. �

1.4.2. Test function method. Here we shall explain a test function method
developed by Zhang [122]. We give an application of this method for the semilinear
heat equation

(1.4.4)
{
vt − ∆v = |v|p, (t, x) ∈ (0,∞) × Rn,
v(0, x) = v0(x), x ∈ Rn.

It is well known that the critical exponent of (1.4.4) is given by so-called Fujita’s
critical exponent (see [13])

pc = 1 +
2
n
.

Here we give a proof of the subcritical part of this fact. We shall prove the following:

Proposition 1.9. If 1 < p < 1 + 2/n and v0 ∈ L1(Rn) satisfies∫
Rn

v0(x)dx > 0,

then the classical solution of (1.4.4) does not exists globally.
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Proof. Suppose that v is a global classical solution of (1.4.4). We define test
functions

φ(x) =


1 (|x| ≤ 1/2)

exp(−1/(1 − |x|2))
exp(−1/(|x|2 − 1/4)) + exp(−1/(1 − |x|2))

(1/2 < |x| < 1),

0 (|x| ≥ 1),

η(t) =


1 (0 ≤ t ≤ 1/2),

exp(−1/(1 − t2))
exp(−1/(t2 − 1/4)) + exp(−1/(1 − t2))

(1/2 < t < 1),

0 (t ≥ 1).

It is obvious that φ ∈ C∞
0 (Rn), η ∈ C∞

0 ([0,∞)). We also see that

|η′(t)| . η(t)1/p, |∆φ(x)| . φ(x)1/p.

In fact, we put q, r so that 1/p+1/q = 1, 1/p+2/r = 1 and let µ(t) = η(t)1/q, ν(x) =
φ(x)1/r. Then we have

|η′(t)| = |(µq)′| = |qµq−1µ′| . µq−1 = η1/p,

|∆φ(x)| = |∆(νr)| . |∆ν|νr−1 + |∇ν|2νr−2 . νr−2 = φ1/p.

Let R > 0 be a large parameter and let

ψR(t, x) = η(t/R2)φ(x/R).

We also define

IR =
∫ ∞

0

∫
Rn

|v|pψRdxdt.

We note that by the Lebesgue dominated convergence theorem, it follows that∫
Rn

v0(x)φ(x/R)dx > 0

for sufficiently large R > 0 Then by the equation, integration by parts and the
Hölder inequality, we can calculate

IR =
∫ ∞

0

∫
Rn

(vt − ∆v)ψRdxdt

=
∫ ∞

0

∫
Rn

v(−∂t − ∆)ψRdxdt−
∫
Rn

v0(x)φ(x/R)dx

≤
∫ ∞

0

∫
Rn

|v|(|∂tψR| + |∆ψR|)dxdt

. R−2

(∫ ∞

0

∫
Rn

|v|pψRdxdt
)1/p

(∫ R2

0

∫
BR

dxdt

)1/q

. R−2+(n+2)/qI
1/p
R ,

where q denotes the Hölder conjugate of p, that is 1/p + 1/q = 1 and BR = {x ∈
Rn | |x| < R}. We can rewrite the above as

I
1−1/p
R . R−2+(n+2)/q.

Noting that p < 1 + 2/n if and only if −2 + (n + 2)/q < 0, the right-hand side of
the above inequality tends to 0 as R → +∞. In particular, IR is bounded when
R→ +∞ and this implies v ∈ Lp((0,∞)×Rn) and limR→∞ IR = ‖v‖pLp((0,∞)×Rn).
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However, by using the above estimate again, it follows that limR→∞ IR = 0. This
means v = 0, which contradicts v0 6= 0. �





CHAPTER 2

Basic facts and their proof

2.1. Linear damped wave equations

We consider the Cauchy problem for the damped wave equation

(2.1.1)
{
utt − ∆u+ ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

We denote the fundamental solution of (2.1.1) by Sn(t), that is, Sn(t)g stands
for the solution of (2.1.1) with (u0, u1) = (0, g). By the Duhamel principle, the
solution u of (2.1.1) can be written by

(2.1.2) u = Sn(t)(u0 + u1) + ∂t(Sn(t)u0).

2.1.1. Decay estimates. First, we prove the following estimates obtained by
Matsumura [59].

Proposition 2.1 (Matsumura [59]). For i ∈ Z≥0 and α ∈ Zn≥0, we have∥∥∂it∂αxSn(t)g∥∥L∞ ≤ C(1 + t)−n/(2m)−i−|α|/2(‖g‖Lm + ‖g‖H[n/2]+i+|α|),(2.1.3) ∥∥∂it∂αxSn(t)g∥∥L2 ≤ C(1 + t)n/4−n/(2m)−i−|α|/2(‖g‖Lm + ‖g‖Hi+|α|−1)

for t ≥ 0, where 1 ≤ m ≤ 2.

Proof. We use the representation of Sn(t) by the Fourier transform. By
applying the Fourier transform to the equation (2.1.1), we have

(2.1.4)
{
ûtt + ût + |ξ|2û = 0,
(û, ût)(0, ξ) = (0, ĝ)(ξ).

Solving this ordinary differential equation, we obtain

û(t, ξ) =


2e−t/2√
1 − 4|ξ|2

sinh

(√
1 − 4|ξ|2

2
t

)
ĝ(ξ), |ξ| ≤ 1/2,

2e−t/2√
4|ξ|2 − 1

sin

(√
4|ξ|2 − 1

2
t

)
ĝ(ξ), |ξ| > 1/2.

(2.1.5)

≡ R(t, ξ)ĝ(ξ).

We first prove the L∞ estimate of (2.1.3). From Lemma 9.6, we have

‖f‖L∞ ≤ C‖f̂‖L1

43
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and obtain ∥∥∂it∂αxSn(t)g∥∥L∞ ≤
∥∥∥∥(iξ)α didtiR(t, ξ)ĝ

∥∥∥∥
L1

(2.1.6)

≤ C

∫
Rn

|ξ||α|
∣∣∣∣ didtiR(t, ξ)

∣∣∣∣ |ĝ(ξ)|dξ.
By a simple calculation, we can see that∣∣∣∣ didtiR(t, ξ)

∣∣∣∣ ≤ Ce−t/2

(
1√

1 − 4|ξ|2
sinh

(√
1 − 4|ξ|2

2
t

)
+ cosh

(√
1 − 4|ξ|2

2
t

)

+ · · · + (
√

1 − 4|ξ|2)i−1H

(√
1 − 4|ξ|2

2
t

))

for |ξ| ≤ 1/2, where H denotes cosh or sinh. We also have∣∣∣∣ didtiR(t, ξ)
∣∣∣∣ ≤ Ce−t/2

(
1√

4|ξ|2 − 1

∣∣∣∣∣sin
(√

4|ξ|2 − 1
2

t

)∣∣∣∣∣+
∣∣∣∣∣cos

(√
4|ξ|2 − 1

2
t

)∣∣∣∣∣
+ · · · + (

√
4|ξ|2 − 1)i−1

∣∣∣∣∣T
(√

4|ξ|2 − 1
2

t

)∣∣∣∣∣
)

for |ξ| > 1/2, where T is given by sin or cos. By Lemma 9.7, we have an elementary
inequality

(2.1.7)
∫ δ

0

rke−cr
2tdr ≤ C(1 + t)−(k+1)/2,

where δ > 0, k ≥ 0, c > 0, t ≥ 0. We take δ ∈ (0, 1/2) arbitrarily and divide the
integral of (2.1.6) as ∫

Rn

|ξ||α|
∣∣∣∣ didtiR(t, ξ)

∣∣∣∣ |ĝ(ξ)|dξ
=
∫
|ξ|≥1

+
∫

1/2<|ξ|<1

+
∫
δ<|ξ|≤1/2

+
∫
|ξ|≤δ

≡ I1 + I2 + I3 + I4.

We first estimate I1. By the Schwarz inequality, it follows that

I1 ≤ Ce−t/2
∫
|ξ|≥1

|ξ||α|(1 +
√

4|ξ|2 − 1)i√
4|ξ|2 − 1

|ĝ(ξ)|dξ

≤ Ce−t/2 sup
|ξ|>1

(
(1 +

√
4|ξ|2 − 1)i

|ξ|i−1
√

4|ξ|2 − 1

)(∫
|ξ|≥1

|ξ|−2[n2 ]−2dξ

)1/2

×

(∫
|ξ|≥1

|ξ|2[n2 ]+2|α|+2i|ĝ(ξ)|2dξ

)1/2

≤ Ce−t/2‖g‖
H[n2 ]+i+|α| .
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The second term I2 is estimated by

I2 ≤ Ce−t/2

1 + sup
1/2<|ξ|<1

 sin
(√

4|ξ|2−1

2 t

)
√

4|ξ|2 − 1



(∫

1/2<|ξ|<1

|ĝ(ξ)|2dξ

)1/2

≤ C(1 + t)e−t/2‖g‖L2 .

Next, let us treat I3. We see that

I3 ≤ Ce−t/2

1 + sup
δ<|ξ|≤1/2

 sinh
(√

1−4|ξ|2
2 t

)
√

1 − 4|ξ|2


+ sup
δ<|ξ|≤1/2

cosh

(√
1 − 4|ξ|2

2
t

)}(∫
δ<|ξ|≤1/2

|ĝ(ξ)|2dξ

)1/2

≤ C(1 + t)e−t(1−
√

1−4δ2)/2‖g‖L2 .

Finally, we estimate I4. In this region, it is also easy to see that

∣∣∣∣ didtiR(t, ξ)
∣∣∣∣ ≤ C

(1 −
√

1 − 4|ξ|2)i√
1 − 4|ξ|2

e−t(1−
√

1−4|ξ|2)/2

+ C
(1 +

√
1 − 4|ξ|2)i√

1 − 4|ξ|2
e−t(1+

√
1−4|ξ|2)/2.

Using this, we have

I4 ≤ C

∫
|ξ|≤δ

(1 −
√

1 − 4|ξ|2)i|ξ||α|√
1 − 4|ξ|2

e−t(1−
√

1−4|ξ|2)/2|ĝ(ξ)|dξ

+ C

∫
|ξ|≤δ

(1 +
√

1 − 4|ξ|2)i|ξ||α|√
1 − 4|ξ|2

e−t(1+
√

1−4|ξ|2)/2|ĝ(ξ)|dξ.

Since

1 −
√

1 − 4|ξ|2 =
4|ξ|2

1 +
√

1 − 4|ξ|2
,

it is obvious that

2|ξ|2 ≤ 1 −
√

1 − 4|ξ|2 ≤ 4|ξ|2
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for |ξ| < 1/2. Therefore, by the Hölder inequality, Lemma 9.6 and (2.1.6), we have

I4 ≤ C

∫
|ξ|≤δ

|ξ|2i+|α|e−t|ξ|
2
|ĝ(ξ)|dξ

+ Ce−t/2
∫
|ξ|≤δ

|ĝ(ξ)|dξ

≤ C

(∫
|ξ|≤δ

|ξ|m(2i+|α|)e−mt|ξ|
2
dξ

)1/m(∫
|ξ|≤δ

|ĝ(ξ)|m
′
dξ

)1/m′

+ Ce−t/2

(∫
|ξ|≤δ

|ĝ(ξ)|m
′
dξ

)1/m′

≤ C

(∫ δ

0

rm(2i+|α|)+n−1e−mtr
2
dr

)1/m

‖g‖Lm

≤ (1 + t)−n/(2m)−i−|α|/2‖g‖Lm ,

which shows the desired estimate for ‖∂it∂αxSn(t)g‖L∞ .
Next, we enter into the estimate of the L2-norm. The proof is almost same way

as before. We use the Plancherel theorem and have

∥∥∂it∂αxSn(t)g∥∥2

L2 =
∥∥∥∥(iξ)α didtiR(t, ξ)ĝ

∥∥∥∥2

L2

≤
∫
Rn

|ξ|2|α|
∣∣∣∣ didtiR(t, ξ)

∣∣∣∣2 |ĝ(ξ)|2dξ
=
∫
|ξ|≥1

+
∫

1/2<|ξ|<1

+
∫
δ<|ξ|≤1/2

+
∫
|ξ|≤δ

≡ I1 + I2 + I3 + I4.

The estimate of the terms I2 and I3 is the same as before. We have

I1 ≤ Ce−t
∫
|ξ|≥1

|ξ|2|α|
(1 +

√
4|ξ|2 − 1)2i

4|ξ|2 − 1
|ĝ(ξ)|2dξ

≤ Ce−t
∫
|ξ|≥1

(1 + |ξ|2)|α|+i−1|ĝ(ξ)|2dξ

≤ Ce−t‖g‖Hi+|α|−1 .

To treat I4, we use an another elementary inequality

(2.1.8) sup
0≤r≤δ

rke−cr
2t ≤ C(1 + t)−k/2
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for δ > 0, k ≥ 0, c > 0, t ≥ 0. We give a proof of this inequality in Appendix (see
Lemma 9.7). As before, we can deduce that

I4 ≤ C

∫
|ξ|≤δ

|ξ|2|α|
(1 −

√
1 − 4|ξ|2)2i

1 − 4|ξ|2
e−t(1−

√
1−4|ξ|2)|ĝ(ξ)|2dξ

+ C

∫
|ξ|≤δ

|ξ|2|α|
(1 +

√
1 − 4|ξ|2)2i

1 − 4|ξ|2
e−t(1+

√
1−4|ξ|2)|ĝ(ξ)|2dξ

≤ C

∫
|ξ|≤δ

|ξ|2|α+4ie−2|ξ|2t|ĝ(ξ)|2dξ

+ Ce−t
∫
|ξ|≤δ

|ĝ(ξ)|2dξ.

The second term is estimated by

e−t
∫
|ξ|≤δ

|ĝ(ξ)|2dξ = e−t
∫
|ξ|≤δ

(1 + |ξ|2)(1 + |ξ|2)−1|ĝ(ξ)|2dξ ≤ Ce−t‖g‖2
H−1 .

When m = 2, we apply (2.1.8) and have∫
|ξ|≤δ

|ξ|2|α+4ie−2|ξ|2t|ĝ(ξ)|2dξ ≤ sup
|ξ|≤δ

(
|ξ|2|α|+4ie−2|ξ|2t

)
‖g‖2

L2

≤ C(1 + t)−|α|−2i‖g‖2
L2 .

When m 6= 2, putting p = m′/2 and using Lemma 9.6 again, we have∫
|ξ|≤δ

|ξ|2|α+4ie−2|ξ|2t|ĝ(ξ)|2dξ ≤

(∫
|ξ|≤δ

|ξ|(2|α|+4i)p′e−p
′|ξ|2tdξ

)1/p′

‖ĝ‖2
Lm′

≤ C

(∫ δ

0

r(2|α|+4i)p′+n−1e−p
′r2tdr

)1/p′

‖g‖2
Lm

≤ C(1 + t)−n/(2p
′)−|α|−2i‖g‖2

Lm

= C(1 + t)n/2−n/m−2i−|α|‖g‖2
Lm ,

since

p′ =
p

p− 1
=

m′

m′ − 2
=

m

2 −m
.

This completes the proof. �

2.1.2. Solution representation formula. In this section, we give a solution
representation formula for the solution operator Sn(t) of (2.1.1). Let Iν(s) denote
the modified Bessel function of order ν, that is to say,

Iν(s) =
∞∑
m=0

1
m!Γ(m+ ν + 1)

(s
2

)2m+ν

By using Iν , we can express Sn(t) as follows:

Proposition 2.2. (i) When n = 1, we have

Sn(t)g(x) =
e−t/2

2

∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy.
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(ii) When n ≥ 3 and is an odd number, we have

Sn(t)g(x) =
e−t/2

(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−1)/2 ∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy.

(iii) When n ≥ 2 and is an even number, we have

Sn(t)g(x) =
2e−t/2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2 ∫
|x−y|≤t

cosh( 1
2

√
t2 − |x− y|2)√

t2 − |x− y|2
g(y)dy.

Here we use the notation (n − 1)!! = (n − 1)(n − 3) · · · 1 and |Sn| denotes the
measure of the n-dimensional unit sphere Sn, that is, |Sn| = 2π(n+1)/2/Γ((n+1)/2).

Proof. The argument is the same as in the survey article by Nishihara [82].
Consider the Cauchy problem of the wave equation{

wtt − ∆w = 0, (t, x) ∈ (0,∞) × Rn,
(w,wt)(0, x) = (0, h)(x), x ∈ Rn.

It is well known that the solution w(t, x) is given by

w(t, x) =
1
2

∫ x+t

x−t
h(r)dr

for n = 1,

w(t, x) =
1

(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−3)/2
(

1
t

∫
|x−y|=t

h(y)dSy

)
,

for n ≥ 3 and odd,

w(t, x) =
2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2
(∫

|x−y|≤t

1√
t2 − |x− y|2

h(y)dy

)
for enen n. From these formulae, we obtain the representation of Sn(t)g by the
method of descent. We denote xn+1 = (x1, . . . , xn, xn+1) = (xn, xn+1) and consider
the Cauchy problem of the n+ 1-dimensional wave equation

(2.1.9)
{
wtt − ∆n+1w = 0, (t,xn+1) ∈ (0,∞) × Rn+1,
(w,wt)(0,xn+1) = (0, h)(xn+1), xn+1 ∈ Rn+1.

Here ∆n+1 denotes the n+ 1-dimensional Laplacian. Let

w(t,xn+1) = e(xn+1+t)/2Sn(t)g(xn).

Then w is the solution to (2.1.9) with the initial data

h(xn+1) = exn+1/2g(xn).

Thus, if we write the solution operator of (2.1.9) by Wn+1(t), then we have the
relation

Wn+1(t)
[
exn+1/2g(xn)

]
= e(xn+1+t)/2Sn(t)g(xn).

Therefore, we have

(2.1.10) Sn(t)g(xn) = e−(xn+1+t)/2Wn+1(t)
[
exn+1/2g(xn)

]
.

Using this relation, we can calculate the formula for Sn(t). By Lemma 9.2, we have

(2.1.11)
∫ a

−a

ect√
a2 − t2

dt = πI0(ca).
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When n = 1, it holds that

W2(t)h(x2) =
1
2π

∫
|x2−y2|≤t

h(y2)√
t2 − |x2 − y2|2

dy2.

Noting (2.1.10) and (2.1.11), we have

Sn(t)g(x1) =
e−t/2

2π

∫
|x2−y2|≤t

e(y2−x2)/2g(y1)√
(t2 − |x1 − y1|2) − |x2 − y2|2

dy2

=
e−t/2

2π

∫
|x1−y1|≤t

g(y1)

×

(∫ x2+
√
t2−|x1−y1|2

x2−
√
t2−|x1−y1|2

e(y2−x2)/2√
(t2 − |x1 − y1|2) − |x2 − y2|2

dy2

)
dy1

=
e−t/2

2π

∫
|x1−y1|≤t

g(y1)

×

(∫ √
t2−|x1−y1|2

−
√
t2−|x1−y1|2

ey2/2√
(t2 − |x1 − y1|2) − y2

2

dy2

)
dy1

=
e−t/2

2

∫
|x1−y1|≤t

I0

(
1
2

√
t2 − |x1 − y1|2

)
g(y1)dy1.

Changing variables imply

Sn(t)g(x) =
e−t/2

2

∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy

and we obtain the desired formula.
When n ≥ 3 and is an odd number, we have

Wn+1(t)h(xn+1) =
2

n!!|Sn+1|

(
1
t

∂

∂t

)(n−1)/2

×

(∫
|xn+1−yn+1|≤t

h(yn+1)√
t2 − |xn+1 − yn+1|2

dyn+1

)
.
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By noting |Sn+1| = 2π
n |Sn−1| and using (2.1.10), one can see that

Sn(t)g(xn)

=
e−t/2

(n− 2)!!|Sn−1|π

(
1
t

∂

∂t

)(n−1)/2

×
∫
|xn+1−yn+1|≤t

e(yn+1−xn+1)/2g(yn)√
(t2 − |xn − yn|2) − |xn+1 − yn+1|2

dyn+1

=
e−t/2

(n− 2)!!|Sn−1|π

(
1
t

∂

∂t

)(n−1)/2 ∫
|xn−yn|≤t

g(yn)

×

(∫ xn+1+
√
t2−|xn−yn|2

xn+1−
√
t2−|xn−yn|2

e(yn+1−xn+1)/2√
(t2 − |xn − yn|2) − |xn+1 − yn+1|2

dyn+1

)
dyn

=
e−t/2

(n− 2)!!|Sn−1|π

(
1
t

∂

∂t

)(n−1)/2 ∫
|xn−yn|≤t

g(yn)

×

∫ √
t2−|xn−yn|2

−
√
t2−|xn−yn|2

eyn+1/2√
(t2 − |xn − yn|2) − y2

n+1

dyn+1

 dyn

=
e−t/2

(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−1)/2

×
∫
|xn−yn|≤t

I0

(
1
2

√
t2 − |xn − yn|2

)
g(yn)dyn.

and hence,

Sn(t)g(x) =
e−t/2

(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−1)/2 ∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy.

Finally, when n is an even number, we have

Wn+1(t)h(xn+1)

=
1

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2
(

1
t

∫
|xn+1−yn+1|=t

h(yn+1)dSyn+1

)
.

We divide the integral into two parts:

1
t

∫
|xn+1−yn+1|=t

h(yn+1)dSyn+1

=
1
t

∫
|xn+1−yn+1|=t,
yn+1−xn+1≥0

+
∫
|xn+1−yn+1|=t,
yn+1−xn+1<0

h(yn+1)dSyn+1 .

Since the surface of the integral region is given by the relation φ(yn+1) = 0 with
the function

φ(yn+1) = t2 − |xn+1 − yn+1|2,
it follows that

dSyn+1 =
|∇φ(yn+1)|

|∂yn+1φ(yn+1)|
dyn =

t√
t2 − |xn − yn|2

dyn.
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Moreover, we have e(yn+1−xn+1)/2 = e
1
2

√
t2−|xn−yn|2 for yn+1 − xn+1 ≥ 0 and

e(yn+1−xn+1)/2 = e−
1
2

√
t2−|xn−yn|2 for yn+1 − xn+1 < 0. Therefore, taking into

account (2.1.10), substituting h(yn+1) = eyn+1/2g(yn), we can calculate

e−xn+1/2
1
t

∫
|xn+1−yn+1|=t

h(yn+1)dSyn+1

=
∫
|xn−yn|≤t

(
e

1
2

√
t2−|xn−yn|2 + e−

1
2

√
t2−|xn−yn|2

) g(yn)√
t2 − |xn − yn|2

dyn

=
∫
|xn−yn|≤t

2 cosh
(

1
2

√
t2 − |xn − yn|2

)
g(yn)√

t2 − |xn − yn|2
dyn

and hence,

Sn(t)g(x) =
2e−t/2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2 ∫
|x−y|≤t

cosh
(

1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2

g(y)dy.

�

2.2. Diffusion phenomenon

2.2.1. L∞-estimate. In this subsection, we prove the result of Yang and Mi-
lani [121]. By using Matsumura’s estimates (2.1.3), they proved that the solution
u of the Cauchy problem

(2.2.1)
{
utt − ∆u+ ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn

is asymptotically equivalent with the solution v of the Cauchy problem

(2.2.2)
{
vt − ∆v = 0, (t, x) ∈ (0,∞) × Rn,
v(0, x) = u0(x) + u1(x), x ∈ Rn

in L∞-sense, namely,

Theorem 2.3 (Yang and Milani [121]). If u0 ∈ H [n/2]+3(Rn) ∩ L1(Rn),
u1 ∈ H [n/2]+2(Rn) ∩ L1(Rn) and u, v are the classical solutions of (2.2.1), (2.2.2),
respectively, then we have

(2.2.3) ‖u(t) − v(t)‖L∞ = O(t−n/2−1)

as t→ +∞.

Remark 2.1. In general, solutions of the heat equation (2.2.2) do not decay
faster than O(t−n/2). Indeed, if we take a initial data f(x) satisfying f ∈ C∞

0 (Rn),
f ≥ 0, f 6= 0, then it follows that for t ≥ 1

‖v(t)‖L∞ = sup
x

1
(4πt)n/2

∫
Rn

e−
|x−y|2

4t f(y)dy

≥ sup
x

1
(4πt)n/2

∫
Rn

e−
|x−y|2

4 f(y)dy

≥ 1
(4πt)n/2

∫
Rn

e−
|y|2
4 f(y)dy

= Ct−n/2.
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Proof of Theorem 2.3. From Matsumura’s estimates (2.1.3), we have

‖ut(t)‖L2 = O(t−n/4−1),(2.2.4)

‖utt(t)‖L∞ = O(t−n/2−2),(2.2.5)

‖û(t)‖L∞ = O(1),(2.2.6)

‖u(t)‖L2 = O(t−n/4).(2.2.7)

The third inequality immediately follows by (2.1.2), (2.1.5) and

‖û(t)‖L∞ ≤ C(‖û0‖L∞ + ‖û1‖L∞) ≤ C(‖u0‖L1 + ‖u1‖L1).

We denote G(t, x) = (4πt)−n/2e−|x|2/(4t). It is also well known that

‖G(t)‖L1 = O(1),(2.2.8)

‖∂kt G(t)‖L2 = O(t−n/4−k),(2.2.9)

‖∂kt G(t)‖L∞ = O(t−n/2−k)(2.2.10)

(see [14]). By the Duhamel principle, we can write

u(t) − v(t) = −G(t) ∗ u1 −
∫ t

0

G(t− τ) ∗ utt(τ)dτ.

By the integration by prats, we obtain∫ t

0

G(t− τ) ∗ utt(τ)dτ =
∫ t

t/2

G(t− τ) ∗ utt(τ)dτ

+G(t/2) ∗ ut(t/2) −G(t) ∗ u1

+
∫ t/2

0

∂tG(t− τ) ∗ ut(τ)dτ

and hence,

u(t) − v(t) = −
∫ t

t/2

G(t− τ) ∗ utt(τ)dτ

−G(t/2) ∗ ut(t/2)

−
∫ t/2

0

∂tG(t− τ) ∗ ut(τ)dτ

≡ I1 + I2 + I3.

It follows that

|I1| ≤
∫ t

t/2

‖G(t− τ)‖L1‖utt(τ)‖L∞dτ ≤ C

∫ t

t/2

(1 + τ)−n/2−2dτ ≤ (1 + t)−n/2−1

and
|I2| ≤ t−n/4(1 + t)−n/4−1 = O(t−n/2−1).

To estimate I3, we use the integration by parts once more and have

I3 = −∂tG(t/2) ∗ u(t/2) + ∂tG(t) ∗ u0 −
∫ t/2

0

∂2
tG(t− τ) ∗ u(τ)dτ

≡ I31 + I32 + I33.
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By (2.2.7) and (2.2.9), we immediately obtain

|I31| ≤ ‖∂tG(t/2)‖L2‖u(t/2)‖L2 = O(t−n/2−1).

From (2.2.10), it is also easy to see that

|I32| ≤ ‖∂tG(t)‖L∞‖u0‖L1 = O(t−n/2−1).

Therefore, it suffices to prove that

(2.2.11) |I33| = O(t−n/2−1).

Noting

G(t) ∗G(s) = G(t+ s),

which is proved by using Ĝ(t, ξ) = e−t|ξ|
2
, we have

G(t− τ) = G(t/4) ∗G(3t/4 − τ).

By the Leibniz rule, it follows that

∂2
tG(t− τ) = a0∂

2
tG(t/4) ∗G(3t/4 − τ)

+ a1∂tG(t/4) ∗ ∂tG(3t/4 − τ)

+ a2G(t/4) ∗ ∂2
tG(3t/4 − τ),

where a0 = 1/16, a1 = 3/8, a2 = 9/16. Thus, we can rewrite I33 as

I33 = −
2∑
i=0

∫ t/2

0

ai∂
2−i
t G(t/4) ∗ ∂itG(3t/4 − τ) ∗ u(τ)dτ ≡

2∑
i=0

Ji.

We can see that

|Ji| = O(t−n/2−1)

for i = 0, 1, 2. Indeed, we first have

|J0| ≤
∫ t/2

0

‖∂2
tG(t/4)‖L2‖G(3t/4 − τ) ∗ u‖L2dτ

≤ Ct−n/4−2

∫ t/2

0

‖Ĝ(3t/4 − τ)û(τ)‖L2dτ

≤ Ct−n/4−2

∫ t/2

0

‖Ĝ(3t/4 − τ)‖L2‖û(τ)‖L∞dτ

≤ Ct−n/2−1.

Here we have used (2.2.6) and the fact

‖Ĝ(3t/4 − τ)‖2
L2 ≤ C

∫
Rn

e−2(3t/4−τ)|ξ|2dξ ≤ C

∫
Rn

e−t|ξ|
2/2dξ = O(t−n/2).
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Next, we estimate J1 as

|J1| ≤ C

∫ t/2

0

‖∂tG(t/4)‖L2‖∂tG(3t/4 − τ) ∗ u(τ)‖L2dτ

≤ Ct−n/4−1

∫ t/2

0

‖∂tĜ(3t/4 − τ)û(τ)‖L2dτ

≤ Ct−n/4−1

∫ t/2

0

‖∂tĜ(3t/4 − τ)‖L2‖û(τ)‖L∞dτ

≤ Ct−n/4−1

∫ t/2

0

‖| · |2Ĝ(3t/4 − τ, ·)‖L2dτ

≤ Ct−n/2−1.

Here we have used (2.2.6) and∫
Rn

|ξ|4e−2|ξ|2(3t/4−τ)dξ ≤
∫
Rn

|ξ|4e−|ξ|2t/2dξ

≤ t−n/2−2

∫
Rn

|η|4e−|η|2/2dη = O(t−n/2−2).

In the same way, by using the fact∫
Rn

|ξ|8e−2|ξ|2(3t/4−τ)dξ = O(t−n/2−4),

we can see that

|J2| ≤ C

∫ t/2

0

‖G(t/4)‖L2‖∂2
t Ĝ(3t/4 − τ)û(τ)‖L2dτ

≤ Ct−n/4
∫ t/2

0

‖| · |4Ĝ(3t/4 − τ)‖L2‖û‖L∞dτ

≤ Ct−n/2−1,

which completes the proof. �

2.2.2. Lp-Lq estimates. In this subsection, we prove another result which
also represents the diffusion phenomenon in the Lp-Lq sense. For the sake of sim-
plicity, we consider the linear damped wave equation in three space dimension

(2.2.12)
{
utt − ∆u+ ut = 0, (t, x) ∈ (0,∞) × R3,
(u, ut)(0, x) = (u0, u1)(x), x ∈ R3.

We also consider the corresponding heat equation with the initial data u0 + u1:

(2.2.13)
{
vt − ∆v = 0, (t, x) ∈ (0,∞) × R3,
v(0, x) = u0(x) + u1(x), x ∈ R3.

We put

W̃3(t;u0, u1) =
(

1
2

+
t

8

)
W3(t)u0 + ∂t(W3(t)u0) +W3(t)u1,

where W3(t) denotes the solution operator of the three dimensional free wave equa-
tion, that is,

W3(t)g(x) =
1

4πt

∫
|x−y|=t

g(y)dSy.
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Theorem 2.4 (Nishihara [78]). Let u0, u1 ∈ Lq(R3) with q ≥ 1 and let u and
v be the solution of (2.2.12) and (2.2.13), respectively. Then the following Lp-Lq

estimate holds:

(2.2.14)
∥∥∥u(t) − v(t) − e−t/2W̃(t;u0, u1)

∥∥∥
Lp

≤ Ct−
3
2 ( 1

q−
1
p )−1(‖u0‖Lq + ‖u1‖Lq )

for t > 0.

To prove this theorem, we decompose the solution u into two parts. The first
one is e−t/2W̃(t;u0, u1) and the other one behaves like v(t, x). By Proposition 2.2
and the Duhamel principle, the solution of (2.2.12) is given by

(2.2.15) u(t, x) = S3(t)(u0 + u1) + ∂t(S3(t)u0)

with

S3(t)g =
e−t/2

4πt
∂t

∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy.

Using I(0) = 1, I ′0(s) = I1(s), we obtain

S3(t)g =
e−t/2

4πt

∫
|x−y|=t

g(y)dSy(2.2.16)

+
e−t/2

8π

∫
|x−y|≤t

I1

(
1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2

g(y)dy

=: e−t/2W3(t)g + J3(t)g.

By noting that I1(s)/s |s=0= 1/2, it follows that

∂t(S3(t)g) = e−t/2
((

−1
2

+
t

8

)
W3(t)g + ∂t(W3(t)g)

)
(2.2.17)

+
1
8π

∫
|x−y|≤t

∂t

e−t/2 I1
(

1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2

 g(y)dSy

=: e−t/2
((

−1
2

+
t

8

)
W3(t)g + ∂t(W3(t)g)

)
+ J̃3(t)g.

Substituting (2.2.16) and (2.2.17) into (2.2.15), we can see that

(2.2.18) u(t, x) = e−t/2W̃3(t;u0, u1) + J3(t)(u0 + u1) + J̃3(t)u0.

Hence

u− v − e−t/2W̃3(t;u0, u1) = (J3(t) − et∆)(u0 + u1) + J̃3(t)u0,

where et∆ denotes the solution operator of the heat equation (2.2.13), that is,
v(t, x) = et∆(u0 + u1). Thus, it suffices to prove that there exists a constant C > 0
such that

‖(J3(t) − et∆)g‖Lp ≤ Ct−
3
2 ( 1

q−
1
p )−1‖g‖Lq ,(2.2.19)

‖J̃3(t)g‖Lp ≤ Ct−
3
2 ( 1

q−
1
p )−1‖g‖Lq(2.2.20)

for t > 0. More generally, we shall prove the following estimates:
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Lemma 2.5. For any 1 ≤ q ≤ p ≤ ∞, there exists some constant C > 0 such
that

‖J3(t)g‖Lp ≤ C(1 + t)−
3
2 ( 1

q−
1
p )‖g‖Lq(2.2.21)

‖J̃3(t)g‖Lp ≤ C(1 + t)−
3
2 ( 1

q−
1
p )−1‖g‖Lq(2.2.22)

for t ≥ 0 and

‖(J3(t) − et∆)g‖Lp ≤ Ct−
3
2 ( 1

q−
1
p )−1‖g‖Lq(2.2.23)

for t > 0.

Proof. We first prove (2.2.21) and (2.2.23). The proof is divided into the case
t ≥ 1 and 0 ≤ t < 1. We first assume that t ≥ 1. Let ε ∈ (0, 1/2). We note that
the assumption t ≥ 1 yields t(1+ε)/2 ≤ t. We divide the integral into three parts:

(J3(t) − et∆)g

=
∫
|x−y|≤t1/2+ε

e−t/2I1
(

1
2

√
t2 − |x− y|2

)
8π
√
t2 − |x− y|2

− e−|x−y|2/(4t)

(4πt)3/2
)

 g(y)dy

+
∫
t1/2+ε≤|x−y|≤t

e−t/2I1
(

1
2

√
t2 − |x− y|2

)
8π
√
t2 − |x− y|2

− e−|x−y|2/(4t)

(4πt)3/2

 g(y)dy

−
∫
t≤|x−y|

e−|x−y|2/(4t)

(4πt)3/2
g(y)dy

=: X1 +X2 +X3.

By the Hausdorff-Young inequality (see Lemma 9.9), it is easy to see that

‖X3‖Lp ≤ Ct−3/2‖e−|x|2/(4t)‖Lr({|x|≥t})‖g‖Lq ≤ Ce−c1t‖g‖Lq

with some c1 ∈ (0, 1/4), where 1/q − 1/p = 1 − 1/r. In the same way, we deduce
that

‖X2‖Lp ≤ C

∫
t(1+ε)/2≤|y|≤t

e−t/2I1
(

1
2

√
t2 − |y|2

)
√
t2 − |y|2

r

dy

1/r

‖g‖Lq

+ Ct−3/2‖e−|x|2/(4t)‖Lr(|x|≥t(1+ε)/2)‖g‖Lq .

We further divide the integral region of the first term into {y ∈ R3 |
√
t2 − 1 ≤

|y| ≤ t} and {y ∈ R3 | t(1+ε)/2 ≤ |y| ≤
√
t2 − 1}. When

√
t2 − 1 ≤ |y| ≤ t, noting

that I1(s)/s is bounded for s ≤ 1/2, we can obtain

e−t/2I1

(
1
2

√
t2 − |y|2

)
√
t2 − |y|2

≤ Ce−t/2.

Next, we note that if |y| ≤
√
t2 − 1, then

√
t2 − |y|2 ≥ 1 holds. By using the

monotonicity of Iν and the asymptotic expansion

Iν(s) =
1√
2πs

es(1 +O(s−1)) (s→ +∞),
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we can estimate

e−t/2I1

(
1
2

√
t2 − |y|2

)
√
t2 − |y|2

≤ Ce−t/2+
√
t2−t1+ε

if t(1+ε)/2 ≤ |y| ≤
√
t2 − 1. Since

− t

2
+

1
2

√
t2 − |y|2 = − |y|2

2(t+
√
t2 − |y|2)

≤ − t1+ε

2(t+
√
t2 − t1+ε)

≤ − t
ε

4
,

we see that
e−t/2I1

(
1
2

√
t2 − |y|2

)
√
t2 − |y|2

≤ Ce−t
ε/4

for t(1+ε)/2 ≤ |y| ≤
√
t2 − 1. Consequently, we have

‖X2‖Lp ≤ Ce−c2t
ε

‖g‖Lq

with some c2 ∈ (0, 1/4). Thus, it suffices to estimate X1. Let ρ = |x − y| and we
rewrite X1 as

X1 =
1

(4πt)3/2

∫
ρ≤t(1+ε)/2

e−ρ
2/(4t)D(t, ρ)g(y)dy,

where

D(t, ρ) =
√
πeρ

2/(4t)−t/2t3/2
1√

t2 − ρ2
I1

(
1
2

√
t2 − ρ2

)
− 1.

Since

I1

(
1
2

√
t2 − ρ2

)
=

1√
π(t2 − ρ2)1/4

e
√
t2−ρ2/2

(
1 +O

(
1√

t2 − ρ2

))
,

we obtain

D(t, ρ) = eρ
2/(4t)−t/2+

√
t2−ρ2/2

(
t√

t2 − ρ2

)3/2(
1 +O

(
1√

t2 − ρ2

))
− 1.

Here we note that
t√

t2 − ρ2
=

1√
1 − (ρ/t)2

= 1 +O

(
ρ2

t2

)
= 1 +

1
t
O

(
ρ2

t

)
and

ρ2

4t
− t

2
+

1
2

√
t2 − ρ2 =

ρ2

4t
− ρ2

2(t+
√
t2 − ρ2)

= −ρ
2(t−

√
t2 − ρ2)

4t(t+
√
t2 − ρ2)

= − ρ4

4t(t+
√
t2 − ρ2)2
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and hence, by the mean value theorem,

eρ
2/(4t)−t/2+

√
t2−ρ2/2 = 1 +

1
t
O

(
ρ4

t2

)
.

Therefore, we can obtain

D(t, ρ) =
(

1 +
1
t
O

(
ρ4

t2

))(
1 +

1
t
O

(
ρ2

t

))3/2(
1 +O

(
1
t

))
− 1

≤ C
1
t

(
1 +

ρ2

t
+ · · · +

(
ρ2

t

)N)
for some C > 0 and N ∈ N. Using this inequality and Lemma 9.9, we can deduce
that

‖X1‖Lp ≤ Ct−3/2

(∫
|y|≤t(1+ε)/2

e−r|y|
2/(4t) 1

tr

(
1 +

|y|2

t
+ · · · +

(
|y|2

t

)N)r
dy

)1/r

× ‖g‖Lq

≤ Ct−3/2−1+3/(2r)

(∫
Rn

e−r|z|
2/4
(
1 + |z|2 + · · · + |z|2N

)r
dz

)1/r

‖g‖Lq

≤ Ct−
3
2 ( 1

q−
1
p )−1‖g‖Lq ,

which implies (2.2.23) for t ≥ 1. Moreover, by using the well-known fact

‖et∆g‖Lp ≤ Ct−
3
2 ( 1

q−
1
p )‖g‖Lq (t > 0)

(see [14]), we can immediately obtain

‖J3(t)g‖Lp ≤ ‖J3(t)g − et∆g‖Lp + ‖et∆g‖Lp

≤ Ct−
3
2 ( 1

q−
1
p )‖g‖Lq ,

which proves (2.2.21) for t ≥ 1. Next, we treat the case 0 ≤ t < 1. Noting that
I1(s)/s is bounded for ≤ s ≤ 1/2, we have

e−t/2I1

(
1
2

√
t2 − |y|2

)
8π
√
t2 − |y|2

≤ C

for 0 ≤ t < 1 and |y| ≤ t and the Hausdorff-Young inequality (see Lemma 9.9), we
obtain

‖J3(t)g‖Lp ≤ C

∫
|y|<t

e−t/2I1
(

1
2

√
t2 − |y|2

)
8π
√
t2 − |y|2

r

dy

1/r

‖g‖Lq

≤ Ct3/r‖g‖Lq

for 0 ≤ t < 1, where r is determined by 1/q − 1/p = 1 − 1/r. This implies (2.2.21)
for 0 ≤ t < 1. Moreover, we can see that

‖J3(t)g − et∆g‖Lp ≤ ‖J3(t)g‖Lp + ‖et∆g‖Lp

≤ Ct3/r‖g‖Lq + Ct−
3
2 ( 1

q−
1
p )‖g‖Lq

≤ Ct−
3
2 ( 1

q−
1
p )‖g‖Lq ,
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which yields (2.2.23) for 0 < t < 1.
Next, we prove (2.2.22). As before, we first assume that t ≥ 1 and put ρ =

|x− y|. By noting

I ′1(s) = I0(s) −
1
s
I1(s),

which is proved in Lemma 9.3, we can see that

J̃3(t)g =
1

16πt3/2

∫
t(1+ε)/2≤ρ≤t

e−t/2
{
I0

(
1
2

√
t2 − ρ2

)
t5/2

t2 − ρ2

−I1
(

1
2

√
t2 − ρ2

)(
t3/2√
t2 − ρ2

+
4t5/2

(t2 − ρ2)3/2

)}
g(y)dy

+
1

16πt3/2

∫
ρ≤t(1+ε)/2

e−t/2
{
I0

(
1
2

√
t2 − ρ2

)
t5/2

t2 − ρ2

−I1
(

1
2

√
t2 − ρ2

)(
t3/2√
t2 − ρ2

+
4t5/2

(t2 − ρ2)3/2

)}
g(y)dy

≡ X4 +X5.

In the same way as the estimating X2, one can prove that

‖X4‖Lp ≤ Ce−c3t
ε

‖g‖Lq

with some c3 ∈ (0, 1/4). In order to estimate X5, we rewrite as

X5 =
1

16πt3/2

∫
ρ≤t(1+ε)/2

e−ρ
2/(4t)D1(t, ρ)g(y)dy

with

D1(t, ρ) = eρ
2/(4t)−t/2

{
I0

(
1
2

√
t2 − ρ2

)
t5/2

t2 − ρ2

−I1
(

1
2

√
t2 − ρ2

)(
t3/2√
t2 − ρ2

+
4t5/2

(t2 − ρ2)3/2

)}
.

Since,

D1(t, ρ) =
1√
π
eρ

2/(4t)−t/2+
√
t2−ρ2/2


(

t√
t2 − ρ2

)5/2

−

(
t√

t2 − ρ2

)3/2

− t5/2

(
√
t2 − ρ2)7/2

}(
1 +O

(
1
t

))

=
1√
π

(
1 +

1
t
O

(
ρ2

t

)){(
1 +

1
t
O

(
ρ2

t

))5/2

−
(

1 +
1
t
O

(
ρ2

t

))3/2

+
1
t

(
1 +

1
t
O

(
ρ2

t

))5/2
}(

1 +O

(
1
t

))

≤ C

t

(
1 +

ρ2

t
+ · · · +

(
ρ2

t

)N)
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for some C > 0 and N ∈ N, we can deduce that

‖X5‖Lp ≤ Ct−3/2−1

(∫
|y|≤t(1+ε)/2

e−r|y|
2/(4t)

(
1 +

|y|2

t
+ · · · +

(
|y|2

t

)N)r
dy

)1/r

× ‖g‖Lq

≤ Ct−3/2−1+3/2r

(∫
Rn

e−r|z|
2/4
(
1 + |z|2 + · · · + |z|2N

)r
dz

)1/r

‖g‖Lq

≤ Ct−
3
2 ( 1

q−
1
p )−1‖g‖Lq ,

which implies (2.2.22) for t ≥ 1. Finally, we prove (2.2.22) for 0 ≤ t < 1. We put

J̃3(t)g =
∫
|x−y|≤t

k(t, x− y)g(y)dy

:=
e−t/2

16π

∫
ρ≤t

{
I0

(
1
2

√
t2 − ρ2

)
t

t2 − ρ2

−I1
(

1
2

√
t2 − ρ2

)(
1√

t2 − ρ2
+

4t
(t2 − ρ2)3/2

)}
g(y)dy,

where ρ = |x− y|. By the definition of the modified Bessel functions

I0(s) =
∞∑
m=0

1
(m!)2

(s
2

)2m

, I1(s) =
∞∑
m=0

1
m!(m+ 1)!

(s
2

)2m+1

,

we can deduce that

I0

(
1
2

√
t2 − ρ2

)
t

t2 − ρ2
=

t

t2 − ρ2
+O(t)

and

I1

(
1
2

√
t2 − ρ2

)
4t

(t2 − ρ2)3/2
=

t

t2 − ρ2
+O(t)

as t→ 0. Noting this, we can see that k(t, y) is bounded for 0 ≤ t < 1 and |y| ≤ t.
Therefore, by Lemma 9.9, we have

‖J̃3(t)g‖Lp ≤ C

(∫
|y|≤t

k(t, y)rdy

)1/r

‖g‖Lq

≤ Ct3/r‖g‖Lq ,

which implies (2.2.22) for 0 ≤ t < 1. �

2.3. Semilinear damped wave equations with a source nonlinearity

In this section, we shall give the critical exponent for the Cauchy problem of
the semilinear wave equation

(2.3.1)
{
utt − ∆u+ ut = |u|p, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

We prove that the critical exponent for (2.3.1) is given by 1 + 2/n. Namely, if
p > 1+2/n, then there exists a unique global solution and if 1 < p ≤ 1+2/n, then
the local solution with suitable data blows up in finite time. We give a two types
of proof for global existence result. The first one is due to Ikehata and Tanizawa
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[35]. This proof is based on Matsumura’s estimate 2.1.3 and a weighted energy
estimate developed by Todorova and Yordanov [106]. Here we shall prove a better
estimate for ‖ut(t)‖L2 than that of [35]. This is remarked by D’Abbicco, Lucente
and Reissig [8]. Another proof is given by Nishihara [78]. This proof is done by
the Lp-Lq estimates described in Theorem 2.4. We also give blow-up results for
(2.3.1). We introduce the results by Li and Zhou [53] and Zhang [122]. The proof
of [53] is based on the method of differential inequality and the proof of [122] is
due to the test function method, which is explained in Section 1.4.2.

2.3.1. Global existence by Matsumura’s estimates. Here we prove a
global existence result by following [35]. For α ∈ (0, 1/4], we put

I2
α =

∫
Rn

e2α|x|
2
(u0(x)2 + |∇u0(x)|2 + u1(x)2)dx

and

ψ(t, x) =
α|x|2

(1 + t)
.

We first note that for the data with Iα < ∞, there exists a unique local-in-time
solution

u ∈ C([0, T ∗);H1(Rn)) ∩ C1([0, T ∗);L2(Rn))

for some T ∗ > 0. Moreover,∫
Rn

e2ψ(t,x)(u(t, x)2 + |∇u(t, x)|2 + ut(t, x)2)dx <∞

holds for any 0 ≤ t < T ∗, the above integral is a continuous function of t ∈ [0, T ∗)
and if T ∗ < +∞, then we have

lim inf
t→T∗−0

∫
Rn

e2ψ(t,x)(u(t, x)2 + |∇u(t, x)|2 + ut(t, x)2)dx = ∞

(see Proposition 9.21).
Therefore, it suffices to prove a priori estimate for solutions to (2.3.1).

Theorem 2.6. Let n ≥ 1 and p > 1 + 2/n. Moreover, let p ≤ n/(n − 2) if
n ≥ 3. Let α ∈ (0, 1/4]. Then there exists an ε0 > 0 such that if Iα ≤ ε0, then
there exists a unique global solution

u ∈ C([0,∞);H1(Rn)) ∩ C1([0,∞);L2(Rn))

to (2.3.1). Moreover, there exists some constant C > 0 such that the solution u
satisfies the decay estimates

‖u(t)‖L2 ≤ C(1 + t)−n/4Iα,

‖∇u(t)‖L2 ≤ C(1 + t)−n/4−1/2Iα,

‖ut(t)‖L2 ≤ C(1 + t)−n/4−1Iα.

Remark 2.2. This theorem is still true for other nonlinearities, for example,
±|u|p−1u,−|u|p. More generally, we can obtain the same global existence result for
the nonlinearity f(u) satisfying f(0) = 0 and the estimate (9.5.2) (see Section 9.5).
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Proof. We shall prove a priori estimate for the functional

W (t) = sup
0≤s≤t

{
‖eψ(ut,∇u)(t)‖L2 + (1 + t)n/4+1/2‖∇u(t)‖L2

+(1 + t)n/4+1‖ut(t)‖L2 + (1 + t)n/4‖u(t)‖L2

}
,

First, we prove an a estimate for a weighted energy:

Lemma 2.7. Let u be a local solution of (2.3.1) whose existence is guaranteed by
Proposition 9.21 and let δ > 0 be a small number such that γ := 2/(p+ 1) + δ < 1.
Then there exists some constant C = Cδ > 0 such that we have
(2.3.2)
‖eψ(t)(ut,∇u)(t)‖L2 ≤ CIα + CI(p+1)/2

α + C sup
0≤s≤t

(
(1 + s)δ‖eγψ(s)u(s)‖(p+1)/2

Lp+1

)
.

Proof. A simple calculation gives

− ψt(t, x) =
α|x|2

(1 + t)2
, ∇ψ(t, x) =

2αx
1 + t

, ∆ψ(t, x) =
2nα
1 + t

,(2.3.3)

− ψt(t, x) =
1
4α

|∇ψ(t, x)|2 ≥ |∇ψ(t, x)|2,(2.3.4)

since α ∈ (0, 1/4]. Multiplying (2.3.1) by e2ψut, we obtain

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u)(2.3.5)

+ e2ψ
(

1 + (−ψt) −
|∇ψ|2

−ψt

)
u2
t +

e2ψ

−ψt
|∇ψut − ψt∇u|2

= ∂t

[
e2ψ

p+ 1
|u|pu

]
+ (−ψt)

e2ψ

p+ 1
|u|pu.

Noting (2.3.4), one can easily see that

e2ψ
(

1 + (−ψt) −
|∇ψ|2

−ψt

)
u2
t +

e2ψ

−ψt
|∇ψut − ψt∇u|2 ≥ 0.

Integrating (2.3.5) over Rn with using the divergence theorem, which can be applied
by e2ψut∇u ∈ L1(Rn), we can see that

d

dt

∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx

≤ d

dt

∫
Rn

e2ψ(t,x)|u(t, x)|p+1dx+
∫
Rn

e2ψ(t,x)(−ψt)|u(t, x)|p+1dx.

By integrating over [0, t], we have∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx(2.3.6)

≤ I2
α + CIp+1

α + C

∫
Rn

e2ψ(t,x)|u(t, x)|p+1dx

+ C

∫ t

0

∫
Rn

e2ψ(s,x)(−ψt(s, x))|u(s, x)|p+1dxds.
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Here we used the inequality∫
Rn

e2α|x|
2
|u0|p+1dx ≤ CIp+1

α ,

which is easily obtained from the Gagliardo-Nirenberg inequality (Lemma 9.10).
Indeed, we have∫

Rn

e2α|x|
2
|u0|p+1dx = ‖e2α|x|

2/(p+1)u0‖p+1
Lp+1

≤ C(‖e2α|x|
2/(p+1)u0‖L2 + ‖∇(e2α|x|

2/(p+1)u0)‖L2)p+1

≤ CIp+1
α ,

since |x|2e4α|x|2/(p+1) ≤ Ce2α|x|
2
. From (2.3.3), we see that

(−ψt(s, x))e(2−γ(p+1))ψ(s,x) ≤ ψ(s, x)
1 + s

e−δ(p+1)ψ(s,x) ≤ Cδ(1 + s)−1

and hence, ∫ t

0

∫
Rn

e2ψ(s,x)(−ψt(s, x))|u(s, x)|p+1dxds

≤ Cδ

∫ t

0

(1 + s)−1

∫
Rn

eγ(p+1)ψ(s,x)|u(s, x)|p+1dxds

≤ Cδ sup
0≤s≤t

(
(1 + s)δ‖eγψ(s)u(s)‖p+1

Lp+1

)
.

Substituting this into (2.3.6), we reach the conclusion. �

The next lemma is a Gagliardo-Nirenberg type inequality, which helps us to
control nonlinear terms.

Lemma 2.8. Let T > 0, θ(q) = n(1/2 − 1/q), 0 ≤ θ(q) < 1 and let σ ∈ (0, 1].
If v ∈ H1(Rn) satisfies eψ(t)v, eψ(t)∇v ∈ L2(Rn) for all t ∈ [0, T ), then it follows
that

‖eσψ(t)v‖Lq ≤ Cσ(1 + t)(1−θ(q))/2‖∇v‖1−σ
L2 ‖eψ(t)∇v‖σL2

for t ∈ [0, T ) and some Cσ > 0.

Proof. From the Gagliardo-Nirenberg inequality (Lemma 9.10), we have

‖eσψ(t)v‖Lq ≤ C‖eσψ(t)v‖1−θ(q)
L2 ‖∇(eσψ(t)v)‖θ(q)L2 .

On the other hand, using

eσψ(t)∇v = ∇(eσψ(t)v) − σeσψ(t)v∇ψ(t),

and (2.3.3), we can deduce that

‖eσψ(t)∇v‖2
L2

=
∫
Rn

(
|∇(eσψ(t)v)|2 + σ2e2σψ(t)|v|2|∇ψ(t)|2 − 2σeσψ(t)v∇(eσψ(t)v)∇ψ

)
dx

=
∫
Rn

(
|∇(eσψ(t)v)|2 + σ2e2σψ(t)|v|2|∇ψ(t)|2 + σ∆ψ(t)(eσψ(t)v)2

)
dx

≥ ‖∇(eσψ(t)v)‖2
L2 +

2nσα
1 + t

‖eσψ(t)v‖2
L2 .
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Thus, we have

(2.3.7) ‖eσψ(t)v‖Lq ≤ Cσ,α(1 + t)(1−θ(q))/2‖eσψ(t)∇v‖L2

for some positive constant Cσ,α depending on σ and α. By using the Hölder in-
equality with σ/2 + (1 − σ)/2 = 1/2, one can obtain

‖eσψ(t)∇v‖L2 = ‖eσψ(t)|∇v|σ|∇v|1−σ‖L2

≤ ‖eψ(t)∇v‖σL2‖∇v‖1−σ
L2 .

Substituting this into (2.3.7), we have the desired estimate. �

Now we estimate components of W (t):

Lemma 2.9. Let u be a local solution whose existence is guaranteed by Propo-
sition 9.21 and let ε > 0. Then we have the following estimate:

(1 + t)n/4+1/2‖∇u(t)‖L2 + (1 + t)n/4+1‖ut(t)‖L2 + (1 + t)n/4‖u(t)‖L2(2.3.8)

≤ CIα + Cε sup
0≤s≤t

(
(1 + s)n/4+1+ε‖eεψ(s)u(s)‖pL2p

)
.

Proof. By the Duhamel principle, the solution u of (2.3.1) satisfies the integral
equation

u(t) = Sn(t)(u0 + u1) + ∂t(Sn(t)u0) +
∫ t

0

Sn(t− s)|u(s)|pds ≡ uL(t) + uN (t),

where

uL(t) = Sn(t)(u0 + u1) + ∂t(Sn(t)u0), uN (t) =
∫ t

0

Sn(t− s)|u(s)|pds

and Sn(t) denotes the solution operator for the linear damped wave equation utt−
∆u+ut = 0, which maps a function g(x) to the solution u(t, x) with the initial data
u(0, x) = 0, ut(0, x) = g(x). By Matsumura’s estimate (2.1.3), one can calculate

‖uL(t)‖L2 ≤ C(‖u0‖L2 + ‖u1‖L2) ≤ CIα
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and ∫ t/2

0

‖Sn(t− s)|u(s)|p‖L2ds

≤ C

∫ t/2

0

(1 + t− s)−n/4(‖|u(s)|p‖L1 + ‖|u(s)|p‖L2)ds

≤ C sup
0≤s≤t/2

(
(1 + s)1+ε(‖u(s)‖pLp + ‖u(s)‖pL2p)

)
×
∫ t/2

0

(1 + t− s)−n/4(1 + s)−1−εds

≤ C(1 + t)−n/4 sup
0≤s≤t/2

(
(1 + s)1+ε(‖u(s)‖pLp + ‖u(s)‖pL2p)

)
,∫ t

t/2

‖Sn(t− s)|u(s)|p‖L2ds

≤ C

∫ t

t/2

‖|u(s)|p‖L2ds

≤ C(1 + t)−n/4−1

∫ t

t/2

(1 + s)n/4+1‖u(s)‖pL2pds

≤ C(1 + t)−n/4 sup
t/2≤s≤t

(
(1 + s)n/4+1‖u(s)‖pL2p

)
.

To control the bad term ‖u(s)‖pLp , we use the inequality

‖u(s)‖pLp ≤ Cε(1 + s)n/4‖eεψ(s)u(s)‖pL2p ,

which follows from

‖u(s)‖pLp ≤
(∫

Rn

e−2pεψ(s,x)dx

)1/2(∫
Rn

e2pεψ(s,x)|u(s, x)|2pdx
)1/2

≤ C(1 + s)n/4‖eεψ(s)u(s)‖pL2p .

Consequently, we have

‖uN (t)‖L2 ≤ C(1 + t)−n/4 sup
0≤s≤t

(
(1 + s)n/4+1+ε‖eεψ(s)u(s)‖pL2p

)
.

We can prove the estimates of ‖∇u(t)‖L2 and ‖ut(t)‖L2 in a similar way by noting∫ t

t/2

‖∇S(t− s)|u(s)|p‖L2ds

≤ C

∫ t

t/2

(1 + t− s)−1/2‖u(s)‖pL2pds

≤ C sup
0≤s≤t

(
(1 + s)n/4+1‖eεψ(s)u(s)‖pL2p

)∫ t

t/2

(1 + t− s)−1/2(1 + s)−n/4−1ds

≤ C(1 + t)−n/4−1/2 sup
0≤s≤t

(
(1 + s)n/4+1‖eεψ(s)u(s)‖pL2p

)
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and∫ t

t/2

‖∂tS(t− s)|u(s)|p‖L2ds

≤ C

∫ t

t/2

(1 + t− s)−1‖u(s)‖pL2pds

≤ C sup
0≤s≤t

(
(1 + s)n/4+1+ε‖eεψ(s)u(s)‖pL2p

)∫ t

t/2

(1 + t− s)−1(1 + s)−n/4−1−εds

≤ C(1 + t)−n/4−1−ε log(1 + t/2) sup
0≤s≤t

(
(1 + s)n/4+1+ε‖eεψ(s)u(s)‖pL2p

)
≤ C(1 + t)−n/4−1 sup

0≤s≤t

(
(1 + s)n/4+1+ε‖eεψ(s)u(s)‖pL2p

)
.

�

Now we give an a priori estimate forW (t). We assume that Iα ≤ 1. By Lemmas
2.7 and 2.9, we can estimate

W (t) ≤ CIα + Cδ sup
0≤s≤t

(
(1 + s)δ‖eγψ(s)u(s)‖(p+1)/2

Lp+1

)
+ Cε sup

0≤s≤t

(
(1 + s)n/4+1+ε‖eεψ(s)u(s)‖pL2p

)
for any small δ > 0, ε > 0, where γ = 2/(p + 1) + δ < 1. By Lemma 2.8, one can
obtain

‖eεψ(s)u(s)‖L2p ≤ C(1 + t)(1−θ(2p))/2‖∇u(s)‖1−ε
L2 ‖eψ(s)u(s)‖εL2

≤ C(1 + t)(1−θ(2p))/2−(1−ε)(n/4+1/2)W (s)

and, similarly,

‖eγψ(s)u(s)‖Lp+1 ≤ C(1 + t)(1−θ(p+1))/2−(1−γ)(n/4+1/2)W (s).

A straightforward calculation shows that if p > 1 + 2/n, then both of the powers
of (1 + t) in the above two inequalities are negative, provided that δ and ε are
sufficiently small. Therefore, putting

M(t) = sup
0≤s≤t

W (s),

we obtain

(2.3.9) M(t) ≤ CIα + CM(t)(p+1)/2 + CM(t)p

for 0 ≤ t < T ∗. We note that W (t) is a continuous function of t ∈ [0, T ) and so is
M(t). By taking Iα sufficiently small, we can deduce that

(2.3.10) M(t) ≤ CIα

for 0 ≤ t < T ∗. Indeed, in (2.3.9), we may assume that C ≥ 1. We take Iα
sufficiently small so that

(2.3.11) 2CIα > CIα + C(2CIα)(p+1)/2 + C(2CIα)p.

Let M1,M2(M1 < M2) be the positive roots of the identity

M = CIα + CM (p+1)/2 + CMp.
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Note that M1 < 2CIα holds by (2.3.11). By noting M(0) = Iα ≤ CIα ≤ M1 and
the continuity of M(t), the estimate (2.3.9) implies that M(t) ≤M1 < 2CIα, which
proves (2.3.10). Finally, by (2.3.10), we have

lim sup
t→T∗−0

∫
Rn

e2ψ(t,x)(u(t, x)2 + |∇u(t, x)|2 + ut(t, x)2)dx <∞,

which means T ∗ = +∞ (see Proposition 9.21). �

2.3.2. Global existence by Lp-Lq estimates. In this subsection, we intro-
duce another proof of global existence of solutions to the semilinear damped wave
equation in three space dimensions

(2.3.12)
{
utt − ∆u+ ut = f(u), (t, x) ∈ (0,∞) × R3,
(u, ut)(0, x) = (u0, u1)(x), x ∈ R3.

We shall introduce a proof by using Lp-Lq estimate (Theorem 2.4). This proof was
given by Nishihara [78]. We assume that the semilinear term f(u) satisfies

(2.3.13) |f(u) − f(v)| ≤ C(|u| + |v|)p−1|u− v|

with some p > 1 and some constant C > 0. We define

Z0 := (W 1,1 ∩W 1,∞) × (L1 ∩ L∞)

‖(f, g)‖Z0 := ‖f‖W 1,1 + ‖f‖W 1,∞ + ‖g‖L1 + ‖g‖L∞

and

X = {u ∈ C([0,∞);L1 ∩ L∞) | ‖u‖X < +∞}.

‖u‖X = sup
t∈[0,∞)

{
‖u(t)‖L1 + (1 + t)3/2‖u(t)‖L∞

}
.

Here we call a function u a mild solution of (2.3.12) if u satisfies the integral equation

(2.3.14) u(t, x) = S3(t)(u0 + u1) + ∂t(S3(t)u0) +
∫ t

0

S3(t− s)f(u)(s, x)ds.

Theorem 2.10 (Nishihara [78]). If the semilinear term f(u) satisfies (2.3.13)
with some p > 1 + 2/3 and the initial data (u0, u1) ∈ Z0 is sufficiently small, then
there exists a unique mild solution u ∈ X of (2.3.12).

Remark 2.3. In Theorem 2.6, we need the boundedness of the power of the
nonlinearity p ≤ n/(n − 2) when n ≥ 3. However, the proof of Theorem 2.10 does
not require any boundedness for p.

Proof. Let

u(0)(t, x) = S3(t)(u0 + u1) + ∂t(S3(t)u0)

= e−t/2W̃3(t;u0, u1) + J3(t)(u0 + u1) + J̃3(t)u0,
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where

W̃3(t;u0, u1) =
(

1
2

+
t

8

)
W3(t)u0 + ∂t(W3(t)u0) +W3(t)u1,

W3(t)u0(x) =
1

4πt

∫
|x−y|=t

u0(y)dSy,

J3(t)u0(x) =
e−t/2

8π

∫
|x−y|≤t

I1

(
1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2

u0(y)dy,

J̃3(t)u0(x) =
1
8π

∫
|x−y|≤t

∂t

e−t/2 I1
(

1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2

u0(y)dy,

and we define an approximation of the solution inductively by

u(n+1)(t, x) = u(0)(t, x) +
∫ t

0

S3(t− s)f(u(n))(s, x)ds ≡ u(0)(t, x) + u
(n)
N (t, x).

It suffices to prove the following three claims:
(i) There exists a constant C0 > 0 such that ‖u(0)‖X ≤ C0‖(u0, u1)‖Z0 .
(ii) If ‖(u0, u1)‖Z0 is sufficiently small, then ‖u(n)‖X ≤ 2C0‖(u0, u1)‖Z0 implies

‖u(n+1)‖X ≤ 2C0‖(u0, u1)‖Z0 .
(iii) When ‖(u0, u1)‖Z0 is sufficiently small, it follows that

‖u(n+1) − u(n)‖X ≤ 1
2
‖u(n) − u(n−1)‖X .

In order to prove (i), we use the following lemma:

Lemma 2.11. For q = 1 or q = ∞, we have

‖W3(t)g‖Lq ≤ Ct‖g‖Lq ,
‖∂t(W3(t)g)‖Lq ≤ Ct‖g‖W 1,q .

Proof. This lemma can be easily proved by noting

‖W3(t)g‖L1 ≤ Ct

∫
S2

‖g‖L1dω ≤ Ct‖g‖L1

and the same estimate is true if we replace L1 in L∞. The second assertion can be
also proved by a similar way. �

By the above lemma and the estimates (2.2.19), (2.2.20), we can immediately
obtain (i).

Next, we prove the claim (ii). We have

‖u(n+1)‖X ≤ ‖u(0)‖X + ‖u(n)
N ‖X .

By (i), it holds that ‖u(0)‖X ≤ C0‖(u0, u1)‖Z0 . Therefore, it suffices to prove that
‖u(n)

N ‖X ≤ C0‖(u0, u1)‖Z0 under the assumption ‖u(n)‖X ≤ 2C0‖(u0, u1)‖Z0 and
‖(u0, u1)‖Z0 is sufficiently small. We write

u
(n)
N (t, x) =

∫ t

0

e−(t−s)/2W3(t− s)f(u(n))(s, x)ds+
∫ t

0

J3(t− s)f(u(n))(s, x)ds.
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By Lemma 2.11, we see that

‖
∫ t

0

e−(t−s)/2W3(t− s)f(u(n))(s, x)ds‖L1

≤ C

∫ t

0

e−(t−s)/2(t− s)‖f(u(n))(s)‖L1ds

≤ C

∫ t

0

‖u(n)(s)‖p−1
L∞ ‖u(n)(s)‖L1ds

≤ ‖u(n)‖pX
∫ t

0

(1 + s)−
3
2 (p−1)ds ≤ C‖u(n)‖pX ,

since p > 1 + 3/2. It also follows from (2.2.19) that

‖
∫ t

0

J3(t− s)f(u(n))(s, x)ds‖L1

≤
∫ t

0

‖J3(t− s)f(u(n))(s)‖L1ds

≤ C

∫ t

0

‖f(u(n))(s)‖L1ds

≤ C

∫ t

0

‖u(n)(s)‖p−1
L∞ ‖u(n)(s)‖L1ds

≤ ‖u(n)‖pX
∫ t

0

(1 + s)−
3
2 (p−1)ds ≤ C‖u(n)‖pX .

Similarly, we deduce that

‖
∫ t

0

e−(t−s)/2W3(t− s)f(u(n))(s, x)ds‖L∞

≤
∫ t

0

‖e−(t−s)/2W3(t− s)f(u(n))(s)‖L∞ds

≤ C

∫ t

0

e−(t−s)/2(t− s)‖f(u(n))(s)‖L∞ds

≤ C‖u(n)‖pX
∫ t

0

(1 + t− s)−
3
2 (1 + s)−

3
2pds

≤ C(1 + t)−
3
2 ‖u(n)‖pX

and, for p ≥ 2,

‖
∫ t

0

J3(t− s)f(u(n))(s, x)ds‖L∞

≤
∫ t

0

‖J3(t− s)f(u(n))(s)‖L∞ds

≤ C

∫ t

0

(1 + t− s)−
3
2 ‖f(u(n))(s)‖L1ds

≤ C‖u(n)‖pX
∫ t

0

(1 + t− s)−
3
2 (1 + s)−

3
2 (p−1)ds

≤ C(1 + t)−
3
2 ‖u(n)‖pX ,
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and, for 1 + 2/3 < p < 2,

‖
∫ t

0

J3(t− s)f(u(n))(s, x)ds‖L∞

≤
∫ t

0

‖J3(t− s)f(u(n))(s)‖L∞ds

≤ C

∫ t/2

0

(1 + t− s)−
3
2 ‖f(u(n))(s)‖L1ds

+ C

∫ t

t/2

(1 + t− s)−
3
2 (p−1)‖f(u(n))(s)‖L1/(p−1)

≤ C‖u(n)‖pX
∫ t/2

0

(1 + t− s)−
3
2 (1 + s)−

3
2 (p−1)ds

+ C‖u(n)‖pX
∫ t

t/2

(1 + t− s)−
3
2 (p−1)(1 + s)−

3
2 ds

≤ C(1 + t)−
3
2 ‖u(n)‖pX .

Here we have used Lemma 9.8 and the inequality

‖f(u(n))(s)‖L1/(p−1) ≤ C‖|u(n)(s)|p‖L1/(p−1) ≤ C‖u(n)(s)‖L∞‖u(n)(s)‖p−1
L1 .

Consequently, we obtain

‖u(n+1)‖X ≤ C0‖(u0, u1)‖Z0 + C‖u(n)‖pX
≤ C0‖(u0, u1)‖Z0 + C(2C0‖(u0, u1)‖Z0)

p

≤ 2C0‖(u0, u1)‖Z0 ,

provided that ‖(u0, u1)‖Z0 is sufficiently small. This proves the claim (ii).
Let us turn to (iii). We see that

u(n+1) − u(n) =
∫ t

0

e−
t−s
2 W3(t− τ)(f(u(n)) − f(u(n−1)))ds

+
∫ t

0

J3(t− s)(f(u(n)) − f(u(n−1)))ds

and hence,

‖u(n+1) − u(n)‖L1 ≤ C

∫ t

0

(
e−

t−s
2 (t− s) + 1

)
‖f(u(n)) − f(u(n−1))‖L1ds

≤ C

∫ t

0

(‖u(n)‖p−1
L∞ + ‖u(n−1)‖p−1

L∞ )‖u(n) − u(n−1)‖L1ds

≤ C

∫ t

0

(1 + s)−
3
2 (p−1)(‖u(n)‖p−1

X + ‖u(n−1)‖p−1
X )

× ‖u(n) − u(n−1)‖L1ds

≤ C(2C0‖u0, u1‖Z0)
p−1‖u(n) − u(n−1)‖X .
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Similarly, we have for p ≥ 2,

‖u(n+1) − u(n)‖L∞

≤ C

(∫ t

0

e−
t−s
2 (t− s)(1 + s)−

3
2pds+

∫ t

0

(1 + t− s)−
3
2 (1 + s)−

3
2 (p−1)ds

)
× (‖u(n)‖X + ‖u(n−1)‖X)p−1‖u(n) − u(n−1)‖X

≤ C(1 + t)−
3
2 (2C0‖u0, u1‖Z0)

p−1‖u(n) − u(n−1)‖X ,

and, for 1 + 2/3 < p < 2,

‖u(n+1) − u(n)‖L∞

≤ C

∫ t

0

e−
t−s
2 (t− s)‖f(u(n)) − f(u(n−1))‖L∞ds

+ C

∫ t/2

0

(1 + t− s)−
3
2 ‖f(u(n)) − f(u(n−1))‖L1ds

+ C

∫ t

t/2

(1 + t− s)−
3
2 (p−1)‖f(u(n)) − f(u(n−1))‖L1/(p−1)ds

≤ C

(
(1 + t)−

3
2p +

∫ t/2

0

(1 + t− s)−
3
2 (1 + s)−

3
2 (p−1)ds

+
∫ t

t/2

(1 + t− s)−
3
2 (p−1)(1 + s)−

3
2 ds

)
× (2C0‖u0, u1‖Z0)

p−1‖u(n) − u(n−1)‖X
≤ C(1 + t)−

3
2 (2C0‖u0, u1‖Z0)

p−1‖u(n) − u(n−1)‖X .

Here we have used the inequality

‖f(u(n)) − f(u(n−1))‖L1/(p−1) ≤ C(‖u(n)‖L1 + ‖u(n−1)‖L1)p−1‖u(n) − u(n−1)‖L∞ .

Consequently, we obtain

‖u(n+1) − u(n)‖X ≤ C(2C0‖u0, u1‖Z0)
p−1‖u(n) − u(n−1)‖X .

Therefore, choosing ‖u0, u1‖Z0 sufficiently small so that

‖u(n+1) − u(n)‖X ≤ 1
2
‖u(n) − u(n−1)‖X ,

we have the claim (iii).
By the claims (i), (ii), (iii), we can find a solution of (2.3.14) u ∈ X for small

data (u0, u1) ∈ Z0 by u = limn→∞ u(n). The uniqueness of solution is immediately
obtained from the above proof. In fact, if we have two solutions u and v in X.
From the above proof, we can see that

‖u(t) − v(t)‖L1 ≤ C

∫ t

0

(‖u‖X + ‖v‖X)p−1‖u(s) − v(s)‖L1ds.

By the Gronwall inequality (Lemma 9.11), we have ‖u(t) − v(t)‖L1 = 0. �
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2.3.3. Blow-up by differential inequalities. We shall give some blow-up
results for the damped wave equation with a source semilinear term

(2.3.15)
{
utt − ∆u+ ut = |u|p, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = ε(u0, u1)(x), x ∈ Rn,

where ε > 0. We first introduce a useful comparison lemma developed by Li and
Zhou [53].

Lemma 2.12 (Li and Zhou [53]). Let α ≥ 0, T > 0 and let k, h ∈ C2([0, T ))
satisfy the differential inequality

(2.3.16)
a(t)k′′(t) + k′(t) ≥ b(t)|k(t)|αk(t),
a(t)h′′(t) + h′(t) ≤ b(t)|h(t)|αh(t)

with some positive functions a(t), b(t). Moreover, we assume

k(0) > h(0), k′(0) ≥ h′(0)

or
k(0) ≥ h(0), k′(0) > h′(0).

Then

(2.3.17) k′(t) > h′(t)

holds for all 0 < t < T .

Proof. Without loss of generality, we may assume that

k(0) > h(0), k′(0) > h′(0).

Indeed, if k(0) = h(0), k′(0) > h′(0), then there exists a small time t0 > 0 such that
k(t0) > h(t0), k′(t0) > h′(t0) and we can consider t0 as the initial time. In the case
that k(0) > h(0), k′(0) = h′(0), using the inequality (2.3.16), we obtain k′′(0) >
h′′(0). Thus, taking a small time t0 > 0, we can see that k(t0) > h(t0), k′(t0) >
h′(t0).

We suppose that the conclusion of the lemma fails, that is, there exists a time
t∗ ∈ (0, T ) such that {

k′(t∗) = h′(t∗)
k′(t) > h′(t) (0 ≤ t < t∗).

This implies
k′′(t∗) ≤ h′′(t∗) and k(t∗) > h(t∗).

However, by using the inequality (2.3.16) and we can deduce that

a(t∗) (k′′(t∗) − h′′(t∗)) ≥ b(t∗) (|k|αk(t∗) − |h|αh(t∗)) > 0,

which leads to a contradiction. �

Using the above lemma, we can prove the nonexistence of global solutions for
some ordinary differential inequalities. Our proof is based on the result of Todorova
and Yordanov [106] (see also Nishihara [83]).

Proposition 2.13. Let 0 ≤ γ ≤ 1 and let F (t) be a C2-function satisfying the
differential inequality

(2.3.18) F ′′(t) + F ′(t) ≥ c0(1 + t)−γ |F (t)|αF (t)
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with some α > 0, c0 > 0. Moreover, we assume that

F (0) ≥ 0, F ′(0) ≥ 0, F (0) + F ′(0) > 0.

Then F (t) cannot exist globally. Furthermore, if F (0) = ε with sufficiently small
ε > 0, then the lifespan

Tε := sup{T ∈ (0,∞) | F (t) < +∞ (t ∈ (0, T ))}

of F (t) is estimated as

(2.3.19) Tε ≤

{
Cε−α/(1−γ) (γ < 1),
eCε

−α
(γ = 1)

with some constant C > 0 depending only on α, c0, γ.

Proof. Without loss of generality, we may assume that F (0) > 0. Because, if
F (0) = 0, then the assumption implies F ′(0) > 0. Hence there exists a small time
t0 such that F (t0) > 0, F ′(t0) > 0 and we can consider t0 as the initial time. In
what follows, we assume that F (0) > 0, F ′(0) > 0 and we put F (0) = ε > 0. For
this ε, we consider the ordinary differential equation

y′(t) = δc0ε
α/2(1 + t)−γy(t)1+α/2

with the initial data y(0) = ε, where δ is a small positive constant satisfying

(2.3.20) δ
(
δc0ε

α
(
1 +

α

2

)
+ 1
)
≤ 1

and

(2.3.21) δc0ε
1+α < F ′(0).

Noting

− 2
α

d

dt

(
y(t)−α/2

)
= δc0ε

α/2(1 + t)−γ ,

we can immediately solve the equation and obtain

y(t) =


[
ε−α/2 − αδc0ε

α/2

2(1−γ) ((1 + t)1−γ − 1)
]−2/α

(γ < 1),[
ε−α/2 − αδc0ε

α/2

2 log(1 + t)
]−2/α

(γ = 1).

We put

(2.3.22) T0 :=


[

2(1−γ)
αδc0

ε−α + 1
]1/(1−γ)

− 1 (γ < 1),

e
2

αδc0
ε−α − 1 (γ = 1).

Then we have
lim
t↑T0

y(t) = +∞.

We calculate

y′′(t) = δc0ε
α/2(−γ)(1 + t)−γ−1y(t)1+α/2

+ δc0ε
α/2(1 + t)−γ

(
1 +

α

2

)
y(t)α/2y′(t)

≤ δ2c20ε
α
(
1 +

α

2

)
(1 + t)−2γy(t)1+α
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and hence,

y′′(t) + y′(t) ≤ δ2c20ε
α
(
1 +

α

2

)
(1 + t)−2γy(t)1+α

+ δc0ε
α/2(1 + t)−γy(t)1+α/2

= c0(1 + t)−γy(t)1+α · δ
(
δc0ε

α
(
1 +

α

2

)
(1 + t)−γ + εα/2y(t)−α/2

)
≤ c0(1 + t)−γy(t)1+α · δ

(
δc0ε

α
(
1 +

α

2

)
+ 1
)

≤ c0(1 + t)−γy(t)1+α.

Here we used that εα/2 ≤ y(t)α/2, which follows from y(0) = ε and y′(t) ≥ 0, and
(2.3.20). Noting that y′(0) = δc0ε

1+α < F ′(0), we can apply Lemma 2.12 with
k(t) = F (t), h(t) = y(t), a(t) = 1, b(t) = c0(1 + t)−γ and obtain

F ′(t) > y′(t).

In particular, we have F (t) ≥ y(t) and hence, F (t) must blow up until the time
t = T0.

Next, we prove (2.3.19). We assume that ε > 0 satisfies ε ≤ 1 and c0ε
1+α <

F ′(0). We take δ > 0 so that

δ
(
δc0

(
1 +

α

2

)
+ 1
)
≤ 1.

In particular, it follows that δ < 1. We note that in this case δ is independent of
ε. Moreover, by the way of choosing δ and ε above, the conditions (2.3.20) and
(2.3.21) are still true. Therefore, we can repeat the above argument and prove that
F (t) blows up until the time T0 defined by (2.3.22). Furthermore, noting that δ is
independent of ε, we have a simple estimate for T0:

T0 ≤

{
Cε−α/(γ−1) (γ < 1),
eCε

−α
(γ = 1)

with some constant C > 0 depending only on α, c0, γ. This completes the proof. �

Remark 2.4. For a constant L ≥ 1, the same result as Proposition 2.13 holds
for the differential inequality

F ′′(t) + F ′(t) ≥ c0(L+ t)−γ |F (t)|αF (t).

This is immediately confirmed by noting (L+ t)−γ ≥ L−γ(1 + t)−γ .

By using Proposition 2.13, we can obtain a blow-up result for the semilinear
damped wave equation (2.3.15).

Theorem 2.14. Let (u0, u1) ∈ C2
0 (Rn) × C1

0 (Rn) be initial data and let u ∈
C2([0, T ) × Rn) be a classical solution of the Cauchy problem (2.3.15) with some
T > 0. Moreover, we assume that 1 < p ≤ 1 + 1/n and∫

Rn

uj(x)dx ≥ 0 (j = 0, 1),
∫
Rn

(u0(x) + u1(x))dx > 0.

Then u cannot exist globally. Furthermore, if ε > 0 is sufficiently small, then the
lifespan

Tε := sup{T ∈ (0,∞) | sup
x∈Rn

|u(t, x)| < +∞ (t ∈ (0, T ))}
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of u is estimated as

(2.3.23) Tε ≤

{
Cε−1/κ (1 < p < 1 + 1/n),
eCε

−(p−1)
(p = 1 + 1/n)

with
κ =

1
p− 1

− n

and some constant C > 0 independent of ε.

Proof. We first note that there exists some constant L > 0 such that

supp (u0, u1) ⊂ {x ∈ Rn | |x| ≤ L}

and hence, suppu(t) ⊂ {x ∈ Rn | |x| ≤ L+ t}. We define

F (t) :=
∫
Rn

u(t, x)dx.

By the Hölder inequality, we have

F (t) ≤

(∫
|x|≤L+t

dx

)(p−1)/p(∫
Rn

|u(t, x)|pdx
)1/p

≤ C(L+ t)n(p−1)/p‖u(t)‖Lp .

Therefore, integrating the equation (2.3.15), we deduce that

F ′′(t) + F ′(t) = ‖u(t)‖pLp ≥ C(L+ t)−n(p−1)|F (t)|p.

Hence we can apply Proposition 2.13 with α = p− 1, γ = n(p− 1) and obtain the
desired conclusion. �

By using Proposition (2.13), we can also obtain the nonexistence of global
solutions for (2.3.15) for 1 < p ≤ 1 + 2/n when n ≤ 3. The following argument is
due to Li and Zhou [53] and Nishihara [79].

We first show a blow-up of solutions to an integral inequality.

Lemma 2.15. Let t0 > 0 and let v = v(t) ∈ C([t0,∞)) be a nonnegative function
satisfying the integral inequality

v(t) ≥ C1

(2.3.24)

+


C2

∫ t

t0

(t− s)s−γv(s)pds (t0 ≤ s ≤ t0 + 2),

C2

(∫ t

t−2

(t− s)s−γv(s)pds+ 2
∫ t−2

t0

s−γv(s)pds
)

(t ≥ t0 + 2),

where γ ∈ [0, 1], p > 1, C1 > 0, C2 > 0. Then v(t) must blow up in finite time.
Moreover, if C1 = ε > 0 is sufficiently small, then the lifespan

Tε = sup{t ≥ t0 | v(t) < +∞}

is estimated as

(2.3.25) Tε ≤

{
Cε−(p−1)/(1−γ) (0 ≤ γ < 1),
eCε

−(p−1)
(γ = 1).
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Proof. Let 0 < C ′
1 < C1 and let J(t) be the solution of the integral equation

J(t) = C ′
1

(2.3.26)

+


C2

∫ t

t0

(t− s)s−γJ(s)pds (t0 ≤ t ≤ t0 + 2),

C2

(∫ t

t−2

(t− s)s−γJ(s)pds+ 2
∫ t−2

t0

s−γJ(s)pds
)

(t ≥ t0 + 2).

We first note that such a solution J(t) exists on some interval [t0, T ]. Indeed, we
can rewrite the equation (2.3.26) as

J(t) = C ′
1 + C2

∫ t

t0

Φ(t, s, J(s))ds

with
Φ(t, s, J) = min{t− s, 2}s−γJp.

It is obvious that Φ is locally Lipschitz continuous and we can construct the solution
by Picard’s iteration argument. Next, we claim that J(t) < v(t). In fact, if this
claim fails, then there exists a time t∗ > t0 such that{

J(t∗) = v(t∗),
J(t) < v(t) (t0 ≤ t < t∗).

However, by (2.3.24) and (2.3.26), we deduce that

v(t∗) ≥ C1 + C2

(∫ t∗

t∗−2

(t− s)s−γv(s)pds+ 2
∫ t∗−2

t0

s−γv(s)pds
)

> C ′
1 + C2

(∫ t∗

t∗−2

(t− s)s−γJ(s)pds+ 2
∫ t∗−2

t0

s−γJ(s)pds
)

= J(t∗),

which leads to a contradiction. Hence J(t) < v(t).
Let us prove that J(t) blows up in finite time. When t ≥ t0 + 2, we calculate

J ′(t) = C2

∫ t

t−2

s−γJ(s)pds,

J ′′(t) = C2

(
t−γJ(t)p − (t− 2)−γJ(t− 2)p

)
.

In view of J(t0) = C ′
1 > 0, we can see that J(t) > 0 and J ′(t) > 0. Thus, using a

large parameter µ > 0, we can deduce that

J ′′(t) + µJ ′(t)

= C2

(
t−γJ(t)p − (t− 2)−γJ(t− 2)p + µ

∫ t

t−2

s−γJ(s)pds
)

≥ C2

(
t−γJ(t)p +

(
2µt−γ − (t− 2)−γ

)
J(t− 2)p

)
≥ C2t

−γJ(t)p.
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Now we put I(t) = J(µ−1t). Then it follows that

I ′′(t) + I ′(t) = µ−2J ′(µ−1t) + µ−1J ′(µ−1t)

= µ−2
(
J ′′(µ−1t) + µJ ′(µ−1t)

)
≥ µ−2C2(µ−1t)−γJ(µ−1t)p

= C2µ
γ−2t−γJ(µ−1t)p,

and hence,
I ′′(t) + I ′(t) ≥ C0(1 + t)−γI(t)p

holds for t ≥ µ(t0 + 2). Therefore, we can apply Proposition 2.13 and obtain that
I(t) must blow up in finite time. By noting I(t) = J(µ−1t) and J(t) < v(t), it
follows that v(t) must also blow up in finite time.

When C1 = ε is sufficiently small, we put C ′
1 = ε/2. Then we can deduce that

the lifespan Tε(I) of I(t) is estimated as

Tε(I) ≤

{
Cε−(p−1)/(1−γ) (0 ≤ γ < 1),
eCε

−(p−1)
(γ = 1).

Therefore, the lifespan Tε(v) of v(t) is estimated as

Tε(v) ≤

{
Cµ−1ε−(p−1)/(1−γ) (0 ≤ γ < 1),
µ−1eCε

−(p−1)
(γ = 1).

.

This completes the proof. �

Let us turn to the Cauchy problem of the semilinear damped wave equation
(2.3.15). Let the initial data (u0, u1) belong to C∞

0 (Rn)∩C∞
0 (Rn) and we consider

classical solutions. We recall that a function u is a classical solution of the Cauchy
problem (2.3.15) if u has the initial data u(0, x) = εu0(x), ut(0, x) = εu1(x) and
satisfies the equation

utt − ∆u+ ut = |u|p

at each point (t, x) ∈ (0, T ) × Rn with some T > 0 (see Section 9.4.3).
We note that a classical solution u of (2.3.15) also becomes a mild solution

of (2.3.15) (see Proposition 9.17 and note that u is also strong solution defined
in Section 9.4.3, since in this case (u0, u1) ∈ H2 × H1 holds). Here we recall the
definition of the mild solution of (2.3.15). We say that a function u is a mild solution
of the Cauchy problem (2.3.15) if u satisfies the integral equation

(2.3.27) u(t, x) = ε∂t(Sn(t)u0(x)) + εSn(t)(u0 +u1)(x) +
∫ t

0

Sn(t− s)|u(s, x)|pds,

where Sn(t) denotes the solution operator which is expressed in Proposition 2.2.
By Proposition 2.2, for n = 1, 2, 3 we have

S1(t)g(x) =
e−t/2

2

∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy,

S2(t)g(x) =
e−t/2

2π

∫
|x−y|≤t

cosh
(

1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2

g(y)dy,

S3(t)g(x) =
e−t/2

4πt
∂t

∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy.
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Theorem 2.16 (Li and Zhou [53], Nishihara [79]). Let n ≤ 3 and 1 < p ≤
1 + 2/n. We assume that the initial data (u0, u1) are in C∞

0 (Rn) and

u0, u1 ≥ 0,
∫
Rn

(u0 + u1)(x)dx > 0.

Then the classical solution u of (2.3.15) does not exist globally. Moreover, there
exists a small ε0 > 0 such that for any ε ∈ (0, ε0], the lifespan Tε of u is estimated
as

Tε ≤

{
Cε−1/κ (1 < p < 1 + 2/n),
eCε

−(p−1)
(p = 1 + 2/n)

with

κ =
1

p− 1
− n

2
.

In order to prove this theorem, we employ the following two lemmas

Lemma 2.17. Let n ≤ 3, ε > 0 and g(x) ∈ C∞
0 (Rn) satisfy g(x) ≥ 0 and∫

Rn

g(x)dx > 0.

Then there exist a constant C0 > 0 and a time t0 > 0 such that for all |x| ≤
√
t we

have
Sn(t)(εg(x)) ≥ C0εt

−n/2

for t ≥ t0.

Next, we describe an estimate for nonlinear terms. More generally, we consider
F (t, x) ∈ C([0,∞) × Rn) and let u be a function satisfying u ∈ C2([0,∞) × Rn)
and the identity

(2.3.28) u(t, x) =
∫ t

0

Sn(t− s)F (s, x)ds.

Lemma 2.18. Let n ≤ 3 and let F (t, x) be a nonnegative continuous function.
We assume that a function u ∈ C2([0,∞)×Rn) satisfies the identity (2.3.28). Let
t0 ≥ 1. Then there exists a constant C > 0 such that for all |x| ≤

√
t we have

(2.3.29)

tn/2u(t, x) ≥


C

∫ t

t0

(t− s)G(s)ds (t0 ≤ t ≤ t0 + 2),

C

(∫ t

t−2

(t− s)G(s)ds+ 2
∫ t−2

t0

G(s)ds
)

(t ≥ t0 + 2),

where
G(s) = inf

|y|≤
√
s

(
sn/2F (s, y)

)
.

We postpone the proof of the above lemmas and give a proof of Theorem 2.16.

Proof of Theorem 2.16. First, we note that the classical solution u of (2.3.15)
also satisfies the integral equation (2.3.27). Moreover, by Proposition 2.1, we have
‖∂t(Sn(t)u0)‖L∞ ≤ C(1 + t)−n/2−1. By the assumption on the data and Lemma
2.17, we see that

εSn(t)(u0 + u1) ≥ C0εt
−n/2 (t ≥ t0)
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holds with sufficiently large t0 ≥ 1. Hence, retaking t0 larger if needed, we obtain

ε∂t(Sn(t)u0) + εSn(t)(u0 + u1) ≥ C1εt
−n/2

for t ≥ t0 with some constant C1 > 0. Combining this with Lemma 2.18 with
F (t, x) = |u(t, x)|p, we can see that there exists a constant C2 > 0 such that

tn/2u(t, x) ≥ C1ε

+ C2


∫ t

t0

(t− s)s−n(p−1)/2V (s)pds (t0 ≤ t ≤ t0 + 2),(∫ t

t−2

(t− s)s−n(p−1)/2V (s)pds+ 2
∫ t−2

t0

s−n(p−1)/2V (s)pds
)

(t ≥ t0 + 2)

for |x| ≤
√
t, where

V (s) = inf
|y|≤

√
s

(
sn/2|u(s, y)|

)
.

Hence,

V (t) ≥ C1ε

+ C2


∫ t

t0

(t− s)s−n(p−1)/2V (s)pds (t0 ≤ t ≤ t0 + 2),(∫ t

t−2

(t− s)s−n(p−1)/2V (s)pds+ 2
∫ t−2

t0

s−n(p−1)/2V (s)pds
)

(t ≥ t0 + 2).

Therefore, we can apply Lemma 2.15 and obtain the desired conclusion. �

Proof of Lemma 2.17. We assume that supp g ⊂ {x ∈ Rn | |x| ≤ R} with
some R > 0. Then for |x| ≤

√
t and y ∈ supp g, we have |x−y| ≤ |x|+ |y| ≤

√
t+R.

Noting this, we have

t2 ≥ t2 − |x− y|2 ≥ t2 − (
√
t+R)2 ≥ 1

2
t2

for sufficiently large t. When n = 1, by using the asymptotic expansion of the
modified Bessel function (see Lemma 9.5)

I0(s) =
1√
2πs

es
(
1 +O(s−1)

)
,

we can see that

S1(t)(εg(x)) =
e−t/2

2

∫
|x−y|≤t

1
π1/2(t2 − |x− y|2)1/4

e−
1
2

√
t2−|x−y|2

×

(
1 +O

(
1√

t2 − |x− y|2

))
εg(y)dy

≥ t−1/2 1
4
√
π

∫
|x−y|≤t

e−
1
2 (t−

√
t2−|x−y|2)εg(y)dy

≥ t−1/2 1
4e
√
π
ε

∫
Rn

g(y)dy

= C0εt
−1/2
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for sufficiently large t. Here we have used that

1 +O

(
1√

t2 − |x− y|2

)
= 1 +O(t−1) ≥ 1

2

is true for large t and that

e−
1
2 (t−

√
t2−|x−y|2) = e

− 1
2

|x−y|2

t+
√
t2−|x−y|2 ≥ e−

|x−y|2
2t ≥ e−

(
√
t+R)2

2t ≥ e−1

holds for large t and |x| ≤
√
t, |y| ≤ R.

The case of n = 3 is proved by the almost same way. Indeed, by the decompo-
sition (2.2.16), we can write S3 as

S3(t)(εg(x)) = e−t/2W3(t)(εg(x)) + J3(t)(εg(x)),

where

W3(t)(εg(x)) =
1

4πt

∫
|x−y|=t

εg(y)dSy

and

J3(t)(εg(x)) =
e−t/2

8π

∫
|x−y|≤t

I1( 1
2

√
t2 − |x− y|2)√

t2 − |x− y|2
εg(y)dy.

We note that if t is sufficiently large and |x| ≤
√
t, |y| ≤ R, then W3(t)(εg(x)) = 0.

Therefore, we have to prove only the estimate for J0(t)(εg(x)). By noting that

I1(s) =
1√
2πs

es
(
1 +O(s−1)

)
,

the desired estimate can be proved by the same way to the case of n = 1. Thus,
we omit the detail.

When n = 2, as before, we note that

e−t/2 cosh
(

1
2

√
t2 − |x− y|2

)
≥ 1

2
e−

1
2 (t−

√
t2−|x−y|2) ≥ 1

2e

for sufficiently large t and |x| ≤
√
t, |y| ≤ R. Hence, we can immediately obtain

S2(t)(εg(x)) ≥
1

4eπ
t−1

∫
Rn

εg(y)dy = C0εt
−1,

which completes the proof. �

Proof of Lemma 2.18. For the sake of convenience, we put

kn(t, r) =



1
2
e−t/2I0

(
1
2

√
t2 − r2

)
(n = 1),

1
2π
e−t/2

cosh( 1
2

√
t2 − r2)

√
t2 − r2

(n = 2),

1
4π
e−t/2

(
1
t
δr=t +

1
8π

I1( 1
2

√
t2 − r2)

√
t2 − r2

)
(n = 3),
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where δr=t denotes the Dirac measure on the point r = t. Let t0 ≥ 1. We first
assume t ≥ t0 + 2. Using the above notation, we can calculate

u(t, x) =
∫ t

0

Sn(t− s)F (s, x)ds(2.3.30)

=
∫ t

0

∫
|x−y|≤t−s

kn(t− s, |x− y|)F (s, y)dyds

≥
∫ t

t−2

G(s)
sn/2

∫
|x−y|≤t−s
|y|≤

√
s

kn(t− s, |x− y|)dy

 ds

+
∫ t−2

t0

G(s)
sn/2

∫
|x−y|≤

√
t−s

|y|≤
√
s

kn(t− s, |x− y|)dy

 ds.

We note that the integral region {y ∈ Rn | |x − y| ≤ t − s, |y| ≤
√
s} of the first

integral includes a ball with the diameter (t− s)/2 if t ≥ 1, |x| ≤
√
t. In fact,

√
s− (|x| − (t− s)) ≥ t− s+

√
s−

√
t = t− s− t− s√

t+
√
s
≥ t− s

2
.

In a similar way, we can also prove that the integral region {y ∈ Rn | |x −
y| ≤

√
t− s, |y| ≤

√
s} of the second integral includes a ball with the diameter√

t− s
√
s/(2

√
t) if |x| ≤

√
t. Indeed,

√
s− (|x| −

√
t− s) ≥

√
s−

√
t+

√
t− s =

√
t− s− t− s√

t+
√
s

=
√
t− s

(√
t+

√
s−

√
t− s√

t+
√
s

)
≥

√
t− s

√
s√

t+
√
s

≥
√
t− s

√
s

2
√
t

.

Next, we find estimates of kn(t− s, |x− y|) from below. We first treat the case
of n = 1. When 0 ≤ t− s ≤ 2, noting that I0(s) ≥ 1, we see that

k1(t− s, |x− y|) =
1
2
e−(t−s)/2I0

(
1
2

√
(t− s)2 − |x− y|2

)
≥ 1

2e
.

On the other hand, when t− s ≥ 2 and |x− y| ≤
√
t− s, noting that

I0(s) ≥ cs−1/2es

holds for any s ≥ 1/2 with some constant c > 0, we can see that

k1(t− s, |x− y|) =
1
2
e−(t−s)/2I0

(
1
2

√
(t− s)2 − |x− y|2

)
≥ c

2

(
1
2

√
(t− s)2 − |x− y|2

)−1/2

e−
1
2 ((t−s)−

√
(t−s)2−|x−y|2)

≥ c

2
(t− s)−1/2e−

|x−y|2
2(t−s)

≥ c

2e1/2
(t− s)−1/2.
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Combining these estimates with (2.3.30), we obtain

u(t, x) ≥ C

∫ t

t−2

G(s)√
s

∫
|x−y|≤t−s
|y|≤

√
s

dy

 ds

+ C

∫ t−2

t0

G(s)
√
s
√
t− s

∫
|x−y|≤

√
t−s

|y|≤
√
s

dy

 ds

≥ C

∫ t

t−2

(t− s)
G(s)√
s
ds+ C

∫ t−2

t0

G(s)√
t
ds

≥ Ct−1/2

(∫ t

t−2

(t− s)G(s)ds+
∫ t−2

t0

G(s)ds
)

and hence, we obtain the desired estimate in the case of n = 1 and t ≥ t0 + 2.
When t0 ≤ t ≤ t0 + 2, instead of (2.3.30), we obtain

u(t, x) ≥
∫ t

t0

G(s)
s1/2

∫
|x−y|≤t−s
|y|≤

√
s

k1(t− s, |x− y|)dy

 ds.

As before, by noting that the integral region includes a ball with radius (t − s)/2
and that

k1(t− s, |x− y|) ≥ 1
2e
,

we can deduce that

u(t, x) ≥ Ct−1/2

∫ t

t0

(t− s)G(s)ds,

which shows the assertion on the lemma in the case of n = 1.
We turn to the case of n = 2. We first assume that t ≥ t0 + 2. When

0 ≤ t− s ≤ 2, noting that cosh(r) ≥ 1, we have

k2(t− s, |x− y|) =
1
2π
e−(t−s)/2 cosh( 1

2

√
(t− s)2 − |x− y|2)√

(t− s)2 − |x− y|2

≥ 1
2eπ

(t− s)−1.

When t− s ≥ 2 and |x− y| ≤
√
t− s, we can deduce that

k2(t− s, |x− y|) ≥ 1
2π

(t− s)−1e−
1
2 (t−s−

√
(t−s)2−|x−y|2)

≥ 1
2π

(t− s)−1e−
|x−y|2
2(t−s)

≥ C(t− s)−1.
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Using these estimates and (2.3.30), we have

u(t, x) ≥ C

∫ t

t−2

G(s)
s(t− s)

∫
|x−y|≤t−s
|y|≤

√
s

dy

 ds

+ C

∫ t−2

t0

G(s)
s(t− s)

∫
|x−y|≤

√
t−s

|y|≤
√
s

dy

 ds

≥ C

∫ t

t−2

(t− s)
G(s)
s

ds+ C

∫ t−2

t0

G(s)
t

ds

≥ Ct−1

(∫ t

t−2

(t− s)G(s)ds+
∫ t−2

t0

G(s)ds
)
.

In a similar way, we can see that if t0 ≤ t ≤ t0 + 2, then it follows that

u(t, x) ≥ Ct−1

∫ t

t0

(t− s)G(s)ds

for |x| ≤
√
t. This proves the conclusion of the lemma in the case of n = 2.

Finally, we treat the case of n = 3. We first assume that t ≥ t0 +2. We deduce
that

u(t, x) ≥ C

∫ t

t−2

G(s)
s3/2

e−(t−s)/2 1
t− s

∫
|x−y|=t−s
|y|≤

√
s

dSy

 ds

+ C

∫ t−2

t0

G(s)
s3/2

∫
|x−y|≤

√
t−s

|y|≤
√
s

e−(t−s)/2 I1(
1
2

√
(t− s)2 − |x− y|2)√

(t− s)2 − |x− y|2
dyds

≥ C

∫ t

t−2

(t− s)
G(s)
s3/2

ds

+ C

∫ t−2

t0

G(s)
s3/2(t− s)3/2

∫
|x−y|≤

√
t−s

|y|≤
√
s

e−
1
2 (t−s−

√
(t−s)2−|x−y|2)dyds

≥ C

∫ t

t−2

(t− s)
G(s)
s3/2

ds

+ C

∫ t−2

t0

G(s)
s3/2(t− s)3/2

∫
|x−y|≤

√
t−s

|y|≤
√
s

dyds

≥ Ct−3/2

(∫ t

t−2

(t− s)G(s)ds+
∫ t−2

t0

G(s)ds
)
,

which indicates the desired estimate. When t0 ≤ t ≤ t0 + 2, in a similar way, we
obtain

u(t, x) ≥ Ct−3/2

∫ t

t0

(t− s)G(s)ds

instead of the above estimate. This completes the proof. �
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2.3.4. Blow-up by test function method. In this subsection, we prove a
blow-up result for a semilinear damped wave equation by using a test function
method developed by Zhang [122]. We consider the Cauchy problem for the semi-
linear damped wave equation

(2.3.31)
{
utt − ∆u+ ut = |u|p, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

We shall prove that if p is critical or subcritical

p ≤ pc = 1 +
2
n
,

then, in general, there is no global-in-time solution even if the initial data is suf-
ficiently small. The argument introduced in this subsection is applicable for any
space dimensions. However, we cannot obtain estimates of the lifespan of solutions
in the critical case p = pc (for subcritical cases, we discuss about estimates of the
lifespan in Chapter 7). We shall prove the following:

Theorem 2.19. If 1 < p ≤ 1 + 2/n and (u0, u1) ∈ (C2(Rn) ∩ L1(Rn)) ×
(C1(Rn) ∩ L1(Rn)) satisfies∫

Rn

(u0(x) + u1(x))dx > 0,

then the classical solution of (2.3.31) does not exist globally.

Proof. Suppose that u is a global classical solution of (2.3.31). We define test
functions

φ(x) =


1 (|x| ≤ 1/2)

exp(−1/(1 − |x|2))
exp(−1/(|x|2 − 1/4)) + exp(−1/(1 − |x|2))

(1/2 < |x| < 1),

0 (|x| ≥ 1),

η(t) =


1 (0 ≤ t ≤ 1/2),

exp(−1/(1 − t2))
exp(−1/(t2 − 1/4)) + exp(−1/(1 − t2))

(1/2 < t < 1),

0 (t ≥ 1).

It is obvious that φ ∈ C∞
0 (Rn), η ∈ C∞

0 ([0,∞)). We also see that

|η′(t)| . η(t)1/p, |η′′(t)| . η(t)1/p, |∆φ(x)| . φ(x)1/p.

Indeed, let q, r satisfy 1/p + 1/q = 1, 1/p + 2/r = 1 and let µ = η1/q, ν = η1/r.
Then we have

|η′| = |(µq)′| = |qµq−1µ′| . µq−1 = η1/p

and
|η′′| = |(νr)′| . |ν′′|νr−1 + |ν′|2νr−2 . νr−2 = η1/p.

The estimate for ∆φ can be proved in the same way. Let R > 1 be a large parameter
and let

ψR(t, x) = η(t/R2)φ(x/R).

We also define

IR =
∫ ∞

0

∫
Rn

|u|pψRdxdt.
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We note that by the Lebesgue dominated convergence theorem, it follows that∫
Rn

(u0(x) + u1(x))φ(x/R)dx > 0

for sufficiently large R > 0. Then by the equation, integration by parts and the
Hölder inequality, we can calculate

IR =
∫ ∞

0

∫
Rn

(utt − ∆u+ ut)ψRdxdt

=
∫ ∞

0

∫
Rn

u(∂2
t − ∆ − ∂t)ψRdxdt−

∫
Rn

(u0(x) + u1(x))φ(x/R)dx

≤
∫ ∞

0

∫
Rn

|u|(|∂2
t ψR| + |∆ψR| + |∂tψR|)dxdt ≡ K1 +K2 +K3.

We put

ÎR :=
∫ R2

R2/2

∫
|x|<R

|u|pψR(t, x)dxdt, ĨR :=
∫ R2

0

∫
R/2<|x|<R

|u|pψR(t, x)dxdt.

By noting that

supp ∂tψR ⊂ {(t, x) ∈ [0,∞) × Rn | R2/2 ≤ t ≤ R2, |x| ≤ R},
supp∆ψR ⊂ {(t, x) ∈ [0,∞) × Rn | 0 ≤ t ≤ R2, R/2 ≤ |x| ≤ R}

and the estimates

|∂2
t ψR| ≤ CR−4ψR(t, x)1/p, |∆ψR| ≤ CR−2ψR(t, x)1/p

and
|∂tψR| ≤ CR−2ψR(t, x)1/p

hold, it follows from the Hölder inequality that

K1 +K3 ≤ CR−2

∫ R2

R2/2

∫
|x|<R

|u|ψ1/p
R dxdt

≤ CR−2

(∫ R2

R2/2

∫
|x|<R

|u|pψRdxdt

)1/p(∫ R2

R2/2

∫
|x|<R

dxdt

)1/q

≤ CR−2+(n+2)/q Î
1/p
R ,

where q denotes the Hölder conjugate of p, that is 1/p+ 1/q = 1. In a similar way,
we have

K2 ≤ CR−2+(n+2)/q Ĩ
1/p
R .

Combining the above two estimates, one can obtain

(2.3.32) IR ≤ CR−2+(n+2)/q
(
Î
1/p
R + Ĩ

1/p
R

)
.

In particular, using a trivial inequality ÎR ≤ IR, ĨR ≤ IR, we deduce that

IR ≤ CR−2+(n+2)/qI
1/p
R

and hence,

(2.3.33) I
1−1/p
R ≤ CR−2+(n+2)/q.

We first consider the subcritical case 1 < p < 1 + 2/n. Noting that p < 1 + 2/n if
and only if −2 + (n + 2)/q < 0, the right-hand side of the above inequality tends
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to 0 as R → +∞. In particular, IR is bounded when R → +∞ and this implies
u ∈ Lp((0,∞) × Rn) and limR→∞ IR = ‖u‖pLp((0,∞)×Rn). However, by using the
above estimate again, it follows that limR→∞ IR = 0. This means u = 0, which
contradicts (u0, u1) 6= 0.

In the critical case p = 1+2/n, we can obtain only the boundedness of IR from
(2.3.33). However, u ∈ Lp((0,∞) × Rn) and limR→∞ IR = ‖u‖pLp((0,∞)×Rn) is still
true. From this, we can see that

lim
R→∞

ÎR = 0, lim
R→∞

ĨR = 0.

This and the estimate (2.3.32) imply

lim
R→∞

IR = 0,

which shows u ≡ 0 and contradicts (u0, u1) 6= 0 again. �



CHAPTER 3

On diffusion phenomena for the linear wave
equation with space-dependent damping

3.1. Introduction and results

In this chapter, we consider the asymptotic behavior of solutions to the wave
equation with space-dependent damping:

(3.1.1)
{
utt − ∆u+ a(x)ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

Here u = u(t, x) is real-valued unknown function and a(x) = 〈x〉−α := (1+|x|2)−α/2
with 0 ≤ α < 1. For simplicity, we assume that

(3.1.2) (u0, u1) ∈ C∞
0 (Rn), supp (u0, u1) ⊂ {x ∈ Rn | |x| ≤ L}

with some L > 0. We also consider the Cauchy problem of the corresponding heat
equation started at the time τ ≥ 0:

(3.1.3)
{
a(x)vt − ∆v = 0, (t, x) ∈ (τ,∞) × Rn,
v(τ, x) = vτ (x), x ∈ Rn

with initial data vτ (x) ∈ C∞
0 (Rn).

When a(x) = 1, as we mentioned in Section 1.3, the asymptotic profile of the
solution of (3.1.1) is given by the solution of (3.1.3) with the initial data v0 = u0+u1

in several senses (see [23, 27, 58, 73, 78, 121] and see also [3, 32, 97] for abstract
setting). On the other hand, Wirth [117] considered the wave equation with time-
dependent damping

utt − ∆u+ b(t)ut = 0.

He proved that if the damping is effective, that is, roughly speaking, tb(t) → +∞
as t→ +∞ and b(t)−1 /∈ L1((0,∞)), then the solution is asymptotically equivalent
to that of the corresponding heat equation

b(t)vt − ∆v = 0

(see also [120] for abstract setting). We also mention that Ikehata, Todorova and
Yordanov [38] recently proved the diffusion phenomenon for strongly damped wave
equations.

Recently, Nishiyama [88] proved the diffusion phenomenon for abstract damped
wave equations. His result includes space-dependent damping which does not decay
near infinity. Due to the authors knowledge, there are no results on the asymptotic
profile of solutions for decaying potential cases as (3.1.1). The difficulty is that we
cannot use the Fourier transform for (3.1.1) as the previous results.

We also refer the reader to [18, 19, 21, 20, 33, 40, 80, 84] for the asymptotic
profile for semilinear problems.

87
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Todorova and Yordanov [107] obtained the following L2-estimate for (3.1.1):

‖u(t, ·)‖L2 ≤ C(1 + t)−
n−2α
2(2−α)+ε,(3.1.4)

where ε > 0 is arbitrary small number (see also [37] for the case α = 1). They
proved the above estimate by using a weighted energy method. Following their
method, we can also deduce an L2-estimate for (3.1.3) without any loss ε > 0:

‖v(t, ·)‖L2 ≤ C(1 + t)−
n−2α
2(2−α) .(3.1.5)

We will give a proof of this inequality in the next section.
It seems that the decay rate n−2α

2(2−α) is optimal. Because, the function

G(t, x) = t−
n−α
2−α e

− |x|2−α

(2−α)2t

formally satisfies the equation

|x|−αvt − ∆v = 0

and
‖G(t, ·)‖L2 = Ct−

n−2α
2(2−α)

with some constant C > 0. Indeed,

‖G(t, ·)‖2
L2 = t−

2(n−α)
2−α

∫
Rn

e
− 2|x|2−α

(2−α)2t dx

= Ct−
2(n−α)

2−α + n
2−α

∫
Rn

e
− 2|y|2−α

(2−α)2 dy

= Ct−
n−2α
2−α .

We denote the solution operator of (3.1.3) by E(t− τ), that is, v(t, x) = E(t−
τ)vτ (x) gives the solution of (3.1.3). It is known that E(t − τ) is a 0-th order
pseudodifferential operator having the symbol

e(t− τ, x, ξ) = e−
|ξ|2
a(x) (t−τ) + r0(t− τ, x, ξ)

with a remainder term r0 (see Kumano-go [49]). The main result of this chapter is
the following.

Theorem 3.1. Let n ≥ 1 and let u be a solution of (3.1.1) with initial data
(u0, u1) satisfying (3.1.2). Then we have

(3.1.6)
∥∥∥∥u(t, ·) − E(t)

[
u0 +

1
a(·)

u1

]
(·)
∥∥∥∥
L2

= o(t−
n−2α
2(2−α) )

as t→ +∞.

Remark 3.1. (i)Our proof needs the compactness of the support of the data.
However, this assumption may be removed by using the energy concentration lemma
(see Lemma 3.4); but we do not pursue that here.

(ii)Combining the above theorem and the estimate (3.1.5), we can remove the
loss of decay rate ε from the estimate (3.1.4) by Todorova and Yordanov.

The crucial point of the proof of Theorem 1 is the following weighted energy
estimates for higher order derivatives of solutions to (3.1.1). Let

(3.1.7) ψ(t, x) = A
〈x〉2−α

1 + t
, A :=

1
(2 − α)2(2 + δ)
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with small δ > 0. We also put

I0 =
∫
Rn

e2ψ(0,x)(u0(x)2 + |∇u0(x)|2 + |u1(x)|2)dx,

I1 =
∫
Rn

e2ψ(0,x)(utt(0, x)2 + |∇ut(0, x)|2)dx+ I0,

I2 =
∫
Rn

e2ψ(0,x)(uttt(0, x)2 + |∇utt(0, x)|2)dx+ I1

and by inductively

Ik =
∫
Rn

e2ψ(0,x)(|∂k+1
t u(0, x)|2 + |∇∂kt u(0, x)|2)dx+ Ik−1.

Then, we can obtain weighted energy estimates for any order of derivatives:

Theorem 3.2 (weighted energy estimates for higher order derivatives). For
any small ε > 0, there is some δ > 0 such that the following estimates hold: For
any integer k ≥ 0, there exists some constant C > 0 such that for a solution u of
(3.1.1) with initial data satisfying (3.1.2), we have

(1 + t)
n−α
2−α+2k−ε

∫
Rn

e2ψ(t,x)a(x)|∂kt u(t, x)|2dx ≤ CIk,(3.1.8)

(1 + t)
n−α
2−α+2k+1−ε

∫
Rn

e2ψ(t,x)|∇∂kt u(t, x)|2dx ≤ CIk.(3.1.9)

In particular, we use the following estimates for the proof of Theorem 3.1.

Lemma 3.3. For any small ε > 0, there are some constants δ > 0 and C > 0
such that the following estimates hold:

(i) For a solution u of (3.1.1), we have

(1 + t)
n−α
2−α+2−ε

∫
Rn

e2ψ(t,x)a(x)ut(t, x)2dx ≤ CI1,(3.1.10)

(1 + t)
n−α
2−α+3−ε

∫
Rn

e2ψ(t,x)|∇ut(t, x)|2dx ≤ CI1,(3.1.11)

(1 + t)
n−α
2−α+4−ε

∫
Rn

e2ψ(t,x)a(x)utt(t, x)2dx ≤ CI2,(3.1.12)

(1 + t)
n−α
2−α+6−ε

∫
Rn

e2ψ(t,x)a(x)uttt(t, x)2dx ≤ CI3.(3.1.13)

(ii) For a solution v of (3.1.3), we have∫
Rn

a(x)|v(t, x)|2dx ≤
∫
Rn

a(x)|vτ (x)|2dx,(3.1.14)

(1 + t− τ)
n−α
2−α+2−ε

∫
Rn

a(x)|vt(t, x)|2dx(3.1.15)

≤
∫
Rn

a(x)−1|∆vτ (x)|2dx

+ C(1 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)|∇vτ (x)|2dx

+ C(1 + τ)
n−α
2−α−ε

∫
Rn

e2ψ(τ,x)a(x)vτ (x)2dx.
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We also use an energy concentration lemma.

Lemma 3.4 (exponential decay outside parabolic regions). For any small ε > 0,
there is some δ > 0 such that the following holds: let

0 < ρ < 1 − α, 0 < µ < 2A

and
Ωρ(t) := {x ∈ Rn | 〈x〉2−α ≥ (1 + t)1+ρ}.

We also assume that v is a solution of (3.1.3) with τ = 0. Then we have

(3.1.16)
∫

Ωρ(t)

v(t, x)2dx ≤ C(1 + t)
α

2−α e−(2A−µ)(1+t)ρ
∫
Rn

e2ψ(0,x)a(x)v0(x)2dx,

where C > 0 is a constant depending on δ, ρ and µ.

In the next section, we introduce a basic weighted energy method. This method
was originally developed by Todorova and Yordanov [106] and refined by themselves
[107] and Nishihara [81] to fit for the space-dependent damping. In Section 3.3,
we prove Lemmas 3.3 and 3.4 and Theorem 3.2 by using the basic weighted energy
estimates obtained in Section 3.2. In the final section, we give a proof of the main
theorem.

3.2. Basic weighted energy estimates

In this section, we first give a proof of the estimate (3.1.5) for solutions to
(3.1.3). Let

ψ0(t, x) =
〈x〉2−α

2(2 − α)2(1 + t)
.

We prove the following:

Proposition 3.5.

(1 + t)
n−α
2−α

∫
Rn

e2ψ0(t,x)a(x)v(t, x)2dx ≤
∫
Rn

e2ψ0(0,x)a(x)v0(x)2dx.

Proof. A straightforward calculation gives

−∂tψ0(t, x) =
〈x〉2−α

2(2 − α)2(1 + t)2
,(3.2.1)

∇ψ0(t, x) =
〈x〉−αx

2(2 − α)(1 + t)
,(3.2.2)

∆ψ0 =
n〈x〉−α

2(2 − α)(1 + t)
− α〈x〉−α−2|x|2

2(2 − α)(1 + t)
(3.2.3)

=
(n− α)〈x〉−α

2(2 − α)(1 + t)
+

α〈x〉−α−2

2(2 − α)(1 + t)

≥ (n− α)〈x〉−α

2(2 − α)(1 + t)
.

By (3.2.1) and (3.2.2), we can easily obtain

(3.2.4) −∂tψ0(t, x)a(x) ≥ 2|∇ψ0(t, x)|2.
Multiplying the equation (3.1.3) by e2ψ0v, we have

∂t

[
e2ψ0

2
a(x)v2

]
−∇·

(
e2ψ0v∇v

)
+ e2ψ0{(−∂tψ0)a(x)v2 + |∇v|2 +2∇ψ0 · v∇v} = 0.
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Noting that

2e2ψ0∇ψ0 · v∇v = 4e2ψ0∇ψ0 · v∇v − 2e2ψ0∇ψ0 · v∇v

= 4e2ψ0∇ψ0 · v∇v −∇ ·
(
e2ψ0(∇ψ0)v2

)
+ 2e2ψ0 |∇ψ0|2v2 + e2ψ0(∆ψ0)v2,

we obtain

∂t

[
e2ψ0

2
a(x)v2

]
−∇ ·

(
e2ψ0(v∇v + (∇ψ0)v2)

)
+ e2ψ0{|∇v|2 + 4∇ψ0 · (v∇v) + ((−∂tψ0)a(x) + 2|∇ψ0|2)v2 + (∆ψ0)v2} = 0.

By using (3.2.4), it follows that

|∇v|2 + 4∇ψ0 · (v∇v) + ((−∂tψ0)a(x) + 2|∇ψ0|2)v2

≥ |∇v|2 + 4∇ψ0 · (v∇v) + 4|∇ψ0|2v2

= |∇v + 2(∇0ψ)v|2 ≥ 0,

and hence,

∂t

[
e2ψ0

2
a(x)v2

]
−∇ ·

(
e2ψ0(v∇v + ∇ψ0v

2)
)

+ e2ψ0(∆ψ0)v2 ≤ 0.

Integrating the above inequality, we have

d

dt

∫
Rn

e2ψ0

2
a(x)v2dx+

∫
Rn

e2ψ0(∆ψ0)v2dx ≤ 0.

Multiplying this by (1 + t)
n−α
2−α , we deduce that

d

dt

[
(1 + t)

n−α
2−α

∫
Rn

e2ψ0

2
a(x)v2dx

]
− n− α

2(2 − α)
(1 + t)

n−α
2−α−1

∫
Rn

e2ψ0a(x)v2dx

+ (1 + t)
n−α
2−α

∫
Rn

e2ψ0(∆ψ0)v2dx ≤ 0.

By using (3.2.3), one can obtain

d

dt

[
(1 + t)

n−α
2−α

∫
Rn

e2ψ0

2
a(x)v2dx

]
≤ 0.

Integrating this over [0, t], we obtain the desired estimate. �

Using the estimate in Proposition 3.5, we can immediately show (3.1.5). Indeed,
noting

e2ψ0(t,x)a(x) = e
〈x〉2−α

(2−α)2(1+t)

(
〈x〉2−α

(1 + t)

)−α/(2−α)

(1 + t)−α/(2−α) ≥ C(1 + t)−α/(2−α),

we can see that

(1 + t)
n−2α
2−α

∫
Rn

v(t, x)2dx ≤ C

∫
Rn

e2ψ0(0,x)

2
a(x)v0(x)2dx,

which proves (3.1.5).
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Next, we give estimates for a weighted L2-norm∫
Rn

e2ψ(t,x)a(x)u(t, x)2dx

and a weighted energy∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx

for solutions to (3.1.1). The following estimate was essentially already obtained by
Nishihara [81]. However, for the sake of completeness, we shall give a proof in this
section.

Proposition 3.6 (Basic weighted energy estimates). For any small ε > 0,
there is some δ > 0 having the following property: let u be a solution of (3.1.1) with
initial data (u0, u1) satisfying (3.1.2). Then we have

(1 + t)
n−α
2−α+1−ε

∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx

+ (1 + t)
n−α
2−α−ε

∫
Rn

e2ψ(t,x)a(x)u(t, x)2dx

+
∫ t

0

{
(1 + τ)

n−α
2−α−ε

∫
Rn

e2ψ(τ,x)(u2
t + |∇u|2)(τ, x)dx

+ (1 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)(−ψt(τ, x))(u2
t + |∇u|2)(τ, x)dx

+ (t0 + t)
n−α
2−α−ε

∫
Rn

e2ψ(τ,x)|∇ψ(τ, x)|2u(τ, x)2dx

+ (1 + τ)
n−α
2−α−1−ε

∫
Rn

e2ψ(τ,x)a(x)u(τ, x)2dx

+ (1 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)a(x)ut(τ, x)2dx
}
dτ

≤ CI0.

Proof. From (3.1.7), it is easy to see that

−ψt =
1

1 + t
ψ,(3.2.5)

∇ψ = A
(2 − α)〈x〉−αx

1 + t
,(3.2.6)

∆ψ = A(2 − α)(n− α)
〈x〉−α

1 + t
+A(2 − α)α

〈x〉−2−α

1 + t
(3.2.7)

≥ n− α

(2 − α)(2 + δ)
a(x)
1 + t

=:
(

n− α

2(2 − α)
− δ1

)
a(x)
1 + t

.

Here and after, δi (i = 1, 2, . . .) denote positive constants depending only on δ such
that

δi → 0+ as δ → 0+.
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We also have

(−ψt)a(x) = A
〈x〉2−2α

(1 + t)2
(3.2.8)

≥ 1
(2 − α)2A

A2(2 − α)2
〈x〉−2α|x|2

(1 + t)2

= (2 + δ)|∇ψ|2.

By multiplying (3.1.1) by e2ψut, it follows that

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u)(3.2.9)

+ e2ψ
(
a(x) − |∇ψ|2

−ψt
− ψt

)
u2
t +

e2ψ

−ψt
|ψt∇u− ut∇ψ|2︸ ︷︷ ︸

T1

= 0.

Using the Schwarz inequality and (3.2.8), we can calculate

T1 =
e2ψ

−ψt
(ψ2
t |∇u|2 − 2ψtut∇u · ∇ψ + u2

t |∇ψ|2)

≥ e2ψ

−ψt

(
1
5
ψ2
t |∇u|2 −

1
4
u2
t |∇ψ|2

)
≥ e2ψ

(
1
5
(−ψt)|∇u|2 −

a(x)
4(2 + δ)

u2
t

)
.

This inequality and (3.2.8) lead to

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u)(3.2.10)

+ e2ψ
{(

1
4
a(x) − ψt

)
u2
t +

−ψt
5

|∇u|2
}

≤ 0.

Integrating over Rn, we obtain

d

dt

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dx(3.2.11)

+
∫
Rn

e2ψ
{(

1
4
a(x) − ψt

)
u2
t +

−ψt
5

|∇u|2
}
dx ≤ 0.

On the other hand, we multiply (3.1.1) by e2ψu and have

∂

∂t

[
e2ψ

(
uut +

a(x)
2

u2

)]
−∇ · (e2ψu∇u)(3.2.12)

+ e2ψ{|∇u|2 + (−ψt)a(x)u2 + 2u∇ψ · ∇u︸ ︷︷ ︸
T2

−2ψtuut − u2
t} = 0.

We can rewrite the term e2ψT2 as

e2ψT2 = 4e2ψu∇ψ · ∇u− 2e2ψu∇ψ · ∇u

= 4e2ψu∇ψ · ∇u−∇ · (e2ψu2∇ψ) + 2e2ψu2|∇ψ|2 + e2ψ(∆ψ)u2.
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By substituting this and using (3.2.7), it follows from (3.2.12) that

∂

∂t

[
e2ψ

(
uut +

a(x)
2

u2

)]
−∇ · (e2ψ(u∇u+ u2∇ψ))(3.2.13)

+ e2ψ
{
|∇u|2 + 4u∇u · ∇ψ + ((−ψt)a(x) + 2|∇ψ|2)u2︸ ︷︷ ︸

T3

+
(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)
u2 − 2ψtuut − u2

t

}
≤ 0.

By the Schwarz inequality, we can estimate the term T3 as

T3 = |∇u|2 + 4u∇u · ∇ψ

+
{(

1 − δ

3

)
(−ψt)a(x) + 2|∇ψ|2

}
u2 +

δ

3
(−ψt)a(x)u2

≥ |∇u|2 + 4u∇u · ∇ψ

+
(

4 +
δ

3
− δ2

3

)
|∇ψ|2u2 +

δ

3
(−ψt)a(x)u2

=
(

1 − 4
4 + δ2

)
|∇u|2 + δ2|∇ψ|2u2

+
∣∣∣∣ 2√

4 + δ2
∇u+

√
4 + δ2u∇ψ

∣∣∣∣2 +
δ

3
(−ψt)a(x)u2

≥ δ3(|∇u|2 + |∇ψ|2u2) +
δ

3
(−ψt)a(x)u2.

Substituting this into (3.2.13), we obtain

∂

∂t

[
e2ψ

(
uut +

a(x)
2

u2

)]
−∇ · (e2ψ(u∇u+ u2∇ψ))

+ e2ψδ3|∇u|2

+ e2ψ
(
δ3|∇ψ|2 +

δ

3
(−ψt)a(x) +

(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)

)
u2

+ e2ψ(−2ψtuut − u2
t )

≤ 0.

Integration over Rn leads to

d

dt

∫
Rn

e2ψ
(
uut +

a(x)
2

u2

)
dx+

∫
Rn

e2ψδ3|∇u|2dx(3.2.14)

+
∫
Rn

e2ψ
(
δ3|∇ψ|2 +

δ

3
(−ψt)a(x) +

(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)

)
u2dx

+
∫
Rn

e2ψ(−2ψtuut − u2
t )dx

≤ 0.
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By multiplying (3.2.11) by (t0 + t)α with large parameter t0, which determined
later, we obtain

d

dt

[
(t0 + t)α

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dx

]
(3.2.15)

− α

2
(t0 + t)α−1

∫
Rn

e2ψ(u2
t + |∇u|2)dx

+
∫
Rn

e2ψ
{(

1
4

+ (t0 + t)α(−ψt)
)
u2
t + (t0 + t)α

−ψt
5

|∇u|2
}
dx

≤ 0,

provided that t0 is sufficiently large, since a(x) ≥ 〈t + L〉−α holds by the finite
propagation speed property. Let ν be a positive small parameter depending on δ.
By (3.2.15)+ν(3.2.14), we have

d

dt

[∫
Rn

e2ψ
{

(t0 + t)α

2
(u2
t + |∇u|2) + ν

(
uut +

a(x)
2

u2

)}
dx

](3.2.16)

+
∫
Rn

e2ψ
(

1
4
− ν − α

2
(t0 + t)α−1 + (t0 + t)α(−ψt)

)
u2
tdx

+
∫
Rn

e2ψ
(
νδ3 −

α

2
(t0 + t)α−1 + (t0 + t)α

−ψt
5

)
|∇u|2dx

+ ν

∫
Rn

e2ψ
(
δ3|∇ψ|2 +

δ

3
(−ψt)a(x) +

(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)

)
u2dx

+ ν

∫
Rn

e2ψ2(−ψt)uutdx

≤ 0.

By the Schwarz inequality, the last term of the left-hand side of the above inequality
can be estimated as

|2(−ψt)uut| ≤
δ

3
(−ψt)(t0 + t)−αu2 +

3
δ
(−ψt)(t0 + t)αu2

t

≤ δ

3
(−ψt)a(x)u2 +

3
δ
(−ψt)(t0 + t)αu2

t .

Therefore, it follows from (3.2.16) that

d

dt

[∫
Rn

e2ψ
{

(t0 + t)α

2
(u2
t + |∇u|2) + ν

(
uut +

a(x)
2

u2

)}
dx

]
(3.2.17)

+
∫
Rn

e2ψ
(

1
4
− ν − α

2
(t0 + t)α−1 +

(
1 − 3ν

δ

)
(t0 + t)α(−ψt)

)
u2
tdx

+
∫
Rn

e2ψ
(
νδ3 −

α

2
(t0 + t)α−1 + (t0 + t)α

−ψt
5

)
|∇u|2dx

+ ν

∫
Rn

e2ψ
(
δ3|∇ψ|2 +

(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)

)
u2dx

≤ 0.
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Now we choose the parameters ν and t0 such that
1
4
− ν − α

2
(t0 + t)α−1 ≥ c0, 1 − 3ν

δ
≥ c0,

νδ3 −
α

2
(t0 + t)α−1 ≥ c0,

1
5
≥ c0

hold for some constant c0 > 0. This is possible because we first determine ν
sufficiently small depending on δ and then we choose t0 sufficiently large depending
on ν. Consequently, we obtain

d

dt

[∫
Rn

e2ψ
{

(t0 + t)α

2
(u2
t + |∇u|2) + ν

(
uut +

a(x)
2

u2

)}
dx

]
(3.2.18)

+ c0

∫
Rn

e2ψ(1 + (t0 + t)α(−ψt))(u2
t + |∇u|2)dx

+ ν

∫
Rn

e2ψ
(
δ3|∇ψ|2 +

(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)

)
u2dx

≤ 0.

We put

Ẽ1(t) =
∫
Rn

e2ψ
{

(t0 + t)α

2
(u2
t + |∇u|2) + ν

(
uut +

a(x)
2

u2

)}
dx,

E1,ψ(t) =
∫
Rn

e2ψ(1 + (t0 + t)α(−ψt))(u2
t + |∇u|2)dx

H̃1(t) = ν

∫
Rn

e2ψ
(
δ3|∇ψ|2 +

(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)

)
u2dx.

Then we can rewrite (3.2.18) as

(3.2.19)
d

dt
Ẽ1(t) + c0E1,ψ(t) + H̃1(t) ≤ 0.

Take arbitrary ε > 0 and we determine δ so that ε = 3δ1. By multiplying (3.2.19)
by (t0 + t)

n−α
2−α−ε, we have

d

dt
[(t0 + t)

n−α
2−α−εẼ1(t)] −

(
n− α

2 − α
− ε

)
(t0 + t)

n−α
2−α−1−εẼ1(t)

+ c0(t0 + t)
n−α
2−α−εE1,ψ(t) + (t0 + t)

n−α
2−α−εH̃1(t)

≤ 0.

Since

|νuut| ≤
νδ4
2
a(x)u2 +

ν

2δ4
(t0 + t)αu2

t ,

we estimate

Ẽ1(t) ≤
∫
Rn

e2ψ
((

1 +
ν

δ4

)
(t0 + t)α

2
u2
t +

(t0 + t)α

2
|∇u|2 + ν(1 + δ4)

a(x)
2

u2

)
dx.

Choosing δ4 sufficiently small and then t0 sufficiently large so that(
n− α

2 − α
− 2δ1

)
−
(
n− α

2 − α
− 3δ1

)
(1 + δ4) ≥ c1,

c0 −
1
2

(
1 +

ν

δ4

)
(t0 + t)α−1 ≥ c1
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with some c1 > 0, we have

d

dt
[(t0 + t)

n−α
2−α−εẼ1(t)]

+ c1(t0 + t)
n−α
2−α−εE1,ψ(t) + (t0 + t)

n−α
2−α−εH1(t)

≤ 0,

where

H1(t) = ν

∫
Rn

e2ψ
(
δ3|∇ψ|2 + c1

a(x)
2(1 + t)

)
u2dx.

Integrating over [0, t], one can obtain

(t0 + t)
n−α
2−α−εẼ1(t) +

∫ t

0

(t0 + τ)
n−α
2−α−ε(c1E1,ψ(τ) +H1(τ))dτ ≤ Ẽ1(0).

We also put

E1(t) :=
∫
Rn

e2ψ{(t0 + t)α(u2
t + |∇u|2) + a(x)u2}dx.

Then it is easy to see that Ẽ1(t) ∼ E1(t) and E1(0) . I0. From this, we have

(3.2.20) (t0 + t)
n−α
2−α−εE1(t) +

∫ t

0

(t0 + τ)
n−α
2−α−ε(E1,ψ(τ) +H1(τ))dτ ≤ CI0.

To reach the conclusion of the proposition, we multiply (3.2.11) by (t0 +
t)
n−α
2−α+1−ε and obtain

d

dt

[
(t0 + t)

n−α
2−α+1−ε

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dx

]
−
(
n− α

2 − α
+ 1 − ε

)
(t0 + t)

n−α
2−α−ε

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dx

+ (t0 + t)
n−α
2−α+1−ε

∫
Rn

e2ψ
{(

1
4
a(x) − ψt

)
u2
t +

−ψt
5

|∇u|2
}
dx ≤ 0.

By integrating over [0, t], it holds that

(t0 + t)
n−α
2−α+1−ε

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dx(3.2.21)

−
(
n− α

2 − α
+ 1 − ε

)∫ t

0

(t0 + τ)
n−α
2−α−ε

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dxdτ

+
∫ t

0

(t0 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ
{(

1
4
a(x) − ψt

)
u2
t +

−ψt
5

|∇u|2
}
dxdτ

≤ CI0.

Taking (3.2.20)+η(3.2.21) with small parameter η > 0 satisfying

1 − η

2

(
n− α

2 − α
+ 1 − ε

)
> 0,
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we can see that

(t0 + t)
n−α
2−α+1−ε

∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx

+ (t0 + t)
n−α
2−α−ε

∫
Rn

e2ψ(t,x)a(x)u(t, x)2dx

+
∫ t

0

{
(t0 + τ)

n−α
2−α−ε

∫
Rn

e2ψ(τ,x)(u2
t + |∇u|2)(τ, x)dx

+ (t0 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)(−ψt(τ, x))(u2
t + |∇u|2)(τ, x)dx

+ (t0 + t)
n−α
2−α−ε

∫
Rn

e2ψ(τ,x)|∇ψ(τ, x)|2u(τ, x)2dx

+ (t0 + τ)
n−α
2−α−1−ε

∫
Rn

e2ψ(τ,x)a(x)u(τ, x)2dx

+ (t0 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)a(x)ut(τ, x)2dx
}
dτ

≤ CI0.

Finally, we note that (t0 + t) ∼ (1 + t) and obtain the conclusion. �

3.3. Weighted energy estimates for higher order derivatives

In this section, we give a proof of Lemmas 3.3 and 3.4 and Theorem 3.2. We
first prove (3.1.10). Differentiating (3.1.1) with respect to t, we obtain

(3.3.1) uttt − ∆ut + a(x)utt = 0.

We apply the weighted energy method again. First, by Proposition 3.6, we have

(3.3.2)
∫ t

0

(t0 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)a(x)ut(τ, x)2dxdτ ≤ CI0.

Multiplying (3.3.1) by e2ψutt and e2ψut, and the same argument as the derivation
of (3.2.19), we can obtain

(3.3.3)
d

dt
Ẽ2(t) + c0E2,ψ(t) + H̃2(t) ≤ 0,

where

Ẽ2(t) =
∫
Rn

e2ψ
{

(t0 + t)α

2
(u2
tt + |∇ut|2) + ν

(
ututt +

a(x)
2

u2
t

)}
dx,

E2,ψ(t) =
∫
Rn

e2ψ(1 + (t0 + t)α(−ψt))(u2
tt + |∇ut|2)dx,

H̃2(t) = ν

∫
Rn

e2ψ
(
δ3|∇ψ|2 +

(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)

)
u2
tdx.



3.3. WEIGHTED ENERGY ESTIMATES FOR HIGHER ORDER DERIVATIVES 99

Multiplying (3.3.3) by (t0 + t)
n−α
2−α+2−ε and retaking t0 larger, we have

d

dt
[(t0 + t)

n−α
2−α+2−εẼ2(t)]

+ c1(t0 + t)
n−α
2−α+2−εE2,ψ(t)

+ νδ3(t0 + t)
n−α
2−α+2−ε

∫
Rn

e2ψ|∇ψ|2u2
tdx

≤ C(t0 + t)
n−α
2−α+1−ε

∫
Rn

e2ψa(x)u2
tdx

with some c1 > 0. By (3.3.2), integrating over [0, t] and noting Ẽ2(t) ∼ E2(t),
where

E2(t) =
∫
Rn

e2ψ
{
(t0 + t)α(u2

tt + |∇ut|2) + a(x)u2
t

}
dx,

it follows that

(t0 + t)
n−α
2−α+2−εE2(t)(3.3.4)

+
∫ t

0

(t0 + τ)
n−α
2−α+2−εE2,ψ(τ)dτ

+
∫ t

0

(t0 + τ)
n−α
2−α+2−ε

∫
Rn

e2ψ|∇ψ|2u2
tdxdτ

≤ CI1.

In particular, we can see that (3.1.10) holds. Furthermore, we obtain

(3.3.5)
∫ t

0

(t0 + τ)
n−α
2−α+2−ε

∫
Rn

e2ψ(u2
tt + |∇ut|2)dxdτ ≤ CI1.

Using this, we can prove (3.1.11). Indeed, by the same argument as proving (3.2.11),
we have

d

dt

∫
Rn

e2ψ

2
(u2
tt + |∇ut|2)dx(3.3.6)

+
∫
Rn

e2ψ
{(

1
4
a(x) − ψt

)
u2
tt +

−ψt
5

|∇ut|2
}
dx ≤ 0.

Multiplying (3.3.6) by (t0 + t)
n−α
2−α+3−ε, we obtain

d

dt

[
(t0 + t)

n−α
2−α+3−ε

∫
Rn

e2ψ

2
(u2
tt + |∇ut|2)dx

]
+ (t0 + t)

n−α
2−α+3−ε

∫
Rn

e2ψ
{
a(x)u2

tt + (−ψt)(u2
tt + |∇ut|2)

}
dx

≤ C(t0 + t)
n−α
2−α+2−ε

∫
Rn

e2ψ

2
(u2
tt + |∇ut|2)dx.

Integration over the interval [0, t] and the estimate (3.3.5) imply

(t0 + t)
n−α
2−α+3−ε

∫
Rn

e2ψ(u2
tt + |∇ut|2)dx(3.3.7)

+
∫ t

0

(t0 + τ)
n−α
2−α+3−ε

∫
Rn

e2ψ
{
a(x)u2

tt + (−ψt)(u2
tt + |∇ut|2)

}
dxdτ

≤ CI1.
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In particular, we have (3.1.11) and

(3.3.8)
∫ t

0

(t0 + τ)
n−α
2−α+3−ε

∫
Rn

e2ψa(x)utt(τ, x)2dxdτ ≤ CI1,

which will be used to obtain (3.1.12) and (3.1.13).
To prove (3.1.12) and (3.1.13), we differentiate (3.3.1) again and have

(3.3.9) utttt − ∆utt + a(x)uttt = 0.

Using (3.3.8) instead of (3.3.2) and by the same argument as above, we can prove
instead of (3.3.4) that

(t0 + t)
n−α
2−α+4−εE3(t)(3.3.10)

+
∫ t

0

(t0 + τ)
n−α
2−α+4−εE3,ψ(τ)dτ

+
∫ t

0

(t0 + t)
n−α
2−α+4−ε

∫
Rn

e2ψ|∇ψ|2u2
ttdxdτ

≤ CI2,

where

E3(t) =
∫
Rn

e2ψ
{
(t0 + t)α(u2

ttt + |∇utt|2) + a(x)u2
tt

}
dx,

E3,ψ(t) =
∫
Rn

e2ψ(1 + (t0 + t)α(−ψt))(u2
ttt + |∇utt|2)dx.

In particular, we obtain (3.1.12). Moreover, by the same argument as deriving
(3.3.7), one can obtain

(t0 + t)
n−α
2−α+5−ε

∫
Rn

e2ψ(u2
ttt + |∇utt|2)dx(3.3.11)

+
∫ t

0

(t0 + τ)
n−α
2−α+5−ε

∫
Rn

e2ψ
{
a(x)u2

ttt + (−ψt)(u2
ttt + |∇utt|2)

}
dxdτ

≤ CI3.

In particular, we have

(3.3.12)
∫ t

0

(t0 + τ)
n−α
2−α+5−ε

∫
Rn

e2ψa(x)u2
tttdxdτ ≤ CI3.

Using (3.3.12) instead of (3.3.8) again, we can prove (3.1.13). Furthermore, we can
continue the argument starting at (3.3.8) and obtaining (3.3.12) as much as we
want. Therefore, we can obtain the conclusion of Theorem 3.2.

Finally, we prove (3.1.14) and (3.1.15). Multiplying (3.1.3) by v, we have

∂

∂t

[
a(x)

2
v2

]
−∇ · (v∇v) + |∇v|2 = 0.

Integrating over Rn, one can obtain
1
2
d

dt

∫
Rn

a(x)v(t, x)2dx+
∫
Rn

|∇v(t, x)|2dx = 0.

Thus, we have

1
2

∫
Rn

a(x)v(t, x)2dx+
∫ t

τ

∫
Rn

|∇v(s, x)|2dxds =
1
2

∫
Rn

a(x)vτ (x)2dx,
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which implies (3.1.14). To prove (3.1.15), we apply a similar argument to (3.1.3)
as in the previous section. We first multiply (3.1.3) by e2ψvt and have

∂

∂t

[
e2ψ

2
|∇v|2

]
−∇ · (e2ψvt∇v)

+ e2ψ
(
a(x) − |∇ψ|2

−ψt

)
v2
t +

e2ψ

−ψt
|ψt∇v − vt∇ψ|2︸ ︷︷ ︸

T1

= 0.

By (3.2.8) and

T1 ≥ e2ψ
(

1
5
(−ψt)|∇v|2 −

a(x)
4(2 + δ)

v2
t

)
,

it follows that

∂

∂t

[
e2ψ

2
|∇v|2

]
−∇ · (e2ψvt∇v)

+ e2ψ
(

1
4
a(x)v2

t +
1
5
(−ψt)|∇v|2

)
≤ 0.

Integrating over Rn, we obtain

(3.3.13)
d

dt

∫
Rn

e2ψ

2
|∇v|2dx+

∫
Rn

e2ψ
(

1
4
a(x)v2

t +
1
5
(−ψt)|∇v|2

)
dx ≤ 0.

On the other hand, by multiplying (3.1.3) by e2ψv, it follows that

∂

∂t

[
e2ψ

a(x)
2

v2

]
−∇ · (e2ψv∇v)

+ e2ψ{|∇v|2 + 2v∇ψ · ∇v + (−ψt)a(x)v2} = 0.

By the same argument as the derivation of (3.2.14), we can see that

d

dt

[∫
Rn

e2ψ
a(x)

2
v2dx

]
(3.3.14)

+
∫
Rn

e2ψ
(
δ3(|∇v|2 + |∇ψ|2v2) +

δ

3
(−ψt)a(x)v2

+
(
n− α

2 − α
− 2δ1

)
a(x)

2(1 + t)
v2

)
dx

≤ 0.
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Taking ν(1+ t)
n−α
2−α+1−ε (3.3.13)+(1+ t)

n−α
2−α−ε(3.3.14) with small parameter ν > 0,

we obtain
d

dt

[
ν(1 + t)

n−α
2−α+1−ε

∫
Rn

e2ψ

2
|∇v|2dx+ (1 + t)

n−α
2−α−ε

∫
Rn

e2ψ
a(x)

2
v2dx

]
+
(
δ3 −

ν

2

(
n− α

2 − α
+ 1 − ε

))
(1 + t)

n−α
2−α−ε

∫
Rn

e2ψ|∇v|2dx

+ ν(1 + t)
n−α
2−α+1−ε

∫
Rn

e2ψ
(

1
4
a(x)v2

t +
(−ψt)

5
|∇v|2

)
dx

+ (1 + t)
n−α
2−α−ε

∫
Rn

e2ψ
(
δ3|∇ψ|2v2 +

δ

3
(−ψt)a(x)v2

)
dx

+ (ε− 2δ1)(1 + t)
n−α
2−α−1−ε

∫
Rn

e2ψ
a(x)

2
v2dx

≤ 0.

We determine δ so that ε = 3δ1 holds. Then we take ν sufficiently small. Integrating
the above inequality over [τ, t], we have

(1 + t)
n−α
2−α+1−ε

∫
Rn

e2ψ

2
|∇v|2dx+ (1 + t)

n−α
2−α−ε

∫
Rn

e2ψ
a(x)

2
v2dx(3.3.15)

+
∫ t

τ

(1 + s)
n−α
2−α−ε

∫
Rn

e2ψ|∇v|2dxds

+
∫ t

τ

(1 + s)
n−α
2−α+1−ε

∫
Rn

e2ψ(a(x)v2
t + (−ψt)|∇v|2)dxds

+
∫ t

τ

(1 + s)
n−α
2−α−ε

∫
Rn

e2ψ
(
|∇ψ|2v2 + (−ψt)a(x)v2

)
dxds

+
∫ t

τ

(1 + s)
n−α
2−α−1−ε

∫
Rn

e2ψa(x)v2dxds

≤ C(1 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)|∇vτ (x)|2dx

+ C(1 + τ)
n−α
2−α−ε

∫
Rn

e2ψ(τ,x)a(x)vτ (x)2dx.

In particular, it follows that∫ t

τ

(1 + s)
n−α
2−α+1−ε

∫
Rn

e2ψ(s,x)a(x)vt(s, x)2dxds(3.3.16)

≤ C(1 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)|∇vτ (x)|2dx

+ C(1 + τ)
n−α
2−α−ε

∫
Rn

e2ψ(τ,x)a(x)vτ (x)2dx.

Using this estimate, we prove (3.1.15). We differentiate (3.1.3) with respect to t
and have

a(x)vtt − ∆vt = 0.
Multiplying this by vt, we obtain

∂

∂t

[
a(x)

2
v2
t

]
−∇ · (vt∇vt) + |∇vt|2 = 0.
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Integrating over Rn, one can see that

d

dt

∫
Rn

a(x)vt(t, x)2dx ≤ 0.

Moreover, taking into account (3.3.16), multiplying this by (1+ t− τ)
n−α
2−α+2−ε with

0 ≤ τ ≤ t, we have

d

dt

[
(1 + t− τ)

n−α
2−α+2−ε

∫
Rn

a(x)vt(t, x)2dx
]

≤ C(1 + t− τ)
n−α
2−α+1−ε

∫
Rn

a(x)vt(t, x)2dx

≤ C(1 + t)
n−α
2−α+1−ε

∫
Rn

a(x)vt(t, x)2dx.

Integrating over [τ, t], and using (3.3.16), we can conclude that

(1 + t− τ)
n−α
2−α+2−ε

∫
Rn

a(x)vt(t, x)2dx

≤
∫
Rn

a(x)vt(τ, x)2dx

+ C

∫ t

τ

(1 + s)
n−α
2−α+1−ε

∫
Rn

a(x)vt(s, x)2dxds

≤
∫
Rn

a(x)−1|∆vτ (x)|2dx

+ C(1 + τ)
n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)|∇vτ (x)|2dx

+ C(1 + τ)
n−α
2−α−ε

∫
Rn

e2ψ(τ,x)a(x)vτ (x)2dx.

Here we note that
a(x)vt(τ, x) = ∆vτ (x),

since v satisfies (3.1.3). Thus, we obtain (3.1.15).

Proof of Lemma 1.4. By (3.3.14), we have

d

dt

[∫
Rn

e2ψ
a(x)

2
v2dx

]
≤ 0.

This shows

(3.3.17)
∫
Rn

e2ψ(t,x) a(x)
2

v(t, x)2dx ≤
∫
Rn

e2ψ(0,x) a(x)
2

v(0, x)2dx.

Let 0 < ρ < 1 − α, 0 < µ < 2A and

Ωρ(t) := {x ∈ Rn | 〈x〉2−α ≥ (1 + t)1+ρ}.

A simple calculation implies

e2ψa(x) ≥ c(1 + t)−
α

2−α e(2A−µ)
〈x〉2−α

1+t .

By noting that
〈x〉2−α

1 + t
≥ (1 + t)ρ
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on Ωρ(t) and (3.3.17), it follows that

(1 + t)−
α

2−α

∫
Ωρ(t)

e(2A−µ)(1+t)ρv(t, x)2dx

≤ C(1 + t)−
α

2−α

∫
Ωρ(t)

e(2A−µ)
〈x〉2−α

1+t v(t, x)2dx

≤ C

∫
Rn

e2ψ(t,x)a(x)v(t, x)2dx

≤ C

∫
Rn

e2ψ(0,x)a(x)v(0, x)2dx.

Thus, we obtain∫
Ωρ(t)

v(t, x)2dx ≤ C(1 + t)
α

2−α e−(2A−µ)(1+t)ρ
∫
Rn

e2ψ(0,x)a(x)v(0, x)2dx.

This proves Lemma 3.4.
�

3.4. Proof of the main theorem

The equation (3.1.1) can be expressed as

ut − a(x)−1∆u = −a(x)−1utt.

By the Duhamel principle, we can write

(3.4.1) u(t, x) = E(t)u0(x) −
∫ t

0

E(t− τ)[a(·)−1utt(τ, ·)](x)dτ.

By the integration by parts, we have

−
∫ t

0

E(t− τ)[a(·)−1utt(τ, ·)]dτ = −
∫ t

t/2

E(t− τ)[a(·)−1utt(τ, ·)]dτ

− E(t/2)[a−1ut(t/2)] + E(t)[a−1u1]

−
∫ t/2

0

∂E

∂t
(t− τ)[a−1ut(τ)]dτ,

where ∂E
∂t (t− τ) is the pseudodifferential operator with the symbol ∂e∂t (t− τ, x, ξ),

that is, ∂E∂t (t−τ)vτ denotes the derivative of E(t−τ)vτ with respect to t. Therefore,
we obtain

u(t) − E(t)[u0 + a−1u1] = −
∫ t

t/2

E(t− τ)[a(·)−1utt(τ, ·)]dτ(3.4.2)

− E(t/2)[a−1ut(t/2)]

−
∫ t/2

0

∂E

∂t
(t− τ)[a−1ut(τ)]dτ

and it suffices to prove that the each term of the right-hand side is o(t−
n−2α
2(2−α) ) in

the L2-sense. First, by the finite propagation speed property, we have u(t, x) =
χ(t, x)u(t, x) with the characteristic function χ(t, x) of the region {(t, x) ∈ (0,∞)×
Rn | |x| < t+L}. Moreover, by Lemma 3.4, the L2-norm of (1− χ(t, x))E(t)[u0 +
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a−1u1] decays exponentially. Thus, by multiplying (3.4.2) by χ(t, x), it suffices to
estimate the terms

K1 := χ(t, x)
∫ t

t/2

E(t− τ)[a(·)−1utt(τ, ·)]dτ, K2 := χ(t, x)E(t/2)[a−1ut(t/2)]

and

K3 := χ(t, x)
∫ t/2

0

∂E

∂t
(t− τ)[a−1ut(τ)]dτ.

We first estimate K1. By (3.1.14) and (3.1.12), we have

‖K1‖L2 =

∥∥∥∥∥χ(t)
∫ t

t/2

E(t− τ)[a−1utt(τ)]dτ

∥∥∥∥∥
L2

=

∥∥∥∥∥χ(t)
1√
a

∫ t

t/2

√
aE(t− τ)[a−1utt(τ)]dτ

∥∥∥∥∥
L2

. (1 + t)α/2
∫ t

t/2

‖
√
aE(t− τ)[a−1utt(τ)]‖L2dτ

≤ (1 + t)α/2
∫ t

t/2

‖
√
aa−1utt(τ)‖L2dτ

. (1 + t)3α/2
∫ t

t/2

‖
√
autt(τ)‖L2dτ

. (1 + t)3α/2−
n−α

2(2−α)−1−ε/2 = o(t−
n−2α
2(2−α) ),

provided that ε > 0 is taken sufficiently small. Because, it is true that

(3.4.3)
3
2
α− n− α

2(2 − α)
− 1 < − n− 2α

2(2 − α)

holds if 0 ≤ α < 1.
We can estimate K2 by a similar way. Using (3.1.14), (3.1.10) and (3.4.3), we

obtain

‖K2‖L2 =
∥∥∥∥χ(t)

1√
a

√
aE(t/2)[a−1ut(t/2)]

∥∥∥∥
L2

. (1 + t)α/2
∥∥√aE(t/2)[a−1ut(t/2)]

∥∥
L2

. (1 + t)α/2
∥∥√aa−1ut(t/2)

∥∥
L2

. (1 + t)3α/2
∥∥√aut(t/2)

∥∥
L2

. (1 + t)3α/2−
n−α

2(2−α)−1+ε/2 = o(t−
n−2α
2(2−α) ).
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Finally, we estimate K3. By (3.1.15), we have

‖K3‖L2 =

∥∥∥∥∥χ(t)
∫ t/2

0

∂E

∂t
(t− τ)[a−1ut(τ)]dτ

∥∥∥∥∥
L2

=

∥∥∥∥∥χ(t)
1√
a

∫ t/2

0

√
a
∂E

∂t
(t− τ)[a−1ut(τ)]dτ

∥∥∥∥∥
L2

. (1 + t)α/2
∫ t/2

0

∥∥∥∥√a∂E∂t (t− τ)[a−1ut(τ)]
∥∥∥∥
L2

dτ

. (1 + t)α/2
∫ t/2

0

(1 + t− τ)−
n−α

2(2−α)−1+ε/2(J1 + J2 + J3)dτ

. (1 + t)α/2−
n−α

2(2−α)−1+ε/2

∫ t/2

0

(J1 + J2 + J3)dτ,

where

J2
1 =

∫
Rn

a(x)−1|∆(a(x)−1ut(τ, x))|2dx,

J2
2 = (1 + τ)

n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)|∇(a(x)−1ut(τ, x))|2dx

and

J2
3 = (1 + τ)

n−α
2−α−ε

∫
Rn

e2ψ(τ,x)a(x)|a(x)−1ut(τ, x)|2dx.

By noting

(3.4.4) α− n− α

2(2 − α)
− 1

2
< − n− 2α

2(2 − α)

if 0 ≤ α < 1, it is only necessary to prove

(3.4.5)
∫ t/2

0

Jkdτ ≤ C(1 + t)
α+1

2

for k = 1, 2, 3 with some constant C > 0.
Now we prove (3.4.5). We first estimate J3. By (3.1.10) and the finite propa-

gation speed property again, we can estimate

J2
3 . (1 + τ)

n−α
2−α−ε(1 + τ)2α

∫
Rn

e2ψ(τ,x)a(x)ut(τ, x)2dx

. (1 + τ)2α−2.

By a simple calculation, we can see that∫ t/2

0

J3dτ .
∫ t/2

0

(1 + τ)α−1dτ . (1 + t)
α+1

2 .

Next, we estimate J2. Noting

∇(a−1ut) = ∇(a−1)ut + a−1∇ut
and |∇(a−1)| . 〈x〉α−1, we have

J2
2 . (1 + τ)

n−α
2−α+1−ε

∫
Rn

e2ψ(τ,x)(|〈x〉α−1ut(τ, x)|2 + |〈x〉α∇ut(τ, x)|2)dx.
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By (3.1.10) and (3.1.12), we obtain∫
Rn

e2ψ(τ,x)|〈x〉α−1ut(τ, x)|2dx . (1 + τ)α
∫
Rn

e2ψ(τ,x)a(x)ut(τ, x)2dx

. (1 + τ)α−
n−α
2−α−2+ε

and ∫
Rn

e2ψ(τ,x)|〈x〉α∇ut(τ, x)|2dx . (1 + τ)2α
∫
Rn

e2ψ(τ,x)|∇ut(τ, x)|2dx

. (1 + τ)2α−
n−α
2−α−3+ε.

Therefore, it holds that ∫ t/2

0

J2dτ . (1 + t)
α+1

2 .

Finally, we estimate J1. Noting

∆(a−1ut) = ∆(a−1)ut + 2∇(a−1) · ∇ut + a−1∆ut,

we further divide J1 into three parts:

J2
1 .

∫
Rn

a−1|∆(a−1)ut|2dx+
∫
Rn

a−1|∇(a−1)|2|∇ut|2dx+
∫
Rn

a−1|a−1∆ut|2dx

≡ J2
11 + J2

12 + J2
13.

By noting |∆(a−1)| . 〈x〉α−2 and (3.1.10), we have

J2
11 .

∫
Rn

〈x〉4α−4a(x)ut(τ, x)2dx

. (1 + τ)−
n−α
2−α−2+ε.

Therefore, we immediately obtain∫ t/2

0

J11dτ . 1,

provided that ε is sufficiently small.
Next, we estimate J12.

J2
12 . (1 + τ)α

∫
Rn

|∇ut(τ, x)|2dx . (1 + τ)α−
n−α
2−α−3+ε

and hence ∫ t/2

0

J12dτ . 1.

Since ut also satisfies (3.1.1), we can rewrite

∆ut = uttt − autt.

Therefore, we have

J2
13 .

∫
Rn

a(x)−4a(x)|uttt(τ, x)|2dx+
∫
Rn

a(x)−2a(x)|utt(τ, x)|2dx

. (1 + τ)4α−
n−α
2−α−6+ε + (1 + τ)2α−

n−α
2−α−4+ε.

These estimates imply ∫ t/2

0

J1dτ . 1.
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This completes the proof.



CHAPTER 4

Small data global existence for the semilinear
wave equation with damping depending on time

and space variables

4.1. Introduction and results

In this chapter, we consider the Cauchy problem for the semilinear wave equa-
tion with damping depending on time and space variables

(4.1.1)
{
utt − ∆u+ a(x)b(t)ut = f(u), (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where

a(x) = a0〈x〉−α, b(t) = (1 + t)−β , with a0 > 0, α, β ≥ 0, α+ β < 1

and 〈x〉 =
√

1 + |x|2. Here u is a real-valued unknown function and (u0, u1) ∈
H1(Rn)×L2(Rn). We note that u0 and u1 need not be compactly supported. The
nonlinear term f(u) is given by

f(u) = ±|u|p or |u|p−1u

and the power p satisfies

1 < p ≤ n

n− 2
(n ≥ 3), 1 < p <∞ (n = 1, 2).

Our aim is to determine the critical exponent pc, which is a number defined by the
following property:

If pc < p, all small data solutions of (4.1.1) are global; if 1 < p ≤ pc, the
time-local solution cannot be extended time-globally even for small data in general.

In view of the diffusive phenomenon, it is expected that the critical exponent
of (4.1.1) is given by

pc = 1 +
2

n− α
.

Because for the corresponding heat equation

−∆v + a(x)b(t)vt = |v|p,

the critical exponent is actually given by the above one. In this chapter we shall
prove the existence of global solutions with small data when p > 1 + 2/(n − α).
However, it is still open whether there exists a blow-up solution when 1 < p ≤
1 + 2/(n− α).

For the constant coefficient case α = β = 0, as we mentioned in Section 1.3
and Chapter 2, there are many results for determining the critical exponent. For
space-dependent damping case β = 0, the critical exponent pc is determined as
1 + 2/(n − α) by Ikehata, Todorova and Yordanov [36]. On the other hand, for

109
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the time-dependent damping α = 0, Lin, Nishihara and Zhai [56] proved that the
critical exponent is 1+2/n. D’Abbicco, Lucente and Reissig [8] extended the result
of [56] to more general time-dependent effective damping and improved the decay
rate of the energy of solutions.

To state our results, we define an auxiliary function

(4.1.2) ψ(t, x) := A
〈x〉2−α

(1 + t)1+β

with

(4.1.3) A =
(1 + β)a0

(2 − α)2(2 + δ)
, δ > 0

This type of weight function is introduced by Todorova and Yordanov [105, 106]
and arranged by several authors (see [35, 107, 54]). We have the following result:

Theorem 4.1. If

1 +
2

n− α
< p ≤ n

n− 2
(n ≥ 3), 1 +

2
n− α

< p <∞ (n = 1, 2),

then there exists a small positive number δ0 > 0 such that for any 0 < δ ≤ δ0 the
following holds: If

I2
0 :=

∫
Rn

e2ψ(0,x)(u1(x)2 + |∇u0(x)|2 + |u0(x)|2)dx

is sufficiently small, then there exists a unique solution u ∈ C([0,∞);H1(Rn)) ∩
C1([0,∞);L2(Rn)) to (4.1.1) satisfying∫

Rn

e2ψ(t,x)u(t, x)2dx ≤ CδI
2
0 (1 + t)−(1+β)n−2α

2−α +ε,(4.1.4) ∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx ≤ CδI
2
0 (1 + t)−(1+β)(n−α

2−α+1)+ε,

where

(4.1.5) ε = ε(δ) :=
3(1 + β)(n− α)
2(2 − α)(2 + δ)

δ

and Cδ is a constant depending on δ.

Remark 4.1. A similar result was obtained by Khader [46] independently.

As a consequence of the main theorem, we have an exponential decay estimate
outside a parabolic region.

Corollary 4.2. If

1 +
2

n− α
< p ≤ n

n− 2
(n ≥ 3), 1 +

2
n− α

< p <∞ (n = 1, 2),

then there exists a small positive number δ0 > 0 such that for any 0 < δ ≤ δ0 the
following holds: Take ρ and µ so small that

0 < ρ < 1 − α− β, and 0 < µ < 2A,

and put
Ωρ(t) := {x ∈ Rn; 〈x〉2−α ≥ (1 + t)1+β+ρ}.
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Then, for the global solution u in Theorem 4.1, we have∫
Ωρ(t)

(ut(t, x)2 + |∇u(t, x)|2 + u(t, x)2)dx

≤ Cδ,ρ,µI
2
0 (1 + t)−

(1+β)(n−2α)
2−α +εe−(2A−µ)(1+t)ρ ,

here ε is defined by (4.1.5) and Cδ,ρ,µ is a constant depending on δ, ρ and µ.

Namely, the decay rate of solution in the region Ωρ(t) is exponential. We
note that the support of u(t) and the region Ωρ(t) can intersect even if the data
are compactly supported. This phenomenon was first discovered by Todorova and
Yordanov [106]. We can interpret this result as follows: The support of the solution
is strongly suppressed by damping, so that the solution is concentrated in the
parabolic region much smaller than the light cone.

4.2. A priori estimate

To prove Theorem 4.1, we use a multiplier method which was originally devel-
oped by Todorova and Yordanov [105, 106]. We first describe the local existence:

Proposition 4.3. Let

1 < p ≤ n

n− 2
(n ≥ 3), 1 < p <∞ (n = 1, 2)

and δ > 0. If I2
0 < +∞, then there exists T ∗ ∈ (0,+∞] depending on I2

0 such
that the Cauchy problem (4.1.1) has a unique solution u ∈ C([0, T ∗);H1(Rn)) ∩
C1([0, T ∗);L2(Rn)) satisfying∫

Rn

e2ψ(t,x)(u2
t + |∇u|2 + u2)(t, x)dx < +∞

for all t ∈ (0, T ∗). Moreover, if T ∗ < +∞ then we have

lim inf
t→T∗

∫
Rn

e2ψ(t,x)(u2
t + |∇u|2 + u2)(t, x)dx = +∞.

We give a proof of this proposition in Appendix (see Proposition 9.21). We
prove a priori estimate for the following functional:

M(t) := sup
0≤τ<t

{
(1 + τ)B+1−ε

∫
Rn

e2ψ(τ,x)(u2
t + |∇u|2)(τ, x)dx(4.2.1)

+(1 + τ)B−ε
∫
Rn

e2ψ(τ,x)a(x)b(τ)u(τ, x)2dx
}
,

where

B :=
(1 + β)(n− α)

2 − α
+ β

and ε is given by (4.1.5). Theorem 4.1 is an immediate conclusion of Proposition
4.3 and the following a priori estimate:

Proposition 4.4. Let

1 +
2

n− α
< p ≤ n+ 2

n− 2
(n ≥ 3), 1 +

2
n− α

< p <∞ (n = 1, 2).



112 4. GLOBAL EXISTENCE FOR TIME-SPACE DAMPING

Then there exist constants δ0 > 0 such that for any 0 < δ ≤ δ0, the following holds:
If I2

0 < +∞, ε is defined by (4.1.5) and u ∈ C([0, T );H1(Rn))∩C1([0, T );L2(Rn))
is a solution of the Cauchy problem (4.1.1) for some T > 0 such that∫

Rn

e2ψ(t,x)(u2 + |∇u|2 + u2
t )(t, x)dx < +∞

for all 0 ≤ t < T , then it follows that

M(t) + L(t) ≤ CI2
0 + CM(t)p+1,

where

L(t) =
∫ t

0

{
(1 + τ)B−ε

∫
Rn

e2ψ(τ,x)(u2
t + |∇u|2)(τ, x)dx

+ (1 + τ)B+1−ε
∫
Rn

e2ψ(τ,x)(−ψt(τ, x))(u2
t + |∇u|2)(τ, x)dx

+ (1 + τ)B−1−ε
∫
Rn

e2ψ(τ,x)a(x)b(τ)u(τ, x)2dx

+ (1 + τ)B+1−ε
∫
Rn

e2ψ(τ,x)a(x)b(τ)ut(τ, x)2dx
}
dτ

and C = C(p, ε) is a positive constant depending on p, ε.

4.2.1. Proof of Proposition 4.4.

Proof of Proposition 4.4. From (4.1.2) and (4.1.3), it is easy to see that

−ψt =
1 + β

1 + t
ψ,(4.2.2)

∇ψ = A
(2 − α)〈x〉−αx

(1 + t)1+β
,(4.2.3)

∆ψ = A(2 − α)(n− α)
〈x〉−α

(1 + t)1+β
+A(2 − α)α

〈x〉−2−α

(1 + t)1+β
(4.2.4)

≥ (1 + β)(n− α)
(2 − α)(2 + δ)

a(x)b(t)
1 + t

=:
(

(1 + β)(n− α)
2(2 − α)

− δ1

)
a(x)b(t)

1 + t
.

Here and after, δi(i = 1, 2, . . .) is a positive constant depending only on δ such that

δi → 0 as δ → 0.

We also have

(−ψt)a(x)b(t) = Aa0(1 + β)
〈x〉2−2α

(1 + t)2+2β
(4.2.5)

≥ a0(1 + β)
(2 − α)2A

A2(2 − α)2
〈x〉−2α|x|2

(1 + t)2+2β

= (2 + δ)|∇ψ|2.
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By multiplying (4.1.1) by e2ψut, it follows that

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u)(4.2.6)

+ e2ψ
(
a(x)b(t) − |∇ψ|2

−ψt
− ψt

)
u2
t +

e2ψ

−ψt
|ψt∇u− ut∇ψ|2︸ ︷︷ ︸

T1

=
∂

∂t

[
e2ψF (u)

]
+ 2e2ψ(−ψt)F (u),

where F is the primitive of f satisfying F (0) = 0, namely F ′(u) = f(u), for example,

F (u) =

{
± 1
p+1 |u|

pu if f(u) = ±|u|p,
1
p+1 |u|

p+1 if f(u) = |u|p−1u.

Using the Schwarz inequality and (4.2.5), we can calculate

T1 =
e2ψ

−ψt
(ψ2
t |∇u|2 − 2ψtut∇u · ∇ψ + u2

t |∇ψ|2)

≥ e2ψ

−ψt

(
1
5
ψ2
t |∇u|2 −

1
4
u2
t |∇ψ|2

)
≥ e2ψ

(
1
5
(−ψt)|∇u|2 −

a(x)b(t)
4(2 + δ)

u2
t

)
.

From this and (4.2.5), we obtain

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u)(4.2.7)

+ e2ψ
{(

1
4
a(x)b(t) − ψt

)
u2
t +

−ψt
5

|∇u|2
}

≤ ∂

∂t

[
e2ψF (u)

]
+ 2e2ψ(−ψt)F (u).

By multiplying (4.2.7) by (t0 + t)B+1−ε, here t0 ≥ 1 is determined later, it follows
that

∂

∂t

[
(t0 + t)B+1−ε e

2ψ

2
(u2
t + |∇u|2)

]
(4.2.8)

− (B + 1 − ε)(t0 + t)B−ε e
2ψ

2
(u2
t + |∇u|2)

−∇ · ((t0 + t)B+1−εe2ψut∇u)

+ e2ψ(t0 + t)B+1−ε
{(

1
4
a(x)b(t) − ψt

)
u2
t +

−ψt
5

|∇u|2
}

≤ ∂

∂t

[
(t0 + t)B+1−εe2ψF (u)

]
− (B + 1 − ε)(t0 + t)B−εe2ψF (u)

+ 2(t0 + t)B+1−εe2ψ(−ψt)F (u).
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We put

E(t) :=
∫
Rn

e2ψ(u2
t + |∇u|2)dx, Eψ(t) :=

∫
Rn

e2ψ(−ψt)(u2
t + |∇u|2)dx,

J(t; g) :=
∫
Rn

e2ψgdx, Jψ(t; g) :=
∫
Rn

e2ψ(−ψt)gdx.

Integrating (4.2.8) over the whole space, we have

1
2
d

dt

[
(t0 + t)B+1−εE(t)

]
− 1

2
(B + 1 − ε)(t0 + t)B−εE(t)(4.2.9)

+
1
4
(t0 + t)B+1−εJ(t, a(x)b(t)u2

t ) +
1
5
(t0 + t)B+1−εEψ(t)

≤ d

dt

[
(t0 + t)B+1−ε

∫
e2ψF (u)dx

]
+ C(t0 + t)B+1−εJψ(t; |u|p+1) + C(t0 + t)B−εJ(t; |u|p+1).

Noting that e2ψ(t,x)ut(t, x)∇u(t, x) ∈ L1(Rn), we can use the divergence theorem
and (4.2.9) is valid. Therefore, we integrate (4.2.9) on the interval [0, t] and obtain
the estimate for (t0 + t)B+1−εE(t), which is the first term of M(t):

(t0 + t)B+1−εE(t) − C

∫ t

0

(t0 + τ)B−εE(τ)dτ(4.2.10)

+
∫ t

0

(t0 + τ)B+1−εJ(τ ; a(x)b(t)u2
t ) + (t0 + τ)B+1−εEψ(τ)dτ

≤ CI2
0 + C(t0 + t)B+1−εJ(t; |u|p+1)

+ C

∫ t

0

(t0 + τ)B+1−εJψ(τ ; |u|p+1)dτ

+ C

∫ t

0

(t0 + t)B−εJ(τ ; |u|p+1)dτ.

In order to complete a priori estimate, however, we have to manage the second term
of the inequality above whose sign is negative, and we also have to estimate the
second term of M(t). The following argument, which is little more complicated,
can settle both of these problems.

First, we multiply (4.1.1) by e2ψu and have

∂

∂t

[
e2ψ

(
uut +

a(x)b(t)
2

u2

)]
−∇ · (e2ψu∇u)

(4.2.11)

+ e2ψ

|∇u|2 +
(
−ψt +

β

2(1 + t)

)
a(x)b(t)u2 + 2u∇ψ · ∇u︸ ︷︷ ︸

T2

−2ψtuut − u2
t


= e2ψuf(u).

We calculate

e2ψT2 = 4e2ψu∇ψ · ∇u− 2e2ψu∇ψ · ∇u

= 4e2ψu∇ψ · ∇u−∇ · (e2ψu2∇ψ) + 2e2ψu2|∇ψ|2 + e2ψ(∆ψ)u2
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and by (4.2.4) we can rewrite (4.2.11) to

∂

∂t

[
e2ψ

(
uut +

a(x)b(t)
2

u2

)]
−∇ · (e2ψ(u∇u+ u2∇ψ))(4.2.12)

+ e2ψ
{
|∇u|2 + 4u∇u · ∇ψ + (−ψt)a(x)b(t) + 2|∇ψ|2)u2︸ ︷︷ ︸

T3

+ (B − 2δ1)
a(x)b(t)
2(1 + t)

u2 − 2ψtuut − u2
t

}
≤ e2ψuf(u).

It follows from (4.2.5) that

T3 = |∇u|2 + 4u∇u · ∇ψ

+
{(

1 − δ

3

)
(−ψt)a(x)b(t) + 2|∇ψ|2

}
u2 +

δ

3
(−ψt)a(x)b(t)u2

≥ |∇u|2 + 4u∇u · ∇ψ

+
(

4 +
δ

3
− δ2

3

)
|∇ψ|2u2 +

δ

3
(−ψt)a(x)b(t)u2

=
(

1 − 4
4 + δ2

)
|∇u|2 + δ2|∇ψ|2u2

+
∣∣∣∣ 2√

4 + δ2
∇u+

√
4 + δ2u∇ψ

∣∣∣∣2 +
δ

3
(−ψt)a(x)b(t)u2

≥ δ3(|∇u|2 + |∇ψ|2u2) +
δ

3
(−ψt)a(x)b(t)u2,

where

δ2 :=
δ

6
− δ2

6
, δ3 := min(1 − 4

4 + δ2
, δ2).

Thus, we obtain

∂

∂t

[
e2ψ

(
uut +

a(x)b(t)
2

u2

)]
−∇ · (e2ψ(u∇u+ u2∇ψ))(4.2.13)

+ e2ψδ3|∇u|2

+ e2ψ
(
δ3|∇ψ|2 +

δ

3
(−ψt)a(x)b(t) + (B − 2δ1)

a(x)b(t)
2(1 + t)

)
u2

+ e2ψ(−2ψtuut − u2
t )

≤ e2ψuf(u).

Following Lin, Nishihara and Zhai [55], related to the size of 1+ |x|2 and the size of
(1+ t)2, we divide the space Rn into two disjoint zones Ω(t;K, t0) and Ωc(t;K, t0),
where

Ω = Ω(t;K, t0) := {x ∈ Rn | (t0 + t)2 ≥ K + |x|2},

and Ωc = Ωc(t;K, t0) := Rn \ Ω(t;K, t0) with K ≥ 1 determined later. Since
a(x)b(t) ≥ a0(t0 + t)−(α+β) in the domain Ω, we multiply (4.2.7) by (t0 + t)α+β and
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obtain

∂

∂t

[
e2ψ

2
(t0 + t)α+β(u2

t + |∇u|2)
]
−∇ · (e2ψ(t0 + t)α+βut∇u)(4.2.14)

+ e2ψ
[(

a0

4
− α+ β

2(t0 + t)1−α−β

)
+ (t0 + t)α+β(−ψt)

]
u2
t

+ e2ψ
[
−ψt
5

(t0 + t)α+β − α+ β

2(t0 + t)1−α−β

]
|∇u|2

≤ ∂

∂t
[(t0 + t)α+βe2ψF (u)] − α+ β

(t0 + t)1−α−β
e2ψF (u)

+ 2(t0 + t)α+βe2ψ(−ψt)F (u).

Let ν be a small positive number depends on δ, which will be chosen later. By
(4.2.14)+ν(4.2.13), we have

∂

∂t

[
e2ψ

(
(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2 +
(t0 + t)α+β

2
|∇u|2

)]
(4.2.15)

−∇ · (e2ψ(t0 + t)α+βut∇u+ νe2ψ(u∇u+ u2∇ψ))

+ e2ψ
[(

a0

4
− α+ β

2(t0 + t)1−α−β
− ν

)
+ (t0 + t)α+β(−ψt)

]
u2
t

+ e2ψ
[
νδ3 −

α+ β

2(t0 + t)1−α−β
+

−ψt
5

(t0 + t)α+β

]
|∇u|2

+ e2ψν

[
δ3|∇ψ|2 +

δ

3
(−ψt)a(x)b(t) + (B − 2δ1)

a(x)b(t)
2(1 + t)

]
u2

+ 2νe2ψ(−ψt)uut

≤ ∂

∂t
[(t0 + t)α+βe2ψF (u)] − α+ β

(t0 + t)1−α−β
e2ψF (u)

+ 2(t0 + t)α+βe2ψ(−ψt)F (u) + νe2ψuf(u).

By the Schwarz inequality, the last term of the left-hand side of the above inequality
can be estimated as

|2ν(−ψt)uut| ≤
νa0δ

3
(−ψt)(t0 + t)−(α+β)u2 +

3ν
a0δ

(−ψt)(t0 + t)α+βu2
t

≤ νδ

3
(−ψt)a(x)b(t)u2 +

3ν
a0δ

(−ψt)(t0 + t)α+βu2
t
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in Ω(t;K, t0). Thus, we have

∂

∂t

[
e2ψ

(
(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2 +
(t0 + t)α+β

2
|∇u|2

)]
(4.2.16)

−∇ · (e2ψ(t0 + t)α+βut∇u+ νe2ψ(u∇u+ u2∇ψ))

+ e2ψ
[(

a0

4
− α+ β

2(t0 + t)1−α−β
− ν

)
+
(

1 − 3ν
a0δ

)
(t0 + t)α+β(−ψt)

]
u2
t

+ e2ψ
[
νδ3 −

α+ β

2(t0 + t)1−α−β
+

−ψt
5

(t0 + t)α+β

]
|∇u|2

+ e2ψν

[
δ3|∇ψ|2 + (B − 2δ1)

a(x)b(t)
2(1 + t)

]
u2

≤ ∂

∂t
[(t0 + t)α+βe2ψF (u)] − α+ β

(t0 + t)1−α−β
e2ψF (u)

+ 2(t0 + t)α+βe2ψ(−ψt)F (u) + νe2ψuf(u).

Now we choose the parameters ν and t0 such that

a0

4
− α+ β

2(t0 + t)1−α−β
− ν ≥ c0, 1 − 3ν

a0δ
≥ c0,

νδ3 −
α+ β

2(t0 + t)1−α−β
≥ c0, νδ3 ≥ c0,

1
5
≥ c0,

hold for some constant c0 > 0. This is possible because we first determine ν
sufficiently small depending on δ and then we choose t0 sufficiently large depending
on ν. Therefore, integrating (4.2.16) over Ω(t;K, t0), we obtain the following energy
inequality:

(4.2.17)
d

dt
Eψ(t; Ω(t;K, t0)) −N1(t) −M1(t) +Hψ(t; Ω(t;K, t0)) ≤ P1,

where

Eψ(t; Ω) = Eψ(t; Ω(t;K, t0))

:=
∫

Ω

e2ψ
(

(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2 +
(t0 + t)α+β

2
|∇u|2

)
dx,

N1(t) :=
∫
Sn−1

e2ψ
(

(t0 + t)α+β

2
u2
t + νuut +

νa(x)b(t)
2

u2

+
(t0 + t)α+β

2
|∇u|2

)∣∣∣∣
|x|=

√
(t0+t)2−K

× [(t0 + t)2 −K](n−1)/2dθ · d
dt

√
(t0 + t)2 −K,

M1(t) :=
∫
∂Ω

(e2ψ(t0 + t)α+βut∇u+ νe2ψ(u∇u+ u2∇ψ)) · ~ndS,



118 4. GLOBAL EXISTENCE FOR TIME-SPACE DAMPING

Hψ(t; Ω) = Hψ(t; Ω(t;K, t0))

:= c0

∫
Ω

e2ψ(1 + (t0 + t)α+β(−ψt))(u2
t + |∇u|2)dx

+ ν(B − 2δ1)
∫

Ω

e2ψa(x)b(t)
2(1 + t)

u2dx,

P1 :=
d

dt

[
(t0 + t)α+β

∫
Ω

e2ψF (u)dx
]

−
∫
Sn−1

(t0 + t)α+βe2ψF (u)
∣∣∣
|x|=

√
(t0+t)2−K

× [(t0 + t)2 −K](n−1)/2dθ · d
dt

√
(t0 + t)2 −K

+ C

∫
Ω

e2ψ(1 + (t0 + t)α+β(−ψt))|u|p+1dx.

Here ~n denotes the unit outer normal vector of ∂Ω. We note that by ν ≤ a0/4 and

|νuut| ≤
νa0

4
(t0 + t)−(α+β)u2 +

ν(t0 + t)α+β

a0
u2
t

≤ νa(x)b(t)
4

u2 +
(t0 + t)α+β

4
u2
t

in Ω(t;K, t0), it follows that

c

∫
Ω

e2ψ(t0 + t)α+β(u2
t + |∇u|2)dx+ c

∫
Ω

e2ψa(x)b(t)u2dx

≤ Eψ(t; Ω(t;K, t0))

≤ C

∫
Ω

e2ψ(t0 + t)α+β(u2
t + |∇u|2)dx+ C

∫
Ω

e2ψa(x)b(t)u2dx

for some constants c > 0 and C > 0.
Next, we derive an energy inequality in the domain Ωc(t;K, t0). We use the

notation

〈x〉K := (K + |x|2)1/2.

Since a(x)b(t) ≥ a0〈x〉−(α+β)
K in Ωc(t, ;K, t0), we multiply (4.2.7) by 〈x〉α+β

K and
obtain

∂

∂t

[
e2ψ

2
〈x〉α+β

K (u2
t + |∇u|2)

]
−∇ · (e2ψ〈x〉α+β

K ut∇u)(4.2.18)

+ e2ψ
(a0

4
+ (−ψt)〈x〉α+β

K

)
u2
t +

1
5
e2ψ(−ψt)〈x〉α+β

K |∇u|2

+ (α+ β)e2ψ〈x〉α+β−2
K x · ut∇u

≤ ∂

∂t
[e2ψ〈x〉α+β

K F (u)] + 2e2ψ〈x〉α+β
K (−ψt)F (u).
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By (4.2.14)+ν̂×(4.2.13), here ν̂ is a small positive parameter determined later, it
follows that

∂

∂t

[
e2ψ

(
〈x〉α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2 +
〈x〉α+β

K

2
|∇u|2

)]
(4.2.19)

−∇ · (e2ψ〈x〉α+β
K ut∇u+ ν̂e2ψ(u∇u+ u2∇ψ))

+ e2ψ
[a0

4
− ν̂ + (−ψt)〈x〉α+β

K

]
u2
t + e2ψ

[
ν̂δ3 +

−ψt
5

〈x〉α+β
K

]
|∇u|2

+ e2ψ ν̂

[
δ3|∇ψ|2 +

δ

3
(−ψt)a(x)b(t) + (B − 2δ1)

a(x)b(t)
2(1 + t)

]
u2

+ e2ψ[(α+ β)〈x〉α+β−2
K x · ut∇u− 2ν̂ψtuut︸ ︷︷ ︸

T4

]

≤ ∂

∂t

[
e2ψ〈x〉α+β

K F (u)
]

+ 2e2ψ〈x〉α+β
K (−ψt)F (u) + ν̂e2ψuf(u).

By the Schwarz inequality, the terms T4 can be estimated as

|(α+ β)〈x〉α+β−2
K x · ut∇u| ≤ (α+ β)〈x〉α+β−1

K |ut∇u|

≤ ν̂δ3
2

|∇u|2 +
(α+ β)2

2ν̂δ3K2(1−α−β)
u2
t ,

|2ν̂(−ψt)uut| ≤
ν̂a0δ

3
(−ψt)〈x〉−(α+β)

K u2 +
3ν̂
a0δ

(−ψt)〈x〉α+β
K u2

t

≤ ν̂δ

3
(−ψt)a(x)b(t)u2 +

3ν̂
a0δ

(−ψt)〈x〉α+β
K u2

t .

From this we can rewrite (4.2.19) as

∂

∂t

[
e2ψ

(
〈x〉α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2 +
〈x〉α+β

K

2
|∇u|2

)]
(4.2.20)

−∇ · (e2ψ〈x〉α+β
K ut∇u+ ν̂e2ψ(u∇u+ u2∇ψ))

+ e2ψ
[(

a0

4
− ν̂ − (α+ β)2

2ν̂δ3K2(1−α−β)

)
+
(

1 − 3ν̂
a0δ

)
(−ψt)〈x〉α+β

K

]
u2
t

+ e2ψ
[
ν̂δ3
2

+
−ψt
5

〈x〉α+β
K

]
|∇u|2

+ e2ψ ν̂

[
δ3|∇ψ|2 + (B − 2δ1)

a(x)b(t)
2(1 + t)

]
u2

≤ ∂

∂t

[
e2ψ〈x〉α+β

K F (u)
]

+ 2e2ψ〈x〉α+β
K (−ψt)F (u) + ν̂e2ψuf(u).

Now we choose the parameters ν̂ and K in the same manner as before. Indeed
taking ν̂ sufficiently small depending on δ and then choosing K sufficiently large
depending on ν̂, we can obtain

a0

4
− ν̂ − (α+ β)2

2ν̂δ3K2(1−α−β)
≥ c1, 1 − 3ν̂

a0δ
≥ c1, ν̂δ3 ≥ c1,

1
5
≥ c1
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for some constant c1 > 0. Consequently, By integrating (4.2.20) on Ωc, the energy
inequality on Ωc follows:

(4.2.21)
d

dt
Eψ(t; Ωc(t;K, t0)) +N2(t) +M2(t) +Hψ(t; Ωc(t;K, t0)) ≤ P2,

where

Eψ(t; Ωc) = Eψ(t; Ωc(t;K, t0))

:=
∫

Ωc
e2ψ

(
〈x〉α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2 +
〈x〉α+β

K

2
|∇u|2

)
dx,

N2(t) :=
∫
Sn−1

e2ψ

(
〈x〉α+β

K

2
u2
t + ν̂uut +

ν̂a(x)b(t)
2

u2

+
〈x〉α+β

K

2
|∇u|2

)∣∣∣
|x|=

√
(t0+t)2−K

× [(t0 + t)2 −K](n−1)/2dθ · d
dt

√
(t0 + t)2 −K,

M2(t) :=
∫
∂Ωc

(e2ψ〈x〉α+β
K ut∇u+ ν̂e2ψ(u∇u+ u2∇ψ)) · ~ndS,

Hψ(t; Ωc) = Hψ(t; Ωc(t;K, t0))

:= c1

∫
Ω

e2ψ(1 + 〈x〉α+β
K (−ψt))(u2

t + |∇u|2)dx

+ ν̂(B − 2δ1)
∫

Ωc

e2ψa(x)b(t)
2(1 + t)

u2dx,

P2 :=
d

dt

[∫
Ωc
e2ψ〈x〉α+β

K F (u)dx
]

+
∫
Sn−1

〈x〉α+β
K e2ψF (u)

∣∣∣
|x|=

√
(t0+t)2−K

× [(t0 + t)2 −K](n−1)/2dθ · d
dt

√
(t0 + t)2 −K

+ C

∫
Ωc
e2ψ(1 + 〈x〉α+β

K (−ψt))|u|p+1dx.

In a similar way as for the case in Ω, we note that

c

∫
Ωc
e2ψ(t0 + t)α+β(u2

t + |∇u|2)dx+ c

∫
Ωc
e2ψa(x)b(t)u2dx

≤ Eψ(t; Ωc(t;K, t0))

≤ C

∫
Ωc
e2ψ(t0 + t)α+β(u2

t + |∇u|2)dx+ C

∫
Ωc
e2ψa(x)b(t)u2dx

for some constants c > 0 and C > 0.
We add the energy inequalities on Ω and Ωc. We note that replacing ν and ν̂

by ν0 := min{ν, ν̂}, we can still have the inequalities (4.2.17) and (4.2.21), provided
that we retake t0 and K larger.
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By ((4.2.17)+(4.2.21)) × (t0 + t)B−ε, we have
d

dt
[(t0 + t)B−ε(Eψ(t; Ω) + Eψ(t; Ωc))](4.2.22)

− (B − ε)(t0 + t)B−1−ε(Eψ(t; Ω) + Eψ(t; Ωc))︸ ︷︷ ︸
T5

+ (t0 + t)B−ε(Hψ(t; Ω) +Hψ(t; Ωc))︸ ︷︷ ︸
T6

≤ (t0 + t)B−ε(P1 + P2),

here we note that
N1(t) = N2(t), M1(t) = M2(t)

on ∂Ω. Since
|ν0uut| ≤

ν0δ4
2
a(x)b(t)u2 +

ν0
2δ4a0

(t0 + t)α+βu2
t

on Ω and
|ν0uut| ≤

ν0δ4
2
a(x)b(t)u2 +

ν0
2δ4a0

〈x〉α+β
K u2

t

on Ωc, here δ4 is chosen later, we have

(4.2.23) −T5 + T6 ≥ (t0 + t)B−εI1 + (t0 + t)B−εI2,

where

I1 :=
∫

Ω

e2ψ
{c0

2
(1 + (t0 + t)α+β(−ψt)) − B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)
(t0 + t)α+β

}
u2
t

+ e2ψ
{
c0
2

(1 + (t0 + t)α+β(−ψt)) −
B − ε

2(t0 + t)
(t0 + t)α+β

}
|∇u|2dx

+
∫

Ωc
e2ψ

{
c1
2

(1 + 〈x〉α+β
K (−ψt)) −

B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)
〈x〉α+β

K

}
u2
t

+ e2ψ
{
c1
2

(1 + 〈x〉α+β
K (−ψt)) −

B − ε

2(t0 + t)
〈x〉α+β

K

}
|∇u|2dx

=: I11 + I12,

I2 := ν0(B − 2δ1 − (1 + δ4)(B − ε))
(∫

Ω

+
∫

Ωc

)
e2ψ

a(x)b(t)
2(1 + t)

u2dx

+
c2
2

∫
Rn

e2ψ(u2
t + |∇u|2)dx,

and c2 := min(c0, c1). Recall the definition of ε and δ1 (i.e. (4.1.5) and (4.2.4)). A
simple calculation shows ε = 3δ1. Choosing δ4 sufficiently small depending on ε,
we have

(t0 + t)B−εI2 ≥ c3(t0 + t)B−1−ε
∫
Rn

e2ψa(x)b(t)u2dx+
c2
2

(t0 + t)B−εE(t)

for some constant c3 > 0. Next, we prove that I1 ≥ 0. By noting that α + β < 1,
it is easy to see that I11 ≥ 0 if we retake t0 larger depending on c0, ν0 and δ4. To
estimate I12, we further divide the region Ωc into

Ωc(t;K, t0) = (Ωc(t;K, t0) ∩ ΣL) ∪ (Ωc(t;K, t0) ∩ ΣcL),

where
ΣL := {x ∈ Rn; 〈x〉2−α ≤ L(1 + t)1+β}, ΣcL := Rn \ ΣL
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with L� 1 determined later. First, since

K + |x|2 ≤ K(1 + |x|2) ≤ KL2/(2−α)(1 + t)2(1+β)/(2−α)

on Ωc ∩ ΣL, we have

c1
2

(1 + 〈x〉α+β
K (−ψt)) −

B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)
〈x〉α+β

K

≥ c1
2

− B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)
K(α+β)/2L(α+β)/(2−α)(1 + t)

(1+β)(α+β)
2−α .

We note that −1 + (1+β)(α+β)
2−α < 0 by α+ β < 1. Thus, we obtain

c1
2

− B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)
K(α+β)/2L(α+β)/(2−α)(1 + t)

(1+β)(α+β)
2−α ≥ 0

for large t0 depending on L and K. Secondly, on Ωc ∩ ΣcL, we have

c1
2

(1 + 〈x〉α+β
K (−ψt)) −

B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)
〈x〉α+β

K

≥
{
c1
2

(1 + β)
〈x〉2−α

(1 + t)2+β
− B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)}
〈x〉α+β

K

≥
{
c1
2

(1 + β)
L

1 + t
− B − ε

2(t0 + t)

(
1 +

2ν0
δ4a0

)}
〈x〉α+β

K .

Therefore one can obtain I12 ≥ 0, provided that L ≥ B−ε
c1(1+β) (1 + 2ν0

δ4a0
). Conse-

quently, we have I1 ≥ 0. By (4.2.23) and that we mentioned above, it follows
that

−T5 + T6 ≥ c3(t0 + t)B−1−ε
∫
Rn

e2ψa(x)b(t)u2dx+
c2
2

(t0 + t)B−εE(t).

Therefore, by (4.2.22), we have

d

dt
[(t0 + t)B−ε(Eψ(t; Ω) + Eψ(t; Ωc)] +

c2
2

(t0 + t)B−εE(t)(4.2.24)

+ c3(t0 + t)B−1−εJ(t; a(x)b(t)u2)

≤ (t0 + t)B−ε(P1 + P2).

Integrating (4.2.24) on the interval [0, t], one can obtain the energy inequality on
the whole space:

(t0 + t)B−ε(Eψ(t; Ω) + Eψ(t; Ωc)) +
c2
2

∫ t

0

(t0 + τ)B−εE(τ)dτ(4.2.25)

+ c3

∫ t

0

(t0 + τ)B−1−εJ(τ ; a(x)b(τ)u2)dτ

≤ CI2
0 +

∫ t

0

(t0 + τ)B−ε(P1 + P2)dτ,

where

I2
0 :=

∫
Rn

e2ψ(0,x)(u2
1 + |∇u0|2 + |u0|2)dx.
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By (4.2.25) +µ× (4.2.10), here µ is a small positive parameter determined later, it
follows that

(t0 + t)B−εEψ(t; Ω) + (t0 + t)B−εEψ(t; Ωc) + µ(t0 + t)B+1−εE(t)(4.2.26)

+
∫ t

0

c2
2

(t0 + τ)B−εE(τ) − µC(t0 + τ)B−εE(τ)dτ

+ c3

∫ t

0

(t0 + τ)B−1−εJ(τ ; a(x)b(τ)u2)dτ

+ µ

∫ t

0

(t0 + τ)B+1−εJ(τ ; a(x)b(τ)u2
t ) + (t0 + τ)B+1−εEψ(τ)dτ

≤ CI2
0 + P

+ C(t0 + t)B+1−εJ(t; |u|p+1)

+ C

∫ t

0

(t0 + τ)B+1−εJψ(τ ; |u|p+1)dτ

+ C

∫ t

0

(t0 + τ)B−εJ(τ ; |u|p+1)dτ,

where

P =
∫ t

0

(t0 + τ)B−ε(P1 + P2)dτ.

Now we choose µ sufficiently small, then we can rewrite (4.2.26) as

(t0 + t)B+1−εE(t) + (t0 + t)B−εJ(t; a(x)b(t)u2)(4.2.27)

+
∫ t

0

{
(t0 + τ)B−εE(τ) + (t0 + τ)B+1−εEψ(τ)

+ (t0 + τ)B+1−εJ(τ ; a(x)b(τ)u2
t )
}
dτ

≤ CI2
0 + P + C(t0 + t)B+1−εJ(t; |u|p+1)

+ C

∫ t

0

(t0 + τ)B+1−εJψ(τ ; |u|p+1)dτ

+ C

∫ t

0

(t0 + τ)B−εJ(τ ; |u|p+1)dτ.

We shall estimate the right-hand side of (4.2.27). We first estimate the term

(t0 + t)B+1−εJ(t; |u|p+1).

Applying the Gagliardo-Nirenberg inequality (see Lemma 9.10 in Appendix), we
have

J(t; |u|p+1) ≤ C

(∫
Rn

e
4
p+1ψu2dx

)(1−σ)(p+1)/2

(4.2.28)

×
(∫

Rn

e
4
p+1ψ|∇ψ|2u2dx+

∫
Rn

e
4
p+1ψ|∇u|2dx

)σ(p+1)/2
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with σ = n(p−1)
2(p+1) . Here we note that σ ∈ [0, 1] if 1 < p ≤ n+2

n−2 (n = 3), 1 < p <

∞ (n = 1, 2). We see that

e
4
p+1ψu2 = (e2ψa(x)b(t)u2)a(x)−1b(t)−1e(

4
p+1−2)ψ

≤ C(e2ψa(x)b(t)u2)

[(
〈x〉2−α

(1 + t)1+β

) α
2−α

e(
4
p+1−2)ψ

]
× (1 + t)β+α(1+β)/(2−α)

≤ C(1 + t)β+α(1+β)/(2−α)e2ψa(x)b(t)u2

and

e
4

(p+1)ψ|∇ψ|2u2 ≤ C
〈x〉2−2α

(1 + t)2+2β
e

1
2 ( 4

p+1−2)ψe
1
2 ( 4

p+1−2)ψe2ψu2

≤ Ce
1
2 ( 4

p+1−2)ψe2ψ
[(

〈x〉2−α

(1 + t)1+β

) 2−2α
2−α

e
1
2 ( 4

p+1−2)ψ
]

× (1 + t)−2(1+β)+(1+β)(2−2α)/(2−α)u2

≤ C(1 + t)−2(1+β)/(2−α)e
1
2 ( 4

p+1−2)ψe2ψu2

≤ C(1 + t)−2(1+β)/(2−α)(1 + t)β+α(1+β)/(2−α)e2ψa(x)b(t)u2

= C(1 + t)−1e2ψa(x)b(t)u2.

Using them, we can estimate (4.2.28) as

J(t; |u|p+1) ≤ C(1 + t)[β+(1+β)α/(2−α)](1−σ)(p+1)/2J(t; a(x)b(t)u2)(1−σ)(p+1)/2

× [(1 + t)−1J(t; a(x)b(t)u2) + E(t)]σ(p+1)/2

and hence
(t0 + t)B+1−εJ(t; |u|p+1) ≤ C(t0 + t)γM(t)(p+1)/2,

where

γ = B + 1 − ε+
[
β + (1 + β)

α

2 − α

]
1 − σ

2
(p+ 1) − σ

2
(p+ 1)(4.2.29)

− (B − ε)
p+ 1

2
By a simple calculation it follows that if

p > 1 +
2

n− α
,

then by taking ε sufficiently small (i.e. δ sufficiently small) γ is negative. We note
that

Jψ(t; |u|p+1) =
∫
Rn

e2ψ(−ψt)|u|p+1dx ≤ C

1 + t

∫
Rn

e(2+ρ)ψ|u|p+1dx,

where ρ is a sufficiently small positive number. Therefore, we can estimate the
terms ∫ t

0

(t0 + τ)B+1−εJψ(τ ; |u|p+1)dτ and
∫ t

0

(t0 + τ)B−εJ(τ ; |u|p+1)dτ



4.2. A PRIORI ESTIMATE 125

in the same manner as before. Noting that

P1 + P2 =
d

dt

[
(t0 + t)α+β

∫
Ω

e2ψF (u)dx+
∫

Ωc
e2ψ〈x〉α+β

K F (u)dx
]

+ C

∫
Ω

e2ψ(1 + (t0 + t)α+β(−ψt))|u|p+1dx

+ C

∫
Ωc
e2ψ(1 + 〈x〉α+β

K (−ψt))|u|p+1dx,

we have

P =
∫ t

0

(t0 + τ)B−ε(P1 + P2)dτ

≤ CI2
0 + C(t0 + t)B−ε

∫
Ω

e2ψ(t0 + t)α+βF (u)dx

+ C(t0 + t)B−ε
∫

Ωc
e2ψ〈x〉α+β

K F (u)dx

+ C

∫ t

0

(t0 + τ)B−1−ε
∫

Ω

e2ψ(t0 + τ)α+βF (u)dxdτ

+ C

∫ t

0

(t0 + τ)B−1−ε
∫

Ωc
e2ψ〈x〉α+β

K F (u)dxdτ

+ C

∫ t

0

(t0 + τ)B−ε
∫

Ω

e2ψ(1 + (t0 + τ)α+β(−ψt))|u|p+1dxdτ

+ C

∫ t

0

(t0 + τ)B−ε
∫

Ωc
e2ψ(1 + 〈x〉α+β

K (−ψt))|u|p+1dxdτ.

We calculate

e2ψ〈x〉α+β
K = e

2A
〈x〉2−α

(1+t)1+β 〈x〉α+β
K

≤ Ce
2A

〈x〉2−α

(1+t)1+β

(
〈x〉2−α

(1 + t)1+β

)α+β
2−α

(1 + t)
(α+β)(1+β)

2−α

≤ Ce(2+ρ)ψ(1 + t)
(α+β)(1+β)

2−α

for small ρ > 0. Noting that (α+β)(1+β)
2−α < 1 and taking ρ sufficiently small, we can

estimate the terms P in the same manner as estimating (t0 + t)B+1−εJ(t; |u|p+1).
Consequently, by (4.2.27), we have a priori estimate for M(t):

(4.2.30) M(t) + L(t) ≤ CI2
0 + CM(t)(p+1)/2,

where

L(t) =
∫ t

0

{
(t0 + τ)B−εE(τ) + (t0 + τ)B+1−εEψ(τ)

+ (t0 + τ)B−1−εJ(τ ; a(x)b(τ)u2) + (t0 + τ)B+1−εJ(τ ; a(x)b(τ)u2
t )
}
dτ.

�
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4.2.2. Proof of Theorem 4.1 and Corollary 4.2.

Proof of Theorem 4.1. In (4.2.30), we may assume that C ≥ 1. We take
I0 sufficiently small so that it holds that

(4.2.31) 2CI2
0 > CI2

0 + C(2CI2
0 )p+1,

that is,
2C(2CI2

0 )p < 1.
Let M1,M2 (M1 < M2) be the positive roots of the identity

M = CI2
0 + CMp+1.

Here we note thatM1,M2 exist because of (4.2.31). By the continuity ofM(t)+L(t),
we obtain

M(t) + L(t) ≤M1

for all t ≥ 0. Because, first, it is obvious that M(0) + L(0) = M(0) = I2
0 ≤ CI2

0

and secondly, if M1 < M(t0) + L(t0) < M2 holds for some t0, then we have

M(t0) + L(t0) > CI2
0 + C(M(t0) + L(t0))p+1,

which contradicts (4.2.30). Thus, M(t) is bounded and we have T ∗ = +∞, where
T ∗ is the maximal existence time of the local solution as in Proposition 4.3.

We note that
e2ψa(x)b(t) ≥ c(1 + t)−(1+β) α

2−α−β

with some constant c > 0. Then we have

(4.2.32)
∫
Rn

e2ψa(x)b(t)u2dx ≥ c(1 + t)−(1+β) α
2−α−β

∫
Rn

u2dx.

This implies the decay estimate of global solution (4.1.4) and completes the proof
of Theorem 4.1. �

Proof of Corollary 4.2. In a similar way to derive (4.2.32), we have∫
Rn

e2ψa(x)b(t)u2dx ≥ c(1 + t)−(1+β) α
2−α−β

∫
Rn

e
(2A−µ)

〈x〉2−α

(1+t)1+β u2dx.

By noting that
〈x〉2−α

(1 + t)1+β
≥ (1 + t)ρ

on Ωρ(t) and Theorem 4.1, it follows that

(1 + t)−(1+β) α
2−α−β

∫
Ωρ(t)

e(2A−µ)(1+t)ρ(u2
t + |∇u|2 + u2)dx

≤ C(1 + t)−(1+β) α
2−α−β

∫
Ωρ(t)

e
(2A−µ)

〈x〉2−α

(1+t)β (u2
t + |∇u|2 + u2)dx

≤ C

∫
Rn

e2ψ(u2
t + |∇u|2 + a(x)b(t)u2)dx

≤ C(1 + t)−B+ε.

Thus, we obtain∫
Ωρ(t)

(u2
t + |∇u|2 + u2)dx ≤ C(1 + t)−

(1+β)(n−2α)
2−α +εe−(2A−µ)(1+t)ρ .

This proves Corollary 4.2. �
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4.3. Estimates of the lifespan from below

The proof of Theorem 4.1 gives an estimate of the lifespan from below when
1 < p ≤ 1 + 2/(n − α). We will discuss on estimates from above in Chapter 7. In
this section, we consider the Cauchy problem (4.1.1) with the initial data λ(u0, u1)
instead of (u0, u1), where (u0, u1) is fixed and λ > 0 denotes the amplitude of the
data. We define the lifespan of the local solution by

Tλ := sup{T ∈ (0,∞]; there exists a unique solution u ∈ X(T ) },

where X(T ) = C([0, T );H1(Rn)) ∩ C1([0, T );L2(Rn)). Then we have

Proposition 4.5. Let

1 < p ≤ 1 +
2

n− α
,

(u0, u1) ∈ H1(Rn) × L2(Rn) satisfy I2
0 < +∞ and let ε̃ be any positive number.

We assume that α, β ∈ [0, 1) and α + β < 1. Then there exists a constant C =
C(ε̃, n, p, α, β, u0, u1) > 0 such that for any λ > 0, we have

Cλ−1/κ+ε̃ ≤ Tλ,

where

κ =
2(1 + β)
2 − α

(
1

p− 1
− n− α

2

)
.

Proof. From the proof of (4.2.30), we can obtain

M(t) ≤ λ2CI2
0 + C(1 + t)γM(t)(p+1)/2,

where γ is defined by (4.2.29) and C ≥ 1. We also note that

M(0) = λ2I2
0 ≤ λ2CI2

0 .

Let T be the first time such that M(t) = 2λ2CI2
0 . Namely M(T ) = 2λ2CI2

0 and
M(t) < 2λ2CI2

0 are valid for any 0 ≤ t < T . Then we have

2λ2CI2
0 ≤ λ2CI2

0 + C(1 + T )γ(2λ2CI2
0 )(p+1)/2

and hence

Cλ−(p−1) ≤ (1 + T )γ .

Since 1 < p ≤ 2/(n− α), we can see that γ > 0. Therefore, we obtain

Cλ−(p−1)/γ ≤ T < Tλ.
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Now we calculate γ. Noting σ = n(p−1)
2(p+1) , 1 − σ = 1

2(p+1) ((2 − n)p + (n + 2)),

B = (1+β)(n−α)
2−α + β, we can rewrite γ as

γ =
(1 + β)(n− α)

2 − α
+ (1 + β) − ε+

[
β +

(1 + β)α
2 − α

]
(2 − n)p+ (n+ 2)

4

− n(p− 1)
4

−
(

(1 + β)(n− α)
2 − α

+ β − ε

)
p+ 1

2

= (p− 1)
{(

β +
(1 + β)α

2 − α

)
2 − n

4
− n

4
− 1

2

(
(1 + β)(n− α)

2 − α
+ β − ε

)}
+ 1 + β +

(1 + β)α
2 − α

= (p− 1)
{

(1 + β)α
2 − α

− n

2
(1 + β)

(
1 +

α

2 − α

)
+
ε

2

}
+

2(1 + β)
2 − α

= (p− 1)
{
− (1 + β)(n− α)

2 − α
+

2(1 + β)
2 − α

1
p− 1

+
ε

2

}
.

This implies

−p− 1
γ

= − 1
κ

+ ε̃

with ε̃ determined from ε. �



CHAPTER 5

Critical exponent for the semilinear wave equation
with scale-invariant damping

5.1. Introduction and results

We consider the Cauchy problem for the semilinear damped wave equation

(5.1.1)

{
utt − ∆u+

µ

1 + t
ut = |u|p, (t, x) ∈ (0,∞) × Rn,

(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where µ > 0, (u0, u1) ∈ H1(Rn) × L2(Rn) and 1 < p ≤ n
n−2 (n ≥ 3), 1 < p <

∞ (n = 1, 2). Our aim is to determine the critical exponent pc, which is the
number defined by the following property:

If pc < p, all small data solutions of (5.1.1) are global; if 1 < p ≤ pc, the
time-local solution cannot be extended time-globally for some data regardless of
smallness.

We note that the linear part of (5.1.1) is invariant with respect to the hyperbolic
scaling

ũ(t, x) = u(λ(1 + t) − 1, λx).

In this case the asymptotic behavior of solutions is very delicate. It is known that
the size of the damping term µ plays an essential role. The damping term µ/(1+ t)
is known as the borderline between the effective and non-effective dissipation, here
effective means that the solution behaves like that of the corresponding parabolic
equation, and non-effective means that the solution behaves like that of the free
wave equation.

Concretely, for the linear damped wave equation

(5.1.2) utt − ∆u+ (1 + t)−βut = 0,

if −1 < β < 1, then the solution u has the same Lp-Lq decay rates as those of the
solution of the corresponding heat equation

(5.1.3) −∆v + (1 + t)−βvt = 0.

Moreover, if −1/3 < β < 1, then the lower frequency part of the solution u of
(5.1.2) is asymptotically equivalent to that of a solution v of (5.1.3) in the L2-sense
(see [117]). This is called the local diffusion phenomenon. Wirth [115] also proved
that when β ≤ −1/3, u is for each frequency asymptotically equivalent to that of v.
This is called the global diffusion phenomenon. On the other hand, if β > 1, then
the asymptotic profile of the solution of (5.1.2) is given by that of the free wave
equation �w = 0 (see [116, 118]). We mention that Wirth treated more general
time-dependent damping terms and we refer the reader to [115, 116, 117, 118]
for detail.

129
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Wirth [114] considered the linear problem

(5.1.4)

{
utt − ∆u+

µ

1 + t
ut = 0,

(u, ut)(0, x) = (u0, u1)(x).

He proved several Lp-Lq estimates for the solutions to (5.1.4). For example, if µ > 1
it follows that

‖u(t, ·)‖Lq . (1 + t)max{−n−1
2 ( 1

p−
1
q )−µ

2 ,−n( 1
p−

1
q )}(‖u0‖Hsp + ‖u1‖Hs−1

p
),

‖(ut,∇u)(t, ·)‖Lq . (1 + t)max{−n−1
2 ( 1

p−
1
q )−µ

2 ,−n( 1
p−

1
q )−1}(‖u0‖Hs+1

p
+ ‖u1‖Hsp ),

where 1 < p ≤ 2, 1/p + 1/q = 1 and s = n(1/p − 1/q). This shows that if µ
is sufficiently large, then the solution behaves like that of the corresponding heat
equation

(5.1.5)
µ

1 + t
vt − ∆v = 0

as t → ∞, and if µ is sufficiently small, then the solution behaves like that of the
free wave equation in the above sense.

The Gauss kernel of (5.1.5) is given by

Gµ(t, x) =
(

µ

2π((1 + t)2 − 1)

)n
2

e
− µ|x|2

2((1+t)2−1) .

We can obtain the Lp-Lq estimates of the solution of (5.1.5). In fact, it follows that

‖v(t, ·)‖Lq . (1 + t)−n(
1
p−

1
q )‖v(0, ·)‖Lp

for 1 ≤ p ≤ q ≤ ∞. In particular, taking q = 2 and p = 1, we have

‖v(t, ·)‖L2 . (1 + t)−
n
2 ‖v(0, ·)‖L1 .

From the viewpoint of the diffusion phenomenon, we expect that the same type
estimate holds for the solution of (5.1.4) when µ is large. To state our results, we
introduce an auxiliary function

ψ(t, x) :=
a|x|2

(1 + t)2
, a =

µ

2(2 + δ)

with a positive parameter δ. We have the following linear estimate:

Theorem 5.1. For any ε > 0, there exist constants δ > 0 and µ0 > 1 having
the following property: If µ ≥ µ0 and (u0, u1) satisfy

I2
0 :=

∫
Rn

e2ψ(0,x)(u0(x)2 + |∇u0(x)|2 + u1(x)2)dx < +∞,

then the solution of (5.1.4) satisfies∫
Rn

e2ψu(t, x)2dx ≤ CI2
0 (1 + t)−n+ε,(5.1.6) ∫

Rn

e2ψ(ut(t, x)2 + |∇u(t, x)|2)dx ≤ CI2
0 (1 + t)−n−2+ε(5.1.7)

for t ≥ 0, where C = Cµ,ε is a positive constant depending on µ, ε.
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Remark 5.1. The constant µ0 depends on ε. The relation is

µ0 ∼ ε−2.

Therefore, as ε is smaller, µ0 must be larger.

We also consider the critical exponent problem for (5.1.1). For the correspond-
ing heat equation (5.1.5) with nonlinear term |u|p, the critical exponent is given by
the Fujita critical exponent:

pF := 1 +
2
n
.

Thus, we can expect that the critical exponent of (5.1.1) is also given by pF if µ is
sufficiently large.

We write X(T ) = C([0, T );H1(Rn)) ∩ C1([0, T );L2(Rn)) for T ∈ (0,∞]. We
first recall a local existence result, which is proved in Appendix (see Proposition
9.21).

Proposition 5.2. Let

1 < p ≤ n

n− 2
(n ≥ 3), 1 < p <∞ (n = 1, 2)

and δ > 0. If I2
0 < +∞, then there exists T ∗ ∈ (0,+∞] depending on I2

0 such that
the Cauchy problem (5.1.1) has a unique solution u ∈ X(T ∗) satisfying∫

Rn

eψ(t,x)(u2
t + |∇u|2 + u2)(t, x)dx < +∞

for all t ∈ (0, T ∗). Moreover, if T ∗ < +∞ then we have

lim inf
t→T∗

∫
Rn

eψ(t,x)(u2
t + |∇u|2 + u2)(t, x)dx = +∞.

Our main result is the following:

Theorem 5.3. Let pF < p ≤ n/(n − 2) (n ≥ 3), pF < p < ∞ (n = 1, 2) and
0 < ε < 2n(p − pF )/(p − 1). Then there exist constants δ > 0 and µ0 > 1 having
the following property: if µ ≥ µ0 and

I2
0 =

∫
Rn

e2ψ(0,x)(u2
0 + |∇u0|2 + u2

1)dx

is sufficiently small, then there exists a unique solution u ∈ C([0,∞);H1(Rn)) ∩
C1([0,∞);L2(Rn)) of (5.1.1) satisfying∫

Rn

e2ψu2dx ≤ Cµ,εI
2
0 (1 + t)−n+ε,(5.1.8) ∫

Rn

e2ψ(u2
t + |∇u|2)dx ≤ Cµ,εI

2
0 (1 + t)−n−2+ε(5.1.9)

for t ≥ 0, where Cµ,ε is a positive constant depending on µ and ε.

Remark 5.2. As before, we note that µ0 depends on ε. The relation is

µ0 ∼ ε−2 ∼ (p− pF )−2.

Therefore, as p is closer to pF , µ0 must be larger. Thus, we can expect that ε can
be removed and the same result holds for much smaller µ. Recently, D’Abbicco [5]
improved the global existence result for µ ≥ n+2 and p > pF . He also obtained the
decay rates of the solution without any loss ε.
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We prove Theorem 1.2 by a weighted energy method developed by [106]. Lin,
Nishihara and Zhai [56] refined this method to fit the damping term b(t) = (1+t)−β

with −1 < β < 1. They used the property β < 1 and so we cannot apply their
method directly to our problem (5.1.1). Therefore, we need a further modification.
Instead of the property β < 1, we assume that µ is sufficiently large and modify
the parameters used in the calculation.

Remark 5.3. We can also treat other nonlinear terms, for example −|u|p, |u|p−1u.

We also have a blow-up result when µ > 1 and 1 < p ≤ pF . We first introduce
the definition of a weak solution.

Definition 5.4. Let T ∈ (0,∞]. We say that u ∈ X(T ) is a (weak) solution
of the Cauchy problem (5.1.1) on the interval [0, T ) if it holds that∫

[0,T )×Rn

u(t, x)(∂2
t ψ(t, x) − ∂2

xψ(t, x) − ∂t

(
µ

1 + t
ψ(t, x))

)
dxdt

=
∫
Rn

{(µu0(x) + u1(x))ψ(0, x) − u0(x)∂tψ(0, x)} dx(5.1.10)

+
∫

[0,T )×Rn

|u(t, x)|pψ(t, x)dxdt

for any ψ ∈ C∞
0 ([0, T ) × R) (see also Section 9.4.3). In particular, when T = ∞,

we call u a global solution.

Theorem 5.5. Let u0, u1 ∈ H1(Rn) × L2(Rn), 1 < p ≤ pF and µ > 1.
Moreover, we assume that

(5.1.11) lim inf
R→∞

∫
|x|<R

(µ− 1)u0 + u1dx > 0.

Then there is no global solution for (5.1.1), that is,

lim
t→T∗−0

‖(u, ut)‖H1×L2 = +∞

holds for some T ∗ ∈ (0,∞).

Remark 5.4. (i)If

(µ− 1)u0 + u1 ∈ L1(Rn) and
∫
Rn

(µ− 1)u0 + u1dx > 0,

then the condition (5.1.11) holds. (ii)Theorem 5.5 is essentially included in a recent
work by D’Abbicco and Lucente [7]. In this paper we shall give a much simpler proof.

One of our novelty is blow-up results for non-effective damping cases. We also
obtain blow-up results in the case 0 < µ ≤ 1.

Theorem 5.6. Let 0 < µ ≤ 1 and

1 < p ≤ 1 +
2

n+ (µ− 1)
.

We also assume (u0, u1) ∈ H1(Rn) × L2(Rn) and

(5.1.12) lim inf
R→∞

∫
|x|<R

u1(x)dx > 0.



5.2. PROOF OF GLOBAL EXISTENCE 133

Then there is no global solution for (5.1.1), that is,

lim
t→T∗−0

‖(u, ut)‖H1×L2 = +∞

holds for some T ∗ ∈ (0,∞).

Remark 5.5. (i)If

u1 ∈ L1(Rn) and
∫
Rn

u1(x)dx > 0,

then the condition (5.1.12) holds. (ii)In Theorem 5.6, we do not put any assumption
on the data u0, and the blow-up result even holds for some p ≥ pF . We can interpret
this phenomena as that the equation (5.1.1) loses the parabolic structure and recover
the hyperbolic structure if µ is sufficiently small.

We prove this theorem by a test-function method. To transform the equation
into divergence form, we follow [56] and transform the equation into divergence
form by multiplying an appropriate function (see also [7]). In the same way of the
proof of Theorem 5.6, we can treat the damping terms (1 + t)−β with β > 1 (see
Remark 5.6).

5.2. Proof of global existence

By Proposition 5.2, it suffices to proof the boundedness of H1(Rn) × L2(Rn)
norm of solutions. We prove a priori estimate for the following functional:

M(t) := sup
0≤τ≤t

{
(1 + τ)n+2−ε

∫
Rn

e2ψ(u2
t + |∇u|2)dx+ (1 + τ)n−ε

∫
Rn

e2ψu2dx

}
.

We shall prove the following a priori estimate for M(t):

Proposition 5.7. Let

pF < p ≤ (n+ 2)/(n− 2) (n ≥ 3), pF < p <∞ (n = 1, 2)

and 0 < ε < 2n(p − pF )/(p − 1). Then there exist constants δ > 0 and µ0 > 1
having the following property: if µ ≥ µ0, (u0, u1) satisfies I2

0 < +∞ and u ∈ X(T )
is a solution of the Cauchy problem (5.1.1) for some T > 0 such that∫

Rn

e2ψ(t,x)(u2 + |∇u|2 + u2
t )dx < +∞

for all 0 ≤ t < T , then it follows that

(5.2.1) M(t) + L(t) ≤ CI2
0 + CM(t)p+1

for any 0 ≤ t < T , where

L(t) :=
∫ t

0

(1 + τ)n+1−ε {E(τ) + (1 + τ)Jψ(τ ; (u2
t + |∇u|2))

}
dτ.

and C = C(p, ε, µ) is a positive constant depending only on p, ε, µ.

Proof. We put b(t) = µ
1+t and f(u) = |u|p. By a simple calculation, we have

−ψt =
2

1 + t
ψ, ∇ψ =

2ax
(1 + t)2

,
|∇ψ|2

−ψt
=

b(t)
2 + δ

,
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and

∆ψ =
n

2 + δ

b(t)
1 + t

=:
(n

2
− δ1

) b(t)
1 + t

.

Here and after, δi (i = 1, 2, . . .) denote a positive constant depending only on δ
such that

δi → 0 as δ → 0.
Multiplying (5.1.1) by e2ψut, we obtain

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u)(5.2.2)

+ e2ψ
(
b(t) − |∇ψ|2

−ψt
− ψt

)
u2
t +

e2ψ

−ψt
|ψt∇u− ut∇ψ|2︸ ︷︷ ︸

T1

=
∂

∂t

[
e2ψF (u)

]
+ 2e2ψ(−ψt)F (u),

where F is the primitive of f satisfying F (0) = 0. Using the Schwarz inequality,
we can calculate

T1 ≥ e2ψ
(

1
5
(−ψt)|∇u|2 −

b(t)
4(2 + δ)

u2
t

)
.

From this and integrating (5.2.2), we have

d

dt

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dx+

∫
Rn

e2ψ
{(

b(t)
4

− ψt

)
u2
t +

−ψt
5

|∇u|2
}
dx(5.2.3)

≤ d

dt

∫
Rn

e2ψF (u)dx+ 2
∫
Rn

e2ψ(−ψt)F (u)dx.

Here we note that e2ψ(t,x)ut(t, x)∇u(t, x) ∈ L1(Rn) and so we can use the diver-
gence theorem and (5.2.3) is valid. On the other hand, by multiplying (5.1.1) by
e2ψu, it follows that

∂

∂t

[
e2ψ

(
uut +

b(t)
2
u2

)]
−∇ · (e2ψu∇u)

+ e2ψ
{
|∇u|2 +

(
−ψt +

1
2(1 + t)

)
b(t)u2 + 2u∇ψ · ∇u︸ ︷︷ ︸

T2

−2ψtuut − u2
t

}
= e2ψuf(u).

We calculate

e2ψT2 = 4e2ψu∇ψ · ∇u− 2e2ψu∇ψ · ∇u

= 4e2ψu∇ψ · ∇u−∇ · (e2ψu2∇ψ) + 2e2ψu2|∇ψ|2 + e2ψ(∆ψ)u2

and have
∂

∂t

[
e2ψ

(
uut +

b(t)
2
u2

)]
−∇ · (e2ψ(u∇u+ u2∇ψ))(5.2.4)

+ e2ψ
{
|∇u|2 + 4u∇u · ∇ψ + ((−ψt)b(t) + 2|∇ψ|2)u2︸ ︷︷ ︸

T3

+ (n+ 1 − 2δ1)
b(t)

2(1 + t)
u2 − 2ψtuut − u2

t

}
= e2ψuf(u).
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The term T3 is estimated as follows:

T3 =
(

1 − 4
4 + δ/2

)
|∇u|2 +

δ

2
|∇ψ|2u2 +

∣∣∣∣∣ 2√
4 + δ/2

∇u+
√

4 + δ/2∇ψ

∣∣∣∣∣
2

≥ δ2(|∇u|2 + b(t)(−ψt)u2).

Thus, we can rewrite (5.2.4) as

∂

∂t

[
e2ψ

(
uut +

b(t)
2
u2

)]
−∇ · (e2ψ(u∇u+ u2∇ψ))

+ e2ψ
{
δ2(|∇u|2 + b(t)(−ψt)u2) + (n+ 1 − 2δ1)

b(t)
2(1 + t)

u2 − 2ψtuut − u2
t

}
≤ e2ψuf(u).

Integrating the above inequality and then multiplying by a large parameter ν and
adding (1 + t)× (5.2.3), we obtain

d

dt

[∫
Rn

e2ψ
{

1 + t

2
(u2
t + |∇u|2) + νuut +

νb(t)
2

u2

}
dx

]
+
∫
Rn

e2ψ
{( µ

4
− ν − 1

2︸ ︷︷ ︸
T4

+(−ψt)(1 + t)
)
u2
t +

(
νδ2 −

1
2︸ ︷︷ ︸

T5

+
(−ψt)(1 + t)

5

)
|∇u|2

+ νδ2b(t)(−ψt)u2 + (n+ 1 − 2δ1)
νb(t)

2(1 + t)
u2 + 2ν(−ψt)uut︸ ︷︷ ︸

T6

}
dx

≤ d

dt

[
(1 + t)

∫
Rn

e2ψF (u)dx
]

+ C

∫
Rn

e2ψ(1 + (1 + t)(−ψt))|u|p+1dx.

We put a condition for µ and ν as
µ

4
− ν − 1

2
> 0,(5.2.5)

νδ2 −
1
2
> 0.(5.2.6)

Then the terms T4 and T5 are positive. Using the Schwarz inequality, we can
estimate T6 as

|T6| ≤
1
2
(−ψt)(1 + t)u2

t +
2ν2

1 + t
(−ψt)u2.

Now we put another condition

(5.2.7) µ ≥ 2ν
δ2
.

Then we obtain the following estimate:

d

dt
Ê(t) +H(t) +

1
5
(1 + t)Jψ(t; (u2

t + |∇u|2)) + (n+ 1 − 2δ1)
νb(t)

2(1 + t)
J(t;u2)(5.2.8)

≤ d

dt
[(1 + t)J(t;F (u))] + C(J(t; |u|p+1) + (1 + t)Jψ(t; |u|p+1)),

where

Ê(t) :=
∫
Rn

e2ψ
{

1 + t

2
(u2
t + |∇u|2) + νuut +

νb(t)
2

u2

}
dx,
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H(t) =
∫
Rn

e2ψ
{(

µ

4
− ν − 1

2

)
u2
t +

(
νδ2 −

1
2

)
|∇u|2

}
dx,

J(t;u) =
∫
Rn

e2ψudx, Jψ(t;u) =
∫
Rn

e2ψ(−ψt)udx.

Multiplying (5.2.8) by (1 + t)n+1−ε, we have

d

dt
[(1 + t)n+1−εÊ(t)] − (n+ 1 − ε)(1 + t)n−εÊ(t)︸ ︷︷ ︸

T7

+ (1 + t)n+1−εH(t) +
1
5
(1 + t)n+2−εJψ(t; (u2

t + |∇u|2))

+ (n+ 1 − 2δ1)(1 + t)n+1−ε νb(t)
2(1 + t)

J(t;u2)

≤ d

dt
[(1 + t)n+2−εJ(t;F (u))]

+ C((1 + t)n+1−εJ(t; |u|p+1) + (1 + t)n+2−εJψ(t; |u|p+1)).

Now we estimate the bad term T7. First, by the Schwarz inequality, one can obtain

|νuut| ≤
ν

4δ3b(t)
u2
t + δ3νb(t)u2,

where δ3 is determined later. From this, T7 is estimated as

T7 ≤ (n+ 1 − ε)(1 + t)n−ε

×
∫
Rn

e2ψ
{(

1 + t

2
+
ν(1 + t)

4δ3µ

)
u2
t +

1 + t

2
|∇u|2 +

νb(t)
2

(1 + 2δ3)u2

}
dx.

We strengthen the conditions (5.2.5) and (5.2.6) as

µ

4
− ν − 1

2
− (n+ 1 − ε)

(
1
2

+
ν

4δ3µ

)
> 0,(5.2.9)

νδ2 −
1
2
(n+ 2 − ε) > 0.(5.2.10)

Moreover, we take ε = 3δ1 and then choose δ3 such that

(n+ 1 − 2δ1) − (n+ 1 − 3δ1)(1 + 2δ3) > 0.

Under these conditions, we can estimate T7 and obtain

d

dt
[(1 + t)n+1−εÊ(t)]

+ c(1 + t)n+1−εE(t) + c(1 + t)n+2−εJψ(t; (u2
t + |∇u|2))

≤ d

dt
[(1 + t)n+2−εJ(t;F (u))]

+ C((1 + t)n+1−εJ(t; |u|p+1) + (1 + t)n+2−εJψ(t; |u|p+1))

with some c > 0, where

E(t) :=
∫
Rn

e2ψ(u2
t + |∇u|2)dx.
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By integrating the above inequality, it follows that

(1 + t)n+1−εÊ(t)

+ c

∫ t

0

(1 + τ)n+1−ε {E(τ) + (1 + τ)Jψ(τ ; (u2
t + |∇u|2))

}
dτ

≤ CI2
0 + (1 + t)n+2−εJ(t; |u|p+1)

+ C

∫ t

0

(1 + τ)n+1−ε {J(τ ; |u|p+1) + (1 + τ)Jψ(τ ; |u|p+1))
}
dτ.

By a simple calculation, we have

(1 + t)E(t) +
1

1 + t
J(t;u2) ≤ CÊ(t).

Thus, we obtain

(1 + t)n+2−εE(t) + (1 + t)n−εJ(t;u2)(5.2.11)

+ c

∫ t

0

(1 + τ)n+1−ε {E(τ) + (1 + τ)Jψ(τ ; (u2
t + |∇u|2))

}
dτ

≤ CI2
0 + (1 + t)n+2−εJ(t; |u|p+1)

+ C

∫ t

0

(1 + τ)n+1−ε {J(τ ; |u|p+1) + (1 + τ)Jψ(τ ; |u|p+1))
}
dτ.

Now we turn to estimate the nonlinear terms. Noting that

J(t; |u|p+1) =
∫
Rn

∣∣∣e 2
p+1ψu

∣∣∣p+1

dx

and

∇(e
2
p+1ψu) =

2
p+ 1

e
2
p+1ψ(∇ψ)u+ e

2
p+1ψ∇u,

we apply Lemma 9.10 to J(t; |u|p+1) and have

J(t; |u|p+1) ≤ C

(∫
Rn

e
4
p+1ψu2dx

) 1−σ
2 (p+1)

×
(∫

Rn

e
4
p+1ψ|∇ψ|2u2dx+

∫
Rn

e
4
p+1ψ|∇u|2dx

)σ
2 (p+1)

,

where σ = n(p−1)
2(p+1) . We note that

e
4
p+1ψ|∇ψ|2 =

4a2|x|2

(1 + t)4
e

4
p+1ψ ≤ C

1
(1 + t)2

e2ψ

and obtain

J(t; |u|p+1) ≤ C

(∫
Rn

e2ψu2dx

) 1−σ
2 (p+1)

×
(

1
(1 + t)2

∫
Rn

e2ψu2dx+
∫
Rn

e2ψ|∇u|2dx
)σ

2 (p+1)

.
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Therefore, we can estimate

(1 + t)n+2−εJ(t; |u|p+1) ≤ C(1 + t)n+2−ε{(1 + t)−(n−ε)M(t)}
1−σ

2 (p+1)

× {(1 + t)−(n+2−ε)M(t)}σ2 (p+1)

= C(1 + t)γM(t)p+1

with

γ = n+ 2 − ε− (n− ε)
1 − σ

2
(p+ 1) − (n+ 2 − ε)

σ

2
(p+ 1)

= n+ 2 − ε− (n− ε)
p+ 1

2
− σ(p+ 1)

= n+ 2 − n(p+ 1)
2

− n(p− 1)
2

+
ε(p− 1)

2

= −n (p− pF ) +
ε(p− 1)

2
In a similar way, we can estimate the other nonlinear terms and one can see that

(5.2.12) M(t) + L(t) ≤ CI2
0 + C(1 + t)γM(t)p+1,

where

L(t) :=
∫ t

0

(1 + τ)n+1−ε {E(τ) + (1 + τ)Jψ(τ ; (u2
t + |∇u|2))

}
dτ.

Hence, if

(5.2.13) ε <
2n (p− pF )

p− 1
,

then γ < 0 and we have (5.2.1). �

The rest of the proof of Theorem 5.3 is the same as in Section 4.2.2 and so we
omit the detail.

5.3. Proof of blow-up

In this section we first give a proof of Theorem 5.5. We use a method by
Lin, Nishihara and Zhai [56] to transform (5.1.1) into divergence form and then a
test-function method by Qi S. Zhang [122].

Let µ > 1. We multiply (5.1.1) by a positive function g(t) ∈ C2([0,∞)) and
obtain

(gu)tt − ∆(gu) − (g′u)t + (−g′ + gb)ut = g|u|p.
We now choose g(t) as the solution of the Cauchy problem for the ordinary differ-
ential equation

(5.3.1)

{
−g′(t) + g(t)b(t) = 1, t > 0,

g(0) = 1
µ−1 .

The solution g(t) is explicitly given by

g(t) =
1

µ− 1
(1 + t).

Thus, we obtain the equation in divergence form

(5.3.2) (gu)tt − ∆(gu) − (g′u)t + ut = g|u|p.
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Next, we apply a test function method. We first introduce test functions as in
Section 1.4.2:

φ(x) =


1 (|x| ≤ 1/2)

exp(−1/(1 − |x|2))
exp(−1/(|x|2 − 1/4)) + exp(−1/(1 − |x|2))

(1/2 < |x| < 1),

0 (|x| ≥ 1),

η(t) =


1 (0 ≤ t ≤ 1/2),

exp(−1/(1 − t2))
exp(−1/(t2 − 1/4)) + exp(−1/(1 − t2))

(1/2 < t < 1),

0 (t ≥ 1).

It is obvious that φ ∈ C∞
0 (Rn), η ∈ C∞

0 ([0,∞)). We also see that

|η′(t)| . η(t)1/p, |η′′(t)| . η(t)1/p, |∆φ(x)| . φ(x)1/p.

Indeed, we put q, r so that 1/p+ 1/q = 1, 1/p+ 2/r = 1 and let µ = η1/q, ν = η1/r.
Then we obtain

|η′(t)| = |(µq)′| = |qµq−1µ′| . µq−1 = η1/p,

|η′′(t)| = |(νr)′′| . |ν′′|νr−1 + |ν′|2νr−2 . νr−2 = η1/p.

The assertion for φ can be proved in the same way. Let R be a large parameter in
(0,∞). We define the test function

ψτ,R(t, x) := ητ (t)φR(x) := η

(
t

τ

)
φ
( x
R

)
.

Let q be the dual of p, that is q = p
p−1 . Suppose that u is a global weak solution of

(5.1.1)) with initial data (u0, u1) satisfying (5.1.11). We define

Iτ,R :=
∫ τ

0

∫
BR

g(t)|u(t, x)|pψτ,R(t, x)dxdt,

where τ,R are parameter in the intervals [τ0,∞), [R0,∞), respectively and BR =
{|x| < R}. We will appropriately chose τ0 ≥ 1, R0 > 0 later. According to the idea
of the transformation the equation into divergence form (5.3.2), in the definition of
the weak solution (5.1.10), we substitute g(t)ψτ,R(t, x) into ψ(t, x) and obtain

Iτ,R = − 1
µ− 1

∫
BR

((µ− 1)u0 + u1)φRdx

+
∫ τ

0

∫
BR

gu∂2
t (ψτ,R)dxdt+

∫ τ

0

∫
BR

(g′u− u)∂t(ψτ,R)dxdt

−
∫ τ

0

∫
BR

gu∆(ψτ,R)dxdt

=: − 1
µ− 1

∫
BR

((µ− 1)u0 + u1)φRdx+K1 +K2 +K3.

By the assumption on the data, there exists R0 > 0 such that∫
BR

((µ− 1)u0 + u1)φRdx > 0

for R > R0 and so
IR < K1 +K2 +K3.
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We first estimate K3. By the definition of test functions and the Hölder inequality,
we have

|K3| . R−2

∫ τ

0

∫
BR\BR/2

g(t)|u|∆ψτ,Rdxdt

. R−2

(∫ τ

0

∫
BR\BR/2

g(t)|u|pψτ,R(t, x)dxdt

)1/p(∫ τ

0

∫
BR\BR/2

g(t)dxdt

)1/q

. τ2/qRn/q−2Ĩ
1/p
τ,R ,

where

Ĩτ,R :=
∫ τ

0

∫
BR\BR/2

g(t)|u|pψτ,R(t, x)dxdt.

In a similar way, we can estimate K1 and K2 as

|K1| + |K2| . τ2/q−2R
n
q Î

1/p
τ,R , Îτ,R :=

∫ τ

τ/2

∫
BR

g(t)|u|pψτ,R(t, x)dxdt.

Hence, we obtain

(5.3.3) Iτ,R . τ2/qRn/q−2Ĩ
1/p
τ,R + τ2/q−2Rn/q Î

1/p
τ,R ,

in particular I1−1/p
τ,R . R

n+2
q −2. We put τ0 = max{R0, 1} and τ = R. Then we

have
I1−1/p
τ,τ . τ

n+2
q −2.

We note that 1 < p < pF if and only if n+2
q − 2 < 0. Therefore, if 1 < p < pF , by

letting τ → ∞ we have Iτ,τ → 0 and, hence u ≡ 0. Therefore, by the definition of
the solution (5.1.10), we have∫

Rn

((µ− 1)u0 + u1)φR(x)dx = 0

for any R > 0, which contradicts the assumption on the data. If p = pF , we have
only Iτ,τ ≤ C with some constant C independent of τ . This implies that g(t)|u|p is
integrable on (0,∞) × Rn and, hence

lim
τ→∞

(Ĩτ,τ + Îτ,τ ) = 0.

By (5.3.3), we obtain limτ→∞ Iτ,τ = 0. Therefore, u must be 0. This also leads to
a contradiction.

Proof of Theorem 3.6. The proof is almost the same as above. Let 0 <
µ ≤ 1. Instead of (5.3.1), we consider the ordinary differential equation we consider
the ordinary differential equation

(5.3.4) −g′(t) + g(t)b(t) = 0

with g(0) > 0. We can easily solve this and have

g(t) = g(0)(1 + t)µ.

Then we have

(5.3.5) (gu)tt − ∆(gu) − (g′u)t = g|u|p.
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Using the same test function ψτ,R(t, x) as above, we can calculate

Iτ,R :=
∫ τ

0

∫
BR

g(t)|u|pψτ,Rdxdt = −
∫
BR

g(0)u1φRdx+
3∑
k=1

Jk,

where

J1 =
∫ τ

0

∫
BR

gu∂2
t (ψτ,R)dxdt,

J2 =
∫ τ

0

∫
BR

g′u∂t(ψτ,R)dxdt,

J3 = −
∫ τ

0

∫
BR

gu∆(ψτ,R)dxdt.

We note that the term of u0 vanishes and so we put the assumption only for u1.
We first estimate J2. Noting g′(t) = µg(0)(1 + t)µ−1, we have

|J2| . 1
R

∫ τ

τ/2

∫
BR

(1 + t)µ−1|u|∂tψτ,Rdxdt.

By noting that (1+ t)µ−1 ∼ g(t)1/p(1+ t)µ/q−1 and the Hölder inequality, it follows
that

|J2| . 1
R

(∫ τ

τ/2

g|u|pψRdxdt

)1/p(∫ τ

τ/2

∫
BR

(1 + t)µ−qdxdt

)1/q

. 1
R
Î
1/p
τ,R(1 + τ)(µ−q)/q

(∫ τ

τ/2

∫
BR

dxdt

)1/q

. τ (µ−q+1)/qR−1+n/q Î
1/p
τ,R ,

where ÎR is defined as before. In the same way, we can estimate J1 and J3 as

|J1| + |J3| . τ−2+(µ+1)/qRn/q Î
1/p
τ,R + τ (µ+1)/qR−2+n/q Ĩ

1/p
τ,R ,

where Ĩτ,R is the same as before. We put τ0 = max{R0, 1}, τ = R. Then by (5.1.12)
and the above estimates, we have

Iτ,τ . τ−2+(n+µ+1)/q(Ĩ1/p
τ,τ + Î1/p

τ,τ ).

We note that

−2 + (n+ µ+ 1)/q ≤ 0 ⇔ p ≤ 1 +
2

n+ (µ− 1)
.

The rest of the proof is same as before. �

Remark 5.6. We can apply the proof of Theorem 1.4 to the wave equation with
non-effective damping terms{

utt − ∆u+ b(t)ut = |u|p,
(u, ut)(0, x) = (u0, u1)(x),

where
b(t) = (1 + t)−β
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with β > 1. We can easily solve (5.3.4) and have

g(t) = g(0) exp
(

1
−β + 1

((1 + t)−β+1 − 1)
)
.

We note that g(t) ∼ 1. The same argument implies that if

1 < p ≤ 1 +
2

n− 1
, lim inf

R→∞

∫
BR

u1dx > 0,

then there is no global solution (1 < p <∞ when n = 1). We note that the exponent
1 + 2/(n− 1) is greater than the Fujita exponent.

We also mention that if b(t) is nonnegative and satisfies

lim
t→∞

tb(t) = 0,

then we can obtain the nonexistence of global solutions for 1 < p < 1 + 2/(n − 1).
This shows that when the damping is non-effective, the equation loses the parabolic
structure even in the nonlinear cases. One can expect that the critical exponent
is given by the well-known Strauss critical exponent. However, this problem is
completely open due to the author’s knowledge.



CHAPTER 6

Blow-up of solutions to the one-dimensional
semilinear wave equation with damping depending

on time and space variables

6.1. Introduction and results

In this chapter, we consider the Cauchy problem of the one-dimensional semi-
linear damped wave equation{

utt − uxx + a(t, x)ut = |u|p, (t, x) ∈ (0,∞) × R,
(u, ut)(0, x) = (u0, u1)(x), x ∈ R,(6.1.1)

where u = u(t, x) is real-valued unknown and p > 1. We assume that a(t, x) is a
nonnegative smooth function satisfying

(6.1.2) |∂αt ∂βxa(t, x)| ≤
δ

(1 + t)k+α
(α, β = 0, 1)

with some k > 1 and small δ > 0. This assumption means that the damping is
non-effective. Therefore, it is expected that the critical exponent of (6.1.1) agrees
with that of the wave equation

wtt − wxx = |w|p.

Kato [42] proved that the critical exponent of the wave equation is given by +∞.
More precisely, he proved that if the initial data has compact support and satisfies∫
R
wt(0, x)dx > 0, then for any 1 < p < ∞, the local-in-time solution blows up in

finite time. We will introduce a corresponding blow-up result for (6.1.1).
Our proof is based on the test function method. In order to apply the test

function method, we follow an idea by Lin, Nishihara and Zhai [56] and transform
the equation (6.1.1) into divergence form. Multiplying (6.1.1) by a positive function
g = g(t, x), we have

(6.1.3) (gu)tt − (gu)xx + 2(gxu)x + ((−2gt + ga)u)t + (gtt − gxx − (ga)t)u = g|u|p.

Thus, if g satisfies

(6.1.4) gtt − gxx − (ga)t = 0,

then (6.1.3) becomes divergence form and we can apply the test function method.
We will find a solution g of (6.1.4) having the form

(6.1.5) g(t, x) = 1 + h(t, x),

where h has small amplitude, more precisely, |h(t, x)| ≤ θ with some θ ∈ (0, 1).
This ensures the positivity of g and so the nonlinearity g|u|p. Then h must satisfy

(6.1.6) htt − hxx − a(t, x)ht − at(t, x)(1 + h) = 0.

143
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We can find a classical solution h of (6.1.6) having the desired property by the
method of characteristics.

Lemma 6.1. Let θ ∈ (0, 1) and k > 1. Then there exists δ0 > 0 such that for
all δ ∈ (0, δ0) the following holds: if a satisfies (6.1.2), then there exists a solution
h ∈ C2([0,∞) × R) of (6.1.6) satisfying

(6.1.7) |h(t, x)| ≤ θ

(1 + t)k−1
, |∂αt ∂βxh(t, x)| ≤

C

(1 + t)k
(α+ β = 1)

for all (t, x) ∈ [0,∞) × R with some constant C > 0.

Using this h, we can obtain a blow-up result for (6.1.1). To state our result
precisely, we define the solution of (6.1.1). Let T ∈ (0,∞]. We say that u ∈ X(T ) =
C([0, T );H1(R)) ∩ C1([0, T );L2(R)) is a (weak) solution of the Cauchy problem
(6.1.1) on the interval [0, T ) if it holds that∫

[0,T )×R

u(t, x)(∂2
t ψ(t, x) − ∂2

xψ(t, x) − ∂t(a(t, x)ψ(t, x)))dxdt

=
∫
R

{(a(0, x)u0(x) + u1(x))ψ(0, x) − u0(x)∂tψ(0, x)} dx(6.1.8)

+
∫

[0,T )×R

|u(t, x)|pψ(t, x)dxdt

for any ψ ∈ C2
0 ([0, T )×R) (see also Section 9.4.3). In particular, when T = ∞, we

call u a global solution.
We first recall a local existence result:

Proposition 6.2. Let 1 < p <∞ and (u0, u1) ∈ H1(R) × L2(R). Then there
exist T ∗ ∈ (0,+∞] and a unique solution u ∈ X(T ∗). Moreover, if T ∗ < +∞, then
it follows that

lim inf
t→T∗−0

‖(u, ut)(t)‖H1×L2 = +∞.

For the proof, see Proposition 9.21. We put an assumption on the data

(6.1.9) lim inf
R→∞

∫ R

−R
((−gt(0, x) + g(0, x)a(0, x))u0(x) + g(0, x)u1(x))dx > 0,

where g is defined by (6.1.5) with h in Lemma 6.1. Our main result is the following.

Theorem 6.3. Let 1 < p < ∞. Under the same situation as Lemma 6.1,
let (u0, u1) ∈ H1(R) × L2(R) satisfy (6.1.9). Then the local solution u of (6.1.1)
blows up in finite time, that is, limt→T∗−0 ‖(u, ut)(0)‖H1×L2 = +∞ holds for some
T ∗ ∈ (0,+∞).

Remark 6.1. (i) If the initial data (u0, u1) satisfies that u0 = 0, u1 ≥ 0 and∫
R
u1(x)dx > 0, then the condition (6.1.9) is fulfilled. (ii) For Lemma 6.1, our

method does not work in higher dimensional cases n ≥ 2 and we have no idea to
find an appropriate solution g of (6.1.4). (iii) We expect that the assumption on
the smallness of δ is removable.

We can also treat other types of damping. We give three examples. These
examples have the form a(t, x) = b(t) + d(t, x), here b(t) and d(t, x) denote the
main term and a perturbation term, respectively.
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The first example is the case that a(t, x) is a perturbation of b(t) = 2/(1 + t),
that is, a is given by

(6.1.10) a(t, x) =
2

1 + t
+ d(t, x)

and d(t, x) is a smooth function satisfying (6.1.2) with δ ≤ 2. Note that this
condition implies a(t, x) ≥ 0.

In this case by putting

(6.1.11) g(t, x) = (1 + t)(1 + h(t, x)),

the equation (6.1.6) becomes

(6.1.12) htt − hxx − d(t, x)ht −
(
d(t, x)
1 + t

+ dt(t, x)
)

(1 + h) = 0.

In the same way as in the proof of Lemma 1.1, we can obtain a solution h of (6.1.12):

Lemma 6.4. Let θ ∈ (0, 1) and k > 1. Then there exists δ0 > 0 such that for
all δ ∈ (0, δ0) the following holds: if d satisfies (6.1.2) and a is given by (6.1.10),
then there exists a solution h ∈ C2([0,∞) × R) of (6.1.12) satisfying

(6.1.13) |h(t, x)| ≤ θ

(1 + t)k−1
, |∂αt ∂βxh(t, x)| ≤

C

(1 + t)k
(α+ β = 1)

for all (t, x) ∈ [0,∞) × R with some constant C > 0.

Using this h, we can apply the test function method and obtain a blow-up
result.

Theorem 6.5. Let 1 < p ≤ 3. Under the same situation as Lemma 6.4, let
(u0, u1) ∈ H1(R)×L2(R) satisfy (6.1.9). Then the local solution u of (6.1.1) blows
up in finite time.

The second example is

(6.1.14) a(t, x) = b(t) + d(t, x)

with smooth nonnegative function b(t) satisfying

(6.1.15) b(t) ≤ µ

1 + t

for some µ > 0 and a smooth function d(t, x) satisfying (6.1.2) with δ ≤ µ. In this
case, by putting

(6.1.16) g(t, x) = f(t)(1 + h(t, x)),

we have

htt − hxx +
(

2
f ′

f
− b− d

)
ht +

(
f ′′

f
− f ′

f
b− b′ − f ′

f
d− dt

)
(1 + h) = 0.

The bad terms are
f ′′

f
− f ′

f
b− b′

and hence, we choose the function f(t) so that

(6.1.17)
f ′′

f
− f ′

f
b− b′ = 0.
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Thus, putting

(6.1.18) f(t) = exp
(∫ t

0

b(s)ds
)
,

we obtain the equation

(6.1.19) htt − hxx + (b− d)ht − (bd+ dt) (1 + h) = 0.

In a similar way to Lemma 6.1 with some technical argument, we can find an
appropriate solution h of (6.1.19).

Lemma 6.6. Let θ ∈ (0, 1), µ > 0 and k > max{1, µ}. Then there exists
δ0 > 0 such that for all δ ∈ (0, δ0) the following holds: if b and d satisfy (6.1.15)
and (6.1.2), respectively, and a is given by (6.1.14), then there exists a solution
h ∈ C2([0,∞) × R) of (6.1.19) satisfying

(6.1.20) |h(t, x)| ≤ θ

(1 + t)k−1
, |∂αt ∂βxh(t, x)| ≤

C

(1 + t)k
(α+ β = 1)

for all (t, x) ∈ [0,∞) × R with some constant C > 0.

This lemma and the test function method imply

Theorem 6.7. Let 1 < p ≤ 1 + 2/µ. Under the same situation as Lemma 6.6,
let (u0, u1) ∈ H1(R) × L2(R) satisfy (6.1.9). Then the local solution u of (6.1.1)
blows up in finite time.

Remark 6.2. (i)When b(t) = µ/(1 + t) with µ = 2, Theorem 6.5 is better than
Theorem 6.7.

(ii) We can choose the function f(t) as

f(t) =
∫ t

0

exp
(∫ t

s

b(τ)dτ
)
ds

instead of (6.1.18). Then the equation (6.1.17) also holds. However, the behavior
of f(t) above is worse than (6.1.18) and we can obtain only weak result.

The third example is the form

a(t, x) = b(t) + d(t, x)

with non-effective b(t) and a perturbation term d(t, x). The function b(t) is assumed
to be smooth, nonnegative and satisfies (6.1.15) with µ > 0. Moreover, we assume
that

(6.1.21) lim
t→∞

tb(t) = 0.

A typical example of b(t) is

b(t) =
1

(e+ t) log(e+ t)
.

From the assumption (6.1.21), it follows for any ε > 0, there exists t0 > 0 such that

b(t) ≤ ε

1 + t

holds for t ≥ t0. Thus, we have

(6.1.22) exp
(∫ t

0

b(s)ds
)

≤ exp
(∫ t0

0

b(s)ds
)

exp
(∫ t

t0

ε

1 + s
ds

)
≤ Cε(1 + t)ε

if t ≥ t0. Noting this, we can prove a blow-up result for any 1 < p <∞.
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Theorem 6.8. Let 1 < p < ∞. Under the same situation as Lemma 6.6, we
assume the additional assumption (6.1.21). Let (u0, u1) ∈ H1(R) × L2(R) satisfy
(6.1.9). Then the local solution u of (6.1.1) blows up in finite time.

6.2. Existence of multiplier function

In this section, we construct a solution of (6.1.6) by the method of character-
istics. First, we diagonalize (6.1.6). Put(

v1
v2

)
=
(
ht + hx
ht − hx

)
.

Then v1 and v2 satisfy

(6.2.1) ∂tv1 = ∂xv1 +
a(t, x)

2
(v1 + v2) + at(t, x)(1 + h)

and

(6.2.2) ∂tv2 = −∂xv2 +
a(t, x)

2
(v1 + v2) + at(t, x)(1 + h),

respectively. We can rewrite (6.2.1)-(6.2.2) as

∂t(v1(t, x− t)) =
a(t, x− t)

2
(v1(t, x− t) + v2(t, x− t))

+ at(t, x− t)(1 + h(t, x− t)),

∂t(v2(t, x+ t)) =
a(t, x+ t)

2
(v1(t, x+ t) + v2(t, x+ t))

+ at(t, x+ t)(1 + h(t, x+ t)).

We seek solutions satisfying limt→+∞(v1, v2) = 0 uniformly in x. Integrating the
above identities over [t,∞) and changing variables, one has a system of integral
equations

v1(t, x) = −
∫ ∞

t

{a
2
(v1 + v2) + at(1 + h)

}
(s, x+ t− s)ds,(6.2.3)

v2(t, x) = −
∫ ∞

t

{a
2
(v1 + v2) + at(1 + h)

}
(s, x− (t− s))ds.(6.2.4)

Next, we construct solutions to (6.2.3), (6.2.4) by an iteration argument in an
appropriate Banach space. We define a function space Y . We say V = (v1, v2, h) ∈
Y if V ∈ (C([0,∞) × R))3, V is differentiable with respect to x for all (t, x) ∈
[0,∞) × R, ∂xV ∈ (C([0,∞) × R))3, and ‖V ‖Y = ‖(v1, v2, h)‖Y < +∞, where

‖(v1, v2, h)‖Y
= sup
t∈[0,∞)

{
(1 + t)k‖v1(t)‖B1 + (1 + t)k‖v2(t)‖B1 + (1 + t)k−1‖h(t)‖B1

}
,

‖h(t)‖B1 = ‖h(t, ·)‖∞ + ‖∂xh(t, ·)‖∞, ‖h(t)‖∞ = sup
x∈R

|h(t, x)|.

Then Y is a Banach space with norm ‖V ‖Y . Let θ ∈ (0, 1) and let

Kθ ={(v1, v2, h) ∈ Y | sup
t∈[0,∞)

(1 + t)k‖v1(t)‖∞ ≤ θ,

sup
t∈[0,∞)

(1 + t)k‖v2(t)‖∞ ≤ θ, sup
t∈[0,∞)

(1 + t)k−1‖h(t)‖∞ ≤ θ}.
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Take (v(0)
1 , v

(0)
2 , h(0)) ∈ Kθ arbitrarily and define V (n) = (v(n)

1 , v
(n)
2 , h(n)) inductively

by

v
(n)
1 (t, x) = −

∫ ∞

t

{a
2
(v(n−1)

1 + v
(n−1)
2 ) + at(1 + h(n−1))

}
(s, x+ t− s))ds,

(6.2.5)

v
(n)
2 (t, x) = −

∫ ∞

t

{a
2
(v(n−1)

1 + v
(n−1)
2 ) + at(1 + h(n−1))

}
(s, x− (t− s))ds,

h(n)(t, x) = −1
2

∫ ∞

t

(v(n)
1 + v

(n)
2 )(s, x)ds.

The following proposition shows that if the coefficient of damping term δ is suffi-
ciently small, then {V (n)}∞n=0 is a Cauchy sequence.

Proposition 6.9. Let k > 1 and θ ∈ (0, 1). Then there exists δ0 > 0 such that
for any δ ∈ (0, δ0] the following holds: if a satisfies (6.1.2), then {V (n)}∞n=0 ∈ Kθ

for all n and {V (n)}∞n=0 is a Cauchy sequence with respect to the norm ‖ · ‖Y .

Proof. First, we prove that if V (n−1) ∈ Kθ, then V (n) ∈ Kθ. Assume
V (n−1) ∈ Kθ. It is obvious that V (n) ∈ (C([0,∞) × R))3. We have

|v(n)
1 (t, x)| ≤

∫ ∞

t

{
|a|
2

(|v(n−1)
1 + |v(n−1)

2 |) + |at|(1 + |h(n−1)|)
}

(s, x+ t− s)ds

≤
∫ ∞

t

θδ

(1 + s)2k
+

δ

(1 + s)k+1
(1 + θ(1 + s)−(k−1))ds

= δC1(1 + t)−k

with some C1 > 0. Hereafter, Cj (j = 1, 2, . . .) denotes a constant depending only
on k, θ. Moreover, differentiating under the integral sign, we obtain

∂xv
(n)
1 (t, x) = −

∫ ∞

t

{ax
2

(v(n−1)
1 + v

(n−1)
2 ) +

a

2
(∂xv

(n−1)
1 + ∂xv

(n−1)
2 )

+atx(1 + h(n−1)) + ath
(n−1)
x

}
(s, x+ t− s)ds.

This implies ∂xv
(n)
1 ∈ C([0,∞) × R) and

|∂xv(n)
1 (t, x)| ≤ δC2(1 + t)−k.

We can also obtain the same estimates for v(n)
2 . By differentiating under the integral

sign again, we have

∂xh
(n)(t, x) = −1

2

∫ ∞

t

(∂xv
(n)
1 + ∂xv

(n)
2 )(s, x)ds.

Thus, we can see that

|h(n)(t, x)| ≤ δC1

∫ ∞

t

ds

(1 + s)k
= δC3(1 + t)−(k−1),

|∂xh(n)(t, x)| ≤ δC2

∫ ∞

t

ds

(1 + t)k
= δC4(1 + t)−(k−1).

The above estimates show V (n) ∈ Y . Moreover, taking δ0 so small that δ0 max{C1, C3} ≤
θ, we have V (n) ∈ Kθ for all δ ∈ (0, δ0].
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Next, we prove that {V (n)}∞n=0 is a Cauchy sequence with respect to the norm
‖ · ‖Y . It follows that

|v(n)
1 (t, x) − v

(n−1)
1 (t, x)| ≤

∫ ∞

t

{
δ

2(1 + s)k
(|v(n−1)

1 − v
(n−2)
1 | + |v(n−1)

2 − v
(n−2)
2 |)

+
δ

(1 + s)k+1
|h(n−1) − h(n−2)|

}
(s, x+ t− s)ds

≤ δC5(1 + t)−(2k−1)‖V (n−1) − V (n−2)‖Y .

In the same way, we have

|∂xv(n)
1 (t, x) − ∂xv

(n−1)
1 (t, x)| ≤ δC6(1 + t)−(2k−1)‖V (n−1) − V (n−2)‖Y .

and the same estimates are true for v(n)
2 − v

(n−1)
2 . We also obtain

|h(n)(t, x) − h(n−1)(t, x)| ≤ δC7(1 + t)−2(k−1)‖V (n−1) − V (n−2)‖Y ,

|∂xh(n)(t, x) − ∂xh
(n−1)(t, x)| ≤ δC8(1 + t)−2(k−1)‖V (n−1) − V (n−2)‖Y .

Consequently, taking δ0 smaller so that r = δ0(2C5 + 2C6 +C7 +C8) < 1, we have

‖V (n) − V (n−1)‖Y ≤ r‖V (n−1) − V (n−2)‖Y ,

which shows that {V (n)}∞n=0 is a Cauchy sequence. �

Proof of Lemma 6.1. By the above proposition, {V (n)}∞n=0 is a Cauchy se-
quence and converges to some element (v1, v2, h) ∈ Kθ. Therefore, (v1, v2, h) satis-
fies the integral equation (6.2.3), (6.2.4). By noting the differentiability with respect
to t of the right-hand side of (6.2.3) (6.2.4), we have v1, v2 ∈ C1([0,∞)×R). Differ-
entiating (6.2.3) and (6.2.4), one can see that v1, v2 satisfy the differential equation
(6.2.1), (6.2.2), respectively. By the equation of h, we also have

(6.2.6) ∂th(t, x) =
1
2
(v1(t, x) + v2(t, x)), ∂xh(t, x) =

1
2
(v1(t, x) − v2(t, x)).

Thus, h ∈ C2([0,∞) × R) and h is a classical solution of (6.1.6). By noting
(v1, v2, h) ∈ Kθ and (6.2.6), the estimate (6.1.7) is obvious. �

6.3. Proof of blow-up

In this section, we give a proof of Theorem 6.3. By Lemma 6.1, there exists h
satisfying (6.1.6). Thus, (6.1.4) holds for g given by (6.1.5) and we can transform
the equation (6.1.1) into divergence form

(6.3.1) (gu)tt − (gu)xx + 2(gxu)x + ((−2gt + ga)u)t = g|u|p.

We apply the test function method to (6.3.1). Since g is defined by (6.1.5) and h
satisfies (6.1.7), we have

(6.3.2) C−1 ≤ g(t, x) ≤ C, |gt(t, x)| ≤
C

(1 + t)k
, |gx(t, x)| ≤

C

(1 + t)k
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with some constant C > 0. We define test functions

φ(x) =


1 (|x| ≤ 1/2)

exp(−1/(1 − x2))
exp(−1/(x2 − 1/4)) + exp(−1/(1 − x2))

(1/2 < |x| < 1),

0 (|x| ≥ 1),

η(t) =


1 (0 ≤ t ≤ 1/2),

exp(−1/(1 − t2))
exp(−1/(t2 − 1/4)) + exp(−1/(1 − t2))

(1/2 < t < 1),

0 (t ≥ 1).

It is obvious that φ ∈ C∞
0 (R), η ∈ C∞

0 ([0,∞)). We also see that

|φ′(x)| . φ(x)1/p, |φ′′(x)| . φ(x)1/p,(6.3.3)

|η′(t)| . η(t)1/p, |η′′(t)| . η(t)1/p.

Indeed, let q, r satisfy 1/p + 1/q = 1, 1/p + 2/r = 1 and let µ = φ1/q, ν = φ1/r.
Then we have

|φ′| = |(µq)′| = |qµq−1µ′| . µq−1 = φ1/p

and
|φ′′| = |(νr)′| . |ν′′|νr−1 + |ν′|2νr−2 . νr−2 = φ1/p.

The assertion for η can be proved by the same way. To prove Theorem 6.3, we
use a contradiction argument. Suppose u ∈ X(∞) is a global solution to (6.1.1)
with initial data (u0, u1) satisfying (6.1.9). Let τ,R be parameters such that τ ∈
(τ0,∞), R ∈ (R0,∞), where τ0 ≥ 1, R0 > 0 are defined later. We put

ητ (t) = η(t/τ), φR(x) = φ(x/R),

ψτ,R(t, x) = ητ (t)φR(x)

and

Iτ,R :=
∫ τ

0

∫ R

−R
g|u|pψτ,Rdxdt,

JR :=
∫ R

−R
((−gt(0, x) + g(0, x)a(0, x))u0(x) + g(0, x)u1(x))φR(x)dx,

Substituting the test function g(t, x)ψτ,R(t, x) into the definition of solution (6.1.8),
we see that

Iτ,R + JR =
∫ τ

0

∫ R

−R

(
gu∂2

t ψτ,R − gu∂2
xψτ,R − 2(gxu)∂xψτ,R

−(−2gt + ga)u∂tψτ,R) dxdt =: K1 +K2 +K3 +K4.

Next, we estimate the terms K1, . . . ,K4. Let q be the dual of p, that is q =
p/(p− 1). By using the Hölder inequality and (6.3.2), (6.3.3), it follows that

K1 ≤ τ−2

∫ τ

0

∫ R

−R
|gu||η′′(t/τ)|φR(x)dxdt

. τ−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)dt
)
φR(x)dx

)1/q

. τ−2+1/qR1/qI
1/p
τ,R ,



6.4. THE CASE OF PERTURBATION OF 2
1+t 151

K2 ≤ R−2

∫ τ

0

∫ R

−R
|gu||φ′′(x/R)|ητ (t)dxdt

. R−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)ητ (t)dt
)
dx

)1/q

. τ1/qR−2+1/qI
1/p
τ,R ,

K3 ≤ R−1

∫ τ

0

∫ R

−R
|gxu||φ′(x/R)|ητdxdt

. R−1I
1/p
τ,R

(∫ R

−R

(∫ τ

0

(1 + t)−qkdt
)
dx

)1/q

. R−1+1/qI
1/p
τ,R .

Finally, we estimate K4. Noting that supp η′(t) ⊂ [1/2, 1], we have

K4 ≤ τ−1

∫ τ

0

∫ R

−R
(2|gt| + |ga|)|u||η′(t/τ)|φRdxdt

. τ−1I
1/p
τ,R

(∫ R

−R

(∫ τ

τ/2

(1 + t)−kqdt

)
φR(x)dx

)1/q

. τ−1−k+1/qR1/qI
1/p
τ,R .

Therefore, putting

D(τ,R) := τ−2+1/qR1/q + τ1/qR−2+1/q +R−1+1/q,

we obtain

(6.3.4) Iτ,R + JR ≤ CD(τ,R)I1/p
τ,R .

By the assumption on the data (6.1.9), there exists R0 > 0 such that JR > 0 holds
for R ≥ R0. This implies

Iτ,R ≤ CD(τ,R)q.
Putting τ0 = R0 and R = τ , we have

(6.3.5) Iτ,τ ≤ Cτ−1+1/q

for τ ≥ τ0. In particular, Iτ,τ ≤ C with some C > 0 and hence, g|u|p ∈
L1([0,∞)×R) and limτ→+∞ Iτ,τ = ‖g|u|p‖L1([0,∞)×R). Moreover, since −1+1/q <
0, by letting τ → +∞, the right-hand side of (6.3.5) tend to 0. This gives
‖g|u|p‖L1([0,∞)×R) = 0, that is u ≡ 0. However, in view of (6.1.8), it contradicts
(u0, u1) 6= 0. This completes the proof.

6.4. The case of perturbation of 2
1+t

In this section, we give a proof of Theorem 6.5. Note that we can prove Lemma
6.4 by the same argument as the proof of Lemma 6.1. The only difference between
the proofs of Lemmas 6.1 and 6.4 is that of the coefficients of (6.1.6) and (6.1.12).
However, by the assumption on d(t, x), it follows that

|d(t, x)| ≤ δ

(1 + t)k
,

∣∣∣∣d(t, x)1 + t
+ dt(t, x)

∣∣∣∣ ≤ 2δ
(1 + t)k+1

.
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Using this estimate, we can prove Lemma 6.4 in the same way as Section 6.2 and
hence, we omit the detailed proof.

Now we prove Theorem 6.5. By (6.1.13) and (6.1.11), we have

(6.4.1) g ∼ (1 + t), |gt| . 1, |gx| . (1 + t)−k+1.

We use the same notation as in Section 6.3 and suppose that u is a global solution.
The main difference with the previous section lies in the estimate of the terms
K1, . . . ,K4. In this case, we have

K1 ≤ τ−2

∫ τ

0

∫ R

−R
|gu||η′′(t/τ)|φR(x)dxdt

. τ−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)dt
)
φR(x)dx

)1/q

. τ−2+2/qR1/qI
1/p
τ,R ,

K2 ≤ R−2

∫ τ

0

∫ R

−R
|gu||φ′′(x/R)|ητ (t)dxdt

. R−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)ητ (t)dt
)
dx

)1/q

. τ2/qR−2+1/qI
1/p
τ,R ,

K3 ≤ R−1

∫ τ

0

∫ R

−R
|gxu||φ′(x/R)|ητdxdt

≤ R−1

∫ τ

0

∫ R

−R
|g1/pu||g−1/pgx||φ′(x/R)|ητdxdt

. R−1I
1/p
τ,R

(∫ R

−R

(∫ τ

0

(1 + t)−q(1/p+k−1)dt

)
dx

)1/q

. F (τ)R−1+1/qI
1/p
τ,R

and

K4 ≤ τ−1

∫ τ

0

∫ R

−R
(2|gt| + |ga|)|u||η′(t/τ)|φRdxdt

≤ τ−1

∫ τ

0

∫ R

−R
|g1/pu|g−1/p|η′(t/τ)|φRdxdt

. τ−1I
1/p
τ,R

(∫ R

−R

(∫ τ

τ/2

(1 + t)−q/pdt

)
φR(x)dx

)1/q

. τ−1−1/p+1/qR1/qI
1/p
τ,R ,

where

(6.4.2) F (τ) =


1 (−q(1/p+ k − 1) < −1),
(log τ)1/q (−q(1/p+ k − 1) = −1),
τ−(1/p+k−1)+1/q (−q(1/p+ k − 1) > −1)



6.5. PROOF OF LEMMA 6.6 153

and for the estimate of K4, we have used that supp η′(t) ⊂ [1/2, 1] and (6.4.1). Let

(6.4.3) D(τ,R) := τ−2+2/qR1/q + τ2/qR−2+1/q + F (τ)R−1+1/q.

We note that the powers of each term of D(τ, τ) are negative if 1 < p < 3. Thus,
by putting R = τ and the same argument as the previous section, we can lead to a
contradiction.

When p = 3, we need a certain modification of the above argument. We put

I ′τ,R =
∫ τ

τ/2

∫ R

−R
g|u|pψτ,Rdxdt, I ′′τ,R =

∫ τ

0

∫
R/2<|x|<R

g|u|pψτ,Rdxdt.

Then we can improve the estimates of K1, . . . ,K4 as

K1 ≤ τ−2+2/qR1/q(I ′τ,R)1/p,

K2 ≤ τ2/qR−2+1/q(I ′′τ,R)1/p,

K3 ≤ F (τ)R−1+1/q(I ′′τ,R)1/p,

K4 ≤ τ−1−1/p+1/qR1/q(I ′τ,R)1/p.

Thus, we have

Iτ,R ≤ C
(
τ−2+2/qR1/q(I ′τ,R)1/p + (τ2/qR−2+1/q + F (τ)R−1+1/q)(I ′′τ,R)1/p

)
.

Substituting p = 3 and R = τ , we obtain

(6.4.4) Iτ,τ ≤ C((I ′τ,τ )
1/3 + (I ′′τ,τ )

1/3).

In particular, we see that Iτ,τ ≤ C with some constant C > 0, since I ′τ,τ ≤ Iτ,τ and
I ′′τ,τ ≤ Iτ,τ . Hence g|u|3 ∈ L1([0,∞) × R) and limτ→∞ Iτ,τ = ‖g|u|3‖L1([0,∞)×R).
However, by noting the integral region of I ′τ,τ , I

′′
τ,τ , we can see that the integrability

of g|u|3 shows
lim
τ→∞

I ′τ,τ = 0, lim
τ→∞

I ′′τ,τ = 0.

Therefore, turning back to (6.4.4), we obtain limτ→∞ Iτ,τ = 0. This implies u ≡ 0.
In view of (6.1.8), this contradicts (u0, u1) 6= 0. This completes the proof.

6.5. Proof of Lemma 6.6

In this section, we give a proof of Lemma 6.6. We modify the argument in
Section 6.2 and look for an appropriate solution by the following iteration:

v
(n)
1 (t, x) =

∫ ∞

t

{
1
2

(b− d) (v(n−1)
1 + v

(n−1)
2 )(6.5.1)

− (bd+ dt) (1 + h(n−1))
}

(s, x+ t− s)ds,

v
(n)
2 (t, x) =

∫ ∞

t

{
1
2

(b− d) (v(n−1)
1 + v

(n−1)
2 )

− (bd+ dt) (1 + h(n−1))
}

(s, x− (t− s))ds,

h(n)(t, x) = −1
2

∫ ∞

t

(v(n)
1 + v

(n)
2 )(s, x)ds.

We modify the definition of function space Y in Section 6.2 as follows. We say
V = (v1, v2, h) ∈ Y if V ∈ (C([0,∞) × R))3, V is differentiable with respect to x for
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all (t, x) ∈ [0,∞)×R, ∂xV ∈ (C([0,∞) × R))3, and ‖V ‖Y = ‖(v1, v2, h)‖Y < +∞,
where

‖(v1, v2, h)‖Y
= sup
t∈[0,∞)

{
λ(1 + t)k‖v1(t)‖B1 + λ(1 + t)k‖v2(t)‖B1 + (1 + t)k−1‖h(t)‖B1

}
,

with a large parameter λ fixed later. We put

Kθ :={(v1, v2, h) ∈ Y | sup
t∈[0,∞)

(1 + t)k‖v1(t)‖∞ ≤ θ′,(6.5.2)

sup
t∈[0,∞)

(1 + t)k‖v2(t)‖∞ ≤ θ′, sup
t∈[0,∞)

(1 + t)k−1‖h(t)‖∞ ≤ θ},

where θ′ := θmin{k − 1, 1}. We take (v(0)
1 , v

(0)
2 , h(0)) ∈ Kθ arbitrarily and define

V (n) = (v(n)
1 , v

(n)
2 , h(n)) inductively by (6.5.1). Now we prove that {V (n)}∞n=0 is a

Cauchy sequence in Kθ for sufficiently large λ and small δ.

Proposition 6.10. If k > max{1, µ}, then there exist λ and δ0 having the
following property: if δ ∈ (0, δ0], then {V (n)}∞n=0 is a Cauchy sequence in Kθ with
respect to the norm ‖ · ‖Y .

Proof. We first show that if V (n−1) ∈ Kθ, then V (n) ∈ Kθ. Using (6.1.15),
we calculate

|v(n)
1 (t, x)| ≤

(µ
k
θ′ + δC

)
(1 + t)−k.

In view of k > µ, by taking δ sufficiently small, we obtain

(1 + t)k|v(n)
1 (t, x)| ≤ θ′.

By the same way, we also have (1 + t)k|v(n)
2 (t, x)| ≤ θ′. Noting that θ′/(k− 1) ≤ θ,

we obtain

|h(n)(t, x)| ≤
∫ ∞

t

θ′

(1 + s)k
ds ≤ θ(1 + t)−(k−1).

By differentiating under the integral sign and noting that V (n−1) ∈ Y , we have

(1+ t)k|∂xv(n)
1 (t, x)| ≤ C, (1+ t)k|∂xv(n)

2 (t, x)| ≤ C, (1+ t)k−1|∂xh(n)(t, x)| ≤ C

with some constant C > 0. Therefore we have V (n) ∈ Kθ.
Next, we prove that {V (n)}∞n=0 is a Cauchy sequence. By a straightforward

calculation, we can estimate∑
α=0,1

∑
j=1,2

|∂αx v
(n)
j (t, x) − ∂αx v

(n)
j (t, x)|

≤
∫ ∞

t

µ

1 + s

∑
α=0,1

∑
j=1,2

‖∂αx v
(n−1)
j − ∂αx v

(n−2)
j ‖∞ds

+ δC

∫ ∞

t

1
(1 + s)k

∑
α=0,1

∑
j=1,2

‖∂αx v
(n−1)
j − ∂αx v

(n−2)
j ‖∞ds

+ δC

∫ ∞

t

1
(1 + s)k+1

∑
α=0,1

‖∂αxh(n−1) − ∂αxh
(n−2)‖∞ds.
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Since k > 1, this implies

λ(1+t)k
∑
α=0,1

∑
j=1,2

|∂αx v
(n)
j (t, x)−∂αx v

(n−1)
j (t, x)| ≤

(µ
k

+ δλC
)
‖V (n−1)−V (n−2)‖Y .

Using this, we can estimate the difference of h(n) and h(n−1) as

(1 + t)k−1
∑
α=0,1

|∂αxh(n)(t, x) − ∂αxh
(n−1)(t, x)|

≤ 1
2λ(k − 1)

(µ
k

+ δλC
)
‖V (n) − V (n−1)‖Y .

Adding the two inequalities above, we obtain

‖V (n) − V (n−1)‖Y ≤
(

1 +
1

2λ(k − 1)

)(µ
k

+ δλC
)
‖V (n−1) − V (n−2)‖Y .

Thus, by taking λ sufficiently large and then δ sufficiently small, we obtain

‖V (n) − V (n−1)‖Y ≤ r‖V (n−1) − V (n−2)‖Y
with some 0 < r < 1. This completes the proof. �

By Proposition 6.10, we can complete the proof of Lemma 6.6 by the same
argument as in the proof of Lemma 6.1.

6.6. Proof of Theorems 6.7 and 6.9

We first give a proof of Theorem 6.7. By Lemma 6.6, we find a solution g of
(6.1.4) satisfying

(6.6.1) 1 . g . (1 + t)µ, ‖gt(t)‖∞ . (1 + t)µ−1, ‖gx(t)‖∞ . (1 + t)µ−k.

Moreover, by the definition of g (6.1.16) with f defined by (6.1.18), we can calculate

gx(t, x) = f(t)hx(t, x),

gt(t, x) = f ′(t)(1 + h(t, x)) + f(t)ht(t, x)

= b(t)(1 + h(t, x)) + f(t)ht(t, x),

and hence,
gx
g

=
hx

1 + h
,

gt
g

= b(t) +
ht

1 + h
.

The estimate (6.1.13) implies

(6.6.2)
∣∣∣∣gxg
∣∣∣∣ ≤ C(1 + t)−k,

∣∣∣∣gtg
∣∣∣∣ ≤ C(1 + t)−1.

In what follows, we use the same notation as in Section 6.3. Suppose that u is a
global solution. Using the estimates (6.6.1) and (6.6.2), we can obtain

K1 ≤ τ−2

∫ τ

0

∫ R

−R
|gu||η′′(t/τ)|φR(x)dxdt

. τ−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)dt
)
φR(x)dx

)1/q

. τ−2+(µ+1)/qR1/qI
1/p
τ,R ,
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K2 ≤ R−2

∫ τ

0

∫ R

−R
|gu||φ′′(x/R)|ητ (t)dxdt

. R−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)ητ (t)dt
)
dx

)1/q

. τ (µ+1)/qR−2+1/qI
1/p
τ,R ,

K3 ≤ R−1

∫ τ

0

∫ R

−R
|gxu||φ′(x/R)|ητdxdt

= R−1

∫ τ

0

∫ R

−R
|u|g

∣∣∣∣gxg
∣∣∣∣ |φ′(x/R)|ητdxdt

. R−1

∫ τ

0

∫ R

−R
g1/p|u|g1/q|hx||φ′(x/R)|ητdxdt

. R−1I
1/p
τ,R

(∫ R

−R

(∫ τ

0

(1 + t)−q(k−µ/q)dt
)
dx

)1/q

. G(τ)R−1+1/qI
1/p
τ,R

and

K4 ≤ τ−1

∫ τ

0

∫ R

−R
(2|gt| + |ga|)|u||η′(t/τ)|φRdxdt

≤ τ−1

∫ τ

0

∫ R

−R
|u|g

(∣∣∣∣gtg
∣∣∣∣+ a

)
|η′(t/τ)|φRdxdt

. τ−1I
1/p
τ,R

(∫ R

−R

(∫ τ

τ/2

(1 + t)µ−qdt

)
φR(x)dx

)1/q

. τ−2+(µ+1)/qR1/qI
1/p
τ,R ,

where

G(τ) =


1 (µ− kq < −1),
(log τ)1/q (µ− kq = −1),
τ−k+(µ+1)/q (µ− kq > −1).

In this case we put

(6.6.3) D(τ,R) := τ−2+(µ+1)/qR1/q + τ (µ+1)/qR−2+1/q +G(τ)R−1+1/q.

We note that the powers of each term of D(τ, τ) do not exceed 0 if 1 < p ≤ 1+2/µ.
Thus, by putting R = τ and the same argument as Sections 6.3 and 6.4, we can
lead to a contradiction and complete the proof of Theorem 6.7.

Let us turn to the proof of Theorem 6.8. We first recall that

g(t, x) = f(t)(1 + h(t, x)), f(t) = exp
(∫ t

0

b(s)ds
)
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and hence, the estimates (6.1.15), (6.1.22) and Lemma 6.6 imply

1 . g(t, x) . (1 + t)ε,

|gt(t, x)| ≤ |f ′(t)(1 + h(t, x)) + f(t)ht(t, x)| . b(t)f(t) . (1 + t)−1+ε,

|gx(t, x)| ≤ |f(t)hx(t, x)| . (1 + t)−k+ε.

Using these estimates, we can see that

K1 ≤ τ−2

∫ τ

0

∫ R

−R
|gu||η′′(t/τ)|φR(x)dxdt

. τ−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)dt
)
φR(x)dx

)1/q

. τ−2+1/q+ε/qR1/qI
1/p
τ,R ,

K2 ≤ R−2

∫ τ

0

∫ R

−R
|gu||φ′′(x/R)|ητ (t)dxdt

. R−2I
1/p
τ,R

(∫ R

−R

(∫ τ

0

g(t, x)ητ (t)dt
)
dx

)1/q

. τ1/q+ε/qR−2+1/qI
1/p
τ,R ,

K3 ≤ R−1

∫ τ

0

∫ R

−R
|gxu||φ′(x/R)|ητdxdt

. R−1I
1/p
τ,R

(∫ R

−R

(∫ τ

0

(1 + t)−q(k−ε)dt
)
dx

)1/q

. R−1+1/qI
1/p
τ,R ,

provided that ε taken so small that q(k − ε) > 1. Finally, noting that supp η′(t) ⊂
[1/2, 1] and |ga| . f(t)b(t) . (1 + t)−1+ε, we have

K4 ≤ τ−1

∫ τ

0

∫ R

−R
(2|gt| + |ga|)|u||η′(t/τ)|φRdxdt

. τ−1I
1/p
τ,R

(∫ R

−R

(∫ τ

τ/2

(1 + t)−q(1−ε)dt

)
φR(x)dx

)1/q

. τ−2+1/q+ε/qR1/qI
1/p
τ,R .

Therefore, we put

D(τ,R) = τ−2+1/q+ε/qR1/q + τ1/q+ε/qR−2+1/q +R−1+1/q

and have
Iτ,R + JR ≤ CD(τ,R)I1/p

τ,R .

Then the same argument as before shows

Iτ,τ . D(τ, τ)1/q . τ−1+1/q+ε/q.

Now we choose ε so small that −1 + 1/q + ε/q < 0. Then it follows that

lim
τ→∞

Iτ,τ = 0,
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which yields u ≡ 0 and a contradiction.



CHAPTER 7

Estimates of the lifespan

7.1. Effective damping cases

In this chapter, we consider the semilinear damped wave equation

(7.1.1) utt − ∆u+ a(t, x)ut = |u|p, (t, x) ∈ (0,∞) × Rn,

with the initial condition

(7.1.2) (u, ut)(0, x) = ε(u0, u1)(x), x ∈ Rn,

where u = u(t, x) is a real-valued unknown function of (t, x), 1 < p, (u0, u1) ∈
H1(Rn) × L2(Rn) and ε is a positive small parameter. The coefficient of the
damping term is given by

a(t, x) = 〈x〉−α(1 + t)−β

with α ∈ [0, 1), β ∈ (−1, 1) and αβ = 0. Here 〈x〉 denotes
√

1 + |x|2. The condition
αβ = 0 means that a depends on only one of t or x.

Our aim is to obtain an upper bound of the lifespan of solutions to (7.1.1).
In the constant coefficient case α = β = 0, when n = 1, 2, Li and Zhou [53]

obtained the sharp upper bound of the maximal existence time of classical solutions:

(7.1.3) Tε ≤
{

exp(Cε−2/n), if p = 1 + 2/n,
Cε−1/κ, if 1 < p < 1 + 2/n,

where C = C(n, p, u0, u1) > 0 and κ = 1/(p−1)−n/2 for the data u0, u1 ∈ C∞
0 (Rn)

satisfying
∫

(u0 + u1)dx > 0. Nishihara [79] extended this result to n = 3 by using
the explicit formula of the solution to the linear part of (7.1.1) with initial data
(0, u1):

u(t, x) = e−t/2W3(t)u1 + J3(t)u1.

Here W3(t)u1 is the solution of the wave equation �u = 0 with initial data (0, u1)
and J3(t)u1 behaves like a solution of the heat equation −∆v + vt = 0. However,
both the methods of [53] and [79] do not work in higher dimensional cases n ≥
4, because they used the positivity of the fundamental solution of the free wave
equation, which is valid only in the case n ≤ 3. We shall extend both of the results
to n ≥ 4 in subcritical cases 1 < p < 1 + 2/n by using an another method.

For the case α ∈ [0, 1), β = 0, Ikehata, Todorova and Yordanov [36] determined
the critical exponent for (7.1.1) as pc = 1 + 2/(n− α), which also agrees with that
of the corresponding heat equation −∆v+ 〈x〉−αvt = |v|p. Here we emphasize that
in this case there are no results about upper estimates for the lifespan. It will be
given in this chapter.

Next, for the case β ∈ (−1, 1), α = 0, Nishihara [83] and Lin, Nishihara and
Zhai [56] proved pc = 1 + 2/n, which is also same as that of the heat equation
−∆v + (1 + t)−βvt = |v|p. On the other hand, upper estimates of the lifespan

159
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have not been well studied. Nishihara [83] obtained a similar result of [53, 79]: let
n ≥ 1, β ≥ 0 and (u0, u1) satisfy

∫
Rn ui(x)dx ≥ 0 (i = 0, 1),

∫
Rn(u0+u1)(x)dx > 0.

Then there exists a constant C > 0 such that

Tε ≤
{
eCε

−(1+β)/n
, if p = 1 + (1 + β)/n,

Cε−1/κ̂, if 1 + 2β/n ≤ p < 1 + (1 + β)/n,

where κ̂ = (1 + β)/(p − 1) − n. We note that the rate κ̂ is not optimal, because
it is not same as that of the corresponding heat equation. Moreover, there are no
results for 1 + (1 + β)/n < p ≤ 1 + 2/n. We will improve the above result for all
1 < p < 1 + 2/n and give the sharp upper estimate.

To state our results, we define the solution of (7.1.1). Let T ∈ (0,∞]. We say
that u ∈ X(T ) := C([0, T );H1(Rn)) ∩ C1([0, T );L2(Rn)) is a (weak) solution of
(7.1.1) with initial data (7.1.2) on the interval [0, T ) if the identity∫

[0,T )×Rn

u(t, x)(∂2
t ψ(t, x) − ∆ψ(t, x) − ∂t(a(t, x)ψ(t, x)))dxdt

= ε

∫
Rn

{(a(0, x)u0(x) + u1(x))ψ(0, x) − u0(x)∂tψ(0, x)} dx(7.1.4)

+
∫

[0,T )×Rn

|u(t, x)|pψ(t, x)dxdt

holds for any ψ ∈ C∞
0 ([0, T ) × Rn) (see also Section 9.4.3). We also define the

lifespan for the local solution of (7.1.1)-(7.1.2) by

Tε := sup{T ∈ (0,∞]; there exists a unique solution u ∈ X(T ) of (7.1.1)-(7.1.2) }.

We first describe the local existence result.

Proposition 7.1. Let α ≥ 0, β ∈ R, 1 < p ≤ n/(n − 2) (n ≥ 3), 1 < p <
∞ (n = 1, 2), ε > 0 and (u0, u1) ∈ H1(Rn) × L2(Rn). Then Tε > 0, that is, there
exists a unique solution u ∈ X(Tε) to (7.1.1)-(7.1.2). Moreover, if Tε < +∞, then
it follows that

lim
t→Tε−0

‖(u, ut)(t, ·)‖H1×L2 = +∞.

For the proof, see Proposition 9.21.
Next, we state our main result, which gives an upper bound of Tε.

Theorem 7.2. Let α ∈ [0, 1), β ∈ (−1, 1), αβ = 0 and let 1 < p < 1+2/(n−α).
We assume that the initial data (u0, u1) ∈ H1(Rn) × L2(Rn) satisfy

(7.1.5) lim inf
R→∞

∫
|x|<R

(〈x〉−αBu0(x) + u1(x))dx > 0,

where

B =
(∫ ∞

0

e−
R t
0 (1+s)−βdsdt

)−1

.

Then there exists C > 0 depending only on n, p, α, β and (u0, u1) such that Tε is
estimated as

Tε ≤ C


ε−1/κ if 1 + α/(n− α) < p < 1 + 2/(n− α),
ε−(p−1)(log(ε−1))p−1 if α > 0, p = 1 + α/(n− α),
ε−(p−1) if α > 0, 1 < p < 1 + α/(n− α)
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for any ε ∈ (0, 1], where

κ =
2(1 + β)
2 − α

(
1

p− 1
− n− α

2

)
.

Remark 7.1. Estimates of Tε from below were obtained in Proposition 4.5 for
α ≥ 0, β ≥ 0 and by [56] α = 0, β ∈ (−1, 1). The results can be expressed by the
following table:

α = 0 β = 0

pc 1 +
2
n

1 +
2

n− α

Tε . ε−1/κ



ε−1/κ,

(
1 +

α

n− α
< p < 1 +

2
n− α

)
ε−(p−1)(log(ε−1))p−1,

(
p = 1 +

α

n− α

)
ε−(p−1),

(
1 < p < 1 +

α

n− α

)
Tε & ε−1/κ+δ ε−1/κ+δ

κ (1 + β)
(

1
p− 1

− n

2

)
2

2 − α

(
1

p− 1
− n− α

2

)

Here δ denotes any small positive number.

Remark 7.2. The condition (7.1.5) holds if 〈x〉−αBu0(x) + u1(x) ∈ L1(Rn)
and ∫

Rn

(〈x〉−αBu0(x) + u1(x))dx > 0.

Remark 7.3. In view of Proposition 4.5, it is expected that the rate κ in The-
orems 7.2 is sharp except for the case α > 0, 1 < p ≤ 1 + α/(n− α).

Remark 7.4. In Theorem 7.2, the explicit form of a = 〈x〉−α(1 + t)−β is not
necessary. Indeed, we can treat more general coefficients, for example, a(t, x) =
a(x) satisfying a ∈ C(Rn) and 0 ≤ a(x) . 〈x〉−α, or a(t, x) = a(t) satisfying
b ∈ C1([0,∞)) and b(t) ∼ (1 + t)−β.

Remark 7.5. The same conclusion of Theorem 2.3 is valid for the correspond-
ing heat equation −∆v + a(t, x)vt = |v|p in the same manner as our proof.

Our proof is based on a test function method. However, the method of [122]
was based on a contradiction argument and so upper estimates of the lifespan cannot
be obtained. To avoid the contradiction argument, we use an idea by Kuiper [48].
He obtained an upper bound of the lifespan for some parabolic equations (see also
[102]). We note that to treat the time-dependent damping case, we also use a
transformation of equation by Lin, Nishihara and Zhai [56] (see also [7]).
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7.2. Proof of the estimates of the lifespan

In the case β 6= 0, (7.1.1) is not divergence form and so we cannot apply the
test function method. Therefore, we need to transform the equation (7.1.1) into
divergence form. Let g(t) be the solution of the ordinary differential equation{

−g′(t) + (1 + t)−βg(t) = 1,
g(0) = B−1.

The solution g(t) is explicitly given by

g(t) = e
R t
0 (1+s)−βds

(
B−1 −

∫ t

0

e−
R τ
0 (1+s)−βdsdτ

)
.

By the de l’Hôpital theorem, we have

lim
t→∞

(1 + t)−βg(t) = 1

and so g(t) ∼ (1+ t)β . We note that B = 1 and g(t) ≡ 1 if β = 0. By the definition
of g(t), we also have |g′(t)| . |(1 + t)−βg(t) − 1| . 1. Multiplying the equation
(7.1.1) by g(t), we obtain the divergence form

(7.2.1) (gu)tt − ∆(gu) − ((g′ − 1)〈x〉−αu)t = g|u|p,

here we note that αβ = 0. Therefore, we can apply the test function method to
(7.2.1).

As before, we define the following test functions:

φ(x) :=


1 (|x| ≤ 1/2)

exp(−1/(1 − |x|2))
exp(−1/(|x|2 − 1/4)) + exp(−1/(1 − |x|2))

(1/2 < |x| < 1),

0 (|x| ≥ 1),

η(t) :=


1 (0 ≤ t ≤ 1/2),

exp(−1/(1 − t2))
exp(−1/(t2 − 1/4)) + exp(−1/(1 − t2))

(1/2 < t < 1),

0 (t ≥ 1).

It is obvious that φ ∈ C∞
0 (Rn), η ∈ C∞

0 ([0,∞)). Then we have

(7.2.2) |∆φ(x)| ≤ Cφ(x)1/p, |η′(t)| ≤ Cη(t)1/p, |η′′(t)| ≤ Cη(t)1/p.

Indeed, we put q, r so that 1/p+ 1/q = 1, 1/p+ 2/r = 1 and let µ = η1/q, ν = η1/r.
Then we obtain

|η′(t)| = |(µq)′| = |qµq−1µ′| . µq−1 = η1/p,

|η′′(t)| = |(νr)′′| . |ν′′|νr−1 + |ν′|2νr−2 . νr−2 = η1/p.

The assertion for φ can be proved in the same way.
Let τ0, R0 be constants depending only on n, α, β, u0, u1 and determined later.

We note that if Tε ≤ τ0, then it is obvious that Tε ≤ τ0ε
−1/κ for any κ > 0 and

ε ∈ (0, 1]. Therefore, we may assume that Tε > τ0. Let u be a solution on [0, Tε)
and τ ∈ (τ0, Tε), R ≥ R0 parameters. We define

ψτ,R(t, x) := ητ (t)φR(x) := η(t/τ)φ(x/R)
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and

Iτ,R :=
∫

[0,τ)×BR
g(t)|u(t, x)|pψτ,R(t, x)dxdt,

JR := εB−1

∫
BR

(〈x〉−αBu0(x) + u1(x))φR(x)dx,

where BR = {|x| < R}. Since ψτ,R ∈ C∞
0 ([0, Tε) × Rn) and u is a solution on

[0, Tε), we have

Iτ,R + JR =
∫

[0,τ)×BR
g(t)u∂2

t ψτ,Rdxdt−
∫

[0,τ)×BR
g(t)u∆ψτ,Rdxdt

+
∫

[0,τ)×BR
(g′(t) − 1)〈x〉−αu∂tψτ,Rdxdt

=: K1 +K2 +K3.

Here we have used the property ∂tψ(0, x) = 0 and substituted the test function
g(t)ψ(t, x) into the definition of solution (7.1.4). We note that for the corresponding
heat equation, we have the same decomposition without the term K1 and so we
can obtain the same conclusion (see Remark 7.5). We first estimate K1. By the
Hölder inequality and (7.2.2), we have

K1 ≤ τ−2

∫
[0,τ)×BR

g(t)|u||η′′(t/τ)|φR(x)dxdt(7.2.3)

≤ Cτ−2

∫
[τ/2,τ)×BR

g(t)|u|ητ (t)1/pφR(x)dxdt

≤ τ−2I
1/p
τ,R

(∫ τ

τ/2

g(t)dt ·
∫
BR

φR(x)dx

)1/q

≤ Cτ−2+1/q(1 + τ)β/qRn/qI1/p
τ,R .

Using (7.2.2) and a similar calculation, we obtain

K2 ≤ R−2

∫
[0,τ)×BR

g(t)|u||∆φ(x/R)|η(t/τ)dxdt(7.2.4)

≤ CR−2

∫
[0,τ)×BR

g(t)|u||φ(x/R)|1/pη(t/τ)dxdt

≤ CR−2I
1/p
τ,R

(∫ τ

0

g(t)η(t/τ)dt ·
∫
BR

1dx
)1/q

≤ C(1 + τ)(1+β)/qR−2+n/qI
1/p
τ,R .

For K3, using (7.2.2) and |g′(t) − 1| . C, we have

K3 ≤ τ−1

∫
[0,τ)×BR

〈x〉−α|u||η′(t/τ)|φR(x)dxdt(7.2.5)

≤ τ−1I
1/p
τ,R

(∫ τ

τ/2

g(t)−q/pdt ·
∫
BR

〈x〉−αqφR(x)dx

)1/q

≤ Cτ−1+1/q(1 + τ)−β/pFp,α(R)I1/p
τ,R ,



164 7. ESTIMATES OF THE LIFESPAN

where

Fp,α(R) =


R−α+n/q (αq < n),
(log(1 +R))1/q (αq = n),
1 (αq > n).

Thus, putting

D(τ,R) := τ−(1+β)/p(τ−1+βRn/q + τ1+βR−2+n/q + Fp,α(R))

and combining this with the estimates (7.2.3)-(7.2.5), we have

(7.2.6) JR ≤ CD(τ,R)I1/p
τ,R − Iτ,R.

Now we use a fact that the inequality

acb − c ≤ (1 − b)bb/(1−b)a1/(1−b)

holds for all a > 0, 0 < b < 1, c ≥ 0. We can immediately prove it by considering
the maximal value of the function f(c) = acb − c. From this and (7.2.6), we obtain

(7.2.7) JR ≤ CD(τ,R)q.

On the other hand, by the assumption on the data, there exist C > 0 and R0 such
that JR ≥ Cε holds for all R > R0. Combining this with (7.2.7), we have

(7.2.8) ε ≤ CD(τ,R)q

for all τ ∈ (τ0, Tε) and R > R0. Now we define

τ0 := max{1, R(2−α)/(1+β)
0 },

and we substitute

(7.2.9) R =

{
τ (1+β)/(2−α) (αq < n),
τ (αq ≥ n)

into (7.2.8). Here we note that R > R0 if R is given by (7.2.9). As was mentioned
at the beginning of this section, we may assume that τ0 < Tε. Finally, we have

ε ≤ C


τ−κ (αq < n),
τ−1/(p−1) log(1 + τ) (αq = n),
τ−1/(p−1) (αq > n),

with

κ =
2(1 + β)
2 − α

(
1

p− 1
− n− α

2

)
.

We can rewrite this relation as

τ ≤ C


ε−1/κ if 1 + α/(n− α) < p < 1 + 2/(n− α),
ε−(p−1)(log(ε−1))p−1 if α > 0, p = 1 + α/(n− α),
ε−(p−1) if α > 0, 1 < p < 1 + α/(n− α).

Here we note that κ > 0 if and only if 1 < p < 1 + 2/(n − α) and that αq = n is
equivalent to p = 1 + α/(n− α). Since τ is arbitrary in (τ0, Tε), we can obtain the
conclusion of the theorem.
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7.3. Scale-invariant damping case

In this section, we consider

(7.3.1)
{
utt − ∆u+ µ

1+tut = |u|p (t, x) ∈ (0,∞) × Rn,

(u, ut)(0, x) = ε(u0, u1)(x) x ∈ Rn.

In Chapter 5, we proved that if (u0, u1) ∈ H1(Rn) × L2(Rn) and

(7.3.2) “µ > 1, 1 < p ≤ 1 + 2/n and lim inf
R→∞

∫
|x|<R

((µ− 1)u0 + u1)(x)dx > 0”

or

(7.3.3) “0 < µ ≤ 1, 1 < p ≤ 1 + 2/(n+ µ− 1) and lim inf
R→∞

∫
|x|<R

u1(x)dx > 0”,

then the solution blows up in finite time. The aim of this section is to obtain an
upper bound of the lifespan. In a similar way to the previous section, we have the
following estimates:

Proposition 7.3. We assume (7.3.2) or (7.3.3) with 1 < p < 1+2/n, 1 < p <
1 + 2/(n+ µ− 1), respectively. Then we have

(7.3.4) Tε . ε−1/κ,

where

(7.3.5) κ =

2
(

1
p−1 − n

2

)
(µ > 1, 1 < p < 1 + 2/n),

2
(

1
p−1 − n+µ−1

2

)
(0 < µ ≤ 1, 1 < p < 1 + 2/(n+ µ− 1)).

Proof. We shall show only a brief outline. First, we treat the case of (7.3.2).
By the derivation of (5.3.3) and the argument in the proof of Theorem 7.2, we can
easily deduce that

JR ≤ C(τ2/qRn/q−2 + τ2/q−2Rn/q)I1/p
τ,R − Iτ,R

≤ C(τ2/qRn/q−2 + τ2/q−2Rn/q)q

= Cτ2(Rn−2q + τ−2qRn),

where

Iτ,R =
∫ τ

0

∫
BR

g(t)|u|pψτ,R(t, x)dxdt,

with g(t) = 1
µ−1 (1 + t), ψ is the same test function as in the previous section and

JR = ε

∫
BR

((µ− 1)u0 + u1)φR(x)dx.

In the same way as in the previous section, using the assumption on the data and
taking R = τ , we can see that

ε ≤ Cτ−κ, κ = 2(1/(p− 1) − n/2)

for τ ∈ (τ0, Tε). This implies Tε . ε−1/κ. The case of (7.3.3) can be proved by the
same way by noting that

Iτ,τ + Jτ ≤ Cτ−2+(n+µ+1)/qI1/p
τ,τ .

�
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7.4. Time and space dependent damping case

We consider the 1-dimensional semilinear wave equation with damping depend-
ing on time and space variables

(7.4.1)
{
utt − uxx + a(t, x)ut = |u|p (t, x) ∈ (0,∞) × R,
(u, ut)(0, x) = ε(u0, u1)(x) x ∈ R.

We assume that a satisfies (6.1.2), namely

|∂αt ∂βxa(t, x)| ≤
δ

(1 + t)k+α
(α, β = 0, 1)

with some k > 1 and small δ > 0. As we mentioned in the previous chapter, we
can apply the test function method by using an appropriately multiplier g(t, x) =
1 + h(t, x) defined by Lemma 6.1 and obtain a blow-up result. In this section we
give an estimate of the lifespan. For the sake of simplicity, we treat only the case
that a satisfies (6.1.2).

Proposition 7.4. Let 1 < p < ∞ and let (u0, u1) ∈ H1(R) × L2(R) satisfy
(6.1.9) with g defined by (6.1.5) and h in Lemma 6.1. Then Tε is estimated as

(7.4.2) Tε ≤ Cε−1/κ

with some constant C > 0 and κ = 1
p−1 (1 + 1/p).

Proof. We use the same notation as in the previous section. By (6.3.4), we
have

Iτ,R + JR ≤ CD(τ,R)I1/p
τ,R .

with
D(τ,R) := τ−2+1/qR1/q + τ1/qR−2+1/q +R−1+1/q

and

JR = ε

∫ R

−R
{(−gt(0, x) + g(0, x)a(0, x))u0(x) + g(0, x)u1(x)}φR(x)dx.

By the assumption on the data, there exist some constants R0, c > 0 such that
cε ≤ JR holds for R ≥ R0. Thus, we have

ε ≤ CD(τ,R)I1/p
τ,R − Iτ,R(7.4.3)

≤ CD(τ,R)q

for all τ ∈ (τ0, Tε), R ∈ (R0,∞). We put R = τα with α > 0 and τ0 :=
max{1, R1/α

0 }. Then we obtain

(7.4.4) D(τ, τα) ≤ τmax{−1−1/p+(1−1/p)α,1−1/p+(−1−1/p)α,−α/p}.

Now we take α = 1 + 1/p, which minimizes the power of τ in (7.4.4). From (7.4.3)
we see that

ε . D(τ, τ1+1/p)q . τ−
1
p−1 (1+1/p) = τ−κ.

Therefore, we have
τ ≤ Cε−1/κ.

Since τ is arbitrary in (τ0, Tε), it follows that

Tε ≤ Cε−1/κ,

which completes the proof. �



CHAPTER 8

A remark on Lp-Lq estimates for solutions to the
linear damped wave equation

8.1. Introduction

This chapter is devoted to Lp-Lq estimates for solutions to the linear damped
wave equation

(8.1.1)
{
utt − ∆u+ ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn.

In Section 2.1.2, we introduce a solution representation formula for (8.1.1) and in
Section 2.2.2, we prove the following Lp-Lq estimate in the three dimensional case:

(8.1.2)
∥∥∥u(t) − v(t) − e−t/2W̃3(t;u0, u1)

∥∥∥
Lp

≤ Ct−
3
2 ( 1

q−
1
p )−1(‖u0‖Lq + ‖u1‖Lq ),

where t > 0, 1 ≤ q ≤ p ≤ ∞, v(t) is the solution of the heat equation

(8.1.3) vt − ∆v = 0, v(0, x) = u0(x) + u1(x),

W̃3(t;u0, u1) is defined by

W̃3(t;u0, u1) =
(

1
2

+
t

8

)
W (t)u0 + ∂t(W (t)u0) +W (t)u1

and W (t)g denotes the solution of the free wave equation

wtt − ∆w = 0, (w,wt)(0, x) = (0, g)(x).

In this chapter, we extend the above estimate to any space dimension. In lower
dimensional cases n = 1, 2, 3, the estimate (8.1.2) has been already obtained by
Marcati and Nishihara [58], Hosono and Ogawa [23], Nishihara [78], respectively.
For higher dimensional cases n ≥ 4, Narazaki [73] proved the following estimates:

‖F−1{χ(ξ)(û(t) − v̂(t))}‖Lp ≤ C(1 + t)−
n
2 ( 1

q−
1
p )−1+ε(‖u0‖Lq + ‖u1‖Lq ),(8.1.4)

where 1 ≤ q ≤ p ≤ ∞, ε is an arbitrary small positive number, C = C(p, q, ε)
is a positive constant depending on p, q, ε, χ(ξ) is a compactly supported smooth
radial function satisfying χ(ξ) = 1 near ξ = 0 and v(t, x) is the solution of the
corresponding heat equation (8.1.3). Moreover, in the case where 1 < q < p <
∞, (p, q) = (2, 2) or (p, q) = (∞, 1), we may take ε = 0;

‖F−1{(1 − χ(ξ))(û(t) − e−t/2(M0(t, ·)û0 + M1(t, ·)û1))}‖Lp ≤ Ce−δt‖g‖Lq

167
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for some δ > 0, where 1 < q ≤ p < ∞, χ(ξ) is as above, C = C(p, q) > 0 is a
constant depending on p, q and

M1(t, ξ) =
1√

|ξ|2 − 1/4

sin(t|ξ|)
∑

0≤k<(n−1)/4

(−1)k

(2k)!
t2kΘ(ξ)2k

− cos(t|ξ|)
∑

0≤k<(n−3)/4

(−1)k

(2k + 1)!
t2k+1Θ(ξ)2k+1

 ,

M0(t, ξ) = cos(t|ξ|)
∑

0≤k<(n+1)/4

(−1)k

(2k)!
t2kΘ(ξ)2k

+ sin(t|ξ|)
∑

0≤k<(n−1)/4

(−1)k

(2k + 1)!
t2k+1Θ(ξ)2k+1 +

1
2
M1(t, ξ)

with Θ(ξ) = |ξ| −
√
|ξ|2 − 1/4.

The aim of this chapter is to remove ε in the estimate (8.1.4) and give a simpler
proof by using the solution representation formula.

The estimate (8.1.2) shows that the solution operator Sn(t) of (8.1.1) is asymp-
totically expressed by

Sn(t) ∼ et∆ + et/2Wn(t)

when n = 3 (see [58, 23] for the cases n = 1, 2). We first give the corresponding
decomposition for higher dimensional cases.

Lemma 8.1. (i)When n ≥ 3 and and odd number, Sn(t) is expressed as follows:

Sn(t)g(x) = Jn(t)g(x) + e−t/2Wn(t)g(x)(8.1.5)

=
e−t/2

(n− 2)!!|Sn−1|
1

4
n−1

2

∫
|x−y|≤t

kn−1
2

(
1
2

√
t2 − |x− y|2

)
g(y)dy

+
e−t/2

(n− 2)!!|Sn−1|

(n−3)/2∑
l=0

1
8ll!

(
1
t

∂

∂t

)(n−3)/2−l
(

1
t

∫
|x−y|=t

g(y)dSy

)
,

where

kl(s) =
1
2l

∞∑
m=0

1
m!(m+ l)!

(s
2

)2m

= s−lIl(s).

Moreover, kl(s) has the asymptotic expansion

(8.1.6) kl(s) = s−l
1√
2πs

es
(

1 − (l − 1/2)(l + 1/2)
2s

+O(s−2)
)

as s→ +∞.
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(ii)When n is an even number, Sn(t) is expressed as follows:

Sn(t)g = Jn(t)g(x) + e−t/2Wn(t)g(x)

(8.1.7)

=
e−t/2

(n− 1)!!|Sn|
1

4
n−2

2

∫
|x−y|≤t

kn
2

(
1
2

√
t2 − |x− y|2

)
g(y)dy

+
e−t/2

(n− 1)!!|Sn|

(n−2)/2∑
l=0

1
8ll!

(
1
t

∂

∂t

)(n−2)/2−l ∫
|x−y|≤t

1
1
2

√
t2 − |x− y|2

g(y)dy,

where

kl(s) =
∞∑
m=0

(2(m+ l) − 1)!!
(2(m+ l))!(2m+ 1)!!

s2m+1.

Moreover, kl(s) has the asymptotic expansion

(8.1.8) kl(s) = s−l
es

2

(
1 +

al
s

+O(s−2)
)

with some constant al.

Using the above lemma, we can obtain the following Lp-Lq estimate without
any loss ε > 0. To state the result, we put

W̃n(t;u0, u1) =
1
2
Wn(t)u0 + Wn(t)u1 + ∂t(Wn(t)u0) + Ŵn(t)u0,

where

Ŵn(t)u0 =
e−t/2

(n− 2)!!|Sn−1|
1

8
n−1

2 (n−1
2 )!

∫
|x−y|=t

u0(y)dSy

when n ≥ 3 and is an odd number, and

Ŵn(t)u0 =
e−t/2

(n− 1)!!|Sn|
1

8
n
2 (n2 )!

∫
|x−y|≤t

1
1
2

√
t2 − |x− y|2

u0(y)dy

when n ≥ 2 and is an even number.

Theorem 8.2. Let u, v be the solutions to (8.1.1), (8.1.3), respectively. For
1 ≤ q ≤ p ≤ ∞ and t > 0, we have

‖u(t) − v(t) − e−t/2W̃n(t;u0, u1)‖Lp ≤ Ct−
n
2 ( 1

q−
1
p )−1(‖u0‖Lq + ‖u1‖Lq ).

8.2. Proof of Lemma 8.1

First, we prove in the case that n ≥ 3 is an odd number. By Lemma 9.3, it is
easy to see that

kl+1(s) =
k′l(s)
s

and

kl(0) =
1

2ll!
.
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By using the solution formula in Proposition 2.2, we have

Sn(t)g(x) =
e−t/2

(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−1)/2 ∫
|x−y|≤t

I0

(
1
2

√
t2 − |x− y|2

)
g(y)dy

=
e−t/2

(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−3)/2
(

1
t

∫
|x−y|=t

g(y)dSy

)

+
e−t/2

(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−3)/2 ∫
|x−y|≤t

I1

(
1
2

√
t2 − |x− y|2

)
2
√
t2 − |x− y|2

g(y)dy.

Note that the second term of the right-hand side can be written as

e−t/2

4(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−3)/2 ∫
|x−y|≤t

k1

(
1
2

√
t2 − |x− y|2

)
g(y)dy.

Since

1
t

(
∂

∂t
k1

(
1
2

√
t2 − |x− y|2

))
=
k′1

(
1
2

√
t2 − |x− y|2

)
2
√
t2 − |x− y|2

=
1
4
k2

(
1
2

√
t2 − |x− y|2

)
,

one can see that

e−t/2

4(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−3)/2 ∫
|x−y|≤t

k1

(
1
2

√
t2 − |x− y|2

)
g(y)dy

=
e−t/2

4(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−5)/2
(
k1(0)
t

∫
|x−y|=t

g(y)dSy

)

+
e−t/2

42(n− 2)!!|Sn−1|

(
1
t

∂

∂t

)(n−5)/2 ∫
|x−y|≤t

k2

(
1
2

√
t2 − |x− y|2

)
g(y)dy.

Continuing this argument, we can obtain the conclusion. The asymptotic expan-
sion (8.1.6) is a direct consequence from that of the modified Bessel functions (see
Lemma 9.5).

Next, we turn to the even dimensional cases. First note that a simple calculation
shows

k1(s) =
cosh(s) − 1

s
,

kl(s) =
k′l−1(s) − k′l−1(0)

s

and

kl(0) = 0, k′l(0) =
(2l − 1)!!

(2l)!
.



8.2. PROOF OF LEMMA 8.1 171

By using the solution formula in Proposition 2.2, we have

u(t, x) =
2e−t/2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2 ∫
|x−y|≤t

cosh
(

1
2

√
t2 − |x− y|2

)
√
t2 − |x− y|2

g(y)dy

=
e−t/2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2 ∫
|x−y|≤t

1
1
2

√
t2 − |x− y|2

g(y)dy

+
e−t/2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2 ∫
|x−y|≤t

cosh
(

1
2

√
t2 − |x− y|2

)
− 1

1
2

√
t2 − |x− y|2

g(y)dy.

≡ V1 +K1.

Here we note that K1 can be written as

K1 =
e−t/2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−2)/2 ∫
|x−y|≤t

k1

(
1
2

√
t2 − |x− y|2

)
g(y)dy.

Using k1(0) = 0, we deduce that

K1 =
e−t/2

(n− 1)!!|Sn|

(
1
t

∂

∂t

)(n−4)/2 ∫
|x−y|≤t

k′1

(
1
2

√
t2 − |x− y|2

)
2
√
t2 − |x− y|2

g(y)dy

=
e−t/2

(n− 1)!!|Sn|
k′1(0)

4

(
1
t

∂

∂t

)(n−4)/2 ∫
|x−y|≤t

1
1
2

√
t2 − |x− y|2

g(y)dy

+
e−t/2

(n− 1)!!|Sn|
1
4

(
1
t

∂

∂t

)(n−4)/2 ∫
|x−y|≤t

k2

(
1
2

√
t2 − |x− y|2

)
g(y)dy

≡ V2 +K2.

In a similar way, we have

K2 =
e−t/2

(n− 1)!!|Sn|
k′2(0)
42

(
1
t

∂

∂t

)(n−6)/2 ∫
|x−y|≤t

1
1
2

√
t2 − |x− y|2

g(y)dy

+
e−t/2

(n− 1)!!|Sn|
1
42

(
1
t

∂

∂t

)(n−6)/2 ∫
|x−y|≤t

k3

(
1
2

√
t2 − |x− y|2

)
g(y)dy

≡ V3 +K3

Continuing this argument, we obtain

Vl =
e−t/2

(n− 1)!!|Sn|
k′l−1(0)
4l−1

(
1
t

∂

∂t

)n/2−l ∫
|x−y|≤t

1
1
2

√
t2 − |x− y|2

g(y)dy.

Noting
k′l(0)
4l

=
(2l − 1)!!
4l(2l)!

=
1

8ll!
,

we can reach the conclusion. The asymptotic expansion (8.1.8) immediately follows
from that

k1(s) =
es

2s
+
e−s

2s
− 1
s

and the definition of kl(s).
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8.3. Proof of Theorem 8.2

We note that the solution of (8.1.1) is expressed as

(8.3.1) u(t, x) = Sn(t)(u0 + u1) + ∂t(Sn(t)u0).

By Lemma 8.1, we can decompose

Sn(t)g = Jn(t)g + e−t/2Wn(t)g.

Therefore, it follows that

(8.3.2) ∂t(Sn(t)g) = ∂t(Jn(t)g) −
1
2
e−t/2Wn(t)g + e−t/2∂t(Wn(t)g).

When n ≥ 3 and is an odd number, noting that kl(0) = (2ll!)−1, we have

∂t(Jn(t)g) =
e−t/2

(n− 2)!!|Sn−1|
1

8
n−1

2 (n−1
2 )!

∫
|x−y|=t

g(y)dSy

+
1

(n− 2)!!|Sn−1|
1

4
n−1

2

×
∫
|x−y|≤t

∂t

(
e−t/2kn−1

2

(
1
2

√
t2 − |x− y|2

))
g(y)dy

≡ e−t/2Ŵn(t)g + J̃n(t)g.

When n ≥ 2 and an even number, noting kl(0) = 0, we obtain

∂t(Jn(t)g) =
1

(n− 1)!!|Sn|
1

4
n−2

2

∫
|x−y|≤t

∂t

(
e−t/2kn

2

(
1
2

√
t2 − |x− y|2

))
g(y)dy.

By using kl+1(s) = (k′l(s) − k′l(0))/s, we calculate

∂t

(
e−t/2kn

2

(
1
2

√
t2 − |x− y|2

))
= −1

2
e−t/2kn

2

(
1
2

√
t2 − |x− y|2

)
+ e−t/2k′n

2

(
1
2

√
t2 − |x− y|2

)
t

2
√
t2 − |x− y|2

= −1
2
e−t/2kn

2

(
1
2

√
t2 − |x− y|2

)
+

1
4
e−t/2tkn

2 +1

(
1
2

√
t2 − |x− y|2

)
+

1
4
e−t/2k′n

2
(0)

t
1
2

√
t2 − |x− y|2

.
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Thus, noting k′l(0) = (2ll!)−1, one can see that

∂t(Jn(t)g) =
e−t/2t

(n− 1)!!|Sn|
1

8
n
2 (n2 )!

∫
|x−y|≤t

1
2
√
t2 − |x− y|2

g(y)dy

+
1

(n− 1)!!|Sn|
e−t/2

2

∫
|x−y|≤t

(
t

2
kn

2 +1

(
1
2

√
t2 − |x− y|2

)
−kn

2

(
1
2

√
t2 − |x− y|2

))
g(y)dy

≡ e−t/2Ŵn(t)g + J̃n(t)g.

Substituting this into (8.3.2), we have

∂t(Sn(t)g) = J̃n(t)g + e−t/2Ŵn(t)g −
1
2
Wn(t)g + e−t/2∂t(Wn(t)g).

Combining this with (8.3.1), we can deduce that

u(t, x) = Jn(t)(u0 + u1) + J̃n(t)u0

+ e−t/2
{

1
2
Wn(t)u0 + Wn(t)u1 + ∂t(Wn(t)u0) + Ŵn(t)u0

}
.

Consequently, we have

u(t, x) − v(t, x) − e−t/2W̃n(t;u0, u1) = Jn(t)(u0 + u1) − v(t, x) + J̃n(t)u0.

Therefore, it suffices to prove that

‖Jn(t)(u0 + u1) − v(t)‖Lp ≤ Ct−
n
2 ( 1

q−
1
p )−1(‖u0‖Lq + ‖u1‖Lq ),(8.3.3)

‖J̃n(t)u0‖Lp ≤ Ct−
n
2 ( 1

q−
1
p )−1‖u0‖Lq .(8.3.4)

More generally, we shall prove the following estimates:

Lemma 8.3. For 1 ≤ q ≤ p ≤ ∞, there exists a constant C > 0 such that

‖Jn(t)g‖Lp ≤ C(1 + t)−
n
2 ( 1

q−
1
p )‖g‖Lq ,(8.3.5)

‖J̃n(t)g‖Lp ≤ C(1 + t)−
n
2 ( 1

q−
1
p )−1‖g‖Lq(8.3.6)

for t ≥ 0 and

‖Jn(t)g − et∆g‖Lp ≤ C(1 + t)−
n
2 ( 1

q−
1
p )−1‖g‖Lq(8.3.7)

for t > 0.

Proof. Let us prove (8.3.5) and (8.3.7) in the case that n ≥ 3 and is an odd
number. We assume that t ≥ 1. Let cn = 1

4(n−1)/2(n−2)!!|Sn−1| . We put g = u0 + u1

and divide

Jn(t)g − v(t, x) = X1 +X2 +X3,
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where

X1 =
∫
ρ≤t(1+ε)/2

(
cne

−t/2k(n−1)/2

(
1
2

√
t2 − ρ2

)
− e−ρ

2/(4t)

(4πt)n/2

)
g(y)dy,

X2 =
∫
t(1+ε)/2≤ρ≤t

(
cne

−t/2k(n−1)/2

(
1
2

√
t2 − ρ2

)
− e−ρ

2/(4t)

(4πt)n/2

)
g(y)dy,

X3 =
∫
t≤ρ

e−ρ
2/(4t)

(4πt)n/2
g(y)dy,

with ρ = |x− y|，ε ∈ (0, 1/2). By Lemma 9.9, we can estimate

‖X3‖Lp ≤ C

(∫
t≤|y|

e−r|y|
2/(4t)

(4πt)rn/2
dy

)1/r

‖g‖Lq

≤ Ce−t/8‖g‖Lq .

For the estimate of X2, We further divide the integral region into {y ∈ Rn |√
t2 − 1 ≤ |y| ≤ t} and {y ∈ Rn | t(1+ε)/2 ≤ |y| ≤

√
t2 − 1}. When

√
t2 − 1 ≤ |y| ≤

t, noting that kl(s) is bounded for s ≤ 1/2, we have

e−t/2k(n−1)/2

(
1
2

√
t2 − |y|2

)
≤ Ce−t/2.

When t(1+ε)/2 ≤ |y| ≤
√
t2 − 1, using the asymptotic expansion (8.1.6) and

√
t2 − |y|2 ≥

1, we obtain

e−t/2k(n−1)/2

(
1
2

√
t2 − |y|2

)
≤ Ce−t/2(t2 − |y|2)−n/2e 1

2

√
t2−|y|2

(
1 + C

1√
t2 − |y|2

)
≤ Ce−

1
2 (t−

√
t2−t1+ε)

≤ Ce−t
1+ε/(2(t+

√
t2−t1+ε))

≤ Cte−t
ε/4.

Moreover, it is easy to see that

e−|y|2/(4t)

(4πt)n/2
≤ Ce−t

ε/4

for t(1+ε)/2 ≤ |y| ≤ t. Combining the above estimate, we can see that

‖X2‖Lp ≤ C

(∫
t(1+ε)/2≤|y|≤t

crne
−rt/2k(n−1)/2

(
1
2

√
t2 − |y|2

)r
dy

)1/r

‖g‖Lq

+

(∫
t(1+ε)/2≤|y|≤t

e−r|y|
2/(4t)

(4πt)rn/2
dy

)1/r

‖g‖Lq

≤ Ce−ct
ε

‖g‖Lq
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with some constant c > 0. Finally, we prove the estimate of X1. By the asymptotic
expansion (8.1.6), one has

cne
−t/2k(n−1)/2

(
1
2

√
t2 − ρ2

)
=

1
(4π)n/2

1
(
√
t2 − ρ2)n/2

e−t/2+
1
2

√
t2−ρ2

(
1 − n(n− 2)

4
√
t2 − ρ2

+O

(
1

t2 − ρ2

))
.

Therefore, it follows that

X1 =
1

(4πt)n/2

∫
ρ≤t(1+ε)/2

e−ρ
2/(4t)D(t, ρ)g(y)dy

and hence,

‖X1‖Lp ≤ C

tn/2

(∫
|y|≤t(1+ε)/2

e−rρ
2/(4t)D(t, |y|)rdy

)1/r

‖g‖Lq ,

where

D(t, ρ) = eρ
2/(4t)−t/2+

√
t2−ρ2/2

(
t√

t2 − ρ2

)n/2

×

(
(1 − n(n− 2)

4
√
t2 − ρ2

+O

(
1

t2 − ρ2

))
− 1

Here we note that

(8.3.8)
t√

t2 − |y|2
=

1√
1 − (|y|/t)2

= 1 +
1
t
O

(
|y|2

t

)
,

|y|2

4t
− t

2
+

1
2

√
t2 − |y|2 =

|y|2

4t
− |y|2

2(t+
√
t2 − |y|2)

= −
|y|2(t−

√
t2 − |y|2)

4t(t+
√
t2 − |y|2)

= − |y|4

4t(t+
√
t2 − |y|2)2

and

(8.3.9) e|y|
2/(4t)−t/2+

√
t2−|y|2/2 = 1 +

1
t
O(

|y|4

t2
).

Consequently, we obtain

D(t, |y|) =
(

1 +
1
t
O

(
|y|4

t2

))(
1 +

1
t
O

(
|y|2

t

))n/2
×
(

1 − n(n− 2)
4t

(
1 +

1
t
O

(
|y|2

t

))
+

1
t2

(
1 +O

(
|y|2

t2

)))
− 1

=
1
t
O

(
1 +

|y|2

t
+ · · · +

(
|y|2

t

)N)
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for some large integer N . Finally, we have

‖X1‖Lp ≤ C

tn/2+1

(∫
|y|≤t(1+ε)/2

e−r|y|
2/(4t)

(
1 +

|y|2

t
+ · · · +

(
|y|2

t

)N)r
dy

)1/r

× ‖g‖Lq

≤ C

tn/2+1
tn/(2r)

(∫
Rn

e−r|z|
2
(1 + |z|2 + · · · + |z|2N )rdy

)1/r

‖g‖Lq

≤ Ct−
n
2 ( 1

q−
1
p )−1‖g‖Lq ,

which proves the estimate (8.3.7) for t ≥ 1. Moreover, we recall the well-known
fact

‖et∆g‖Lp ≤ Ct−
n
2 ( 1

q−
1
p )‖g‖Lq (t > 0)

(see [14]). Using this we see that

‖Jn(t)g‖Lp ≤ ‖Jn(t)g − et∆g‖Lp + ‖et∆g‖Lp

≤ Ct−
n
2 ( 1

q−
1
p )‖g‖Lq .

This shows (8.3.5) for t ≥ 1. Next, we treat the case 0 ≤ t < 1. We note
that kn−1

2
(s) is a real analytic function of s and hence, kn−1

2
(s) is bounded for

0 ≤ s < 1/2. Thus, using Lemma 9.9, we can deduce that

‖Jn(t)g‖Lp ≤ C

(∫
|y|≤t

kn−1
2

(
1
2

√
t2 − |y|2

)r
dy

)1/r

‖g‖Lq ,

≤ Ctn/r‖g‖Lq

which yields (8.3.5) for 0 ≤ t < 1. Furthermore, we have

‖Jn(t)g − et∆g‖Lp ≤ ‖Jn(t)g‖Lp + ‖et∆g‖Lp

≤ Ctn/r‖g‖Lp + Ct−
n
2 ( 1

q−
1
p )‖g‖Lq

≤ Ct−
n
2 ( 1

q−
1
p )−1‖g‖Lq .

This proves (8.3.7) for 0 < t < 1.
Next, we show (8.3.6). As before, we first assume that t ≥ 1 and put cn =

1
4(n−1)/2(n−2)!!|Sn−1| , ρ = |x− y| and ε ∈ (0, 1/2). We divide J̃n(t)g as

J̃n(t) = cn

∫
ρ≤t(1+ε)/2

∂t

(
e−t/2kn−1

2

(
1
2

√
t2 − ρ2

))
g(y)dy

+ cn

∫
t(1+ε)/2≤ρ≤t

∂t

(
e−t/2kn−1

2

(
1
2

√
t2 − ρ2

))
g(y)dy.

We calculate

∂t

(
e−t/2kn−1

2

(
1
2

√
t2 − ρ2

))
= e−t/2

{
−1

2
kn−1

2

(
1
2

√
t2 − ρ2

)
+

t

2
√
t2 − ρ2

k′n−1
2

(
1
2

√
t2 − ρ2

)}

= e−t/2
{
−1

2
kn−1

2

(
1
2

√
t2 − ρ2

)
+
t

4
kn+1

2

(
1
2

√
t2 − ρ2

)}
.
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From this and the Hausdorff-Young inequality (Lemma 9.9), it follows that

‖X4‖Lp ≤ C

(∫
t(1+ε)/2≤|y|≤t

e−rt/2

×
∣∣∣∣−1

2
kn−1

2

(
1
2

√
t2 − |y|2

)
+
t

4
kn+1

2

(
1
2

√
t2 − |y|2

)∣∣∣∣r dy)1/r

× ‖g‖Lq ,

where 1 − 1/r = 1/q − 1/p. We further divide the integral region into {y ∈ Rn |√
t2 − 1 ≤ |y| ≤ t} and {y ∈ Rn | t(1+ε)/2 ≤ |y| ≤

√
t2 − 1}. When

√
t2 − 1 ≤ |y| ≤

t, noting that kl(s) is bounded for s ≤ 1/2, we can see that

e−t/2
∣∣∣∣−1

2
kn−1

2

(
1
2

√
t2 − |y|2

)
+
t

4
kn+1

2

(
1
2

√
t2 − |y|2

)∣∣∣∣ ≤ Cte−t/2.

On the other hand, when t(1+ε)/2 ≤ |y| ≤
√
t2 − 1, using the asymptotic expansion

(8.1.6) again and
√
t2 − |y|2 ≥ 1, one can deduce that

e−t/2
∣∣∣∣−1

2
kn−1

2

(
1
2

√
t2 − |y|2

)
+
t

4
kn+1

2

(
1
2

√
t2 − |y|2

)∣∣∣∣
≤ Cte−

1
2 (t−

√
t2−t1+ε)

≤ Cte−t
ε/4.

Therefore, we have

‖X4‖Lp ≤ Ce−ct
ε

‖g‖Lq

with some constant c > 0. Now we turn to the estimate for X5. By using the
asymptotic expansion (8.1.6), (8.3.8) and (8.3.9) again, it can be seen that

∂t

(
e−t/2kn−1

2

(
1
2

√
t2 − ρ2

))
=

1
2
√
π
e−

ρ2

4t e
ρ2

4t−
1
2 (t−

√
t2−ρ2)2

n−1
2

{
−(t2 − ρ2)−

n
4 + t(t2 − ρ2)−

n+2
4

}
× (1 +O(t−1))

=
2
n−3

2

√
π
e−

ρ2

4t e
ρ2

4t−
1
2 (t−

√
t2−ρ2)(t2 − ρ2)−

n
4

(
t√

t2 − ρ2
− 1

)
(1 +O(t−1))

=
2
n−3

2

√
π
e−

ρ2

4t

(
1 +

1
t
O

(
ρ2

t

))
t−n/2

(
1 +

1
t
O

(
ρ2

t

))n/2
× 1
t
O

(
ρ2

t

)(
1 +O

(
1
t

))
≤ Ct−n/2−1e−

ρ2

4t

(
1 +

ρ2

t
+ · · · +

(
ρ2

t

)N)
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for ρ ≤ t(1+ε)/2 with some large integer N ∈ N. Consequently, we obtain

‖X5‖Lp ≤ Ct−
n
2 −1

(∫
|y|≤t(1+ε/2

e−
r|y|2

4t

(
1 +

|y|2

t
+ · · · +

(
|y|2

t

)N)r
dy

)1/r

‖g‖Lq

≤ Ct−
n
2 −1− n

2r

(∫
Rn

e−
r|z|2

4 (1 + |z|2 + · · · + |z|2N )rdz
)1/r

‖g‖Lq

≤ Ct−
n
2 ( 1

q−
1
p )‖g‖Lq ,

which shows (8.3.6) for t ≥ 1. Finally, we assume that 0 ≤ t < 1. We note that

J̃n(t)g = cn

∫
|x−y|≤t

k̃n−1
2

(
1
2

√
t2 − |x− y|2

)
g(y)dy,

where

k̃n−1
2

(
1
2

√
t2 − ρ2

)
:= e−t/2

{
−1

2
kn−1

2

(
1
2

√
t2 − ρ2

)
+
t

4
kn+1

2

(
1
2

√
t2 − ρ2

)}
.

Since both kn−1
2

(s) and kn+1
2

(s) are real analytic functions of s, it follows that they
are bounded for 0 ≤ s < 1/2. This implies that

‖J̃n(t)g‖Lp ≤ C

(∫
|y|≤t

k̃n−1
2

(
1
2

√
t2 − |x− y|2

)r
dy

)1/r

‖g‖Lq

≤ Ctn/r‖g‖Lq ,
which proves (8.3.6) for 0 ≤ t < 1.

In the even dimensional cases, noting the asymptotic expansion

kl(s) =
es

2sl
(
1 +

al
s

+O(s−2)
)

and using this instead of (8.1.6), we can obtain the desired estimate in the almost
same way. �



CHAPTER 9

Appendix

9.1. Notation

We explain some notation and terminology used throughout this thesis. First,
N,Z,R,C denote the sets of natural numbers, integers, real numbers, complex
numbers, respectively. We also write Z≥0 := N ∪ {0}.

We note that the letter C indicates the generic constant, which may change
from line to line. For a ∈ R, we put [a] := max{b ∈ Z | b ≤ a}. We sometimes use
the symbols n/[n − 2]+ and (n + 2)/[n − 2]+ to indicate the Gagliardo-Nirenberg
exponent and Sobolev exponent, respectively. Their meanings are

n

[n− 2]+
=

{
n
n−2 (n ≥ 3),
∞ (n = 1, 2),

n+ 2
[n− 2]+

=

{
n+2
n−2 (n ≥ 3),
∞ (n = 1, 2).

Let n! denote the factorial of the nonnegative integer n, that is, n! = n·(n−1) · · · 2·1.
According to a useful convention, we define 0! = 1. We also denote by n!! the double
factorial of n, that is, n!! = n · (n− 2) · (n− 4) · · · 1.

Let n, k ∈ Z≥0 satisfy k ≤ n. The symbol
(
n
k

)
denotes the binomial coefficients,

that is, (
n

k

)
=

n!
k!(n− k)!

.

We sometimes use the symbol of the generalized binomial coefficients. Let α ∈ R
and k ∈ Z≥0. We define (

α

k

)
=
α(α− 1) · · · (α− k + 1)

k!
.

We also use the symbols . and ∼. The relation f . g stands for f ≤ Cg with
some constant C > 0 and f ∼ g means that f . g and g . f .

For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we define the product x · y =∑n
j=1 xjyj , the absolute value |x| =

√
x · x and the bracket 〈·〉 by

〈x〉 =
√

1 + |x|2.

We sometimes use the Landau notation. Let f(t) and g(t) be two functions
defined on a subset of R. We write

f(t) = O(g(t)) as t→ +∞

if there exist constants M > 0 and t0 > 0 such that |f(t)| ≤ M |g(t)| holds for all
t ≥ t0. We also write

f(t) = o(g(t)) as t→ +∞
if for any ε > 0, there exists a constant t0 > 0 such that |f(t)| ≤ ε|g(t)| holds for
all t ≥ t0.

179
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We write the partial derivatives ∂t = ∂/∂t, ∂xj = ∂/∂xj , ∇ = (∂x1 , . . . , ∂xn)
and ∆ =

∑n
j=1 ∂

2
xj , � = ∂2

t − ∆. For simplicity, for a function u(t, x) defined on a
subset of R×Rn, we also use the notation ut = ∂tu and uxj = ∂xju (j = 1, . . . , n).
We also use the symbol of the multi-index. For α = (α1, . . . , αn) ∈ Zn≥0 and a
function f : Rn → R, we write

∂αx f(x) = ∂α1
x1

· · · ∂αnxn f(x)

and |α| = α1 + · · · + αn.
Let f̂(ξ) or F [f ](ξ) denote the Fourier transform of a function f(x), that is,

f̂(ξ) = F [f ](ξ) :=
1

(2π)n/2

∫
Rn

e−ix·ξf(x)dx,

and we write the inverse Fourier transform of a function φ(ξ) by

F−1[φ](x) :=
1

(2π)n/2

∫
Rn

eix·ξφ(ξ)dξ.

For two functions f, g defined on Rn, the notation f ∗ g stands for the convolution
of f and g, that is,

f ∗ g(x) =
∫
Rn

f(x− y)g(y)dy.

Next, we explain the function spaces used in this thesis. Let K ⊂ Rn. We
define C(K) by the space of continuous functions f : K → R. C0(K) denotes
the space of continuous functions with compact support, where the support of a
function f : K → R is given by

supp f = {x ∈ K | f(x) 6= 0} ∩K.

Let Ω be an open set in Rn. We denote Cr(Ω) by the space of r-times continuously
differentiable functions defined on Ω. As above, we define Cr0(Ω) by the subspace of
Cr(Ω) whose elements have compact support, and C∞(Ω) = ∩∞

r=0C
r(Ω), C∞

0 (Ω) =
∩∞
r=0C

r
0(Ω).

Let Lp(Ω) denote the Lebesgue space equipped with the norm

‖f‖p = ‖f‖Lp(Ω) =
(∫

Ω

|f(x)|pdx
)1/p

for 1 < p <∞ and

‖f‖∞ = ‖f‖L∞(Ω) = ess.sup{|f(x)| | x ∈ Ω}.

We denote the usual Sobolev space by Hm(Ω) for m ∈ N, that is,

Hm(Ω) = {f ∈ L2(Ω) | ∂αx f ∈ L2(Ω) (|α| ≤ m)},

where the derivatives are in the sense of distribution. Hm(Ω) is Hilbert space with
the inner product

(f, g)Hm =
∑

|α|≤m

(∂αx f, ∂
α
x g)L2 .

We define H1
0 (Ω) by the completion of C∞

0 (Ω) with respect to the norm defined
from the above inner product with m = 1. To express Sobolev spaces, we also use
the notation Wm,p(Ω) (1 ≤ p ≤ ∞):

Wm,p(Ω) := {f ∈ Lp(Ω) | ∂αx f ∈ Lp(Ω) (|α| ≤ m)}.
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It is well known that Wm,p(Ω) is Banach space with the norm

‖f‖Wm,p :=
∑

|α|≤m

‖∂αx f‖Lp .

We sometimes use the symbol of product space norm. For two normed spaces
(X, ‖ · ‖X) and (Y, ‖ · ‖Y ), we write ‖(u, v)‖X×Y := ‖u‖X + ‖v‖Y .

For an interval I and a Banach space X, we define Cr(I;X) as the space whose
element is an r-times continuously differentiable mapping from I to X with respect
to the topology in X (if I is a semi-open or closed interval, the differential at the
endpoint is interpreted as one-sided derivative).

9.2. Special functions

We give the definition and some properties of the special functions used in this
thesis.

9.2.1. definition.

(i) Gamma function:

Γ(s) =
∫ ∞

0

ts−1e−tdt

for s > 0.
(ii) Beta function:

B(r, s) =
∫ 1

0

tr−1(1 − t)s−1dt

for r, s > 0.
(iii) Modified Bessel function:

Iν(s) =
∞∑
m=0

1
m!Γ(m+ ν + 1)

(s
2

)2m+ν

for ν ∈ Z≥0 and s ≥ 0.

9.2.2. Properties.

Lemma 9.1. For r, s > 0, we have

(i) Γ(s+ 1) = sΓ(s),
(ii) Γ (1/2) =

√
π,

(iii) Γ(r)Γ(s) = Γ(r + s)B(r, s).

Proof. By the integration by parts, it follows that

Γ(s+ 1) =
∫ ∞

0

tse−tdt =
[
−tse−t

]t=∞
t=0

+ s

∫ ∞

0

ts−1e−tdt = sΓ(s),
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which proves (i). Next, we have

Γ
(

1
2

)2

=
(∫ ∞

0

t−1/2e−tdt

)2

=
(

2
∫ ∞

0

e−u
2
du

)2

= 4
(∫ ∞

0

e−u
2
du

)(∫ ∞

0

e−v
2
dv

)
= 4

∫ ∞

0

∫ ∞

0

e−(u2+v2)dudv

= 4
∫ π/2

0

∫ ∞

0

e−ρ
2
ρdρdθ

= −π
[
e−ρ

2
]ρ=∞

ρ=0
= π.

This shows (ii). Finally, we prove (iii). We see that

Γ(r)Γ(s) =
(∫ ∞

0

tr−1e−tdt

)(∫ ∞

0

ts−1e−tdt

)
= 4

(∫ ∞

0

u2r−1e−u
2
du

)(∫ ∞

0

v2s−1e−v
2
dv

)
= 4

∫ ∞

0

∫ ∞

0

u2r−1v2s−1e−(u2+v2)dudv

=
(

2
∫ ∞

0

ρ2r+2s−1e−ρ
2
dρ

)(
2
∫ π/2

0

(cos θ)2r−1(sin θ)2s−1dθ

)

=
(∫ ∞

0

tr+s−1e−tdt

)(∫ 1

0

tr−1(1 − t)s−1dt

)
= Γ(r + s)B(r, s).

�

Lemma 9.2. Let a > 0, c ≥ 0. Then, we have∫ a

−a

ect√
a2 − t2

dt = πI0(ca).

Proof. First, we see that∫ a

−a

ect√
a2 − t2

dt =
∫ 1

−1

ecat√
1 − t2

dt

=
∫ 1

−1

1√
1 − t2

∞∑
m=0

(ca)m

m!
tmdt.

By the dominated convergence theorem, the integral commutes with the sum. We
also note that if m is odd, then the integrand becomes an odd function and so the
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value of its integral is 0. Therefore, it follows that

∫ a

−a

ect√
a2 − t2

dt = 2
∞∑
m=0

(ca)2m

(2m)!

∫ 1

0

t2m√
1 − t2

dt

=
∞∑
m=0

(ca)2m

(2m)!

∫ 1

0

sm−1/2(1 − s)−1/2ds (∵ t2 = s, 2tdt = ds)

=
∞∑
m=0

(ca)2m

(2m)!
B(m+ 1/2, 1/2)

=
∞∑
m=0

(ca)2m

(2m)!
Γ(m+ 1/2)Γ(1/2)

Γ(m+ 1)

=
∞∑
m=0

(ca)2m

(2m)!
((m− 1/2)(m− 3/2) · · ·

√
π)
√
π

m!

=
∞∑
m=0

(ca)2m

(2m)!
(2m− 1)(2m− 3) · · · 3 · 1 · π

2mm!

= π

∞∑
m=0

1
(m!)2

(ca
2

)2m

= πI0(ca),

which shows the conclusion. �

Lemma 9.3 (derivatives).

I ′0(s) = I1(s), I ′1(s) = I0(s) −
1
s
I1(s),

s−1 d

ds

(
s−lIl(s)

)
= s−(l+1)Il+1(s).

Proof. By the definition of I0(s), we have

I ′0(s) =
∞∑
m=1

2m
(m!)2

1
2

(s
2

)2m−1

=
∞∑
m=1

1
m!(m− 1)!

(s
2

)2m−1

=
∞∑
m=0

1
m!(m+ 1)!

(s
2

)2m+1

= I1(s).
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From the definition of I1(s), we can also calculate

I ′1(s) =
∞∑
m=0

2m+ 1
m!(m+ 1)!

1
2

(s
2

)2m

=
∞∑
m=0

(2m+ 2) − 1
m!(m+ 1)!

1
2

(s
2

)2m

=
∞∑
m=0

1
(m!)2

(s
2

)2m

− 1
s

∞∑
m=0

1
m!(m+ 1)!

(s
2

)2m+1

= I0(s) −
1
s
I1(s).

Moreover, it follows that

s−1 d

ds

(
s−lIl(s)

)
= (−l)s−(l+2)Il(s) + s−(l+1)I ′l(s)

= s−(l+1)
(
−ls−1Il(s) + I ′l(s)

)
= s−(l+1)

(
− l

s

∞∑
m=0

1
m!(m+ l)!

(s
2

)2m+l

+
∞∑
m=0

2m+ l

m!(m+ l)!
1
2

(s
2

)2m+l−1
)

= s−(l+1)
∞∑
m=1

m

m!(m+ l)!

(s
2

)2m+l−1

= s−(l+1)
∞∑
m=0

1
m!(m+ l + 1)!

(s
2

)2m+l+1

= s−(l+1)Il+1(s).

�

Lemma 9.4 (integral representations). For ν ∈ Z≥0, s ≥ 0, we have

(9.2.1) Iν(s) =
1√

πΓ(ν + 1/2)

(s
2

)ν ∫ π

0

es cos θ(sin θ)2νdθ.

Proof. Noting that ∫ π

0

(cos θ)j(sin θ)2νdθ = 0

if j is an odd number, we obtain∫ π

0

es cos θ(sin θ)2νdθ =
∫ π

0

∞∑
j=0

1
j!
sj(cos θ)j(sin θ)2νdθ

=
∫ π

0

∞∑
j=0

1
(2j)!

s2j(cos θ)2j(sin θ)2νdθ

= 2
∞∑
j=0

s2j

(2j)!

∫ π/2

0

(cos θ)2j(sin θ)2νdθ.
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We claim that

(9.2.2)
∫ π/2

0

(cos θ)2j(sin θ)2νdθ =
1
2

Γ(j + 1/2)Γ(ν + 1/2)
Γ(j + ν + 1)

for j, ν ∈ Z≥0. In fact, we calculate∫ π/2

0

(cos θ)2j(sin θ)2νdθ =
1
2

∫ 1

0

tj−1/2(1 − t)ν−1/2dt

=
1
2
B(j + 1/2, ν + 1/2)

=
1
2

Γ(j + 1/2)Γ(ν + 1/2)
Γ(j + ν + 1)

,

which proves (9.2.2). Here we have used the changing variable t = cos2 θ.
Using (9.2.2), we can see that∫ π

0

es cos θ(sin θ)2νdθ =
∞∑
j=0

s2j

(2j)!
Γ(j + 1/2)Γ(ν + 1/2)

Γ(j + ν + 1)
.

By noting that

(2j)! = (2j)!!(2j − 1)!! = 2jj!2j
1√
π

Γ(j + 1/2),

it follows that

1√
πΓ(ν + 1/2)

(s
2

)ν ∫ π

0

es cos θ(sin θ)2νdθ

=
1√

πΓ(ν + 1/2)

(s
2

)ν ∞∑
j=0

s2j

2jj!2j 1√
π
Γ(j + 1/2)

Γ(j + 1/2)Γ(ν + 1/2)
Γ(j + ν + 1)

=
∞∑
j=0

1
j!Γ(j + ν + 1)

(s
2

)2j+ν

= Iν(s).

This shows (9.2.1). �

Lemma 9.5 (asymptotic expansion).

Iν(s) =
1√
2πs

es
(
1 − (ν − 1/2)(ν + 1/2)

2s
+

(ν − 1/2)(ν − 3/2)(ν + 3/2)(ν + 1/2)
2!22s2

− · · · + (−1)k
1

k!2ksk

k∏
j=1

(ν − (j − 1/2))(ν + (j − 1/2))

+O(s−k−1)
)

(s→ +∞)

for k ∈ Z≥0.

Proof. By Lemma 9.4, we can write

Iν(s) =
es√

πΓ(ν + 1/2)

(s
2

)ν ∫ π

0

es(cos θ−1)(sin θ)2νdθ.
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We change the variable as s(1 − cos θ) = t. Noting that cos θ = 1 − t/s and
sin θ =

√
1 − (1 − t/s)2, we obtain

∫ π

0

es(cos θ−1)(sin θ)2νdθ =
1
s

∫ 2s

0

e−t

√1 −
(

1 − t

s

)2
2ν−1

dt

=
1
s

∫ 2s

0

e−t

(√
t

s

√
2 − t

s

)2ν−1

dt

=
1

sν+1/2

∫ 2s

0

e−ttν−1/2

(
2 − t

s

)ν−1/2

dt.

Hence, we see that

Iν(s) =
es√

πΓ(ν + 1/2)

(s
2

)ν 1
sν+1/2

∫ 2s

0

e−ttν−1/2

(
2 − t

s

)ν−1/2

dt

=
es√
2πs

1
Γ(ν + 1/2)

∫ 2s

0

e−ttν−1/2

(
1 − t

2s

)ν−1/2

dt

By the Taylor theorem, one has(
1 − t

2s

)ν−1/2

=
k−1∑
j=0

(
ν − 1/2

j

)(
− t

2s

)j

+ k

(
ν − 1/2

k

)(
− t

2s

)k ∫ 1

0

(1 − τ)k−1

(
1 − τ

t

2s

)ν−1/2−k

dτ.

Therefore, we have

Iν(s) =
es√
2πs

1
Γ(ν + 1/2)


∫ 2s

0

e−ttν−1/2
k−1∑
j=0

(
ν − 1/2

j

)(
− t

2s

)j
dt+Rk(ν, s)

 ,

where

Rk(ν, s) =
∫ 2s

0

e−ttν−1/2k

(
ν − 1/2

k

)(
− t

2s

)k
×

(∫ 1

0

(1 − τ)k−1

(
1 − τ

t

2s

)ν−1/2−k

dτ

)
dt.

We note that∫ 2s

0

e−ttν−1/2+jdt =
∫ ∞

0

e−ttν−1/2+jdt−
∫ ∞

2s

e−ttν−1/2+jdt

= Γ(ν + 1/2 + j) + R̃j(ν, s)

with

R̃j(ν, s) = −
∫ ∞

2s

e−ttν−1/2+jdt.

Moreover, using

Γ(ν + 1/2 + j) = (ν − 1/2 + j)(ν − 3/2 + j) · · · (ν + 1/2)Γ(ν + 1/2),



9.2. SPECIAL FUNCTIONS 187

we can deduce that

Iν(s) =
es√
2πs


k−1∑
j=0

(
ν − 1/2

j

)
(ν − 1/2 + j) · · · (ν + 1/2)

(−1)j

(2s)j

+
1

Γ(ν + 1/2)

k−1∑
j=0

R̃j(ν, s) +Rk(ν, s)


=

es√
2πs


k−1∑
j=0

(−1)j
(ν − 1/2) · · · (ν − (j − 1/2))(ν + (j − 1/2)) · · · (ν + 1/2)

j!2jsj

+
1

Γ(ν + 1/2)

k−1∑
j=0

R̃j(ν, s) +Rk(ν, s)

 .

Therefore, it suffices to prove that R̃j(ν, s) = O(s−k) for j = 0, 1, . . . , k − 1 and
Rk(ν, s) = O(s−k) as s→ +∞.

The estimates of R̃j(ν, s) is easy. Indeed, we have∫ ∞

2s

e−ttν−1/2+jdt ≤ e−s/2
∫ ∞

2s

e−t/2tν−1/2+jdt ≤ Ce−s/2.

However, the estimate of Rk(ν, s) is more complicated. By the definition of Rk(ν, s),
we can compute

Rk(ν, s) =
∫ 2s

0

e−ttν−1/2k

(
ν − 1/2

k

)(
− t

2s

)k
×

(∫ 1

0

(1 − τ)k−1

(
1 − τ

t

2s

)ν−1/2−k

dτ

)
dt

=
C

sk

∫ 1

0

(∫ 2s

0

e−ttν−1/2+k

(
1 − τ

t

2s

)ν−1/2−k

dt

)
(1 − τ)k−1dτ.

Thus, it suffices to prove that

(9.2.3)
∫ 1

0

(∫ 2s

0

e−ttν−1/2+k

(
1 − τ

t

2s

)ν−1/2−k

dt

)
(1 − τ)k−1dτ ≤ C

with some constant C > 0. When k < ν, then it follows that ν − 1/2 − k ≥ 0 and
(9.2.3) is obvious. When k ≥ ν, to see (9.2.3), we divide the integral region. If
0 ≤ τ ≤ 1/2 or 0 ≤ t ≤ s, then we have

1 − τ
t

2s
≥ 1

2

and hence, we can immediately obtain the desired estimate. Thus, we may consider
only the region in which it holds that 1/2 ≤ τ ≤ 1 and s ≤ t ≤ 2s. In this region,
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we can calculate∫ 1

1/2

(∫ 2s

s

e−ttν−1/2+k

(
1 − τ

t

2s

)ν−1/2−k

dt

)
(1 − τ)k−1dτ

≤ Ce−ssν−1/2+k

∫ 1

1/2

(∫ 2s

s

(
1 − τ

t

2s

)ν−1/2−k

dt

)
(1 − τ)k−1dτ

= Ce−ssν−1/2+k

×
∫ 1

1/2

−2s
τ

1
ν + 1/2 − k

[(
1 − τ

t

2s

)ν+1/2−k
]t=2s

t=s

 (1 − τ)k−1dτ

≤ Ce−ssν+1/2+k


∫ 1

1/2

(1 − τ)ν−1/2dτ (k > ν),∫ 1

1/2

(1 − τ)ν−1dτ (k = ν and ν ≥ 1)

≤ Ce−ssν+1/2+k,

which completes the proof. �

9.3. Lemmas

Lemma 9.6. If 1/p+ 1/p′ = 1, 1 ≤ p ≤ 2, then it holds that

‖F [f ]‖Lp′ ≤ C‖f‖Lp , ‖F−1[φ]‖Lp′ ≤ C‖φ‖Lp
for f, φ ∈ Lp(Rn), where C is a positive constant depending only on p, n.

The following lemma is elementary but very useful for proving time decay
estimates to the solution of damped wave equations.

Lemma 9.7. Let δ > 0, c > 0 and k ≥ 0, then we have∫ δ

0

rke−cr
2tdr ≤ C(1 + t)−(k+1)/2,

sup
0≤r≤δ

rke−cr
2t ≤ C(1 + t)−k/2

for all t ≥ 0, where C is a positive constant independent of t.

Proof. When 0 ≤ t ≤ 1, the estimates above are obvious. Hence we may
assume t ≥ 1. By the changing variable r2t = s, we obtain

t(k+1)/2

∫ δ

0

rke−cr
2tdr =

∫ δ

0

(r2t)k/2e−cr
2tt1/2dr

=
1
2

∫ δ2t

0

sk/2e−css−1/2ds

≤ 1
2

∫ ∞

0

s(k−1)/2e−csds < +∞.

In a similar way, we have

tk/2rke−cr
2t = (r2t)k/2e−cr

2t ≤ sup
s≥0

ske−cs < +∞

and the proof is completed. �
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Lemma 9.8. For a, b > 0, there exists a constant C > 0 such that the following
holds:

(i) When max(a, b) > 1,∫ t

0

(1 + t− s)−a(1 + s)−bds ≤ C(1 + t)−min(a,b).

(ii) When b > 0, ∫ t

0

(1 + s)−ae−b(t−s)ds ≤ C(1 + t)−a.

Proof. First, we prove (i). We may assume a = max(a, b) > 1 without loss of
generality. Then we have∫ t

0

(1 + t− s)−a(1 + s)−bds =
∫ t/2

0

(1 + t− s)−a(1 + s)−bds

+
∫ t

t/2

(1 + t− s)−a(1 + s)−bds

≤ (1 + t/2)−a
∫ t/2

0

(1 + s)−bds

+ (1 + t/2)−b
∫ t

t/2

(1 + t− s)−ads

= (1 + t/2)−a


1

1 − b
((1 + t/2)1−b − 1) (b 6= 1),

log(1 + t/2) (b = 1)

+ (1 + t/2)−b
1

a− 1
(1 − (1 + t/2)1−a)

≤ C(1 + t)−b.

Next, we prove (ii). Let c > max(a, 1). Then, noting e−b(t−s) ≤ C(1+ t− s)−c,
we obtain∫ t

0

(1 + s)−ae−b(t−s)ds ≤ C

∫ t

0

(1 + s)−a(1 + t− s)−cds ≤ C(1 + t)−a

by (i). �
Lemma 9.9 (Hausdorff-Young). Let 1 ≤ p, q, r ≤ ∞ satisfy 1/q−1/p = 1−1/r.

Then the inequality
‖f ∗ g‖Lp ≤ C‖f‖Lr‖g‖Lq

holds for some constant C > 0.

Lemma 9.10 (Gagliardo-Nirenberg). Let p, q, r(1 ≤ p, q, r ≤ ∞) and σ ∈ [0, 1]
satisfy

1
p

= σ

(
1
r
− 1
n

)
+ (1 − σ)

1
q

except for p = ∞ or r = n when n ≥ 2. Then for some constant C = C(p, q, r, n) >
0, the inequality

‖h‖Lp ≤ C‖∇h‖σLr‖h‖1−σ
Lq for any h ∈W 1,r(Rn) ∩ Lq(Rn)

holds.
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For the proof see for example [96].

Lemma 9.11 (Gronwall). Let f(t), g(t), h(t) be continuous functions defined on
an interval [a, b). We assume that h(t) ≥ 0 and

f(t) ≤ g(t) +
∫ t

a

h(s)f(s)ds

hold for all t ∈ [a, b). Then it follows that

f(t) ≤ g(t) +
∫ t

a

exp
(∫ t

s

h(θ)dθ
)
h(s)g(s)ds

for t ∈ [a, b).

Proof. Let

F (t) =
∫ t

a

h(s)f(s)ds.

Then we have F ′(t) = h(t)f(t). By the assumption, we obtain

F ′(t) − h(t)F (t) ≤ h(t)g(t).

We can rewrite this as
d

dt

[
exp

(
−
∫ t

a

h(θ)dθ
)
F (t)

]
≤ exp

(
−
∫ t

a

h(θ)dθ
)
h(t)g(t)

and hence,

F (t) ≤ exp
(∫ t

a

h(θ)dθ
)∫ t

a

exp
(
−
∫ s

a

h(θ)dθ
)
h(s)g(s)ds

≤
∫ t

a

exp
(∫ t

s

h(θ)dθ
)
h(s)g(s)ds.

Therefore, we have

f(t) ≤ g(t) + F (t) ≤ g(t) +
∫ t

a

exp
(∫ t

s

h(θ)dθ
)
h(s)g(s)ds.

�

Lemma 9.12 (A Gronwall type lemma). Let f(t) be a real-valued continuous
function on an interval [a, b] and g ∈ R. Assume h(t) is a nonnegative continuous
function on [a, b] and

1
2
f2(t) ≤ 1

2
g2 +

∫ t

a

h(τ)f(τ)dτ

for any t ∈ [a, b]. Then the inequality

|f(t)| ≤ |g| +
∫ t

a

h(τ)dτ

holds for any t ∈ [a, b].

Proof. We put

Fε(t) :=
1
2
(g2 + ε2) +

∫ t

a

h(τ)|f(τ)|dτ
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for t ∈ [a, b] and ε > 0. Then Fε(t) is strictly positive and

F ′
ε(t) = h(t)|f(t)|

≤
√

2Fε(t)h(t)

by the assumption. This means

F ′
ε(t)√

2Fε(t)
≤ h(t)

and integrating on [a, t] leads to√
2Fε(t) ≤

√
2Fε(a) +

∫ t

a

h(τ)dτ.

From √
2Fε(a) ≤

√
g2 + ε2 ≤ |g| + ε

and the assumption, we have

|f(t)| ≤
√

2Fε(t)

≤
√

2Fε(a) +
∫ t

a

h(τ)dτ

≤ |g| + ε+
∫ t

a

h(τ)dτ.

By ε→ +0, we obtain the desired estimate. �

9.4. Definition of solutions

In this section, we give definitions of solutions used in this thesis.

9.4.1. Linear homogeneous equations. We consider the linear homoge-
neous equation

(9.4.1)
{
utt − ∆u+ a(t, x)ut = 0, (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where u = u(t, x) is a real-valued unknown, a(t, x) is a smooth, nonnegative function
and bounded with respect to x, that is,

(9.4.2) sup
x∈Rn

|a(t, x)| < +∞

holds for all t ≥ 0.
(i) Classical solution : let (u0, u1) ∈ C2(Rn)×C1(Rn). We say that a function

u is a classical solution of (9.4.1) if u ∈ C2([0,∞)×Rn) and u has the initial data
u(0, x) = u0(x), ut(0, x) = u1(x) for all x ∈ Rn and satisfies the equation (9.4.1)
at each point (t, x) ∈ (0,∞) × Rn. For example, if m ∈ N,m ≥ [n2 ] + 1 and
(u0, u1) ∈ Cm+2

0 (Rn) × Cm+1
0 (Rn), then there exists a unique classical solution

(see [25, Theorem 2.27] and use the Sobolev imbedding theorem).
(ii) Strong solution : let (u0, u1) ∈ H2 × H1. We say that a function u is a

strong solution of (9.4.1) if

u ∈
2∩
j=0

C2−j([0,∞);Hj),
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and u has the initial data u(0) = u0, ut(0) = u1 and satisfies the equation (9.4.1)
in the sense of L2(Rn). It is well known that for any (u0, u1) ∈ H2 × H1, there
exists a unique strong solution (see [25, Theorem 2.27]). We also note that if u is
a classical solution and satisfies u ∈ ∩2

j=0C
2−j([0,∞);Hj), then u also becomes a

strong solution. Conversely, if u is a strong solution and u ∈ C2([0,∞)×Rn, then
u becomes a classical solution.

Let us denote by R(t, s) the operator which maps the initial data (u0, u1) ∈
H2×H1 given at the time s ≥ 0 to the strong solution u(t) ∈ H2 at the time t ≥ s.
We also write S(t, s)u1 = R(t, s)(0, u1) for a function u1 ∈ H1.

Remark 9.1. When a(t, x) ≡ 1, we can write

R(t, s)(u0, u1) = S(t, s)(u0 + u1) + ∂t(S(t, s)u0).

This immediately follows from that the right-hand side actually satisfies the initial
condition and the equation (9.4.1) and the uniqueness of the strong solution. More-
over, if a is independent of t, then R(t, s) is determined by only the difference t−s.
Thus, we can write as R(t− s) instead of R(t, s).

Proposition 9.13. Let u be a strong solution of (9.4.1). Then it follows that

(9.4.3)
∫
Rn

(ut(t, x)2 + |∇u(t, x)|2)dx ≤
∫
Rn

(u1(x)2 + |∇u0(x)|2)dx

for all t ≥ 0. Moreover, for any T > 0, we have

(9.4.4) ‖u(t)‖L2 ≤ ‖u0‖L2 + T‖(∇u0, u1)‖L2×L2

for all 0 ≤ t ≤ T .

Proof. Multiplying the equation (9.4.1) by ut, we have

1
2
∂

∂t
(u2
t + |∇u|2) −∇ · (ut∇u) + a(t, x)u2

t = 0.

Integrating over Rn, we see that

1
2
d

dt

∫
Rn

(u2
t + |∇u|2)dx+

∫
Rn

a(t, x)u2
tdx = 0.

Here we have used that u ∈ ∩2
j=0C

2−j([0,∞);Hj) and the divergence theorem with
the fact ut∇u ∈ L1(Rn). Moreover, integrating the above identity over the interval
[0, t], we deduce that

1
2

∫
Rn

(ut(t, x)2 + |∇u(t, x)|2)dx+
∫ t

0

∫
Rn

a(s, x)ut(s, x)2dxds

=
1
2

∫
Rn

(u1(x)2 + |∇u0(x)|2)dx.

In particular, noting that a(t, x) ≥ 0, we have (9.4.3).
Next, we prove (9.4.4). For fixed T > 0, we can calculate

u(t) = u0 +
∫ t

0

ut(s)ds



9.4. DEFINITION OF SOLUTIONS 193

and

‖u(t)‖L2 ≤ ‖u0‖L2 +
∫ t

0

‖ut(s)‖L2ds

≤ ‖u0‖L2 +
∫ t

0

‖(∇u0, u1)‖L2×L2ds

≤ ‖u0‖L2 + T‖(∇u0, u1)‖L2×L2

for all 0 ≤ t ≤ T . This completes the proof �

From Proposition 9.13, the operatorsR(t, s) and S(t, s) can be extended uniquely
to the operators defined on H1 × L2. Indeed, for any fixed T > 0, the estimates
(9.4.3) and (9.4.4) show that

‖R(t, s)(u0, u1)‖H1 + ‖∂t(R(t, s)(u0, u1))‖L2 ≤ C(1 + T )‖(u0, u1)‖H1×L2

holds for s ≤ t ≤ s + T . This leads to that the operator R(t, s) can be extended
uniquely to a operator such that R(t, s) : H1 ×L2 → C([s, T ];H1)∩C1([s, T ];L2).
Since T is arbitrary, we have an extension of the operator R(t, s) such that R(t, s) :
H1 × L2 → C([s,∞);H1) ∩ C1([s,∞);L2).

9.4.2. Linear inhomogeneous equations. Let us consider

(9.4.5)
{
utt − ∆u+ a(t, x)ut = F (t, x), (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where a(t, x) is a smooth, nonnegative function satisfying (9.4.2) and F (t, x) denotes
a inhomogeneous term.

(i) Classical solution : let (u0, u1) ∈ C2(Rn)×C1(Rn) and F (t, x) ∈ C([0,∞)×
Rn). We say that a function u is a classical solution of (9.4.5) if u ∈ C2([0,∞)×Rn)
and u has the initial data u(0, x) = u0(x), ut(0, x) = u1(x) and satisfies the equation
(9.4.5) at each point (t, x) ∈ (0,∞) × Rn. For example, if m ∈ N,m ≥ [n2 ] +
1, (u0, u1) ∈ Cm+2

0 (Rn) × Cm+1
0 (Rn) and F (t, x) ∈ ∩mj=0C

j([0,∞);Hm−j), then
there exists a unique classical solution (see [25, Theorem 2.27] and use the Sobolev
imbedding theorem).

(ii) Strong solution : let (u0, u1) ∈ H2 × H1 and F ∈ C([0,∞);L2). We say
that a function u is a strong solution of (9.4.5) if

u ∈
2∩
j=0

C2−j([0,∞);Hj)

and u has the initial data u(0) = u0, ut(0) = u1 and satisfies the equation (9.4.5)
in the sense of L2(Rn). It is well known that if (u0, u1) ∈ H2 × H1 and F ∈
C1([0,∞);L2), then there exists a unique strong solution (see [25, Theorem 2.27]).

(iii) Mild solution : let (u0, u1) ∈ H1 ×L2 and F ∈ C([0,∞);L2). We say that
a function u is a mild solution of (9.4.5) if u ∈ C([0,∞);H1) ∩ C1([0,∞);L2) and
u has the initial data u(0) = u0, ut(0) = u1 and satisfies the integral equation

(9.4.6) u(t) = R(t, 0)(u0, u1) +
∫ t

0

S(t, s)F (s)ds

in the sense of H1(Rn).
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(iv) Weak solution : let (u0, u1) ∈ H1×L2 and F ∈ C([0,∞);L2). We say that
a function u is a weak solution of (9.4.5) if u ∈ C([0,∞);H1) ∩ C1([0,∞);L2) and
u has the initial data u(0) = u0, ut(0) = u1 and satisfies the identity∫

[0,∞)×Rn

u(φtt − ∆φ− (a(t, x)φ)t)dxdt(9.4.7)

=
∫
Rn

((a(0, x)u0(x) + u1(x))φ(0, x) − u0(x)φt(0, x))dx

+
∫

[0,∞)×Rn

F (t, x)φdxdt

for any φ ∈ C∞
0 ([0,∞) × Rn).

Remark 9.2. We can define the weak solution for more general function spaces
wider than C([0,∞);H1) ∩ C1([0,∞);L2). However, in this thesis we treat only
weak solutions belonging to C([0,∞);H1) ∩ C1([0,∞);L2).

Proposition 9.14. Let (u0, u1) ∈ H2×H1, F ∈ C([0,∞);H1)∩C1([0,∞);L2)
and u be the strong solution of (9.4.5). Then u also becomes a mild solution. More-
over, u satisfies the following energy estimates.

‖(ut,∇u)(t)‖L2×L2 ≤ C‖(u1,∇u0)‖L2×L2 + C

∫ t

0

‖F (s)‖L2ds,(9.4.8)

‖u(t)‖L2 ≤ ‖u0‖L2 + C

∫ t

0

(
‖(u1,∇u0)‖L2×L2 +

∫ s

0

‖F (τ)‖L2dτ

)
ds.(9.4.9)

Proof. Let (u0, u1) ∈ H2 ×H1, F ∈ C([0,∞);H1) ∩C1([0,∞);L2) and u be
the strong solution of (9.4.5). We put

ũ(t) := R(t, 0)(u0, u1) +
∫ t

0

S(t, s)F (s)ds.

Then ũ ∈ ∩2
j=0C

2−j([0,∞);Hj) and it is easy to see that ũ is a strong solution of
(9.4.5). Therefore, by the uniqueness of the strong solution, we have u = ũ.

Next, we prove the estimates (9.4.8) and (9.4.9). By multiplying the equation
(9.4.5) by ut, it follows that

1
2
∂

∂t
(u2
t + |∇u|2) −∇ · (ut∇u) + a(t, x)u2

t = F (t, x)ut.

Integrating over Rn, we obtain

1
2
d

dt

∫
Rn

(u2
t + |∇u|2)dx+

∫
Rn

a(t, x)u2
tdx =

∫
Rn

F (t, x)utdx.

Here we have used the divergence theorem with the fact ut∇u ∈ L1(Rn). Integrat-
ing over [0, t] and using the Cauchy-Schwarz inequality, we deduce that

1
2

∫
Rn

(ut(t)2 + |∇u(t)|2)dx

≤ 1
2

∫
Rn

(u2
1 + |∇u0|2)dx+

∫ t

0

‖F (s)‖L2‖ut(s)‖L2ds.
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Therefore, we can apply Lemma 9.12 by putting

f(t) :=
(∫

Rn

(ut(t)2 + |∇u(t)|2)dx
)1/2

, g(t) :=
(∫

Rn

(u2
1 + |∇u0|2)dx

)1/2

,

h(t) := ‖F (t)‖L2

and have (∫
Rn

(ut(t)2 + |∇u(t)|2)dx
)1/2

≤
(∫

Rn

(u2
1 + |∇u0|2)dx

)1/2

+
∫ t

0

‖F (s)‖L2ds.

In particular, we conclude that

‖(ut,∇u)(t)‖L2×L2 ≤ C‖(u1,∇u0)‖L2×L2 + C

∫ t

0

‖F (s)‖L2ds,

which proves (9.4.8). The estimate (9.4.9) is immediately obtained by using

u(t) = u0 +
∫ t

0

ut(s)ds.

Indeed, we have

‖u(t)‖L2 ≤ ‖u0‖L2 +
∫ t

0

‖ut(s)‖L2ds

≤ ‖u0‖L2 + C

∫ t

0

(
‖(u1,∇u0)‖L2×L2 +

∫ s

0

‖F (τ)‖L2dτ

)
ds.

This completes the proof. �

Proposition 9.15. Let (u0, u1) ∈ H1 × L2, F ∈ C([0,∞);L2). Then there
exists a unique mild solution u of (9.4.5). Moreover, the mild solution u satisfies
the estimates (9.4.8) and (9.4.9).

Proof. Let T0 > 0 an arbitrary number. We take sequences {(u(j)
0 , u

(j)
1 )}∞j=1 ⊂

H2 ×H1 and {F (j)}∞j=1 ⊂ C([0, T0];H1) ∩ C1([0, T0];L2) such that

(u(j)
0 , u

(j)
1 ) → (u0, u1) in H1 × L2, F (j) → F in C([0, T0];L2)

as j → ∞. Let u(j) be the strong solution of (9.4.5) corresponding to the initial
data (u(j)

0 , u
(j)
1 ) and the inhomogeneous term F (j)(t, x). Then by Proposition 9.14,

it follows that {u(j)}∞j=1 is a Cauchy sequence in C([0, T0];H1)∩C1([0, T0];L2). In
fact, the difference u(j) − u(k) is the strong solution of the Cauchy problem{

utt − ∆u+ a(t, x)ut = F (j) − F (k),

(u, ut)(0, x) = (u(j)
0 − u

(k)
0 , u

(j)
1 − u

(k)
1 ).
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Therefore, we can apply Proposition 9.14 to u(j) − u(k) and have

‖(∂t(u(j) − u(k)), (∇(u(j) − u(k))))(t)‖L2×L2

≤ C‖(u(j)
1 − u

(k)
1 ,∇(u(j)

0 − u
(k)
0 ))‖L2×L2 + CT0 sup

s∈[0,T0]

‖(F (j) − F (k))(s)‖L2 ,

‖(u(j) − u(k))(t)‖L2

≤ ‖u(j)
0 − u

(k)
0 ‖L2

+ CT

(
‖(u(j)

1 − u
(k)
1 ,∇(u(j)

0 − u
(k)
0 ))‖L2×L2 + T0 sup

s∈[0,T0]

‖(F (j) − F (k))(s)‖L2

)
.

This shows that {u(j)}∞j=1 is a Cauchy sequence in C([0, T0];H1) ∩ C1([0, T0];L2).
Since T0 > 0 is arbitrary, we can define the limit

lim
j→∞

u(j) = u ∈ C([0,∞);H1) ∩ C1([0,∞);L2).

Using Proposition 9.14 again, we see that each u(j) satisfies the integral equation

u(j)(t) = R(t, 0)(u(j)
0 , u

(j)
1 ) +

∫ t

0

S(t, s)F (j)(s)ds.

Noting that R(t, 0) and S(t, s) can be extended uniquely to the operators defined
on H1 × L2 and L2, respectively (see Proposition 9.13) and letting j → ∞, we
obtain

u(t) = R(t, 0)(u0, u1) +
∫ t

0

S(t, s)F (s)ds,

which indicates that u is a mild solution of (9.4.5).
The uniqueness of mild solutions is obvious. Indeed, if two functions u, v satisfy

the integral equation (9.4.6), then we immediately have u− v = 0.
Finally, by Proposition 9.14, each strong solution u(j) constructed above satis-

fies the estimates (9.4.8) and (9.4.9) with u
(j)
0 , u

(j)
1 , F (j). Taking the limit j → ∞,

we can obtain the same estimates also hold for the mild solution u. �

Proposition 9.16. Let (u0, u1) ∈ H1×L2 and F ∈ C([0,∞);L2). If a function
u ∈ C([0,∞);H1)∩C1([0,∞);L2) is a mild solution of (9.4.5), then u also becomes
a weak solution of (9.4.5) and vice versa.

Proof. Let u be a mild solution of (9.4.5) with (u0, u1) ∈ H1 × L2 and F ∈
C([0,∞);L2). Let φ ∈ C∞

0 ([0,∞) × Rn). Then there exists some T0 > 0 such
that suppφ ⊂ [0, T0) ×Rn. As in the proof of Proposition 9.15, we take sequences
{(u(j)

0 , u
(j)
1 )}∞j=1 ⊂ H2 × H1 and {F (j)}∞j=1 ⊂ C([0, T0];H1) ∩ C1([0, T0];L2) such

that

(u(j)
0 , u

(j)
1 ) → (u0, u1) in H1 × L2, F (j) → F in C([0, T0];L2)

as j → ∞. Let u(j) be the corresponding strong solution of (9.4.5) to u(j)
0 , u

(j)
1 , F (j).

Then by the proof of Proposition 9.15, it follows that limj→∞ u(j) = u. Since each
u(j) satisfies the equation

u
(j)
tt − ∆u(j) + a(t, x)u(j)

t = F (j)
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in the sense of L2(Rn), multiplying the above equation by a test function φ(t, x) ∈
C∞

0 ([0,∞) × Rn) and integrating by parts, we can easily see that∫
[0,∞)×Rn

u(j)(φtt − ∆φ− (a(t, x)φ)t)dxdt

=
∫
Rn

((a(0, x)u(j)
0 (x) + u

(j)
1 (x))φ(0, x) − u

(j)
0 (x)φt(0, x))dx

+
∫

[0,∞)×Rn

F (j)(t, x)φdxdt

Thus, letting j → +∞, we deduce that u satisfies the identity (9.4.7) and becomes
a weak solution.

Next, we prove that if u ∈ C([0,∞);H1) ∩ C1([0,∞);L2) is a weak solution,
then u also becomes a mild solution. Let ũ be the mild solution of (9.4.5) with
(u0, u1) ∈ H1 × L2 and F ∈ C([0,∞);L2). Then by the argument before, ũ is also
a weak solution. Therefore, taking the difference of u and ũ, we have∫

[0,∞)×Rn

(u− ũ)(φtt − ∆φ− (a(t, x)φ)t)dxdt = 0

for any φ ∈ C∞
0 ([0,∞) × Rn). Let ψ ∈ C∞

0 ((0,∞) × Rn) be an arbitrary test
function and let T0 > 0 be sufficiently large number so that suppψ ⊂ (0, T0)×Rn.
We take φ as the classical solution of the inhomogeneous equation

φtt − ∆φ− (a(t, x)φ)t = ψ(t, x)

having the data φ(T0, x) = φt(T0, x) = 0 (the existence of this classical solution φ
can be proved by the same way as that of (9.4.5), for example, see [25, Theorem
2.27]). By noting the finite propagation property for solutions to the above equation
(see [25, Theorem 2.7]), it follows that φ ∈ C∞

0 ([0,∞) × Rn). Then we obtain∫
[0,∞)×Rn

(u− ũ)ψ(t, x)dxdt = 0

for any test function ψ ∈ C∞
0 ((0,∞) × Rn), which yields u = ũ. �

9.4.3. Semilinear equations. In this subsection, we consider solutions of the
semilinear damped wave equation

(9.4.10)
{
utt − ∆u+ a(t, x)ut = f(u), (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x), x ∈ Rn,

where a(t, x) is a smooth, nonnegative function satisfying (9.4.2) and f(u) denotes
a nonlinear term. We assume that f(·) : R → R is a C1 map and satisfies f(0) = 0
and

|f(u) − f(v)| ≤ C(|u| + |v|)p−1|u− v|(9.4.11)

|f ′(u) − f ′(v)| ≤ C

{
(|u| + |v|)p−2|u− v| (p > 2),
|u− v|p−1 (1 < p ≤ 2)

with some constant C > 0 and p. Typical examples are f(u) = ±|u|p−1u,±|u|p.
Moreover, we also assume that

(9.4.12) 1 < p <∞ (n = 1, 2), 1 < p ≤ n

n− 2
(n ≥ 3).
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Under these assumptions, we note that by the Gagliardo-Nirenberg inequality
(Lemma 9.10), it follows that

‖f(v)‖L2 ≤ C‖v‖pL2p ≤ C‖∇v‖σpL2‖v‖(1−σ)p
L2 ≤ C‖v‖pH1

with σ = n(p− 1)/(2p) ∈ [0, 1]. We also have

‖f(v(t)) − f(v(s))‖L2 ≤ C‖(v(t) + v(s))‖p−1
L2p ‖v(t) − v(s)‖L2p

≤ C(‖v(t)‖H1 + ‖v(s)‖H1)p−1‖v(t) − v(s)‖H1 .

Here we used the Hölder inequality with (p−1)/(2p)+1/(2p) = 1/2. The inequali-
ties above show that if v ∈ C([0, T );H1) for some T > 0, then f(v) ∈ C([0, T );L2).
Similarly, we can obtain

‖∂tf(v(t))‖L2 = ‖f ′(v(t))vt(t)‖L2 ≤ C‖|v(t)|p−1vt(t)‖L2

≤ C‖v(t)‖p−1
L2p ‖vt(t)‖L2p ≤ C‖v(t)‖p−1

H1 ‖vt(t)‖H1 ,

‖∇xf(v(t))‖L2 = ‖f ′(v(t))∇xv(t)‖L2 ≤ C‖|v(t)|p−1∇xv(t)‖L2

≤ C‖v(t)‖p−1
L2p ‖∇xv(t)‖L2p ≤ C‖v(t)‖pH2 .

The above estimates indicates that if v ∈ ∩2
j=0C

2−j([0, T );Hj), then ∂tf(v(t)) and
∇xf(v(t)) belong to L2(Rn). Furthermore, we can see that

‖∂tf(v(t)) − ∂tf(v(s))‖L2

= ‖f ′(v(t))vt(t) − f ′(v(s))vt(s)‖L2

≤ C‖v(t) + v(s)‖p−1
L2p ‖vt(t) − vt(s)‖L2p

+ C

{
‖v(t) + v(s)‖p−2

L2p ‖vt(t) + vt(s)‖L2p‖v(t) − v(s)‖L2p (p > 2),
‖vt(t) + vt(s)‖L2p‖v(t) − v(s)‖p−1

L2p (1 < p ≤ 2)

and

‖∇xf(v(t)) −∇xf(v(s))‖L2

= ‖f ′(v(t))∇xv(t) − f ′(v(s))∇xv(s)‖L2

≤ C‖v(t) + v(s)‖p−1
L2p ‖∇xv(t) −∇xv(s)‖L2p

+ C

{
‖v(t) + v(s)‖p−2

L2p ‖∇xv(t) + ∇xv(s)‖L2p‖v(t) − v(s)‖L2p (p > 2),
‖∇xv(t) + ∇xv(s)‖L2p‖v(t) − v(s)‖p−1

L2p (1 < p ≤ 2).

The above estimates imply that if v ∈ ∩2
j=0C

2−j([0, T );Hj), then

f(v) ∈ C([0, T );H1) ∩ C1([0, T );L2).

Let us define solutions to (9.4.10). For nonlinear equations, it is not always true
that there exist global-in-time solutions. Therefore, we consider solution defined
on an interval [0, T ) for T > 0. We call such a solution local-in-time solution (or
local solution) and if we can take T = ∞, then we call it global-in-time solution (or
global solution).

(i) Classical solution : let (u0, u1) ∈ C2(Rn)×C1(Rn). We say that a function
u is a classical solution of (9.4.10) if u ∈ C2([0, T )×Rn) and u has the initial data
u(0, x) = u0(x), ut(0, x) = u1(x) and satisfies the equation (9.4.10) at each point
(t, x) ∈ [0, T ) × Rn. We note that by the condition (9.4.11), f(u) is continuous if
u is a continuous function.
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(ii) Strong solution : let (u0, u1) ∈ H2 × H1. We say that a function u is a
strong solution of (9.4.10) if

u ∈
2∩
j=0

C2−j([0, T );Hj)

and u has the initial data u(0) = u0, ut(0) = u1 and satisfies the equation (9.4.10)
in the sense of L2(Rn). We note that if u ∈ ∩2

j=0C
2−j([0, T );Hj), then f(u) ∈

∩1
j=0C

1−j([0, T );Hj).
(iii) Mild solution : let (u0, u1) ∈ H1 × L2. We say that a function u is a mild

solution of (9.4.10) if

u ∈ C([0, T );H1) ∩ C1([0, T );L2)

and u has the initial data u(0) = u0, ut(0) = u1 and satisfies the integral equation

(9.4.13) u(t) = R(t, 0)(u0, u1) +
∫ t

0

S(t, s)f(u(s))ds

in the sense ofH1(Rn). We note that if u ∈ C([0, T );H1), then f(u) ∈ C([0, T );L2).
(iv) Weak solution : let (u0, u1) ∈ H1 ×L2. We say that a function u is a weak

solution of (9.4.10) if

u ∈ C([0, T );H1) ∩ C1([0, T );L2)

and u has the initial data u(0) = u0, ut(0) = u1 and satisfies the identity∫
[0,T )×Rn

u(φtt − ∆φ− (a(t, x)φ)t)dxdt(9.4.14)

=
∫
Rn

((a(0, x)u0(x) + u1(x))φ(0, x) − u0(x)φt(0, x))dx

+
∫

[0,T )×Rn

f(u)φdxdt

for any φ ∈ C∞
0 ([0, T ) × Rn).

Remark 9.3. (i) We can define weak solutions of (9.4.10) for more general
function spaces including C([0, T );H1)∩C1([0, T );L2). However, in this thesis, we
treat only weak solutions belonging to C([0, T );H1) ∩ C1([0, T );L2).

(ii) We also note that in the above definition, we can replace φ ∈ C∞
0 ([0, T ) ×

Rn) with φ ∈ C2
0 ([0, T ) × Rn). Because, any function φ ∈ C2

0 ([0, T ) × Rn) can be
uniformly approximated up to the second derivatives by some sequence of functions
belonging to C∞

0 ([0, T ) × Rn). This remark is useful in Chapter 6.

Proposition 9.17. Let (u0, u1) ∈ H2 × H1 and let u be a strong solution of
(9.4.10). Then u also becomes a mild solution. Moreover, u satisfies the following
energy estimates.

‖(ut,∇u)(t)‖L2×L2 ≤ C‖(u1,∇u0)‖L2×L2 + C

∫ t

0

‖u(s)‖pL2pds,(9.4.15)

‖u(t)‖L2 ≤ ‖u0‖L2 + C

∫ t

0

(
‖(u1,∇u0)‖L2×L2 +

∫ s

0

‖u(τ)‖pL2pdτ

)
ds,(9.4.16)

where C is a positive constant independent of u0, u1, T .
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Proof. We first prove the estimates (9.4.15) and (9.4.16). This proof is almost
same as that of Proposition 9.14. We multiply the equation (9.4.10) by ut and have

1
2
∂

∂t
[u2
t + |∇u|2] −∇ · (ut∇u) + a(t, x)u2

t = f(u)ut.

Integrating over Rn, we deduce that

1
2
d

dt

∫
Rn

(ut(t, x)2 + |∇u(t, x)|2)dx+
∫
Rn

a(t, x)ut(t, x)2dx =
∫
Rn

f(u)ut(t, x)dx.

Omitting the second term of the left-hand side and integrating over the interval
[0, t], we can see that

1
2

∫
Rn

(ut(t, x)2 + |∇u(t, x)|2)dx

≤ 1
2

∫
Rn

(u1(x)2 + |∇u0(x)|2)dx+
∫ t

0

∫
Rn

f(u)ut(s, x)dxds.

By the Schwarz inequality, it follows that∫ t

0

∫
Rn

f(u)ut(s, x)dxds ≤
∫ t

0

‖f(u(s))‖L2‖ut(s)‖L2ds

and hence,

‖(ut,∇u)(t)‖2
L2×L2 ≤ C‖(u1,∇u0)‖2

L2×L2 + C

∫ t

0

‖f(u(s))‖L2‖ut(s)‖L2ds.

Thus, we can apply Lemma 9.12 and have

‖(ut,∇u)(t)‖L2×L2 ≤ C‖(u1,∇u0)‖L2×L2 + C

∫ t

0

‖f(u(s))‖L2ds

≤ C‖(u1,∇u0)‖L2×L2 + C

∫ t

0

‖u(s)‖pL2pds,

which proves (9.4.15). By noting that

u(t) = u0 +
∫ t

0

ut(s)ds,

we can also see that

‖u(t)‖L2 ≤ ‖u0‖L2 +
∫ t

0

‖ut(s)‖L2ds

≤ ‖u0‖L2 + C

∫ t

0

(
‖(u1,∇u0)‖L2×L2 +

∫ s

0

‖u(τ)‖pL2pdτ

)
ds,

which shows (9.4.16).
Let us prove that u becomes a mild solution. Let T0 ∈ (0, T ). Then we

have supt∈[0,T0] ‖(u, ut)(t)‖H1×L2 < +∞ and hence, supt∈[0,T0] ‖f(u(t))‖L2 < +∞.
Therefore, we can take a sequence {F (j)}∞j=1 ⊂ C([0, T0];H1)∩C1([0, T0];L2) such
that

lim
j→∞

F (j) = f(u) in C([0, T0];L2).



9.4. DEFINITION OF SOLUTIONS 201

Let u(j) be the strong solution of the linear inhomogeneous equation (9.4.5) with
the initial data (u0, u1) and the inhomogeneous term F (j). Then, as in the proof
of Proposition 9.15, we can prove that

‖(∂t(u(j) − u(k)),∇x(u(j) − u(k)))(t)‖L2×L2 ≤ CT0 sup
s∈[0,T0]

‖(F (j) − F (k))(s)‖L2 ,

‖(u(j) − u(k))(t)‖L2 ≤ CT 2
0 sup
s∈[0,T0]

‖(F (j) − F (k))(s)‖L2 .

This shows that {u(j)}∞j=1 is a Cauchy sequence in C([0, T0];H1) ∩ C1([0, T0];L2)
and we denote the limit function by ũ. Moreover, by Proposition 9.14, each u(j)

satisfies the integral equation

u(j)(t) = R(t, 0)(u0, u1) +
∫ t

0

S(t, s)F (j)(s)ds.

Letting j → +∞, we obtain

ũ(t) = R(t, 0)(u0, u1) +
∫ t

0

S(t, s)f(u(s))ds

for t ∈ [0, T0]. Therefore, it suffices to prove that u = ũ. We note that u(j) − u
satisfies the equation

vtt − ∆v + a(t, x)vt = F (j) − f(u)

in L2(Rn) and have the initial data (u(j) − u)(0, x) = 0, (∂t(u(j) − u))(0, x) = 0.
Hence, by the proof of the estimates (9.4.15) and (9.4.16), we can see that

‖(∂t(u(j) − u),∇x(u(j) − u))(t)‖L2×L2 ≤ CT0 sup
s∈[0,T0]

‖(F (j) − f(u))(s)‖L2 ,

‖(u(j) − u)(t)‖L2 ≤ CT 2
0 sup
s∈[0,T0]

‖(F (j) − f(u))(s)‖L2 .

This implies that u(j) → u in C([0, T0];H1) ∩ C1([0, T0];L2) and hence, u = ũ.
Therefore, u satisfies the integral equation (9.4.13) for t ∈ [0, T0]. Since T0 is
arbitrary in [0, T ), u becomes a mild solution of (9.4.10). �

Proposition 9.18. Let (u0, u1) ∈ H1×L2 and u ∈ C([0, T );H1)∩C1([0, T );L2).
If u is a mild solution of (9.4.10), then u becomes a weak solution of (9.4.10) and
vice versa.

Proof. Let u be a mild solution of (9.4.10) and let φ ∈ C∞
0 ([0, T )×Rn). Then

there exists some T0 ∈ (0, T ) such that suppφ ⊂ [0, T0) × Rn. We take sequences
{(u(j)

0 , u
(j)
1 )}∞j=1 ⊂ H2 × H1 and {F (j)}∞j=1 ⊂ C([0, T0];H1) ∩ C1([0, T0];L2) such

that

lim
j→∞

(u(j)
0 , u

(j)
1 ) = (u0, u1) in H1 × L2, lim

j→∞
F (j) = f(u) in C([0, T0];L2).

Let u(j) be the strong solution of the linear inhomogeneous equation (9.4.5) with
the initial data (u(j)

0 , u
(j)
1 ) and the inhomogeneous term F (j). Then by Proposition

9.14, we have

u(j)(t) = R(t, 0)(u(j)
0 , u

(j)
1 ) +

∫ t

0

S(t, s)F (j)(s)ds.
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Since u is a mild solution of (9.4.10), we obtain

u(j)(t) − u(t) = R(t, 0)(u(j)
0 − u0, u

(j)
1 − u1) +

∫ t

0

S(t, s)(F (j)(s) − f(u(s)))ds

and hence, by using Proposition 9.13, we can see that

‖(u(j) − u, ∂t(u(j) − u))(t)‖H1×L2

≤ C(1 + T0)

(
‖(u(j)

0 − u0, u
(j)
1 − u1)‖H1×L2 + T0 sup

s∈[0,T0]

‖F (j)(s) − f(u(s))‖L2

)
.

This implies that limj→∞ u(j) = u in C([0, T0];H1) ∩ C1([0, T0];L2). Since each
u(j) is a strong solution of (9.4.5), u(j) is also a weak solution of (9.4.5), that is,∫

[0,∞)×Rn

u(j)(φtt − ∆φ− (a(t, x)φ)t)dxdt

=
∫
Rn

((a(0, x)u(j)
0 (x) + u

(j)
1 (x))φ(0, x) − u

(j)
0 (x)φt(0, x))dx

+
∫

[0,∞)×Rn

F (j)(t, x)φdxdt.

Thus, letting j → +∞, we deduce that u satisfies the identity (9.4.14). Since φ is
arbitrary test function, u is a weak solution of (9.4.10).

Next, we prove that a weak solution u of (9.4.10) becomes a mild solution.
Let T0 ∈ (0, T ). As before, we take sequences {(u(j)

0 , u
(j)
1 )}∞j=1 ⊂ H2 × H1 and

{F (j)}∞j=1 ⊂ C([0, T0];H1) ∩ C1([0, T0];L2) such that

lim
j→∞

(u(j)
0 , u

(j)
1 ) = (u0, u1) in H1 × L2, lim

j→∞
F (j) = f(u) in C([0, T0];L2)

and let u(j) be the strong solution of the linear inhomogeneous equation (9.4.5)
with the initial data (u(j)

0 , u
(j)
1 ) and the inhomogeneous term F (j). By the same

argument as above, we can see that {u(j)}∞j=1 is a Cauchy sequence in C([0, T0];L2)
and we denote the limit function by ũ. Then ũ satisfies the integral equation

ũ(t) = R(t, 0)(u0, u1) +
∫ t

0

S(t, s)f(u(s))ds.

Therefore, it suffices to prove that u = ũ. Since each u(j) is a strong solution and
u is a weak solution, we can deduce that∫

[0,T0)×Rn

(u(j) − u)(φtt − ∆φ− (a(t, x)φ)t)dxdt

=
∫
Rn

((a(0, x)(u(j)
0 − u0) + (u(j)

1 − u1))φ(0, x) − (u(j)
0 − u0)φt(0, x))dx

+
∫

[0,T0)×Rn

(F (j) − f(u))φdxdt

holds for any φ ∈ C∞
0 ([0, T0) × Rn). Letting j → +∞, we obtain∫

[0,T0)×Rn

(ũ− u)(φtt − ∆φ− (a(t, x)φ)t)dxdt = 0.
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Let ψ ∈ C∞
0 ((0, T0) × Rn) and we take a function φ satisfying the equation

φtt − ∆φ− (a(t, x)φ)t = ψ

and having the data φ(T0, x) = φt(T0, x) = 0. Then we see that∫
[0,T0)×Rn

(ũ− u)ψ(t, x)dxdt = 0.

Noting that ψ is an arbitrary test function, we have u = ũ a.e. (0, T0)×Rn. Since
T0 is arbitrary in (0, T ), we conclude that u = ũ a.e. (0, T ) × Rn. �

9.5. Local existence

In this section we prove a local existence of the solution to

(9.5.1)
{
utt − ∆u+ a(t, x)ut = f(u) (t, x) ∈ (0,∞) × Rn,
(u, ut)(0, x) = (u0, u1)(x) x ∈ Rn.

where a(t, x) is a smooth nonnegative function and satisfies (9.4.2), that is,

sup
x∈Rn

|a(t, x)| < +∞

holds for all t ≥ 0. We assume that f(·) : R → R is a C1 map and satisfies f(0) = 0
and (9.4.11), that is,

|f(u) − f(v)| ≤ C(|u| + |v|)p−1|u− v|(9.5.2)

|f ′(u) − f ′(v)| ≤ C

{
(|u| + |v|)p−2|u− v| (p > 2),
|u− v|p−1 (1 < p ≤ 2)

with some constant C > 0 and p > 1.
We consider weak solutions of (9.5.1). Let T > 0 andX(T ) := C([0, T );H1(Rn))∩

C1([0, T );L2(Rn)). Recall that a function u ∈ X(T ) is a weak solution of the
Cauchy problem (9.5.1) on the interval [0, T ) if it holds that∫

[0,T )×Rn

u(t, x)(∂2
t φ(t, x) − ∆φ(t, x) − ∂t(a(t, x)φ(t, x)))dxdt(9.5.3)

=
∫
Rn

{(a(0, x)u0(x) + u1(x))φ(0, x) − u0(x)∂tφ(0, x)} dx

+
∫

[0,T )×Rn

f(u)φ(t, x)dxdt

for any φ ∈ C∞
0 ([0, T ) × Rn).

Let ψ(t, x) ∈ C1([0,∞) × Rn) be a nonnegative function satisfying
(9.5.4)

ψt(t, x) ≤ 0, |∇ψ(t, x)|2 ≤ −ψt(t, x)a(t, x), e(
2
p−2)ψ(t,x)|∇ψ(t, x)|2 ≤ C

with some constant C > 0.
In the following, we consider the initial data (u0, u1) satisfying

(9.5.5) I2
0 :=

∫
Rn

e2ψ(0,x)(u0(x)2 + |∇u0(x)|2 + u1(x)2)dx < +∞.

We also put

Iψ(t, u)2 :=
∫
Rn

e2ψ(t,x)(u(t, x)2 + ut(t, x)2 + |∇u(t, x)|2)dx.
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We note that when ψ ≡ 0, (9.5.5) is equivalent to (u0, u1) ∈ H1(Rn) × L2(Rn).
We first note that such a function can be approximated by smooth and compactly
supported functions.

Lemma 9.19. Let u0, u1 be a function satisfying (9.5.5). Then there exist se-
quences {(u(j)

0 , u
(j)
1 )}∞j=1 ⊂ C∞

0 (Rn) × C∞
0 (Rn) such that

(9.5.6) lim
j→∞

∫
Rn

e2ψ(0,x)(|u(j)
0 (x) − u(x)|2 + |∇(u(j)

0 (x) − u0(x))|2)dx = 0

and

(9.5.7) lim
j→∞

∫
Rn

e2ψ(0,x)(u(j)
1 (x) − u1(x))2dx = 0.

Moreover, let T > 0 and let v ∈ C([0, T );H1) ∩ C1([0, T );L2) satisfy

sup
t∈[0,T )

Iψ(t, v) ≤ R

with some R > 0. Then there exists a sequence {v(j)}∞j=1 ⊂ C∞
0 ((0, T ) × Rn) such

that

lim
j→∞

∫ T

0

(∫
Rn

e2ψ(t,x)(|v(j)(t, x) − v(t, x)|2 + |∇v(j)(t, x) −∇v(t, x)|2)dx
)q

dt = 0

(9.5.8)

for any q ∈ [1,∞).

Proof. Let χ(x) ∈ C∞
0 (Rn) be a cut-off function satisfying

χ(0) = 1, 0 ≤ χ(x) ≤ 1, suppχ ⊂ {x ∈ Rn | |x| ≤ 1}, |∇χ(x)| ≤ C0

with some constant C0 > 0. Let δ ∈ (0, 1) and we define χδ(x) := χ(δx). Next,
we define the Friedrichs mollifier. Let ρ ∈ C∞

0 (Rn) be an another cut-off function
such that

ρ(x) ≥ 0, supp ρ ⊂ {x ∈ Rn | |x| ≤ 1},
∫
Rn

ρ(x)dx = 1

and we define ρε(x) := ε−nρ(ε−1x) for ε ∈ (0, 1). We will prove that u can be
approximated by ρε ∗ (χδu) with sufficiently small ε, δ.

We first prove (9.5.7). Let η > 0 be an arbitrary small number. By the
Lebesgue dominated convergence theorem, we see that there exists a constant δ0
such that ∫

Rn

e2ψ(t,x) |χδ(x)u1(x) − u1(x)|2 dx <
η

4
holds for any δ ∈ (0, δ0]. Since suppχδ0 ⊂ {x ∈ Rn | |x| ≤ 1/δ0}, we can obtain

e2ψ(0,x) ≤ Cδ0

for |x| ≤ 1/δ0 +1 with some constant Cδ0 > 0. Therefore, we can deduce that there
exists a constant ε0 > 0 such that∫

Rn

e2ψ(0,x) |ρε ∗ (χδ0u1) − χδ0u1|2 dx

≤ Cδ0

∫
Rn

|ρε ∗ (χδ0u1) − χδ0u1|2 dx

<
η

4
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is true for any ε ∈ (0, ε0]. Thus, we have∫
Rn

e2ψ(t,x) |ρε ∗ (χδ0u1) − u1|2 dx

≤ 2
∫
Rn

e2ψ(0,x) |ρε ∗ (χδ0u1) − χδ0u1|2 dx

+ 2
∫
Rn

e2ψ(0,x) |χδ(x)u1(x) − u1(x)|2 dx < η,

which proves (9.5.7).
Next, we prove (9.5.6). Let η > 0 be an arbitrary small number. As before, we

can see that there exists a constant δ0 > 0 such that∫
Rn

e2ψ(0,x) |χδ(x)u0(x) − u0(x)|2 dx <
η

8

holds for any δ ∈ (0, δ0]. On the other hand, noting that

|∇χδ(x)| = δ|(∇χ)(δx)| ≤ C0δ,

we can deduce that∫
Rn

e2ψ(0,x)|∇(χδu0) −∇u0|2dx

≤ 2
∫
Rn

e2ψ(0,x)δ2C2
0u0(x)2dx+ 2

∫
Rn

e2ψ(0,x)|χδ∇u0 −∇u0|2dx.

From this, it follows that there exists a constant δ1 > 0 such that∫
Rn

e2ψ(0,x)|∇(χδu0) −∇u0|2dx <
η

8

holds for any δ ∈ (0, δ1]. We put δ2 := min{δ0, δ1}. Then, there exists some
constant Cδ2 > 0 such that

e2ψ(0,x) ≤ Cδ2

for any |x| ≤ 1/δ2 + 1. Therefore, we can conclude that there exists a small ε0 > 0
such that ∫

Rn

e2ψ(0,x) |ρε ∗ (χδ2u0) − χδ2u0|2 dx

≤ Cδ2

∫
Rn

|ρε ∗ (χδ2u0) − χδ2u0|2 dx <
η

8

and ∫
Rn

e2ψ(0,x) |ρε ∗ (∇(χδ2u0)) −∇(χδ2u0)|2 dx

≤ Cδ2

∫
Rn

|ρε ∗ (∇(χδ2u0)) −∇(χδ2u0)|2 dx <
η

8
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for any ε ∈ (0, ε0]. Finally, we have∫
Rn

e2ψ(0,x)
(
|ρε ∗ (χδ2u0) − u0|2 + |∇(ρε ∗ (χδ2u0)) −∇u0|2

)
dx

≤ 2
∫
Rn

e2ψ(0,x) |ρε ∗ (χδ2u0)(x) − χδ2u0(x)|2 dx

+ 2
∫
Rn

e2ψ(0,x) |χδ2(x)u0(x) − u0(x)|2 dx

+ 2
∫
Rn

e2ψ(0,x)|∇(χδ2u0)(x) −∇u0(x)|2dx

+ 2
∫
Rn

e2ψ(0,x) |ρε ∗ (∇(χδ2u0))(x) − (∇χδ2u0)(x)|2 dx < η,

which shows (9.5.6).
Let us turn to prove the latter assertion. Let T > 0 and let v ∈ C([0, T );H1)∩

C1([0, T );L2) satisfy supt∈[0,T ) Iψ(t, v) ≤ R. Let χδ(x) and ρ be functions as above
and let σ(t) ∈ C∞

0 (R) such that

σ(t) ≥ 0, suppσ ⊂ (−1, 1),
∫
R

σ(t)dt = 1.

We define σε(t) := ε−1σ(ε−1t). Let µγ(t) with small γ > 0 be a cut-off function
such that

µγ(t) = 1 (t ∈ [γ, T − γ]), µγ(t) = 0 (t ∈ [0, γ) ∪ (T − γ, T ]).

We shall prove that the function

vδ,γ,ε := σε ∗ ρε ∗ (µγχδv)(t, x) :=
∫ T

0

∫
Rn

σε(t− s)ρε(x− y)(µγχδv)(s, y)dyds

for sufficiently small δ, γ, ε gives the desired approximation of v(t, x). Let η > 0 be
an arbitrary number. Let q ∈ [1,∞). By noting that supt∈[0,T ) Iψ(t, v) ≤ R, in a
similar way to deriving (9.5.6), we can see that there exist some γ0, δ0 such that∫ T

0

(∫
Rn

e2ψ(t,x)(|µγ(t)χδ(x)v(t, x) − v(t, x)|2

+ |∇x(µγ(t)χδ(x)v(t, x)) −∇xv(t, x)|2)dx
)q
dt <

η

2q+1

for all γ ∈ (0, γ0], δ ∈ (0, δ0]. Noting that

supp (µγ0χδ0v) ⊂ [γ, T − γ] × {x ∈ Rn | |x| ≤ 1/δ0},

we deduce that there exists some ε0 > 0 such that σε ∗ρε ∗(µγ0χδ0v) ∈ C∞
0 ((0, T )×

Rn) holds for any ε ∈ (0, ε0]. We remark that

e2ψ(t,x) ≤ Cγ0,δ0
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is valid for (t, x) ∈ suppσε ∗ ρε0 ∗ (µγ0χδ0v) with some constant Cγ0,δ0 > 0. By
using this, it follows that there exists some ε1 ∈ (0, ε0] such that∫ T

0

(∫
Rn

e2ψ(t,x)(|σε ∗ ρε ∗ (µγ0χδ0v)(t, x) − (µγ0χδ0v)(t, x)|2

+ |∇x(σε ∗ ρε ∗ (µγ0χδ0v))(t, x) −∇x(µγ0χδ0v)(t, x)|2)dx
)q
dt

≤ Cqγ0,δ0

∫ T

0

(∫
Rn

(|σε ∗ ρε ∗ (µγ0χδ0v)(t, x) − (µγ0χδ0v)(t, x)|2

+ |∇x(σε ∗ ρε ∗ (µγ0χδ0v))(t, x) −∇x(µγ0χδ0v)(t, x)|2)dx
)q
dt

<
η

2q+1

for any ε ∈ (0, ε1]. Consequently, we have∫ T

0

(∫
Rn

e2ψ(t,x)(|(σε1 ∗ ρε1 ∗ (µγ0χδ0v))(t, x) − v(t, x)|2

+ |∇x(σε1 ∗ ρε1 ∗ (µγ0χδ0v))(t, x) −∇xv(t, x)|2)dx
)q
dt < η,

which completes the proof. �

Using the above lemma, we can also obtain an approximation of the nonlinear
term f(v).

Lemma 9.20. Let T > 0, f : R → R be a C1-map satisfying (9.5.2) and let
v ∈ C([0, T );H1) ∩ C1([0, T );L2) satisfy supt∈[0,T ) Iψ(t, v) ≤ R with some R > 0.
We take an approximation {v(j)}∞j=1 ⊂ C∞

0 ((0, T ) × Rn) of v satisfying (9.5.8).
Then it follows that

(9.5.9) lim
j→∞

∫ T

0

‖eψ(t)(f(v(j)) − f(v))‖L2dt = 0.

Proof. We first note that the condition (9.5.4) implies that

(9.5.10) e
2
pψ(t,x)|∇ψ(t, x)|2 ≤ Ce2ψ(t,x)

with some constant C > 0. Using this, we deduce that

(9.5.11) ‖e
1
pψ(t)v‖H1 ≤ C(‖eψ(t)v‖L2 + ‖eψ(t)∇v‖L2).

Moreover, by the convergence (9.5.8) with q = 2(p− 1) ( q = 1 if 2(p− 1) < 1 ), we
see that ∫ T

0

(‖eψ(t)v(j)‖L2 + ‖eψ(t)∇v(j)‖L2)qdt ≤ C
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with some constant C = C(T,R, q) > 0. Moreover, by the Gagliardo-Nirenberg in-
equality (see Lemma 9.10), we have ‖v‖L2p ≤ C‖v‖H1 . Therefore, we can calculate

∫ T

0

‖eψ(t)(f(v(j)) − f(v))‖L2dt

≤ C

∫ T

0

‖eψ(t)(|v(j)| + |v|)p−1(v(j) − v)‖L2dt

≤ C

∫ T

0

‖e
p−1
p ψ(t)(|v(j)| + |v|)p−1‖

L
2p
p−1

‖e
1
pψ(t)(v(j) − v)‖L2pdt

≤ C

∫ T

0

‖e
1
pψ(t)(|v(j)| + |v|)‖p−1

L2p ‖e
1
pψ(t)(v(j) − v)‖L2pdt

≤ C

∫ T

0

(‖e
1
pψ(t)v(j)‖L2p + ‖e

1
pψ(t)v‖L2p)p−1‖e

1
pψ(t)(v(j) − v)‖L2pdt

≤ C

∫ T

0

(‖e
1
pψ(t)v(j)‖H1 + ‖e

1
pψ(t)v‖H1)p−1‖e

1
pψ(t)(v(j) − v)‖H1dt

≤ C

∫ T

0

(‖eψ(t)v(j)‖L2 + ‖eψ(t)∇v(j)‖L2 + ‖eψ(t)v‖L2 + ‖eψ(t)∇v‖L2)p−1

× (‖eψ(t)(v(j) − v)‖L2 + ‖eψ(t)(∇v(j) −∇v)‖L2)dt.

By the Schwarz inequality, the right-hand side is estimated by

C

(∫ T

0

(‖eψ(t)v(j)‖L2 + ‖eψ(t)∇v(j)‖L2 + ‖eψ(t)v‖L2 + ‖eψ(t)∇v‖L2)2(p−1)dt

)1/2

×

(∫ T

0

(‖eψ(t)(v(j) − v)‖L2 + ‖eψ(t)(∇v(j) −∇v)‖L2)2dt

)1/2

≤ C

(∫ T

0

(‖eψ(t)v(j)‖L2 + ‖eψ(t)∇v(j)‖L2 + ‖eψ(t)v‖L2 + ‖eψ(t)∇v‖L2)qdt

)1/2

×

(∫ T

0

(‖eψ(t)(v(j) − v)‖L2 + ‖eψ(t)(∇v(j) −∇v)‖L2)2dt

)1/2

with some constant C = C(T,R, q), where

q =

{
2(p− 1) (2(p− 1) ≥ 1),
1 (2(p− 1) < 1).
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Thus, the boundedness of v, v(j), the Hölder inequality and (9.5.8) with q = 1 imply
that ∫ T

0

‖eψ(t)(f(v(j)) − f(v))‖L2dt

≤ C

(∫ T

0

(‖eψ(t)(v(j) − v)‖L2 + ‖eψ(t)(∇v(j) −∇v)‖L2)2dt

)1/2

≤ C

(∫ T

0

(‖eψ(t)(v(j) − v)‖2
L2 + ‖eψ(t)(∇v(j) −∇v)‖2

L2)dt

)1/2

→ 0

as j → +∞. �
Let us prove the existence of local solution for (9.5.1).

Proposition 9.21. Let f satisfy (9.5.2) with

1 < p ≤ n

n− 2
(n ≥ 3), 1 < p <∞ (n = 1, 2)

and (u0, u1), ψ satisfy (9.5.5), (9.5.4), respectively. Then there exists T ∗ ∈ (0,∞]
and a unique weak solution u ∈ X(T ∗) of (9.5.1) such that Iψ(t, u) is continuous
on t ∈ [0, T ∗) and Iψ(t, u) < +∞ for t ∈ [0, T ∗). Moreover, if T ∗ < +∞, then it
follows that

lim
t→T∗−0

∫
Rn

e2ψ(t,x)(u(t, x)2 + ut(t, x)2 + |∇u(t, x)|2)dx = +∞.

Proof. We follow the argument of Ikehata and Tanizawa [35]. Let T,R > 0
and

BT,R := {v ∈ X(T ) | Iψ(v, t) ∈ C([0, T )), ‖v‖Xψ(T ) ≤ R},
where

‖v‖Xψ(T ) := sup
t∈[0,T )

Iψ(v, t).

We note that the usual norm of X(T )

‖v‖X(T ) := sup
t∈[0,T )

{‖vt(t)‖L2 + ‖∇v(t)‖L2 + ‖v(t)‖L2}

is smaller than or equal to the weighted norm ‖v‖Xψ(T ). We define a mapping
Φ : BT,R → X(T ) such that u(t, x) = (Φv)(t, x) is the unique solution to the linear
equation

(9.5.12)
{
utt − ∆u+ a(t, x)ut = f(v) (t, x) ∈ (0, T ) × Rn,
(u, ut)(0, x) = (u0, u1)(x) x ∈ Rn.

Here we note that by Propositions 9.15 and 9.16, there exists a unique mild (weak)
solution for the above Cauchy problem.

By multiplying the equation (9.5.12) by e2ψut, we have

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇·(e2ψut∇u)+e2ψ

(
a(t, x) − |∇ψ|2

−ψt
− ψt

)
u2
t = e2ψf(v)ut.

The assumption of ψ implies

∂

∂t

[
e2ψ

2
(u2
t + |∇u|2)

]
−∇ · (e2ψut∇u) ≤ e2ψf(v)ut.
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Integrating this inequality, we obtain

d

dt

∫
Rn

e2ψ

2
(u2
t + |∇u|2)dx ≤ C

∫
Rn

e2ψ|v|putdx.

Therefore, we have

(9.5.13) E(u; t) ≤ E(u; 0) + C

∫ t

0

∫
Rn

e2ψ|v|putdxdτ,

here we used the notation

E(u; t) :=
∫
Rn

e2ψ(t,x)(ut(t, x)2 + |∇u(t, x)|2)dx.

By the Schwarz inequality, one can find

(9.5.14) E(u; t) ≤ E(u; 0) + C

∫ t

0

(∫
Rn

e2ψ|v|2pdx
)1/2

E(u; τ)1/2dτ.

We apply Lemma 9.12 to (9.5.14) and obtain

E(u; t)1/2 ≤ E(u; 0)1/2 + C

∫ t

0

(∫
Rn

e2ψ|v|2pdx
)1/2

dτ.

From Lemma 9.10, we have∫
Rn

e2ψ|v|2pdx ≤ C

(∫
Rn

e
2
pψ|v|2dx

)p(1−σ)(∫
Rn

e
2
pψ(|∇ψ|2v2 + |∇v|2)dx

)pσ
with σ = n(p − 1)/(2p). We note that the condition σ ≤ 1 is equivalent to p ≤
n/(n− 2) when n ≥ 3. By (9.5.4), we have

e
p
2ψ|∇ψ|2 ≤ Ce2ψ.

Therefore, it follows that

E(u; t)1/2 ≤ E(u; 0)1/2 + C

∫ t

0

‖eψv‖p(1−σ)
L2 (‖eψ∇v‖L2 + ‖eψv‖L2)pσdτ(9.5.15)

≤ E(u; 0)1/2 + CTRp,

since v ∈ BT,R. On the other hand, since

u = u0 +
∫ t

0

utdτ,

and ψt ≤ 0, we calculate

‖eψu(t)‖L2 ≤ ‖eψ(0)u0‖L2 +
∫ t

0

‖eψ(τ)ut(τ)‖L2dτ(9.5.16)

≤ ‖eψ(0)u0‖L2 +
∫ t

0

(E(u; 0)1/2 + CTRp)dτ

≤ ‖eψ(0)u0‖L2 + E(u; 0)1/2T + CT 2Rp.

Here we give a remark on the justification of the above argument. We first
assume that (u0, u1) ∈ C∞

0 (Rn) × C∞
0 (Rn). Then we note that the condition

(9.5.5) automatically follows. Moreover, we assume that v ∈ C∞
0 ((0, T ) × Rn).

Under these assumptions, as we mentioned in Section 9.4.3, we have

f(v) ∈ C([0, T );H1) ∩ C1([0, T );L2).
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Thus, as we described in Section 9.4.2, it is known that there exists a unique strong
solution

u ∈
2∩
j=0

C2−j([0, T );Hj)

(see [25, Theorem 2.25]). Moreover, by the finite propagation speed property (see
[25, Theorem 2.7]), it holds that

suppu(t, ·) ⊂ {x ∈ Rn | |x| ≤ K}
for t ∈ [0, T ) with some K > 0 (K is determined from the size of the support
of u0, u1, v). Therefore, for this strong solution u, all of the above calculations
make sense. Moreover, the continuity of ‖(u, ut)(t)‖H1×L2 induces those of the
weighted energy E(u, t) and L2-norm ‖eψ(t)u(t)‖L2 . For general (u0, u1) ∈ H1×L2

and v ∈ BT,R, we take sequences {(u(j)
0 , u

(j)
1 )}∞j=1 ⊂ C∞

0 (Rn) × C∞
0 (Rn) and

{v(j)}∞j=1 ⊂ C∞
0 ((0, T ) × Rn) such that

lim
j→∞

∫
Rn

e2ψ(0,x)(|u(j)
0 − u0|2 + |∇(u(j)

0 − u0)|2 + |u(j)
1 − u1|2)dx = 0,

lim
j→∞

∫ T

0

(∫
Rn

e2ψ(t,x)(|v(j) − v|2 + |∇(v(j) − v)|2)dx
)q

dt = 0

for q ∈ [1,∞) (see Lemma 9.19). From Lemma 9.20, it also follows that

lim
j→∞

∫ T

0

‖eψ(t)(f(v(j)) − f(v))‖L2dt = 0.

Let u(j) be the corresponding strong solution to the initial data (u(j)
0 , u

(j)
1 ) and the

inhomogeneous term f(v(j)). By using the above estimates, we can prove that

lim
j→∞

(
sup

t∈[0,T )

∫
Rn

e2ψ(t,x)
(
|u(j) − u|2 + |∇(u(j) − u)|2 + |u(j)

t − ut|2
)
dx

)
= 0

and hence, the estimates (9.5.15) and (9.5.16) still hold for weak solution u. In
fact, we first note that the difference u(j) − u(k) satisfies the linear inhomogeneous
equation

wtt − ∆w + a(t, x)wt = f(v(j)) − f(v(k))

and has the initial data w(0) = u
(j)
0 − u

(k)
0 , wt(0) = u

(j)
1 − u

(k)
1 . Modifying the

derivation of the inequality (9.5.13), we can see that

E(u(j) − u(k); t) ≤ E(u(j) − u(k); 0)

+ C

∫ t

0

∫
Rn

e2ψ(s,x)
(
(f(v(j)) − f(v(k)))(u(j)

t − u
(k)
t )
)
dx.

By the Schwarz inequality, we obtain∫ t

0

∫
Rn

e2ψ(s,x)
(
(f(v(j)) − f(v(k)))(u(j)

t − u
(k)
t )
)
dx

≤
∫ t

0

(∫
Rn

e2ψ
∣∣∣f(v(j)) − f(v(k))

∣∣∣2 dx)1/2(∫
Rn

e2ψ
∣∣∣u(j)
t − u

(k)
t

∣∣∣2 dx)1/2

ds

≤ C

∫ t

0

(∫
Rn

e2ψ
∣∣∣f(v(j)) − f(v(k))

∣∣∣2 dx)1/2

E(u(j) − u(k); s)1/2ds.
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Therefore, we can apply Lemma 9.12 and deduce that

E(u(j) − u(k); t)1/2 ≤ CE(u(j) − u(k); 0)1/2

+ C

∫ t

0

‖eψ(s)(f(v(j)) − f(v(k))‖L2ds

≤ CE(u(j) − u(k); 0)1/2

+ C

∫ T

0

‖eψ(s)(f(v(j)) − f(v(k))‖L2ds

→ 0

uniformly in t ∈ [0, T ) as j, k → +∞. Moreover, from this, we have

‖eψ(t)(u(j) − u(k))(t)‖L2

≤ C‖eψ(0)(u(j)
0 − u

(k)
0 )‖L2 + C

∫ t

0

‖eψ(s)(u(j)
t − u

(k)
t )(s)‖L2ds

≤ C‖eψ(0)(u(j)
0 − u

(k)
0 )‖L2 + CT sup

s∈[0,T )

‖eψ(s)(u(j)
t − u

(k)
t )(s)‖L2

→ 0

uniformly in t ∈ [0, T ) as j, k → +∞. Therefore, {u(j)}∞j=1 is a Cauchy sequence
with respect to the norm ‖ · ‖Xψ(T ) and we denote the limit function by ũ. Let
us prove that ũ = Φ(v). Since each u(j) is also weak solution of (9.5.12) with the
initial data (u(j)

0 , u
(j)
1 ) and the inhomogeneous term f(v(j)), that is,∫

[0,T )×Rn

u(j)(t, x)(∂2
t φ(t, x) − ∆φ(t, x) − ∂t(a(t, x)φ(t, x)))dxdt

=
∫
Rn

{
(a(0, x)u(j)

0 (x) + u
(j)
1 (x))φ(0, x) − u

(j)
0 (x)∂tφ(0, x)

}
dx

+
∫

[0,T )×Rn

f(v(j))φ(t, x)dxdt

is true for any φ ∈ C∞
0 ([0, T )×Rn). Letting j → +∞, we can see that ũ is a weak

solution of (9.5.12). However, by Propositions 9.15 and 9.16, the weak solution of
(9.5.12) is unique. This implies that ũ = Φ(v).

Consequently, by the estimates (9.5.15) and (9.5.16), we have

‖eψut(t)‖L2 + ‖eψ∇u(t)‖L2 + ‖eψu(t)‖L2 ≤ I0 + TE(u; 0)1/2 + CT (1 + T )Rp.

We take R satisfying

I0 <
R

2
and then choose T sufficiently small so that

RT

2
+ CT (1 + T )Rp <

R

2
.

Then we have ‖u‖T < R and this proves that Φ is a mapping from BT,R to BT,R.
Next, we show that Φ is contractive by taking T smaller. Let v, v ∈ BT,R, u :=

Φ(v), u := Φ(v) and w := u − u. By noting that w is the unique solution for the
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Cauchy problem

(9.5.17)
{
wtt − ∆w + a(t, x)wt = f(v) − f(v)
w(0, x) = 0, wt(0, x) = 0

and (9.5.14) we have

E(w; t) ≤
∫ t

0

∫
Rn

|f(v) − f(v)|wtdxdτ.

By the assumption on f , using the Schwarz inequality and the Hölder inequality,
we obtain

E(w; t) ≤ C

∫ t

0

∫
Rn

e2ψ|v(τ) − v(τ)|(|v(τ) + |v(τ)|)p−1|wt(τ)|dxdτ

≤ C

∫ t

0

(∫
Rn

e2ψw2
t (τ)dx

)1/2

×
(∫

Rn

e2ψ|v(τ) − v(τ)|2(|v(τ)| + |v(τ)|)2(p−1)dx

)1/2

dτ

≤ C

∫ t

0

E(w; τ)1/2‖e
2
pψ(v − v)‖L2p‖e

2
pψ(|v(τ)| + |v(τ)|)‖p−1

L2p dτ.

We use Lemma 9.12 again and have

E(u; t)1/2 ≤ C

∫ t

0

‖e
2
pψ(v(τ) − v(τ))‖L2p(‖e

2
pψv(τ)‖L2p + ‖e

2
pψv‖L2p)p−1dτ.

By Lemma 9.10, the integrands in the right-hand side of the inequality above are
estimated as

‖e
2
pψ(v(τ) − v(τ))‖L2p ≤ C‖e

2
pψ(v(τ) − v(τ))‖1−σ

L2 ‖∇(e
2
pψ(v(τ) − v(τ)))‖σL2

≤ C‖v − v‖Xψ(T ),

‖e
2
pψv(τ)‖L2p ≤ C‖e

2
pψv(τ)‖1−σ

L2 ‖∇(e
2
pψv(τ))‖σL2

≤ C‖v‖Xψ(T ).

Thus, we have
E(w; t)1/2 ≤ C‖v − v‖Xψ(T )(2R)p−1T.

On the other hand, since

‖e2ψ(t)w(t)‖L2 ≤
∫ t

0

‖e2ψ(τ)wt(τ)‖L2dτ

≤ C(2R)p−1T 2‖v − v‖Xψ(T ),

we obtain
‖u− u‖Xψ(T ) ≤ CRp−1T 2‖v − v‖Xψ(T ).

Now we choose T sufficiently small so that

CRp−1T 2 <
1
2
.

Then we have

(9.5.18) ‖u− u‖Xψ(T ) ≤
1
2
‖v − v‖Xψ(T ),
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which implies that Φ is a contraction mapping. At last we take the sequence
{u(k)}∞k=0 such that

u(0)(t, x) := u0(x), u0 ∈ BT,R

u(k)(t, x) := (Φu(k−1))(t, x), k = 1, 2, . . . .

That is {
u

(k)
tt − ∆u(k) + a(t, x)u(k)

t = |u(k−1)|p,
u(k)(0, x) = u0(x), u

(k)
t (0, x) = u1(x).

By (9.5.18) and the fact ‖v‖X(T ) ≤ ‖v‖Xψ(T ), {u(k)} is a Cauchy sequence in X(T ).
Hence there exists u ∈ X(T ) satisfying

u(k) → u in C([0, T );H1(Rn)),

u
(k)
t → ut in C([0, T );L2(Rn))

as k → ∞, and so, u becomes a weak solution to (9.5.1). Moreover, we can see that
u ∈ BT,R, that is

(9.5.19) sup
t∈[0,T )

Iψ(t, u) ≤ R.

Indeed, we take an arbitrary small number ε > 0 and a subsequence {u(k(j))}∞j=1 of
{u(k)}∞k=1 such that

‖u(k(j)) − u(k(j−1))‖Xψ(T ) ≤ ε2−j .
By noting that

u = u(k(0)) +
∞∑
j=1

(u(k(j)) − u(k(j−1))),

we can deduce that

‖u‖Xψ(T ) ≤ ‖u(k(0))‖Xψ(T ) +
∞∑
j=1

‖u(k(j)) − u(k(j−1))‖Xψ(T ) ≤ R+ ε.

Since ε is arbitrary, we have ‖u‖Xψ(T ) ≤ R. Thus, we obtain (9.5.19).
Next, we prove the uniqueness of the solution of (9.5.1) (this is also obtained

from the proof of Proposition 9.18). By the derivation of (9.5.19), if u and u are
solutions of (9.5.18), it is easy to see that

‖u− u‖Xψ(T ) ≤
1
2
‖u− u‖Xψ(T ).

Hence the uniqueness of the solution is obtained.
Finally, if the lifespan of the solution

T ∗ := sup{T > 0 | u ∈ X(T ) solves (9.5.1), ‖u‖T <∞}
is finite, then the weighted energy of the solution blows up at T ∗:

lim inf
t→T∗

(‖eψut(t)‖L2 + ‖eψ∇u(t)‖L2 + ‖eψu(t)‖L2) = ∞.

Because, if

lim inf
t→T∗

(‖eψut(t)‖L2 + ‖eψ∇u(t)‖L2 + ‖eψu(t)‖L2) =: M <∞,

then there exists a time sequence {tm}m∈N tending to T ∗ as m→ ∞ and such that

sup
m∈N

(‖eψut(tm)‖L2 + ‖eψ∇u(tm)‖L2 + ‖eψu(tm)‖L2) ≤M + 1.
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The argument before shows that there exists T (M + 1) > 0 such that the solution
u(t) can be extended on the interval [tm, tm + T (M + 1)] for any m. By taking
m sufficiently large so that tm ≥ T ∗ − (1/2)T (M + 1), the solution u(t) can be
extended on [T ∗, T ∗ +(1/2)T (M +1)]. This contradicts the definition of T ∗. Thus,
we complete the proof. �
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