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GENERAL INTRODUCTION 

 

Reconstructive materials with antimicrobial effects could be useful in medical or dental 

fields for preventing infectious diseases in an environment containing indigenous 

bacteria or fungi. A conventional approach to providing reconstructive materials with 

infection control abilities is to incorporate water-soluble antimicrobials and enable their 

release in a wet environment. For example, to prevent bacterial infections associated 

with orthopaedic implants or intravascular catheters, surface treatmennt of these 

materials with antimicrobials such as biguanides or quaternary ammonium compounds 

have been attempted [1, 2]. In dental field, several studies on addition of antimicrobials, 

such as cetylpyridinium chloride, benzalkonium chloride, or chlorhexidine, to 

composite resins [3], glass-ionomer cements [4-7], orthodontic adhesives [8, 9], 

endodontic filling materials [10], or acrylic varnishes [11] are available. However, the 

antimicrobial effects displayed by these materials are limited to a short period and 

continuous delivery of the agents is not possible. Such limitation is crucial in an oral 

environment harboring plenty of bacteria and fungi, and dental reconstructive materials 

with sustained antimicrobial effects are necessary to effectively prevent bacterial/fungal 

infectious diseases. 

One approach to solving this problem is to immobilize an antimicrobial component 

in restorative materials by incorporation of a polymerizable bactericide such as 

quaternary ammonium compound (QAC)-based resin monomers, represented by 

12-methacryloyloxydodecylpyridinium bromide (MDPB) [12-15]. MDPB has been 

utilized for various resin-based materials, such as composite resins [12, 16, 17], 

pre-polymerized resin fillers [18, 19], or adhesives [14]. Besides MDPB, several other 
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studies reported application of newly developed QAC-based monomers to adhesives or 

composite resins [20-22]. Antimicrobials immobilized by polymerization of these 

QAC-based monomers do not leach out from their carrier materials and long-lasting 

effects can be obtained. However, since materials with immobilized bactericides exhibit 

antimicrobial effects that are dependent upon contact inhibition of bacteria, their 

effectiveness can be readily reduced by coverage with protein. 

A potential new approach to providing reconstructive materials with long-lasting 

antimicrobial effects is to apply non-biodegradable carriers for antimicrobials as drug 

reservoirs. For this, non-biodegradable hydrogels, such as poly-2-hydroxyethyl 

methacrylate (poly-HEMA), may be useful because they can effectively take up 

water-soluble antimicrobials in conjunction with water and release them in a wet 

environment [23-26]. In addition, exposure of such hydrogels to antimicrobial solutions 

may enable recharging with antimicrobials, thus achieving persistent antimicrobial 

effects. 
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OBJECTIVES AND CONTENTS 

 

With the objective of applying a non-biodegradable hydrogel to resin-based materials as 

a reservoir for water-soluble antimicrobials, novel hydrogels consisting of HEMA and 

trimethylolpropane trimethacrylate (TMPT) were fabricated, and cetylpyridinium 

chloride (CPC), a type of QAC, was loaded into these hydrogels.  

The general objective of this thesis work was to develop sustained 

antimicrobial-release systems using CPC-loaded poly-HEMA/TMPT hydrogels by 

evaluating their ability to release and recharge CPC in vitro.  

In chapter 1, five poly-HEMA/TMPT hydrogels comprising different ratios of 

HEMA/TMPT were fabricated and loaded with CPC by immersion into a CPC solution. 

Then, the ability of these five hydrogels to release CPC was evaluated. In chapter 2, the 

concentration of CPC required to inhibit oral bacteria and fungi was determined for 

designing recharge protocol of CPC, and the ability of poly-HEMA/TMPT hydrogels to 

recharge CPC was evaluated. In addition, poly-HEMA/TMPT hydrogels containing 

CPC were prepared by pre-mixing of CPC powder into hydrogels, and their release and 

recharge capacities of CPC were evaluated. 
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CHAPTER 1 

 

Fabrication of poly-HEMA/TMPT hydrogels and evaluation of their 

ability to release CPC 

 

 

1.1 Materials and methods 

 

1.1.1 Fabrication and characterization of poly-HEMA/TMPT hydrogels 

For fabrication of hydrogels, HEMA (Tokyo Kasei, Tokyo, Japan, 97.6% purity) and 

cross-linking monomer, trimethylolpropane trimethacrylate (TMPT; Shin-nakamura 

Kagaku, Wakayama, Japan, 94.8% purity) were used (Fig. 1). With 0.5 weight (wt) %  

benzoyl peroxide, mixtures of HEMA and TMPT at weight ratios of 10/90, 30/70, 50/50, 

70/30, or 90/10 were heat polymerized first at 120°C for 2 h and then under diminished 

pressure (−0.1 megapascal) for 16 h (Table 1). The prepared polymer was ground into 

particles with a diameter of 500 ± 22 µm using a laboratory mill (MF10 basic; IKA, 

Staufen, Germany) and a planetary ball mill (LP-1; Ito Seisakusho, Tokyo, Japan). The 

powders were washed by immersion in distilled water for 48 h at 25°C and dried for 24 

h at 60°C.  

To determine the water absorption capacity of the hydrogels, 1 g of each hydrogel 

particle was immersed in 25 g of water and stored for 96 h at 25°C, with agitation. After 

vacuum filtration on filter paper (No.2; Advantec, Tokyo, Japan) for 3 min, the weight 

of the particles was measured using an electronic balance (PB1502-s/FACT; 

Mettler-Toledo, Greifensee, Switzerland), and the water absorption ratio was calculated 

using the following equation:  

Water absorption ratio (%) = (Wb – Wa) / Wa × 100, 
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where Wa is the weight before storage in water and Wb is the weight after storage in 

water for 96 h.  

To assess hydrophobicity, 100 mg (Wd) of each hydrogel particle was immersed in 

1 mL of either distilled water or aqueous 70 vol% isopropanol. After 36 h, the swollen 

weight (Ws) of the particles was measured. The equilibrium mass swelling ratio (q) in 

solvent x (I70: 70 vol% isopropanol, H2O: distilled water) was calculated as: qx = 

Ws/Wd. The H-index of each hydrogel was then determined as: H = qI70/qH2O. 

To determine the surface electric charge, each hydrogel particle was ground to an 

average diameter of 50 µm, and 10 mg of powder was suspended in 1 mL of distilled 

water. Surface electric charge was determined by measuring the zeta potential with a 

zeta potential analyzer (Zetasizer Nano-ZS; Malvern Instruments, Southborough, UK).  

All experiments were repeated three times. Data between the five groups were 

compared by analysis of variance (ANOVA) and Tukey–Kramer test with a significance 

level of p < 0.05. 

 

1.1.2 Preparation of poly-HEMA/TMPT hydrogels containing CPC by 

immersion-loading methods 

CPC powder (Wako, Osaka, Japan) was dissolved in distilled water to prepare 500 

µg/mL of solution. Thirty milligrams of each of the five hydrogel particles was 

immersed in 30 µL of CPC solution (total amount of CPC, 15 µg) in a glass tube, and 

stored at 25°C for 24 h to take up CPC.  

To determine the amounts of CPC adsorbed by the prepared particles, the residual 

solution in the glass tube after loading was diluted with water and the amounts of 

residual CPC (Ar) were calculated from the concentration of CPC measured by 
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high-performance liquid chromatography (HPLC). The HPLC system (Prominence; 

Shimadzu, Kyoto, Japan) used a reverse-phase column (Puresil 5µ C18 column; Waters, 

Millford, MA, USA). Acetonitrile and 5 mM phosphate buffer solution including 100 

mM sodium perchlorate mixed at 70/30 (vol/vol) were used for the mobile phase at a 

flow rate of 1 mL/min, and readings were performed at 260 nm. The lowest limit of 

detection for CPC was 1.0 µg/mL. The amount of CPC adsorbed (Ap) in micrograms 

was calculated by subtracting Ar from 15.  

To determine the amounts of CPC strongly bound to the hydrogel (As), the 

CPC-loaded hydrogel was washed in 500 µL of water to remove loosely bound CPC. 

The amounts of CPC liberated into the water (Aw) were then measured and the value of 

As was calculated as; As (µg) = 15 − Ar − Aw. The experiments were repeated five times. 

 

1.1.3 Determination of release of CPC 

Thirty milligrams of non-washed or washed hydrogel particles loaded with CPC were 

placed in one well of a 48-well microplate, and 500 µL of distilled water was added. 

The eluent was replaced after storage at 37˚C for 12, 24, 48, and 72 h, and the 

concentration of CPC released determined by HPLC. The experiments were repeated 

five times. Data between the two groups were statistically analyzed by the Student’s 

t-test with a significance level of p < 0.05, and the results of the five groups were 

compared by ANOVA and Tukey–Kramer test with a significance level of p < 0.05. 

 

 

1.1.4 Analysis of the mechanism of CPC binding to poly-HEMA/TMPT hydrogels 

To analyze the mechanism of CPC binding to hydrogels, release of CPC from washed 
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particles into three different elution media was determined. Non-ionic detergent, an 

electrolyte NaCl solution, and urea solution were used to examine the relevance of 

hydrophobic interaction, electrostatic interaction, and hydrogen bonding, respectively. 

Thirty milligrams of washed hydrogel particles were immersed in 500 µL of 0.1 M 

Triton X-100 (Nacalai Tesque, Kyoto, Japan), 0.1 M NaCl solution (Wako), or 0.1 M 

urea solution (Wako), and stored at 37°C. Replacing the elution medium after 12, 24, 48, 

72, 96, and 120 h, the concentration of CPC eluted into each solution was measured by 

HPLC and the total amounts of CPC released were calculated. The experiments were 

repeated five times, and the results were statistically analyzed by the Student’s t-test 

with a significance level of p < 0.05. 

 

 

1.2 Results 

 

1.2.1 Characterization of poly-HEMA/TMPT hydrogels 

Figure 2 shows a microscopic image of H50 particles. All of the hydrogel particles 

fabricated were transparent and had irregular shape. Water absorbability, 

hydrophobicity, and surface electric charge of each hydrogel particle are shown in Fig. 

3. The H70 and H90 particles with higher HEMA contents showed significantly greater 

water absorption than H10. The hydrophobicity represented by the H-index increased 

with HEMA content, and a significant increase was observed amongst H30–H90 (p < 

0.05, ANOVA, Tukey–Kramer test). All of the hydrogels had negative charges, with 

zeta potential values of −25 to −31 mV. The negative values for H50, H70, and H90 

were significantly less than those of H10 and H30 (p < 0.05, ANOVA, Tukey–Kramer 
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test). 

 

1.2.2 Amounts of CPC adsorbed 

The amounts of CPC adsorbed to each hydrogel particle as prepared (Ap) and after 

washing (As) are summarized in Table 2. Adsorption ratios (%) for the particle as 

prepared (Rp) and after washing (Rs) were also calculated. All five particles showed 

high adsorption ratios when measured as prepared, and complete adsorption of CPC in 

immersed solution was observed for the particles with HEMA at 50% or more.  

After washing, the adsorption ratios for H10 and H30 were greatly reduced, 

indicating that most of CPC was loosely bound to the surfaces of these particles. In 

contrast, H50, H70, and H90 demonstrated high adsorption ratios for CPC even after 

washing, and adsorption of more than 97% of CPC was observed for H70 and H90. 

 

1.2.3 Release of CPC from hydrogels 

Concentrations of CPC released from immersion-loaded hydrogel particles into water 

are shown in Fig. 4. For the particles as prepared, at the initial stage after 12 h, H10 and 

H30 showed significantly greater release than other particles (p < 0.05, ANOVA, 

Tukey–Kramer test). However, the release concentrations from H10 or H30 were 

reduced to around 2 µg/mL after 24 h and were nil (below the level of detection limit of 

1.0 µg/mL) after 48 or 72 h, respectively. H70 and H90 showed release of CPC at less 

than 0.8 µg/mL after 12 h and no release was detected thereafter. H50 released around 

4.5 µg/mL of CPC after 12 h. Amongst the five hydrogels, only H30 and H50 showed 

release of CPC until 48 h. 

The CPC-release after 12 h from washed H10 and H30, which showed low 
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adsorption ratios, was significantly lower than those from the particles as prepared (p < 

0.05, ANOVA, Tukey–Kramer test). Washed H70 and H90 demonstrated small amounts 

of CPC release, similar to the particle without washing. Initial CPC release from H50 

after washing was not significantly different from those of the specimen as prepared (p 

> 0.05, Student’s t-test), and washed H50 demonstrated the release of CPC until 48 h. 

Table 3 shows the total amounts of CPC released into water. Release rates as a 

percentage of the amounts adsorbed into each hydrogel was also calculated. For both of 

the particles as prepared and washed after loading, a large part of the CPC adsorbed was 

found to be released from H10 and H30. In contrast, for H70 and H90, only a small 

amount of CPC was released and most of loaded CPC remained trapped within the 

particles. For H50, about 30% of loaded CPC was released, regardless of washing 

procedure. 

 

1.2.4 Analysis of mechanism of CPC binding to poly-HEMA/TMPT hydrogels 

Total amounts of CPC released from each hydrogel particle into water (control), Triton 

X-100, NaCl, or urea aqueous solutions are shown in Fig. 5. The specimens H30–H90 

demonstrated significantly greater release of CPC into Triton X-100 compared with 

water, and remarkable increases were observed for H50, H70, and H90 (p < 0.05, 

Student’s t-test). Based on the amounts of adsorbed CPC determined (Table 2), it was 

found that almost all of CPC loaded was released into Triton X-100 from all hydrogels. 

On the contrary, the amounts of CPC released into NaCl solution were significantly 

decreased compared with that released into water for all hydrogels (p < 0.05, Student’s 

t-test). When the release concentrations into urea solution were compared with those 

released into water, no significant difference was observed for H10 and H30, but H50, 
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H70 and H90 exhibited significantly lower release (p < 0.05, Student’s t-test). 

 

 

1.3 Discussion 

Several kinds of hydrogels for drug release have been reported, such as gelatin, 

polysaccharide, polyHEMA, or poly(ethylene glycol) gels [27-33]. Because many 

reconstructive materials for dental use are based on methacrylate resins, a 

non-biodegradable polyHEMA gel is expected to be compatible with dental resins. 

Polymers based on the hydrophilic monomer HEMA [34-36] can take up water-soluble 

drugs [24]
 
owing to its water absorbability [23]. However, most of the HEMA-based 

hydrogels previously reported are homopolymers of HEMA or copolymers of HEMA 

and a mono-metharylate such as methyl methacrylate [37-39]. Those hydrogels 

consisting of single-chain polymers are too elastic to be pulverized and have limited 

formability. Therefore, in this study, hydrogels were fabricated by combining HEMA 

and a cross-linking monomer TMPT. TMPT is a tri-functional methacrylate that has 

been used for dental resin composites [40-43]. The cross-linking ability of TMPT is 

considered to be effective for increasing the mechanical strength of a hydrogel, 

providing a greater possibility for application to various reconstructive materials.  

For the binary system of HEMA and TMPT, an increase in HEMA content resulted 

in greater water absorbability. This means that the hydrophilic hydroxyl group of 

polymerized HEMA plays a role in absorbing water. It is known that the total water 

absorbed by a hydrogel comprises bound and free water [23]. When a dry hydrogel 

begins to absorb water, the first water molecules entering the polymer matrix hydrate 

the most hydrophilic groups. As the hydrophilic groups are hydrated, the network swells 
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and hydrophobic groups are exposed. The network absorbs additional water, but this 

additional swelling is opposed by cross-links, and the hydrogel reaches an equilibrium 

swelling level. The additional swelling water that is absorbed beyond the total bound 

water is called free water, and is assumed to fill the space between the network chains. 

The results of water absorption tests (Fig. 3A) reflect the swelling of the polymer 

network, suggesting less cross-linking levels for hydrogels with smaller TMPT content. 

Accordingly, hydrogels with greater HEMA content can contain more bound and free 

water, resulting in greater water absorbability.  

Conversely, from the results of H-index measurements, the hydrogels with higher 

ratios of HEMA showed greater hydrophobicity (Fig. 3B). It has been reported that the 

H-index, which has a similar conceptual basis to the octanol-water partition coefficient 

(logP) used to classify molecular hydrophobicity, is useful to detect differences in the 

hydrophobicity of hydrogels [44, 45]. Alkyl chains of the polymerized HEMA in the 

network possibly act to provide hydrogels with a hydrophobic nature. Binding of the 

hydroxyl group of HEMA with some other part of the polymer may also decrease the 

hydrophilic nature of the hydrogels. 

To evaluate the surface electric charge of each poly-HEMA/TMPT hydrogel, the 

zeta potential was measured. All five hydrogels fabricated had a negative charge. Jang 

et al. [46] and Laverty et al. [47] reported that HEMA possesses an anionic character, 

which is present in its polymeric form via the polar hydroxyl groups. Our results were 

in accordance with these previous findings. However, the negative values for H50, H70, 

and H90, with greater HEMA contents, were significantly lower than those of the H10 

and H30. Accordingly, the surface electric charge of the hydrogels prepared was not 

dependent upon the ratio of HEMA. 
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The quaternary ammonium compound CPC was chosen as the antimicrobial to be 

loaded into the hydrogels. CPC is highly soluble in water (50 mg/mL at 20 °C) and has 

a strong antimicrobial activity against oral bacteria and fungi [48-52]. In general, the 

amounts of water-soluble drug loaded into the cross-linked hydrogel increase, as 

cross-linking density decreases and as the water absorption of the hydrogel increases 

[53]. Our results confirmed that the hydrogel particles with HEMA at 50% or more 

demonstrated greater adsorption of CPC than H10 and H30. In addition, the adsorption 

ratio for H10 and H30 was greatly reduced by washing, indicating that most of CPC 

was loosely bound to these particles. In contrast, H70, and H90 demonstrated high 

adsorption, of more than 97% of the initial CPC even after washing, indicating that CPC 

was strongly adsorbed to these hydrogels.  

Water-soluble drugs are released from the hydrogel by passive diffusion, which is 

the most common release mechanism [54]. From the results for the total amount of CPC 

released into water and the release rates (Table 3), for both particles as prepared and 

those washed after loading, a large part of the adsorbed CPC was found to be released 

from H10 and H30 but only a small amount was released from H70 and H90. Amongst 

the five hydrogels, H50 after washing showed the largest amounts of release, for the 

longest period. It is interesting to note that release characteristics of CPC into water did 

not correlate with the water absorbability of the hydrogels.  

To analyze the binding mechanism of CPC to as-prepared hydrogels, Triton X-100, 

NaCl solution, or urea solution were used as elution media and the release of CPC was 

evaluated. Hydrogels H30–H90 demonstrated significantly greater release of CPC into 

the non-ionic surfactant solution Triton X-100 than into water. Because the surfactant 

hinders hydrophobic interaction [55-57], CPC adsorbed to hydrogels by hydrophobic 
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interaction is desorbed by Triton X-100 and released. Amongst the five hydrogels, 

remarkable increases in release into Triton X-100 were observed for H50, H70, and H90, 

which have high hydrophobicity. These results indicate that CPC is bound to the 

polymer network through hydrophobic interactions. CPC is a cationic antimicrobial 

agent, with a positive charge on the N atom of the pyridinium ring. It is well known that 

this compound shows strong interaction with negatively charged substances [47]. 

However, release of CPC from the hydrogels into NaCl solution was not increased 

compared with that into water. Moreover, H50, H70, or H90, which have lower negative 

charges, demonstrated release in smaller amounts into NaCl solution. Accordingly, it is 

unlikely that electrostatic interaction is involved in the binding of CPC to the 

HEMA/TMPT polymer network. Zahedi et al. [58] reported involvement of hydrogen 

bonding between water-soluble drugs and the hydroxyl groups of polyHEMA hydrogels 

in drug-loading. However, in the present study, the amounts of CPC released from 

hydrogels into urea solutions did not significantly differ from those into water, 

suggesting that hydrogen bonding has no relevance in the binding of CPC to 

poly-HEMA/TMPT. Thus, it is considered that CPC taken up by hydrogels binds to the 

polymer frame mainly through hydrophobic interactions. 

The loading of CPC and its release from fabricated poly-HEMA/TMPT hydrogels 

can be explained by the state of CPC, polymer mesh sizes, and hydrophobicity of the 

polymer (Fig. 6). A cationic surfactant CPC forms micelles by hydrophobic interactions 

at concentrations above 322 µg/mL (0.9 mM) [59-61]. In the present study, CPC in the 

small micellar state was taken up by the hydrogels as they were immersed into 500 

µg/mL of CPC solution, which is slightly greater than the critical micelle concentration. 

The average size of such CPC micelles is about 1 nm [62]. Conversely, hydrogels with 
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greater amounts of HEMA have a larger polymer network mesh size [63, 64]. Small 

amounts of CPC micelles are adsorbed to the superficial part of the polymer in H10, 

which has the smallest mesh size amongst the five hydrogels, and most of the adsorbed 

CPC is rapidly released within a short period. For H30, which has a larger polymer 

mesh size than H10, more micellar CPC is adsorbed to the polymer, and a longer release 

of CPC is possible than from H10. As for H70 and H90, which have higher water 

absorbability and larger mesh sizes, a greater amount of CPC than those for H10, H30, 

and H50 is trapped more deeply within the polymer. However, CPC taken up by these 

polymers is desorbed less because of strong adsorption by hydrophobic interaction. 

Amongst the five hydrogels, H50 has an optimal mesh size for penetration of micellar 

CPC and a binding affinity with CPC, showing the largest amounts of release, for the 

longest period. It has been reported that the critical micelle concentration of CPC was 

decreased in NaCl aqueous solution [65]. Therefore, in the presence of NaCl, CPC 

micelle formation was promoted in the hydrogels and resulted in production of larger 

micelles. This may be the reason for decreased amounts of CPC released from the 

hydrogels into NaCl solutions than into water.  

 

 

1.4 Conclusions 

New, non-biodegradable poly-HEMA/TMPT hydrogels, loaded with CPC by 

immersion into CPC solutions, demonstrated release of the agent in water. Amongst 

hydrogels with different ratios of HEMA and TMPT, a 50% HEMA/50% TMPT 

specimen was found to be the most suitable for loading and release of CPC.  
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CHAPTER 2 

 

Evaluation of the ability of poly-HEMA/TMPT hydrogels to recharge 

CPC 

 

2.1. Materials and methods 

 

2.1.1 Measurement of minimum inhibitory concentration values of CPC against 

oral bacteria and fungi 

Minimum inhibitory concentrations (MIC) against four oral bacterial species and one 

fungus were determined by a microdilution assay. For the measurement, Streptococcus 

mutans UA159 and NCTC10449, Lactobacillus casei ATCC4646, Enterococcus 

faecalis SS497, and Candida albicans SC5314 were used.  

Serial 2-fold dilutions of 50 µL of CPC solution were prepared in the wells of a 

96-well microplate, and 50 µL of microbial suspension at approximately 2 × 10
6
 

colony-forming units (CFU)/mL was inoculated into each well. The plates were 

incubated anaerobically for 48 h at 37°C, and MIC values were determined as the 

lowest concentration in the well at which no turbidity was observed by visual 

examination. The tests were repeated five times for each strain. 

 

2.1.2 Assessment of ability of poly-HEMA/TMPT hydrogels to recharge CPC 

Thirty mg of H30 or H50 particles loaded with CPC were immersed in 500 µL of 

distilled water for 48 h to make CPC release, and then 30 µL of CPC solution at 500 

µg/mL was added to the particles. After storage at 37°C for 24 h, the release of CPC 

was re-evaluated, as described in Chapter 1. The procedure for recharging and the 

measurement of CPC-release were run in three consecutive series, and the experiments 
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were repeated five times.  

The profiles of CPC-release from the hydrogel particles under different recharging 

protocols were also analyzed. For this test, H50 particles, which showed release of CPC 

for the longest period amongst the five hydrogels in previous experiments in Chapter 1, 

were used. The CPC-loaded H50 was prepared by immersion of 30 mg of H50 particles 

into 30 µL of CPC solution at 500 µg/mL or 5 mg/mL. The release of CPC was carried 

out once by immersion of each hydrogel into distilled water for 48 h, and recharging 

was conducted using the CPC solutions at the same concentrations as those used for 

loading. The durations of immersion to recharge with CPC were 5 min, 6 h, or 12 h. The 

release of CPC from recharged H50 was evaluated in three repeated procedures as 

described above. The experiments were repeated five times. 

 

 

2.1.3 CPC-loading to hydrogels by pre-mixing methods and analysis of release 

characteristics 

The loading of CPC was performed by mixing CPC powder into the HEMA/TMPT 

monomer before polymerization and the release profile was evaluated. To a monomer 

mixture of H50 (HEMA/TMPT = 50/50 wt%), CPC powder was added at 0.5, 5, or 10 

wt%, and the monomer was heat polymerized. The prepared polymer was ground to 

obtain an average diameter of 500 µm. Thirty milligrams of CPC-pre-mixed hydrogels 

were placed in one well of a 48-well microplate, and the concentration of CPC released 

into 500 µL of distilled water was measured by HPLC, after replacing eluent at certain 

periods. The experiments were repeated five times. 

To compare the release characteristics based on two different loading methods; i.e., 
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immersion loading and pre-mix loading, release of CPC into water from H50 loaded 

with CPC by immersion in a 0.5% (5 mg/mL) solution was also determined.  

 

2.1.4 Release of CPC from pre-mixed hydrogels after recharging  

After immersion of 30 mg of 0.5% CPC-pre-mixed H50 particles in distilled water for 

72 h to make CPC release, recharging of CPC was conducted by immersion in 30 µL of 

CPC solution at 500 µg/mL for 5 min. The release of CPC was then evaluated again, as 

described in Chapter 1. The procedure for recharging and the measurement of CPC 

release were run in three consecutive series, and the experiments were repeated five 

times. The results were statistically analyzed by the Student’s t-test with a significance 

level of p < 0.05. 

 

 

2.2 Results 

 

2.2.1 MIC values of CPC  

For all microorganisms, the same endpoint was obtained for each of the five replicates. 

The MIC value of CPC against S. mutans NCTC10449 was 0.8 µg/mL. Against S. 

mutans UA159, L. casei ATCC4646, E. faecalis SS497, and C. albicans SC5314, the 

value was determined to be 1.6 µg/mL. 

 

2.2.2 Ability of poly-HEMA/TMPT hydrogels to recharge CPC 

For both H30 and H50, the release concentrations were recovered by the recharging 

process (Fig. 7). The release profile after recharging was similar to that after the first 
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loading, showing reduced release amounts at 48 h. Repeated recharging every 48 h 

resulted in maintenance of CPC levels above 2 µg/mL for H50 particles.  

Release profiles under different recharging protocols are shown in Fig. 7. For a 

5-min recharge, although the use of 500 µg/mL CPC solution was not effective to 

recover the release concentrations, continuous release of CPC above 1.6 µg/mL was 

obtained by recharge every 3 days with a 5 mg/mL CPC solution (Fig. 8A). In the case 

of recharging for longer times of 6 and 12 h (Fig. 8B, 8C), over 1.6 µg/mL of CPC 

release was maintained by recharging every 2 days with CPC solution at 500 µg/mL and 

every 3 days with 5 mg/mL solution. 

 

2.2.3 Release characteristics of CPC-loaded hydrogels prepared by pre-mixing 

methods  

A H50 hydrogel loaded with CPC by immersion into 0.5% CPC solution demonstrated 

21.8 µg/mL of CPC release after 12 h, but the release continued only for 5 days (Fig. 

9A). On the contrary, while the initial release concentration was significantly lower than 

that of the immersion-loaded hydrogel, a H50 hydrogel pre-mixed with 0.5% CPC 

powder demonstrated release of CPC until 20 days, and release over 1.6 µg/mL was 

maintained until 10 days (Fig. 9A).  

Release of CPC at high concentrations after 12 h, i.e., 175 and 860 µg/mL, was 

observed for 5 and 10% pre-mixed specimens, respectively (Fig. 9B). Although the CPC 

release was reduced gradually, both materials exhibited sustained release of CPC over 

120 days.  

To compare the release kinetics from 0.5% CPC-pre-mixed H50 with that of H50 

loaded with CPC by immersion into a 5 mg/mL (0.5%) solution, modeling of drug 
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release profiles was performed using a simple power law-based equation, derived by 

Ritger and Peppas [66, 67].  

Mt / M∞ = Kt
 n
, 

where Mt and M∞ are the absolute cumulative amounts of drug released at time t and 

infinite time, respectively. Mt/M∞ is typically applied to the first 60% of total drug 

released. K is a constant that incorporates both the structural and geometric 

characteristics of the device, whereas the release exponent (n) indicates the mechanism 

of drug release. The above equation can be modified to a logarithmic function, and 

when the log10 fraction of total drug released is plotted against the log10 time, the release 

exponent (n) is equivalent to the gradient of these line plots. 

log10 (% released) = log10 (Mt / M∞) = log K + n log10 t 

Figure 10 shows the log10 fraction of total drug released from a 0.5% 

CPC-immersion-loaded or pre-mixed hydrogel against log10 time. A value of n less than 

0.43 indicates the occurrence of Fickian diffusion. A value of n between 0.43 and 0.85 

indicates non-Fickian transport. When the n value is greater than 0.85, there is 

zero-order release, which means release occurs at a constant rate. The value of n for a 

CPC-loaded hydrogel by the immersion method was 0.21 so was found to demonstrate 

Fickian diffusion pattern, while the 0.5% CPC-pre-mixed hydrogel, with n = 0.668, 

exhibited non-Fickian transport. 

 

2.2.4 Release of CPC from pre-mixed hydrogels after recharging  

An increase in the concentrations of CPC release was observed after re-immersion of 

CPC-pre-mixed H50 into 500 µg/mL CPC solution for 5 min (Fig. 11). The release 

profile for a 0.5% CPC-immersion-loaded hydrogel with 5-min recharging was 
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extrapolated into Fig. 11. The CPC release from an immersion-loaded hydrogel 

gradually decreased. On the contrary, concentrations of CPC released from pre-mixed 

hydrogels were maintained at over 2 µg/mL by recharging, showing significantly 

greater values than immersion-loaded hydrogels at all time periods after 3 days (p < 

0.05, Student’s t-test).  

 

 

2.3 Discussion 

To design the CPC recharging protocol, we determined the minimum inhibitory 

concentrations (MIC) values of CPC against several oral bacteria and a fungus, such as 

S. mutans, L. casei, E. faecalis, and C. albicans. S. mutans and L. casei are 

caries-related bacteria [68, 69], and E. faecalis is frequently isolated from infected root 

canal [70-73]. C. albicans is strongly related to denture-induced stomatitis [74-77]. The 

MIC values of CPC determined for these microorganisms were 1.6 µg/mL or less. 

Previous studies described similar MIC values (less than 1.6 µg/mL) for CPC against S. 

mutans MT8148, S. salivarius, and S. mitis [12, 78, 79]. Based on this information, the 

release concentration of CPC at 1.6 µg/mL or over was set as a value for subsequent 

study to evaluate the effectiveness of recharging to hydrogels.  

For both H30 and H50, it was found that CPC-release concentrations could be 

recovered by exposure to CPC solution for 24 h. The release profile after every 

recharging process was similar to that after the first loading. In addition, H50 

demonstrated continuous release above the effective concentration of CPC through 

recharging. These results indicate that repeated loading of CPC to a polymer consisting 

of 50% HEMA/50% TMPT was possible. Andrade-Vivero et al. [25] and Laverty et al. 
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[47] reported that release of drug for longer periods from polyHEMA gels was obtained 

when they were immersed in higher concentrations of drug solution. Using H50, we 

further analyzed the release profiles of CPC under several recharging protocols with 

combinations of different CPC concentrations and exposure periods. The results suggest 

that CPC solutions at higher concentrations, such as 5 mg/mL (0.5%), are needed in the 

case that a short period exposure of 5 min is adopted. It was also confirmed that 

sustained release of CPC above 1.6 µg/mL can be achieved by recharging with a 500 

µg/mL (0.05%) solution over a longer period, such as 6 h. Ehara et al. [80] reported that 

a methacrylic acid (MAA)-based resin to which CPC was bound and could be recharged 

through an ion-exchange mechanism after release. They demonstrated that recharge of 

CPC into this resin was possible by immersion into 2.5 mg/mL of CPC solutions for 30 

min. Cao et al. [81] also reported re-adsorption of chlorhexidine to a co-polymer of 

MAA with diurethane dimethacrylate by exposure of the specimen to a 10% 

chlorhexidine solution for 24 h. Our system of recharging the poly-HEMA/TMPT 

hydrogels by diffusion of CPC is considered to be advantageous, because sustained 

release of CPC can be achieved by a shorter recharge period of 5 min, using a 5 mg/mL 

(0.5%) CPC solution. 

When CPC was repeatedly taken up by poly-HEMA/TMPT hydrogels by 

immersion into CPC solutions, concentrations of CPC released were decreased in 48 h 

and was zero after 72 h, even for the H50 hydrogel. Therefore, CPC powder was mixed 

with the monomer components of H50, and the release profile of CPC from the 

polymerized hydrogel was evaluated. A hydrogel pre-mixed with 0.5% CPC 

demonstrated release of CPC until 20 days, and release above 2 µg/mL was maintained 

for 10 days. With 5 and 10% CPC-pre-mixed hydrogels, release of CPC continued for 
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over 120 days. It has been reported that methacrylate resins incorporated with 

chlorhexidine powder before polymerization exhibited release of the agent for 4–5 

weeks [82, 83]. Thus, pre-mixing of the drug with monomers is an effective method to 

attain long-period release from the polymer. Analysis using the equation derived by 

Ritger and Peppas revealed that CPC-immersion-loaded hydrogels showed a release 

pattern corresponding to Fickian diffusion with an initial burst. In contrast, the release 

profile from a CPC-pre-mixed hydrogel showed non-Fickian diffusion. Non-Fickian 

transport means that there is an anomalous release pattern, with complex drug release 

kinetics under control of both drug diffusion and polymer relaxation [38, 47]. Through 

the pre-mixing method, CPC can be dispersed homogeneously inside the polymer and 

such a structure for CPC-carriage may be one of the reasons for the specific release 

pattern. In addition, it is considered that CPC dissolved in a monomer mixture of 

HEMA and TMPT does not form micelles as it does in water. It is possible that binding 

of non-micellar CPC to the HEMA/TMPT polymer by hydrophobic interaction is 

stronger and therefore long-term release with no initial burst is attained. 

Immersion of a CPC-pre-mixed H50 into a CPC solution was effective to recover 

CPC release, and recharge of CPC was possible, similar to the immersion-loaded 

hydrogels. Furthermore, for the 0.5%-CPC-pre-mixed hydrogel, release of CPC above 2 

µg/mL was maintained by short period recharges of 5 min using a CPC solution at 500 

µg/mL. The release of CPC freshly adsorbed by recharging, in addition to the initially 

loaded CPC, resulted in constant release at a level that was effective against oral 

bacteria and fungi. A combination of pre-mix loading of CPC powder and recharge with 

CPC solution, therefore, is the most appropriate and efficient way to obtain sustained 

release of CPC. 
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From the release profile of pre-mixed H50 after recharging, it is likely that 

pre-mixing of CPC powder did not affect basic characteristics of H50 polymer including 

hydrophilicity, hydrophobicity, and mesh size. However, in general, addition of 

non-polymerizable components into resins compromises curing behavior [82, 84]. 

Therefore, to apply the poly-HEMA/TMPT hydrogels to various methacrylate resins, 

further study to compare the mechanical properties of H50 and CPC-pre-mixed H50 is 

needed.  

In the oral environment, proteins in the saliva adsorb and cover the surface of 

reconstructive materials [85-88]. To clarify the usefulness of the hydrogels for 

application to dental resins, their ability to release and recharge CPC in the presence of 

saliva remains to be determined. 

Russell [89] reported that frequent use of water-soluble antimicrobials resulted in 

development of tolerance in Staphylococcus aureus, Escherichia coli, and Pseudomonas 

stutzeri. So far, no study is available which investigated acquirement of resistance to 

antimicrobials by oral bacteria. Preliminary examination conducted by our group 

demonstrated that exposure of S. mutans or E. faecalis to CPC at sub-MIC 

concentrations did not cause any resistance (data not shown). Usage of CPC appears to 

be effective in terms of longevity of antimicrobial effects, but such advantage needs to 

be clarified in detail.  

Another important issue raised for continuous release of antimicrobials is possible 

negative influence on oral microbial homeostasis. The presence of a resident microflora 

prevents disease by reducing the chance of colonization by exogenous species. The use 

of antimicrobials may perturb the resident microflora resulting in overgrowth by 

drug-resistant, but previously minor, components of the oral microflora, or colonization 
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by exogenous and potentially pathogenic organisms [90]. For examining clinical 

benefits and risk, in vivo examination of sustained CPC-release systems developed must 

be conducted.  

 

 

2.4 Conclusions 

Recharge of CPC into the 50% HEMA/50% TMPT hydrogel was possible and 

continuous release of CPC above the effective antimicrobial concentration was attained. 

CPC-loaded hydrogels prepared by a pre-mixing method exhibited an extended period 

of initial CPC release, and a sustained release system for CPC may be achieved by 

combining an appropriate recharge protocol with pre-mixed hydrogels.  
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GENERAL CONCLUSIONS 

 

 

Reconstructive materials with sustained antimicrobial effects could be useful for 

preventing infectious diseases in an environment containing indigenous bacteria and 

fungi such as the oral cavity. With the objective of applying a non-biodegradable 

hydrogel to resin-based materials as a reservoir for water-soluble antimicrobials, novel 

hydrogels consisting of HEMA and TMPT were fabricated, and CPC was loaded into 

the poly-HEMA/TMPT hydrogels.  

This in vitro study confirmed that a poly-HEMA/TMPT hydrogel comprising 50% 

HEMA/50% TMPT could be effectively loaded and recharged with CPC by immersion 

into a CPC solution, demonstrating the longest release of CPC, above the concentration 

required to inhibit oral bacteria and fungi. The binding of CPC to the hydrogels was 

mainly through hydrophobic interaction among five hydrogels with different ratio of 

HEMA/TMPT. Additionally, loading of CPC into a hydrogel by mixing CPC powder 

with the HEMA/TMPT monomer before polymerization resulted in marked extension 

of the initial CPC-release period. It is possible to achieve a sustained release system for 

antimicrobials by pre-mix loading and recharging CPC into a 50% HEMA/50% TMPT 

hydrogel.  
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TABLE LEGENDS 

 

Table 1.  Hydrogels fabricated and their monomer compositions. 

 

Table 2.  Amounts of CPC adsorbed to hydrogel particles and adsorption ratio. 

 

Table 3.  Total amount of CPC released and release rates.  

 

 

FIGURE LEGENDS 

 

Fig. 1.  Monomers used. 

A: 2-hydroxyethyl methacrylate (HEMA) 

B: Trimethylolpropane trimethacrylate (TMPT) 

 

Fig. 2.  Microscope image of H50 hydrogel particles. 

 

Fig. 3.  Water absorbability (A), hydrophobicity (B), and surface electric charge 

(C) of poly-HEMA/TMPT hydrogels. 

The bar represents the standard deviation of three replicates. a, b, c, d: No significant 

differences between the same letters (ANOVA, Tukey–Kramer test, p < 0.05). 

 

Fig. 4.  Concentrations of CPC released into water from each hydrogel. 

A: particles as prepared, B: washed particles. The bar represents the standard deviation 

of five replicates. 

 

Fig. 5.  Total amount of CPC released from hydrogel particles into water 

(control), Triton X-100, NaCl, or urea solutions. 

The bar represents the standard deviation of five replicates. 

 

Fig. 6. Schematic diagram for loading of CPC and its release from five 

poly-HEMA/TMPT hydrogels prepared. 

 

Fig. 7.  CPC-release profile of H30 and H50 with recharging.  

The bar represents the standard deviation of five replicates. 
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Fig. 8.  CPC-release profiles for H50 under different recharging protocols. 

Recharging time A: 5 min, B: 6 h, C: 12 h. The bar represents the standard deviation of 

five replicates. 

 

Fig. 9.  CPC-release from hydrogels prepared by pre-mixing method. 

A: 0.5% CPC-immersion-loaded and CPC-pre-mixed hydrogel, B: 5% and 10% 

CPC-pre-mixed hydrogels. The bar represents the standard deviation of five replicates. 

 

Fig. 10.  The log10 fraction of total drug released from 0.5% 

CPC-immersion-loaded or pre-mixed hydrogels against log10 time. 

 

Fig. 11.  CPC-release profile of 0.5% CPC-immersion-loaded and CPC-pre-mixed 

hydrogels with recharging. 

The bar represents the standard deviation of five replicates. 

 

  



39 

 

Table 1.  Hydrogels fabricated and their monomer compositions. 

 

Abbreviation HEMA / TMPT (wt%) HEMA / TMPT (mol%) 

H10 10 / 90 23 / 77 

H30 30 / 70 53 / 47 

H50 50 / 50 72 / 28 

H70 70 / 30 86 / 14 

H90 90 / 10 96 / 4 
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Table 2.  Amounts of CPC adsorbed to hydrogel particles and adsorption ratio.  

 

 

Amount of CPC adsorbed  

as prepared (Ap) 

Adsorption ratio (Rp) 

calculated from  Ap 

Amount of CPC adsorbed 

after washing (As) 

Adsorption ratio (Rs) 

calculated from  As 

H10 13.89 (0.20) 92.58 (1.33) 2.06 (0.51) 13.74 (3.36) 

H30 14.28 (0.40) 95.23 (2.68) 2.59 (0.72) 17.27 (4.81) 

H50 15.00 100 11.74 (0.28) 78.24 (1.89) 

H70 15.00 100 14.62 (0.34) 97.49 (2.29) 

H90 15.00 100 14.87 (0.29) 99.13 (1.95) 

µg, (  ) : S.D., n = 5. 

Rp (%) = Ap / 15 ×100, Rs (%) = As / 15 × 100. 
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Table 3.  Total amount of CPC released and release rates. 

 

 

Particles as prepared Washed particles 

Amount of CPC released (µg) Release rates (%) Amount of CPC released (µg) Release rates (%) 

H10 10.25 (0.64) 73.82 1.97 (0.55) 95.71 

H30 9.91 (0.83) 69.41 2.36 (0.50) 91.30 

H50 3.51 (0.58) 23.38 3.34 (0.75) 28.47 

H70 0.39 (0.35) 2.59 0.58 (0.33) 3.96 

H90 0.14 (0.31) 0.91 0.43 (0.39) 2.89 

(  ) : S.D., n = 5. 

 

 

 



Fig. 1.  Monomers used. 

A: 2-hydroxyethyl methacrylate (HEMA) 

B: Trimethylolpropane trimethacrylate (TMPT)  

B 

A 



Fig. 2.  Microscope image of H50 hydrogel particles.   

100 µm 



Fig. 3.  Water absorbability (A), hydrophobicity (B), and surface electric 

charge (C) of poly HEMA/TMPT hydrogels. 

The bar represents the standard deviation of three replicates. a, b, c, d: No 

significant differences between the same letters (ANOVA, Tukey–Kramer test, 

p < 0.05).  
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Fig. 4.  Concentrations of CPC released into water from each hydrogel. 

A: particles as prepared, B: washed particles. The bar represents the standard deviation of five replicates.  

B A 

0

5

10

15

20

0 24 48 72 96 120 144 168 192

H10

H30

H50

H70

H90

                         12        24                    48                    72 



0

2

4

6

8

10

12

14

16

H10 H30 H50 H70 H90

water

Triton X-100

NaCl

urea

T
o

ta
l 

a
m

o
u

n
t 

o
f 

C
P

C
 r

e
le

a
s

e
d

 (
µ

g
) 

Fig. 5.  Total amount of CPC released from hydrogel particles into water 

(control), Triton X-100, NaCl, or urea solutions. 

The bar represents the standard deviation of five replicates.  



Fig. 6. Schematic  diagram for loading of CPC and its release from poly-HEMA/TMPT hydrogels. 
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Fig. 7.  CPC-release profile of H30 and H50 with recharging  

The bar represents the standard deviation of five replicates. 
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Fig. 8.  CPC-release profiles for H50 under different recharging protocols. 

Recharging time A: 5 min, B: 6 h, C: 12 h. The bar represents the standard 

deviation of five replicates. 
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Fig. 9.  CPC-release from hydrogels prepared by pre-mixing method. 

A: 0.5% CPC-immersion-loaded and CPC-pre-mixed hydrogel, B: 5% and 

10% CPC-pre-mixed hydrogels. The bar represents the standard deviation 

of five replicates.  
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Fig. 10.  The log10 fraction of total drug released from 0.5% CPC-immersion-

loaded or pre-mixed hydrogels against log10 time.  
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Fig. 11.  CPC-release profile of 0.5% CPC-immersion-loaded and CPC-pre-

mixed hydrogels with recharging. 

The bar represents the standard deviation of five replicates.  
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