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accurate diffusion-length measurements in amorphous silicon

Kiminori Hattori, Hiroaki Okamoto, and Yoshihiro Hamakawa
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
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This paper presents a theory that is the basis of the steady-state-photocarrier-grating (SSPG) tech-
nique, as a means of determining the diffusion length of photocarriers in amorphous semiconductors.
Solving the SSPG transport problem, including the formulation of small-signal photocurrent, by a
second-order perturbation approach reveals deficiencies in the existing SSPG theory, which is based on
first-order perturbation theory. It is also shown that the SSPG data analysis done routinely, assuming a
priori that local space-charge neutrality prevails, yields a severe overestimate of the diffusion length
when the condition is not met experimentally. An extension of the theory to measure accurately the
diffusion length by removing these defects inherent in the original SSPG formulation is demonstrated by
its successful application to hydrogenated amorphous silicon. The experiments carried out at various il-
lumination levels show that the correct value of the diffusion length and its light-intensity dependence
indeed differ to a significant degree from the results obtained with use of the previous method. A physi-
cal interpretation of the measured intensity dependence is also given, assuming a trap-controlled photo-

carrier transport model.

I. INTRODUCTION

Following the growing interest in hydrogenated amor-
phous silicon (a-Si:H) and its alloy materials for solar-cell
applications, the steady-state-photocarrier-grating
(SSPG) technique has been introduced by Ritter, Zeldov,
and Weiser as a simple and convenient way to measure
the ambipolar diffusion length.! The ambipolar diffusion
length is determined by less mobile or minority carriers,
which play a crucial role in determining the performance
of photovoltaic cells, and is, in general, hardly assessed as
compared with the transport parameters relevant to more
mobile or majority carriers. The recent popularity of the
SSPG technique among researchers of these materials® ™ '°
is greatly due to its experimental ease.

In the SSPG experiment, the sample is illuminated by
two coherent light beams of different intensities which in-
terfere and form a small grating superimposed on a large
uniform illumination. When the grating spacing is much
longer than the carrier diffusion length, a well-defined
concentration grating of photocarriers is created in the
sample. On the other hand, when the grating spacing is
comparable to or shorter than the diffusion length an al-
most uniform carrier concentration occurs in spite of the
nonuniform photogeneration. In order to detect the pho-
tocarrier grating amplitude that is a good indicator of the
diffusion length, a photocurrent perpendicular to the
grating fringes is measured in this technique. The SSPG
theory developed by Ritter, Zeldov, and Weiser on the
basis of a small-signal approach connects the magnitude
of the measured photocurrent with the ambipolar
diffusion length under the assumption of local space-
charge neutrality."?> The consequences derived from
their theory are at present widely utilized for the analysis
of SSPG experimental data.

We wish here to discuss the validity of prevailing
SSPG theory in detail, to propose an extended technique
for determining the diffusion length beyond the charge-
neutrality restriction, as well as to present experimental
results for a-Si:H obtained at various illumination levels.
In Sec. IT we first attack the SSPG transport problem, in
which a small incremental concentration of photocarriers
is mathematically treated as a perturbation to the back-
ground concentration, and show that a complete solution
for resulting SSPG current cannot be gained from the
previous theory starting with the first-order perturba-
tion.!™® The SSPG theory is thereby corrected precisely
taking into account the effects associated with the
higher-order perturbation. It turns out through the
theoretical analysis that a correction for magnitude of the
SSPG current is highly necessitated in the case when
space-charge effects become significant. In this theoreti-
cal section, we also emphasize the pitfalls of the original
SSPG data analysis""? which assume a priori that charge-
neutrality prevails. To remove such an experimental un-
certainty and to extend the applicable range of the
diffusion length measurement, in Sec. III we introduce
two independent experiments, the steady-state photocon-
ductivity (SSPC) and frequency-resolved photocurrent
(FRPC) experiments. Combining the SSPG data with the
results of these measurements yields an accurate deter-
mination of the diffusion length which does not require
charge-neutrality condition. We present the experimen-
tal data for a-Si:H obtained as a function of illumination
level, from which it is proved that the previous SSPG
diffusion-length measurements are erroneous to a
significant degree in the conventional light intensity
range 1-100 mW/cm?2.!~3 A physical interpretation on
the light-intensity dependence of measured diffusion
length is also given, assuming the trap-controlled photo-
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carrier transport model. In Sec. IV we summarize the
main conclusions of this paper.

II. THEORETICAL ANALYSIS
OF THE STEADY-STATE PHOTOCARRIER
GRATING (SSPG) TECHNIQUE

A. Perturbation expansion for the transport equations

On the basis of the perturbation expansion theory, this
section presents a thorough treatment manner of steady-
state transport equations in the small-signal case. Such
an adaptation of the small-signal approach has been
found in some previous papers, in which their theoretical
concerns are concentrated on the first-order perturbation
in order to avoid a probable nonlinear nature of the
transport equations. >!1!12 As will be stressed in Sec. I B,
the small-signal photocurrent in the SSPG experiment is
governed by the nonlinear effects relevant to the higher-
order correction terms involved in the perturbation ex-
pansion, whereas these effects have never yet been taken
into account precisely. The clarification of the small-
signal treatment with incorporation of the higher-order
corrections is therefore an important prerequisite for
placing the SSPG theory on a self-consistent basis.

In order to make this paper self-contained, we shall
start with the formalism of transport equations. It may
be convenient here to use the concept of drift mobility
and effective diffusion constant? by which the transport
equations can be represented in a simple fashion. The set
of drift mobility and effective diffusion constant for elec-
trons is defined by

w,(N)=u/N’/N and D,(N)=DJdN’/dN ,
and that for holes is
p,(P)=p/P//P and D,(P)=DJdP//dP .

In the above relations, N is the total electron concentra-
tion consisting of the free (N/) and trapped (N') concen-
trations (N =N7/+ N, and equivalently P (=P/+ P') the
total hole concentration. ,u{) » and D,{ » denote the band
mobilities and band diffusion constants, respectively,
which are the microscopic transport parameters assigned
to free carriers. It is evident from the definitions that a
standard Einstein relationship as found between the band
mobilities and band diffusion constants; D,{: »
=(kgT/q ),uf’p, where kg is Boltzmann’s constant and T
the temperature, is not maintained in the parameter
counterparts introduced here.

The one-dimensional electron and hole conduction
currents are expressed with these transport parameters
by

J,=qu,(N)NE +gD,(N)dN /dx , (1a)
J,=qu,(P)PE —qD,(P)dP /dx , (1b)

where x is the one-dimensional spatial variable, and g the
elementary electric charge. The space charge q(P —N) is
related to the electric field £ by the Poisson equation
dE /dx =(q /€)(P —N), where € denotes the dielectric
constant. The steady-state continuity equations for the
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electron and hole currents under light illumination are
represented by

G —R+(1/q)dJ,/dx=0, (2a)

G—R—(1/q)dJ,/dx=0. (2b)

Here G and R are the photogeneration rate and the
recombination rate, respectively. The recombination rate
is, in general, expressed as some function of electron and
hole concentrations, R =R (N, P).

In the small-signal approach, one considers that a weak
nonuniform generation G,(x) is superimposed on a rela-
tively strong uniform generation G,. The generation rate
is thus composed of the two parts:

G(x)=Gy+G,(x) . 3)

In the weak generation limit G, << G, the carrier con-
centrations N and P are expressed in the form of pertur-
bation expansion

N(x)=Ny+N;(x)+N,(x)+---, (4a)
P(x)=Py+P;(x)+P,y(x)+--. (4b)

The subscripts 0,1,2, . . . refer to the order of perturba-
tion. In the following, we impose the condition Ny =P,
assuming that no local net space charge is present due to
the uniform generation G,. This constitutes a simplified
but acceptable physical picture if the material is homo-
geneous. The conduction currents J, and J, can be writ-
ten as

J,(x)=J 0T (x)+T 0 (x )+, (5a)
Jp(x)=J 0t (x)+Jp(x )+ (5b)

The expression for each correction term in the above ex-
pansion is obtained from a couple of perturbation expan-
sions for drift and diffusion terms contained in Eq. (1).

By using the expansion formula of carrier concentra-
tion (4), one can expand the drift and diffusion terms.
The drift-related term for electrons is represented in this
manner by
Ba(NIN=p,No+u, Ny +p, Ny +u N /No+--, ()

n

where the drift mobility u, on the right-hand side of the
equation is

Pn =My (Ng)=pl(NT/N),y,

and the small-signal drift mobility of the first order u;
and that of the second order p, are, respectively, defined
by

w, =ul(dN’/dN), ,
ur=ul(Ny/2)X(d*N//dN?), .

In the above definitions, ( ), means the value of ( ) in the
unperturbed case. The expansion of diffusion term is
given for electrons by
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D, (N)dN /dx=D,dN, /dx +D,dN, /dx
+D))d(N?/Ny)/dx+--- . @)

Here, lack of the zeroth-order term is due to the spatial
uniformity of the unperturbed part of concentration. The
effective diffusion constants in the small-signal case are
defined by

D, =D,(Ny)=DJ(dN’/dN), ,
D,'=DJ{(Ny/2)(d>N’/dN?), .

The corresponding expressions for holes are readily ob-
tained by replacing N (and suffix n) with P (and suffix p).
It is worthwhile stating here the standard Einstein rela-
tionship holds for the small-signal parameter-pairs; y, ,
and D, ,, u, , and D,’,. The relation has been shown by
Ritter, Zeldov, and Weiser.? In a similar way, the recom-
bination rate is also written in the form of perturbation

series:
R(N,P)=No/7+N, /7 +P /7, +N, /7, +P, /T,
+(N3/Ny) /7
+2(N P, /No) /7y, + (P} /Py) /1) + -,
(8)
where the lifetime parameters are defined by
1/7=(R/N),,
1/7,=(dR /dN),, 1/7,=(dR/dP),,
1/7))=(Ny/2)(d*R /dN?), ,
1/7,y,=(No/2)(d*R /dN dP), ,
and
1/7)=(Ny/2)(d’R /dP?), .

It should be noted that all the values of the transport pa-
rameters introduced above are determined through the
background carrier concentrations No= P, generated by
Gy.

Using Egs. (1)—(8), one consequently obtains the trans-
port equations in the small-signal case, which are
classified by the order of perturbation as follows. The
equations for unperturbed parts are simply given by

Joo=qu,NoEq , (92)
JpO:qlJpPOEO N (9b)
No=Py,=G,T . 9c)

Here, E, is an externally applied electric field, and is uni-
form in space within the context of the assumption that
No=P,. The first-order carrier concentrations N; and
P, are governed by the differential equations

J=qu,NoE,+qu,N,Ey+gD,dN,/dx , (10a)
J=qu,PoE\+qu,P,Ey—qD,dP,/dx , (10b)
G,—N,/t,—P,/7,+(1/q)dJ,,/dx =0, (10c)

(10d)
(10e)

G, —N, /7, —P /7, —(1/q)dJ, /dx =0 ,
dEl/dx=(q/€)(P1_N1) .

A linearization found in the set of equations is a natural
consequence of collection of the first-order terms, and en-
ables us to easily obtain an analytical solution of the
equations. The second-order equations, which contain
nonlinear product terms such as N, E; and N2, are found
to be

Jn2=qunNoEy+qu, N \E\ +q(pu, Ny +p /N7 /No)E,

+q[D,dN,/dx+D,'d(N?/Ny)/dx], (11a)

Jp2=qu,PoE, +qu,P\E|+q(u, P, +u, P} /Py)E,
—q[D,dP,/dx +D,'d(P}/Py)/dx], (11b)
—N, /7, —Py/7,— (N} /7, +2N,P, /7y, + P} /7)) /N,

np
+(1/q9)dJ,,/dx=0, (11c¢)

=N, /1, —Py/7,— (N} /7 +2NP, /7, + P} /1)) /N,

—(1/9)dJ,,/dx=0, (11d)

dE,/dx=(q/€)(P,—N,) . (11e)

B. Photocurrent due to a weak illumination grating

The steady-state current continuity stating that the to-
tal conduction current J=J,(x)+J,(x) must be con-
stant at all x, makes it simple to derive the representation
for the SSPG current. Before going into the practical
description, we shall first give a generalized manner to
treat the small-signal photocurrent produced by the il-
lumination with a cyclic boundary condition
G,(x)=G;(x +A), which is encountered in the SSPG ex-
periment. The current continuity permits us to write the
expansion of J as

J=(J)+{J ) +(T)+-- . (12)

Here, ( ) expresses the spatial average defined by the in-
tegration from x =0 to A divided by A. It is readily
found that contributions of all the diffusion terms vanish
in the spatial average process due to the periodicity, so
that the average currents (J,), (J;), (J,), etc. are
comprised solely of the drift terms. Averages of the
electric-field corrections (E, ), (E,), etc. are also equal
to zero as is easily shown from the sum rule that
(E)=(E,)+(E,)+(E,)+ ---=E,. The average
currents are thus formulated by

(Jo)=04E, » (13a)
(J)=(0)E,, (13b)
(J2>=(0'1E1)+(0'2>E0, (13¢)

where the conductivities o, 0, and o, are, respectively,
given by
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Uozq(:“l’n+:u’p)N0 ’
Ulzq(ﬂ;Nl'*’,u;;Pl) ’
Uzzq(#;Nz+ﬂ;P2+I-L;;N%/N0+#:P%/P0) .

At this level of our theory, the average concentrations
(N,) and {(P;) can be derived directly from the equa-
tions obtained by averages on both sides of Egs.
(10c)—(10e). A solution of the equations is found to be

<N1>=(P1>=<Gl)7", (14)

where 7' denotes a common small-signal lifetime defined
by

V/r=1/m,+1/7, .

What is read from combining Eq. (13b) with (14) is that
any oscillating components of the light illumination do
not contribute to the first-order average current. In this
sense, the SSPG theory remains incomplete without the
precise inclusion of effects of the second-order perturba-
tion. The similar average procedure for Egs. (11c)—(11e)
allows us to obtain the reduced expressions for the
second-order average concentrations (N,) and (P,),
which are contained in the expression of (¢, ), yielding

(Ny)=(Py)=—(7"/No){N3}) /7, +2(N,P,} /T,
+(P}) /7)) . (15)

From Eqgs. (13c) and (15), it is found that the second-
order average current can be determined from solving the
first-order transport equation (10) and computing the
averages of product terms: {N,E,), (P,E,), (N?),
(N,P,),and (P?).

In order to proceed with our theoretical consideration
into the SSPG current, here we will briefly outline the
SSPG experimental setup. '? In the experiment, the sam-
ple is illuminated uniformly by a laser beam of intensity
I,, which sets the value of generation rate G;,. A small
portion of the beam I, is split off, passes through a light
chopper, and impinges on the sample at an angle 6 with
I,. Care is taken to ensure that the chopping frequency
is low enough for the steady-state approximation to be
valid. The ac photocurrent is measured under the two
conditions that two beams have parallel polarization and
those have perpendicular polarization. In the former
case, the interference of beams produces an illumination
grating with the period A=(A/2)sin(6/2), where A is the
light wavelength. The perturbation to generation rate G
is then written by

G (x)=gy,tggcos(Kx) with K=2w/A, (16)

where Gy:go:8x =Io:1,:2yo(Io1{)'"?, and v, (0<y,<1)
is an interference quality factor. > When two beams have
perpendicular polarization and thus do not interfere, G,
is equal to g.

The sinusodial form of the generation rate greatly
simplifies the solution of transport equations so far as
those classified into the first-order is concerned.?> The
first-order carrier concentration is also composed of a

small sinusoidal part superimposed on a uniform concen-
tration:

N,(x)=ny+Re[Agexp(iKx)], (17a)

P,(x)=p,+Re[prexp(iKx)] . (17b)

Applying Eq. (14) readily yields n,=p,=g,7’, which cor-
responds to the solution in the case of no interference.
fix and Pg are complex numbers that give the amplitudes
and phases of sinusoidal part. Substituting the above ex-
pressions into Eq. (10), one obtains two coupled linear
equations for the unknown concentrations 7y and p:

gy =Ag[8+bc /(b +1)—iKL,, +K2L2, ]

+Pk[n—be/(b+1)], (18a)
gxT =fg[8—c/(b+1)]
+pg[n+ec/(b+1)+iKL,+K?L},], (18b)

where L., ,=p,,E,7 are the drift lengths and

Lg,,=(D,, ,7')'* are the diffusion lengths."* The dimen-
sionless constants in the equations are given by>

b=p, /1, ¢=1"/Tgie1 »
and

S=1/1,, 1]=T’/T;,, where 8§ +79=1.
Tgieo denotes the dielectric relaxation time defined with
the background conductivity o by T4, =€/0.

For the sake of convenience, here we introduce another
dimensionless constant r defined by>

Using the definitions for the drift mobilities p1,, , and the
small-signal drift mobilities u, ,, one can write the ex-
pression for r by the ratio of the derivatives

r=[dIn(P)/deg,)o/[d In(N)/deg, ], ,

where €p,, denote the quasi-Fermi levels. The
mathematical manipulation in deriving the above expres-
sion is justified when free carriers obey Boltzmann statis-
tics. The derivatives on the right-hand side of the equa-
tion are tightly correlated with the energy distribution of
trap states. Here it may be useful to give the expressions
for the ratio r in two probable cases suggested for a-Si:H;
a monotonic exponential distribution!* and a structured
distribution with a sharp drop at shallow energy posi-
tion.!>!®  Assuming the exponential trap distribution,
one has r=T,/T, where T, are the characteristic tem-
peratures describing the exponential distributions for
electron and hole traps, respective1y3. On the other hand,
when the majority of trap states are shallower than
quasi-Fermi-levels present, the total carrier concentration
varies in proportion to the free-carrier concentration as
will be discussed in Sec. III C, so that the expression for
is rewritten by replacing the characteristic temperature
by an environment temperature.
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Using Eqgs. (13) and (18), the first-order SSPG current
(J,)=(0,)E, is readily found to be
(oY Eo=q(uy +u,)nogE, . (19)

]

(0,E;)=—(g*/2eK )(u

<0'2>E0 q/2N() EO(,LL Inl(l +‘up |pK|2

X { IﬁKIZ/T;,’+2{r‘iK| |k |cos[Arg(7ig ) — Arg(pg )]/

In arriving at Eq. (20b), we neglect the terms containing
the factor n2. This neglect is verified when the weak ex-
citation condition that g2 /g2 =1, /4y3l,<<1 is met. In
the case of no interference, both |7 | and |pg| are equal
to zero so that within the approximation up to the second
order the SSPG current is dominated solely by (o )E,.
Our expression for the SSPG current differs from those
derived from the previous works. 10 Recently, Li’s
work!® has concluded that the second-order SSPG
current (J,) is given by {(q(u,N, +,up )E, ), which
corresponds to (o E, ) with replacing u,, , by M- The
discrepancy arises from his simplified theory starting
with the assumption that drift mobility and effective
diffusion constant are concentration independent. As is
evident, the model regarding these parameters as con-
stant cannot deal with the trap-controlled photocarrier
transport which would occur in the amorphous semicon-
ductors with the localized states distributed within the
band gap, and hence limits its applicability specifically to
trap-free semiconductors. Taking into account the effects
of traps results in introducing the small-signal transport
parameters as well as the additional linear term (o,)E,
as is in Eq. (20). The effects of traps are in a manner
similar to ours considered in the SSPG theory originally

T =ngpgsin® /KL g + [ (1, +p,) /iy, + )17 (nf /7, + 2ng pgcos® /7, +pg /Ty~ (yng+p,pg)/(u

where ng =|fig|/gx™ and px=|px|/gx7 are the nor-
malized amplitudes of electron and hole concentration
gratings, ®=Arg(# K) Arg(Pg) the phase shift between
them, and L g = (14, + 11, ) E7gie) the dielectric relaxation
length. The first and the second terms on the right-hand
side of Eq. (23) are obtained from the computations for
(0,E,)/{0)Ey and (0,)/{0), respectively. The ex-
pression for the SSPG parameter I is quite general and
complete in the sense that it is not restricted to any
specific transport model, and the effect of the second-
order perturbation is accurately taken into account.

C. The SSPG parameter in the lifetime
and relaxation-time regimes

Examining the SSPG parameter I for all the probable
cases is somewhat troublesome since there are a large

' +y;,)|ﬁK||ﬁKlsin[Arg(ﬁK )—Arg(pg)],
oy )7
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This expression is valid whether the illumination grating
is produced or not. The second-order SSPG current
(J,) is given by the sum of (o ,E,) and (0,)E,. Com-
puting the averages of several product terms yields

(20a)

w T 1Bk [2/7}) (20b)

r

derived by Ritter, Zeldov, and Weiser, 3 but a correct for-
mulation of SSPG current is not achieved in their paper,
as will be intensively discussed in the following part of
this paper. The detailed discussion including comparison
with our corrected theory is of great significance because
their theory is widely used for analyzing the SSPG exper-
imental data at present.

Finally we will give expressions for some important ex-
perimental parameters. Following Ritter, Zeldov, and
Weiser we now define 8 (Refs. 1 and 2) as the ratio be-
tween the currents measured in the cases of interference
and of no interference:

B=1+(0,E,)/{a,)Ey+(0,) /(o) =1—2y%al .
(21)
Here, a is given by
a=(pp, + )7 /(py, + )7 (22)

It is easily understood that this parameter corresponds to
the exponent in power-law light-intensity dependence of
photoconductivity o < G® The SSPG parameter [ is
formulated using Egs. (19) and (20) by

ATl (23)

f

number of the transport parameters that modify its value.
It is here appropriate to reduce the expression for I" so as
to match our model for photocarrier transport in a-Si:H
derived in Sec. IIIC. This removes complication in the
theoretical analysis and thereby makes the discussion
straightforward.

In the following, we neglect the second term on the
right-hand side of Eq. (23), which is a minor component
of T'. The validity of neglect will be assessed in Sec. III C.
I' is simply rewritten by

C=ngpgsin® /KL, . (24)

The expression for T is further accessed in the Appendix
by employing an alternative to the present treatment for
the SSPG current. It is clear there that the parameter I'
is comprised of two components relevant to the drift
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current I', and to the diffusion current I';:
r=r,—r,. (25)
These two components are given by
T, = [k, ?nE + () p} +2u, )y ngpcos®]/(uy, +p, )
(26a)
Ty =(2E;/Eo)pnp, /iy +, ) Ingpgsin® ,  (26b)

where E;=(kgT /q)K is the so-called diffusion field. T,
is identical to that previously derived by Ritter et al.!’
They have, however, employed I', as an approximation
for T in their SSPG analysis. As will be evident below,
this could be a possible cause to yield misinterpretation of
the SSPG experimental data.

The parameters one can directly set in the SSPG exper-
iment are the grating period A, the generation rate G,
and the electric field E,. Among these parameters, we
will first bring the electric field E, into focus of con-
sideration. As is easily expected from Eq. (18), an appli-
cation of electric field causes the reduction of the ampli-
tudes of electron and hole concentration grating as well
as the phase slip between them. A criterion for a negligi-
ble electric field is readily found from comparing the drift

terms KL,, , with the diffusion terms K 2L3,,, » and is writ-
ten by’
E,<<E, . (27a)

This weak field condition indicates that the concentration
grating is diffusion controlled. Even if the condition (27a)
is not met, the effect of field still remains in a negligible
range so far as the alternative conditions that
KL,, <<bc/(b+1) and KL, <<c/(b+1) are both
fulfilled. The corresponding criterion for » =1 is simply
expressed by

KL, <<1. (27b)

It might be worthwhile to mention that the inequality is
rewritten as 2m(L,, +L,,)/A <<7'/74q. This condition
states that in the regime where the carrier lifetime is
much longer than the dielectric relaxation time the field
plays a negligible role in determining the state of concen-
tration grating even when the drift length is comparable
to or greater than the grating period. Thus Eq. (27) is in-
timately correlated with the transition between the life-
time and relaxation-time regimes in the presence of an
externally applied field.> Detailed aspects in both re-
gimes will be discussed below in conjunction with a low-
field SSPG.

We next turn to the effect of generation rate G,.
Readily evident is that varying the illumination level
directly modifies the value of dielectric relaxation time
Tgie- 1t must be also borne in mind through the con-
sideration that the various parameters which enter the
transport equations, such as the drift mobilities, the
diffusion constants, and the lifetime, are defined with
respect to the background carrier concentrations generat-
ed by G,. In other words, the transport parameters are,
in general, tuned by G,. For the sake of simplicity, we
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here restrict our attention to the low-field case, which is
justified by either Eq. (27a) or Eq. (27b). In this case, the
concentration gratings of both types of carriers are in
phase with the illumination grating. The expressions for
normalized grating amplitudes ny and pg are reduced to

(28a)
(28b)

ng=(1+K3L} /c)/Ax ,
px=(1+K2L3 /c)/ A ,

where the denominator Ay is given with the ambipolar
diffusion length L, =[(1,L, +,upL3,, )/, t1, )]1/?
by

Ag=1+K2L2  +[(K’Lj, +8)(K>Lj,+n)—8n]/c .

The expression for the SSPG parameter I' is also
simplified to

=By /A%, (29)
with
By=1+2K*L;, L}, /(Lj,+Lj,)]/c .

The drift-current component I', and the diffusion-current
component I'; are expressed by

[,=Bji/A},
Fd:BK(BK_l)/AIZ( .

(30a)
(30b)

It is of importance to obtain the reduced expressions of
grating amplitudes nyx and py as well as the SSPG pa-
rameter I' for two extreme cases, the lifetime and
relaxation-time regimes. The lifetime regime refers to the
case where the dielectric relaxation time 74 is much
shorter than the carrier lifetime, and could be encoun-
tered at an appropriately strong background illumina-
tion. The above expressions are reduced in the ¢ —
limit to

ng=pxg=1/(1+K2L% ), (31
r=r,=1/(1+K2L2% ). (32)

Local charge neutrality and ambipolarity manifest them-
selves in the identical grating amplitude ng =pg. In this
regime, the ambipolar diffusion length L, , can be deter-
mined immediately from the ' value measured in the
SSPG experiment. We also note that the correction of
the diffusion-current component is not necessary in this
extreme case.'® In the relaxation-time regime, the oppo-
site relation stands between 74, and 7. Then, concentra-
tion grating is no longer simply controlled by the ambipo-
lar diffusion, and the difference between diffusion lengths
for electrons and holes produces space charge. We have
the expressions in the ¢ —0 limit

ng=1/(8+brn+K2L},), px=brng, (33)
r=r,—r,=o. (34)

The magnitudes of I', and I'; coincide with each other in
the relaxation-time regime. This indicates that the SSPG
theory given by Ritter et al., which loses the correction
of diffusion-current component I';, completely breaks
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when approaching the relaxation-time regime.

The numerically computed SSPG parameter I is
displayed in the graphical form in Fig. 1. The parameter
set assumed here is r=1, 6=, and A=10L,_,. This
plot shows that when ¢ becomes large I" approaches that
in the ambipolar case. On the other hand, when c be-
comes small I" goes to zero. This tendency is in good ac-
cordance with the analytical result given above. I is
found to deviate from I', with going apart from the life-
time regime. The discrepancy is most pronounced at
b =1 (equivalent with br =1 in this plot). The I'; correc-
tion is therefore highly necessary, especially in the small
b (br) case. Since the assumptions r =1 and § =17 are not
accepted in general, we must address the effects of vary-
ing them. It is easily understood that changing these
values has a minor effect on the parameter I' in the vicin-
ity of the two extreme limits ¢—  and ¢—0. In the
transition region between them, however, the effect be-
comes serious and cannot be neglected, as found in Fig. 2,
where the ¢ dependence of T is plotted for various values
of rand 8(=1—n). (

In the SSPG experiment, I' is measured for several
grating periods, and Eq. (32) is utilized for the L,
determination. As learned above, the procedure will
yield an erroneous estimation when the lifetime regime is
not met practically. The calculated apparent diffusion
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0.2 M= F'e— l’d
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c
FIG. 1. Theoretical plot of the SSPG parameter =T, —I'y
vs ¢ =71'/Tge, fOr ), /u,=p,/1, and 7,=7,. The parameter
b=p,/u, is taken as 1, 10, and 100. The grating spacing A is
chosen to equal ten times ambipolar diffusion length L ;.
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¢=17"/Tgie, for b=p, /1, =10 and A=10L,,,. The parameters
rand 8 are the ratios (u, /u,)/b and 7' /7,, respectively.

length L, which is obtained from the 1/VT vs K? plot
as normally done in the SSPG data analysis,>® is plotted
in Fig. 3 in the form of the ratio L,,,/L,,,. We again
set ¥ =1 and §=1 in the calculation. The linearity in the
1/V'T vs K? plot, where K?L?_, is varied from 0.1 to 1,
is approximately sustained with changing the values of b
and ¢ in the present range of calculation. As also expect-
ed from the plot shown in Fig. 1, L, _ is found to deviate

app
from L, to a significant extent depending on b unless ¢

10° 10’ 102

FIG. 3. Theoretical plot of the ratio L,,, /Lmp VS € =T'/Tgicl»
for u, /u,=p,/n, and 1,=7,. L,,, is the apparent diffusion
length obtained from the 1/V'T vs KX =4w?/A% plot, where
K*L2_, is varied from 0.1 to 1. The parameter b =g, /u, is tak-
en as 1, 10, 30, and 100.



45 THEORY OF THE STEADY-STATE-PHOTOCARRIER-GRATING . ..

is sufficiently large.

We must stress here that it is impossible to draw any
conclusion about L, only from the SSPG measurement
when one does not know the values of b, ¢, r, and &
(=1—m). In Sec. III, we will tackle the problem by us-
ing the SSPC and FRPC techniques, which determine the
small-signal mobility-lifetime product (u, +u,)7" and the
small-signal lifetime 7', respectively. Combining them
with the SSPG experimental data enables us to evaluate
the unknown parameters b,c,. . ., as well as the diffusion
lengths L, and Ly, ,.

III. DIFFUSION LENGTH MEASUREMENTS
IN HYDROGENATED AMORPHOUS SILICON

A. Determination of the small-signal lifetime

As mentioned in Sec. II C, the ratio between the carrier
lifetime 7' and the dielectric relaxation time 74, is one of
the important parameters for applying the SSPG theory
to the experimental data. The dielectric relaxation time
Tgiel i directly determined from the background photo-
conductivity. On the other hand, the lifetime 7', which is
equivalent with the response time of small-signal photo-
conductivity, can be measured from the photocurrent de-
cay experiment as performed by Ritter, Zeldov, and
Weiser.? Another possible way to measure the response
time is the frequency domain study of the modulated
photocurrent, which in this context refers to the ac com-
ponent of photocurrent and its phase shift with respect to
modulated optical illumination. An advantage when em-
ploying the frequency domain experiments is use of lock-
in techniques with improved signal-to-noise ratios which
allow us to accurately measure the small change in pho-
tocurrent of the present interest.

A 1-um-thick-sample of a-Si:H deposited on a glass
substrate was used in the experiments. The a-Si:H film
was prepared by rf plasma decomposition from a
[SiH,]/[H,]=1:9 gas mixture. The substrate tempera-
ture during decomposition was 250°C. Contacts were the
coplanar Al electrodes with a gap of 1 mm deposited on
top of the sample. The sample was exposed for 4 h to a
He-Ne laser (632.8 nm, 150 mW/cm?) so as to minimize
the effects of light-induced change in the transport pa-
rameters during measurements.

In the FRPC experiment, the sample was illuminated
by a He-Ne laser beam of which intensity was modulated
to a depth of 5% sinusoidally by an acousto-optic modu-
lator. The voltage applied between the electrodes was
200 V. The modulated part of photocurrent was detected
by a lock-in amplifier, and the phase lag ¢ was recorded
as a function of the modulation frequency f. The phase
lag ¢ is expressed with the small-signal lifetime 7’ by

tan(¢)=27f1", (35)

when assuming that the modulation frequency is low
enough to be smaller than the thermal release rate of a
trapped carrier at a quasi-Fermi-level.'>?° Such a low-
frequency approximation is expected to be valid at a
higher background illumination because of the resulting
high-energy position of the quasi-Fermi-level. In the op-
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FIG. 4. Tangent of the phase lag of the small-signal photo-
current as a function of the modulation frequency, measured for
the a-Si:H sample at the background light intensity of 77
mW/cm?.

posite case, the trapping and detrapping processes associ-
ated with localized states above the quasi-Fermi-level no
longer play a negligible role in determining the phase lag,
so that the linearity between tan(¢) and f as expected
from Eq. (35) tends to be destroyed.!® Shown in Fig. 4 is
the frequency dependence of tan(¢) measured at the
background light intensity I,=77 mW/cm? An excel-
lent linearity between tan(¢) and f is read from the
figure, indicating the plausibility of the low-frequency ap-
proximation. A slope of the linear relation yields an esti-
mate of the lifetime at 2.6 usec. This is in reasonable
agreement with the previous estimation from the time-
resolved measurement that 7'=1.8 usec at I,=70
mW/cm?.3

The lifetime data obtained at various light intensities
are summarized in Fig. 5. The tan(¢) spectrum measured
at low illumination levels was nonlinear in the high-
frequency region as predicted. In such a case, the estima-
tion of lifetime 7' was performed for the linear range of
spectrum seen in the lower frequency side. It is found in
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FIG. 5. Light-intensity dependence of the small-signal car-
rier lifetime 7’ determined from the phase-shift data.
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FIG. 6. Light-intensity dependence of the ratio ¢ =7'/74.
T4l Was calculated from the background photoconductivity
with taking the dielectric constant as 12 for a-Si:H.

Fig. 5 that the lifetime 7’ decreases as I, *%. The weak
intensity dependence implies that the dominant recom-
bination process is monomolecular. The ratio ¢ =7'/74,
is plotted in Fig. 6, and is seen to vary from 2.1 to 67
strongly depending on the illumination level.

B. Accurate evaluation of the diffusion length

This section gives the experimental results of SSPG
and SSPC measurements. The outline of SSPG experi-
ment is described in Sec. IIB. A light from the He-Ne
laser was used as the excitation light, and the intensity ra-
tio I,/1, was set at 5%. The chopping frequency was
chosen at 40 Hz. At such a low frequency, the phase
lag ¢ is as small as less than 1° in the range of illumina-
tion level studied, indicating that the steady-state approx-
imation is practically applicable. The voltage applied be-
tween the contacts was 7 V (E; =70 V/cm). The diffusion
length L,,, was determined from the SSPG experimental
data obtained with varying the optical grating spacing
from 0.6 to 2 um. In this experimental selection for the
applied voltage and the grating spacing, the external field
E, is smaller than 10% of the diffusion field E,, so that
the weak-field condition (27a) is confirmed to be fulfilled.
The SSPC experiments measure the small-signal photo-
conductivity in the case of uniform illumination, from
which the mobility-lifetime product (u;, +u,)7" is easily
calculated in the usual manner.?°

Figure 7 shows the measured diffusion length L, as a
function of the light intensity /,. It is found in the figure
that with increasing the light intensity from 2.1 to 150
mW/cm?, Lapp gradually decreases from 155 to 110 nm.
This tendency agrees well with the previous SSPG experi-
mental results.>”® The translation of L,,, into L, is a
subject of our central concern. The direct translation
that L,,,=L,, especially at a low illumination level
where the ratio c is small, might yield a serious error as
learned from Fig. 3. It would be therefore proper that
the measured L, is regarded only as the quantity given
as function of the dimensionless constants b,c,r and
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FIG. 7. Light-intensity dependence of L,,, and L, obtained
from the SSPG and SSPC data, respectively.

8(=1—m), and the ambipolar diffusion length L, .

The small-signal mobility-lifetime product obtained
from the SSPC measurement is plotted in Fig. 7, in the
form of L, =[(kzT/q)u,+p,)r']'>. The mobility-
lifetime product as well as L, are dominated by the more
mobile or majority carrier while the ambipolar diffusion
length L, . is determined by the less mobile or minority
carrier, and thus they are correlated by the drift mobility
ratio. The relationship is given from their definitions by

Ly /LE=b(r+1)/(b+1)(br+1) . (36)

It is readily found that the unknown variable L, can be
eliminated in the L, , calculation by using Eq. (36) with
the measured L, .

We shall proceed to the diffusion length analysis for a
moment with assumptions that »=0.6 and =1, which
enable us to obtain a simple theoretical plot of L,,, only
as a function of b, with using the measured values for ¢
and L,.. The former assumption is tentatively used in ac-
cordance with the conventional exponential-trap-
distribution model (7,=300 K and T,=500 K in the
representative sample of a-Si:H).!* The detailed discus-
sion on trap distribution will be given in Sec. III C, along
with the physical interpretation on the experimental data
obtained in this work. The assumption that §=1 means
a larger hole lifetime 7, relative to the electron lifetime
7, and is naturally associated with what kind of recom-
bination processes are operative. At present we do not
have information enough to confirm physical ground of
the assumption, whereas it will be shown below that this
can be trusted experimentally.

Figure 8 displays the theoretical plot of L,,, and L,
obtained assuming ¢ =34.2 and L, =342 nm estimated
at I,=77 mW/cm?. According to SSPG measurements
that L,,, =110 nm, graphical solutions are readily found
to be »=30.5 and L,,;, =96.9 nm. The estimated b
value can be used to deconvolute the ambipolar diffusion
length L, , into the electron and hole diffusion lengths
L;,,. They are calculated to be L, =333 nm and
L,,=77.8 nm. At this illumination level, the ¢ value is
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FIG. 8. Theoretical graph of L,,, and L,,, vs the ratio
b=p, /u,, for c=34.2 and L,. =342 nm, which are the experi-
mental results at the light intensity 77 mW/cm?. The measured
L., value gives the solution for b and L,,,(b=34.5 and

L,.,=97.3 nm for L,,,=110 nm).

as large as compared to the b value, so that L,,, does not
so largely deviate from L, . The serious discrepancy is
seen at lower illumination levels as expected. As an ex-
ample, for ¢=4.48 and L, =339 nm estimated at
I,=7.7 mW/cm?, we obtain b=60.9 and L, =73.8
nm for L,,, =133 nm. In a similar way, L,, , are deter-
mined to be 336 and 60.8 nm, respectively.

Here, we will briefly address the range of accuracy of
present evaluation with the assumptions that »=0.6 and
8=1. We have tested it by applying the r values ranging
from 0.5 to unity and the § values ranging from zero to
unity to the determination of diffusion length. We
confirmed that varying the r value does not significantly
affect the result. Even maximum deviation in the estima-
tion, which is found at the higher illumination level, is as
small as 1% for the electron diffusion length and as 10%
for the hole diffusion length. A change in the 8 value has
a more serious effect. When the § value is set apart from
unity, the deviation from the present estimation gets
larger, and at lower illumination level it is not possible to
find a solution for the diffusion length from the theoreti-
cal plot, indicating the physical inconsistency in used pa-
rameters. The fact that the solution is obtainable
throughout the illumination level studied only when & is
close to unity lends a trust to the present evaluation, al-
though the possibility that the § value is varied with the
light intensity could not be ruled out.

The estimated b value is plotted as a function of the
light intensity I, in Fig. 9, where the b value is found to
decrease from 213 to 26.4 with increasing the light inten-
sity. The present estimation of drift mobility ratio larger
than 10 serves a firm basis of the usual photoconductivity
analysis in which a unipolar conduction due to electrons
is traditionally assumed. On the contrary, Ritter, Zeldov,
and Weiser have amounted the b value to be close to uni-
ty at I, =70 mW/cm?, using the relation (36) with the as-
sumption that L, =L, . 3 It can be read from their pa-
per that the disagreement would be mainly ascribed to

LIGHT INTENSITY (mW/cm2 )

FIG. 9. Light-intensity dependence of the ratio b=pu, /u,
obtained by the experimental analysis of the present work.

their incorrect estimation of the mobility-lifetime product
done with ignoring correction for light reflection at sam-
ple surface. They have also measured the external
electric-field dependence of the SSPG parameter I' in the
range higher than diffusion field, of which result was fit to
theory to check the consistency of evaluation for b,c, and
L,.,-> However, their approach would result in the
misreading of data because of an application of the
theory in which the diffusion-current component of T is
not involved as pointed out in Sec. IIC. In fact, our ex-
perimental result on the electric-field dependence is con-
sistent with the corrected theory assuming the transport
parameters determined here, and will be presented in our
forthcoming publication with the detailed discussion.
Figure 10 presents the light-intensity dependence of
the diffusion lengths L,,,, L.y, and Ly, ,. This figure
shows an important conclusion reached by this work,
namely, the measured diffusion length L, indeed differs
from the true ambipolar diffusion length L, to a
significant degree. With a reduction of the light intensi-
ty, the ambipolar diffusion length L, , decreases from
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FIG. 10. Light-intensity dependence of the apparent and am-
bipolar diffusion lengths, and the electron and hole diffusion
lengths.
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FIG. 11. Light-intensity dependence of the small-signal drift
mobilities for electrons and holes.

104 to 50.2 nm whereas the apparent diffusion length
L, exhibits the opposite variation. Evidently, the devi-
ation arises mainly from the decrease in the ratio
¢ =7"/74i as well as the increase in the ratio b=p, /u,,
both of which tend to break the direct translation that
L,,,=L,n,- This result therefore contradicts a specula-
tion made by Balberg that the SSPG experiments directly
measure the correct value of L, and its light-intensity
dependence in the range of conventional light intensities
1-100 mW/cm?.°

Variation in L, , seen in Fig. 10 is due to that in the
small-signal drift mobilities u, , multiplied by the carrier
lifetime 7. u, , decoupled from the products are plotted
in Fig. 11. In this figure, it is clearly found that the elec-
tron mobility u, is almost unchanged and kept at
1.7X 1072 cm?/Vs while the hole mobility p, increases
from 1.85X 10~ * cm?/Vs to 1.21X 1073 cm?/Vs with the
light intensity. The striking feature in the curve for u, is
a switch of the exponent in the power-law intensity
dependence from 0.65 to 0.25 around I,=10 mW/cm?.
In Sec. III C, this point will be discussed in detail.

C. Physical interpretation on the light-intensity dependence
of transport parameters

In this section, we give a physical interpretation of the
present experimental data obtained as a function of the il-
lumination level. As revealed from the measurements,
the steady-state transport parameters vary depending on
the light intensity. A possible source of this behavior
would be that the trap-controlled transport of photocar-
riers is operative.

It is very instructive to first examine the relationship
between the photoconductivity o, and the lifetime 7'.
The a-Si:H sample used in this work shows the power-law
intensity dependence of photoconductivity with the ex-
ponent @ =0.93 in the illumination level studied. We can
thereby obtain a phenomenological relation:

w,NoxGg , (37

when taking into account the large difference between

electron and hole drift mobilities confirmed experimental-
ly. It can be accepted here that the electron drift mobili-
ty u, is intensity independent, being consistent with the
fact that the small-signal drift mobility u;, is kept at con-
stant. The constant electron drift mobility yields
R, <N}/ since in the steady state with uniform il-
lumination R =G. We further assume that the above ex-
pression for recombination rate can approximately deal
with the general case including nonuniform generation,
namely,

R« NV, (38)

Note that Eq. (38) is written without P so as to give
1/7,=0 and to satisfy the assumption that §=1. Using
Eqgs. (37) and (38), the common small-signal lifetime 7’
varies as

reG§l . (39)

As mentioned in Sec. IIT A, the exponent in the power-
law intensity dependence of measured 7' is —0.08. The
experimentally determined value is in excellent agree-
ment with the value predicted from Eq. (39),
a—1=—0.07. This coincidence justifies the above
description that addresses the photoconductivity and the
recombination rate.

We next turn our focus to the light-intensity depen-
dence of electron drift mobilities u, and u,. The behav-
iors of u, and u, are both governed by those of free and
trapped electron concentrations. From a theoretical
point of view, several approaches to assess them may be
attempted. The most standard equations are the follow-
ing:

N/=N_expl(ep, —€.)/kgT] , (40)
N'= [deg,(e){1+exp[(e—ep, ) /ky T} . (41)

N, is the effective density of states above the conduction-
band edge €., and g,(e) the density of electron trap
states. The Fermi-Dirac distribution with quasi-Fermi-
level €, in Eq. (41) is applied as an approximation. ?

Suppose that the majority of electron trap states are
situated above the quasi-Fermi-level. This shallow trap
assumption is qualitatively consistent with the electron
trap distribution with a sharp drop suggested from the
low-temperature drift-mobility measurements,'*!¢ if the
quasi-Fermi-level is moderately deep. Equation (41) can
be then rewritten by

N'=(N’/N,) [deg,(e)expl(e,—€)/ksT],  (42)

which indicates that N’ varies in linear proportion to N I,
Applying the relation to the definitions for drift mobili-
ties, u, =u, being independent on N, as well as on G is
readily obtained. The constant drift mobility is in good
agreement with the present experimental result. Another
possible explanation for this data is that the electron trap
states are distributed exponentially with 7. close to room
temperature, as is widely used in model consideration of
transport results on a-Si:H.!* For T,=T we have
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N'=(N//N.)e.—¢€p, )8, (€.) - (43)

As found from Eq. (43), this model also yields an approxi-
mate proportionality between N/ and N".

The behavior of hole drift mobility can be accounted
for by assuming an exponential distribution of hole trap
states: g,(e)=g,(¢,)exp[(e, —¢€)/kyT,] where T,>T.
The trapped hole concentration then becomes

P'=[kyT,g,(¢,) /sinc(nT/T,)(P//N,) ", (44)
where N, is the effective density of states for valence
band, and g, the mobility edge. From Eq. (44) we readily
obtain the light-intensity dependence of hole drift mobili-
ties

T oAT,—T)/T

p,=(T/Tu, Py <Gy , (45)

for P'>>P/. The power-law intensity dependence is
indeed found in the experimental result displayed in Fig.
11. The change in the exponent seen in the measured p,
curve is, in the context of this model, directly ascribed to
the change in the slope of the exponential distribution.
From the experimentally determined values for
a(T,—T)/T, the characteristic temperatures are es-
timated to be 370 and 500 K, both of which describe the
exponential distribution in a shallower energy side and
that in a deeper energy side, respectively. Note that the
results derived for the trap distributions do not contra-
dict our analysis where validity is assured for the r values
ranging from 0.5 to unity. An alternative explanation for
the inflection in the u, curve might be possible by assum-
ing a shallow-trap-type distribution plus a deep exponen-
tial tail. At present stage of investigation, both models
could be raised with equal plausibility. The careful nu-
merical calculation to simulate the p, behavior must be
needed for deriving what kind of trap distribution is actu-
ally present, although it is beyond focus of the present
work.

Before concluding this section, we briefly address the
validity of a simplification in expression for the SSPG pa-
rameter I' from Eq. (23) to Eq. (24), upon which our
analysis is developed for the determination of transport
parameters. This can be easily tested by evaluating the
second-order transport parameters. It is obvious from
above discussion that 1/7,,=1/7,=0 and u, =0. The
nonzero parameters are 1/7, and p,, which are written
by 7'/7,=(1—a)/2a and p, /u, =(T,—T)/2Tbr. Us-
ing the present results, the ratios 7'/7, and w, /u, are
both amounted to be only less than several percent. This
fact satisfactorily validates the application of the
simplified expression (24).

IV. CONCLUSIONS

We have investigated theoretically deficiencies in the
original low-field SSPG technique arising from the in-
correct application of the perturbation expansion theory
as well as the uncertain assumption of local charge neu-
trality. We have also developed an extended technique
for accurate diffusion length measurement by removing
these defects, and have presented experimental data for
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a-Si:H obtained as a function of the illumination level.
We can summarize our results as follows.

(i) Applying the second-order perturbation theory pre-
cisely, it is shown that the SSPG parameter I', defined in
the formulation for the small-signal current ratio mea-
sured in the experiment, is comprised of two components
associated with the drift-current and the diffusion-
current. The lack of the diffusion-current component is a
defect in the previous SSPG theory.

(ii) The correction of the SSPG theory is highly needed
in the relaxation-time regime where the space-charge
effect becomes significant, while there is no difference be-
tween the results derived from the present and previous
theories in the lifetime regime where ambipolar transport
takes place.

(iii) When the lifetime regime is not met practically in
the experiment, a severe overestimate of diffusion length
will result from the SSPG data analysis assuming the lo-
cal charge neutrality. This defect is inherent in the
diffusion length measurement relying only on the SSPG
technique.

(iv) Combining the SSPC and FRPC measurements,
which determine the small-signal mobility-lifetime prod-
uct and the small-signal lifetime, respectively, enables us
to avoid such an experimental failure, and to extend the
diffusion length measurement beyond the ambipolarity
restriction.

(v) Experimental application of this technique to a-
Si:H has revealed the correct value of diffusion length
and its genuine light-intensity dependence in the intensity
range 1-100 mW/cm?, which amply demonstrate serious
errors in the previous evaluations.

(vi) The present combined technique has a merit of be-
ing able to determine the small-signal drift mobilities of
both types of carriers. The results measured for a-Si:H
with varying the illumination level can be well interpret-
ed by assuming that transports of photogenerated elec-
trons and holes are controlled by the trap states distribut-
ed in the gap, with a sharp and an exponential drop, re-
spectively.

APPENDIX

Using the current continuity and periodicity, the SSPG
current J, the sum of drift current o(x)E(x) and diffusion
current J;(x ), can be formulated in the following form:

J=0,(E,+E*), (A1)

where 0,,=1/(1/0(x)) denotes the average conductivi-
ty in the direction perpendicular to the grating fringes,
and E*=(J,(x)/0(x)) the field correction due to the
local diffusion current J,;(x). Ritter, Zeldov, and Weiser
have analyzed the SSPG current on the groundwork of
simple Ohm’s law, that is, J =0 ,,E,.""? Evidently, such a
treatment can be applied validly only when J;(x ) is negli-
gibly small. It is, however, evident that J,(x ) should not
be ignored in the context of the SSPG experiment that
measures photocurrent generated by an optical illumina-
tion grating.

The average conductivity o,, can be expressed in the
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form of perturbation expansion. One has the expression
up to the second-order correction

opn=00+ o)+ )2 —(a})) /0y, (A2)

when neglecting the minor correction term {(o,). Simi-
larly, the field correction E* is given by

E*=—(Jy0,)/0}, (A3)

where J;=q(D,dN,/dx —D,dP,/dx). From Eqgs.
(A1)-(A3), we obtain the expression for 3, the current ra-
tio measured in the SSPG experiment

B:1+(<01>2_(U%))/U()(O'l)_<Jd10'1>/00<(71>E0 .
(A4)

After some mathematical computations, the second and
third terms on the right-hand side of Eq. (A4) are found
to be represented by

(o) —{(o))/oo{o,)=—2y5al, ,
(Jd101>/00<01>E0=—2}/(2)aFd )

(AS)
(A6)

with the drift current component I', and the diffusion-
current component I'; given by Eq. (26).
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