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遺伝的アルゴリズムと極小値探索アルゴリズムとの

ハイブリッド化による板取り問題の一解法 ∗

藤田 喜久雄 ∗1, 赤木 新介 ∗1, 廣川 敬康 ∗2

Approach for Optimal Nesting Using Genetic Algorithm
and Local Minimization Algorithm∗

Kikuo FUJITA, Shinsuke AKAGI and Noriyasu HIROKAWA

In layout design problems including blank nesting, the positions and directions of layout elements
must be determined so as to minimize the total space. It is difficult and computationally time-consuming
to find the optimal solution for such layout problems, because they include numerous underlying
combinational conditions. In this paper, we develop an approach for optimal nesting by combining a
genetic algorithm and a local minimization algorithm. In the approach, the genetic algorithm is used
for handling combinations which are represented in the string, and the local minimization algorithm is
used for determining the embodiment layout under fixed combinations so as to minimize the scrap space
corresponding to the fitness value in the genetic algorithm. We also present an example for showing the
effective nesting result produced by this approach.

Key Words : Genetic Algorithm, Optimization, Nesting, Layout, Design Engineering

1 緒 言

レイアウト問題には，本報で取り上げる板取り問

題をはじめとして，プラントの配置や VLSIの配置な

ど，多種多様なものがある．これらの問題は，総じ

て，数多くの組合せを内在していることから，望まし

い解を厳密な方法で求めることは容易ではない．この

ため，ヒューリスティク探索による手法が用いられた

り，最近では，模擬焼きなまし法 (Simulated Anneal-

ing, SA)(1)，遺伝的アルゴリズム (Genetic Algorithm,

GA)(2)(3)などの確率的な最適化手法などが適用される

ことも多い．例えば，板取り問題では， Cheokらによ

るヒューリスティクスを導入した例 (4)や， Jainらによ

る SAの適用例(5)がみられ， Krögerらによる対象形状

を矩形に限定した場合に対する GAの適用例(6)なども

みられる．これらの中でも， GAは広く組合せ最適化

や大域的最適化に対する強力な解法として注目を集め

つつある．

GAは，自然界における進化メカニズムを模擬しよ
∗ 平成 4年 12月 25日第二回設計工学・システム部門講演会にて講
演，原稿受付平成 4年 12月 15日

∗1 正員，大阪大学工学部 (〒 565吹田市山田丘 2-1)．
∗2 准員，大阪大学工学部．

うとする研究から派生した手法であり，基本的には，

最適化すべき対象を遺伝子に相当するストリングとし

て表現し，それらの集団に対して確率的な操作を繰り

返し加えていくことにより，優れた解を求めようとす

るものである．その特徴は， (1): 集団を用いた確率的

な方法である， (2): 具体的なストリングとして文字列

やビット列を用いる, (3): ストリングの部分列が最適解

に対して有効に作用することが重要である，などとし

てまとめられる．

レイアウト問題への GAの適用には, 上記の Kröger

らによるもの(6)のほか， Shahookarによる VLSIの配

置への適用(7)などもある．しかし，それらは，連続量

を用いず離散値のみで対象を操作できる比較的単純な

レイアウト問題を対象としたものであり，任意形状の

部材を配置するような，部材の位置座標や向きを連続

量として表す必要のある板取り問題に対して直ちに適

用することはできない．

そこで，本研究では，板取りにおける多峰性の著し

い大域的最適化の問題に対して，配置の表現を組合せ

に関係する部分と連続量に関係する部分とに階層的に

分けて考えることを基本として，前者に対しては組合
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図 1 板取り問題

せ最適化のための GAを，後者に対しては連続空間に

おける極小値探索のアルゴリズムを，それぞれ適用す

ることによってハイブリッド化手法を構成する．

2 板取り問題の定式化

まず，対象となる板取り問題とその数学的な定式化

についてまとめる．

本報では，図 1に示すように，一定の幅 Bを有する

板材に対して複数個の部材 i (i = 1, ...,n)を配置し，そ

の際に生じるスクラップの量を最小化する問題を考え

る．このような問題は，以下のように定式化すること

ができる．

なお，後出の数値計算例では，計算上の都合によ

り，配置すべき部材の形状を凸多角形とした．

2.1 設計変数 各部材の代表点の座標値 (xi,yi)

と代表軸の向き θi が，設計変数となる．なお，それら

の部材が板材に対してどのような位置関係にあるかに

ついては，図 1にも示すように，定められた部材の各

位置に対して，板材左側の外形線が最も左側にある部

材に，板材下側の外形線が最も下側にある部材にそれ

ぞれ接するように定めるものとする．また，板材の必

要高さ hと，板材右側でのオーバーハング量 δは，こ
れをもとにして計算することができる．

2.2 制約条件 制約条件としては，以下の二つ

を考える必要がある．

• 部材間の重なりを生じないための制約：部材 i と

部材 j の重なりを overlapi, j とすると，全体での

重なりは，

Overlap =
n−1

∑
i=1

n

∑
j=i+1

overlapi, j (1)

となり，本制約条件は，以下のように定義するこ

とができる．

Overlap = 0 (2)

• 配置が板材の幅を越えないための制約：上記の
オーバーハング量 δより，以下のように直ちに定
義することができる．

δ = 0 (3)

2.3 目的関数 目的関数には上記のようにスク

ラップ量 Scrapの最小化を考える．これは，図 1に示

す諸量を用いることにより，次式として定義すること

ができる．

min. Scrap = (B+δ)×h−
n

∑
i=1

ai (4)

ここで， ai は，部材 i の面積を表す．なお，上式の

(B+δ)の部分を単に Bとしない理由は，後出の極小値

探索の過程において，常に式 (3)の制約条件が満足さ

れているとは必ずしも限らないためである．

3 板取り問題に対するハイブリッド化概念

3.1 GAにおけるビルディングブロック仮説 緒

言でも述べたように， GAは，ストリングを用いて

表現された個体の集団を用いた探索手法であり，ス

トリングの部分構造が最適性にどのように影響する

か，また，それらが遺伝を模擬した操作によってどの

ように保持され，成長していくかが，その有効性を

論じる上で重要となる．このような点は，以下に示

すような「ビルディングブロック仮説 (building block

hypothesis)」を用いて説明される場合が多い(2)．

GAでは，個々のストリングそのものが独自に意味

を持つわけではなく，部分構造を互いに共有してい

るストリングの集合が重要となる．そのような集合

において共有されている構造を表すために「スキー

マ (schema)」という概念が導入される．ここでは，説

明のために，探索問題が ‘hecgabfd’のような文字

列により表現されているものとする．なお，このよ

うなコーディング方法は巡回セールスマン問題などを

解く場合に用いられる．さらに，任意の文字にマッ

チする記号として， don’t careと称する ‘*’なる記号

を導入する．それにより，例えば， ‘**cga***’ と
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図 2 板取り問題におけるビルディングブロックの例

表現されるスキーマは， ‘hecgabfd’, ‘ehcgafbd’,

‘decgabfh’ などを含むストリングの集合を代表して

表すことができるようになる．なお，このスキーマの

構成長 (defining length)は ‘cga’の部分の長さとして

定義され， 3となる．このようにして表される部分構

造が遺伝的なオペレータによって次の世代に引き継が

れるかどうかは，以下のような点に依存する．

• ある世代においてスキーマにマッチするストリン
グの数 — 数が多いほど，再生のための選択にお

いて，スキーマが保存される可能性が高くなる．

• ストリングの適合度 — 適合度が多いほど，再生

のための選択において，スキーマが保存される可

能性が高くなる．

• スキーマの構成長 — 構成長が長いほど，交叉や

突然変異オペレータによりスキーマが破壊される

可能性は高くなる．

• コーディングの方法 — 文字列の中で近い位置に

ある文字と文字が，適合度を優れた値にする上で

互いに意味を持ち合うことが重要であり，上記の

構成長との関連も深い．

• 遺伝的オペレータの種類や内容 — その操作が優

れたスキーマを保存しようとするものであるかど

うかという点で重要であり，問題に応じて適切な

オペレータを用いる必要がある．

このような文脈において，ストリングに含まれている

優れた部分構造は「ビルディングブロック」と呼ばれ

る．したがって， GAの適用においては，解くべき問

題において潜在的に存在するビルディングブロックを

コーディングの中にどのように反映させるか，また，

そのようなビルディングブロックを都合良く操作でき

る遺伝的オペレータをどのように構成するか，が重要

であると考えられる．

3.2 ハイブリッド化の考え方 前項で述べたビ

ルディングブロック仮説を板取り問題に重ね合わせる

ことにより，以下のことを考えることができる．すな

わち，板取り問題においては，スクラップ量の低減に

対して意味を持つ配置の部分構造が様々に存在し，そ

れらが都合良く適合し合って全体としての配置を構成

することができれば，優れた配置を得ることができる

ものと考えることができる．図 2は， 5節で示す板取

り問題におけるビルディングブロックの例を示したも

のである．図中では ‘親 1’， ‘親 2’と呼ばれる配置を

交配することにより， ‘子’と呼ばれる配置が生成され

ており，子の配置は，例えば，親 1からは “hと e”か

らなる部分構造を，また，親 2からは “j, a, b, dと

f”からなる部分構造を，継承しているものとしてと

らえることができる．このような部分構造は，上述の

GAにおけるビルディングブロックに対応させること

ができるものであり，さらに，複数の部材から構成さ

れる部分構造を，部材対の集合としてとらえることに

より，それらの列を GAのコーディングにおけるスト

リングに対応付けることができる．例えば， “j, a, b,

dと f”からなる部分構造は， “jと a”, “aと b”, “b

と d”， “dと f”の対として表される部材間の隣接関

係として分解することができ，さらに， “jabdf”と

いう文字列として表現することができる．なお，以上

のような配置構造の表現方法は，単に部材の順序列を

表したものではなく，個々の部材対に対して，それら

が互いにどのような位置関係にあり，どのような向き

で隣接しあっているかなどの位置寸法に関わる情報を

含んでいるものとして，考える必要がある．このよう

な点は，従来から GAが適用されている巡回セールス

マン問題におけるストリングの表現とは異なる点であ

り，本研究の特徴でもある．

以上のようにして，複雑な組合せ条件を含み，か

つ，２次元空間における位置情報をも扱う必要のある

板取り問題に対して，ストリングを定義し， GAを用

いた最適化手法を構築できるようになる．すなわち，

部材間の隣接関係のうち意味のあるものを連結し，全

体としては 1次元の列として表現することによりスト

リングを定義して GAを適用する一方，それによって

表現されている隣接関係を拘束条件とした上で，各部

材の具体的な位置を数理計画法における極小値探索ア

ルゴリズムにより定めるようにして，ハイブリッド化

解法を構成するようにする．

3.3 ハイブリッド化のための問題表現 上述の

ハイブリッド化手法を実現するためには，前節で示し

た板取り問題の定式化を再構成する必要がある．以下

にその内容を示す．

まず，配置における隣接関係については，



遺伝的アルゴリズムと極小値探索アルゴリズムとのハイブリッド化による板取り問題の一解法 2579

θ 1S

Y 1S

θ 2S

X 2S

Y 2S

O (       ,        )y 2Sx 2S2S

Piece 2S

.
. . .

SPiece 1i -

Y i−1S

X i−1S

O i−1S x(         ,          )yi−1S i−1S

SPiece i

.

. . .Y iS

θ iS

X iS

yx(      ,       )iSiSO iS

X

Y

(0,0) X 1S

Piece 1S

O 1S

String:

Layout:

. . . . . . . . . .Piece 1S Piece 2S SPiece 1i - SPiece i

図 3 ハイブリッド化のための配置表現

部材 i (i = 1, ...,n)が，部材 s1 , 部材 s2 , 部材 s3 , ..., 部

材 sn の順の列として拘束されているものとし，この列

を GAにおけるストリングとして用いる．ただし，こ

のようなストリングは，上述のように，単に列の順序

のみを表現したものとはせず，後述の部材間の相対的

な位置関係を含めたものとして取り扱うものとする．

このようなストリングの表現に対応して，ストリン

グに表現されている部材間の隣接関係を保持するため

に，極小値探索においては， 2節で示した制約条件や

目的関数に加えて，以下の目的関数を考慮するように

する．

min. Dist2 =
n−1

∑
i=1

distancesi,si+1
2 (5)

ここで， distancei, j は，部材 i と部材 j との距離であ

る．また，これに対する２乗は，式 (4)と次元を合わ

せるためのものである．

一方，具体的な各部材の位置座標については，図

3に示すような方法で，ストリングにおける部材の順序

にしたがった相対的な位置関係により，以下のように

定義する．まず，個々の部材に対して代表点と代表軸

を定め，それぞれの部材に対して代表点を原点，代表

軸を y軸とする局所座標系 Osi−XsiY si を定義する．その

上で，部材 si−1 の座標系における部材 si の代表点の位

置を (xsi ,ysi)， y軸の向きの差を θsi と定める．なお，

ストリングの第１番目にある部材については，代表点

Local
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end

String &
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Optimal u

図 4 ハイブリッド化解法の構成

(xs1 ,ys1)は絶対座標系 O−XY の原点に一致させ，代表

軸の向き θs1 には絶対座標系の y軸からの傾きをとる

ものとする．したがって，極小値探索アルゴリズムに

おける設計変数ベクトル uは，

u = (θs1 ,xs2 ,ys2 ,θs2 ,
...,xsn ,ysn ,θsn) (6)

となる．

なお，各部材の代表点は，部材に外接する円群のう

ち半径が最小となるものの中心をとるものとする．

4 板取り問題に対するハイブリッド化解法

前節の問題表現に基づいたハイブリッド化解法を以

下に示す．

4.1 ハイブリッド化解法の構成 本解法の概略

を図 4に示す．アルゴリズムは， GAにおけるストリ

ングの評価過程に数理計画法による極小値探索のア

ルゴリズムを組み込んだ形式となっている．すなわ

ち， GAの世代交替の繰り返し過程において，評価・
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スケーリング・選択・交叉・突然変異などの操作によ

り求まったストリングと設計変数の初期値に対して，

極小値探索のアルゴリズムを適用し，具体的な配置を

求めるようにする．

以下に，本解法の各部分について述べる．

4.2 世代交替 GAは，図 4にも示すように，ま

ず， N 個の個体からなる初期世代を形成した上で，あ

る親世代をもとにして各種の操作を行なっていき，子

世代を形成して，そのような一連の操作をある十分な

回数に達するまで繰り返していく．

4.3 評価 各個体の配置におけるスクラップ量

をもとにして，個体に対する適合度 f i (i = 1, ...,N)を次

式により求める(8)．

fi =
(

Scrapmax−Scrapi

Scrapmax−Scrapmin

)2

(7)

ここで， Scrapmaxと Scrapminはそれぞれ，その世代

に含まれる各個体のスクラップ量の最大値と最小値で

ある．なお，上式により各個体に対する評価値を相対

的なものに変換することができる．

4.4 スケーリング 次に，次項で述べる選択を

効果的に行なうために，式 (7)により得られた適合度

に対して，以下の操作を行なう．

• σ–切捨て(2)— fi の平均値 favg と標準偏差 σをも
とに fi < favg − c σなる個体を次項の選択におけ
る母集団から除外する．なお，次節の数値計算例

では c = 1.0とした．

• 線形スケーリング(2)—さらに，残った個体の適合

度を次式により変換する．

f ′i = a fi + b (8)

なお，係数 a, bの値は， f ′max = Cmult f ′avg,

f ′avg = favg, となるように設定する．また，次節

の数値計算例ではCmult = 2.0とした．

これらの調整を行なうことにより，個体群の多様性を

維持しつつ，望ましい方向へと探索を進めていくこと

が期待できるようになる．

4.5 選択 続いて，式 (7)と (8)により適合度 f ′i
を計算した個体群を母集団として子世代を形成する上

で親となる個体対を，必要な数に達するまで，選択す

る．この場合の戦略には，期待値戦略(2)を用いるもの

とし，適合度の高さに応じた数の個体が確実に再生さ

れるようにする．加えて，エリート保存戦略(2)を用い

ることにより，最も適合度の高い個体 (スクラップ量

の少ない配置)をコピーし，後述の交叉，突然変異オペ

レータを作用させることなく，子世代に引き継ぐもの

とする．

Parent 2:

Parent 1:

-c-j -f-d-a -i -b -g-h -e

+a +b +e +f +h+c +d +i +j

Crossover point X

  Child 1 : +a +b +c +d +e +f -h=j -i -g

+g

図 5 交叉— Order Crossover

4.6 交叉 前節の選択により得られた個体対に

対して，交叉確率 Pc のもとで，以下に述べる Order

Crossover(7)という交叉オペレータを作用させ，新しい

個体を作る．

図 5は，ある個体対に対して Order Crossoverを行

なっている様子を示したものである．以下に，その操

作手順を示す．

(1) 選択された対に含まれる個体をそれぞれ，親 1，

親 2とする．

(2) Crossover pointをランダムに設定する．

(3) Crossover pointから前の部分については，親 1の

ストリングにおける部材列をそのまま継承し，後

半の部分については，親 1の前半部に含まれてい

ない部材を親 2において現れている順序に並べる

ことにより，新しい個体，子 1を形成する．

(4) 3 の操作を親 1と親 2の立場を入れ換えて行なう

ことにより，子 2を形成する．

また，部材間の相対的な座標関係については，以下の

ような方法で親から受け継ぐものとする．

• 基本的には，各部材が保持している直前の部材と
の相対的な座標関係をそのまま継承する．

• 親のストリングにおいて先頭にあった部材が，子
のストリングにおいて他の部材に接続する場合

は，その座標関係をランダムに設定する．

なお，図 5において， ‘+’, ‘-’, ‘=’はストリング中の直

前の部材との局所的な配置関係をどちらの親から継承

したかを示す記号であり， ‘+’は親 1から継承したこ

とを， ‘-’は親 2から継承したことを， ‘=’はランダ

ムに設定したことを表している．

以上のような交叉を用いる理由は，特にストリング

前半の部分構造が保存されやすいという特徴により，

有効な部分列を徐々に成長させることによって，より

大きな部分列を形成させることが期待できる点にあ
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  Child  : +a +b +c +e +f =j -i -g+d

  Child’ : +a +b +c -i -g+e +f =j +d-h

-h

removed piece reinsert point

図 6 突然変異— Remove and Reinsert

る．

なお，後出の数値計算例において示す図 9は，この

ような交叉オペレータが有効に作用した例である．

4.7 突然変異 さらに各個体に対して，突然変

異確率 Pmのもとで， Remove and Reinsert (9)という突

然変異オペレータを作用させる．

図 6は，その具体例であり，ストリングの中からラ

ンダムに 1つの部材を選び出し，それを局所的な座標

関係ともども別の箇所に挿入するというものである．

このような操作の目的は，収束によって多様性が急速

に失われることを抑制し，より望ましい解を得られる

ようにすることにある．

4.8 配置の実現—極小値探索の適用— 以上

のようにして求まった各個体のストリングに対して，

以下のようにして具体的な配置を定める．つまり，ス

トリングにおける列として表されている配置の１次元

構造を式 (5)により拘束条件とし，さらに親世代の個

体から引き継いでいる部材間の相対的な位置関係を初

期設計変数とした極小値探索を行なう．この場合のア

ルゴリズムには，準ニュートン法 (10)を用いることにす

る．そこで，問題を無制約極小化問題とするために，

以下のように，制約条件などをペナルティ項として目

的関数に含め，新たに以下の目的関数を定める．

min. Ob j = Scrap+ k1×Dist2

+k2 ×δ2 + k3 ×Overlap2 (9)

ここで， k1, k2, k3 は重み付けの係数である．なお，次

節で示す数値計算例では， k1 = 500, k2 = k3 = 1000と

した．

以上が本解法における各操作の内容であり，それら

を数十世代に渡って繰り返すことにより，優れた配置

を求めることが本解法の狙いである．

5 数値計算例

以下に， 12個の凸多角形部材を配置する板取り問題

を想定して行なった数値計算の例を示す．なお， GA

0 10 20 30 40
Generation

0.00

20.00

40.00

60.00

80.00

Sc
ra

p

 Max 
 Avg 
 Min 

図 7 アルゴリズムの収束過程

に関するパラメータについては，交叉確率 Pc = 0.6，

突然変異確率 Pm = 0.03，世代に含まれる個体数 N =
31と設定した．しかし，これらの設定や前節で示した

各係数の値は，下記のように計算に要する時間が長過

ぎるため，十分にチューニングされたものではないこ

とを記しておく．

図 7は，本解法の収束の様子を示したものである．

図の縦軸はスクラップ量，横軸は世代であり，図中に

は各世代に含まれる各個体のスクラップ量の最小値，

平均値，最大値の履歴が示されている．図からは，全

体が収束していく様子を確認することができる．ま

た，第 28世代以降では，世代に含まれる個体群の多様

性が失われ，収束が進んだことも確認することができ

る．

図 8は，図 7の過程で得られた各世代における最も望

ましい配置の履歴を示したものである．なお，図中の

アルファベット記号は各部材に対するインデックスを

表している．前述のように，本解法ではエリート保存

戦略を用いているため，最も望ましい配置は必ずしも

すべての世代で入れ替わるわけではない．この履歴か

らもわかるように， Order Crossoverを用いている主旨

に対応して，配置の部分構造を徐々に成長させながら

望ましい配置が求まっていく様子を確認することがで

きる．

さらに，図 9は，第 14世代と第 15世代との間で行

なわれた交叉の一例であり，この操作により第 15世代

での最も優れた配置が生成されている．図にも示すよ

うに，第 14世代における両親のストリングは非常に似

たものであるが，実際の配置はそれぞれ異なったもの

となっている．両者を交配することにより直ちに得ら

れる配置は，図中左下に示すように，部材間の重なり

やオーバーハング量を伴うものであるが，それに対し
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Gen: 1

Gen: 6

Gen: 14

Gen: 15

Gen: 21

Gen: 22
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Scrap
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  = 19.67

  = 15.00

  = 12.14

  = 11.72

  =  9.99

  =  9.42

  =  8.11

  =  7.94

図 8 最良配置の履歴

て極小値探索アルゴリズムを適用することにより，右

下に示すような優れた配置が得られている．

なお，図 7に示した 40世代にわたる計算には， Sun

SPARC station 2 (28.5 MIPS, 4.2 Mflops)を用いて約 90

時間を要した．しかし，そのほとんどは式 (1)の部材

間の重なりを計算する部分におけるものであると見積

もられ，重なりの計算を高速化することができれば，

計算時間は大きく改善することができる．

6 結 言

本報では，板取り問題に対して遺伝的アルゴリズム

(GA)と極小値探索アルゴリズムのハイブリッド化によ

る解法を提案した．本解法の特徴は，配置における組

合せ的な要素を１次元の列として表現しようとする点

にあり，それによって本解法のようなハイブリッド化

を行なうことが可能となっている．また，数値計算例

を通じて，本解法により比較的望ましい配置解が得ら

れることが確認できた．しかし， GA一般に言えるこ

とではあるが，解の善し悪しや収束性が，個体数をは
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Scrap 
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Crossover point
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Overhang: δ

Crossover point
+h+e+c+g -j-a-b-d-f-k-i-l

図 9 効果的な交叉の例

じめとする各種パラメータや交叉や突然変異などのオ

ペレータの種類に依存する(2)(11)ため，今後，様々な場

合の性能について比較・検討を加えることが必要であ

ると考えられる．
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