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 In this paper, we show that spatially displaced helical states that transport electrons with 

opposite spins in opposite directions are formed in a harmonic quantum wire due to the spin-orbit 

(SO) coupling induced by lateral confinement.  These states give rise to a transverse spin 

imbalance in response to the longitudinal charge current as well as a transverse charge imbalance in 

response to the longitudinal spin current.  We analyze the consequential direct and inverse 

spin-Hall effects in terms of the spin-charge reciprocity relations in a unified manner by virtue of 

spin conservation.  Through a numerical calculation based on the nonequilibrium Green’s function 

formalism, we demonstrate that a generalized spin-Hall resistance that identically describes 

charge-to-spin and spin-to-charge conversions exhibits a series of quantum plateaus when the SO 

coupling is sufficiently strong. 
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1. Introduction 

 

 The quantum Hall (QH) effect occurs when a two-dimensional (2D) system of electrons is 

subject to a strong magnetic field perpendicular to the 2D plane.1)  In the QH state, the Hall 

resistance is intermittently stuck at quantized values for a finite range of control parameter, and 

depends only on how many edge modes contribute to electrical conduction.2)  The edge mode is 

chiral in nature since it carries a charge current unidirectionally along the perimeter of the system, 

reflecting the broken time-reversal symmetry due to the magnetic field.  Recently, a spin analog to 

the conventional QH effect has been theoretically predicted in time-reversal symmetric situations 

for a class of spin-orbit (SO) coupled systems, such as a single sheet of graphene with an intrinsic 

SO coupling,3) an inverted HgTe/CdTe quantum well structure,4,5) as well as a zinc-blende 

semiconductor with a shear strain gradient.6)  In these systems, helical edge modes emerge that 

transport electrons with opposite spins in opposite directions, exhibiting a phenomenology called 

the quantum spin-Hall (QSH) effect.7,8)  In the simplest view, the QSH effect is regarded as two 

copies of the QH effect with different spins arranged so that time-reversal symmetry is preserved.  

The charge-Hall resistance in each spin subsystem is quantized but with the opposite sign for the 

opposite spin because of the helical property of transport channels.  Consequently, the charge-Hall 

resistance totally vanishes in the whole system while the nonzero and quantized spin-Hall resistance 

persists.  The QSH effect attracts a tremendous amount of interest in the field of condensed matter 

physics because it not only introduces a novel quantum state of matter but also allows electric 

manipulation of the spin degrees of freedom without the use of magnetic materials and magnetic 

fields. 

 In this paper, we investigate the possibility of the QSH effect in a mesoscopic quantum wire 
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(QW).  In this system, the helical modes are formed due to the SO coupling induced by lateral 

electrostatic confinement, giving rise to a transverse spin imbalance in response to the longitudinal 

charge current as well as a transverse charge imbalance in response to the longitudinal spin current.  

The resulting direct and inverse spin-Hall effects are numerically analyzed using the 

nonequilibrium Green’s function formalism.  In our previous study,9) we argued for the occurrence 

of a spin-Hall current in a four-terminal junction of such QWs.  In the present study, we primarily 

examine a spin-Hall voltage between two Hall probes attached to a single QW, and demonstrate that 

the QSH effect should be observable in this configuration for a strong SO coupling. 

 

2. Theoretical Analysis 

 

 Let us consider a 2D electron gas in the xy  plane subjected to an electrostatic potential 

U(x,y).  This system is described by the single-particle Hamiltonian including the SO coupling 

due to the in-plane potential gradient: H  p2 /2m  ( /h)(ez  U) p z U , where p  is the 

canonical momentum, m  is the electron mass,  z  is the Pauli spin matrix,   is the SO coupling 

strength, and ez is the unit vector in the z  direction. 9-16)  The Hamiltonian H  commutes with 

 z , and is diagonal in spin space such that H   H  .  It is informative to arrange H  into 

the form 

  H 
1

2m
(p eA)2 Ueff ,      (1) 

where Ueff  U  (m2 /2h2)(U)2 represents the effective electrostatic potential, and   1 for 

spin-  and   states, respectively.  The in-plane vector potential given by A  (m /eh)ez  U  

defines the relevant out-of-plane magnetic field B   A  ez(m /eh)2U .  Thus, the lateral SO 

coupling exerts the internal magnetic fields B  on electrons with opposite spins in opposite 
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directions, and thereby generates a spin-dependent orbital effect. 

 A simple example of U(x,y) is a 1D harmonic potential U  1
2 m0

2y 2 , which is realizable in 

a narrow QW running in the x  direction.  In this case, the vector potential is written as 

A  B(y,0,0) , where B  (m0 /e) ,    /l 2 , and l  h/m0 .  This expression is formally 

identical to the Landau gauge.  The Landau-gauge Hamiltonian is translationally invariant along 

the x-axis, and hence the momentum px  becomes a conserved quantity.  The symmetric gauge 

described by A  (B /2)(y, x,0) and B  2(m0 /e)  is derived for an isotropic 2D harmonic 

potential U  1
2 m0

2(x 2  y 2), which is frequently employed to model a quantum dot or disk.  

The symmetric-gauge Hamiltonian is rotationally invariant about the z -axis so that the orbital 

angular momentum Lz  xpy  ypx  is conserved.  In both cases, the effective electrostatic 

potential is given by Ueff  (12)U , indicating that the lateral confinement is substantially 

reduced for a strong SO coupling.  It is notable that   1 is a special point where Ueff  

completely vanishes.  The problem we address then becomes equivalent to the spin-dependent 

Landau quantization of unconfined 2D electrons.  Apparently, this picture is the same as that 

employed to illustrate the QSH effect due to a strain gradient.6)  In the following, we focus our 

attention on a harmonic QW.  This is an interesting open system feasible for charge and spin 

injections. 

 The Schrödinger equation H NY  NY NY  is analytically solved for U  1
2 m0

2y 2 .  The 

solutions are expressed as 

   NY (x,y) 
1

L
exp(ikx)N (y Y ),     (2) 

  

NY  h0(N 

1

2
) 2Ueff (Y ) ,     (3) 

where N  0,1,2,L  represents the subband index, N (y) denotes the N th eigenfunction of the 



5 
 

1D harmonic oscillator, k  stands for the propagation wave vector along x , and Y  k  is the 

specific y -coordinate mapped onto k .  The spatial displacement of the eigenfunction by an 

amount of Y  is reasonably interpreted in terms of a spin-dependent Lorentz-type force due to the 

lateral SO coupling.9)  As indicated by eqs. (2) and (3), there exists a fourfold degeneracy in each 

subband, which is closely related to time-reversal and space-inversion symmetries of the present 

model.  The doubly degenerate states belonging to the same center coordinate Y  constitute a 

Kramers pair, which transports electrons with opposite spins in opposite directions.  These helical 

modes or chiral spin channels carry a spin current unidirectionally.  The inversion symmetry 

ensures that oppositely propagating spin channels are symmetrically placed around y  0.  For 

  1, each subband exhibits a parabolic dispersion reflecting the effective confining potential Ueff .  

Recall that Ueff  0 when   1.  Then, the subband dispersion disappears, leaving discrete bulk 

Landau levels spaced by h0 .  The predicted features are clearly found in Fig. 1, which displays 

the energy spectra of a QW with a finite width W  obtained from numerical diagonalization.  This 

figure also explains that edge modes providing gapless excitations emerge near transverse 

boundaries of a finite-width QW.17) 

 Here, we briefly discuss an elemental charge-Hall effect occurring in a spin subsystem where a 

couple of forward and backward propagating channels exists per one subband.  The spin-resolved 

QH effect is instructive for understanding the QSH effect since it is basically comprised of 

cooperative QH effects for up and down spins.  In terms of the Heisenberg equation, the velocity 

operator is defined by v  (p eA) /m for each spin state, leading to the expectation value of 

longitudinal velocity NY vx
 NY  ( /h)NY /Y  proportional to the slope of subband 

dispersion.  When oppositely propagating states on opposite sides are unequally filled with 

electrons up to the respective chemical potentials 
( ) at y  W /2, the longitudinal particle 
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current follows the relation Jx
  (

()  
()) /h , where   is the number of occupied subbands.  

This accounts for the quantized Hall resistance RH
  Vy

 /Ix
  h /e2 , where Ix

  eJx
  is the 

longitudinal electric current, and Vy
  (

()  
()) /e  is the transverse Hall voltage.  Except for 

the distinct spin dependence of RH
 , the straightforward explanation given above is analogous to 

the edge-current picture of the ordinary QH effect.1,2)  However, this picture breaks down when the 

oppositely propagating states spatially overlap with each other, and each interacts with both 

boundaries with finite probabilities.18,19)  In such a case, the Hall resistance formula is generalized 

into RH
  Fh /e2  with F  N ( pN  qN ) /N (pN  qN ) .  Here, pN  ( qN ) represents the 

transition probability of an electron between the N th channel and the Hall probe on the same 

(opposite) side, and the summation is taken over occupied subbands.  The form factor F  explains 

that RH
  is no longer quantized unless pN  qN .  The spatial separation between two 

counterpropagating channels amounts to Y  2l / 2 1  at the midpoint between adjacent 

subband bottoms, implying that the QSH effect tends to be quenched when  1. 

 We next proceed to a more quantitative analysis of the spin-Hall effect in a four-terminal 

configuration based on the nonequilibrium Green’s function formalism.20,21)  The model used for 

the calculation consists of an infinitely-long harmonic QW of a width W  and two voltage probes 

of the same width L  attached symmetrically on the transverse ends of the QW (see, the inset of 

Fig. 2).  The current leads (labeled by 1 and 3) are part of the QW in which the lateral SO coupling 

is present, while the confinement potential and the SO interaction are assumed to be absent inside 

the voltage leads (labeled by 2 and 4).  In the tight-binding representation on a square lattice with 

lattice spacing a , the Hamiltonian describing the QW reads 

  H  tr r 
 cr

† c r 
r, r 
 ,       (4) 
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  tr r 
 

t(1 ir r ), r  r  aex,y

4t U, r  r 

0, otherwise,









     (5) 

where cr  ( cr
† ) is the annihilation (creation) operator of an electron at position r  with spin  , 

t  h2 /2ma2  is the hopping energy, and r r  (e /h)A  (r  r )  is the Aharonov-Bohm phase for a 

path connecting two nearest neighbors.  The Peierls substitution (by which 1 ir r  ei r r  and 

U Ueff ) is not employed in eq. (5), being consistent with the original Hamiltonian, which 

contains the SO coupling term linear in A .  Using the multiterminal Landauer-Büttiker formula, 

the spin-resolved particle current in lead   is expressed as J  h1 T
 (   ) , where 

  is the spin-dependent chemical potential.  The spin-resolved transmission coefficient is 

defined by T
  Tr(G

RG
A ) , where G

R(A )()  [  H   
R (A )]1  is the retarded 

(advanced) Green’s function, 
R(A ) is the retarded (advanced) self-energy, and   i(

R  
A ).  

Following the Keldysh formulation, the lesser Green’s function is represented as G
  i f A , 

where A  G
RG

A  is the spectral function, and f ()  f (   )  is the Fermi-Dirac 

distribution function.  The diagonal element of G
  in position space is directly related to the 

particle density  (r)  a2 cr
† cr .  The deviation of  (r)  from its equilibrium value is 

simply given by  (r)  (2a2)1 (A )rr  for a sufficiently small variation of chemical 

potential  .  Note that all of these formulae assume spin conservation. 

 It is appropriate here to introduce the notations Q  (Q Q ) /2 symmetrically defining 

charge (Q) and spin (Q) components of a physical quantity Q, which are useful in explicitly 

formulating the spin-charge transformation for spin-conserving systems.  The charge and spin 

currents J
  can be written as 

  

J
 

1

h
[T

 (
  

 )  T
 (

m 
m)]


 .    (6) 

It is evident from eq. (6) that J  is transformed into Jm by replacing   with 
m.  A similar 
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transformation holds between the charge and spin densities   expressed as 

  

 (r) 

1

2a2 [(A
 )rr

  (A
 )rr

m]

 .    (7) 

Armed with these transformations, we analytically examine the spin-Hall phenomenology within 

the framework initially proposed by Hirsch.22)  In the four-terminal spin-Hall configuration, a 

longitudinal charge current J1
  J3

 driven by a charge bias 1
  3

 induces a transverse spin 

imbalance, generating a spin bias 4
  2

 under the condition that J1
  J3

  0 and J2
  J4

  0.  

The charge to spin conversion in this setup is described in terms of G13,13
  I1

 /(V1
 V3

 ) and 

R13,42
  (V4

 V2
) /I1

 , where I
  eJ

  and V
 V

  (
  

 ) /e .  The inverse spin-Hall 

configuration is prescribed contrastingly, where a longitudinal spin current J1
  J3

 driven by a 

spin bias 1
  3

 induces a transverse charge imbalance, generating a charge bias 4
  2

 under 

the condition that J1
  J3

  0 and J2
  J4

  0.  In this case, the spin to charge conversion is 

described in terms of the G13,13
  I1

 /(V1
 V3

)  and R13,42
  (V4

 V2
) /I1

 .  (In the context of 

topological field theory,23-25) the direct and inverse spin-Hall effects are unifyingly referred to as the 

dual QSH effect in the quantization regime.)  A quantitative equivalence between these two effects 

is shown by the reciprocity relations applicable to the longitudinal conductance and the spin-Hall 

resistance 

  G13,13  G13,13
  G13,13

 ,      (8) 

  R13,42  R13,42
  R13,42

 ,      (9) 

which are readily obtained from the spin-charge transformation.  An analogous relation 

  ˆ   /(1
  3

)   /(1
  3

) ,     (10) 

is also established between the spin distribution   occurring in the spin-Hall configuration and 

the charge distribution   occurring in the inverse spin-Hall configuration.  For this reason, the 

direct and inverse spin-Hall effects can be identically treated in terms of G13,13, R13,42, as well as ˆ .  
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It may be worthwhile stressing that eqs. (8)-(10) are not deduced from the Onsager’s reciprocity 

theorem but are guaranteed simply by spin conservation (where charge conservation is trivially 

implied). 

 

3. Numerical Calculation 

 

 The spin-charge reciprocity relations greatly simplify the numerical analysis of the direct and 

inverse spin-Hall effects.  In the calculation, the energy h0  is taken as the energy unit.  The 

hopping energy is normally set at t  10h0 , which corresponds to the length scale of the 

confinement l  5a, permitting our lattice model to reasonably simulate a continuum system.  

Figure 2 displays the longitudinal conductance G13,13 and the spin-Hall resistance R13,42 calculated 

as a function of the Fermi energy   for various values of the normalized SO coupling strength 

   /l 2 .  The longitudinal conductance G13,13 is independent of , and is fully quantized in 

units of e2 /h , indicating a formation of ballistic transport channels unperturbed by the attached 

Hall contacts.  This property enables a noninvasive observation of the spin-Hall effect intrinsic in 

QW.  The spin-Hall resistance R13,42 strongly depends on .  For  1, R13,42 exhibits perfect 

quantum plateaus at h /e2 (with   1,2,3,L ) characteristic of the QSH regime, while the QSH 

effect is suppressed when   1.  Figure 3 shows the relation between R13,42 and  calculated 

for   h0, explaining that R13,42 increases linearly with  up to   0.1 and then saturates at 

the quantized value h /e2 (for   1) around   1.  These behaviors are reasonably accounted 

for by the channel separation Y  depending on  .  Figure 4 illustrates the nonequilibrium 

spin/charge distribution ˆ  occurring at   h0  in the direct/inverse spin-Hall configuration.  

The density ˆ  appears with a positive sign on the lower side and a negative sign on the upper side.  
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The spatial spin/charge polarization, which is the origin of the transverse spin/charge bias 4
m 2

m, 

arises from unequally populated helical modes.  The lower helical modes consist of rightward 

propagating spin-  channels and leftward propagating spin-  channels, while the upper helical 

modes consist of leftward propagating spin-   channels and rightward propagating spin-   

channels.  In the presence of the longitudinal charge bias 1
  3

 , consequently, the lower 

channels are populated with spin-  electrons, and simultaneously the upper channels are populated 

with spin-  electrons.  On the other hand, in the presence of the spin bias 1
  3

, the lower 

channels are populated whereas the upper channels are depopulated regardless of their spin 

polarizations.  Because of a large channel separation in the QSH state, backscattering into 

oppositely propagating channels of the same spin hardly takes place even though random impurities 

are present.  This feature has been confirmed by the numerical calculation for disordered systems 

(not shown). 

 Semiconductor QW structures can be fabricated in various ways, e.g., the split gate technique, 

shallow and deep mesa etchings, as well as focused-ion-beam implantation.26,27)  In the 

literature,27) a level spacing as large as h0  7 meV has been reported for a ballistic QW made of 

GaAs .  The SO coupling strengths have been theoretically evaluated for some conventional 

semiconductors.28,29)  For example,   0.05 nm2  for GaAs , 1 nm2  for InAs , 5 nm2  for 

InSb , and 20 nm2 for Hg0.8Cd0.2Te .  These parameters lead to   ranging from 310-4  to 

0.05, suggesting that the QSH effect is not easy to realize experimentally.  Nevertheless, it should 

be emphasized that the quantization and unquantization regimes are connected continuously, and 

the spin-Hall effect driven by the same mechanism is expected to occur in realistic QW systems.  

The transverse spin bias induced by the longitudinal charge current manifests the spin-Hall 

phenomenology due to the lateral SO coupling.  The transverse charge bias induced by the 
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longitudinal spin current is practically useful since it provides an experimental scheme for electrical 

detection of a pure spin flux. 

 

4. Summary 

 

 In summary, we have investigated the lateral SO coupling in a harmonic QW and its 

application to the QSH effect.  In this system, electron spin is conserved while spatially displaced 

helical states emerge which transport electrons with opposite spins in opposite directions.  These 

states are unequally populated in the presence of the longitudinal charge/spin current, generating the 

transverse spin/charge imbalance.  The resulting spin/charge bias is detectable noninvasively by 

the Hall probes coupled to the QW.  The direct and inverse spin-Hall effects due to the lateral SO 

coupling are identically treated in terms of the spin-charge reciprocity relations based on spin 

conservation.  The spatial separation between the transport channels crucially depends on the 

normalized SO coupling strength    /l 2 .  A large channel separation allowed for  1 yields 

the quantized spin-Hall resistance whereas the quantization is suppressed when  1. 
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FIGURE CAPTIONS 

 

Fig. 1 

(Color online) Energy dispersion calculated for a finite-width QW.  Two panels show the energy 

spectra of (a) the lowest subband ( N  0) for  varying in 0.1 steps and (b) a series of subbands 

(N  0,1,2,L ,9) for   1.  In the calculation, a continuum limit is taken in the x  direction while 

the tight-binding approximation is adopted in the y  direction.  The parameters used in the 

calculation are t  10h0 and W  100a . 

 

Fig. 2 

(Color online) (a) Longitudinal conductance G13,13 and (b) spin-Hall resistance R13,42 as a function 

of Fermi energy   for various values of  .  In the calculation, the system size was set at 

L W  50a.  Inset is a schematic view of the four-terminal spin-Hall geometry. 

 

Fig. 3 

(Color online) Spin-Hall resistance R13,42 and longitudinal resistance R13,13  1/G13,13 as a function 

of normalized SO coupling strength .  The parameters used in the calculation are L W  50a 

and   h0. 

 

Fig. 4 

(Color online) Nonequilibrium spin/charge distribution ˆ   in direct/inverse spin-Hall 

configurations.  Two panels show the density profiles for (a)   0.1 and (b)   1.  The 

parameters used in the calculation are L W  50a and   h0. 
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