Title	波の中の二次元浮体に働く非線型流体力に関する研究
Author（s）	経塚，雄策
Citation	大阪大学，1983，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／344
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

滥の中の二次元浮体に軣く

㧽部58年9月

波の中の二次元浮休に㗢く非線型流体力に闺する研究

経 塚 雄 策

昭和58年9月

波の中の二次元浮体に動く非楾型流体力к関する研究

緒 論
第1章 波の中の2次元浮体に働く流体力
第1．1節 座標系と定式化
第1．2節 正則撖動法による展開と境界値問題 10
第1．3節 圧力，流体力およびモーメント
第1．4節 運動方程式
第1．5節自由表面变位
第2章 境界値問題の解法
第2．1節1次の境界値問題
36
第2．2節2次の境界値问題
第2．3節 数値計算法とその精度
第3章 実験
第 3.1 節 実験装置および実験法
第3．2節 供試模型主要目
第 3.3 節 実験解析法
第3．4節 実験結果および理論計算値との

3．4．1 散乱問題（S－1，S－2）
3.4 .2 放射問題（ $S-1, S-2$ ）

3．4．3 舷側傾斜影響（S－3，S－4）
91
3．4．4 波浪中の動摇（S－5）
100
結 論

謝辞
参考文献
記号表
付録12次元流体力の計算法および諸定理
付録2 積分定理による流体力の公式
付録3 鉺動法による流体力の狊体的な計算
付録4 数値計算法の公式
図表一覧
図表

緒 論
波浪中を航行する船船は水から様々な作用を受けてお リ，その流体力を知ることは船舶および乗員の安全を考 える上で最も重要なことであろう。船舶の耐航性の分野では古くから幾多の研究者が，波浪中の船体動摇，波浪荷重等の推定について多くの貢献をしてきたが，近年 の大型電算機の出現と相まって，精度の高い推定法が線型理論の仮定のもとで確立されるに至った。細長体理論に基づくストリップ法は最も広範囲に使われている標準的な解法であり，実験結果との比較によってその有用性が確かめられている。

一方，大波高•大振幅動摇時の非線型な現象に対する アプローチもいくらかの研究者によってなされてきたが，一般に，問題が複雑となる反面，それによって得られる流体力は線型理論による結果からそれほどかけ離れてい ないことなどからあまり重要視されていなかった。 しかしながら，波浪中の漂流力ゃ係留浮体の長周期左右摇•不安定左右摇，あるいはパラメトリック横摇などの現象解明には不可欠と言わざるを得ない。

Kochinが与えた2次元•3次元の動摇物体に働く定常

力の公式は，彼のH関数を使った大変整った表式となっ ている。（Wehausen－Laitone［1］${ }^{*}$ ）

また，九尾［2］が午えた漂流力の公式はそれが線型理論で求まる反射波係数を使って简単火表現できるという点で，非線型性を意識しないで有用されている。

さらん，Ogilvie［3］は2次元没水円柱に働く垂直方向の定常力を椇動法によって解いており，興味ある結果 を示した。

しかしながら，これらの定常力は摂動法でいう2次の流体力の一部であり，実際には同じオーダの変動力成分 も存在しているが，それらも含めて报った過去の理論研究を列挙すると

Lee［4］とParisis［5］は独立に，水面で上下摇する2次元柱体に働く流体力を摂動法によって定式化亡，2次 までの流体力を䋸密に求めた。Potash［6］はLee等の方法を任意形状の2次元柱体と左右摇，横揺およびそれ らの連成運動の場合に拡張した。Söding［7］は散乱問題を含むすべての問題についての定式化と解法上の便利 な関係式を与えた。 増本［8］U Ursell－田才法によっ て波浪中で動摇する浮体に働く2次の流体力の計算結果 ＊〔〕の数字は巻末に記载する参考文献の番号を示す。

を示し，Papanikolaou とNowacki［9］は同じ問題をグリ ーン関数法火よって解いた。

上記の研究者達が用いた理論を要約すると以下のよう になる。
（1）自由表面条件，物体表面条件が境界の変位を考㙊し て与えられる。
（2）圧力はベルヌーイの式の速度2乗項まで考慮される。
（3）物体に働く流体力は，移動位置の圧力とその時の没水状態を考慮して積分される。
（4）すべての量を適当な微小パラメータのベきで展開し，自由表面や物体表面で与えられる境界条件はそれら の平均位置での値で表現される。

これらの理論におけるZ次の境界値問題の実際的な解法上の難点は，従来の解法では自由表面上で与えられる境界条件の取扱いが面倒である点にある。すなわち，物体表面上で与えられる線型解を使って自由表面上のポ テンシャルおよびその2回までの微係数を求め，次にそ れらが物体く与える影響を自由表面上の積分で求めなけ ればならない。

以上の研究の他 k ，Kim［10］や山下［11］は静水中で上下摇する二次元柱体に働く高次流体力を近似的に計算 する方法を提案している。山下は，自由表面条件は線型化するが，物体表面条件と浸水面の変化については厳密に満足させるという方法で3次までの流体力を求め，実験結果と良い一致をみた。

その他，Faltinsen［12］，Nicholas と Hirt［13］，Vinje とBrevig［14］等は同じ問題を初期値問題として极い，自由表面や浮体の変位を時々刻々計算するという，まさ に非線型な問題を解く方法を提案している。これらの方法は数値シミュレーションと呼ぶべきもので，過渡現象を含めて計算できるので大変魅力的であるが，そのた めんは莫大な計算時間を要し，かつ得られた時系列をど のように評価するのかなど今後の問題も多いように思わ れる。

一方，実験的に非線型流体力を扱った報告は，漂流力火関するものを除くとそれほど多くない。田オと小寺山［15，16］は水面で上下摇する種々の二次元柱体に働く流体力を計測L，Lee［4］，Parisis［5］，Potash［6］等 の計算と比較して良い一致をみた。山下［11］は同様に

上下搂する楔状柱体の実験結果を示している。
それらの実験結果は概略理論計算が妥当なものである ことを裏付けているように思われるが，他の風題，特に波の中の浮体が受ける流体力については，わからない。

以上の背景の下に本論文では，正則摃動法に基づいて二次元浮体k働く二次までの流体力について，数値計算法の简単化を計るとともに，放射問題および散乱問題の実験を行い理論の検証あるいは問題点について調べる目的で行われた研究をまとめたものである。

第1章では，数学モデルの基本的な仮定について述べ，正則㩁動法による定式化を行う。 1 次と2次の速度ポ テンシャルK対する境界值問題を導くとともに，それら の解を使って圧力および流体力の表式を求める。 最後火，波浪中の浮体の2次までの運動方程式を導く。第2章では，第1章で導かれた境界値問題の解法につ いて述べ，その問題点について考察する。また。狊体的な数値計算結果を示し，その精度くついて論ずる。

第3章では，実験方法とその結果を示し，理論計算結果と比較•考察を行う。

まとめとして，以上の研究で得られた結論とともに今後 の研究に対する問題点などについて述べる。

また，付録1には本論では述べなかった二次元物体の流体力計算法に関するいくつかの知見を述べ，線型流体力に関する重要な公式を示す。 付録2kは，積分定理 を使って非線型流体力を計算する場合の定式化と実際的 な数値計算における見通しについて述べる。 付録ろ， 4は，本論中の具体的な計算の補遺と数値計算で使用し た公式などについて述べる。

第1章 波の中の2次元浮体に働く流体力

第1．1節 座標系と定式化
Fig． 1 к示される座標系において波の中で動摇する浮体を考える。ここで，右手系空間固定座標を $0-x y$ と i，y軸は垂直下向き，x軸は静止水面上кとる。ま た，浮体火固定された座標を $\bar{O}-\bar{x} \bar{y} と 亡$ ，浮体静止位置 では $0-x y \kappa$ —致するものとする。 入射波は x 軸正方向からくるものと亡，浮体は 0 点のまわりで左右摇 $X_{1}(t)$ ，上下摇 $X_{2}(t)$ ，横摇 $X_{3}(t) す る ま の と す る 。 ~$ この時，実際には漂流力が働いて浮体は時間とともK波 の進行方向へ流されることになるが，今は漂流力を打消 す外力が常に作用しているものと仮定すれば，2つの座標系の幾何学的関係は

$$
\left.\begin{array}{l}
x(t)=\bar{x} \cos x_{3}(t)-\bar{y} \sin x_{3}(t)+x_{1}(t) \tag{1.1}\\
y(t)=\bar{y} \cos x_{3}(t)+\bar{x} \sin x_{3}(t)+x_{2}(t)
\end{array}\right\}
$$

で与えられる。
次に，流体は理想流体（非粘性，非圧縮）とし，非回

転であるものと仮定する。従って，この場合にはラプ ラスの微分方程式を満足する速度ポテンシャルが存在し，以下の条件式を満をさねばならない。

$$
[L] \quad \nabla^{2} \Phi(x, y, t)=\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \Phi(x, y, t)
$$

圧力はベルヌーイの式から

$$
P(x, y, t)=-\rho \frac{\partial}{\partial t} \Phi-\frac{1}{2} \rho(\nabla \Phi)^{2}+\rho g y+P_{0}, \quad \text { (1.3) }
$$

ただし
g：重力加速度
P_{0} ：積分定数
で与えられるが，自由表面の方程式を

$$
\begin{equation*}
y=\eta(x, t) \tag{1.4}
\end{equation*}
$$

とすれば，その上では常に等圧面でなければならないか $ら$

$$
\frac{\dagger}{\partial t} P(x, \eta, t)=\left(\frac{\partial}{\partial t}+\Phi_{x} \frac{\partial}{\partial x}+\Phi_{y} \frac{\partial}{\partial y}\right) P(x, \eta, t)=0,(1.5)
$$

ただし，下添字 t, x, y はそれぞれでの偏微分の意

従って，自由表面上での条件は

$$
[F] \quad \Phi_{t t}-g \Phi_{y}+2 \nabla \Phi \nabla \Phi_{t}+\frac{1}{2} \nabla \Phi(\nabla \Phi \nabla \Phi)=0
$$

on $y=\eta(x, t),(1.6)$

次に，物体表面を表す方程式を

$$
\begin{equation*}
C(x, y, t)=C_{0}(\bar{x}, \bar{y})=0 \tag{1.7}
\end{equation*}
$$

とすると，その上では流体は物体内部に流れ込まないと いう条件から

$$
[H] \begin{align*}
\Phi_{n}(x, y, t) & =V_{n} \\
& =\frac{\partial x}{\partial n} \cdot \frac{\partial x}{\partial t}+\frac{\partial y}{\partial n} \cdot \frac{\partial y}{\partial t} \text {, on } C \tag{1.8}
\end{align*}
$$

ただし，几は物体表面上の単位法線で流体内部に向うも のを正とする。

また，水底では，その方程式を $y=h(x)$ とすると
［B］$\Phi_{n}(x, h, t)=0$ ，

無限水深では

$$
\left[B^{\prime}\right] \lim _{y \rightarrow \infty} \Phi_{y}(x, y, t)=0
$$

最後に，無限遠方では入射波を除いをポテンシャルは発散波になるという放射条件から
［R］ $\left.\begin{array}{rl}\left\{\frac{\partial}{\partial t}+c \frac{\partial}{\partial x}\right\}\left\{\Phi-\Phi_{0}\right\}=0, & \text { as } \quad x \rightarrow+\infty \\ & \left\{\frac{\partial}{\partial t}-C \frac{\partial}{\partial x}\right\}\left\{\Phi-\Phi_{0}\right\}=0,\end{array}\right\}$ as $\left.x \rightarrow-\infty, 1.10\right)$

ただし C：波速
$\Phi_{0}: 入$ 射波ポテンシャル
が課せられる。

第1．2節 正則撖動法による展開と境界值問題
前質で定式化された間題は境界が時間とともに移動し， かっ非線型項を含んでいるので，そのままの形で解くこ とは一般に難しい。そこで，本節では入射波高および それによる浮体の動揺は微小であると仮定して，速度ポ テンシャルを次式のように摂動パラメータ，とのベきに展開することにする。

$$
\begin{align*}
& \Phi(x, y, t)=\sum_{n=1}^{\infty} \varepsilon^{n} \Phi^{(n)}(x, y, t) \tag{1.11}\\
& た た ゙ \iota \quad \varepsilon=a_{w} / b,
\end{align*}
$$

$a_{w}: ~ 入$ 射波振幅，b：浮体半幅

同様にして自由表面の変位についても

$$
\begin{equation*}
\eta(x, t)=\sum_{n=1}^{\infty} \varepsilon^{n} \eta^{(n)}(x, t) \tag{1.12}
\end{equation*}
$$

のように展開し，かつ自由表面上の速度ポテンシャルを静止水面上のまわりにテイラ一展開すれば次式を得る。

$$
\begin{align*}
\Phi(x, \eta, t)=\varepsilon \Phi^{(1)}(x, 0, t) & +\varepsilon^{2}\left\{\eta^{(1)} \Phi_{y}^{(1)}(x, 0, t)+\Phi^{(2)}(x, 0, t)\right\} \\
& +0\left(\varepsilon^{3}\right) \tag{1.13}
\end{align*}
$$

（1．13）式を（1．6）式に代入し，とのベきごとに整理すれ ば，どまでの項は

$$
\left.\begin{array}{rl}
{[F] \quad \varepsilon: \Phi_{t t}^{(1)}-g \Phi_{y}^{(1)}=} & 0 \\
\varepsilon^{2}: \Phi_{t t}^{(2)}-g \Phi_{y}^{(2)}= & -2\left(\Phi_{x}^{(1)} \Phi_{x t}^{(1)}+\Phi_{y}^{(1)} \Phi_{y t}^{(1)}\right) \\
& +\Phi_{t}^{(1)}\left(\Phi_{y y}^{(1)}-\frac{1}{g} \Phi_{t t y}^{(1)}\right)
\end{array}\right\}(1.14)
$$

となる。
次に，浮体の動揺についても同様にとで展開できると仮定すれば

$$
\begin{equation*}
X_{j}(t)=\sum_{n=1}^{\infty} \varepsilon^{n} X_{j}^{(n)}(t) \quad, \quad(j=1,2,3) \tag{1.15}
\end{equation*}
$$

従って，（1．15）式を（1．1）式に代入すれば

$$
\left.\begin{array}{l}
x-\bar{x}=\varepsilon\left(X_{1}^{(1)}-\bar{y} X_{3}^{(1)}\right)+\varepsilon^{2}\left(X_{1}^{(2)}-\bar{y} X_{3}^{(2)}-\frac{1}{2} \bar{x} X_{3}^{(1) 2}\right)+O\left(\varepsilon^{3}\right) \tag{1.16}\\
y-\bar{y}=\varepsilon\left(X_{2}^{(1)}+\bar{x} X_{3}^{(1)}\right)+\varepsilon^{2}\left(X_{2}^{(2)}+\bar{x} X_{3}^{(2)}-\frac{1}{2} \bar{y} X_{3}^{(1) 2}\right)+O\left(\varepsilon^{3}\right)
\end{array}\right\}
$$

となる。これを使って，（1．8）式を浮体の平均位置（
静止位置）のまわりにテイラー展南すれば

$$
\left.\begin{array}{rl}
\Phi(x, y, t)=\varepsilon \Phi^{(1)}(\bar{x}, \bar{y}, t) & +\varepsilon(x-\bar{x}) \Phi_{x}^{(1)}+\varepsilon(y-\bar{y}) \Phi_{y}^{(1)} \\
& +\varepsilon^{2} \Phi^{(2)}(\bar{x}, \bar{y}, t)+0\left(\varepsilon^{3}\right) \tag{1.17}\\
\Phi_{n}(x, y, t)=\varepsilon \Phi_{n}^{(1)}(\bar{x}, \bar{y}, t) & +\varepsilon \frac{\partial}{\partial n}\left\{(x-\bar{x}) \Phi_{x}^{(1)}+(y-\bar{y}) \Phi_{y}^{(1)}\right\} \\
& +\varepsilon^{2} \Phi_{n}^{(2)}(\bar{x}, \bar{y}, t)+0\left(\varepsilon^{3}\right)
\end{array}\right\}
$$

また。（1．8）式の右辺は

$$
\begin{align*}
& V_{n}= \frac{\partial x}{\partial n} \cdot \frac{\partial x}{\partial t}+\frac{\partial y}{\partial n} \cdot \frac{\partial y}{\partial t} \\
&=\left(\frac{\partial \bar{x}}{\partial n}-\varepsilon X_{3}^{(1)} \frac{\partial \bar{y}}{\partial n}\right)\left\{\varepsilon\left(\dot{X}_{1}^{(1)}-\bar{y} \dot{X}_{3}^{(1)}\right)+\varepsilon^{2}\left(\dot{X}_{1}^{(2)}-\bar{y} \dot{X}_{3}^{(2)}-\frac{1}{2} \bar{x} \dot{X}_{3}^{(1) 2}\right)\right\} \\
&+\left(\frac{\partial \bar{y}}{\partial n}+\varepsilon X_{3}^{(1)} \frac{\partial \bar{x}}{\partial n}\right)\left\{\varepsilon\left(\dot{X}_{2}^{(1)}+\bar{x} \dot{X}_{3}^{(1)}\right)+\varepsilon^{2}\left(\dot{X}_{2}^{(2)}+\bar{x} \dot{X}_{3}^{(2)}-\frac{1}{2} \bar{y} \dot{X}_{3}^{(1) 2}\right)\right\} \\
&+0\left(\varepsilon^{3}\right), \tag{1.18}
\end{align*}
$$

$$
\hbar た ゙ L \quad \dot{x}_{j}=\frac{\partial}{\partial t} X_{j}, \quad(j=1,2,3)
$$

となるが

$$
\left.\begin{array}{l}
\frac{\partial}{\partial \eta} \bar{x}=\frac{\partial}{\partial s} \bar{y} \equiv \bar{y}^{\prime} \tag{1.19}\\
\frac{\partial}{\partial n} \bar{y}=-\frac{\partial}{\partial s} \bar{x} \equiv-\bar{x}^{\prime}
\end{array}\right\}
$$

ただし，肩符（1）は SKついての微分の意 なる関係を便って，（1．17），（1．18）式を物体表面上の接線と法線方向の成分で表現し，とのべきごとに整理すれ ば次式を得る。［7］

$$
\left.\begin{array}{ll}
{[H]} & \varepsilon: \tag{1.20}\\
& \Phi_{n}^{(1)}=f_{t}^{(1)} \\
\varepsilon^{2}: & \Phi_{n}^{(2)}=f_{t}^{(2)}+X_{3}^{(1)}\left(C_{t}^{(1)}-\Phi_{S}^{(1)}\right)-f^{(1)} \Phi_{n n}^{(1)}-d^{(1)} \Phi_{s n}^{(1)}
\end{array}\right\} o n C_{0}
$$

ただし $\quad a=\bar{x} \bar{x}^{\prime}+\bar{y} \bar{y}^{\prime}$

$$
\left.\begin{array}{l}
b=\bar{x} \bar{y}^{\prime}-\bar{x}^{\prime} \bar{y} \\
c^{(n)}=\bar{x}^{\prime} X_{1}^{(n)}+\bar{y}^{\prime} X_{2}^{(n)} \\
d^{(n)}=c^{(n)}+b X_{3}^{(n)} \\
h^{(n)}=\bar{y}^{\prime} X_{1}^{(n)}-\bar{x}^{\prime} X_{2}^{(n)} \\
f^{(n)}=h^{(n)}-a X_{3}^{(n)}
\end{array}\right\}(n=1,2)
$$

（1－20）式の演算では，次の関係式に注意する。

$$
\left.\begin{array}{l}
\Phi_{n n}^{(1)}=-\Phi_{s s}^{(1)}-\frac{1}{\rho} \Phi_{n}^{(1)} \tag{1.21}\\
\Phi_{s n}^{(1)}=\Phi_{n s}^{(1)}-\frac{1}{\rho} \Phi_{s}^{(1)}
\end{array}\right\}
$$

ただし $\frac{1}{\rho}=\bar{x}^{\prime} \bar{y}^{\prime \prime}-\bar{y}^{\prime} \bar{x}^{\prime \prime}, ~ \rho:$ 物体表面の曲率半径従って，（1．20），（1．21）式から，$\Phi^{(2)}$ の物体表面条件は $\Phi^{(1)}$ の分布がわかれば求めることができる。

次に，規則波中での浮体の動摇を考え，過渡的な応答 が十分减裏し定常周期逃動をしている場合を考える。 このとき，現象はすべて定常周期であるから，諸量は入射波の周期を基本周期とするフーリエ級数に展開できる。速度ポテンシャルの展開式は，一般に複素数ポテンシ ヤル $\boldsymbol{M}^{(n)}$ を使って

$$
\begin{equation*}
\Phi(x, y, t)=R e\left\{\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \varepsilon_{m}^{n} \varphi^{(n)} e^{i m \omega t}\right\} \tag{1.22}
\end{equation*}
$$

となるが，どまでの展開式はLee［4］kよって

$$
\begin{equation*}
\Phi(x, y, t)=\operatorname{Re}\left\{\varepsilon \varphi^{(1)}(x, y) e^{i \omega t}+\varepsilon^{2}\left(0 \varphi^{(2)}+{ }_{2} \varphi^{(2)} e^{2 i \omega t}\right)\right\}+O\left(\varepsilon^{3}\right) \tag{1.23}
\end{equation*}
$$

とすればよいことがわかっている。さらに, 片年は流

体の質量移動に関係する項で，浮体に働く圧力および流体力には無関係であることも証明されているので本論文 では考えないことにする。また，記述の简単化のため K以下の議論では，諸量を複素数表示することにする。 まず，（1．23）式の展南を使えば，入射波を除いたポテ ンシャルは無限遠方では

$$
\begin{equation*}
\left(\varphi^{(n)}-\varphi_{0}^{(n)}\right) e^{i n \omega t} \sim A^{ \pm}(y) e^{\mp i K_{n} x+i n \omega t},(x \rightarrow \pm \infty) \tag{1.24}
\end{equation*}
$$

と表される。この時，位相速度は

$$
C=\mp \frac{n \omega}{K_{n}} \quad, \quad \text { for } \quad x \geqslant 0
$$

従って，（1．10）式の放射条件は

$$
\begin{equation*}
[R]\left\{\frac{\partial}{\partial x} \pm i K_{n}\right\}\left\{\varphi_{(x, y)}^{(n)}-\varphi_{0}^{(n)}\right\}=0, \text { as } x \rightarrow \pm \infty \tag{1.25}
\end{equation*}
$$

ただし，Knは次の分散方程式を満足する波数

$$
\left.\begin{array}{rl}
\frac{1}{g}(n \omega)^{2} & =K_{n} \tanh \left(K_{n} h\right) \quad, \quad y=h ; \text { 水底 } \\
& =K_{n} \quad, y \rightarrow \infty
\end{array}\right\}(1.26)
$$

次に，入射波のポテンシャルについては，有限水深の とき

$$
\begin{equation*}
\Phi_{0}(x, y, t)=\operatorname{Re}\left\{\varepsilon \varphi_{0}^{(i)} e^{i \omega t}+\varepsilon^{2} \varphi_{0}^{(2)} e^{2 i \omega t}\right\}+0\left(\varepsilon^{3}\right) \tag{1.27}
\end{equation*}
$$

ただし

$$
\begin{aligned}
& \varepsilon \varphi_{0}^{(1)}=\frac{i g a_{w}}{\omega} \frac{\cosh K(y-h)}{\cosh K h} e^{i k x} \\
& \varepsilon^{2} \varphi_{0}^{(2)}=\frac{i 3 \omega a_{w}^{2}}{8} \cdot \frac{\cosh 2 K(y-h)}{\sinh ^{4} K h} \cdot e^{i 2 K x}
\end{aligned}
$$

a_{w} ：入射波振幅

で与えられるが，$\varphi_{0}^{(1)}, \varphi_{0}^{(2)}$ なともK次の分散の方程式を満たさねばならない。（ $\varphi_{0}^{(2)}$ は自由波ポテンシャルでは ないことに注意）

$$
\begin{equation*}
\frac{\omega^{2}}{g}=K \tanh (K h) \tag{1.28}
\end{equation*}
$$

水深無限大のときは，$ん \rightarrow \infty$ とおくと

$$
\begin{align*}
\varepsilon \varphi_{0}^{(1)} & =\frac{i g a_{w}}{\omega} e^{-k y+i k x} \\
\varepsilon^{2} \varphi_{0}^{(2)} & =0 \tag{1.29}\\
\frac{\omega^{2}}{g} & =K
\end{align*}
$$

となり，どまでの近似では線型理論と同じポテンシャル を考えれば良いことになる。なお，このときの水面変位については

$$
\left.\begin{array}{l}
\eta_{0}(x, t)=\operatorname{Re}\left\{\varepsilon \eta_{0}^{(1)} e^{i \omega t}+\varepsilon^{2} \eta_{0}^{(2)} e^{i 2 \omega t}\right\}+O\left(\varepsilon^{3}\right) \\
\varepsilon \eta_{0}^{(1)}=-a_{w} e^{i k x} \tag{1.30}\\
\varepsilon^{2} \eta_{0}^{(2)}=-\frac{K}{2} a_{w}^{2} e^{i 2 k x}
\end{array}\right\}
$$

となり，2次まで考えた影響が現れている。
（1．27）式にみるように，水深有限の場合には入射波ポ テンシャルに2次の項が存在し，それによる流体力は線

型理論的к働くと考えられる。Chakrafarti［17］， Raman et al．［18］，Molin［19］などは有限水深中の重直円柱に働く波強制力Kついて2次までの計算を行って いるが，それらの結果は流体力の総和量のみを示してい るので，2次の流体力，とリわけ1次ポテンシャルの2乗から生ずる2次の流体力については詳しいことがわか らない。

本研究では，無限水深の問題を考え入射波ポテンシャ ルとしては（1．29）式を使うものとする。この場合には， 1次ポテンシャルの2乗によって生ずる2次の流体力の みを評価できるので，その性質を把握する上でより直接的であると言えよう。

上記の仮定の下で定式化された規則波中の2次元浮体 の問題は以下の境界値問題を解くこと火帰着する。

1次の風題
［L］$\quad \nabla^{2} \varphi^{(1)}(x, y)=0$
［F］$\left\{K+\frac{\partial}{\partial y}\right\} \varphi^{(i)}(x, 0)=0$
$[H] \quad \varphi_{n}^{(1)}=i \omega f^{(1)}$ on C_{0}
［B］$\quad \varphi_{y}^{(1)}(x, \infty)=0$
$[R] \quad\left\{\frac{\partial}{\partial x} \pm i K\right\}\left\{\varphi^{(i)}(\pm \infty, y)-\varphi_{0}^{(i)}\right\}=0$

ただし

$$
K=\frac{\omega^{2}}{g}=\frac{2 \pi}{\lambda}, \lambda: \text { 波長 }
$$

2次の問題（简単のため $\varphi^{(2)}$ を $\varphi^{(2)}$ と記す）

$$
\begin{array}{lc}
{[L]} & \nabla^{2} \varphi^{(2)}(x, y)=0 \\
{[F]} & \left\{4 K+\frac{\partial}{\partial y}\right\} \varphi^{(2)}(x, 0)=Q(x) \\
{[H]} & \varphi_{n}^{(2)}=H^{(2)} \quad \text { on } C_{0} \tag{1.32}\\
{[B]} & \varphi_{y}^{(2)}(x, \infty)=0 \\
{[R]} & \left\{\frac{\partial}{\partial x} \pm i 4 K\right\}\left\{\varphi^{(2)}(\pm \infty, y)-\varphi_{0}^{(2)}\right\}=0
\end{array}
$$

ただし

$$
\begin{aligned}
& Q(x)=\frac{i \omega}{2 g}\left\{2\left(\nabla \varphi^{(1)}\right)^{2}-\varphi^{(1)}\left(\varphi_{y y}^{(1)}+K \varphi_{y}^{(1)}\right)\right\} \\
& H^{(2)}=f_{t}^{(2)}+\frac{1}{2}\left(X_{3}^{(1)} C_{t}^{(1)}-X_{3}^{(1)} \varphi_{s}^{(1)}-f^{(1)} \varphi_{n n}^{(1)}-d^{(1)} \varphi_{s n}^{(1)}\right)
\end{aligned}
$$

第1．3郎 圧力，流体力およびモーメント
（1．31），（1．32）式の境界值問題を解けば $\varphi^{(1)}, \varphi^{(2)}$ の分布が求まり，（1．3）式によって圧力を求めることができ る。
（1．23）式に対応して，浮体動摇，圧力および流体力を

$$
\begin{align*}
& X_{j}(t)=\operatorname{Re}\left\{\varepsilon X_{j}^{(1)} e^{i \omega t}+\varepsilon^{2} X_{j}^{(2)}\right\}+O\left(\varepsilon^{3}\right) \\
& P-P_{0}=\operatorname{Re}\left\{p^{(0)}+\varepsilon p^{(1)} e^{i \omega t}+\varepsilon^{2} P^{(2)}\right\}+O\left(\varepsilon^{3}\right) \tag{1.33}\\
& F_{j}(t)=\operatorname{Re}\left\{F_{j}^{(0)}+\varepsilon F_{j}^{(1)} e^{i \omega t}+\varepsilon^{2} F_{j}^{(2)}\right\}+O\left(\varepsilon^{3}\right)
\end{align*}
$$

のように展開すれば，（1．3），（1．16），（1．17）式kよって

$$
\begin{align*}
p^{(0)}= & \rho g \bar{y} \\
p^{(1)}= & \rho g\left(X_{2}^{(1)}+\bar{x} X_{3}^{(1)}\right)-\rho \varphi_{t}^{(1)} \\
p^{(2)}= & \rho g\left(X_{2}^{(2)}+\bar{x} X_{3}^{(2)}-\frac{1}{2} \bar{y} X_{3}^{(1) 2}\right)-\rho \varphi_{t}^{(2)} \tag{1.34}\\
& -\frac{\rho}{2}\left(\nabla \varphi^{(1)}\right)^{2}-\rho\left\{(x-\bar{x}) \varphi_{t x}^{(1)}+(y-\bar{y}) \varphi_{t y}^{(1)}\right\}
\end{align*}
$$

ただし，$p^{(0)}$ は静水圧，$p^{(1)} 1$ 次の動圧，$p^{(2)}$ は 2 次の圧力である。

一般火，α, β を複素数とし，その複素共役値を α^{*}, β^{*} のように表せば

$$
\begin{aligned}
\operatorname{Re}\left\{\alpha e^{i \omega t}\right\} \cdot \operatorname{Re}\left\{\beta e^{i \omega t}\right\} & =\frac{1}{4}\left\{\alpha e^{i \omega t}+\alpha^{*} e^{-i \omega t}\right\}\left\{\beta e^{i \omega t}+\beta^{*} e^{-i \omega t}\right\} \\
& =\frac{1}{4}\left\{\alpha \beta^{*}+\alpha^{*} \beta+\alpha \beta e^{i 2 \omega t}+\alpha^{*} \beta^{*} e^{-i 2 \omega t}\right\} \\
& =\frac{1}{2} \operatorname{Re}\left\{\alpha \beta^{*}+\alpha \beta e^{i z \omega t}\right\}
\end{aligned}
$$

となるので（1．33）式における2次の量は

$$
\left.\begin{array}{l}
X_{j}^{(2)}={ }_{o} X_{j}^{(2)}+{ }_{2} X_{j}^{(2)} e^{i 2 \omega t} \tag{1.35}\\
p^{(2)}={ }_{o} P^{(2)}+{ }_{2} P^{(2)} e^{i 2 \omega t} \\
F_{j}^{(2)}={ }_{o} F_{j}^{(2)}+{ }_{2} F_{j}^{(2)} e^{i 2 \omega t}
\end{array}\right\}
$$

となリ

$$
\left.\begin{array}{rl}
{ }_{o} P^{(2)}= & \rho g\left({ }_{0} X_{2}^{(2)}+\bar{x}_{0} X_{3}^{(2)}-\frac{1}{4} \bar{y} X_{3}^{(1)} X_{3}^{(1) *}\right) \\
& -\frac{\rho}{4}\left(\nabla \varphi^{(1)} \nabla \varphi^{(1) *}\right)-\frac{\rho}{2}\left\{(x-\bar{x}) \varphi_{t x}^{(1) *}+(y-\bar{y}) \varphi_{t y}^{(1) *}\right\} \tag{1.36}\\
{ }_{2} P^{(2)}= & \rho g\left({ }_{2} X_{2}^{(2)}+\bar{x}_{2} X_{3}^{(2)}-\frac{1}{4} \bar{y} X_{3}^{(1) 2}\right)-\rho \varphi_{t}^{(2)} \\
& -\frac{\rho}{4}\left(\nabla \varphi^{(1)}\right)^{2}-\frac{\rho}{2}\left\{(x-\bar{x}) \varphi_{t x}^{(1)}+(y-\bar{y}) \varphi_{t y}^{(1)}\right\}
\end{array}\right\}
$$

で与えられる。
（1．36）式では，（1．20）式と同様火，物体表面上の接線 と法線の表現をすれば

$$
\left.\left.\left.\begin{array}{rl}
\left(\nabla \varphi^{(1)}\right)^{2} & =\left(\varphi_{n}^{(1)}\right)^{2}
\end{array}\right)\left(\varphi_{s}^{(1)}\right)^{2}\right)=f_{t}^{(1) 2}+\varphi_{s}^{(1) 2}\right) ~ \begin{aligned}
(x-\bar{x}) \varphi_{x}^{(1)}+(y-\bar{y}) \varphi_{y}^{(1)} & =f^{(1)} \varphi_{n}^{(1)}+d^{(1)} \varphi_{s}^{(1)} \\
& =f^{(1)} f_{t}^{(1)}+d^{(1)} \varphi_{s}^{(1)}
\end{aligned}
$$

となって演算が箴単化できる。
次に，流体力については物体まわりの圧力を表面に沿 って積分すれば求められるが，そのとき，物体表面上の

法線と浸水面積は時間ととも火変化するので，それを考慮しなければならない。

$$
\begin{equation*}
F_{j}(t)=-\int_{C_{(t)}}\left(p-P_{0}\right) \frac{\partial}{\partial n} x_{j}(t) \cdot d s,(j=1,2,3) \tag{1.38}
\end{equation*}
$$

ただし $\quad C(t)=C_{0}-\Delta C(t)$ ：浸水面積
のように与えられるが，$\Delta C(t)$ は $\bar{y}=0$ の点から自由表面までのガース長さであるから，（1．12）式と（1．16）式に よってとで展開できると考えられる。

$$
\begin{align*}
\Delta C(t) & =\sum_{n=1}^{\infty} \varepsilon^{n} r_{(\pm)}^{(n)} \\
& =\varepsilon\left\{x_{2}^{(1)} \pm b X_{3}^{(1)}-\frac{i \omega}{g} \varphi_{(\pm)}^{(1)}(\pm, 0)\right\} e^{i \omega t}+O\left(\varepsilon^{2}\right) \tag{1.39}
\end{align*}
$$

また，物体表面上の法線についても（1．16）式から

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial n} x_{1} & =\frac{\partial}{\partial n} x \\
& =\frac{\partial}{\partial n} \bar{x}-\varepsilon x_{3}^{(1)} \frac{z}{\partial n} \bar{y}-\varepsilon^{2}\left(X_{3}^{(2)} \frac{\partial \bar{y}}{\partial n}+\frac{1}{2} x_{3}^{(1)} \frac{\partial \bar{x}}{\partial n}\right)+O\left(\varepsilon^{3}\right) \\
& =\bar{y}^{\prime}+\varepsilon x_{3}^{(1)} \bar{x}^{\prime}+\varepsilon^{2}\left(x_{3}^{(2)} \bar{x}^{\prime}-\frac{1}{2} x_{3}^{(1)} \bar{y}^{\prime}\right)+0\left(\varepsilon^{3}\right) \\
\frac{\partial}{\partial n} x_{2} & =\frac{\partial}{\partial n} \bar{y}+\varepsilon x_{3}^{(1)} \frac{\partial}{\partial n}+\varepsilon^{2}\left(x_{3}^{(2)} \frac{\partial \bar{x}}{\partial n}-\frac{1}{2} x_{3}^{(1) 2} \frac{\partial \bar{y}}{\partial n}\right)+0\left(\varepsilon^{3}\right) \\
& =-\bar{x}^{\prime}+\varepsilon x_{3}^{(1)} \bar{y}^{\prime}+\varepsilon^{2}\left(x_{3}^{(2)} \bar{y}^{\prime}+\frac{1}{2} x_{3}^{(1)} \bar{x}^{\prime}\right)+0\left(\varepsilon^{3}\right) \\
\frac{\partial}{\partial n} x_{3} & =x \frac{\partial y}{\partial n}-y \frac{\partial x}{\partial n} \\
& =-a-\varepsilon c^{(1)}-\varepsilon^{2}\left(C^{(2)}-h^{(1)} x_{3}^{(1)}\right)+O\left(\varepsilon^{3}\right) \tag{1.40}
\end{array}\right\}
$$

たたし $\quad a=\bar{x} \bar{x}^{\prime}+\bar{y} \bar{y}^{\prime}$ ，

$$
\left.\begin{array}{l}
c^{(n)}=\bar{x}^{\prime} X_{1}^{(n)}+\bar{y}^{\prime} X_{2}^{(n)} \\
h^{(n)}=\bar{y}^{\prime} X_{1}^{(n)}+\bar{x}^{\prime} X_{2}^{(n)}
\end{array}\right\} \quad(n=1,2)
$$

のように展開できる。
従って，（1．39）（1．40）式を（1．38）式火代入しをのベ きごとに整理すれば，とのベきごとの流体力を求めるこ とができる。

ここで，浸水面積の変化による項について考えると

$$
\begin{align*}
\left\{\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right\} & =\int_{C(t)}\left(P-P_{0}\right)\left\{\begin{array}{c}
-\bar{y}^{\prime}-\varepsilon x_{3}^{(1)} \bar{x}^{\prime}-\varepsilon^{2}\left(x_{3}^{(2)} \bar{x}^{\prime}-\frac{1}{2} x_{3}^{(1) 2} \bar{y}^{\prime}\right) \\
\bar{x}^{\prime}-\varepsilon x_{3}^{(1)} \bar{y}^{\prime}-\varepsilon^{2}\left(x_{3}^{(2)} \bar{y}^{\prime}+\frac{1}{2} x_{3}^{(1)} \bar{x}^{\prime}\right) \\
a+\varepsilon C^{(1)}+\varepsilon^{2}\left(C^{(2)}-h^{(1)} x_{3}^{(1)}\right)
\end{array}\right\} d s+O\left(\varepsilon^{3}\right) \\
& =\int_{C_{0}}\left(P-P_{0}\right)\left\{\begin{array}{c}
" \\
\prime \prime
\end{array}\right\} d s-\int_{\Delta C(t)}\left(p-P_{0}\right)\left\{\begin{array}{c}
\bar{y}^{\prime} \\
\bar{x}^{\prime} \\
a
\end{array}\right\} d s+O\left(\varepsilon^{3}\right) \tag{1.41}
\end{align*}
$$

のように分離して考えることができる。（1．41）式の右辺第2項が浸水面積変化による影響を表している。これは 1 次の項は 0 であり，初項が2次である。それを

$$
\begin{equation*}
\varepsilon^{2} F_{j}^{(2)}(4)=-\int_{\Delta C(t)}\left(p-p_{0}\right) \frac{\partial}{\partial n} \bar{x}_{j} d s \tag{1.42}
\end{equation*}
$$

と記すことにすると C と関する積分は，物体表面上の自由表面に近い部分だけについて行えば良いことになる。 その様子をFig．1．2k示してあるが，潗体の航側が鋁直と微小角の士をなしているとすれば，水面付近では

$$
\left.\frac{\partial}{\partial n} \bar{x}_{j}\right|_{(\pm b, 0)} d s=\left\{\begin{array}{c}
\bar{y}^{\prime} \tag{1.43}\\
-\bar{x}^{\prime} \\
-a
\end{array}\right\}_{(\pm b, 0)} d s=\left\{\begin{array}{c}
1 \\
-d \bar{x} / d \bar{y} \\
-\bar{x} \cdot d \bar{x} / d \bar{y}
\end{array}\right\}_{(\pm b, 0)} d \bar{y}=d \bar{y}\left\{\begin{array}{c}
1 \\
\pm \tan \alpha^{ \pm} \\
b \tan \alpha^{ \pm}
\end{array}\right\}
$$

と考えて良いから，（1．42）式kライプニッツの定理を使 う と

$$
\begin{align*}
\varepsilon^{2} F_{j(4)}^{(2)} & =\int_{0}^{\varepsilon r_{(+)}^{(1)}+\varepsilon^{2} r_{(+)}^{(2)}} \rho g\left\{\bar{y}-\varepsilon\left(x_{2}^{(1)}+b x_{3}^{(1)}-\frac{i \omega}{g} \varphi^{(1)}(b, 0)\right\} d y\left\{\begin{array}{c}
1 \\
\tan \alpha^{+} \\
b \tan \alpha^{+}
\end{array}\right\}\right. \\
& -\int_{0}^{\varepsilon r_{(-)}^{(1)}+\varepsilon^{2} r_{(-)}^{(2)}} \rho g\left\{\bar{y}-\varepsilon\left(x_{2}^{(1)}-b x_{3}^{(i)}-\frac{i \omega}{g} \varphi_{(-b, 0)}^{(1)}\right\} d \bar{y}\left\{\begin{array}{c}
1 \\
-\tan \alpha^{-} \\
f \cdot \tan \alpha^{-}
\end{array}\right\}+O\left(\varepsilon^{3}\right)\right. \\
& =-\frac{\rho g \varepsilon^{2}}{2}\left[r_{(+)}^{(1)^{2}}\left\{\begin{array}{c}
1 \\
\tan \alpha^{+} \\
b \tan \alpha^{+}
\end{array}\right\}-r_{(-)}^{(1)^{2}}\left\{\begin{array}{c}
1 \\
-\tan \alpha^{-} \\
\varepsilon \tan \alpha^{-}
\end{array}\right]+0\left(\varepsilon^{3}\right)\right. \tag{1.44}
\end{align*}
$$

ただし $r_{(\pm)}^{(1)}=x_{2}^{(1)} \pm b X_{3}^{(1)}-\frac{1}{g} \varphi_{t}^{(1)}(\pm b, 0):$ 相対水位

もL，浮体がy軸に関して対称ならば

$$
\tan \alpha^{+}=\tan \alpha^{-}=\tan \alpha
$$

従って，

となる。この結果から，水平方向の流体力は形側䋶斜角による影響を受けず，水面と直交する場合に等しくな ることがわかる。

次に，（1．41）式の右辺第1項については，付録3を参照して4つの力に分解して考えると総力は以下のように求めることができる。

$$
\begin{align*}
& { }_{o} F_{j}^{(2)}=\sum_{n=1}^{4} o F_{j}^{(2)}(n) \tag{1.46}\\
& { }_{2} F_{j}^{(2)}=\sum_{n=1}^{5} 2 F_{j}^{(2)}(n)
\end{align*}
$$

ただし

$$
o F_{j}^{(2)}(1)=\rho g \cdot R e\left\{\begin{array}{c}
b X_{2}^{(1)} X_{3}^{(1) *} \\
-2 b_{0} X_{2}^{(2)} \\
-b X_{1}^{(1)} X_{2}^{(1) *}-A \overline{O M}_{0} X_{3}^{(2)}+\frac{1}{4} X_{B}\left|X_{3}^{(2)}\right|^{2}
\end{array}\right\}+
$$

$$
\begin{aligned}
& +\frac{\rho}{2} \cdot \operatorname{Re} \int_{C_{0}} \varphi_{t}^{(1)} *\left\{\begin{array}{c}
x_{3}^{(1)} \bar{x}^{\prime} \\
x_{3}^{(1)} \bar{y}^{\prime} \\
-x_{1}^{(1)} \bar{x}^{\prime}-x_{2}^{(1)} \bar{y}^{\prime}
\end{array}\right\} d s \quad, j=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\} \\
& { }_{0} F_{j(2)}^{(2)}=\frac{\rho}{2} \operatorname{Re} \int_{C_{0}}\left\{(x-\bar{x}) \varphi_{t x}^{(1) *}+(y-\bar{y}) \varphi_{t y}^{(1) *}\right\} \frac{\partial}{\partial n} \bar{x}_{j} d s \\
& { }_{0} F_{j}^{(2)}(3)=\frac{\rho}{4} \operatorname{Re} \int_{C_{0}} \nabla \varphi^{(1)} \cdot \nabla \varphi^{(1)} * \frac{\partial}{\partial n} \bar{x}_{j} d s \\
& { }_{0} F_{j(4)}^{(2)}=-\frac{\rho g}{4}\left[\left|r_{(+)}^{(1)}\right|^{2}\left\{\begin{array}{c}
1 \\
\tan \alpha^{+} \\
f \tan \alpha^{+}
\end{array}\right\}-\left|r_{(-)}^{(1)}\right|^{2}\left\{\begin{array}{c}
1 \\
-\tan \alpha^{-} \\
b \tan \alpha^{-}
\end{array}\right\}\right] \\
& { }_{2} F_{j(1)}^{(2)}=\rho g\left\{\begin{array}{c}
b X_{2}^{(1)} X_{3}^{(1)} \\
-2 b_{2} X_{2}^{(2)} \\
-A\left(2 X_{1}^{(2)}+\overline{o M}_{2} X_{3}^{(2)}\right)-b X_{1}^{(1)} X_{2}^{(1)}+\frac{1}{4} x_{B} A X_{3}^{(1) 2}
\end{array}\right\} \\
& +\frac{\rho}{2} \int_{C_{0}} \varphi_{t}^{(1)}\left\{\begin{array}{r}
x_{3}^{(1)} \bar{x}^{\prime} \\
x_{3}^{(1)} \bar{y}^{\prime} \\
-x_{1}^{(1)} \bar{x}^{\prime}-x_{2}^{(1)} \bar{y}^{\prime}
\end{array}\right\} d S \quad, j=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\} \\
& { }_{2} F_{j}^{(z)}(2)=\frac{\rho}{2} \int_{C_{0}}\left\{(x-\bar{x}) \varphi_{t x}^{(1)}+(y-\bar{y}) \varphi_{t y}^{(1)}\right\} \frac{\partial}{\partial n} \bar{x}_{j} d S \\
& { }_{2} F_{j(3)}^{(2)}=\frac{\rho}{4} \int_{C_{0}}\left(\nabla \varphi^{(1)}\right)^{2} \frac{\partial}{\partial n} \bar{x}_{j} d S
\end{aligned}
$$

$$
\begin{aligned}
& { }_{2} F_{j}^{(2)}(4)=-\frac{\rho g}{4}\left[r_{(+)}^{(1)^{2}}\left\{\begin{array}{c}
1 \\
\tan \alpha^{+} \\
b \tan \alpha^{+}
\end{array}\right\}-r_{(-)}^{(1)^{2}}\left\{\begin{array}{c}
1 \\
-\tan \alpha^{-} \\
b \tan \alpha^{-}
\end{array}\right\}\right], j=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\} . \\
& { }_{2} F_{j}^{(2)}(5)=\rho \int_{C_{0}} \varphi_{t}^{(2)} \frac{\partial}{\partial n} \bar{x}_{j} d s
\end{aligned}
$$

ここで

$$
\begin{aligned}
& A=\iint_{\bar{\theta}} d x d y ; \text { 断面積 } \\
& x_{B}=\frac{1}{A} \iint_{\bar{B}} x d x d y, \quad y_{B}=\frac{1}{A} \iint_{\bar{B}} y d y d x \\
& \left(x_{B}, y_{B}\right) ; \text { 浮八位置 } \\
& I_{W}=\int_{-b}^{b} x^{2} d x ; \text { 水面 } 2 \text { 次モーメント } \\
& y_{B} A-I_{W}=A(\overline{O B}-\overline{B M}) \\
& =-A \overline{O M}, \overline{O M}=(\text { 原点からのXタセンター高さ) }
\end{aligned}
$$

である。
分解された2次の流体力の各項は，次のように解釈で きる。
$F_{j}^{(2)}(1): 1$ 次の動摇の連成kよる2次の流体力
$F_{j}^{(2)}(2): 1$ 次の動摇と1次の圧力の干涉による＂
$F_{j}^{(2)}(3): ヘ ゙ ル ヌ ー イ の$ 式の速度2乗項による＂ $F_{j}{ }^{(2)}(4):$ 浸水面積変化による＂
$F_{j}^{(2)}(5): 2$ 次のポテンシャルによる2次の流体力

ここで，2次のポテンシャルんよる流体力の項は動的成分のみであり，定常力成分は含まない。

もし，浮体断面が鸟軸に関して対称の場合は

$$
x_{B}=0
$$

また，1次の上下摇の運動方程式は独立となり

$$
-\rho \omega^{2} A X_{2}^{(1)}=-2 \rho g b X_{2}^{(1)}-\rho \int_{c_{0}} \varphi_{t}^{(1)} d x
$$

とおけるから，次式のように簡単化できる。［20］

$$
\begin{align*}
{ }_{o} F_{j}^{(2)}(1)= & \operatorname{Re}\left\{\begin{array}{c}
\frac{\rho}{2} A \omega^{2} X_{2}^{(1)} X_{3}^{(1) *} \\
-2 \rho g b_{0} X_{2}^{(2)}+\frac{\rho}{2} X_{3}^{(1)} \int_{C_{0}} \varphi_{t}^{(1)} * d \bar{y} \\
-\rho g A \overline{O M}_{0} X_{3}^{(2)}-\frac{\rho}{2} \omega^{2} A X_{1}^{(1)} X_{2}^{(1) *}-\frac{\rho}{2} X_{2}^{(1)} \int_{C_{0}} \varphi_{t}^{(1) *} d \bar{y}
\end{array}\right\} \\
2 F_{j(1)}^{(2)}= & \left\{\begin{array}{c}
\frac{\rho}{2} A \omega^{2} X_{2}^{(1)} X_{3}^{(1)} \\
-2 \rho g b_{2} X_{2}^{(2)} \\
-\rho g A \overline{O M}_{2} X_{3}^{(2)}-\rho g A_{2} X_{1}^{(2)}-\frac{\rho}{2} \omega^{2} A X_{1}^{(1)} X_{2}^{(1)}
\end{array}\right\} \\
& +\left\{\begin{array}{c}
0 \\
\frac{\rho}{2} X_{3}^{(1)} \int_{C_{0}} \varphi_{t}^{(1)} d \bar{y} \\
-\frac{\rho}{2} X_{2}^{(1)} \int_{C_{0}} \varphi_{t}^{(1)} d \bar{y}
\end{array}\right\}, \quad j=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\} \quad(1.47) \tag{1.47}
\end{align*}
$$

第1．4節 運動方程式
浮体の質量をM，重心位置を（ $\left.\bar{x}_{G}, \bar{y}_{G}\right)$ ，原点まわりと重心まわりの慣性二次モーメントをそれぞれ IO，IGと すると

$$
\begin{align*}
M & =\rho A=\iint_{D_{B}} \rho_{B}(\bar{x}, \bar{y}) d \bar{x} d \bar{y}=\iint_{D_{B}} d m(\bar{x}, \bar{y}) \\
\bar{x}_{G} & =\frac{1}{M} \iint_{D_{B}} \rho_{B}(\bar{x}, \bar{y}) \bar{x} d \bar{x} d \bar{y}=\frac{1}{M} \iint_{D_{B}} \bar{x} d m(\bar{x}, \bar{y}) \\
\bar{y}_{G} & =\frac{1}{M} \iint_{D_{B}} \rho_{B}(\bar{x}, \bar{y}) \bar{y} d \bar{x} d \bar{y}=\frac{1}{M} \iint_{D_{B}} \bar{y} d m(\bar{x}, \bar{y}) \tag{1.48}\\
I_{0} & =\iint_{D_{B}} \rho_{B}(\bar{x}, \bar{y})\left(\bar{x}^{2}+\bar{y}^{2}\right) d \bar{x} d \bar{y}=\iint_{D_{B}}\left(\bar{x}^{2}+\bar{y}^{2}\right) d m(\bar{x}, \bar{y}) \\
I_{G} & =\iint_{D_{B}} \rho_{B}(\bar{x}, \bar{y})\left\{\left(\bar{x}-\bar{x}_{G}\right)^{2}+\left(\bar{y}-\bar{y}_{G}\right)\right\} d \bar{x} d \bar{y} \\
& =I_{0}-\left(\bar{x}_{G}^{2}+\bar{y}_{G}^{2}\right) \cdot M
\end{align*}
$$

ただし，$\rho_{B}(\bar{x}, \bar{y})$ は浮体断面 θ_{B} の密度分布
のように与えられる。
浮体が運動することによって作用する慣性力と重力の合力は

$$
\begin{equation*}
\vec{F}=\left(F_{x}, F_{y}\right)=-\iint_{D_{B}}(\ddot{x}, \ddot{y}-g) d m(\bar{x}, \bar{y}) \tag{1.49}
\end{equation*}
$$

$$
\begin{align*}
& 0 \text { 点まわりのモーメントは } \\
& M_{T}=\iint_{D_{B}} \vec{r} \times d \vec{F} \\
&=-\iint_{\oplus_{B}}\{x(\ddot{y}-g)-y \ddot{x}\} d m(\bar{x}, \bar{y}) \tag{1.50}
\end{align*}
$$

ただし

$$
\begin{aligned}
\vec{r} \times d \vec{F} & =(x, y) \times\left(d F_{x}, d F_{y}\right) \\
& =x d F_{y}-y d F_{x} ; \text { ベクトル積 }
\end{aligned}
$$

で本えられる。ここで，（1．16）式から

$$
\begin{align*}
& \ddot{x}=\varepsilon\left(\ddot{x}_{1}^{(1)}-\bar{y} \ddot{x}_{3}^{(1)}\right)+\varepsilon^{2}\left\{\ddot{x}_{1}^{(2)}-\bar{y} \ddot{x}_{3}^{(2)}-\bar{x}\left(\dot{x}_{3}^{(1) 2}+x_{3}^{(1)} \ddot{x}_{3}^{(1)}\right)\right\}+O\left(\varepsilon^{3}\right) \\
& \ddot{y}=\varepsilon\left(\ddot{x}_{2}^{(1)}+\bar{x} \ddot{x}_{3}^{(1)}\right)+\varepsilon^{2}\left\{\ddot{x}_{2}+\bar{x} \ddot{x}_{3}^{(2)}-\bar{y}\left(\dot{x}_{3}^{(1) 2}+x_{3}^{(1)} \ddot{x}_{3}^{(1)}\right)\right\}+O\left(\varepsilon^{3}\right) \tag{1.51}
\end{align*}
$$

（1．16），（1．51）式を（1．49），（1．50）式に代入して，とのベ きで整理すれば

$$
\begin{align*}
F_{x}= & -\varepsilon M\left(\ddot{x}_{1}^{(1)}-\bar{y}_{G} \ddot{x}_{3}^{(1)}\right)-\varepsilon^{2} M\left\{\ddot{x}_{1}^{(2)}-\bar{y}_{G} \ddot{x}_{3}^{(2)}\right. \\
& \left.-\bar{x}_{G}\left(\dot{x}_{3}^{(1) 2}+x_{3}^{(1)} \ddot{x}_{3}^{(1)}\right)\right\}+O\left(\varepsilon^{3}\right) \\
F_{y}= & M g-\varepsilon M\left(\ddot{x}_{2}^{(1)}+\bar{x}_{G} \ddot{x}_{3}^{(1)}\right)-\varepsilon^{2} M\left\{\ddot{x}_{2}^{(2)}+\bar{x}_{G} \ddot{x}_{3}^{(2)}\right. \tag{1.52}\\
& \left.\quad-\bar{y}_{G}\left(\dot{x}_{3}^{(1) 2}+x_{3} \ddot{x}_{3}^{(1)}\right)\right\}+O\left(\varepsilon^{3}\right)
\end{align*}
$$

$$
\begin{aligned}
M_{T}= & \bar{x}_{G} M g-\varepsilon\left\{I_{0} \ddot{x}_{3}^{(1)}+\bar{x}_{G} M \ddot{x}_{2}^{(1)}-\bar{y}_{G} M \ddot{x}_{1}^{(1)}-M g\left(X_{1}^{(1)}-\bar{y}_{G} X_{3}^{(1)}\right)\right\} \\
-\varepsilon^{2}\left\{I_{0} \ddot{x}_{3}^{(2)}\right. & +\bar{x}_{G} M \ddot{x}_{2}^{(2)}-\bar{y}_{G} M \ddot{x}_{1}^{(2)}-M g\left(X_{1}^{(2)}-\bar{y}_{G} X_{3}^{(2)}\right) \\
& \left.+\frac{1}{2} \bar{x}_{G} M g X_{3}^{(1) 2}\right\}+O\left(\varepsilon^{3}\right)
\end{aligned}
$$

を得る。 従って，これらの慣性力，慣性モーメントは流体力と釣り合うべきであるから

$$
\left\{\begin{array}{l}
F_{x} \\
F_{y} \\
M_{T}
\end{array}\right\}+\left\{\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3}
\end{array}\right\}=0
$$

とおいて，とのベきでとк整理すれば
静的釣り合い $\left(\varepsilon^{0}\right)$

$$
\left.\begin{array}{l}
F_{y}^{(0)}+F_{z}^{(0)}=M g-\rho g A=0 \tag{1.53}\\
M_{T}^{(0)}+F_{3}^{(0)}=\bar{x}_{G} M_{g}-\rho g A \bar{x}_{B}=0
\end{array}\right\}
$$

1 次の動摇（ （）

$$
\begin{align*}
& M\left(\ddot{x}_{1}^{(1)}-\bar{y}_{G} \ddot{x}_{3}^{(1)}\right)=F_{1}^{(1)} e^{i \omega t} \\
& M\left(\ddot{x}_{2}^{(1)}+\bar{x}_{G} \ddot{x}_{3}^{(1)}\right)=F_{2}^{(1)} e^{i \omega t} \tag{1.54}\\
& I_{0} \ddot{x}_{3}^{(1)}+\bar{x}_{G} M \ddot{x}_{2}^{(1)}-\bar{y}_{G} M \ddot{x}_{1}^{(1)}-M g\left(x_{1}^{(1)}-y_{G} x_{3}^{(1)}\right) \\
&=F_{3}^{(1)} e^{i \omega t}
\end{align*}
$$

2次の準静的釣り合い $\left(\varepsilon^{2}\right)$
（1．52）式中к現れている $X_{1}^{(2)}$ の項は，理論の最初の仮定，浮体に働く漂流力は常に打ち消されているので，定常変位成分を含んでいない。あるいは，左右摇方向に は弱いバネ（バネ定数，长 kg／m）で係留されているもの とすれば，漂流力によって一定の定常変位したのち釣り合うが，その釣り合い点を座標原点に選べば，左右摇の定常変位は考えなくて良い。この場合，係留バネのノ どを。爻（2）とすれば，（1．46），（1．52）式により

$$
\begin{align*}
k_{0} X_{1}^{(2)} & =o{ }_{o} F_{1}^{(2)} \\
0 & =o F_{2}^{(2)} \tag{1.55}\\
M g\left(\bar{y}_{G} o X_{3}^{(2)}\right. & \left.+\frac{1}{4} \bar{x}_{G}\left|X_{3}^{(2)}\right|^{2}\right)={ }_{o} F_{3}^{(2)}
\end{align*}
$$

となる。ここで，のちのため火漂流力 $\left(D_{f}\right)$ ，沈下力 $\left(S_{f}\right)$ ，傾斜モーメント（ I_{m} ）を以下のようк定義して おく。

$$
\left.\begin{array}{l}
D_{f}=k \circ X_{1}^{(2)}=\circ F_{1}^{(2)} \tag{1.56}\\
S_{f}=2 \rho g b \circ X_{2}^{(2)}=2 \rho g b_{0} X_{2}^{(2)}+\circ F_{2}^{(2)} \\
I_{m}=M_{g}\left(\bar{y}_{G} \circ X_{3}^{(2)}+\frac{1}{4} \bar{X}_{G}\left|X_{3}^{(1)}\right|^{2}\right)=\circ F_{3}^{(2)}
\end{array}\right\}
$$

なお，これらの定常力によって，波浪中で動摇してい る場合には，静水時とは異った平均位置をとるが，それ による流体力への影響は ε^{3} 以上の計算で現れてくるので本論では無視しても良い。

2次の動摇 $\left(\varepsilon^{2}\right)$

$$
\left.\begin{array}{r}
M\left\{\ddot{x}_{1}^{(2)}-\bar{y}_{G 2} \ddot{x}_{3}^{(2)}-\frac{\bar{x}_{G}}{2}\left(\dot{x}_{3}^{(1) 2}+X_{3}^{(1)} \ddot{x}_{3}^{(1)}\right)\right\}={ }_{2} F_{1}^{(2)} e^{i 2 \omega t} \\
M\left\{\ddot{x}_{2}^{(2)}+\bar{x}_{G 2} \ddot{x}_{3}^{(2)}-\frac{y_{G}}{2}\left(\dot{x}_{3}^{(1) 2}+X_{3}^{(1)} \ddot{x}_{3}^{(1)}\right)\right\}={ }_{2} F_{2}^{(2)} e^{i 2 \omega t} \tag{1.57}\\
I_{0_{2}} \ddot{X}_{3}^{(2)}+\bar{x}_{G} M_{2} \ddot{x}_{2}^{(2)}-\bar{y}_{G} M_{2} X_{1}^{(2)}-M g\left({ }_{2} X_{1}^{(2)}-\bar{y}_{G} X_{3}^{(2)}\right) \\
+\frac{1}{4} \bar{x}_{G} M g X_{3}^{(1) 2}={ }_{2} F_{3}^{(2)} e^{i 2 \omega t}
\end{array}\right\}
$$

以上の，運動方程式を解けば，浮体の定常的な動摇が求められ，

$$
\begin{equation*}
x_{j}(t)=\operatorname{Re}\left\{\varepsilon x_{j}^{(1)} e^{i \omega t}+\varepsilon^{2}\left({ }_{0} x_{j}^{(2)}+{ }_{2} x_{j}^{(2)} e^{i 2 \omega t}\right)\right\}+O\left(\varepsilon^{3}\right) \tag{1.58}
\end{equation*}
$$

で与えられることになる。

第1．5節 自由表面変位
前節の運動方程式から浮体の動摇が求められ，$\varphi^{(1)}$ と $\varphi^{(2)}$ の分布が求まれば，（1．3）式によって，自由表面変位を求めることができる。

$$
\begin{align*}
& \eta(x, t)=\frac{1}{g} \Phi_{t}(x, \eta, t)+\frac{1}{2 g}(\nabla \Phi)^{2} \\
& =\frac{\varepsilon}{g} \Phi_{t}^{(1)}(x, 0, t)+\frac{\varepsilon^{2}}{g}\left\{\eta^{(1)} \Phi_{t y}^{(1)}+\frac{1}{2}\left(\nabla \Phi^{(1)}\right)^{2}\right. \\
& \left.+\Phi_{t}^{(2)}(x, 0, t)\right\}+O\left(\varepsilon^{3}\right), \tag{1.59}
\end{align*}
$$

ここで

$$
\begin{equation*}
\eta(x, t)=\operatorname{Re}\left\{\varepsilon \eta^{(1)}(x) e^{i \omega t}+\varepsilon^{2}\left(\eta_{0}^{(2)}(x)+\eta_{2}^{(2)}(x) e^{i 2 \omega t}\right)\right\}+O\left(\varepsilon^{3}\right) \tag{1.60}
\end{equation*}
$$

とおけば，水深無限大のとき

$$
\left.\begin{array}{l}
\eta^{(1)}(x)=\frac{i \omega}{g} \varphi^{(1)}(x, 0) \\
0 \eta^{(2)}(x)=\frac{1}{2 g}\left\{\frac{\omega^{2}}{g} \varphi^{(1)} \varphi_{y}^{(1) *}+\frac{1}{2} \nabla \varphi^{(1)} \nabla \varphi^{(1) *}\right\} \\
2 \eta^{(2)}(x)=\frac{1}{2 g}\left\{-\frac{\omega^{2}}{g} \varphi^{(1)} \varphi_{y}^{(1)}+\frac{1}{2}\left(\nabla \varphi^{(1)}\right)^{2}\right\}+\frac{2 i \omega}{g} \varphi^{(2)}(x, 0)
\end{array}\right\}(1.61)
$$

となる。
次に，無限遠方での漸近解について考えてみる。
放射問題では，1次と2次のポテンシャルの無限遠での潮近解が次式のように与えられると考えられる。

$$
\left.\begin{array}{l}
\varphi_{(1)}^{(1)}(x, y) \rightarrow A^{(1) \pm} e^{-k y \mp i k x} \tag{1.62}\\
\varphi_{(x, y)}^{(2)} \rightarrow A^{(2) \pm} e^{-4 k y \mp i 4 k x}
\end{array}\right\} \text { as } x \rightarrow \pm \infty
$$

ただし，$A^{(1) \pm} k$ ついては，付録1 κ みるようにコチン関数で表現でき，次式で与えられる。

$$
\begin{aligned}
A^{(1) \pm} & =i H^{ \pm}(k) \\
& =i \int_{c_{0}}\left(\frac{\partial}{\partial n} \varphi^{(1)}-\varphi^{(1)} \frac{\partial}{\partial n}\right) e^{-k y \pm i k x} d s
\end{aligned}
$$

（1．62）式を（1．61）式k代入すると

$$
\begin{align*}
& \eta_{(x)}^{(2)} \rightarrow 0 \quad, \text { as } x \rightarrow \pm \infty \\
& 2 \eta^{(2)}(x) \rightarrow \frac{k^{2}}{2 g}\left\{A^{(1)}\right\}^{2} e^{\mp i 2 k x}+\frac{i 2 \omega}{g} A^{(2) \pm} e^{\mp i 4 k x} \text {, as } x \rightarrow \pm \infty \tag{1.63}
\end{align*}
$$

一方，散乱問題と波浪中の動摇问題では，同様にして

$$
\left.\begin{array}{l}
\varphi_{(x, y)}^{(1) \pm} \rightarrow \frac{i g a_{w}}{\omega}\left(e^{-k y+i k x}+A^{(1) \pm} e^{-k y \mp i k x}\right) \\
\varphi_{(x, y)}^{(2) \pm} \rightarrow A^{(2)} e^{-4 k y \mp i 4 k x}
\end{array}\right\}(1.64)
$$

とおけるので

$$
\begin{align*}
& o \eta^{(2)}(x) \rightarrow-K a_{w}^{2} \operatorname{Re}\left\{A^{(1)+} e^{-i 2 k x}\right\} \text {, as } x \rightarrow \infty \\
& 0 \eta^{(2)}(x) \rightarrow 0 \quad \text {, as } x \rightarrow-\infty \\
& 2 \eta^{(2)}(x) \longrightarrow-2 k a_{w}^{2} A^{(1)+}-\frac{k a_{w}^{2}}{2}\left\{e^{i 2 k x}+\left(A^{(1) t}\right)^{2} e^{-i 2 k x}\right\} \tag{1.65}\\
& +\frac{i 2 \omega}{g} A^{(2) t} e^{-i 4 k x} \text {, as } x \rightarrow \infty \\
& \left.\begin{array}{r}
2 \eta_{(2)}^{(2)} \rightarrow-\frac{k a_{w}^{2}}{2}\left\{1+A^{(1)-}\right\}^{2} e^{i 2 k x}+\frac{i 2 \omega}{g} A^{(2)-} \cdot e^{i 4 k x}, \\
\text { as } x \rightarrow-\infty
\end{array}\right\}
\end{align*}
$$

となる。この場合，$A^{(1)+} \neq 0$ の時は，入射波と反射波 が干渉して定在波を作り，そのために平均水面が変化す ることになる。

てれらの結果から，2次のオーダーまで考えると，発散波の波形は波数がK，2K，4Kの波の合成として与えら れることがわかる。

第2章 境界値問題の解法
本章では，第1章で定式化された1次と2次の境界値問題の解法を示し，いくつかの2次元浮体の計算例によ つてその精度などについて述べる。

第 2.1 節 1 次の境界値肉題
前章で定式化された境界値沽題については，付録1 k みるようにいくつかの解法が知られているが，2次の境界値問題では，自由表面上に非斉次な条件が与えられる ことになるので，それをうまく処理できる解法が望まし い。そのをめに本研究では，Yeung［21］と同様に，自由表面上火も特異点を分布させる境界要素法を適用し た。 Yeungは無限遠方での条件を，物体から適当に離 れた所でSommerfeld の放射条件を課し，領域を含をす べての境界上での積分を実行する方法によって解いてい るが，本研究ではUrsell［22］の方法にヒントを得て，原点に置かれた波特異点と境界上к分布された波なし特異点によって解いている。もちろん，両解法は結果的 に等価であることが示される。

Fig． 2.1 кおんて，（1．31）式の境界条件を満足する関数 φ と 2 次元ラ 7 ラスス方程式の基本解 $\log r$ を考える とグリーンの定理によって

$$
\begin{equation*}
\varphi(p)=\frac{1}{2 \pi} \int_{c+F+R^{ \pm}+B}\left(\frac{\partial}{\partial n} \varphi(\alpha)-\varphi(\alpha) \frac{\partial}{\partial n}\right) \log r d s(\alpha) \tag{2.1}
\end{equation*}
$$

ただし

$$
P=(x, y), Q=\left(x^{\prime}, y^{\prime}\right), r^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}
$$

$C, F, R^{ \pm}$B はそれぞれ物体表面，自由表面，（士）側 の放射境界と水底の境界，

そは領域内に向う法線

なる表式を得る。
次に，物体内部の点 $\left(x_{s}, y_{s}\right) k$ 単位強さの吹き出しが あるときの速度ポテンシャル $\varphi_{\text {ホ，と物体内部の点 }\left(x_{\theta}, y_{\theta}\right) ~}^{\text {，}}$ に単位強さの二重吹き出しがあるときの速度ポテンシャ ルは同様にして

$$
\left.\begin{array}{l}
\varphi_{s}(p)=\frac{1}{2 \pi} \int_{C+F+R^{ \pm}+B}\left(\frac{\partial}{\partial n} \varphi_{s}(\alpha)-\varphi_{S}(\alpha) \frac{\partial}{\partial n}\right) \log r d s(Q) \\
\varphi_{\theta}(p)=\frac{1}{2 \pi} \int_{C+F+R^{ \pm}+B}\left(\frac{\partial}{\partial n} \varphi_{D}(\alpha)-\varphi_{\theta}(Q) \frac{\partial}{\partial n}\right) \log r d s(Q)
\end{array}\right\}(2.2)
$$ で与えられる。

無限遠方におけるこれらのポテンシャルの漸近值は， コチン関数を用いて

$$
\begin{align*}
& \varphi \rightarrow i H^{ \pm}(k) e^{-k y \mp i k x}, \quad \text { as } x \rightarrow \pm \infty \\
& \varphi_{s} \rightarrow i H_{s}^{ \pm}(k) e^{-k y \mp i k x}, \tag{2.3}\\
& \varphi_{0} \rightarrow i H_{\theta}^{ \pm}(k) e^{-k y \mp i k x},
\end{align*}
$$

ただし

$$
H_{j}^{ \pm}(k)=\int_{c}\left(\frac{\partial}{\partial n} \varphi_{j}-\varphi_{j} \frac{\partial}{\partial n}\right) e^{-k y \pm i k x} d s: コ チ ン \text { 卖数 }
$$ であることがわかっているので，複素定数 A, B を用い て新しいポテンシャル \mathscr{N}_{N} を次のように定義しよう。

$$
\begin{equation*}
\varphi_{N}=\varphi-A \cdot \varphi_{S}-B \varphi_{D} \tag{2.4}
\end{equation*}
$$

従って，φ_{N} の無限遠方での漸近解は（2．3）式によつて

$$
\begin{equation*}
\varphi_{N} \rightarrow i\left(H^{ \pm}-A H_{S}^{ \pm}-B H_{D}^{ \pm}\right) e^{-k y \mp i k x} \text {, as } x \rightarrow \pm \infty \tag{2.5}
\end{equation*}
$$

となるので

$$
\begin{align*}
& A=\frac{H^{+} H_{D}^{-}-H^{-} H_{D}^{+}}{H_{s}^{+} H_{D}^{-}-H_{s}^{-} H_{\theta}^{+}} \tag{2.6}\\
& B=\frac{H^{+} H_{s}^{-}-H^{-} H_{s}^{+}}{H_{D}^{+} H_{s}^{-}-H_{D}^{-} H_{s}^{+}} \\
& \text {とおけげ }
\end{align*}
$$

$$
\varphi_{N} \rightarrow 0, \quad \text { as } \quad x \rightarrow \pm \infty
$$

とすることができる。従って，Rさを物体から適当に離れた所に選べば，近似的に

$$
\begin{equation*}
\varphi_{N} \fallingdotseq 0, \text { on } R^{ \pm} \tag{2.7}
\end{equation*}
$$

とみなしても良いと考えられる。 従って，ケ゚Nは

$$
\begin{equation*}
\varphi_{N} \doteq \frac{1}{2 \pi} \int_{C+F+B}\left(\frac{\partial}{\partial n} \varphi_{N}-\varphi_{N} \frac{\partial}{\partial n}\right) \log r d s \tag{2.8}
\end{equation*}
$$

なる表現ができる。また，水深無限大とすればBの上で の樍分は0となるので（2．8）式は

$$
\varphi_{N}(p)=\frac{1}{2 \pi} \int_{C+F}\left(\frac{\partial}{\partial n} \varphi_{N}(Q)-\varphi_{N}(Q) \frac{\partial}{\partial n}\right) \log r d s(Q),(2.8)^{\prime}
$$

となる。これを元の表現に戻せば

$$
\begin{align*}
\varphi(p) & =\frac{1}{2 \pi} \int_{C+F}\left(\frac{\partial \varphi}{\partial n}-\varphi \frac{\partial}{\partial n}\right) \log r d s \\
& +A\left\{\varphi_{s}(p)-\frac{1}{2 \pi} \int_{C+F}\left(\frac{\partial}{\partial n} \varphi_{S}-\varphi_{S} \frac{\partial}{\partial n}\right) \log r d s\right\} \\
& +B\left\{\varphi_{D}(p)-\frac{1}{2 \pi} \int_{C+F}\left(\frac{\partial}{\partial n} \varphi_{\theta}-\varphi_{D} \frac{\partial}{\partial n}\right) \log r d s\right\} \tag{2.9}
\end{align*}
$$

あるいは，（2．2）式kよって

$$
\begin{align*}
\varphi(p)= & \frac{1}{2 \pi} \int_{C+F}\left(\frac{\partial \varphi}{\partial n}-\varphi \frac{\partial}{\partial n}\right) \log r d s \\
& +\frac{A}{2 \pi} \int_{R^{ \pm}}\left(\frac{\partial}{\partial n} \varphi_{S}-\varphi_{S} \frac{\partial}{\partial n}\right) \log r d s \\
& +\frac{B}{2 \pi} \int_{R^{ \pm}}\left(\frac{\partial}{\partial n} \varphi_{D}-\varphi_{\theta} \frac{\partial}{\partial n}\right) \log r d S \tag{2.10}
\end{align*}
$$

とおいて

$$
\left.\begin{array}{l}
\varphi_{S}=e^{-k y \mp i k x} \\
\varphi_{D}=e^{-k y \mp i k x}
\end{array}\right\} \text { on } R^{ \pm}
$$

とおけば，Yeungの方法火一致する。
（2．9）式K戻って，自由表面条件とPが境界上にある
ときの $\log r$ の特異性を考慮すれば，解くベき積分方程式は

$$
\begin{array}{r}
\pi \varphi(p)+\int_{C+F} \varphi(\alpha) \frac{\partial}{\partial n} \log r d s(Q)+K \int_{F} \varphi(\alpha) \log r d s(Q) \\
-A\left\{\pi \varphi_{s}(p)+\int_{C+F} \varphi_{s} \frac{\partial}{\partial n} \log r d s+K \int_{F} \varphi_{s} \log r d s-\int_{C} \frac{\partial}{\partial n} \varphi_{s} \log r d s\right\} \\
-B\left\{\pi \varphi_{\theta}(p)+\int_{C+F} \varphi_{\theta} \frac{\partial}{\partial n} \log r d s+K \int_{F} \varphi_{\theta} \log r d s-\int_{C} \frac{\partial}{\partial n} \varphi_{\theta} \log r d s\right\} \\
=\int_{C} \frac{\partial}{\partial n} \varphi \cdot \log r d s \tag{2.11}
\end{array}
$$

となり，これと（2．6）式を連立させて解けば良い。

この方法を，コチン関数法（M－1）と呼ぶことにする。別の方法として，（2．6）式を使わず，（2．11）式において Pを適当に選んだ $\mathrm{R}^{ \pm} 上 の$ 点と一致させれば，（2．7）式に よって

$$
\varphi(p)=A \varphi_{s}(p)+B \varphi_{\oplus}(p), P \text { an } R^{ \pm}
$$

となるので，（2．11）式は

$$
\begin{align*}
& \int_{C+F} \varphi(\theta) \frac{\partial}{\partial n} \log r d s+K \int_{F} \varphi(\alpha) \log r d s \\
& -A\left\{\int_{C+F} \varphi_{s} \frac{\partial}{\partial n} \log r d s+K \int_{F} \varphi_{s} \log r d s-\int_{C} \frac{\partial}{\partial n} \varphi_{s} \log r d s\right\} \\
& -B\left\{\int_{C+F} \varphi_{D} \frac{\partial}{\partial n} \log r d s+K \int_{F} \varphi_{D} \log r d s-\int_{C} \frac{\partial}{\partial n} \varphi_{D} \log r d s\right\} \\
& =\int_{C} \frac{\partial}{\partial n} \varphi \cdot \log r d s, P \text { on } R^{ \pm} \tag{2.12}
\end{align*}
$$

となる。この方法を，選点法（M－2）と呼ぶことにする。

次に，1次のポテンシャルを次式によって分解して考 えよう。

$$
\begin{equation*}
\varphi^{(1)}(x, y)=\varphi_{0}^{(1)}+\varphi_{4}^{(1)}+\sum_{j=1}^{3} x_{j}^{(1)} \varphi_{j}^{(1)} \tag{2.13}
\end{equation*}
$$

ただし，添字は $j=(0,1,2,3)$ は λ 射波，左右摇，上下摇

横摇，散乱ポテンシャルを表すものとする。 また，それらのポテンシャルを次式で正規化する。

$$
\left.\begin{array}{ll}
\varepsilon \varphi_{j}^{(1)}=\frac{i g a_{w}}{\omega} \phi_{j}^{(1)} & j=0,4 \tag{2.14}\\
\varepsilon \varphi_{j}^{(1)}=i \omega X_{j} \phi_{j}^{(1)}=\frac{i g a_{w}}{\omega} \cdot K \frac{X_{j}^{(1)}}{a_{w}} \phi_{j}^{(1)}, & j=1,2,3
\end{array}\right\}
$$

ただし a_{w} ：入射波高
$\omega: ~ 入$ 射波円周波数
g：重力加速度
$K: ~$ 被数 $\quad\left(=\frac{\omega^{2}}{g}=\frac{\lambda \pi}{\lambda}\right)$
従って，（2．13）式は

$$
\begin{equation*}
\varepsilon \varphi^{(1)}=\frac{i g a_{w}}{\omega}\left\{\phi_{0}^{(1)}+\phi_{4}^{(1)}+K \sum_{j=1}^{3} \bar{x}_{j}^{(1)} \phi_{j}^{(1)}\right\} \tag{2.15}
\end{equation*}
$$

$$
\begin{aligned}
\hbar た!i & \phi_{0}^{(1)}
\end{aligned}=e^{-k y+i k x}
$$

のように表される。この時，水面変位は

$$
\begin{equation*}
\varepsilon \eta^{(1)}(x)=-a_{w}\left\{\phi_{0}^{(1)}+\phi_{4}^{(1)}+k \sum_{j=1}^{3} \bar{x}_{j}^{(1)} \phi_{j}^{(1)}\right\} \tag{2.16}
\end{equation*}
$$

となる。

てのようにして，分解された問題の境界条件は

$$
\begin{array}{lc}
{[L]} & \nabla^{2} \phi_{j}^{(1)}(x, y)=0 \\
{[F]} & \left\{K+\frac{\partial}{\partial y}\right\} \phi_{j}^{(0)}(x, 0)=0 \\
{[H]} & \frac{\partial}{\partial n} \phi_{j}^{(1)}=\frac{\partial}{\partial n} \bar{x}_{j}, \text { for } j=1,2,3 \\
& \frac{\partial}{\partial n} \phi_{4}^{(1)}=-\frac{\partial}{\partial n} \phi_{0}^{(1)} \tag{2.17}\\
{[B]} & \frac{\partial}{\partial n} \phi_{j}^{(1)}(x, \infty)=0 \\
{[R]} & \left\{\frac{\partial}{\partial x} \pm i K\right\} \phi_{j}^{(1)}(\pm \infty, y)=0
\end{array}
$$

で与えられる。
ここで，浮体断面がま軸に対して対称であるとすれば，上下揺などの対称問題では，（2．10），（2．11）式において $B=0$ として良いから問題を简単化できる。

原点 κ 単位強さの吹出しがあるときのポテンシャルを ϕ_{S} とすれば，Wehausen－Laitone［1］などによって

$$
\begin{align*}
\phi_{S}(x, y) & =\frac{1}{2 \pi} \int_{C+F+R^{ \pm}+B}\left(\frac{\partial}{\partial n} \phi_{s}(\alpha)-\phi_{s}(\alpha) \frac{\partial}{\partial n}\right) \log r d s(\alpha) \\
& =-\frac{1}{\pi} \oint_{0}^{\infty} \frac{e^{-k y} \cos k x}{k-K} d k+i e^{-k u} \cos k x \tag{2.18}
\end{align*}
$$

ただし，自はコーシーの主値積分
であることがわかっているので，（2．11）式は

$$
\begin{aligned}
& \pi \phi_{j}^{(1)}(p)+\int_{C+F} \phi_{j}^{(1)} \frac{\partial}{\partial n} \log r d s+K \int_{F} \phi_{j}^{(1)} \log r d s \\
&-A\left\{\pi \phi_{s}(p)+\int_{C+F} \phi_{s} \frac{\partial}{\partial n} \log r d s+K \int_{F} \phi_{s} \log r d s-\int_{c} \frac{\partial}{\partial n} \phi_{s} \log r d s\right\} \\
&=\int_{c} \frac{\partial}{\partial n} \phi_{j}^{(1)} \log r d s,(j=2)(2.19)
\end{aligned}
$$

また，$B=0$ から（2．6）式は

$$
\begin{equation*}
A=H_{j}^{ \pm}=\int_{c}\left(\frac{\partial \phi_{j}^{(1)}}{\partial n}-\phi_{j}^{(1)} \frac{\partial}{\partial n}\right) e^{-k y \pm i k x} d s \tag{2.20}
\end{equation*}
$$

となり，（2．19），（2．20）式を連立させて解けば良い。
同様にして，左右揺，横摇などの反対称問題について は，原点火置かれた水平二重吹き出しを考えれば良く

$$
\begin{align*}
\phi_{0}(p) & =\left.\frac{1}{k} \frac{\partial}{\partial x^{\prime}} \phi_{S}(p)\right|_{\substack{y^{\prime}=0 \\
y^{\prime}=0}} \\
& =\frac{1}{2 \pi} \int_{C+F+R^{ \pm}+B}\left(\frac{\partial}{\partial n} \phi_{\theta}-\phi_{0} \frac{\partial}{\partial n}\right) \log r d s \\
& =-\frac{1}{\pi k} \oint_{0}^{\infty} \frac{k e^{-k y} \sin k x}{k-K} d k+i e^{-k y} \sin k x \tag{2.21}
\end{align*}
$$

を便って

$$
\begin{aligned}
\Pi \phi_{j}^{(1)}(p)+\int_{C+F} \phi_{j}^{(1)} \frac{\partial}{\partial n} \log r d s & +K \int_{F} \phi_{j}^{(1)} \log r d s \\
-B\left\{\pi \phi_{D}(p)+\int_{C+F} \phi_{\theta} \frac{\partial}{\partial n} \log r d s\right. & \left.+K \int_{F} \phi_{D} \log r d s-\int_{C} \frac{\partial}{\partial n} \phi_{\theta} \log r d s\right\} \\
& =\int_{C} \frac{\partial}{\partial n} \phi_{j}^{(1)} \log r d s,(j=1,3)(2.22)
\end{aligned}
$$

また， $\mathrm{A}=0$ から（2．6）式は

$$
\begin{equation*}
B=H^{+}=-H^{-}=\int_{c}\left(\frac{\partial \phi_{j}^{(1)}}{\partial n}-\phi_{\dot{j}}^{(1)} \frac{\partial}{\partial n}\right) e^{-k y \pm i k x} d s \tag{2.23}
\end{equation*}
$$

であり，（2．22），（2．23）式を連立させて解けば良い。

一方，散乱ポテンシャルについては

$$
\left.\begin{array}{l}
\phi_{4}^{(1)}=\phi_{4 s}^{(1)}+\phi_{4 A}^{(1)} \\
\phi_{0}=e^{-k y} \cos k x+i e^{-k y} \sin k x
\end{array}\right\}
$$

と分解して，$\phi_{4 S}^{(1)}$ は対称ポテンシャル，$\phi_{4 A}^{(1)}$ は反対称ポ テンシャルとし，その物体表面条件を

$$
\left.\begin{array}{l}
\frac{\partial}{\partial n} \phi_{4 s}^{(1)}=-\frac{\partial}{\partial n}\left(e^{-k y} \cos k x\right) \tag{2.24}\\
\frac{\partial}{\partial n} \phi_{4 A}^{(1)}=-\frac{\partial}{\partial n}\left(i e^{-k y} \sin k x\right)
\end{array}\right\}
$$

で与えれば，前述の方法がそのまま適用できる。

これらの境界値問題を解いて1次のポテンシャル分布 が求まれば，それによる流体力は

$$
\begin{align*}
\varepsilon F_{j}^{(1)} & =-\int_{C_{0}} \varepsilon P^{(1)} \frac{\partial}{\partial n} \bar{x}_{j} d s \\
& =-\rho g a_{w} \int_{c_{0}} \phi_{j}^{(1)} \frac{\partial \bar{x}_{j}}{\partial n} d s \tag{2,25}
\end{align*}
$$

として求められる。 放射間題では，入射波，散乱ポテ
ンシャルが存在しないが，便宜上 $a_{w}=1$ とおい？（2．15）式で考えれば良い。 i－方向の動摇によるj一方向の流体力を Fij $_{i j}^{(1)}$ とすれば

$$
\begin{align*}
F_{i j}^{(1)} & =-\rho \omega^{2} X_{i}^{(1)} \int_{C_{0}} \phi_{i}^{(1)} \frac{\partial}{\partial n} \bar{x}_{j} d s \\
& =-\rho \omega^{2} X_{i}^{(1)} f_{i j}^{(1)} \\
& =\operatorname{Re}\left\{\rho f_{i j}^{(1)}\right\} \ddot{X}_{i}^{(1)}-\operatorname{lm}\left\{\rho \omega f_{i j}^{(1)}\right\} \dot{X}_{i}^{(1)} \tag{2.26}
\end{align*}
$$

従って，付加質量 $m_{i j}$ ，減衰力係数 $N_{i j}$ は

$$
\left.\begin{array}{l}
m_{i j}=-\operatorname{Re}\left\{\rho f_{i j}^{(1)}\right\} \tag{2.27}\\
N_{i j}=\operatorname{lm}\left\{\rho \omega f_{i j}^{(d)}\right\}
\end{array}\right\}
$$

として求められる。

第2．2節2次の境界値問題
2次の速度ポテンシャルソ゚（2）を以下のように分解して考えよう。

$$
\begin{align*}
\varphi^{(2)} & =m \varphi^{(2)}+\varphi^{(2)}+f \varphi^{(2)} \\
& =\frac{i g a_{w}^{(2)}}{2 \omega} \phi^{(2)}+\frac{i g a_{w}^{(1) 2}}{2 \omega}\left(f \phi^{(2)}+{ }_{f} \phi^{(2)}\right) \tag{2.28}
\end{align*}
$$

ただし $m \phi^{(2)}: 2 \omega の$ 動揺による2次ポテンシャル $\boldsymbol{b}^{(2)}$ ：2次の物体表面条件による＂＂ $f \phi^{(2)}$ ：2次の自由表面条件火よる＂＂

これらの境界条件は
［L］$\quad \nabla_{i}^{2} \phi^{(2)}(x, y)=0, \quad(i=m, b, f)$
$[F] \quad\left\{4 K+\frac{\partial}{\partial y}\right\}\left(m \phi^{(2)}, b \phi^{(2)}, f \phi^{(2)}\right)=(0,0, q(x))$ ，on $y=0$
$[H] \quad \frac{\partial}{\partial n}\left(m \phi^{(2)}, \phi^{(2)}, f \phi^{(2)}\right)=\left(2 h^{(2)}, h_{i j}^{(2)}, 0\right)$ ，on C_{0}
［B］$\quad \frac{\partial}{\partial y} i \phi^{(2)}(x, \infty)=0, \quad(i=m, b, 5)$
$[R] \quad\left\{\frac{\partial}{\partial x} \pm i 4 K\right\} i \phi^{(2)}(\pm \infty, y)=0,(i=m, b, f)$
ただし

$$
\begin{aligned}
q(x) & =q_{c}(x)+i q s(x) \\
& =-2\left(\nabla \phi^{(1)}\right)^{2}+\phi^{(1)}\left(\phi_{y y}^{(1)}+K \phi_{y}^{(1)}\right) \\
2 h^{(2)} & =4 K f^{(2)} / a_{w}^{(2)} \\
h_{i j}^{(2)} & =K \bar{x}_{3}^{(1)} \bar{c}^{(1)}-\bar{x}_{3}^{(1)} \phi_{s}^{(1)}-\bar{f}^{(1)} \phi_{n n}^{(1)}-\bar{d}^{(1)} \phi_{s n}^{(1)}
\end{aligned}
$$

でちえられる。
（2．29）式 $\kappa お ん て, ~ m \phi^{(2)}$ と $\phi^{(2)}$ の問題は1次の境界値問題（2．17）式と同形であり，Kを4Kと置き換えれば1次の問題の解法がそのまま適用できる。

1 次と2次の境界值問題の本質的な違いは，生 ${ }^{(2)}$ の問題に現れる非育次な自由表面条件にあり，本研究で境界要素法を導入した理由もこの点にある。

さて，（2．29）式く現れた自由表面条件 $q(x)$ の計算では，自由表面上における $\phi^{(1)}, \phi_{x}^{(1)}, \phi_{y}^{(1)}, \phi_{y y}^{(1)}$ の值を求める必

要がある。 これらの導関数は，もちろん解析的に求め ることが可能であるが，その場合にも $\phi_{y y}^{(1)}$ などは特異性 が強いので，物体近傍での取扱いには注意を要する。本研究では，自由表面上で求められた $\boldsymbol{q}^{(1)}$ の分布から数値的な微分操作kよって $\phi_{x}^{(1)}, \phi_{x x}^{(1)}$ を求め

$$
\left.\begin{array}{l}
\phi_{y}^{(1)}=-K \phi^{(1)} \tag{2.30}\\
\phi_{y y}^{(1)}=-\phi_{x x}^{(1)}
\end{array}\right\}
$$

の関係を使って，$q(x)$ を求めた。その際，波なしポテ ンシャルを使って

$$
\begin{equation*}
\phi_{N}=\phi^{(1)}-i H^{ \pm}(k) e^{-k y \mp i K x} \tag{2.31}
\end{equation*}
$$

ただし

$$
H^{ \pm}(K)=\int_{C_{0}}\left(\frac{\partial \phi_{j}^{(1)}}{\partial n^{j}}-\phi_{j}^{(1)} \frac{\partial}{\partial n}\right) e^{-K y \pm i k x} d s: \beth チ ン(\text { 克数 }
$$

とすれば，ゆN は単調で精度良く数値微分でき

$$
\left.\begin{array}{l}
\phi_{x}^{(1)}=\left(\phi_{N}\right)_{x} \mp K H^{ \pm}(k) e^{-k y \mp i k x} \tag{2.32}\\
\phi_{x x}^{(1)}=\left(\phi_{N}\right)_{x x}+i K^{2} H^{ \pm}(k) e^{-k y \mp i k x}
\end{array}\right\}
$$

のようにして救めることができる。
ここで，$q(x)$ の無限遠方での漸近解を求めておくと

$$
\left.\phi^{(1)}=e^{-k y+i k x}+i\left(H_{4}^{ \pm}(k)+K \sum_{j=1}^{3} \bar{X}_{j} H_{j}^{ \pm}(k)\right) e^{-k y \mp i k x}\right]
$$

$$
\left.\begin{array}{l}
\phi_{x}^{(1)}=i K e^{-K y+i K x} \pm K\left(H_{4}^{ \pm}+K \sum_{j=1}^{3} \bar{x}_{j} H_{j}^{ \pm}\right) e^{-K y \mp i K x} \\
\phi_{y}^{(1)}=-K \phi^{(1)} \\
\phi_{y y}^{(1)}=K^{2} \phi^{(1)}
\end{array}\right\} \begin{aligned}
& \text { as } x \rightarrow \pm \infty \\
& \text { (2.33) }
\end{aligned}
$$

であるから

$$
\left.\begin{array}{ll}
q(x)=-i 8 K^{2}\left(H_{4}^{+}(K)+K \sum_{j=1}^{3} \bar{X}_{j}^{(1)} H_{j}^{+}(k)\right), & \text { as } x \rightarrow \infty \\
q(x)=0, & \text { as } x \rightarrow-\infty
\end{array}\right\} \text { (2.34) }
$$

となり，入射波側では一定値となってしまう。
これは，入射波と浮体による反射波が干步して定在波 を作るためであり，2次元問題では発散波が減衰しない ためK無限上流まで続くことになる。

次に，放射間題では，入射波と散乱ポテンシャルがな いので単一モードの動播では

$$
\left.\begin{array}{l}
\phi^{(1)}=K X_{j} \phi_{j}^{(1)} \\
q_{j}^{(x)}=K^{2} X_{j}^{2}\left\{-2\left(\nabla \phi_{j}^{(1)}\right)^{2}+\phi_{j}^{(1)}\left(\phi_{j y y}^{(1)}+K \phi_{j y}^{(1)}\right)\right. \tag{2.35}
\end{array}\right\}(j=1,2,3)
$$

となるが，無限遠方では

$$
\left.\begin{array}{l}
\phi_{j}^{(\prime)}=i H_{j}^{ \pm}(k) e^{-k y \mp i k x} \tag{2.36}\\
q_{j}(x)=0
\end{array}\right\} \text { as } x \rightarrow \pm \infty
$$

となって，この場合には，無限遠で斉次な自由表面条件

となる。また，対称物体では，動摇のモードには無浢係火対称性から

$$
\begin{equation*}
q_{j}(x)=q_{j}(-x) \quad, \quad j=1,2,3 \tag{2.37}
\end{equation*}
$$

であることがわかるから，2の条件に基づく2次のポテ ンシャル $\boldsymbol{f}^{(2)}$ は対称であると結論される。さらに， この場合には，物体表面条件も対称性により

$$
\begin{equation*}
h_{i j}^{(2)}(x, y)=h_{i j}^{(2)}(-x, y) \tag{2.38}
\end{equation*}
$$

であることがわかるので， $\boldsymbol{b}_{j}^{(2)} と{ }_{j} \phi_{j}^{(2)} k よ る$ 流体力は左右摇や横揺の場合にも常に垂直力として働くことがわ かる。

ここで，入身波があるときの問題に戻って，$f^{(2)} k つ$ いて考察してみよう。

自由表面条件が，入射波側で無限遠方まで続くという状況は解法上取扱いにくいので，Fig． 2.2 に示すような 1次の反射波だけを吸収してしまう波吸収特異点を導入 しよう。あるいは，入射波を造りながら反射波のみを吸収するSalter 型の造波装置〔24］を考えても良い。 この場合，（2．29）式の［F］の条件は

$$
\left[F^{\prime}\right]\left\{4 K+\frac{\partial}{\partial y}\right\}_{f} \phi^{(2)}(x, 0)=\left\{\begin{array}{c}
0 \tag{2.39}\\
q(x)
\end{array}\right\} \text {, for }\left\{\begin{array}{l}
x>x_{a b} \\
x \leqq x_{a b}
\end{array}\right\}
$$

ただし \quad（ab＝（波吸収特異点の位置）
とすれば，Xabよりも上流側で $f \phi^{(2)}$ к対する放射条件を考えれば良い。そして，Xabを無限遠方に近づけたと きの解が求めるものである。

さて，上述の境界値問題を解いてポテンシャル分布が求まれば，それによる流体力は（1．46）式により

$$
\begin{align*}
{ }_{2} F_{j}^{(2)}= & \int_{C_{0}} \rho \frac{\partial}{\partial t} \varphi^{(2)} \frac{\partial \bar{x}_{j}}{\partial n} d s \\
= & -\rho g a_{w}^{(2)} \int_{C_{0}} m \phi^{(2)} \frac{\partial \bar{x}_{j}}{\partial n} d s-\rho g a_{w}^{(1) 2}\left\{\int_{C_{0}} \phi^{(2)} \frac{\partial}{\partial n} \bar{x}_{j} d s\right. \\
& \left.+\int_{C_{0}} \phi^{(2)} \frac{\partial}{\partial n} \bar{x}_{j} d s\right\} \\
= & { }_{2} F_{j}^{(2)}(m)+{ }_{2} F_{j}^{(2)}(f)+{ }_{2} F_{j}^{(2)}(f) \tag{2.40}
\end{align*}
$$

ただし ${ }_{2} \mp_{j}^{(2)}(m): 2 \omega$ の周波数の動摇による2次の流体力で，付加質量力と減衰力を与える項 $2 F_{j}^{(2)}(6): 2$ 次の物体表面条件から生ずる流体力 $2 F_{j}(f): 2$ 次の自由表面条件から生ずる流体力 として与えられる。ここで

$$
{ }_{2} f_{j}^{(2)}(f)=\frac{{ }_{2} F_{j}^{(2)}(f)}{\rho g a_{w}^{2}}=-\int_{c_{0}} f \phi^{(2)} \frac{\partial}{\partial n} \bar{X}_{j} d s, \quad(j=1,2,3) \quad \text { (2.41) }
$$

の計算について，以下の境界条件を満足する新しいポテ シシャル ϕ_{j}^{R} を導入する。
［L］$\quad \nabla^{2} \phi_{j}^{R}(x, y)=0$
［F］$\left\{4 K+\frac{\partial}{\partial y}\right\} \phi_{j}^{R}(x, 0)=0$
［H］$\quad \frac{\partial}{\partial n} \phi_{j}^{R}=\frac{\partial}{\partial n} \bar{x}_{j}$ on C_{0}
［B］$\quad \frac{\partial}{\partial y} \phi_{j}^{R}(x, \infty)=0$
$[R]\left\{\frac{\partial}{\partial x} \pm i 4 K\right\} \phi_{j}^{R}(\pm \infty, y)=0$

従って，ϕ_{j}^{R} は単位振幅速度で波数が $4 K$ の放射ポテン シャルである。

お $\boldsymbol{\phi}^{(2)}$ と ϕ_{j}^{R} к対して，グリーンの定理を適用して（2．29）， （2．42）式を使えば

$$
\begin{align*}
& \int_{C_{0}} \phi^{(2)} \frac{\partial}{\partial n} \bar{x}_{j} d s=\int_{C_{0}} \phi^{(2)} \phi_{j n}^{R} d s \\
& = \\
& =\int_{C_{0}} \phi_{n}^{(2)} \phi_{j}^{R} d s+\int_{F}\left(f_{f}^{(2)} \phi_{j y}^{R}-\phi_{j}^{(2)} \phi_{j}^{R}\right) d x \\
& =-\int_{R^{ \pm}}\left(\phi^{(2)} \phi_{j x}^{R}-f_{f} \phi_{x}^{(2)} \phi_{j}^{R}\right) d y \\
& = \tag{2.43}
\end{align*}
$$

これによって， $2 f_{j}^{(2)}(f)$ は $q(x) と \phi_{j}^{R}$ の樍を自由表面上で積分して求められることがわかる。

放射問題では，（2．36）式によって

$$
q(x)=0, \quad \text { as } x \rightarrow \pm \infty
$$

であるから，波吸収特異点の位置 $\chi_{a b}$ を無限遠としても （2．43）式は有限確定值となる。

散乱問題では，波吸収特異点の外側では $q(x)=0$ とお けるから

$$
\int_{F} q(x) \phi_{j}^{R} d x=\int_{b}^{x_{a b}} q(x) \phi_{j}^{R} d x+\int_{-\infty}^{-b} q(x) \phi_{j}^{R} d x, \text { (2.44) }
$$

は有限確定值となる。 ここで，Xab $\rightarrow+\infty$ なる操作を すれば良いが

$$
\left.\begin{array}{rl}
q(x) & =-i 8 K^{2}\left(H_{4}^{+}(k)+K \sum_{j=1}^{3} \bar{X}_{j}^{(1)} H_{j}^{+}(k)\right) \\
& =(\text { 複素一定值 })_{\phi_{j}^{R}(x, y)}=i H_{j}^{R+}(4 K) e^{-4 K y-i 4 K x}
\end{array}\right\} \text { as } x \rightarrow \infty,(2.45)
$$

ただし，

$$
H_{j}^{R \pm}(4 K)=\int_{c}\left(\frac{\partial}{\partial n} \phi_{j}^{R}-\phi_{j}^{R} \frac{\partial}{\partial n}\right) e^{-4 K y \pm i 4 K x} d s
$$

であるから， $2 f_{j}^{(2)}(f)$ は $x_{a b}$ к依存して振動し，収束しな い。これは，2次元問題では発散波が減衰しないで，

無限遠方まで残ってしまうために起こると考えられ，2次元問題の特殊性と言えるものである。

従って，本研究では

$$
\begin{equation*}
{ }_{2} f_{j}^{(2)}(f)=\left(\text { mean of }\left\{\lim _{x_{a b} \rightarrow \infty} \int_{b}^{x_{a b}} q(x) \phi_{j}^{R} d x\right\}+\int_{-\infty}^{b} q(x) \phi_{j}^{R} d x\right. \tag{2.46}
\end{equation*}
$$

によって算定した。ここで，平均値をとる物理的な意味は，発散波に対して，仮想的な減衰を考えて積分した場合の有限確定値に一致することから明らかである。 （2．46）式の実際の計算では，波なしポテンシャルを利用して

$$
\left.\begin{array}{l}
q(x)=q_{L}(x)+q(+\infty) \tag{2.47}\\
\phi_{j}^{R}(x, y)=\phi_{N j}^{R}+\phi_{j}^{R}(+\infty)
\end{array}\right\}
$$

とすれば，$q_{L}(x), \phi_{N j}^{R}$ は物体近傍を除くと急速に減衰す るので

$$
\begin{equation*}
\int_{f}^{\infty} q(x) \phi_{j}^{R} d x=\int_{b}^{\infty}\left\{q_{L}(x) \phi_{j}^{R}+q(\infty) \phi_{N j}^{R}\right\} d x \tag{2.48}
\end{equation*}
$$

として求めることができる。

第2．3節 数值計算法とその精度
（2．11）式で積分方程式の具体的な数値計算は，Fig。
2.1 のようk，自由表面上をNF個，物体表面上をNC個の微小区間に分割し，それらの区間ではポテンシャル の値が一定と仮定すれば

$$
\left.\begin{array}{l}
P_{i j}=\int_{s_{j}} \frac{\partial}{\partial n} \log r_{i j} d s_{j} \tag{2.49}\\
Q_{i j}=\int_{s_{j}} \log r_{i j} d s_{j}
\end{array}\right\}
$$

ただし

$$
r_{i j}^{2}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}
$$

S_{j} ：j番の微小区間
とおけば，これらは付録4のように解析的に積分できる。 また。

$$
\begin{equation*}
K_{i j}=\pi \delta_{i j}+P_{i j}+\left.K Q_{i j}\right|_{F} \tag{2.50}
\end{equation*}
$$

ただし

$$
\delta_{i j}=\left\{\begin{array}{l}
1 \\
0
\end{array}\right\}, \text { for }\left\{\begin{array}{l}
i=j \\
i \neq j
\end{array}\right\}
$$

$\left.Q_{i j}\right|_{F}$ はjkついての積分を自由表面上のもの だけとる意
とおけば, (2.11)式は

$$
\begin{align*}
\sum_{j}\left\{K_{i j} \varphi_{j}\right. & -\left(K_{i j} \varphi_{s j}-\left.Q_{i j}\right|_{c} \cdot \frac{\partial}{\partial n} \varphi_{s j}\right) A \\
& \left.-\left(K_{i j} \varphi_{\nabla j}-\left.Q_{i j}\right|_{c} \frac{\partial}{\partial n} \varphi_{\nabla j}\right) B\right\} \\
& =\left.\sum_{j} Q_{i j}\right|_{c} \frac{\partial}{\partial n} \varphi_{j}, \quad(i=1, N C+N F) \tag{2.51}
\end{align*}
$$

なる離散化表現ができる。ここで，$\varphi_{s j}, \frac{\partial}{\partial n} \varphi_{S_{j}}, \varphi_{\operatorname{Dj}}$ ， $\frac{\partial}{\partial n} \varphi_{0 j}$ は点点火置かれた吹き出しと二重吹き出しのポテ ンシャルであり，付録4のように計算できる。

これと，コチン関数法（ $M-1$ ）では，コチン関数の離散化表現（付録4）кよって

$$
\begin{align*}
H^{ \pm} & =\int_{C_{0}}\left(\frac{\partial}{\partial n} \varphi-\varphi \frac{\partial}{\partial n}\right) e^{-k y \pm i k x} d s \\
& =C^{ \pm}-\sum_{j=1}^{N C} L_{j} \varphi_{j} \tag{2.52}
\end{align*}
$$

ただし，

$$
\begin{aligned}
& C^{ \pm}=\int_{C_{0}} \frac{\partial}{\partial n} \varphi \cdot e^{-k y \pm i k x} d s=\sum_{j=1}^{N C} \frac{\partial}{\partial n} \varphi_{j} e^{-k y_{j} \pm i k x_{j}} \cdot \Delta S_{j} \\
& L_{j}=\int_{S_{j}} \frac{\partial}{\partial n} e^{-k y \pm i k x} d s_{j}
\end{aligned}
$$

（2．6）式を求め，$\left\{\varphi_{j}\right\}$ と A, B を未知数とする（ $N C+N F+2$ ） の複素数連立一次方程式を解けば良い。

一方，選点法（M－2）では，（2．12）式を（2．51）式と同様 な離散化表現をして解けば良い。

浮体断面が左右対称の場合は，対称性を利用して対称問題では（2．19），（2．20）式，反対称問題では（2．22）， （2．23）式Kよって解けば，未知数を半分に減らすことが できて数值計算上有利である。

次に，半没円の場合を中心として実際の計算例を示そ う。 まず，間題となるのは物体表面上と自由表面上の分割数および放射境界の位置であろう。Table $2.1,2.2$ Kは，半没円柱が左右摇と上下揺するときの付加質量係数と発散波振幅比を，物体表面上の分割数 $N C=10,15,20$ ，自由表面上の分割数NF＝20，30，40 と変化させたときの計算結果をUrsell－田才法［25］とグリーン関数法によるも のと比較して示した。また，Ursell•田才法の結果と の相対誤差を百分率で示し，各々の場合の計算時間（CPU） についても比較して示した。なお，この場合のCPUは上下摇•左右摇•横摇の放射問題と散乱凧題についてて， 1次の境界値问題のみを解いた場合に要した時間である。 また，いずれの場合も，放射境界の位置は円の半径の9倍とし，自由表面上の区間は等分割とした。 この結果からは分割数が多いほど精度が良く，物体に働

く流体力で比較しているため，物体表面上の分割数を多 くした方が精度上有利となっていることがわかる。

しかし，本研究の主眼である2次の問題では，自由表面条件が重要となってくるので，自由表面上の分割数も減 らすわけんはいかないと考え，計算時間なども考慮して以後の計算では物体表面上20分割，自由表面上40分割を標準とした。

次k，放射境界の位置kつuでは，Bai［26］，Yeung ［21］，杉浦•一色［27］が有限水深の場合について考察し ているが，それらによれば物体幅の数倍で精度的に问題 ないとしている。Table 2．3，2．4には，本計算法でNCx $N F=20 \times 40$ と L ，放射境界位置を $\bar{X}_{R}\left(=X_{R} / b\right) を 3,5,7$ ， 9，11とした場合の計算結果をUrsell•田才法とグリーン関数法によるものと比較して示した。このとき，自由表面上のメッシュ（微小区間）は等分割されている。 この結果をみると，放射境界は遠くにした方が精度的に有利と思われるが，それによる違いはわずかであり，浮体半幅の4～5倍程度でも結果に大差はないようである。 しかし，この結果で気がつくのは，左石摇では $\bar{X}_{R}=5,11$ の時，上下摇では $\bar{X}_{R}=39$ とき 精度が悪くなっている

ことであろう。これを，K X_{R} / π の値で整理すると，こ の值が整数倍に近いときに上下摇，半整数倍に近いとき K左右摇の精度が悪くなっていることがわかる。

この原因は，グリーン関数法で生じたirregular frequency と同様の現象と考えられる。ただ，この場合にはグリ ーン関数法とは異なって物

体外部領域におんて 0 でな い固有関数が存在している天めと考えられる。

右図のような制限水路に
 おいて，原点におかれた浮体を無視すると，この場合の固有関数は［28］

$$
\varphi_{e}(x, y)=e^{-K_{m} y}\left\{\begin{array}{c}
\cos K_{m} x_{R} \\
\sin K_{m} x_{R}
\end{array}\right\}, \text { for }\left\{\begin{array}{c}
\frac{\partial}{\partial n} \varphi_{e} \\
\varphi_{e}
\end{array}\right\}=0, \text { on } R^{ \pm}
$$

固有値は

$$
K_{m} x_{R}=\left\{\begin{array}{c}
\left(m+\frac{1}{2}\right) \pi \\
m \pi
\end{array}\right\}, \text { for }\left\{\begin{array}{c}
\frac{\partial}{\partial n} \varphi_{e} \\
\varphi_{e}
\end{array}\right\}=0 \text { on } R^{ \pm}
$$

で与えられる。
従って，ここでの問題では，原点に浮体があるので若干の違いはあるが近似的には同様であり，固有関数の分

だけ不定となり，精度が悪くなると考えられる。
これを取り除く最も简便な方法は，K以応じて放射境界の位置を変化させることである。また，核関数の積分精度を上げるとともに，連立一次方程式を解くサブル －4ンも精度の良いものを使うことも望まれる。

本研究で試みた2つの方法を比晈すると，コチン関数法（M－1）の方がこの固有関数の影䭗を受けやすいとの結杲となった。

さて，このようにして放射境界の位置に注意して計算 すれば，充分な精度で物体表面上と自由表面上の速度ポ テンシャルを求めることができる。Fig．2．3（a），（b）は半没円柱の左右摇，Fig． $2.4(a)$ ，（b）は同じく上下摇のポ テンシャル分布の結果の1例で，グリーン関数法による ものと比較して示した。自由表面上のポテンシャルで は，発散波の成分を除いをものも波なしポテンシャルと して書き入れてあるが，これは物体から離れるにしたが つて単調に減衰していくことがわかる。

これらのポテンシャルを物体表面上で積分すれば，流体力を求めることができ，Fig．2．5，2．6には左右揺と上下摇の場合の付加質量係数と発散波振幅比をUrsell－田才

法によるものと比較して示した。また，Fig．2．7，2．8 は半没円柱に働く波強制力を同位相成分（fc）と異相成分 （ f_{5} ）K分けてグリーン関数法によるものと比較して示し た。これらの結果から，本計算法は線型問題について は他の解法と比較して精度的にも満足のいくものである ことがわかる。

次に，1次のポテンシャルを便って2次の自由表面条件（水面上の圧力分布）を求めた結果をFig．2．9，2．10 k示した。 Fig． 2.9 は，半没円柱の左右摇と上下摇の結果であるが，これをみると放射問題では物体幅の数倍程度離れると水面上の圧力分布はかなり減衰しており，そ の外側では近似的に Oとみなしても良さそうに思われる。一方，Fig．2． 10 は固定された半没円柱の散乱問題の結果であり，この場合は入射波側で複素一定值をとり，透過波側ではOK潮近するが，やはり物体幅の数倍程度離 れると無限遠の澵近値で置き換えても良さそうである。

Fig．2．11は，左右摇する半没円柱の物体表面上におけ る2次のポテンシャル分布である。ここでは，物体表面条件に由来するポテンシャル，${ }_{2} \phi_{1}^{(2)}(B, 4 K b) と$ ，自由表面条件k由来するポテンシャル， $2 \phi_{1}^{(2)}(F, 4 K b) k$ 分けて表

示してあるので，実際のポテンシャルはこれらのたし合 わせとなる。また，対称物体の単一モードの放射同題で は，同四にみるように2次のポテンシャルは対称となり，従って，流体力は垂直力としてのみ働くことになる。 この四から，物体表面条件に由来するポテンシャルは波数の違いKよる変化は大きくないが，自由表面条件に由来するポテンシャルは水面付近を除いて，波数の増加に伴って急速に（おそらく $e^{-4 K y} \kappa$ 圠例して）減衰している ことがわかる。

Fig．2．12は同様k，上下摇の場合の2次ポテンシャル の分布の結果である。この場合も左右摇と同様な考察 ができると思われる。なお，流体力はこれらのポテン シャルを物体表面上で積分した値に波数Kを乗じて求め られるが，これらの放射問題では物体表面条件に由来す る流体力が支配的になることがFig．2．11，2．12からもわ かる。

次k，Fig． $2.13(a)$ ，（b）は半没円柱が左右揺する時の 2次の圧力分布で，Fig。2．13（a）は2次の準静的な圧力， Fig．2．13（b）は2次の変動圧力の絶対値を示している。

波数による変化は小さく，従ってこれによる流体力击単調であろうと予想されるが，一方，Fig．2．13（b）の変動圧力については2次のポテンシャルによる成分が波数K に比例するので，波数が大きくなると絶対値は大きくな る。

Fig． 2.14 （ a ），（b）は同様kして上下摇する半没円柱の 2次の圧力分布の様子である。 増本［8］の計算結果と比較すると，準静的な圧力については良く一致しており （無次元化が異なるので著者の値に2を乗ずる），変動圧力については，円柱底部と水面付近で圧力が高くなる という定性的な傾向は良く一致しているが，その絶対値 については若干異なっているように思われる。これは，準静的な圧力は1次ポテンシャルだけから決まるのに対 して，変動圧力は2次ポテンシャル成分が支配的であり その解法の違いによる差がでたためと考えられる。

Fig．2．15は，規則波中で固定された半没円柱まわりの 2次の準静的な圧力分布について示したものである。拘束物体では，2次の準静的な圧力はベルヌーイの速度 2乗項からのみ成っているので，すべての波数に対して負となっており，かつ波数がある程度大きくなると入射

波側の水面付近にのみ値をもつ様子がわかる。従って， これを積分して求められる流体力は，水平方向には入射波側，重直方向には下方火，回転モーメントは反時計ま わり（正方向）火働くことがわかる。

Fig． 2.16 （ a ），（b）は左右摇する半没円柱に働く 2 次の変動力について，（1．46）式で与えられた各成分ごとに分 けて比較したものである。これらをみると，2次の変動力は，2次ポテンシャルによるものが支配的であり，特に物体表面条件火由来する成分が大きいことがわかる。

Fig．2．17（a），（b）は，同様な比較を上下摇について行 ったものである。この場合も，左右摇と概略同様な結果となっているが，虚数部（異相成分）については，自由表面条件に由来する成分が大きくなっている。

Fig． 2.18 は，規則波中の固定半没円柱に働く 2 次の水平方向の定常力（漂流力とするために反対符号で表示し た）κ つついて名成分力を比較したものである。この場合には，圧力による流体力は負の漂流力として働くが，浸水面積変化による力が逆向きに働き，それらの合力は丸尾［2］の式から計算される値に等しくなっている。

Fig．2．19（a）（b）は，同じ問題で2次の変動力の水平方

向成分について同様の比較をしたものである。自由表面条件に由采する流体力は他の成分力とは逆符号となっ ており，虚数部はKb 10.25 ， 1.55 㣙近で符号が反転して おり複雑な変化を示している。一方いこれらの合力の傾向は浸水面積変化火よる成分力とよく似ていると思わ れる。 Fig．2．20（a），（b）は，同じ問題で2次の変動力 の垂直成分について比較したものである。この場合に は，自由表面条件に由来するポテンシャルカとベルヌー イの式の速度 2 乗項から生ずる 2 成分しかなく（舷側が水面と直交しているので浸水面積変化による垂直力への寄与はない），合力は2次ポテンシャルによるものが支配的である。

次に，Table 3.1 またはFig． 3.3 のS－5のルイスフォー 4柱体が，規則波中で動摇しているときの2次の波強制力について各成分ごとの比較をしてみよう。なお，こ の時の状態はC－1で，横揺の同調点はKb＝0．056である。

Fig．2．21は漂流力Kついての比較であるが，これをみ ると浸水面積変化による力，㴻（4）とベルヌーイの式の速度2乗項による力，特（2）（3）が支配的であり，かつそれら は互いに逆符号となっているが，それらの合力は丸尾の

式で計算される値に等しくなっている。
Fig．2．22は，同様に2次の定常力の垂直成分について比較したものである。この場合には，1次の動揺によ る変位影響成分っ。f $\mathrm{F}_{2}^{(2)}(2)$ とベルヌーイの式の速度 2 乗項に よる力，持（3）が支配的であり，それらはともに1次の上下摇の同調点付近でピークをもつが，互いに逆符号と なっているために打消し合い，合力としては波数が小さ い時は垂直上向き，波数が大きくなると垂直下向きとな ることがわかる。

Fig．2．23（a），（b）は同じ問題で2次の変動力の水平成分について比較したものである。合力は横摇の同調点 （Kb＝0．056）付近では，物体表面条件に由来するポテンシ ヤル力が支配的であるが，波数がある程度大きくなると （Kb＞0．5），浸水面積変化による流体力が支配的となる ようにみえる。

Fig．2． 24 （a），（b）は，同様に2次の変動力の垂直成分 について比較したものである。この場合には，合力は上下摇の同調点（ $K 6=0.75$ ）付近で大きなピー7を持ち，物体表面条件に由来するポテンシャルカが支配的である。 また，水平方向成分のもの（Fig． $2.23(a),(b))$ と比較する

と，絶対値が4～5倍位大きくなっていることがわかる。

これらの数値計算結果から，2次の流体力の原因とな る種々の項についての定量的な性質が明らかとなった。 まず，静水中での放射問題や波浪中の動摇浮体などの問題では，2次の物体表面条件に由来するポテンシャルカ が他の成分に比較して大きい。一方，固定された浮体 では動摇しないのでその成分は0であり，2次の自由表面条件に由来するポテンシャル力，浸水面積変化による力などが大きくなってくる。これらのことから，2次 の問題では，考える問題に応じて2次の流体力の原因と なる各種の成分の量的な割合が変化するので一般的には， その中の一部の項を無視して近似するという解法は難し いと思われる。また，1次の問題では良い近似を与え るといわれている相対運動の考え方（Relative motion concept）も 2 次の問題では適用が難しいと思われる。最後に，以上のようにして求められた1次と2次の流体力が実際には，どのような波形となっているかについ て調べた結果がFig．2．25からFig． 2.28 である。

Fig．2．25は，半没円柱を強制左右摇させた場合で，2

次の流体力は垂直力のみк生じる。 強制変位を $X_{1}(t)$ ， その時の重直力を $F_{12}(t) と し, ~ そ れ ら を 1$ 次の量で無次元化すれば

$$
\left.\begin{array}{rl}
\bar{X}_{1}(t) & =\operatorname{Re}\left\{e^{i \omega t}\right\} \\
\bar{f}_{12}(t) & =\frac{\varepsilon F_{12}^{(2)}(t)}{2 \rho g b X_{1}^{(1)}} \tag{2.55}\\
& =\frac{1}{4} \varepsilon f_{12}^{(2)}+\frac{1}{2} \varepsilon \operatorname{Re}\left\{2 f_{12}^{(2)} e^{i 2 \omega t}\right\}
\end{array}\right\}
$$

となる。 $k b=1.2 \kappa$ おける流体力係数（Table 2．5）を使 つて，とのいくつかの値について波形を比較すると同図 のような結果となる。 $\varepsilon=0$ の場合が，線型理論による ものК対応し， $\bar{f}_{12}=0$ となるが，実際の実験例（Fig． 3．2．1）などと比較すると，重直力は 0 ではなく，2次 までの計算波形と位相も含めて良く一致していると思わ れる。

Fig． 2.26 は，同様に上下摇の場合の結果であるが，こ の場合には垂直力の中к慣性力と復元力 $も$ 計測されるの で，それらも含めると力の無次元値は

$$
\begin{align*}
\bar{f}_{22}(t) & =\frac{\bar{F}_{22}^{(1)}+\varepsilon F_{22}^{(2)}}{2 \rho g b X_{2}^{(i)}} \\
& =\operatorname{Re}\left\{\left(K b \frac{\sigma}{H_{0}}-1+f_{22}^{(1)}\right) e^{i \omega t}+\frac{1}{4} \varepsilon_{0} f_{22}^{(2)}+\frac{1}{2} \varepsilon_{2} f_{22}^{(2)} e^{2 i \omega t}\right\} \tag{2.56}
\end{align*}
$$

となる。この結果をFig．3．3．1の実験結果（ $\varepsilon=0.2$ ）と比較すると良く似た波形となっていることがわかる。

Fig． 2.27 は，半没円柱の波強制力について同様の比較をしたものである。この場合には，入射波形も変形 L，入射波振幅で無次元化すると

$$
\left.\begin{array}{rl}
\frac{\eta}{a_{w}} & =-\left(\cos \omega t+\frac{k b}{2} \cdot \varepsilon \cos 2 \omega t\right)+0\left(\varepsilon^{2}\right), \varepsilon=\frac{a_{w}}{b} \\
\bar{f}_{j}(t) & =\frac{\bar{F}_{j}(t)}{\rho g b a_{w}} \\
& =\operatorname{Re}\left\{f_{j}^{(1)} e^{i \omega t}+\frac{1}{2} \varepsilon_{0} f_{j}^{(2)}+\varepsilon_{2} f_{j}^{(2)} e^{i 2 \omega t}\right\}+O\left(\varepsilon^{2}\right)
\end{array}\right\}(2.57)
$$

となる。ここで，と＝0の値が線型理論によるものに対応している。 Fig． 2.27 の結果をみると $K b=1.2$ では水平力，重直力ともに波形のくずれはとが 0.2 よりも大 きくなると目だってくるようである。

Fig．2．28は，ルイスフォーム（S－5）の場合の計算波形 であり，対応する実験値はFig．3．5．1 である。これら の波形を比較してわかることは，まず，垂直力の波形が計算値と実験値で良く一致していることである。一方，水平カと回転モーメントに関しては，実験値のを が 0.12 と小さなこともあって倍周波数成分の波形が明

瞭ではないが，計算值についてと＝0．12の波形を予想して みると垂直力ほどには2次の流体力の影響を受けないこ とがわかる。

Table 2.5 Kは，これらの計算で使われた流体力の数值をまとめて示すと同時に，いくつかのとに対して2次 まで考慮した場合のピーク値と線型理論の値の比をとっ て比較した。 この結果によれば，半没円柱の散乱問題 における重直方向の波強制力は，2次の流体力の影響を大きく受け，$\varepsilon=0.4$ のときには最大值で線型理論の推定值よりも 38% 程度大きな変動力を受けることになり，大波高•大振幅問題では，2次の流体力が無視できない ことがわかる。

第3章 実 験
本章では，二次元柱体模型を用いて行った各種の実験 の方法とその解析方法について述べ，前章までに求めら れた理論計算結果と比較して検討•考察する。

第3．1節では，本研究で実施された上下摇と左右摇の静水中強制動摇試験（放射問題），拘束物体に働く波強制力計測試験（散乱問題）および規則波中の動揺試験で用いられた実験装置と方法について述べる。

第3．2節では，実験に用いられた5種類の二次元柱体 の主要目について述べ，第3．3節では，実験解析法と流体力の無次元化の定義などについて述べる。

第3．4節では，得られた実験結果を理論計算結果と比較•考察する。

第3．1節 実験装置および実験法
実験はすべて防衛大学校機械工学教室の小水槽（長さx幅 \times 深さ $=9 m \times 1.2 m \times 1.2 m$ ）で行われた。 この水槽 は，一端にフラップ型の造波装置を，他端にビーチ型の消波装置を有しており，実験時の水深は約1mである。
（A）放射問題
左右摇および上下摇の強制動摇試験では，Fig．3．1 к示 す水槽中央部に，厚さ 10 mm のアクリル板で長さ 4 m ，幅 0.31 m ，深さ 1.0 m の䒨水路を設け，その中央部で2次元模型を強制動揺させを。模型長は0．3mであり，挟水路壁とは両端とも5mmだけ離れているが，それによ る影響は小さく，2次元性は保たれていると考えられる。狭水路を設けた最大の理由は，検力計の容量による制限のためであるが，それとは別に，このような短い水槽 では消波ビーチあるいは水槽壁による発散波の反射が問題となるが，狭水路を設けることでその影響を小さくで きるという長所もある。

Fig． 3.2 Kは，本実驓で使用された強制動揺装置の概略圊を示す。 強制左在揺装置は，低周波発振器の信号 によつて制御される直流モータの回転をボールネジ機構 によって往復運動に変えるものである。一方，強制上下摇装置はスコッチヨーク機構によってて上下動するもの で。交流モータによって駆動される。

これらの装置によって，強制動揺されたて次元柱体に働く力は模型中央に据付けられた三分力計（日章電機（株）

LMC－3501－10）kよって計測された。また，強制動揺変位はポテンショメータкより，発散波の記録は模型中央から約1m離れた点火置かれた容量型波高計によって計測された。
（B）散乱估題と波浪中動摇試験
散乱問題と波浪中動揺試験では，Fig．3．1 k示すよう に，Z校のアクリル板をそれぞれ水槽壁から0．61mと 0.4 mの位置に設置し，幅 0.61 m の水路側に模型を， 0.4 mの方k波高計を設置した。この波高計によって入射波を位相も含めて正確に計測することができる。波強制力は，模型中央に据付けられた三分力計によっ て水平力，重直力および回転モーメントを計測した。

自由浮体の波浪中動摇は，一般的な可動副台单によっ て，ポテンショメータにより計側された。なおっこの とき，漂流力による模型の移動を打消すために弱いバネ を使って副台車の水平移重を避け，バネののびを計測す ることんよって漂流力を求めた。

第3．2節 供試嗼型主要目
放射問題のための模型はすべて長さ 0.3 m ，散乱問題 のものは 0.6 m であり，これらは同じ断面形状をもち長 さの異なる2種類の模型を製作して実験を行った。

Table 3.1 K ，今回実験された模型の主要目を示し， Fig。3．3k，それらの断面形状を示す。

S－1は，半没円であり最も基本的な形状として，S－2 は，ルイスフォームであり船体中央部の形状に近いもの として選定された。 S－3とS－4 は，同じ半幅•吃水比と断面係数であるが，S－3は水面と直交するルイスフ オーム，S－4は水面と 45° で交わる形状であり，これら は主として舷側傾斜の影響を調べる目的で用いられた。 また，S－3とS－4の断面は船尾形状を想定している。 S－5は，半幅•吃水比が 1.25 と若干幅広型のルイスフ ォームであり，これは横摇モーメントを大きくするため に選ばれた。S－1は，市販の塩ビパイプを加工して作 り，その他の模型は木製である。

第 3.3 節 実験解析法
計測記録はすべてデータレコーダ（TEAC製，R－200）に収録後，A／ヵ変換されパーソナルコンピュータ（YHP－ 9825A）Kよつて数値処理された。このとき，実験初期の過渡的な現象および後半での反射波の影響がある部分を捨て，現象が定常的な 3 周期を選び，以下のように フーリエ解析して平均値および3次までのフーリエ係数 を求めた。

一般 K ，周期 T を $も つ$ 任意関数 $f(t)$ は

$$
\begin{align*}
f(t) & =\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \omega t+b_{n} \sin n \omega t\right) \\
& =\frac{a_{0}}{2}+\sum_{n=1}^{\infty} c_{n} \cos \left(n \omega t+\delta_{n}\right) \tag{3.1}
\end{align*}
$$

ただし

$$
\begin{aligned}
& a_{n}=\frac{2}{T} \int_{0}^{T} f(t) \cos \frac{2 \pi n t}{T} \cdot d t,(n=0,1,2, \cdots) \\
& b_{n}=\frac{2}{T} \int_{0}^{T} f(t) \sin \frac{2 \pi n t}{T} \cdot d t,(n=1,2, \cdots) \\
& C_{n}^{2}=a_{n}^{2}+b_{n}^{2} \\
& \delta_{n}=-\tan ^{-1}\left(\frac{f_{n}}{a_{n}}\right)
\end{aligned}
$$

のように展開できるので，1章の理論により $\mathcal{C}_{1}, \delta_{1}$ から 1 次の流体力，a_{0}, c_{2}, δ_{2} から2次の流体力が求められ る。今回の実験解析プログラムでは，サンプリングタ

イムは1周期の1／40程度であるが，（3．1）式を離散化して

$$
\begin{align*}
& a_{n}=\frac{2}{N} \sum_{j=1}^{N} f(j \cdot \Delta T) \cos \left(\frac{2 \pi n}{N} j\right), \Delta T=\frac{T}{N} \tag{3.2}\\
& b_{n}=\frac{2}{N} \sum_{j=1}^{N} f(j \Delta T) \sin \left(\frac{2 \pi n}{N} j\right)
\end{align*}
$$

なる数値積分によってフーリエ係数を求めた。
放射問題では，強制動揺変位 $X_{i}(t)$ と $\dot{\text { 方向向の流体力 }}$ $\bar{F}_{i j}(t)$ が

$$
\begin{align*}
X_{i}(t)= & X_{i} \cos (\omega t) \\
F_{i j}(t)= & F_{i j}^{(1)} \cos \left(\omega t+\delta_{i j}^{(1)}\right)+{ }_{o} F_{i j}^{(2)} \tag{3.3}\\
& +{ }_{2} F_{i j}^{(2)} \cos \left(2 \omega t+\delta_{i j}^{(2)}\right)+\cdots
\end{align*}
$$

のように計測されるとすれば，1次の力は流体力のほか に物体の慣性力と復元力を含んでいるので，それらを除 くと付加質量係数 $m_{i j}$ と減衰力係数 $n_{i j}$ は

$$
\begin{align*}
& m_{i j}=\frac{1}{\omega^{2} M_{i j} X_{i}}\left\{\left(S_{i j}-\omega^{2} M_{i j}\right) X_{i}+F_{i j}^{(1)} \cos \delta_{i j}^{(1)}\right\} \\
& n_{i j}=\frac{-F_{i j}^{(1)}}{\omega M_{i j} X_{i}} \sin \delta_{i j}^{(1)} \tag{3.4}
\end{align*}
$$

ただし
Mijはi方向の動摇火よるj方向の慣性質量
Sijはi方向の動摇によるj方向の復元力係数

として求められる。
2次の流体力については田才•小寺山［15］にならって

$$
\left.\begin{array}{l}
0 f_{i j}^{(2)}=\frac{\rho F_{i j}^{(2)}}{\frac{1}{2} \rho g L X_{i}^{2}} \tag{3.5}\\
{ }_{2} f_{i j}^{(2)}=\frac{{ }_{2} F_{i j}^{(2)}}{\rho g L X_{i}^{2}}
\end{array}\right\}
$$

のように無次元化した。
散乱問題では，入射波高を $\eta(t)$ ，$火$ 方向の波強制力を

$$
\left.\begin{array}{rl}
\eta(t)= & -a_{w} \cos (\omega t)-\frac{k}{2} a_{w}^{2} \cos (2 \omega t)+\cdots \tag{3.6}\\
F_{j}(t)= & F_{j}^{(1)} \cos \left(\omega t+\delta_{j}^{(1)}\right)+{ }_{0} F_{j}^{(2)} \\
& +{ }_{2} F_{j}^{(2)} \cos \left(2 \omega t+\delta_{j}^{(2)}\right)+\cdots
\end{array}\right\}
$$

で与えられ，次式で無次元化した。

$$
\left.\begin{array}{rl}
f_{j}^{(1)} & =\frac{F_{j}^{(1)}}{\rho g L b a_{w}} \quad(j=1,2), \\
f_{3}^{(1)}=\frac{F_{3}^{(1)}}{\rho g L b^{2} a_{w}} \tag{3.7}\\
0 f_{j}^{(2)}=\frac{0 F_{j}^{(2)}}{\frac{1}{2} \rho g L a_{w}^{2}} \quad(j=1,2), \quad f_{j}^{(2)}=\frac{o F_{3}^{(2)}}{\frac{1}{2} \rho g b L a_{w}^{2}} \\
2 f_{j}^{(2)}=\frac{2 F_{j}^{(2)}}{\rho g L a_{w}^{2}} \quad(j=1,2), \quad 2 f_{j}^{(2)}=\frac{2 F_{3}^{(2)}}{\rho g b L a_{w}^{2}}
\end{array}\right\}
$$

波浪中動摇試験では，入射波高を $\eta(t)$ ，よ方向の動摇 を $X_{j}(t)$ とすれば，それらの計測值は

$$
\left.\begin{array}{rl}
\eta(t)= & -\left(a_{w} \cos \omega t+\frac{k}{2} a_{w}^{2} \cos 2 \omega t\right)+\cdots \tag{3.8}\\
x_{j}(t)= & x_{j}^{(1)} \cos \left(\omega t+\alpha_{j}^{(1)}\right)+{ }_{0} X_{j}^{(2)} \\
& +{ }_{2} x_{j}^{(2)} \cos \left(2 \omega t+\alpha_{j}^{(2)}\right)+\cdots
\end{array}\right\}
$$

でちえられ，次式で無次元化した。

また，動摇の定常変位分については復元力係数を乗じ て定常力になおしたのち，散乱问題と同じ無次元化をし て比較した。

第3．4節 実験結果および理論計算值との比較•考察
この節では，Fig．3．3のような断面形状をもつ5種類 の模型に対して実施された種々の実験結果について以下 の4項に分けて述べる。なお，順番は実施された年代順である。

3．4．1 散乱問題（ $S-1, S-2$ ）
3．4．2 放射問題（ $S-1, S-2$ ）
（A）強制左右摇
（B）強制上下摇
3．4．3 舷側傾斜影響（S－3，S－4）
（A）強制左右摇
（B）強制上下摇
（c）散乱問題
3．4．4 波浪中動摇応答（S－5）
（A）散乱活題
（B）波浪中動摇

3．4．1 散乱問題（ $S-1, S-2$ ）
（A）半没用柱（ $S-1$ ）
Fig．3．1．1は，半没用柱 k 働く 1 次の波強制力の水平成分と重直成分について計算値と実験値の比較をしたも のである。 これをみると1次の波強制力んついては，全波数域で雨者の一致が良好であり，従って，実験精度 についてもある程度の信頼性を有していると考えられる。 なお，このときの入射波高は全波数域で約 $2 \mathrm{~cm}(\varepsilon \doteqdot 0.1)$程度であり，Kb＝1．2，2．0では，入射波高を数種類変化 させて実験した。

Fig．3．1．2は，水平力に含まれる2次の変動力の計算値と実験値の比較である。これをみると，$K b=1.2$ 付近で同程度の値となっているが，その前後の結果では傾向が逆となっており一致が良くない。一方，Fig．3．1．3 は，垂直力についての同様な比皎であるが，この場合に は定性的•定量的にも良好な一致を示していると思われ る。水平力での計算値と実験値の不一致の原因につい ては，今回の計算で考慮しなかった影鄉，例えば造挶に よる流体力が混入したなどが考えられるが，これについ てはもう少し詳しく考える必要があると思われる。

Fig．3．1．4，3．1．5は，波数を一定（Kb＝1．2，2．0）とし て入射波高を変化させたときの1次と2次の流体力の比 を比較したものである。まず，水平力成分については $K b=1.2$ のとき，計算値と実験値の一致が良好であり， 2次の波強制力は入射波高の 2 乗に比例していることが
 ともみられるように，実験値は計算値よりす過大な値と， なっており一致が悪い。一方，重直力ではFig．3．1．5 にみられるよう $K, ~ K b=1.2,2.0$ の両方で理論と実験の一致が良好であり，これはFig．3．1．3で2次の応答が両方の波数で良く一致していたことからも首肯できる。
（B）矩形断面柱体（S－2）
本実験では，矩形断面模型が使用されたが，計算では （1．20），（1．21）式にみるように2次の物体表面条件で1次の速度ポテンシャルの2回までの微係数を使うために ビルジ部での角を緩和する必要が生じる。そのため，Ho ＝1．0，$\sigma=0.96$ のルイスフォームで近似することにした。 Fig．3．1．6は，1次の波強制力の水平方向成分と垂直方向成分についての計算値と実験値の比較である。 実験

值は計算值よりもやや大き目となっているが，全般的に は両者の一致は良好であると思われる。

Fig．3．1．7は，水平力に含まれる2次の変動力の結果 である。計算值は半没用柱の場合に比べると，絶対値 は約5割程度大きくなっているが，波数に対する応答は同じ傾向となっている。また，実験值は半没用柱の場合よりも全般的に大きくなっており，波数に対する変化 の傾向は半没円柱の結果を一定値だけ大きくしたような結果となっている。 理論と㝜験の比喠では，波数が大 きな領域での不一致が目だつている。

Fig．3．1．8 は，垂直力についての同様な比較であり，計算值，実験值ともに半没円柱の場合とほぼ同様な結果 となっており，両者の一致が良好であると思われる。

以上の半没円柱および矩形柱体の散乱问題に対する理論計算と実験結果をまとめると以下のようになる。
（1） 1 次の波強制力については，線型理論による推定値 が実験と良く一致するという従来の研究成果を確認 した
（2）2 次の波強制力のうち倍周波数の変動力について，

理論計算值と実験值の比較を行ったが，重直力につ いては雨者の一致が良好であった。これに反して，水平方向成分では，一致が良好とは言い奞く，特に波数の大きなところでは実験値がかなり大きめとな った。この宗因としては（i）入射波高が小さく，波強制力の絶対値が小さなための計測誤作による，（ii）波数が大きな時，垂直力では1次の強制力が小さい のK対し，水平力では実験範囲の波数でイ次の強制力が大きく，従って，解析精度などの関係でその影響を受けた，などが考えられるが詳細は不明である。
（3）2 次の波強制力は入射波高の 2 乗に比例しているこ とを実験的に確認した。

3．4．2 放射問題（ $S-1, S-2$ ）
（A）強制左右摇
実験で得られた計測記録の1例をFig．3．2．1 к示す。 これは半没円柱（ $S-1$ ）のもので，上から左右摇の強制変位，水平力，重直力および発散波の計測波形である。垂直力は線型理論によれば○であるが，実験では同図に

みられるように，左右揺の周佊数の倍周波数の波形とし て計測できる。また，その波形の平均値は正の值とな っており，定常力は沈下力として働いていることもわか る。これは，第2章の理論の妥当性を直接的に証明す るものである。なお，水平力に含まれる高周波数成分 （動摇周波数の5～6倍）は駆動装置などの機械的ノイズ であると思われる。

これらの計測诐形を7－リエ解析して1次の流体力係数，付加質量係数と発散波振幅比を求めると Fig．3．2．2， 3.2 .3 のような結果を得る。また，発散波の記録から直接求められた発散波振幅比はFig． 3.2 .4 のような結果 となる。Fig．3．2．2の実験結果では，Kb＞19範囲の高波数域において㣙加質量係数が理論值よりもかなり低目 となっているが，これは力の計則における位相差の検出精度が若干瞉かったためと思われる。これに対して，減衰力についてははFig．3．2．3 кみるように理論計算と実験值の一致は良好である。これは一見，予任している ように思えるが，付加質量係数の方が位相差に対して敏感であるためと思われる。 実際，模型の慣性力をも含 めた計算値と実測值を振幅および位相の形で比較すると

振幅については雨者の一致が良好であったが，位相につ いては高周波数側でいくらか差がみられた。この点，何らかの修正が必要と思われるが，今回は無修正のまま比較することとした。

次に，2次の流体力のうち定常力の結果をFig．3．2．5 に，変動力の振幅と位相の結果をFig．3．2．6，3．2．7 K示 す。これらの力は理論上，左右対称物体では垂直力の みに働くことになっている。Fig．3．2．5では，定常力は全波数範囲で沈下力として働くという計算結果となって いるが，㝠験值も概ねそのような結果を与えている。 Fig．3． 2.6 の変動力の振幅応答では，計算值はほぼ波数 に比例して大きくなる結果となっており，実験値もその ような傾向を示している。ただ，波数が1．5より大き な䇼囲では実験値がかなり小さくなっており，一致が良 くない。この萗因は今のところ不明であるが，発散波 の波くずれなどの影響で全体の流場の様子が変化するこ とによるかも知れない。Fig． 3.2 .7 の位相差の結果に ついては，計算値は波数に対して単調な結果となってお り，実験値も概略そのような傾向となっている。波数 の大きな所では，1次の流体力に生じていた位相のずれ

が，2次の流体力にも当然影響しているはずで，そのあ たりでは実験値に修正が必要であると思われる。

次に，ルイスフォーム模型（S－2）K対する同様の比較 を Fig．3．2．8 から Fig．3．2．12 к示す。 1 次の流体力で は，左右揺の付加質量係数が波数の大きなところで負と なっており，位相に対する実験精度が良くなかったこと を示していると思われる。2次の流体力では，Fig。

3．2．11の定常力は沈下力として働くことがわかり，理論 と実験の一致が良好である。 Fig．3．2．12の2次の変動力の抎幅応答は，傾向的には半没用柱の結果とほぼ同じ であり，波数の大きな領域での一致が悪い。

ざて，放射内題で物体が左右対称ならば，理論上2次 の流体力は垂直力にのみ生ずることになっているが，念 のためく水平力についても倍周波数成分を求めた結果を Fig．3．2．13к示す。この結果をみると，この力は動摇振幅が小さなときには，ある値をもつが，動摇振幅の増大とともに值が小さくなり，従って，この力は2次の流体力ではないと判断される。 動揺振幅が小さなときの值は，解析誤差が拡大されるためと考えられる。
（B）強制上下摇
この実験は，田才•小寺山［15，16］によって種々の断面柱体に対する結果が報告されている。また，山下 ［11］も棈円柱，楔型柱体の結果を報告している。

上下摇の問題は，Lee［4］，Parisis［5］が2次の流体力 を研究した時に扱ったものであり，最も基本的な問題と して本研究でも実験することとした。

Fig．3．3．1 は，半没用䄇の場合の実験記録の1例であ る。この問題では，物体が左石対称であるので流体力 は垂直力のみを計測した。力の記録に現れている高周波数成分の波形は，実験装置の機械的なノイズである。 これに対応する計算波形，Fig．2．26（ $\varepsilon=0.2$ ）と比較する と変形の傾向が良く似ていることがわかる。また，発散波の波形は変形が著しく，高調波成分が多いことがわ かる。

Fig．3．3．2 は，半没円柱の上下摇付加質量係数，Fig． 3．3．3 は减裏力から求められた発散波振幅比，Fig．3．3．4 は発散波の記録から直接求められた発散波振幅比である。減衰力から求められた発散波振幅比は，波数（Kb）が 1.5 より大きい範囲で理論值よりも大きな値となっいるが，

この原因は，左右摇の場合と同様に高周波数域での位相 の計測精度が良くないためと思われる。 一方，付加質量係数については，理論値よりもやや小さ目ではあるが定性的には良好な一致をとている。また，Fig．3．3．4 の発散波の記録から求められた発散波振幅比は，減衰力 から求められたものとは違って，高波数域では理猃値よ りもかなり小さ目の結果となっている。これは，発散波が限界波高を越えたための波くずれによるものと考え られる。

次に，この場合の2次の流体力の結果についてFig．3． 3.5 からFig．3．3．7 к示Lた。Fig．3．3．5は，垂直方向 の定常力の結果であり，理論では波数が小さなときは垂直上向き，それ以外はほぼ波数に比例して垂直下向きに働くことを示している。また，同㘠中，波線はPapani－ kolaou－Nowacki［9］の計算結果であり，著者の計算とほ ぼ同様な結果となっている。 実験值は概ね計算值と一致していることがわかる。Fig．3．3．6とFig．3．3．7は2次 の変動力の振幅と位相の応答である。振幅応给では，著者の計算值はPapanikolaon－Nowacki［9］の値よりも少し大き目となっているが，傾向的には同様な結果であり，

ほぼ波数に比例して大きくなるとみなしても良いと思わ れる。一方，実験值は波数が 1.5 よりも小さなときは，計算值との一致が良好であるが，それより古波数が大き いときは急激に小さな值となっている。この原因も， 1 次の発散波の波くずれなどが影響したためと考えられ る。Fig．3．3．7は，2次の変動力の位相差の応答であり，著者の計算值はPapanikolaou－Nowacki のものとは約900程度位相が違っているが，実験値は著者の計算値により近いように思われる。

次に，ルイスフォーム模型（S－2）に対する同様の比較 をFig．3．3．8からFig．3．3．12 火示す。 減衰力から求めら れた発散波振幅比は，半没円柱の場合と同様に波数が 1.5 より大きな箸井で過大な値となっている。また， 2次の流体力でも半没円柱と同じ傾向であり，定常力は全般的に理論と実験の一致が良いが，変動力では波数が 1.5 を超えると実験値が急激に小さくなっている。

以上の左右摇および上下摇の放射問題の理論計算およ び実験の結果をおとめると以下のようになる。
（1）左右対称物体の左右摇•上下摇などの単一モードの

動摇では，2次の流体力は垂直方向にしか生じない事を理論と実験で確かめた。
（2）放射問題における2次の流体力は一般に，理論と実験の一致が良く，これは2次の自由表面条件の取扱 いが，散乱問題の場合とは異なって特火難点がない ためと思われる。
（3）2次の流体力のうち定常力は，今回の実験範囲全域 で理論と実験の一致が良かったが，変動力は波数の大きい所で実験值が急に小さくなった。これは，発龍波の波くずれと犊係があるように思われる。

3．4．3 舷側傾斜影響
この項では，舷側が水面と直交しない物体の流力特性 を調べる目的で，半幅•吃水比（ H_{0} ）と面積係数（ σ ）が同一で水面と直交するもの（S－3，ルイスフォーム）と 45° で交わる2次元柱体（ $(-4) k$ ）放射問題と散乱問題の計算と実験を行った。

この点に関して，田オ［30］は種々の2次元柱体を上下摇させをときの発散波を計測し，三角形断面では発散波振幅が計算値よりも低目となり，それをwedge effect と呼んでいる。また，Tasai－Koterayama［16］は水面と 30° で交わる三角形断面柱体の上下摇実験を行っている が，その実験結果をみると1次の流体力係数火上下摇振幅の影響が顕著であり，舷側が水面と直交しない物体で は特殊な事情があるようк思われる。ところが，本論文の2章の理論的考察によれば，航側傾斜の影響は2次 の項で主として垂直力のみに現れるという結論となって おり，2の点で田オ等の実験結果との関連に興味が持た れる。
（A）強制左右摇
Fig．3．4．1 は左右摇の付加質量係数についての比較で あり，計算値ではS－3，S－4ともほぼ同じ特性を持って いるがS－4の方が若干大きな値となっている。一方，実験値は計算値よりも小さな値となっているが，断面形状の違いによる差はほとんど認められない。

次に，Fig．3．4．2 は計測された減衰力から求められた発散波振幅比，Fig．3．4．3 は発散波を直接計則して求め られた発散波振幅比であるが，これらの結果をみると計算と実験の一致は全般に良好であり，S－3，S－4 もほと んど同じ特性を有していると思われる。また，左石摇振幅による差もほとんど生じておらず，これらによって左右摇では，1次の流体力特性は舷側傾斜が 45° 位まで ならば線型理論によって推定可能であると思われる。次に，この場合の2次の流体力についての結果を示そ う。Fig．3．4．4は，垂直力に生じる定常力の比較であ り，この場合には舷側傾斜の影響が現れており，理論と実験の一致も概略良好と思われる。 直交模型では，常 に沈下力となっているが，舷側傾斜が $45^{\circ}(\mathrm{s}-4)$ の模型で は波数の大きな領域で逆に上昇力となることがわかる。

Fig．3．4．5は，重直力к生じる2次の変動力の比較で あり，計算値ではKb $\because 0.8$ 以下の低波数域ではS－3，そ れより大きな波数域ではS－4が大きくなる結果となって いる。一方，実験値は全般的にS－4がS－3よりも大き くなっているが，その程度はわずかであり，計算値との一致も概略良好と思われる。 定常力では顕著であった舷側傾斜影響が，変動力では小さくなる理由は，変動力 では2次ポテンシャルによって生ずる流体力の割合が大 きいためと考えることができる。また，この実験では変動力の振幅だけで比較しており，位相については実験精度を考えて比較してないが，位相関係についても調べ るベきであったと思われる。

これらの結果から，左右摇における2次の流体力は理諞算と実験の一致が一般に良く，舷側傾斜の影響は重直方向の定常力に顕著であることが確かめられた。
（B）強制上下摇
Fig．3．4．6は，上下摇の付加質量係数についての比較 であり，理論計算值はS－3，S－4ともほとんど同じ特性 を持っていることがわかる。一方，実験値はS－3では

全般的火計算值よりもやや小さ目となっており，S－4で は動播振幅が小さなときはS－3と同程度，動揺振幅が大 きなときは計算値よりも大きな値となっている。 S－ 4 の审験で生じた動摇振幅影響はTasai－Koterayama［16］の実験結果と同じ傾向であるが，舷側傾斜角が違うこともあ って，本研究の場合にはそれほど顕著ではない。

Fig．3．4．7，3．4．8は左右摇の場合と同様に，減衰力 から求められた発散波据幅比と波高計によつつて直接計測 された結果である。 減衰力の計算値は，波数の大きな所で断面形状の違いによる差が生じており，S－4の方が幾分大きな値となつている。これは，水面付近での傾斜角の効果が反映されたものと考えられ，実験値につい ても全般的にS－4の結果の方が大きくなっている。 ところが，Fig．3．4．8 の直接計䦌された発散波につい ては，特に波数の大きな所で計算値よりもかなり小さな值を与えており，これは発散波が限界波高を超えたこと による波くずれのためと思われる。ただし，この場合 はS－3，S－4の違いによる差はわずかである。

これらの結果から，上下揺における舷側傾斜の影響は 1 次の流体力では付加質量に生じ，減衰力はほぼ線型理

論による推定が可能である。従って，エネルギーの面 から考えると物体から流体に供給される仕事は概略線型理論的であるが，大振幅動摇で波数が大きなときは発散波によって消失する仕事の割合は減じ，波くずれなどの浢エネルギーによる散逸の割合が増大するものと考えら $れ る 。 ~$

次に，2 次の流体力の結果をFig． $3.4 .9,3.4 .10 \mathrm{k}$ 示す。 Fig．3．4．9は重直方向の定常力の結果であり，左右摇の場合と同様に舷測傾斜の影響が顕著である。S－3は，理論計算では $K b>0.8$ の範囲では沈下力となるのに対し， S－4ではすべての波数領域で上昇力となっており，実験値も概略そのような傾向となっていると思われる。 S－4では，舷測傾斜の影響でKb \rightarrow Oのときにもある有限值をとるが，これは浮力の非線型性から説明できる。

Fig．3．4．10は，同じ問題での垂直力に含まれる2次の変動力の結果である。S－4ではKb \rightarrow で南限值となっ ており，この理由は定常力の場合と同じである。 Kb＞ 0.4 の範井では，S－3の変動力の方がSー4のものより大 きくなるという計算結果となっているが，実験値ではど ちらかというとS－4の方が大きくなっているように思わ
$れ る 。 し か し, ~ そ の$ 差はわずかであり，また理論計算值との圠較では波数の大きな領域を除くと定量的にも大略良い一致を示していると思われる。

これらの結果，上下摇の場合も航側傾斜の影響は特に， 2 次の定常力に顕著であるが，変動力については種々の項が複雑にたL合わされるのでその影響は小さいという ことが言える。
（C）散乱问題
Fig．3．4．11は散乱問題における波強制力の実験記録の 1 例であり，同じ波数と同じ波高の入射波に対する応答 を比較したものである。重直力（Fy）の記録では，S－4 の実験值が負のピーク付近で，Sー3のものとは違った値 となっており，これから定常力（平均値）は負方向（上枡力） として働くことがわかる。一方，水平力（F）では力の絶対値は同じで位相が変化しているようにみえる。ま た。舷側における水面変位は，S－3の方は直立した波高計で，S－4の方は 45° 傾いた波高計で計測されているの で，正確には浸水ガース長さを計測していることになっ ているが，S－3とS－4の差が明瞭である。

Fig．3．4．12は，1次の波強制力の水平力成分の比較で全般的に実験值の方が計算値よりも大きくなっているが，良好な一致を示していることがわかる。また， $5-3$ と S－4の違いによる差は計算値，実験値ともにないと思わ れる。Fig．3．4．13は，同様に重直力についての比較で あり，計算值では波数が大きい領域でS－4の方がわずか K大きめの値となっている。一方，実験値は全体的に計算値よりも大きめとなっているが，定性的には計算值 と良く一致していると思われる。また，断面による比較ではS－4の方がS－3のものより大きな値となっており， この点も計算結果と定性的に一致していると思われる。 ここで，実験値が計算値よりも大きくなった最大の理由 は，入射波高が小さかったためと思われるが，波数の大 きな領域では反射波係数がほぼ1となり，入射波と干涉 するので入射波高を大きくすると波くずれを起こしやす くなるために，あまり大きな入射波高とするわけにはい かなかった。

次に2次の波強制力に関する結果を示す。 Fig．3．4．14 は漂流力についての結果であり，実験値は理論値よりも過大となっている。 野尻•村山〔31］の実験結果などで

は，拘束物体に働く漂流力は理論値と良く一致していた ことなどから，本実験の結果は実験精度が悪かったため と思われる。Fig．3．4．15は垂直力の定常力の結果であり，実験値はかなりばらついているが，定性的には理論値と一致していると思われる。S－3では常に沈下力となっ ているのに対し，Sームでは逆に上昇力となっており，実験値も概ねそのような結果となっている。

次に，Fig．3．4．16は2次の変動力の水平力成分につい ての比較であるが，計算值は波数の変化に対して単調で あり，実験値も概ねそのような結果となっている。 S－3とS－4の比較では，計算值は波数の大きな預或でS －4の方が大きくなっており，実験値にもそのような傾向がみられる。

Fig．3．4．17は，垂直力に含まれる2次の変動力につい ての比較である。 $-3-3$ の計算値は半没円柱（S－1）など の結果と定性的によく似た応答となっているのに対し， S－4では舷側傾斜影響のために，波数の変化に対して単調な結果を与えている。 これに対する実験値は，Kb＞1 の領域で計算值に比較して大きな值となっており，半没円柱（S－1），ルイスフォーム（S－2）などと同程度の結果と

なっている。また，S－3，S－4の違いによる差も定常力 では明暸であったにもかかわらず，ばっきりしていない。 S－5（ルイス7ォーム）の実験における計測記録Fig．3．5．1 およびその解析結果Fig．3．5．6などと比較しても，理論 と実験の一致は良好であることから，このような結果と なった理由は実験精度にあるものと思われる。と言うの は，1次の応答でも Fig．3．4．13をみると，理論値よりも 2 割程度大きな結果となっているが，2次の問題ではそ の誤差が2乗で効くと考えられるからである。

これらをまとめると，散乱问題における舷側傾斜の影響は，主として2次の垂直力に生じ，定常力では実唤的 にも確認できた。しかし，2次の変動力については，他の項との大小関係で定常力ほど明暸には現れないが，理論計算結果によれば低波数域で舷側傾斜影響が大きく なっている。

3．4．4 波浪中の動揺（S－5）
（A）散乱問題
実験で得られた入射波形と検力計で計測された力の記録の1例をFig．3．5．1к示す。これをみると重直力の波形が正弦波とはかけ離れた複雑なものとなつており，高次の流体力の影響が大きいことがわかる。これに比 べて水平力は，かなり正弦的であり高次の流体力の影響 は小さいと思われる。

Fig．3．5．2 は1次の波強制力の水平力成分についての結果であるが，理論計算と実験の一致は良好であること がわかる。Fig．3．5．3は同様に重直力の比較であり， これについても両者の一致は良好である。 ただ，Fig． 3．5．3 の横摇モーメントKついては実験値が理論値より も多少低めとなったが，この原因は三分力計の取付け精度などによる実験誤差と考えられる。

次に，2次の波強制力の変動力成分についての結果を Fig．3．5．5 からFig． 3.5 .7 к示す。重直力は理論と実験 の一致が良好であるが，水平力については他の模型の実験と同様な結果となり，横摇モーメントについては実験値が低めとなっている。

一方，このときの2次の定常力についてはFig．3．5．12 からFig．3．5．14に自由浮体の場合の結果と合わせて示し てあるが，それらをみると定常力では理論と定験の一致 が良好であることから，2次の変動力の不一致は自由表面条件に由来するポテンシャルカによるものであると思 われる。この項の計算は（2．46）式によっているが，実験では反射波の影響を避けるために適当な時間で打切っ ており，これらの不一致が原因とも考えられるが，今の ところは明らかではない。
（B）波浪中の動揺
次に，波の中で動摇する場合の結果を示す。Fig．3．5．8 は，実験で得られた記録の1例である。 左右摇と横摇 の波形は，静止時の 0 点から一定値だけシフトLている のがわかり，これらのシフト量から逆算することによっ て定常力を求めることができる。一方，2次の変動力 に対応する動摇については，これらの波形から判断して大変微小なものであろうと予想される。

Fig．3．5．9～3．5．11は1次の動摇の結果であるが，理論と実驓の一致が良いことがわかる。ただ，横揺の位相

差については両者の一致が良くないが，これは横揺の絶対值が大変小さいことによる実験誤差と思われる。

Fig．3．5．12～3．5．14 は2次の定常力についての結果 であるが，理論と定験の一致は概略良好であると思われ る。 Fig．3．5．13の垂直力では，固定時には常火沈下力 として働くが，動揺が許されたときはKbく0．7の䡉囲で逆に上昇力となることが，わかる。また，Fig．3．5．14の定常横揺モーメントは，固定時には $K b<0.4$ で正（反時計回り），$K b>0.4$ で負であり波数の増加に対して単調 な変化を示すだけであるが，自由浮体の場合は常に負， すなわち透過波側に定常㑯斜することになり，1次の上下摇の同調点付近でピークを持つ。

次に，2次の動摇応答の結果をFig．3．5．15～3．5．17 K示す。Fig。3．5．15の左右摇では計算値は1次の横摇同調点付近で急激な応答を示L，1次の上下摇同調点付近で緩やかに応答することがわかる。実験值はかなりばら ついており一定の傾向も見出し難いが，全体的には計算結果と同程度となっていると思われる。Fig．3．5．16は上下揺の結果であり，理論上は2次の上下摇同調点（概略1次の同調点の1／4の波数で）と1次の横揺および上下

揺同調点の3箇所で応答が大きくなることになっている。従って，低波数域での応答が重要になると考えられるが，今回の実験結果をみると低波数域ではかなり小さな值と なり，計算値との一致が悪い。しかしながら，今回の実験では小水槽のため，長波長域での実験精度の信賴性に は疑問があると考えられるので，この結果から結論を下 すのは難しいように思われる。Fig．3．5．17は同様にして横摇の場合であり，左右摇，上下摇の結果と同様に低波数域での応答が大きくなる計算結果となっている。

これらの2次の動摇応答の理論計算と実験結果から以下の事がわがる。
（1）2次の定常力Kついては，固定時も動揺自由時も理論と実験の一致が良く，理論計算結果の妥当性が確 かめられた。
（2）2 次の変動力では，固定物体に働く波強制力は波数 に対して単調であり，大略波数に比例すると考えら れるが，逆く動摇を許したときの動摇応答は低波数域で大きくなり，それは1次と2次の動揺の同調と密接に関係している。従って，2次の浮体動摇を考えるときは低波数域（長波長域）での応答が重要

であると考えられ，このことは係留浮体などで問題 となる長周期運動などの経験と一致する。

最後に，Fig．3．5．18 кは定常横摇モーメントを与える漂流力のモーメントレバーの計算値を示す。 図中，盏 は1次の波強制力のモーメントレバーである。動摇自由の場合には，低波数でもーナントレバーが大きくなっ ているが，これはその領域での漂流力が微小となるため である。

結 論
以上，3章にわたって静水中あるいは波の中で動摇す る2次元浮体k働く非線型流体力に関して理論的および実験的な研究を行った結果，以下の結論を得た。
（1）2次の境界値問題で現れる自由表面上の境界条件を扱いやすくするために，物体表面と自由表面上の特異点で構成される境界積分方程式によって解き，1次の問題では他の解法と比較して精度的にも満足し うる結果を得た。また，2次の物体表面条件と自由表面条件を求める際，数値的な简単化を行って精度良く求める方法を提案した。
（2）放射肉題では，1次と2次の流体力は理論と実験で良く一致することを，左右摇と上下摇について確か めた。また，単一モードの動摇では2次の流体力 は重直力のみに現れること，自由表面条件に基づく流体力は物体表面条件に基づく流体力に比べて相対的に小さいことなどを数値計算によって明らかにし た。
（3）散乱問題では，1次の流体力は理論と実験の一致が良好であり，2次の流体力のうち定常力については

同様である。2次の変動力の水平方向成分および回転モーメントKついては，理論と実験で若干異な った傾向となったが，定量的にはほぼ同程度である といえる。
（4）航側傾斜の影響については，水面での傾斜角が 45°程度ならば，その影響は1次の流体力には概略無関係とみなしてよく，2次の流体力については浮体断面が左右対称ならば，主として重直力に影響するこ とを計算と実験で確かめた。
（5）波浪中の自由浮体は，漂流力のほか沈下力および傾斜モーメントなどの2次の定常力を受けており，そ
 ることを実験的に確かめた。また，波浪中の自由浮体の2次の動摇は，1次と2次の動摇の同調点付近を除くと一船には小さなものであると考えられる。従って，減衰力が大きな高波数での応答は問題とは ならず逆に，低波数域での応答が問題となるように思われる。
（6）波浪中の2次の動摇問題では，1次の入射波ポテン シャル，散乱ポテンシャルおよび3つの動揺ポテン

シャルがたし合わされ，相互に干渉しながら全体の流場が決定される。従って，2次の流体力および動摇を厳密に取扱うには1次の量はすべて考虑する必要があり，それらの一つでも無視すると全く違っ た結果を得る可能性があり注意を要する。

本研究では，摂動法による理論計算が実験と比較して どの程度合うのかという点火主眼を置いたので，入射波 や発散波の波高は限界波高の範囲内とした。このこと は実験的にも，いったん波くずれが生じると2次元性が保てなくなるなどの問題があり，この制限は不可欠であ った。従って，この場合の非線型流体力は一般に小さ なものとなり，実験的にも高い計測精度を要するものと なったが，これらの制限下では一応，理論計算によって現象が説明できるという結論に達した。

今後の研究の目標としては，波くずれを生じるような大波高。大振幅動揺の問題，一般的な 3 次元物体への拡張，過渡現象を含む不規則波中での問題などが考えられ る。

本論文を終えるにあたり，懇切なる御指尊と御教示を晹りました次の各位く対して，著者の深甚なる感謝の意 を表します。

本論文をとリまとめるに際し，大阪大学工学部造船学教室 中村彰一教授より終始暖かい御指導と御鞭撻を晹 わりました。

本研究の契機を与えられ，また，長期にわたつて本研究の遂行の機会を与えられました防衛大学校機械工学教室 別所正利教授には終始懇切なる御指導と多大なる御援助をいただきました。

また，防衛大学校機械工学教室，水野俊明教授，鈴木勝雄講師，河辺 寛助手には本研究の数値計算ならびに実験に卖して貴重なる御教示と御討論をいただきました。 さら以，卒業研究として著者と共に研究•実験されま した防衛大学校本科卒業生の方々はじめ職員•研究科学生の皆様には多大なる御協力をいただきました。以上の方々к対して，著者の深甚なる感謝をささげま す。

参考文献

1）Wehausen，J．V．and Laitone，E．V．：Surface Waves，Handbuch der Phsik， Vol．9，Springer－Verlag，Berlin，1960，pp．446－778．

2）Maruo，H．：The drift of a body floating on waves，J．Ship Res．，Vol．4， No．3，1960，pp．1－10．

3）Ogilvie，T．F．：First－and second－order forces on a cylinder submerged under a free surface，J．FIuid Mech．，Vol．16，1963，pp．451－472．

4）Lee，C．M．：The second－order theory of heaving cylinders oscillating vertically in a free surface，Report No．NA－66－7．，Univ．of Califor－ nia，Berkely， 1966.

5）Parissis，G．C．：Second－order potentials and forces for oscillating cylinders on a free surface，MIT－Rept．No．66－10，Dept．of Ocean Eng．，MIT， 1966.

6）Potash，R．L．：Second－order theory of oscillating cylinders，J．Ship Res．，Vol．15，1971，pp．295－324．

7）Söding，H．：Second－order forces on oscillating cylinders in waves， Schiffstechnik，Vol．23，1976，pp．205－209．

8）増本 彰：規則波中における浮体 κ 働く非線型流体力кついて，関西造船協会誌，第 117 号，昭和 54年3月，PP．17－31。

9）Papanikolaou，A．and Nowacki，H．：Second－order theory of oscillating cylinders in a regular steep waves，Proc．of the 13 th ONR Symp．， 1980，pp．303－331．

10）Kim，C．H．：Über den Einfluz nichtlinearer Effekte auf hydrodynamische Kräfte bei erzwungene Tauchbewegungen prismatischer Körper， Schiffstechnik，Bd．14，Heft 73，1967，pp．79－91．

11）山下誠也：薄い物体の大振幅上下動における流体力 の計算，日本造船学会論文集，第141号，昭和52年6月，PP．61－69．

12）Faltinsen，0．：Numerical solutions of transient nonlinear iree－surface motion outside and inside moving bodies，Proc．2nd Inti．Conf．on Num．Ship Hydrodyn．，1977，pp．347－357．

13）Nicholas，B．D．and Hirt，C．W．：Nonlinear hydrodynamic forces on floating bodies，Proc．2nd Intl．Conf．on Num．Ship Hydrodyn．， 1977，pp．382－394．

14）Vinje，T．and Brevig，P．：Nonlinear ship motions，Proc．3rd Intl． Conf．on Num．Ship Hydrodyn．，4－3， 1981.

15）田才福造，小寺山亘：上下摇する半没水円柱 k 動く非線型流体力Kついて，九州大学応力研所報，第40号，昭和48年。

16）Tasai，F．and Koterayama，W．：Nonlinear hydrodynamic forces acting on cylinders heaving on the surface of a fluid，Rept．No．77，Res． Inst．of Appl．Mech．，Kyushu Univ．， 1976.

17）Chakrabarti，S．K．：Nonlinear wave forces on vertical cylinder， J．Hydraulics Div．，ASCE，Vol．98，No．HY1I，Nov．1972，pp．1895－1909．

18）Raman，H．，Jothishanker，N．and Venkatanarasaiah，P．：Nonlinear wave interaction with vertical cylinder of large diameter，J．Ship Res．， Vol．21，No．2，June 1977，pp．120－124．

19）Molin，B．：Second－order diffraction loads upon three－dimensional bodies，Appl．Ocean Res．，Vol．1，No．4，1979，pp．197－202．

20）Kim，C．H．and Dalzell，J．F．：An analysis of the quadratic frequency response for lateral drifting force and moment，J．Ship Res．， Vol．25，No．2，June 1981，pp．117－129．

21）Yeung，R．W．：A singularity－distribution method for free surface flow problems with an oscillating body，Rept．No．NA－73－6，Univ．Califor－ nia，Berkely， 1973.

22）Ursell，F．：On the heaving motion of a circular cylinder on the surface of a fluid，Quart．Journ．Mech．and Appl．Math．，Vol．2， Pt．2， 1949.

23）別所正利：波の中の船の横摇れ運動の理論について，防衛大学校理工学研究報告，第3卷，第1号，昭和 40年5月。

24）Salter，S．H．：Absorbing wave－maker and wide tanks，Directional Wave Spectra Applications＇81 Sympo．，Berkeley，California， 1981.

25）田才福造，高木又男：規則波中の応答理論および計算法，日本造船学会耐航性火関するシンポジウム，昭和44年7月，PP．1－52．

26）Bai，K．J．：A variational method in potential flows with a free surface，Rep．NA－72－2，Univ．California，Berkely，Sept． 1972.

27）杉浦正憲，一色 浩：水波に関する Sommerfeldの放射条件とその数値計算への応用について，関西造船

協会誌，第156号，昭和50年3月，Pp．67－74．
28）別所正利，経塚雄策：水の波の理論における内部問題について，西部造船会会報，第57号，昭和54年 3月，PP．37－52．

29）Vugts，Ir．J．H．：The hydrodynamic coefficients for swaying，heaving and rolling cylinders in a free surface，Int．Shipbuilding Progr．， Vol．15， 1968.

30）田才福造：柱状体の強制上下動揺によって生ずる進行波高の計測，造船協会論文集，第107号，昭和 35年6月。

31）野尻信弘，村山敬—：規則波中の2次元浮体 κ 働く漂流力に関する研究，西部造船会会報，第51号，昭和50年12月，PP．131－152．

32）管 信：二次元造波理論，三次元造波理論，第2回耐航性に関するシンポジウム，昭和52年12月，PP． $17-40$ ．

33）一色 浩：造波問題における変分法的取り扱い，第 2回耐航性に関するシンポジウム，昭和52年12月， pp．41－56．

34）前田ス明：任意船型におよばす波の強制力について，日本造船学会論文集，第126号，昭和44年12月，PP 55 -83.

35）別所正利：逆時間ポテンシャルについて，関西造船協会誌，第159号，昭和50年12月，PP．75－84。

36）前田久明：安藤定雄，不破 健：海洋エネルギーの利用，第4回海洋工学シンポジウム，昭和54年2月。

37）Maruo，H．：The forces and moments acting on a body moving in a weak potential flow field，Proc．9th Japan National Congress for Appi． Mech．， 1959.

38）Lee，C．M．and Newman，J．N．：The vertical mean force and moment of submerged bodies under waves，J．Ship Res．，Vol．15，No．3，Sept． 1971，pp．231－245．

39）別所正利，小松正彦：水面で動摇する2次元平板に働く流体力Kついて（続報），関西造船協会誌，第 163号，昭和51年12月，PP。67－74。

40）Abramowitz，M．and Segun，I．：Handbook of mathematical functions， Dover Publications， 1967.

$p^{(1)}$	first-order hydrodynamic pressure, eqs.(1.33), (1.34)
${ }_{k} p^{(2)}$	second-order pressure of frequency parameter k, eqs. (1.35),(1.36)
Q(x)	second-order inhomogeneous condition on the free surface, eq.(1.32)
$q(x)$	normalized expression for $Q(x)$, eq.(2.29)
$r^{ \pm}(t)$	relative wave elevation at time t, eq. (1.44)
r_{G}	radius of gyration
$S f={ }_{0} F_{2}^{(2)}$	sinkage force, eq.(1.56)
V_{n}	normal velocity on body surface, eq. (1.8)
$X_{j}^{(n)}$	body motion of j-mode of order n, eq.(1.15)
$\begin{aligned} & x^{\prime}, y^{\prime} \\ & \left(x_{G}, y_{G}\right) \end{aligned}$	tangential derivative on body, eq.(1.19) center of gravity of the body
$\frac{\left(x_{B}, y_{B}\right)}{}$	center of buoyancy of the body perturbation parameter
ρ	fluid density or radius of curvature of body contour eq.(1.21)
ω	circular frequency of incident wave and first-order motions
λ	wave length, eq.(1.31)
$\eta^{(n)}$	free surface elevaiion of order n, eq.(1.12)
$n_{0}^{(n)}$	free surface elevation of incident wave, eq.(1.30)
$\delta_{i j}^{(n)}, \delta_{j}^{(n)}$	phase lag between force and incident wave, eqs.(3.3), (3.6)
α_{j}	phase lag between motion and incident wave, eq. (3.8)
$\Phi^{(n)}$	velocity potential of order n, eq.(1.11)
$\varphi_{j}^{(1)}, \phi_{j}^{(1)}$	first order complex potential of j-mode, eqs.(2.14), (2.15)
${ }_{k} \varphi^{(2)},(k=m, b, f)$	second-order potential split into each component, eq. (2.28)
φ_{S}, ϕ_{S}	source potential placed at the coordinate origin eqs. (2.2),(2.18)
φ_{D}, ϕ_{D}	doublet potential placed at the coordinate origin eqs.(2.2),(2.21)
φ_{N}, ϕ_{N}	wave free potential, eq.(2.4)
ϕ_{j}^{R}	radiation potential of unit velocity of j-mode oscillation, eqs.(2.42),(2.43)

付録12次元流体力の計算法および諸定理
ここでは，本研究において直接あるいは間接に使われ た2次元流体力に関するいくつかの定理について述べる。従って，線型理論に関する事がらが中心となるが，これ らの公式は非線型な風題を扱う場合にも大変有用である。 2 次元動揺問題の今日の隆盛は，1949年のUrsellの論文〔22〕K始まるとされており，以来幾多の研究者によっ て数々の成果を上げてきた。

2 次元流体力の計算法として知られている代表的なも のをあげると

1．級数展開法（Multipole expansion method）
2．積分方程式法（Integral equation，Green function method）
3．固有 関数展䒬法（Eigen function expansion method）
4．変分法（Variational method）
5．有限要素法（Finite element methad）
6．境界要素法（Boundary element method）
などがあり，それぞれの解説は文献［25］，［32］，［33］など になされている。もちろん，解法の違いはあれ，古題 は同じポテンシャル論に則ったものであるから，ここで は積分方程式法を中心として議論を進める。

入射波と散乱ポテンシャル，および各動摇の放射ポテ ンシャルを以下のように規格化する。

$$
\left.\begin{array}{ll}
\varphi_{j}(x, y)=\frac{i g a_{w}}{\omega} \phi_{j}(x, y) \tag{A.1.1}\\
\varphi_{j}(x, y)=i \omega X_{j} \phi_{j}(x, y)
\end{array}, \quad j=0,4, j=1,2,3\right\}
$$

ただし
$a_{w}=\lambda$ 射波高
$X_{j}=j$－モードの動摇振幅
$\dot{f}=(0,1,2,3,4)$ は入射波，左右揺，上下揺，横摇 および散乱ポテンシャル

これらを使えば，波の中で動揺する物体の速度ポテンシ ヤルは1次の項だけをとれば

$$
\left.\begin{array}{l}
\Phi(x, y, t)=\operatorname{Re}\left\{\varphi(x, y) e^{i \omega t}\right\} \\
\varphi(x, y)=\frac{i g a_{w}}{\omega}\left(\phi_{0}+\phi_{4}+K \sum_{j=1}^{3} \frac{x_{j}}{a_{w}} \phi_{j}\right), K=\frac{\omega^{2}}{g} \tag{A.1.2}
\end{array}\right\}
$$

となり，圧力は静水圧と高次の項を無視して

$$
\left.\begin{array}{rl}
P(x, y, t) & =\operatorname{Re}\left\{p(x, y) e^{i \omega t}\right\} \\
P(x, y) & =-i \rho \omega \varphi(x, y) \tag{A.1.3}\\
& =\rho g a_{w}\left(\phi_{0}+\phi_{4}+K \sum_{j=1}^{3} \frac{x_{i}}{a_{w}} \phi_{j}\right)
\end{array}\right\}
$$

で与えられる。
入射波ポテンシャルは，無限水深のとき

$$
\begin{equation*}
\phi_{0}=e^{-k y+i k x} \tag{A.1.4}
\end{equation*}
$$

で与えられる。
1次のポテンシャセルの境界条件は，（2．17）式を再記す ると
［L］$\quad \nabla^{2} \phi_{j}(x, y)=0$
［F］$\quad\left\{K+\frac{\partial}{\partial y}\right\} \phi_{j}(x, 0)=0$
［H］$\quad \frac{\partial}{\partial n} \phi_{j}(x, y)=\frac{\partial}{\partial n} x_{j} \quad,(j=1,2,3)$ on C_{0}
［B］$\quad \frac{\partial}{\partial y} \phi_{j}(x, \infty)=0$
$[R] \quad\left\{\frac{\partial}{\partial x} \pm i K\right\} \phi_{j}(x, y)=0, \quad x \rightarrow \pm \infty$
をだし

$$
\frac{\partial}{\partial n} x_{1}=\frac{\partial}{\partial n} x, \frac{\partial}{\partial n} x_{2}=\frac{\partial}{\partial n} y, \frac{\partial}{\partial n} x_{3}=x \frac{\partial y}{\partial n}-y \frac{\partial x}{\partial n}
$$

となる。
ここで，（ $\left.x^{\prime} y^{\prime}\right)$ k単位強さの吹き出しがある時の (x, y)
におけるポテンシャルは，2次元グリーン関数を使って

$$
\begin{equation*}
G(p, Q)=\frac{1}{2 \pi} \log \left(r_{1} / r_{2}\right)-\frac{1}{\pi} \lim _{\mu \rightarrow 0} \int_{0}^{\infty} \frac{e^{k\left(y+y^{\prime}\right)} \cos k\left(x-x^{\prime}\right)}{k-K+i \mu} d k \tag{A.1.6}
\end{equation*}
$$

ただし $r_{1}^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2} \quad, \quad P=(x, y)$

$$
r_{2}^{2}=\left(x-x^{\prime}\right)^{2}+\left(y+y^{\prime}\right)^{2} \quad, \quad Q=\left(x^{\prime}, y^{\prime}\right)
$$

μ はReylaigh の仮想摩擦
と表現できる。［23］
このグリーン関数は，（A．1．5）式の境界条件［L］，［F］，
［B］，［R］を満足している。

$$
こ こ て ゙, \phi_{j} と G(p, Q) r
$$

対してグリーンの定理を使
い右兆のような—周積分路

をとれば

$$
\left.\begin{array}{rl}
\phi_{j}(p) & =\int_{c}\left(\frac{\partial}{\partial n_{Q}} \phi_{j}(\alpha)-\phi_{j}(\alpha) \frac{\partial}{\partial n_{Q}}\right) G(p, Q) d s(Q), p \in D \\
0 & =\int_{c}\left(\frac{\partial}{\partial n_{Q}} \phi_{j}(\alpha)-\phi_{j}(Q) \frac{\partial}{\partial n_{\theta}}\right) G(p, Q) d s(\alpha), p \in \bar{D} \tag{A.1.7}
\end{array}\right\}
$$

なる表現ができる。この第1式から，P \rightarrow（ $G(P, Q) \quad$ の特異性を考虑して

$$
\frac{1}{2} \phi_{j}(p)+\int_{c} \phi_{j}(\alpha) \frac{\partial}{\partial n_{\alpha}} G(p, Q) d s(\sigma)=\int_{c} \frac{\partial}{\partial n_{2}} \phi_{j}(\alpha) G(p, Q) d s(\alpha),(A .1 .8)
$$

なる積分方程式を解けば中 が求められる。

また，散乱ポテンシャルを $\phi_{5}=\phi_{0}+\phi_{4}$ とすれば

$$
\frac{1}{2} \phi_{s}(p)+\int_{c} \phi_{s}(Q) \frac{\partial}{2 n_{2}} G(p, Q) d s=\phi_{0}(p)
$$

のように，简単化できる。
次に，物体の内部領域，包内でもポテンシャルを考え
$[L] \quad \nabla^{2} \bar{\phi}(x, y)=0$
$[F]\left\{K+\frac{\partial}{\partial y}\right\} \bar{\phi}(x, y)=0$
$\left.\begin{array}{c}\text { in } \bar{\theta} \\ \text { on } \bar{F}\end{array}\right\}$

なる条件を満足するものとすれば，外部問題と同様にし ζ

$$
\left.\begin{array}{l}
\bar{\phi}(p)=\int_{c}\left(\frac{\partial}{\partial n_{Q}} \bar{\phi}(Q)-\bar{\phi}(Q) \frac{\partial}{\partial n_{Q}}\right) G(p, Q) d s(Q), p \in \bar{\theta} \tag{A.1.10}\\
0=\int_{c}\left(\frac{\partial}{\partial n_{Q}} \bar{\phi}(Q)-\bar{\phi}(Q) \frac{\partial}{\partial n_{Q}}\right) G(p, Q) d s(Q), p \in D
\end{array}\right\}
$$

ただし，ゆは物体内部ポテンシャルとする。
こ て で，（A．1．7）の第1式から（A．1．10）の第2式を差 し引くと

$$
\begin{equation*}
\phi_{j}(p)=\int_{c}\left\{\frac{\partial}{\partial n_{a}}\left(\phi_{j}-\bar{\phi}\right)-\left(\phi_{j}-\bar{\phi}\right) \frac{\partial}{\partial n_{\alpha}}\right\} G(p, Q) d s(Q) \tag{A.1.11}
\end{equation*}
$$

となるが，

$$
\left.\begin{array}{l}
\phi_{j}-\bar{\phi}=0 \tag{A.1.12}\\
\frac{\partial}{\partial n_{Q}}(\phi-\bar{\phi})=\sigma(Q)
\end{array}\right\} \quad \text { on } C
$$

とおけば

$$
\begin{equation*}
\phi_{j}(p)=\int_{c} \sigma(Q) G(p, Q) d s(Q) \tag{A.1.13}
\end{equation*}
$$

となり，吹き出しくよる表現式を得る。これを解くに は，$P \rightarrow C$ のときの $G(P, Q)$ の特異性に注意して

$$
\begin{equation*}
\frac{\partial}{\partial n_{p}} \phi_{j}(p)=\frac{1}{2} \sigma(p)+\int_{c} \sigma(\alpha) \frac{\partial}{\partial n_{p}} G(p, Q) d s(\alpha) \tag{A.1.14}
\end{equation*}
$$

あるいは，（A．1．13）式の流れ関数表示から

$$
\begin{align*}
& \psi_{j}(p)=\int_{c} \sigma(Q) T(p, Q) d s(Q) \tag{A.1.15}\\
& k た ゙ L, ~ \psi_{1}=y+c, \psi_{2}=-x+c, \psi_{3}=-\frac{1}{2}\left(x^{2}+y^{2}\right)+C \\
& \psi_{4}=i e^{-k y+i k x}+c \quad, C \text { は任意定数 } \\
& T(p, Q)=\frac{1}{2 \pi}\left(\theta_{1}-\theta_{2}\right)-\frac{1}{\pi} \lim _{\mu \rightarrow 0} \int_{0}^{\infty} \frac{e^{-k\left(y+y^{\prime}\right)} \sin k\left(x-x^{\prime}\right)}{k-K+i \mu} d k \\
& \theta_{1}=\tan ^{-1} \frac{y-y^{\prime}}{x-x^{\prime}}, \quad \theta_{2}=\tan ^{-1} \frac{y+y^{\prime}}{x-x^{\prime}}
\end{align*}
$$

解くこともできる。［34］

次に，（A．1．11）式において

$$
\left.\begin{array}{rl}
\frac{\partial}{\partial n_{Q}}\left(\phi_{j}-\bar{\phi}\right) & =0 \tag{A.1.16}\\
\phi_{j}-\bar{\phi} & =-\mu(a)
\end{array}\right\} \text { on } c
$$

とおけば

$$
\begin{equation*}
\phi_{j}(p)=\int_{c} \mu(Q) \frac{\partial}{\partial n_{Q}} G(p, Q) d s(Q) \tag{A.1.17}
\end{equation*}
$$

なる＝重吹き出しの表現式を得る。これを解くには

$$
\begin{equation*}
\frac{\partial}{\partial n_{p}} \phi_{j}(p)=\int_{c} \mu(Q) \frac{\partial^{2}}{\partial n_{p} \partial n_{\theta}} G(p, Q) d s(Q) \tag{A.1.18}
\end{equation*}
$$

あるいは，流れ関数表示により

$$
\begin{align*}
\psi_{j}(p) & =\int_{c} \mu(Q) \frac{\partial}{\partial n_{Q}} T(p, Q) d s(Q) \\
& =-\int_{c} \mu(Q) \frac{\partial}{\partial s_{Q}} G^{\prime}(p, Q) d s(Q) \tag{A.1.19}
\end{align*}
$$

ただし，$T(p, Q) と G^{\prime}(p, Q)$ は Q 点火関するコーシー・リーマ
ンの䦎係式から

$$
\begin{aligned}
& \frac{\partial}{\partial n_{\theta}} T(p, Q)=-\frac{\partial}{\partial S Q} G^{\prime}(p, Q) \\
& G^{\prime}(p, Q)=-\frac{1}{2 \pi} \log \left(r_{1} r_{2}\right)-\frac{1}{\pi} \lim _{\mu \rightarrow 0} \int_{0}^{\infty} \frac{e^{-k\left(y+y^{\prime}\right)} \cos k\left(x-x^{\prime}\right)}{k-K+i \mu} d k
\end{aligned}
$$

によって，解けばよい。

さて，グリーン関数の無限遠での漸近値は（A．1．6）式に よって

$$
\begin{equation*}
G(P, Q) \underset{x \rightarrow \pm \infty}{ } i e^{-k\left(y+y^{\prime}\right) \mp i k\left(x-x^{\prime}\right)} \tag{A.1.20}
\end{equation*}
$$

であるから，（A．1．7）式k代入すれば

$$
\begin{equation*}
\phi_{j}(p) \underset{x \rightarrow \pm \infty}{\longrightarrow} i H_{j}^{ \pm}(k) e^{-k y \mp i k x} \tag{A.1.21}
\end{equation*}
$$

ただし

$$
H_{j}^{ \pm}(k)=\int_{c}\left(\frac{\partial}{\partial n} \phi_{j}-\phi_{j} \frac{\partial}{\partial n}\right) e^{-k y \pm i k x} d s
$$

となり，$H_{j}^{ \pm}(K)$ は - －モードのコチン関数である。
？のとき，水面変位を $\eta_{j}(x)$ とすると

$$
\begin{align*}
& \eta_{j}(x) \xrightarrow[x \rightarrow \pm \infty]{ }-i K X_{j} H_{j}^{ \pm}(K) e^{\mp i k x}, j=1,2,3 \\
& \eta_{4}(x) \xrightarrow[x \rightarrow \pm \infty]{ }-i a_{w} H_{4}^{ \pm}(k) e^{\mp i k x}
\end{align*}
$$

であり，コチン関数は無限遠での発散波振幅を与えるこ とがわかる。また，発散波振幅比を $A_{j}^{ \pm}$さすれば

$$
\begin{equation*}
A_{j}^{ \pm}=\left|\eta_{j}(x)\right| / x_{j}=K\left|H_{j}^{ \pm}(k)\right|, j=1,2,3 \tag{A.1.23}
\end{equation*}
$$

で与えられる。
次に，境界値問題の解から \boldsymbol{j}_{j} の分布が求まれば（A．1．3）式によって圧力分布が求められる。これによる流体力

と波強制力は

$$
\left.\begin{array}{rl}
F_{i j} & =-\int_{c} P_{i}(x, y) \frac{\partial}{\partial n} x_{j} d s \\
& =-\rho \omega^{2} X_{i} \int_{c} \phi_{i} \frac{\partial}{\partial n} \phi_{j} d s \quad \text { for }\left\{\begin{array}{l}
i=1,2,3 \\
j=1,2,3
\end{array}\right\} \tag{A.1.24}\\
E_{j} & =-\int_{c}\left(P_{0}+P_{4}\right) \frac{\partial}{\partial n} x_{j} d s \\
& =-\rho g a_{w} \int_{c}\left(\phi_{0}+\phi_{4}\right) \frac{\partial}{\partial n} x_{j} d s, \text { for } j=1,2,3
\end{array}\right\}
$$

として求められるが，䉍単のため

$$
\left.\begin{array}{l}
f_{i j}=\int_{c} \phi_{i} \frac{\partial}{\partial n} \phi_{j} d s \tag{A.1.25}\\
e_{j}=\int_{c}\left(\phi_{0}+\phi_{4}\right) \frac{\partial}{\partial n} \phi_{j} d s
\end{array}\right\}
$$

としよう。
まず，$f_{i j}$ は ϕ_{i} ，ϕ_{j} k対してグリーンの定理を使う と次の相反定理を得る。

$$
\begin{equation*}
f_{i j}=f_{j i} \tag{A.1.26}
\end{equation*}
$$

また。 $\frac{\partial}{\partial n} \phi_{4}=-\frac{\partial}{\partial n} \phi_{0}$ on C を使うと

$$
\begin{align*}
e_{j} & =\int_{c}\left(\frac{\partial \phi_{j}}{\partial n}-\phi_{j} \frac{\partial}{\partial n}\right) \phi_{0} d s \\
& =H_{j}^{+}(k) \tag{A.1.27}
\end{align*}
$$

となり，これはハスキントの関係式と呼ばれている。

次K，別所の逆時間ポテンシャル［35］を導入しよう。 ここで，逆時間ポテンシャルとは正時間の現象において時間の進みを逆転したときのポテンシャルである。従って，正時間ポテンシャルとは複素共役の関係にある。 まず，放射問題の逆時間暹動を考えると，無限遠方で は

$$
\left.\begin{array}{rl}
\phi_{j}(p) & \underset{x \gg 0}{ } i H_{j}^{+} e^{-k y-i k x} \tag{A.1.28}\\
\equiv i H_{j}^{+} \phi_{0}^{-} \\
x \ll 0 & i H_{j}^{-} e^{-k y+i k x}
\end{array}>i H_{j}^{-} \phi_{0}^{+}, ~\right\}
$$

であるから，逆時間軍動ではこれらの発散波が原点に収束するような現象である。そこで，正時間運動の時に $入$ 射波として

$$
i\left(\bar{H}_{j}^{+} \phi_{0}^{+}+\bar{H}_{j}^{-} \phi_{0}^{-}\right)
$$

を考え，これらの散乱ポテンシャルも考虑して

$$
\begin{equation*}
\phi_{N}=\bar{\phi}_{j}-\left\{\phi_{j}+i \bar{H}_{j}\left(\phi_{0}^{+}+\phi_{4}^{+}\right)+i \bar{H}_{j}^{-}\left(\phi_{0}^{-}+\phi_{4}^{-}\right)\right\} \tag{A.1.29}
\end{equation*}
$$

なるポテンシャルを考えると，中心は無限遠方では発散波 しかつくらない。また，物体表面条件は

$$
\begin{equation*}
\frac{\partial}{\partial n} \phi_{N}=0 \quad \text { on } C \tag{A.1.30}
\end{equation*}
$$

であるから，解の一義性により

$$
\begin{equation*}
\varphi_{N}=0 \quad \text { in } \theta \tag{A.1.31}
\end{equation*}
$$

とおける。これによって

$$
\begin{align*}
\bar{\phi}_{j} & =\phi_{j}+i\left\{\bar{H}_{j}^{+}\left(\phi_{0}^{+}+\phi_{4}^{+}\right)+\bar{H}_{j}^{-}\left(\phi_{0}^{-}+\phi_{4}^{-}\right)\right\} \\
& =\phi_{j}+i\left\{\bar{H}_{j}^{+} \phi_{s}^{+}+\bar{H}_{j}^{-} \phi_{s}^{-}\right\}, \quad j=1,2,3 \tag{A.1.32}
\end{align*}
$$

なる正時間ポテンシャルと逆時間ポテンシャルの関係式 を得る。また，散乱問題では $\bar{\phi}_{0}^{+}=\phi_{0}^{-}$であるから

$$
\left.\begin{array}{l}
\bar{\phi}_{s}^{+}=\phi_{s}^{-}+i\left\{\bar{H}_{4}^{+}(t) \phi_{s}^{+}+\bar{H}_{4}^{-}(t) \phi_{s}^{-}\right\} \tag{A.1.33}\\
\bar{\phi}_{s}^{-}=\phi_{s}^{+}+i\left\{\bar{H}_{4}^{+}(-) \phi_{s}^{+}+\bar{H}_{4}^{-}(-) \phi_{s}^{-}\right\}
\end{array}\right\}
$$

ただし

$$
\begin{aligned}
& H_{4}^{ \pm}(t)=\int_{c}\left\{\frac{\partial}{\partial n} \phi_{4}^{+}-\phi_{4}^{+} \frac{\partial}{\partial n}\right\} \phi_{0}^{ \pm} d s=-\int_{c} \phi_{s}^{+} \frac{\partial}{\partial n} \phi_{0}^{ \pm} d s \\
& H_{4}^{ \pm}(-)=\int_{c}\left\{\frac{\partial}{\partial n} \phi_{4}^{-}-\phi_{4}^{-} \frac{\partial}{\partial n}\right\} \phi_{0}^{ \pm} d s=-\int_{c} \phi_{s}^{-} \frac{\partial}{\partial n} \phi_{0}^{ \pm} d s
\end{aligned}
$$

となる。
（A．1．32）式の両辺に $\frac{\partial}{\partial n} x_{k}=\frac{\partial}{\partial n} \bar{X}_{k}$ をかけて，$C \kappa$ 沿って積分すれば（A．1．27）式によって

$$
\begin{equation*}
\bar{f}_{j k}=f_{j k}+i\left\{\bar{H}_{j}^{+} H_{k}^{+}+\bar{H}_{j}^{-} H_{k}^{-}\right\} \tag{A.1.34}
\end{equation*}
$$

となり，添字jれをijk変更し

$$
f_{i j}=f_{i j c}+f_{i j S}
$$

とおけば

$$
\begin{equation*}
2 f_{i j S}=-\left\{\bar{H}_{i}^{+} H_{j}^{+}+\bar{H}_{i}^{-} H_{j}^{-}\right\} \tag{A.1.35}
\end{equation*}
$$

なる良く知られた関係式が得られる。
ここで，左右対称物体では

$$
\begin{align*}
f_{i j S} & =-\bar{H}_{i}^{+} H_{j}^{+} \\
\text {となり, } i & =j \text { とおくと (A.1.23) 式 } \kappa よ り \\
f_{i, i S} & =-\left|H_{i}^{+}\right|^{2}=-\left(A_{i}^{+} / k\right)^{2} \tag{A.1.36}
\end{align*}
$$

を得る。また，$N_{i j}$ を $i \cdot モ ー ト ゙ の$ 動摇kよる $よ \cdot$ ・モード方向への減衰力とすれば

$$
\begin{align*}
N_{i j} & =-\rho \omega f_{i j S} \\
& =\rho \frac{g^{2}}{\omega^{3}} A_{i}^{+} \cdot A_{j}^{+} \tag{A.1.37}
\end{align*}
$$

なる公式を導くこ，とができる。
次に，（A．1．33）式の両辺に $\frac{\partial}{\partial n} \phi_{0}^{ \pm}=\frac{\partial}{\partial n} \bar{\phi}^{\top}$ をかけて，C K浻って積分すれば

$$
\begin{align*}
& \bar{H}_{4}^{\mp}(t)-H_{4(-)}^{ \pm}=i\left\{\bar{H}_{4}^{ \pm}(+) H_{4}^{ \pm}(+)+\bar{H}_{4}^{\mp}(+) H_{4}^{ \pm}(-)\right\} \\
& \bar{H}_{4}^{\mp}(-)-H_{4}^{ \pm}(+)=i\left\{\bar{H}_{4}^{ \pm}(-) H_{4(t)}^{ \pm}+\bar{H}_{4}^{\mp}(-) H_{4}^{ \pm}(-)\right\} \tag{A.1.38}
\end{align*}
$$

なる結果を得る。

ここで，散乱問題とおける反射波，透過波係数を単位振幅の入射波に対しそれぞれ

$$
\left.\begin{array}{l}
\zeta_{R}^{+}=-i H_{4}^{+}(t) \tag{A.1.39}\\
\zeta_{T}^{+}=1-i H_{4}^{-}(t) \\
\zeta_{R}^{-}=-i H_{4}^{-}(-) \\
\zeta_{T}^{-}=1-i H_{4}^{+}(-)
\end{array}\right\}
$$

ただし，
ら胃は（士）からの入射波によるその方向への反射波，ら志は（土）からの入射波の透過波 とすれば，グリーンの定理により

$$
\begin{align*}
H_{4}^{-}(+) & =-\int_{c}\left(\phi_{0}^{+}+\phi_{4}^{+}\right) \frac{\partial}{\partial n} \phi_{0}^{-} d s \\
& =\int_{c}\left(\phi_{0}^{+} \frac{\partial}{\partial n} \phi_{4}^{-}+\phi_{4}^{-} \frac{\partial}{\partial n} \phi_{4}^{+}\right) d s \\
& =\int_{c}\left(\frac{\partial}{\partial n} \phi_{4}^{-}-\phi_{4}^{-} \frac{\partial}{\partial n}\right) \phi_{0}^{+} d s \\
& =H_{4}^{+}(-) \tag{A.1.40}
\end{align*}
$$

従って

$$
\begin{equation*}
\zeta_{T}^{+}=\zeta_{T}^{-} \equiv \zeta_{T} \tag{A.1.41}
\end{equation*}
$$

（A．1．39）式を使って，（A．1．38）式を書きかえると

$$
\left.\begin{array}{rl}
\zeta_{R}^{ \pm} \cdot \bar{\zeta}_{R}^{ \pm}+\zeta_{T}^{ \pm} \cdot \bar{\zeta}_{T}^{ \pm}=1 \tag{A.1.42}\\
\zeta_{R}^{ \pm} \cdot \bar{\zeta}_{T}^{\mp}+\bar{\zeta}_{R}^{\mp} \cdot \zeta_{T}^{\mp}=0
\end{array}\right\}
$$

（A．1．42）式の第1式はエネルギ一保存則を表しており，第2式は $\left|\zeta_{R}^{+}\right|=\left|\zeta_{R}^{-}\right|$であることを示している。 また，（A．1．33）式の両辺k $\frac{\partial}{\partial n} x_{j}$ をかけてくのまわり で積分すれば

$$
\left.\begin{array}{l}
\bar{H}_{j}^{+}=H_{j}^{-}+i\left\{\bar{H}_{4}^{+}(+) H_{j}^{+}+\bar{H}_{4}^{-}(+) H_{j}^{-}\right\} \tag{A.1.43}\\
\bar{H}_{j}^{-}=H_{j}^{+}+i\left\{\bar{H}_{4}^{+}(-) H_{j}^{+}+\bar{H}_{4}^{-}(-) H_{j}^{-}\right\}
\end{array}\right\}
$$

となるが，これを（A．1．39）式を使って書き直してみると

$$
\left.\begin{array}{l}
\bar{H}_{j}^{+} \zeta_{R}^{+}+\bar{H}_{j}^{-} \zeta_{T}^{+}=H_{j}^{+} \tag{A.1.44}\\
\bar{H}_{j}^{-} \zeta_{R}^{-}+\bar{H}_{j}^{+} \zeta_{T}^{-}=H_{j}^{-}
\end{array}\right\}(j=1,2,3)
$$

を得る。この式では，（A．1．40）式によって ζ_{T} と ζ_{R}^{+}， ケR の ${ }_{R}^{-}$つの未知数があるだけであるから，すベてのよ K対して独立ではなく，$H_{j}^{ \pm}$の中に従属関係があるもの が存在していることを示している。［36］

左右対称物体では，（A．1．44）式は

$$
\begin{array}{lll}
j=1 k \text { 対 } \iota 2 & \zeta_{R}^{+}=-\zeta_{R}^{-}, & H_{1}^{+}=-H_{1}^{-} \\
j=2 k \text { 対 }\llcorner\imath & \zeta_{R}^{+}=\zeta_{R}^{-}, & H_{2}^{+}=H_{2}^{-}
\end{array}
$$

であるから，これを解くと

$$
\left.\begin{array}{l}
\zeta_{R}=\frac{1}{2}\left\{\frac{H_{2}^{+}}{\bar{H}_{2}^{+}}+\frac{H_{1}^{+}}{\bar{H}_{1}^{+}}\right\} \\
\zeta_{T}=\frac{1}{2}\left\{\frac{H_{2}^{+}}{\bar{H}_{2}^{+}}-\frac{H_{1}^{+}}{\bar{H}_{1}^{+}}\right\} \tag{A.1.45}
\end{array}\right\}
$$

であることがわかる。
これらの線型流体力の公式は，非線型流体力を扱う場
合にもその第1近似として，あるいは数値計算の精度を
調べる上でも大変有用であると考えられる。

付録2 積分定理による流体力の公式
ここでは，グリーンの定理を使って流体力を求めてみ る。この方法では，漂流力を求めるときの丸尾の式と同様に積分路を自由に琵びうるから，本研究で用いた摂動法による計算に比較して筒単化できる可能性がある。［38］ そこで，始めK没水体の公式を尊き，次いで浮体の間題について考える。

右図のような座標系を考
える。
压力は

$$
\begin{equation*}
\frac{P}{\rho}=-\frac{\partial \varphi}{\partial t}-\frac{1}{2}(\nabla \varphi)^{2}+g y \tag{A.2.1}
\end{equation*}
$$

これによる流体力は

$$
\left\{\begin{array}{l}
F_{x} \tag{A.2.2}\\
F_{y} \\
M_{G}
\end{array}\right\}=-\int_{C} p\left\{\begin{array}{c}
\frac{\partial x}{\partial n} \\
\frac{\partial y}{\partial n} \\
x^{\prime} \frac{\partial y}{\partial n}-y^{\prime} \frac{\partial x}{\partial n}
\end{array}\right\} d s=-\int_{C} p\left\{\begin{array}{c}
\frac{\partial \phi_{1}}{\partial n} \\
\frac{\partial \phi_{2}}{\partial n} \\
\frac{\partial \phi_{3}}{\partial n}
\end{array}\right\} d s
$$

ただし $\quad x^{\prime}=x-x_{G} \quad, \quad y^{\prime}=y-y_{G}$
$\left(x_{G}, y_{G}\right)$ ：物体重心位置
$\phi_{j},(j=1,2,3)$ は物体内部で正則で，物体表面上で上式を満たすポテンシャルとする。

ここで，

$$
\begin{equation*}
\frac{d}{d t} \int_{c} \varphi \frac{\partial x}{\partial n} d s=\int_{c} \varphi_{t} \frac{\partial x}{\partial n} d s+\int_{c} \varphi_{n} \varphi_{x} d s \tag{A.2.3}
\end{equation*}
$$

を便えば［37］

$$
\begin{align*}
& F_{x}= \rho \int_{c}\left\{\frac{\partial \varphi}{\partial t}+\frac{1}{2}(\nabla \varphi)^{2}-g y\right\} \frac{\partial x}{\partial n} d s \\
&= \rho \frac{d}{d t} \int_{c} \varphi \frac{\partial x}{\partial n} d s-\rho \int_{c}\left\{\varphi_{n} \varphi_{x}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial x}{\partial n}\right\} d s-\rho g \int_{c} y \frac{\partial x}{\partial n} d s \\
& k L \imath \\
& F_{y}= \rho \frac{d}{d t} \int_{c} \varphi \frac{\partial y}{\partial n} d s-\rho \int_{c}\left\{\varphi_{n} \varphi_{y}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial x}{\partial n}\right\} d s-\rho g \int_{c} y \frac{\partial y}{\partial n} d s \\
& M_{G}= \rho \frac{d}{d t} \int_{C} \varphi \frac{\partial \phi_{3}}{\partial n} d s-\rho \int_{c}\left\{\varphi_{n}\left(x \varphi_{y}-y \varphi_{x}\right)-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial}{\partial n} \phi_{3}\right\} d s \tag{A.2.4}\\
&-\rho g \int_{c} y \frac{\partial \phi_{3}}{\partial n} d s
\end{align*}
$$

同様にして

上式の右辺第3項は，静浮力であり

$$
\left.\begin{array}{l}
\int_{C} y \frac{\partial x}{\partial n} d s=0, \quad \int_{C} y \frac{\partial y}{\partial n} d s=\iint_{D} d x d y=A \tag{A.2.5}\\
\int_{C} y \frac{\partial \phi_{3}}{\partial n} d s=\int_{C}\left(x y \frac{\partial y}{\partial n}-y^{2} \frac{\partial x}{\partial n}\right) d s=x_{B} A
\end{array}\right\}
$$

ただし A：物体断面積
$\left(x_{B}, y_{B}\right)$ ：浮心位置
となるが，没水体では考えなくて良い。
（A．2．4）式の右辺第2項は，ブリーン定理を使って

$$
\begin{align*}
\int_{c}\left\{\varphi_{n} \varphi_{x}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial x}{\partial n}\right\} d s & =\int_{c_{0}}\left\{\varphi_{n} \varphi_{x}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial x}{\partial n}\right\} d s \\
& +\iint_{\Delta \theta}\left\{\nabla \varphi \nabla \varphi_{x}-\nabla \varphi \cdot \nabla \varphi_{x}\right\} d x d y \\
& =\int_{c_{0}}\left\{\varphi_{n} \varphi_{x}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial x}{\partial n}\right\} d s \tag{A.2.6}
\end{align*}
$$

ただし，
\triangle－はととCok囲まれた領域
従って，（A．2．6）式では積分路は特異点を含まない，かぎリ
自由に選ぶことができる。

$$
\begin{align*}
& \text { こてで, 付録 } 1 k ょ っ て \\
& \varphi(p)=\varphi_{1}(p)+\varphi_{2}(p) \\
& = \tag{A.2.7}\\
& =\int_{C_{0}}\left(\frac{\partial \varphi}{\partial n}-\varphi \frac{\partial}{\partial n}\right) G_{1}(p, \alpha) d s(\alpha)+\int_{C_{0}}\left(\frac{\partial \varphi}{\partial n}-\varphi \frac{\partial}{\partial m}\right) G_{2}(p, Q) d s
\end{align*}
$$

ただし．$P=(x, y), Q=\left(x^{\prime}, y^{\prime}\right)$

$$
\begin{aligned}
& r_{1}^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2} \\
& G_{1}(p, Q)=\frac{1}{2 \pi} \log r_{1} \\
& G_{2}(p, Q)=-\frac{1}{4 \pi} \oint_{0}^{\infty} \frac{(k+k) e^{-k\left(y+y^{\prime}\right)}}{k-k+i \mu} \cdot \frac{d k}{k}\left[e^{i k\left(x-x^{\prime}\right)}+e^{-i k\left(x-x^{\prime}\right)}\right]
\end{aligned}
$$

と分離しておくと

$$
\left.\begin{array}{l}
\int_{c_{0}}\left\{\varphi_{1 n} \varphi_{1 x}-\frac{1}{2}\left(\nabla \varphi_{1}\right)^{2} \frac{\partial x}{\partial n}\right\} d s=0 \tag{A.2.8}\\
\int_{c_{0}}\left\{\varphi_{2 n} \varphi_{2 x}-\frac{1}{2}\left(\nabla \varphi_{2}\right)^{2} \frac{\partial x}{\partial n}\right\} d s=0
\end{array}\right\}
$$

を得る。これは，第1式では積分路を無限遠方に選べ
式では積分路を無限小の用に選べば良いことから直ちと理解できる。

また，付録1によって

$$
\begin{equation*}
\varphi_{1}(p)=\frac{1}{2 \pi} \int_{c_{0}} \sigma(\alpha) \log r_{1}(p, Q) d s(\alpha) \tag{A.2.9}
\end{equation*}
$$

のような吹き出し表現ができるが，これを使って（A．2．6）
式をCo上の1点Qを囲む微小用で積分すると

$$
\begin{aligned}
& F_{L x}=\int_{K}\left\{\varphi_{1 n}(R) \varphi_{2 x}(R)+\varphi_{2 n} \varphi_{1 x}-\nabla \varphi_{1} \nabla \varphi_{2} \frac{\partial x}{\partial n}\right\} d s(R) \\
&=\int_{C_{0}} \sigma(Q) \varphi_{2 x}(2) d s(Q)(A .2 .10) \\
& \text { となるので, これはラガリーカと呼ばれ } \\
& \text { るものである。[37] }
\end{aligned}
$$

あるいは，

$$
\begin{equation*}
\varphi_{1}(p)=\frac{1}{2 \pi} \int_{c_{0}}\left(\frac{\partial}{\partial n} \phi(\alpha)-\phi(\alpha) \frac{\partial}{\partial n}\right) \log r_{1}(p, Q) \cdot d s(a) \tag{A.2.11}
\end{equation*}
$$

なる表現のときは

$$
\begin{equation*}
F_{L X}=\int_{C_{0}}\left(\frac{\partial}{\partial n} \phi_{(\alpha)}-\phi(\alpha) \frac{\partial}{\partial n}\right) \varphi_{2 x}(\alpha) d s(\alpha) \tag{A.2.12}
\end{equation*}
$$

でちえられる。同様にして，ラガリーカの重直成分と
回転もーメントは

$$
\begin{aligned}
& F_{L y}=\int_{C_{0}}\left(\frac{\partial \varphi}{\partial n}-\varphi \frac{\partial}{\partial n}\right) \varphi_{2 y} d s \\
&=\int_{C_{0}} \sigma \varphi_{2 y} d s \\
& M_{L G}=\int_{C_{0}}\left(\frac{\partial \varphi}{\partial n}-\varphi \frac{\partial}{\partial n}\right)\left(x^{\prime} \varphi_{2 y}-y^{\prime} \varphi_{2 x}\right) d s \\
&=\int_{C_{0}} \sigma\left(x^{\prime} \varphi_{2 y}-y^{\prime} \varphi_{2 x}\right) d s \\
& と な る
\end{aligned}
$$

これらのラガリーカは，複素ポテンシャル $\mathrm{F}_{(z)}$ を刹用 して

$$
\left.\begin{array}{l}
z=x+i y, \quad z_{G}=x_{G}+i y_{G} \\
F_{(z)}=\Phi(x, y)+i \Psi(x, y)
\end{array}\right\}
$$

とおくとでラジウスの公式によって

$$
\begin{align*}
F_{L x}-i F_{L y} & =\frac{i \rho}{2} \int_{c}\left(\frac{d F}{d z}\right)^{2} d z \\
M_{L G} & =\operatorname{Re}\left\{-\frac{\rho}{2} \int_{c}\left(\frac{d F}{d z}\right)^{2}\left(z-z_{G}\right) d z\right\} \tag{A.2.14}
\end{align*}
$$

からも導くことができる。
（A．2．4）式右辺第1項については，定常力成分はなく動的成分のみであるが，物体内部領域で正則で，物体表面上で次式を満たす3つのポテンシャルゆよを導入する と

$$
\left.\begin{array}{llll}
\nabla^{2} \phi_{j}(x, y) & =0 & \text { in } \bar{\theta} \tag{A.2.15}\\
\frac{\partial}{\partial n} \phi_{j} & =\frac{\partial}{\partial n} x_{j} & \text { on } C_{0}
\end{array}\right\}(j=1,2,3)
$$

ただし $\frac{\partial}{\partial n} x_{1}=\frac{\partial}{\partial n} x$ ，$\frac{\partial}{\partial n} x_{2}=\frac{\partial}{\partial n} y$ ，$\frac{\partial}{\partial n} x_{3}=\left(x-x_{G}\right) \frac{\partial y}{\partial n}-\left(y-y_{G}\right) \frac{\partial x}{\partial n}$ を解けば ϕ_{j} は求められる。
ここで，Φ_{j} の物理的な意味は物体内部に水が満たされ ていて，x_{j} 方向火動摇するときの内部の水の速度ポテ ンシャルである。これを使えば，（A．3．4）式右辺第1

項は

$$
\begin{align*}
\int_{c} \varphi \frac{\partial}{\partial n} x_{j} d s & =\int_{c} \varphi \frac{\partial \phi_{j}}{\partial n} d s \\
& =\int_{c}\left(\varphi \frac{\partial \phi_{j}}{\partial n}-\phi_{j} \frac{\partial \varphi}{\partial n}\right) d s+\int_{c} \phi_{j} \frac{\partial \varphi}{\partial n} d s \\
& =\int_{C_{0}}\left(\varphi \frac{\partial \phi_{j}}{\partial n}-\phi_{j} \frac{\partial \varphi}{\partial n}\right) d s+\int_{c} \phi_{j} \frac{\partial \varphi}{\partial n} d s \tag{A.2.16}
\end{align*}
$$

のようになり，また

$$
\left.\begin{array}{l}
\int_{c} \phi_{1} \frac{\partial \varphi}{\partial n} d s=\int_{c} x \frac{\partial \varphi}{\partial n} d s \tag{A.2.17}\\
\int_{c} \phi_{2} \frac{\partial \varphi}{\partial n} d s=\int_{c} y \frac{\partial \varphi}{\partial n} d s
\end{array}\right\}
$$

であるから，これらは，物体が排除する流体に働く慣性力に等しい。回転運動では，ゆるに対する質単な表式が得られないが，数値的には蜼なく，解けるであろう。以上の結果をまとめると，没水体では

$$
\begin{equation*}
F_{j}=\rho \frac{d}{d t}\left\{\int_{C_{0}}\left(\varphi \frac{\partial \phi_{j}}{\partial n}-\phi_{j} \cdot \frac{\partial}{\partial n} \varphi\right) d s+F_{0 j}\right\}+F_{L j} \tag{A.2.18}
\end{equation*}
$$

ただし

$$
\begin{aligned}
F_{o j} & =\int_{c} \phi_{j} \frac{\partial \varphi}{\partial n} d s \quad \cdot \text { 排水容積 } \\
F_{L_{j}} & =\rho \int_{c_{0}}\left(\frac{\partial \varphi}{\partial n}-\varphi \frac{\partial}{\partial n}\right) \frac{\partial}{\partial x_{j}} \varphi_{2} d s \\
& =\rho \int_{C_{o}} \sigma \frac{\partial}{\partial x_{j}} \varphi_{2} d s: \text { ラガリー力 }
\end{aligned}
$$

となる。
また，定常力では（A．2．18）式右辺第2項しか関係しな いので

$$
\begin{equation*}
\bar{F}_{j}=\bar{F}_{L j} \tag{A.2.19}
\end{equation*}
$$

ただし，上棒は平均値の意味
で与えられる。ここで，定常かについて

$$
\begin{equation*}
\bar{F}_{L_{j}}=-\frac{\rho}{2} \operatorname{Re}\left[\int_{C_{0}}\left\{\varphi_{n} \frac{\partial}{\partial x_{j}} \varphi^{*}-\frac{1}{2} \nabla \varphi \nabla \varphi^{*} \frac{\partial x_{j}}{\partial n}\right\} d s\right] \tag{A.2.20}
\end{equation*}
$$

の表現に戻って計算してみよう。

積分路は右図のようにとる ものとする。

まず，ラガリー力の水平成分 は

$$
\begin{align*}
& \bar{F}_{x}=-\frac{\rho}{2} \operatorname{Re}\left[\int_{C_{0}}\left\{\varphi_{n} \varphi_{x}^{*}-\frac{1}{2} \nabla \varphi \nabla \varphi^{*} \frac{\partial x}{\partial n}\right\} d s\right] \\
&= \frac{\rho}{2} \operatorname{Re}\left[\int_{F+R^{ \pm}+B}\left\{\varphi_{n} \varphi_{x}^{*}-\frac{1}{2} \nabla \varphi \nabla \varphi^{*} \frac{\partial x}{\partial n}\right\} d s\right] \\
&= \frac{\rho}{2} \operatorname{Re}\left[\int_{F} \varphi_{y} \varphi_{x}^{*} d x+\int_{R^{+}}\left\{-\varphi_{x} \varphi_{x}^{*}+\frac{1}{2}\left(\varphi_{x} \varphi_{x}^{*}+\varphi_{y} \varphi_{y}^{*}\right)\right\} d y\right. \\
&\left.-\quad-\int_{R^{-}}\left\{\varphi_{x} \varphi_{x}^{*}-\frac{1}{2}\left(\varphi_{x} \varphi_{x}^{*}+\varphi_{y} \varphi_{y}^{*}\right)\right\} d y\right] \\
&=\left.-\frac{\rho}{2} \cdot \operatorname{Re}\left[K \int_{-\infty}^{\infty} \varphi \varphi_{x}^{*} d x+\left.\frac{1}{2} \int_{0}^{\infty}\left(\varphi_{x} \varphi_{x}^{*}-\varphi_{y} \varphi_{y}^{*}\right)\right|_{x=\infty}-\left.\left(\varphi_{x} \varphi_{x}^{*}-\varphi_{y} \varphi_{y}^{*}\right)\right|_{x=-\infty}\right\} d y\right] \tag{A..21}
\end{align*}
$$

こてで，1次のポテンシャルだけを考えると $\underbrace{(1)}$ の無限遠
方での漸近展南から

$$
\left.\begin{array}{l}
\varphi^{(1)}=\frac{i g a_{w}}{\omega}\left(e^{-k y+i k x}+i H^{ \pm} e^{-k y \mp i k x}\right) \\
\varphi_{x}^{(1)}=\frac{i g a_{w}}{\omega}\left(i k e^{-k y+i k x} \pm K H^{ \pm} e^{-k y \mp i k x}\right) \\
\varphi_{y}^{(1)}=-k \varphi
\end{array}\right\} \text { as } x \rightarrow \pm \infty
$$

を使って計算すると

$$
\bar{F}_{x}=-\frac{p g a_{w}^{2}}{4} \cdot \operatorname{Re}\left\{1+H^{+} H^{*}-\left(1+i H^{-}\right)\left(1-i H^{-}\right)\right\}
$$

$$
\begin{equation*}
=-\frac{\rho g a_{w}^{2}}{4}\left\{1+\left|H^{+}\right|^{2}-\left|1+i H^{-}\right|^{2}\right\} \tag{A.2.22}
\end{equation*}
$$

を得る。
また。反射波係数 C_{R} ，透過波係数 C_{T} とすれば

$$
\left.\begin{array}{rl}
C_{R}^{2} & =\left|H^{+}\right|^{2} \\
C_{T}^{2} & =\left|1+i H^{-}\right|^{2}
\end{array}\right\}
$$

漂流力を θ_{f} とすれば，$\theta_{f}=-\overline{F_{L x}}$ であり保存系では

$$
C_{R}^{2}+C_{T}^{2}=1
$$

だから

$$
\begin{equation*}
D_{f}=-\bar{F}_{L X}=\frac{\rho g a_{w}^{2}}{2} \cdot C_{R}^{2} \tag{A.2.24}
\end{equation*}
$$

となって，丸尾の式と一致する。
次に，重直方向のラガリー力は

$$
\begin{aligned}
F_{L y} & =-\rho \int_{C_{0}}\left\{\varphi_{n} \varphi_{y}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial y}{\partial n}\right\} d s \\
& =\rho \int_{F+R^{+}+R^{-}+B^{2}}\left\{\varphi_{n} \varphi_{y}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial y}{\partial n}\right\} d s
\end{aligned}
$$

$$
\begin{equation*}
=\frac{\rho}{2} \int_{-\infty}^{\infty}\left(K \varphi^{2}-\varphi_{x}^{2}\right) d x+\rho K\left\{\int_{0}^{\infty}\left(\left.\varphi \varphi_{x}\right|_{x=\infty}-\left.\varphi \varphi_{x}\right|_{x=-\infty}\right) d y\right\} \tag{A.2.25}
\end{equation*}
$$

よって，定常力は

$$
\begin{equation*}
\bar{F}_{y}=\frac{\rho}{4} \operatorname{Re}\left[\int_{-\infty}^{\infty}\left(K^{2} \varphi \varphi^{*}-\varphi_{x} \varphi_{x}^{*}\right) d x+2 K\left\{\int_{0}^{\infty}\left(\varphi \varphi_{x}^{*}\left|-\varphi \varphi_{x=\infty}^{*}\right|_{x=-\infty}\right) d y\right\}\right] \tag{A.2.26}
\end{equation*}
$$

で求めることができる。
ここで，ポテンシャルを1次のものだけ考慮して

$$
\begin{align*}
\varphi_{(x, y)}^{(1) \pm} & =\frac{i g a_{w}}{\omega}\left\{e^{-k y+i k x}+i H^{ \pm} e^{-k y \mp i k x}+\phi_{L}^{(j) \pm}(x, y)\right\} \\
& =\frac{i g a_{w}}{\omega}\left\{e^{-k y+i k x}+i H^{ \pm} e^{-k y \mp i k x}\right\} \text {, as } x \rightarrow \pm \infty \tag{A.2.27}
\end{align*}
$$

とおけば，ゆ $\phi_{L}^{(1) \pm}(x, y)$ は無限遠方では 0 K潮近する。
これを便って計算すれば，（A．2．26）式は

$$
\begin{align*}
\bar{F}_{y}= & \frac{\rho g a_{w}^{2}}{4 K} \cdot \operatorname{Re}\left[\int _ { 0 } ^ { \infty } \left\{K ^ { 2 } \left|\phi_{L}^{(1)}+\left.\right|^{2}-\left|\phi_{L x}^{(i)}\right|^{2}+2 K^{2} \phi_{L}^{(1)}+\left(e^{-i k x}-i H^{+} e^{i k x}\right)\right.\right.\right. \\
& \left.+2 i K \phi_{L x}^{(i)}+\left(e^{-i k x}+i H^{+} e^{i k x}\right)\right\} d x \\
& \left.+\int_{-\infty}^{0}\left\{K^{2}\left|\phi_{L}^{(1)}\right|^{2}-\left|\phi_{L x}^{(1)}\right|^{2}+2\left(K^{2} \dot{\phi}_{L}^{(1)}+i K \phi_{L x}^{*(1)}\right)\left(1-i H^{*}\right) e^{-i k x}\right\} d x\right] \tag{A.2.28}
\end{align*}
$$

となる。

$$
\begin{gather*}
\text { 次 } k モ-x ン ト k>u z は \\
M_{G}=M+y_{G} F_{x}-x_{G} F_{y} \tag{A.2.29}
\end{gather*}
$$

であるから，前と同様にして

$$
\left.\left.\begin{array}{rl}
M_{L}= & -\rho \int_{C_{0}}\left\{\varphi_{n}\left(x \varphi_{y}-y \varphi_{x}\right)-\frac{1}{2}(\nabla \varphi)^{2}\left(x \frac{\partial y}{\partial n}-y \frac{\partial x}{\partial n}\right)\right\} d s \\
= & \frac{\rho}{2} \int_{F}\left(\varphi_{y}^{2}-\varphi_{x}^{2}\right) x d x
\end{array}\right)-\rho \int_{0}^{\infty}\left\{x \varphi_{x} \varphi_{y}+\left.\frac{y}{2}\left(\varphi_{y}^{2}-\varphi_{x}^{2}\right)\right|_{x=+\infty}\right\} d y\right\}
$$

となる。従って定常モーメントは，（A．2．27）式を使って

$$
\begin{align*}
\bar{M}_{L} & =\frac{\rho}{4} \int_{-\infty}^{\infty}\left(K^{2} \varphi \varphi^{*}-\varphi_{x} \varphi_{x}^{*}\right) x d x \\
- & \left.\frac{\rho}{2} \lim _{x_{R}^{*} \rightarrow+\infty} \int_{0}^{\infty}\left\{x_{R}^{+} \varphi_{x} \varphi_{y}^{*}+\frac{y}{2}\left(K^{2} \varphi \varphi^{*}-\varphi_{x} \varphi_{x}^{*}\right)\right\}\right\}_{x=x_{R}^{+}} d y \\
+ & \left.\frac{\rho}{2} \lim _{x_{R} \rightarrow-\infty} \int_{0}^{\infty}\left\{x_{R}^{-} \varphi_{x} \varphi_{y}^{*}+\frac{y}{2}\left(k^{2} \varphi \varphi^{*}-\varphi_{x} \varphi_{x}^{*}\right)\right\}\right|_{x=x_{R}^{*}} d y \\
= & \frac{\rho g a_{w}^{2}}{4 k} \operatorname{Re}\left[\int _ { 0 } ^ { \infty } \left\{K^{2}\left|\phi_{L}^{+}\right|^{2}-\left|\phi_{L x}^{+}\right|^{2}+2 K^{2} \phi_{L}^{+}\left(e^{-i k x}-i H^{*} e^{i k x}\right)\right.\right. \\
& \left.\left.+i k \phi_{L x}^{+}\left(e^{-i k x}+i H^{*} e^{-i k x}\right)\right\} x d x\right] \\
& +\frac{\rho g a_{\omega}^{2}}{4 k} R\left[\int_{-\infty}^{0}\left\{k^{2}\left|\phi_{L}^{-}\right|^{2}-\left|\phi_{L x}\right|^{2}+2\left(k^{2} \phi_{L}^{-}+i k \phi_{L x}^{-}\right)\left(1-i H^{*}\right) e^{-i k x}\right\} x d x\right] \tag{A.2:31}
\end{align*}
$$

のように計算できる。
これらの結果から，垂直力とモーメントの計算では自由表面上での積分が残り，積分路を変更した効果がはっ きりしないが，$\phi_{L}^{ \pm}$の収束が早ければ，物体表面上での積分よりは扱いやすいかもしれない。

次に，浮体の場合には没水体と異なって浸水面積が変化するのでその影響を考えねばならない。物体の変位と自由表面の変位を右図のように $A^{ \pm}, B^{ \pm}$で表すと $C+A^{ \pm}+B^{ \pm}$の積分路について

$$
\begin{equation*}
\frac{d}{d t} \int_{C+A^{ \pm}+B^{ \pm}} \varphi \frac{\partial}{\partial m} x_{j} d s=\int_{C+A^{ \pm}+B^{ \pm}} \varphi_{t} \frac{\partial}{\partial m} x_{j} d s+\int_{C+A^{ \pm}+B^{ \pm}} \varphi_{m} \varphi_{x_{j}} d s \tag{A.2.32}
\end{equation*}
$$

が成立する。
これを使えば，流体力は

$$
\begin{align*}
F_{j}= & -\int_{C} p \frac{\partial}{\partial n} x_{j} d s \\
= & \rho \int_{C}\left\{\varphi_{t}+\frac{1}{2}(\nabla \varphi)^{2}-g y\right\} \frac{\partial}{\partial n} x_{j} d s \\
= & \rho \frac{d}{d t} \int_{C+A^{ \pm}+B^{ \pm}} \varphi \frac{\partial}{\partial n} x_{j} d s-\rho \int_{C+A^{ \pm}+B^{ \pm}}\left\{\varphi_{n} \varphi_{x j}-\frac{1}{2}(\nabla \varphi)^{2} \frac{\partial x_{j}}{\partial n}\right\} d s \\
& -\rho \int_{A^{ \pm}+B^{ \pm}}\left\{\varphi_{t}+\frac{1}{2}(\nabla \varphi)^{2}\right\} \frac{\partial x_{j}}{\partial n} d s-\rho g \int_{C} y \frac{\partial x_{j}}{\partial n} d s \quad \text { (A.2.3 } \tag{A.2.33}
\end{align*}
$$

となり，右辺第1項，第2項につムては没水体と同様に Co上での積分に変えることができる。
（A．2．33）式第3項は，浮体の場合k生じた浸水面積変化による影響を表しているが，$A^{ \pm}, ~ B^{ \pm}$が 1 次の微小量

とすれば，流体力は2次の微小量となる。また，$A^{ \pm}$， $B^{ \pm}$が1次の微小量であるからCoと自由表面の交点での値によって計算しても良いと考えられる。［39］
（A．2．33）式第4項は，浮力項であり

$$
\left.\begin{array}{l}
\int_{C} y \frac{\partial x}{\partial n} d s=\int_{C_{0}+A^{ \pm}+B^{ \pm}} y \frac{\partial x}{\partial n} d s \\
\int_{C} y \frac{\partial y}{\partial n} d s=\int_{C_{0}+A^{ \pm}+B^{ \pm}} y \frac{\partial y}{\partial n} d s+\iint_{\Delta D} d x d y \tag{A.2.34}\\
\int_{C} y\left(x \frac{\partial y}{\partial n}-y \frac{\partial x}{\partial n}\right) d s=\int_{C_{0}+A^{ \pm}+B^{ \pm}} y\left(x \frac{\partial y}{\partial n}-y \frac{\partial x}{\partial n}\right) d s+\iint_{\Delta D} x d x d y
\end{array}\right\}
$$

ただし，ΔD は $C+C+A^{ \pm}+B^{ \pm}$で囲まれる閉領域

のように計算できる。
以上の議論の結果，積分定理を便えば物体表面上での圧力積分は，積分路を自由にかつ合理的に選びうるから㩁動法による方法に此較して計算の简単化が可能である と思われる。積分路を無限遠方に選ぶ方法では，漂流力以外は簡単な表式が導けないので，やはり，物体平均位置での積分を実行した方が一般には有利である，と思わ $れ る 。 ~$

付録3 摂動法による流体力の具体的な計算
（1．41）式の右辺第1項については

$$
\begin{equation*}
P-P_{0}=p^{(0)}+\varepsilon p^{(1)}+\varepsilon^{2} p^{(2)}+O\left(\varepsilon^{3}\right) \tag{A.3.1}
\end{equation*}
$$

ただし

$$
\begin{aligned}
p^{(0)} & =\rho g \bar{y} \\
p^{(1)} & =\rho g\left(X_{2}^{(1)}+\bar{x} X_{3}^{(1)}\right)-\rho \varphi_{t}^{(1)} \\
p^{(2)} & =\rho g\left(X_{2}^{(2)}+\bar{x} X_{3}^{(2)}-\frac{1}{2} \bar{y} X_{3}^{(1) 2}\right)-\rho \varphi_{t}^{(2)}-\frac{\rho}{2}\left(\nabla \varphi^{(1)}\right)^{2} \\
& -\rho\left\{(x-\bar{x}) \varphi_{t x}^{(1)}+(y-\bar{y}) \varphi_{t y}^{(1)}\right\}
\end{aligned}
$$

とおくと，どまでの流体力は

$$
\begin{aligned}
F_{f}^{\prime} & =\int_{c_{0}} p^{(0)}\left\{\begin{array}{c}
-\bar{y}^{\prime}-\varepsilon x_{3}^{(1)} \bar{x}^{\prime}-\varepsilon^{2}\left(x_{3}^{(2)} \bar{x}^{\prime}-\frac{1}{2} X_{3}^{(1) 2} \bar{y}^{\prime}\right) \\
\bar{x}^{\prime}-\varepsilon X_{3}^{(1)} \bar{y}^{\prime}-\varepsilon^{2}\left(X_{3}^{(2)} \bar{y}^{\prime}+\frac{1}{2} X_{3}^{(1) 2} \bar{x}^{\prime}\right) \\
a+\varepsilon C^{(1)}+\varepsilon^{2}\left(c^{(2)}-\hbar^{(1)} x_{3}^{(1)}\right)
\end{array}\right\} d s \\
& =\rho g A\left\{\begin{array}{l}
\varepsilon x_{3}^{(1)}+\varepsilon^{2} X_{3}^{(2)} \\
-1+\frac{1}{2} \varepsilon^{2} X_{3}^{(1) 2} \\
-X_{B}-\varepsilon X_{1}^{(1)}-\varepsilon^{2}\left(X_{1}^{(2)}+X_{2}^{(1)} X_{3}^{(1)}\right)
\end{array}\right\} \\
F_{j}^{\prime \prime} & =\varepsilon \int_{C_{0}} p^{(1)}\left\{\begin{array}{c}
-\bar{y}^{\prime}-\varepsilon X_{3}^{(1)} \bar{x}^{\prime} \\
\bar{x}^{\prime}-\varepsilon X_{3}^{(1)} \bar{y}^{\prime} \\
a+\varepsilon C^{(1)}
\end{array}\right\} d s
\end{aligned}
$$

$$
\begin{align*}
& =\varepsilon \rho g\left\{\begin{array}{l}
-A x_{3}^{(1)} \\
-2 b x_{2}^{(1)} \\
\left(y_{B} A-I_{w}\right) X_{3}^{(1)}
\end{array}\right\}-\varepsilon \int_{C_{0}} \rho \varphi_{t}^{(1)}\left[\begin{array}{c}
-\bar{y}^{\prime} \\
\bar{x}^{\prime} \\
a
\end{array}\right\} d s \\
& +\varepsilon^{2} \rho g\left\{\begin{array}{l}
2 b x_{2}^{(1)} x_{3}^{(1)} \\
-A X_{3}^{(1) 2} \\
-2 b x_{1}^{(1)} X_{2}^{(1)}+A X_{2}^{(1)} X_{3}^{(1)}
\end{array}\right\}+\varepsilon^{2} \rho \int_{C_{0}} \varphi_{t}^{(1)}\left\{\begin{array}{l}
x_{3}^{(1)} \bar{x}^{\prime} \\
x_{3}^{(1)} \bar{y}^{\prime} \\
-x_{1}^{(1)} \bar{x}^{\prime}-X_{2}^{(1)} \bar{y}^{\prime}
\end{array}\right\} d s \tag{A.3.3}
\end{align*}
$$

$$
\begin{align*}
F_{j}^{\prime \prime \prime} & =-\varepsilon^{2} \int_{C_{0}} p^{(2) \frac{\partial}{\partial n} \bar{x}_{j} d s} \\
& =\varepsilon^{2} \rho g\left\{\begin{array}{l}
-A X_{3}^{(2)} \\
-2 b X_{2}^{(2)}+\frac{1}{2} A X_{3}^{(1) 2} \\
\left(y_{B} A-I_{W}\right) X_{3}^{(2)}+\frac{1}{2} x_{B} A X_{3}^{(1) 2}
\end{array}\right\}+\varepsilon^{2} F_{j(2)}^{(2)}+\varepsilon^{2} F_{j(3)}^{(2)}+\varepsilon^{2} F_{j(5)}^{(2)} \tag{A.3.4}
\end{align*}
$$

ただし

$$
\begin{aligned}
F_{j}^{(2)}(2) & =\rho \int_{C_{0}}\left\{(x-\bar{x}) \varphi_{t x}^{(1)}+(y-\bar{y}) \varphi_{t y}^{(1)}\right\} \frac{\partial}{\partial n} \bar{x}_{j} d s \\
& =\rho \int_{C_{0}}\left\{f^{(1)} f_{t}^{(1)}+d^{(1)} \varphi_{s}^{(1)}\right\} \frac{\partial}{\partial n} \bar{x}_{j} d s \\
F_{j(3)}^{(2)} & =\frac{\rho}{2} \int_{c_{0}}\left(\nabla \varphi^{(1)}\right)^{2} \frac{\partial}{\partial n} \bar{x}_{j} d s \\
& =\frac{\rho}{2} \int_{C_{0}}\left\{f_{t}^{(1) 2}+\varphi_{S}^{(1) 2}\right\} \frac{\partial}{\partial n} \bar{x}_{j} d s \\
F_{j}^{(2)}(5) & =\rho \int_{C_{0}} \varphi_{t}^{(2)} \frac{\partial}{\partial n} \bar{x}_{j} d S
\end{aligned}
$$

のように計算できるから，てれらをまとめると

$$
\begin{align*}
& F_{j}^{(0)}=\rho g A\left\{\begin{array}{c}
0 \\
-1 \\
x_{B}
\end{array}\right\} \quad j=\left\{\begin{array}{l}
1 \\
2 \\
3
\end{array}\right\} \tag{A.3.5}\\
& F_{j}^{(1)}=\rho g\left\{\begin{array}{c}
0 \\
-2 b X_{2}^{(1)} \\
-A X_{1}^{(1)}+\left(y_{B} A-I_{w}\right) X_{3}^{(1)}
\end{array}\right\}-\rho\left(\sum_{C_{0}} \varphi_{t}^{(1)}\left\{\begin{array}{c}
-\bar{y}^{\prime} \\
\bar{x}^{\prime} \\
a
\end{array}\right\} d s,(A .3 .6)\right. \\
& 2 b X_{2}^{(1)} X_{3}^{(1)} \\
& F_{j}^{(2)}=\rho g\left\{\begin{array}{c}
-2 b X_{2}^{(2)} \\
-A X_{1}^{(2)}+\left(y_{B} A-I_{w}\right) X_{3}^{(2)}-2 b X_{1}^{(1)} X_{2}^{(1)}+\frac{1}{2} X_{B} A X_{3}^{(1) 2}
\end{array}\right\} \tag{A.3.7}\\
&+\rho \int_{C_{0}}^{\varphi_{t}^{(1)}\left\{\begin{array}{l}
X_{3}^{(1)} \bar{x}^{\prime} \\
X_{3}^{(1)} \bar{y}^{\prime} \\
-C^{(1)}
\end{array}\right\} d s+F_{j(2)}^{(2)}+F_{j(3)}^{(2)}+F_{j(5)}^{(2)},(A .3 .7)}
\end{align*}
$$

なる結果を得る。
ただし，

$$
\begin{aligned}
& \int_{C_{0}} \bar{x}^{\prime} d s=-B=-2 b, \quad \int_{C_{0}} \bar{y}^{\prime} d s=0 \\
& \int_{C_{0}} \bar{x} \bar{x}^{\prime} d s=\int_{C_{0}} \bar{y} \bar{y}^{\prime} d s=0, \quad A=\int_{C_{0}} \bar{x}^{\prime} \bar{y}^{\prime} d s=-\int_{C_{0}} \bar{y} \bar{x}^{\prime} d s \\
& a=\bar{x}^{\prime} \bar{x}+\bar{y}^{\prime} \bar{y}, \quad C^{(1)}=X_{1}^{(1)} \bar{x}^{\prime}+x_{2}^{(1)} \bar{y}^{\prime} \\
& \int_{C_{0}} \bar{x} a d s=-I_{w}+y_{B} A, \quad I_{W}=\int_{-b}^{b} x^{2} d x \\
& \left(x_{B}, y_{B}\right): \text { 浮 } 心
\end{aligned}
$$

付録4 数値計算法の公式
以下に，本研究の数値計算で用いられた公式を列举す る。

$$
\left.\begin{array}{rl}
P_{i j} & =\int_{s_{j}} \frac{\partial}{\partial n} \log r(P, Q) d s(Q) \\
Q_{i j} & =\int_{s_{j}} \log r(p, Q) d s(Q)
\end{array}\right\} \begin{gathered}
(A .4 .1) \\
\text { ただ } ا \quad P=(x, y), Q=\left(x^{\prime}, y^{\prime}\right) \\
r^{2}=\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}
\end{gathered}
$$

ここで，右図のような複素平面上において

$$
z=\left(x-x^{\prime}\right)+i\left(y-y^{\prime}\right)
$$

とおけば

$$
\begin{equation*}
\log z=\log r(P, Q)+i \theta(p, Q), \quad \theta=\tan ^{-1} \frac{y-y^{\prime}}{x-x^{\prime}} \tag{A.4.2}
\end{equation*}
$$

となるが，コーシー・リーマンの関係から

$$
\left.\begin{array}{l}
\frac{\partial}{\partial n} \log r(p, Q)=\frac{\partial}{\partial s} \theta(p, Q) \tag{A.4.3}\\
\frac{\partial}{\partial s} \log r(p, Q)=-\frac{\partial}{\partial n} \theta(p, Q)
\end{array}\right\}
$$

を使えば

$$
P_{i j}=\int_{s_{j}} \frac{\partial}{\partial s} \theta(P, Q) d s
$$

$$
\begin{align*}
&= {[\theta(p, Q)]_{S_{j}} } \\
&= \tan ^{-1} \frac{y-y_{i+1}}{x-x_{j+1}}-\tan ^{-1} \frac{y-y_{j}}{x-x_{j}} \tag{A.4.4}\\
& Q_{i j}= \operatorname{Re}\left\{e^{-i \delta_{j}} \int_{0}^{z_{j+1}-z_{j}} \log \left(z_{p}-z_{j}-\zeta\right) d \zeta\right\} \\
&= \operatorname{Re}\left[e ^ { - i \delta _ { j } } \left\{\left(z_{j}-z_{j+1}\right)+\left(z_{p}-z_{j}\right) \log \left(z_{p}-z_{j}\right)\right.\right. \\
&\left.\left.-\left(z_{p}-z_{j+1}\right) \log \left(z_{p}-z_{j+1}\right)\right\}\right] \\
&=-\left|z_{j+1}-z_{j}\right|+\operatorname{Re}\left[e ^ { - i \delta _ { j } } \left\{\left(z_{p}-z_{j}\right) \log \left(z_{p}-z_{j}\right)\right.\right. \\
&\left.\left.-\left(z_{p}-z_{j+1}\right) \log \left(z_{p}-z_{j+1}\right)\right\}\right] \tag{A.4.5}
\end{align*}
$$

ただし

$$
e^{i \delta_{j}}=\frac{z_{j+1}-z_{j}}{\left|z_{j+1}-z_{j}\right|}
$$

次に，原点におかれた単位吹き出しの速度ポテンシャ ルとその流れ関数は

$$
\left.\begin{array}{l}
\phi_{S}(x, y)=-\frac{1}{\pi} \oint_{0}^{\infty} \frac{e^{-k y} \cos k x}{k-K} d k+i e^{-k y} \cos k x \tag{A.4.6}\\
\psi_{S}(x, y)=-\frac{1}{\pi} \oint_{0}^{\infty} \frac{e^{-k y} \sin k x}{k-k} d k+i e^{-k y} \sin k x
\end{array}\right\}
$$

で与えられる。
ここで，$z=x+i y, \bar{z}=x-i y$ とおいて

$$
\left.\begin{array}{l}
I_{1}=\int_{0}^{\infty} \frac{e^{i k z}}{k-k} d k \\
I_{2}=\int_{0}^{\infty} \frac{e^{i k z}}{k-k} d k
\end{array}\right\}(A .4 .7)
$$

なる積分を複素平面 $\zeta=k+i m$ 上で考え，I_{1} に対しては右回の上半面， I2に対しては下半面の積分路をと
 るものとする。

半径無限大の周上ではRiemann－Lebesgue の補助定理に よって，その上での積分は0とすることができるから

$$
\begin{align*}
I_{1} & =\int_{0}^{\infty} \frac{e^{-m z}}{m+i k} d m \\
& =e^{i k z} \int_{i k}^{\infty} \frac{e^{-t z}}{t} d t \quad(\because t=m+i k) \\
& =e^{i k z} \int_{i k z}^{\infty} \frac{e^{-u}}{u} d u \quad(\because u=t z) \\
& =e^{i k z} E_{1}(i k z) \tag{A.4.8}
\end{align*}
$$

同様にして，I2も求められるが，この時は乍にKの極を含 むので留数分を考虑して

$$
\begin{align*}
I_{2} & =e^{-i k \bar{z}} \int_{-i k \bar{z}}^{\infty} \frac{e^{-u}}{u} d u-2 \pi i e^{-i k \bar{z}} \\
& =e^{-i k \bar{z}} E_{1}(-i k \bar{z})-2 \pi i e^{-i k \bar{z}} \tag{A.4.9}
\end{align*}
$$

ただし，$E_{1}(z)=\int_{z}^{\infty} \frac{e^{-u}}{u} d u:$ 積分指数関数

であり

$$
E_{1}(z)=\overline{E_{1}(\bar{z})}
$$

であるから，次式を得る。

$$
\left.\begin{array}{rl}
\phi_{S}(x, y) & =-\frac{1}{2 \pi}\left\{e^{i k z} E_{1(i k z)}+e^{-i k \bar{z}} E_{1(-i k \bar{z})}\right\}+i e^{-i k \bar{z}} \\
& =-\frac{1}{\pi} \operatorname{Re}\left\{e^{i k z} E_{1}(i k z)\right\}+i e^{-i k \bar{z}} \tag{A.4.10}\\
\psi_{s}(x, y) & =-\frac{1}{2 \pi i}\left\{e^{i k z} E_{1}(i k z)-e^{-i k \bar{z}} E_{1(-i k \bar{z})}\right\}-e^{-i k \bar{z}} \\
& =-\frac{1}{\pi} \eta_{m}\left\{e^{i k z} E_{1}(i k z)\right\}-e^{-i k \bar{z}}
\end{array}\right\}
$$

を満足するから

$$
\begin{align*}
\int_{s_{j}} \frac{\partial}{\partial n} \phi_{s} \log r d s & =\int_{s_{j}} \frac{\partial}{\partial s} \psi_{s} \log r d s \\
& =\int_{s_{j}} \log r \cdot d \psi_{s} \tag{A.4.12}
\end{align*}
$$

として微分操作を省略して計算できる。

次く，原点におかれた単位強さの水平二重吹き出しの速度ポテンシャルと流れ関数は

$$
\left.\begin{array}{rl}
\phi_{D}(x, y) & =\frac{1}{K} \frac{\partial}{\partial x^{\prime}} \phi_{S}(x, y ; 0,0) \\
& =-\frac{x}{x^{2}+y^{2}}-\frac{1}{\pi} \oint_{0}^{\infty} \frac{e^{-k y} \sin k x}{k-K} d k+i e^{-k y} \sin K x \\
& =-\frac{x}{x^{2}+y^{2}}-\frac{1}{\pi} \eta_{m}\left\{e^{i k z} E_{1}(i k z)\right\}-e^{-i k \bar{z}} \tag{A.4.13}\\
\psi_{\theta(x, y)} & =-\frac{y}{x^{2}+y^{2}}+\frac{1}{\pi} \oint_{0}^{\infty} \frac{e^{-k y} \cos k x}{k-K} d k-i e^{-k y} \cos k x \\
& =-\frac{y}{x^{2}+y^{2}}+\frac{1}{\pi} \operatorname{Re}\left\{e^{i k z} E_{1}(i k z)\right\}-i e^{-i k \bar{z}}
\end{array}\right\}
$$

で与えられ，コーシー・リーマンの関係を使って

$$
\begin{align*}
\int_{S_{j}} \frac{\partial}{\partial n} \phi_{\theta} \log r d s & =\int_{S_{j}} \frac{\partial}{\partial s} \psi_{\theta} \log r d s \\
& =\int_{S_{j}} \log r d \psi_{\theta} \tag{A.4.14}
\end{align*}
$$

として微分操作を省略することができる。
以上の結果から，$\phi_{S}, \psi_{S}, \phi_{\theta}$ ，ψ_{θ} の計算は複素数型の積分指数関数を使えば一度に計算することができる。
以下の展開式が与えられている。
（i）$|z|$ が小さいとき

$$
E_{1}(z)=-\gamma-\ln z-\sum_{n=1}^{\infty} \frac{(-1)^{n} z^{n}}{n n!}
$$

ただし

$$
\gamma=0.5772156649 \ldots . . ; \text { オイラ一定数 }
$$

（ii）$|z|$ が大きいとき

$$
E_{1}(z)=\frac{e^{-z}}{z}\left\{1-\frac{1}{z}+\frac{2!}{z^{2}}-\frac{3!}{z^{3}}+\cdots\right\}
$$

（iii）$|z|$ が（i）と（ii）の中間にあるとき，連分数を使って

$$
E_{1}(z)=e^{-z}\left(\frac{1}{z+\cdots} \frac{1}{1+} \frac{1}{z+} \frac{2}{1+} \frac{2}{z+} \frac{3}{1+} \frac{3}{z+} \cdots\right)
$$

本研究の数値計算では，右図 の領域で（i），（ii），（iii）を使い分け た。

次に，ユチン函数は

であるが

$$
\left.\begin{array}{l}
\phi_{0}^{ \pm}=e^{-k y \pm i k x} \tag{A.4.16}\\
\psi_{0}^{ \pm}=\mp e^{-k y \pm i k x}
\end{array}\right\}
$$

$$
\left.\begin{array}{rl}
\text { とおくと } \\
\frac{\partial}{\partial n} \phi_{0}^{ \pm} & =\frac{\partial}{\partial s} \psi_{0}^{ \pm} \tag{A.4.17}\\
\frac{\partial}{\partial s} \phi_{0}^{ \pm} & =-\frac{\partial}{\partial n} \psi_{0}^{ \pm}
\end{array}\right\}
$$

であるので

$$
\begin{equation*}
H^{ \pm}=\int_{c} \frac{\partial \varphi}{\partial n} \phi_{0}^{ \pm} d s-\int_{c} \varphi d \psi_{0}^{ \pm} \tag{A.4.18}
\end{equation*}
$$

として計算できる。あるんは，ツの流れ関数 $\psi を$ 使え ば

$$
\left.\begin{array}{l}
\frac{\partial}{\partial n} \varphi=\frac{\partial}{\partial s} \psi \tag{A.4.19}\\
\frac{\partial}{\partial s} \varphi=-\frac{\partial}{\partial n} \psi
\end{array}\right\}
$$

であるから

$$
\begin{equation*}
H^{ \pm}=\int_{c} \phi_{0}^{ \pm} d \psi-\int_{c} \varphi d \psi_{0}^{ \pm} \tag{A.4.20}
\end{equation*}
$$

によって計算してもよい。

Table 2.1 Added-mass coefficient and radiation-wave amplitude ratio of a swaying circular cylinder as a function of number of elements on body and free-surface

Table 2.2 Added-mass coefficient and radiation-wave amplitude ratio of a heaving circular cylinder as a function of number of elements on body and free-surface
Table 2.3 Added-mass coefficient and radiation-wave amplitude ratio of a swaying circular cylinder as a function of position where radiation condition is imposed
Table 2.4 Added-mass coefficient and radiation-wave amplitude ratio of a heaving circular cylinder as a function of position where radiation condition is imposed
Table 2.5 First- and second-order hydrodynamic forces of a circular cylinder at $K b=1.2$ (cf. Figs. 2.25-2.27)

Table 3.1 Principal dimensions of models

Fig. 1.1 Coordinate system
Fig. l. 2 Variation of the wetted surface
Fig. 2.1 Subdivision of contour
Fig. 2.2 Second-order boundary value problems
Fig. 2.3(a) First-order potential distribution on body of a swaying circular cylinder ($\mathrm{Kb}=1.0$)
Fig. 2.3(b) First-order potential distribution on free-surface of a swaying circular cylinder ($\mathrm{Kb}=1.0$)
Fig. 2.4(a) First-order potential distribution on body of a heaving circular cylinder ($\mathrm{Kb}=1.0$)
Fig. 2.4(b) First-order potential distribution on free-surface of a heaving circular cylinder ($\mathrm{Kb}=1.0$)
Fig. 2.5 Added-mass coefficient and radiation-wave amplitude ratio of a swaying circular cylinder
Fig. 2.6 Added-mass coefficient and radiation-wave amplitude ratio of a heaving circular cylinder
Fig. 2.7 First-order horizontal wave-exciting force of a circular cylinder
Fig. 2.8 First-order vertical wave-exciting force of a circular cylinder
Fig. 2.9 Second-order boundary conditions imposed at free-surface in radiation problems of a circular cylinder ($q=q_{c}+i q_{S} ; K b=1$)
Fig. 2.10 Second-order boundary condition imposed at free-surface in diffraction problem of a circular cylinder ($q=q_{c}+i q_{s} ; \mathrm{Kb}=1$)
Fig. 2.11 Distribution of second-order potential on body of a swaying circular cylinder (symmetry to y-axis)
Fig. 2.12 Distribution of second-order potential on body of a heaving circular cylinder (symmetry to y-axis)
Fig. 2.13(a) Distribution of second-order steady pressure on body of a swaying circular cylinder (symmetry to y-axis)
Fig. 2.13(b) Distribution of second-order oscillating pressure on body of a swaying circular cylinder (symmetry to y-axis)
Fig. 2.14(a) Distribution of second-order steady pressure on body of a heaving circular cylinder
Fig. 2.14(b) Distribution of second-order oscillating pressure on body of a heaving circular cylinder
Fig. 2.15 Distribution of second-order steady pressure on body in diffraction problem of a circular cylinder
Fig. 2.16(a) Real part of second-order oscillating forces of a swaying circular cylinder
Fig. 2.16(b) Imaginary part of second-order oscillating forces of a swaying circular cylinder
Fig. 2.17(a) Real part of second-order oscillating forces of a heaving circular cylinder
Fig. 2.17(b) Imaginary part of second-order oscillating forces of a heaving circular cylinder
Fig. 2.18 Each component of the drifting force of a fixed circular cylinder in waves
Fig. 2.I9(a) Real part of second-order horizontal oscillating forces of a fixed circular cylinder

Fig. 2.19(b) Imaginary part of second-order horizontal oscillating forces of a fixed circular cylinder
Fig. 2.20(a) Real part of second-order vertical oscillating forces of a fixed circular cylinder
Fig. 2.20(b) Imaginary part of second-order vertical oscillating forces of a fixed circular cylinder
Fig. 2.21 Each component of the drifting force of a free-floating Lewis-form cylinder in waves
Fig. 2.22 Each component of the steady vertical force of a freefloating Lewis-form cylinder in waves (c-1)
Fig. 2.23(a) Real part of second-order horizontal oscillating forces of a free-floating Lewis-form cylinder in waves (C-1)
Fig. 2.23(b) Imaginary part of second-order horizontal oscillating forces of a free-floating Lewis-form cylinder in waves (c-1)
Fig. 2.24(a) Real part of second-order vertical oscillating forces of a free-floating lewis-form cylinder in waves (C-I)
Fig. 2.24(b) Imaginary part of second-order vertical oscillating forces of a free-floating Lewis-form cylinder in waves (C-I)
Fig. 2.25 Wave-forms of second-order force of a swaying circular cylinder ($\mathrm{kb}=1.2$)
Fig. 2.26 Wave-forms of total force of a heaving circular cylinder which includes inertia-force and restoring-force ($\mathrm{Kb}=1.2$)
Fig. 2.27 Wave-forms in diffraction problem of a fixed circular cylinder ($\mathrm{Kb}=1.2$)
Fig. 2.28 Wave-forms in diffraction problem of a fixed Lewis-form cylinder ($\mathrm{S}-5, \mathrm{~Kb}=1.2$)

Fig. 3.1 Experimental set-up of the diffraction problem
Fig. 3.2 Experimental apparatus of the radiation problems
Fig. 3.3 Model-sections used in the experiments
Fig. 3.4 Flow-chart of the experimental analysis
Fig. 3.1.1 First-order wave-exciting forces of a circular cylinder
Fig. 3.1.2 Second-order wave-exciting force in sway of a circular cylinder
Fig. 3.1.3 Second-order wave-exciting force in heave of a circular cylinder
Fig. 3.1.4 Ratio of second-order horizontal force to that of firstorder for various incident-wave heights (circular cylinder)
Fig. 3.1.5 Ratio of second-order vertical force to that of firstorder for various incident-wave heights (circular cylinder)
Fig. 3.1.6 First-order wave-exciting forces of a Lewis-form cylinder (s-2)
Fig. 3.1.7 Second-order wave-exciting force in sway of a Lewis-form cylinder ($\mathrm{S}-2$)
Fig. 3.1.8 Second-order wave-exciting force in heave of a Lewis-form cylinder ($\mathrm{S}-2$)

Fig. 3.2.1 An example of the experimental records of a swaying circular cylinder
Fig. 3.2.2 Added-mass coefficient of a swaying circular cylinder Fig. 3.2.3 Radiation-wave amplitude ratio obtained from the damping force of a swaying circular cylinder

Fig. 3.2.4 Measured radiation-wave amplitude ratio of a swaying circular cylinder
Fig. 3.2.5 Second-order vertical steady-force of a swaying circular cylinder
Fig. 3.2.6 Second-order vertical oscillating force of a swaying circular cylinder
Fig. 3.2.7 Phase-difference of second-order oscillating force of a swaying circular cylinder
Fig. 3.2.8 Added-mass coefficient of a swaying Lewis-form cylinder ($\mathrm{s}-2$)
Fig. 3.2.9 Radiation-wave amplitude ratio of a swaying Lewis-form cylinder (S-2)
Fig. 3.2.10 Measured radiation-wave amplitude ratio of a swaying Lewis-form cylinder (S-2)
Fig. 3.2.11 Second-order vertical steady-force of a swaying Lewis-form cylinder ($\mathrm{s}-2$)
Fig. 3.2.12 Second-order vertical oscillating force of a swaying Lewis-form cylinder ($\mathrm{S}-2$)
Fig. 3.2.13 Bi-harmonic component in horizontal force of swaying cylinders (S-1, S-2)

Fig. 3.3.1 An example of experimental records of a heaving circular cylinder ($\mathrm{Kb}=1.2$)
Fig. 3.3.2 Added-mass coefficient of a heaving circular cylinder
Fig. 3.3.3 Radiation-wave amplitude ratio obtained from the damping force of a heaving circular cylinder
Fig. 3.3.4 Measured radiation-wave amplitude ratio of a heaving circular cylinder
Fig. 3.3.5 Second-order vertical steady-force of a heaving circular cylinder
Fig. 3.3.6 Second-order oscillating force of a heaving circular cylinder
Fig. 3.3.7 Phase-difference of second-order oscillating force of a heaving circular cylinder
Fig. 3.3.8 Added-mass coefficient of a heaving Lewis-form cylinder (S-2)
Fig. 3.3.9 Radiation-wave amplitude ratio obtained from the damping force of a heaving Lewis-form cylinder (S-2)
Fig. 3.3.10 Measured radiation-wave amplitude ratio of a heaving Lewis-form cylinder (S-2)
Fig. 3.3.11 Second-order vertical steady-force of a heaving Lewis-form cylinder ($\mathrm{S}-2$)
Fig. 3.3.12 Second-order Oscillating force of a heaving Lewis-form cylinder ($\mathrm{S}-2$)

Fig. 3.4.1 Added-mass coefficient of swaying cylinders ($\mathrm{S}-3, \mathrm{~S}-4$)
Fig. 3.4.2 Radiation-wave amplitude ratio obtained from the damping force of swaying cylinders (S-3, S-4)
Fig. 3.4.3 Measured radiation-wave amplitude ratio of swaying cylinders ($\mathrm{s}-3, \mathrm{~s}-4$)
Fig. 3.4.4 Second-order vertical steady-force of swaying cylinders ($s-3, s-4$)
Fig. 3.4.5 Second-order vertical oscillating force of swaying cylinders ($s-3, s-4$)
Fig. 3.4.6 Added-mass coefficient of heaving cylinders (s-3, s-4)
Fig. 3.4.7 Radiation-wave amplitude ratio obtained from the damping force of heaving cylinders ($\mathrm{S}-3, \mathrm{~S}-4$)
Fig. 3.4.8 Measured radiation-wave amplitude ratio of heaving cylinders (s-3, s-4)

Fig. 3.4.9 Second-order vertical steady-force of heaving cylinders
Fig. 3.4.10 Second-order oscillating force of heaving cylinders ($\mathrm{S}-3, \mathrm{~s}-4$)
Fig. 3.4.11 An example of experimental records of the diffraction problem of fixed cylinders ($\mathrm{S}-3, \mathrm{~S}-4$)
Fig. 3.4.12 First-order wave-exciting force in sway of fixed cylinders ($\mathrm{s}-3, \mathrm{~s}-4$)
Fig. 3.4.13 First-order wave-exciting force in heave of fixed cylinders ($s-3, s-4$)
Fig. 3.4.14 Drifting-force of fixed cylinders (s-3, s-4)
Fig. 3.4.15 Second-order vertical steady-force of fixed cylinders ($s-3, s-4$)
Fig. 3.4.16 Second-order horizontal oscillating force of fixed cylinders ($S-3, S-4$)
Fig. 3.4.17 Second-order vertical oscillating force of fixed cylinders ($\mathrm{S}-3, \mathrm{~S}-4$)

Fig. 3.5.1 An example of the experimental records of a fixed Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.2 First-order wave-exciting force in sway of a Lewis-form cylinder ($\mathrm{S}-5$)
Fig. 3.5.3 First-order wave-exciting force in heave of a Lewis-form cylinder (S-5)
Fig. 3.5.4 First-order wave-exciting moment in roll of a Lewis-form cylinder ($\mathrm{S}-5$)
Fig. 3.5.5 Second-order horizontal bi-harmonics of a fixed Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.6 Second-order vertical bi-harmonics of a fixed Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.7 Second-order rolling bi-harmonics of a fixed Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.8 An example of the experimental records of a free-floating Lewis-form cylinder in waves ($\mathrm{s}-5 ; \mathrm{C}-1$)
Fig. 3.5.9 First-order responses in sway of a Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.10 First-order responses in heave of a Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.11 First-order responses in roll of a Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.12 Drifting-forces of a fixed and free-floating Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.13 Second-order vertical steady-force of a fixed and freefloating Lewis-form cylinder in waves (S-5)
Fig. 3.5.14 Second-order heeling-moment of a fixed and free-floating Lewis-form cylinder in waves (S-5)
Fig. 3.5.15 Second-order responses in sway of a Lewis-form cylinder in waves ($5-5$)
Fig. 3.5.16 Second-order responses in heave of a Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.17 Second-order responses in roll of a Lewis-form cylinder in waves ($\mathrm{S}-5$)
Fig. 3.5.18 Moment-levers of the steady-heeling-moment with respect to the drifting force of a Lewis-form cylinder in waves (S-5)

Table 2.1 Added-mass coefficient and radiation-wave amplitude ratio of a swaying circular cylinder as a function of number of elements on body and free-surface

$$
\text { Sway (} \mathrm{Kb}=1.0, \bar{X}_{r}=9.0 \text {) }
$$

	$\begin{gathered} \mathrm{ms} \\ (\mathrm{err} . \%) \end{gathered}$		$\begin{gathered} \text { As } \\ (\mathrm{err} . \%) \end{gathered}$		
Ursell-Tasai	$\begin{aligned} & .38180 \\ & (0.0) \end{aligned}$		$\begin{aligned} & 1.0834 \\ & (0.0) \end{aligned}$		
Green Function	$\begin{aligned} & .38190 \\ & (0.03) \end{aligned}$		$\begin{aligned} & 1.0830 \\ & (0.04) \end{aligned}$		
Present Theory	M-1	M-2	M-1	M-2	CPU(sec)
NC*NF $=10 * 20$	$\begin{aligned} & .40745 \\ & (6.72) \\ & \hline \end{aligned}$	$\begin{aligned} & .42498 \\ & (11.31) \end{aligned}$	$\begin{aligned} & 1.0842 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 1.0943 \\ & (1.01) \end{aligned}$	1.369
10*30	$\begin{aligned} & .40765 \\ & (6.77) \end{aligned}$	$\begin{aligned} & .42277 \\ & (10.73) \end{aligned}$	$\begin{aligned} & 1.0842 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 1.0939 \\ & (0.97) \end{aligned}$	2.612
10*40	$\begin{aligned} & .40762 \\ & (6.76) \end{aligned}$	$\begin{aligned} & .42167 \\ & (10.44) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0843 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 1.0937 \\ & (0.95) \end{aligned}$	4.427
15*20	$\begin{aligned} & .39838 \\ & (4.34) \end{aligned}$	$\begin{aligned} & .41116 \\ & (7.69) \end{aligned}$	$\begin{aligned} & 1.0848 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 1.0917 \\ & (0.77) \end{aligned}$	1.892
15*30	$\begin{aligned} & .39834 \\ & (4.33) \end{aligned}$	$\begin{aligned} & .40883 \\ & (7.08) \end{aligned}$	$\begin{aligned} & 1.0848 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 1.0914 \\ & (0.74) \end{aligned}$	3.548
15*40	$\begin{aligned} & .39822 \\ & (4.30) \end{aligned}$	$\begin{aligned} & .40774 \\ & (6.79) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0849 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 1.0913 \\ & (0.73) \end{aligned}$	5.750
20*20	$\begin{array}{r} .39419 \\ (3.25) \\ \hline \end{array}$	$\begin{aligned} & .40480 \\ & (6.02) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.0848 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 1.0901 \\ & (0.62) \end{aligned}$	2.585
20*30	$\begin{array}{r} .39405 \\ (3.21) \\ \hline \end{array}$	$\begin{array}{r} .40239 \\ (5.39) \\ \hline \end{array}$	$\begin{aligned} & 1.0848 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 1.0898 \\ & (0.59) \\ & \hline \end{aligned}$	4.500
20*40	$\begin{aligned} & .39387 \\ & (3.16) \end{aligned}$	$\begin{aligned} & .40126 \\ & (5.10) \end{aligned}$	$\begin{aligned} & 1.0848 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 1.0897 \\ & (0.58) \end{aligned}$	7.351

Note) CPU time containes all the first-order problems of Sway, Heave, Roll and Diffraction by HITAC M-200H.

Table 2.2 Added-mass coefficient and radiation-wave amplitude ratio of a heaving circular cylinder as a function of number of elements on body and free-surface

Heave (Kb=1.0, $\overline{\mathrm{X}} r=9.0)$

	$\begin{gathered} \mathrm{mh} \\ (\operatorname{err} . \%) \end{gathered}$		$\begin{gathered} \mathrm{Ah} \\ (\mathrm{err} . \%) \end{gathered}$		
Ursell-Tasai			$\begin{aligned} & .78904 \\ & (0.0) \end{aligned}$		
Green Function			$\begin{aligned} & .78935 \\ & (.039) \end{aligned}$		
Present Theory	M-1	M-2	M-1	M-2	CPU(sec)
NC*NF=10*20	$\begin{aligned} & .59696 \\ & (1.33) \\ & \hline \end{aligned}$	$\begin{aligned} & .60667 \\ & (0.28) \\ & \hline \end{aligned}$	$\begin{aligned} & .79228 \\ & (0.41) \\ & \hline \end{aligned}$	$\begin{aligned} & .81205 \\ & (2.92) \end{aligned}$	1.369
10*30	$\begin{aligned} & .59840 \\ & (1.09) \end{aligned}$	$\begin{aligned} & .60543 \\ & (0.07) \end{aligned}$	$\begin{aligned} & .79400 \\ & (0.63) \end{aligned}$	$\begin{aligned} & .80863 \\ & (2.48) \end{aligned}$	2.612
10*40	$\begin{aligned} & .59912 \\ & (0.97) \end{aligned}$	$\begin{aligned} & .60498 \\ & (0.00) \end{aligned}$	$\begin{aligned} & .79488 \\ & (0.74) \end{aligned}$	$\begin{aligned} & .80716 \\ & (2.30) \end{aligned}$	4.427
15*20	$\begin{aligned} & .59630 \\ & (1.43) \end{aligned}$	$\begin{aligned} & .60298 \\ & (0.33) \end{aligned}$	$\begin{aligned} & .79565 \\ & (0.84) \end{aligned}$	$\begin{aligned} & .80945 \\ & (2.59) \end{aligned}$	1.892
15*30	$\begin{aligned} & .59786 \\ & (1.18) \end{aligned}$	$\begin{aligned} & .60175 \\ & (0.53) \end{aligned}$	$\begin{aligned} & .79766 \\ & (1.09) \end{aligned}$	$\begin{aligned} & .80590 \\ & (2.14) \end{aligned}$	3.548
15*40	$\begin{aligned} & .59866 \\ & (1.04) \end{aligned}$	$\begin{aligned} & .60132 \\ & (0.60) \end{aligned}$	$\begin{aligned} & .79869 \\ & (1.22) \end{aligned}$	$\begin{aligned} & .80435 \\ & (1.94) \end{aligned}$	5.750
20*20	$\begin{aligned} & .59582 \\ & (1.51) \end{aligned}$	$\begin{aligned} & .60119 \\ & (0.63) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline .79740 \\ & (1.06) \\ & \hline \end{aligned}$	$\begin{aligned} & .80831 \\ & (2.44) \\ & \hline \end{aligned}$	2.585
20*30	$\begin{aligned} & .59743 \\ & (1.25) \end{aligned}$	$\begin{aligned} & .59996 \\ & (0.83) \end{aligned}$	$\begin{aligned} & .79954 \\ & (1.33) \end{aligned}$	$\begin{aligned} & .80470 \\ & (1.98) \end{aligned}$	4.500
$20 * 40$	$\begin{aligned} & .59827 \\ & (1.11) \end{aligned}$	$\begin{aligned} & .59953 \\ & (0.90) \end{aligned}$	$\begin{aligned} & .80063 \\ & (1.47) \end{aligned}$	$\begin{aligned} & .80312 \\ & (1.78) \end{aligned}$	7.351

Note) CPU time containes all the first-order problems of Sway, Heave, Roll and Diffraction by HITAC M-200H.

Table 2.3 Added-mass coefficient and radiation-wave amplitude ratio of a swaying circular cylinder as a function of position where radiation condition is imposed

Sway ($\mathrm{Kb}=1.0$, $\mathrm{NC} * \mathrm{NF}=20 * 40$)

		$\begin{gathered} \mathrm{ms} \\ (\mathrm{err} . \%) \end{gathered}$		$\begin{gathered} \text { As } \\ (\operatorname{err} . \%) \end{gathered}$	
Ursell-Tasai		$\begin{aligned} & .38180 \\ & (0.0) \end{aligned}$		$\begin{aligned} & 1.0834 \\ & (0.0) \end{aligned}$	
Green Function		$\begin{aligned} & .38190 \\ & (0.03) \end{aligned}$		$\begin{aligned} & 1.0830 \\ & (0.04) \end{aligned}$	
Present Theory	KXr / π	M-1	M-2	M-1	M-2
$\overline{\mathrm{X}} \mathrm{r}=3.0$. 955	$\begin{array}{r} .39468 \\ (3.37) \\ \hline \end{array}$	$\begin{aligned} & .39911 \\ & (4.53) \end{aligned}$	$\begin{aligned} & 1.0855 \\ & (0.19) \end{aligned}$	$\begin{aligned} & 1.0906 \\ & (0.66) \end{aligned}$
$\overline{\mathrm{X}} \mathrm{r}=5.0$	I. 592	$\begin{aligned} & .44436 \\ & (16.4) \end{aligned}$	$\begin{aligned} & .39937 \\ & (4.60) \end{aligned}$	$\begin{aligned} & 1.0888 \\ & (0.50) \end{aligned}$	$\begin{aligned} & 1.0893 \\ & (0.54) \end{aligned}$
$\overline{\mathrm{X}} \mathrm{r}=7.0$	2.228	$\begin{aligned} & .40271 \\ & (5.48) \end{aligned}$	$\begin{aligned} & .40068 \\ & (4.94) \end{aligned}$	$\begin{aligned} & 1.0851 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 1.0895 \\ & (0.56) \end{aligned}$
$\overline{\bar{X}} \mathrm{r}=9.0$	2.864	$\begin{aligned} & .39387 \\ & (3.16) \end{aligned}$	$\begin{aligned} & .40126 \\ & (5.10) \end{aligned}$	$\begin{aligned} & 1.0848 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 1.0897 \\ & (0.58) \end{aligned}$
$\overline{\mathrm{X}} \mathrm{r}=11.0$	3.501	$\begin{aligned} & .41726 \\ & (9.29) \end{aligned}$	$\begin{aligned} & \hline .40204 \\ & (5.36) \end{aligned}$	$\begin{aligned} & 1.0847 \\ & (0.12) \end{aligned}$	$\begin{aligned} & 1.0897 \\ & (0.58) \end{aligned}$

Table 2.4 Added-mass coefficient and radiation-wave amplitude ratio of a heaving circular cylinder as a function of position where radiation condition is imposed

Heave ($\mathrm{Kb}=1.0, \mathrm{NC} * \mathrm{NF}=20 * 40$)

		$\begin{gathered} \mathrm{mh} \\ (\operatorname{err} . \%) \end{gathered}$		$\begin{gathered} \text { Ah } \\ (\text { err. } \% \text {) } \end{gathered}$	
Ursell-Tasai		.60498 (0.0)		.78904 (0.0)	
Green Function	$C=30)$.60499 (.002)		$\begin{aligned} & .78935 \\ & (.039) \end{aligned}$	
Present Theory	KXr $/ \pi$	M-1	M-2	M-1	M-2
$\overline{\mathrm{X}} \mathrm{r}=3.0$. 955	$\begin{aligned} & \hline .50894 \\ & (15.9) \end{aligned}$	$\begin{aligned} & .53629 \\ & (11.4) \end{aligned}$	$\begin{aligned} & 1.3115 \\ & (66.2) \end{aligned}$	$\begin{aligned} & .83427 \\ & (5.73) \end{aligned}$
$\overline{\mathrm{X}} \mathrm{r}=5.0$	1.592	$\begin{aligned} & .61138 \\ & (1.06) \end{aligned}$	$\begin{aligned} & .60805 \\ & (0.51) \end{aligned}$	$\begin{aligned} & .76881 \\ & (2.56) \end{aligned}$	$\begin{aligned} & .76780 \\ & (2.69) \end{aligned}$
$\bar{X} r=7.0$	2.228	$\begin{aligned} & .58381 \\ & (3.50) \end{aligned}$	$\begin{aligned} & .62433 \\ & (3.20) \end{aligned}$	$\begin{aligned} & .84574 \\ & (7.19) \end{aligned}$	$\begin{aligned} & .80568 \\ & (2.11) \end{aligned}$
$\overline{\mathrm{X}} \mathrm{r}=9.0$	2.864	$\begin{aligned} & .59827 \\ & (1.11) \end{aligned}$	$\begin{aligned} & .59953 \\ & (0.90) \end{aligned}$	$\begin{aligned} & .80063 \\ & (1.47) \end{aligned}$	$\begin{aligned} & .80312 \\ & (1.78) \end{aligned}$
$\overline{\mathrm{X}} \mathrm{r}=11.0$	3.501	$\begin{aligned} & .60198 \\ & (0.50) \\ & \hline \end{aligned}$	$\begin{aligned} & .60778 \\ & (0.46) \\ & \hline \end{aligned}$	$\begin{aligned} & .78868 \\ & (0.05) \\ & \hline \end{aligned}$	$\begin{aligned} & .78818 \\ & (0.11) \end{aligned}$

Table 2.5 First- and second-order hydrodynamic forces of a circular cylinder at $\mathrm{Kb}=1.2$ (cf. Figs. 2.25-2.27)

Sway (Circular cylinder ; Kb=1.2)

$$
\bar{f}_{12}=\frac{\varepsilon F_{12}^{(2)}}{2 \rho g b X_{1}^{(1)}}=\frac{1}{4} \varepsilon_{0} f_{12}^{(2)}+\frac{1}{2} \varepsilon \operatorname{Re}\left({ }_{2} f_{12}^{(2)} e^{i 2 \omega t}\right)
$$

where

$$
\left\{\begin{array}{l}
0 f_{12}^{(2)}=0.60078 \\
{ }_{2} f_{12}^{(2)}=-2.694+1.1498 i
\end{array}\right.
$$

Heave (Circular cylinder ; $\mathrm{Kb}=1.2$)

$$
\begin{aligned}
{\overline{f_{22}}} & =\frac{F^{(1)}+\varepsilon F^{(2)}}{\rho g b X_{2}^{(1)}} \\
& =\operatorname{Re}\left[\left\{\frac{\sigma}{H_{0}} K b\left(1+m_{h}\right)-1-\frac{i \bar{A}^{2}}{2 K b}\right\} e^{i \omega t}+\frac{1}{4} \varepsilon_{0 . f_{22}^{(2)}}^{(2)} \frac{1}{2} \varepsilon_{2} f_{22}^{(2)} e^{i 2 \omega t}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
& \left\{\begin{aligned}
m_{h} & =0.62603, \quad \bar{A}=0.83257 \\
0 f_{22}^{2} & =0.53751 \\
2 f_{22}^{2} & =0.78052+1.4104 i
\end{aligned}\right. \\
& \text { Diffraction (Circular cylinder ; Kb=1.2) } \\
& \frac{\eta}{a_{w}}=-\left(\cos \omega t+\frac{K b}{2} \varepsilon \cos 2 \omega t\right) \\
& \bar{f}_{j}=\frac{F^{(1)}+\varepsilon F^{(2)}}{\rho g b a_{W}}=\operatorname{Re}\left(f_{j}^{(1)} e^{i \omega t}+\frac{1}{2} \varepsilon_{0} f_{j}^{(2)}+\varepsilon_{2} f_{j}^{(2)} e^{i 2 \omega t}\right)
\end{aligned}
$$

where
(Peak to peak value)/(Linear theory)

ε	Heave	Diffraction		
		wave	horiz.F	vert.F
.0	1.0	1.0	1.0	1.0
.2	1.0471	1.0	1.0013	1.0652
.4	1.1543	1.0	1.0511	1.3818
.6	1.2868	1.0336	1.1767	1.7490

Table 3.1 Principal dimensions of models

Item	S-1	S-2	S-3	S-4	S-5	
Section	hemicircle	Lewis form	Lewis form	triang. \& R.B.	Lewis form	
Half-beam/Draft	1.0	1.0	1.083	1.083	1.25	
Sectional area coef.	. 785	$\begin{aligned} & 1.0 \\ & (.96) \end{aligned}$. 537	. 537	. 95	
Length (m)	$\begin{gathered} .6 \\ (.3) \end{gathered}$	$\begin{gathered} \hline .6 \\ (.3) \end{gathered}$	$\begin{gathered} .6 \\ (.3) \end{gathered}$	$\begin{gathered} .6 \\ (.3) \end{gathered}$. 6	
Breadth (m)	. 216	$\begin{array}{r} .19 \\ (.2) \end{array}$. 216	. 216	. 2	
Draft (m)	. 108	$\begin{aligned} & .095 \\ & (.1) \end{aligned}$. 1	. 1	. 08	
Displacemt. (Kg)	$\begin{aligned} & 10.99 \\ & (5.45) \end{aligned}$	$\begin{aligned} & 10.83 \\ & (5.76) \end{aligned}$	$\begin{gathered} 6.98 \\ (3.49) \end{gathered}$	$\begin{gathered} 6.98 \\ (3.49) \end{gathered}$	9.12	
					C-I	C-2
		Center of gravity : $\overline{\mathrm{OG}} / \mathrm{b}$. 031	. 183
		Metacenter height : $\overline{\mathrm{GM}} / \mathrm{b}$. 080	. 232
		Radius of gyration: $\mathrm{r}_{\mathrm{C}} / \mathrm{b}$			1.18	. 781
		Heaving resonance : $\mathrm{K}_{2} \mathrm{~b}$. 75	. 75
		Rolling resonance : $\mathrm{K}_{3}{ }^{\text {b }}$. 056	. 340

Note) Figures in parenthesis mean dimensions of the model used in the radiation problem.

Fig. 1.1 Coordinate system

Fig. 1.2 Variation of the wetted surface

Fig. 2.1 Subdivision of contour

[Diffraction Problem]

Wave Maker which absorbs Reflected Waves

Fig. 2.2 Second-order boundary value problems

Fig. 2.3(a) First-order potential distribution on body of a swaying circular cylinder ($\mathrm{Kb}=1.0$)

Fig. 2.3(b) First-order potential distribution on free-surface of a swaying circular cylinder ($\mathrm{Kb}=1.0$)

Fig. 2.4(a) First-order potential distribution on body of a heaving circular cylinder ($\mathrm{Kb}=1,0$)

Fig. 2.4(b) First-order potential distribution on free-surface of a heaving circular cylinder ($\mathrm{Kb}=1.0$)

Fig. 2.5 Added-mass coefficient and radiation-wave amplitude ratio of a swaying circular cylinder

Fig. 2.6 Added-mass coefficient and radiation-wave amplitude ratio of a heaving circular cylinder

Fig. 2.7 First-order horizontal wave-exciting force of a circular cylinder

Fig. 2.8 First-order vertical wave-exciting force of a circular cylinder

Fig. 2.9 Second-order boundary conditions imposed at free-surface in radiation problems of a circular cylinder ($\mathrm{q}=\mathrm{a}_{\mathrm{c}}+1 \mathrm{i}_{\mathrm{S}} ; \mathrm{Kb}=1,0$)

Fig. 2.10 Second-order boundary condition imposed at free-surface in diffraction problem of a circular cylinder $\left(q=q_{c}+q_{s} ; K b=1,0\right)$

Fig. 2.11 Distribution of second-order potential on body of a swaying circular cylinder (symmetry to y-axis)

Fig. 2.12 Distribution of second-order potential on body of a heaving circular cylinder (symmetry to y-axis)

Fig. 2.13(a) Distribution of second-order steady pressure on body of a swaying circular cylinder (symmetry to y-axis)

Fig, 2.13(b) Distribution of second-order oscillating pressure on body of a swaying circular cylinder (symmetry to y-axis)

Fig. 2.14(a) Distribution of second-order steady pressure on body of a heaving circular cylinder

Fig. 2.14(b) Distribution of second-order oscillating pressure on body of a heaving circular cylinder

Fig. 2.15 Distribution of second-order steady pressure on body in diffraction problem of a circular cylinder

Fig. 2.16(a) Real part of second-order oscillating forces of a swaying circular cylinder

Fig. 2.16(b) Imaginary part of second-order oscillating forces of a swaying circular cylinder

Fig. 2.17(a) Real part of second-order oscillating forces of a heaving circular cylinder

Fig. 2.17(b) Imaginary part of second-order oscillating forces of a heaving circular cylinder

Fig, 2.18 Each component of the drifting force of a fixed circular cylinder in waves

Fig. 2.19(a) Real part of second-order horizontal oscillating forces of a fixed circular cylinder

Fig. 2.19(b) Imaginary part of second-order horizontal oscillating forces of a fixed circular cylinder

Fig. 2.20(a) Real part of second-order vertical oscillating forces of a fixed circular cylinder

Fig. 2.20(b) Imaginary part of second-order vertical oscillating forces of a fixed circular cylinder

Fig. 2.21 Each component of the drifting force of a free-floating Lewis-form cylinder in waves

Fig. 2.22 Each component of the steady vertical force of a freefloating Lewis-form cylinder in waves (C-1)

Fig. 2.23(a) Real part of second-order horizontal oscillating forces of a free-floating Lewis-form cylinder in waves (C-1)

Fig. 2.23(b) Imaginary part of second-order horizontal oscillating forces of a free-floating Lewis-form cylinder in waves ($C-1$)

Fig. 2.24(a) Real part of second-order vertical oscillating forces of a free-floating Lewis-form cylinder in waves (C-1)

Fig. 2.24(b) Imaginary part of second-order vertical oscillating forces of a free-floating Lewis-form cylinder in waves ($C-1$)

Fig. 2.25 Wave-forms of second-order force of a swaying circular cylinder (kb=1.2)

Fig. 2.26 Wave-forms of total force of a heaving circular cylinder which includes inertia-force and restoring-force ($\mathrm{Kb}=1.2$)

Fig. 2.27 Wave-forms in diffraction problem of a fixed circular cylinder (Kb=1.2)

Fig. 2.28 Wave-forms in diffraction problem of a fixed Lewis-form cylinder ($S-5, \mathrm{~Kb}=1.2$)

Fig. 3.1
Experimental set-up of the diffraction problem

FORCED SWAY TEST

FORCED HEAVE TEST

Fig. 3.2 Experimental apparatus of the radiation problems

S-1. Semi-Circular

S-3, Lewis-form

S-4, Non Lewis-form
S-2, Lewis-form

S-5, Lewis-form

Fig. 3.3 Model-sections used in the experiments

FORCED SWAY MECHANISM

Fig. 3.4 Flow-chart of the experimental analysis

Fig. 3.1.1 First-order wave-exciting forces of a circular cylinder

Fig. 3.1.2 Second-order wave-exciting force in sway of a circular cylinder

Fig. 3.1.3 Second-order wave-exciting force in heave of a circular cylinder

Fig. 3.1.4 Ratio of second-order horizontal force to that of firstorder for various incident-wave heights (circular cylinder)

Fig. 3.1.5 Ratio of second-order vertical force to that of firstorder for various incident-wave heights (circular cylinder)

Fig. 3.1.6 First-order wave-exciting forces of a Lewis-form cylinder (S-2)

Fig, 3.1.7 Second-order wave-exciting force in sway of a Lewis-form cylinder (S-2)

Fig. 3.1.8 Second-order wave-exciting force in heave of a Lewis-form cylinder (S-2)

Fig. 3.2.1 An example of the experimental records of a swaying circular cylinder

Fig. 3.2.2 Added-mass coefficient of a swaying circular cylinder

Fig. 3.2.3 Radiation-wave amplitude ratio obtained from the damping force of a swaying circular cylinder

Fig. 3.2.4 Measured radiation-wave amplitude ratio of a swaying circular cylinder

Fig. 3.2.5 Second-order vertical steady-force of a swaying circular cylinder

Fig. 3.2.6 Second-order vertical oscillating force of a swaying circular cylinder

Fig. 3.2.7 Phase-difference of second-order oscillating force of a swaying circular cylinder

Fig. 3.2.8 Added-mass coefficient of a swaying Lewis-form cylinder ($\$-2$)

Fig, 3.2.9 Radiation-wave amplitude ratio of a swaying Lewis-form cylinder (S-2)

Fig. 3.2.10 Measured radiation-wave amplitude ratio of a swaying Lewis-form cylinder (S-2)

Fig. 3.2.11 Second-order vertical steady-force of a swaying Lewis-form cylinder (S-2)

Fig. 3.2.12 Second-order vertical oscillating force of a swaying Lewis-form cylinder (S-2)

Fig. 3.2.13 Bi-harmonic component in horizontal force of swaying cylinders (S-1, S-2)

Fig. 3.3.1 An example of experimental records of a heaving circular cylinder ($K b=1,2$)

ADDED MASS (HEAVE)

Fig. 3.3.2 Added-mass coefficient of a heaving circular cylinder

Fig. 3.3.3 Radiation-wave amplitude ratio obtained from the damping force of a heaving circular cylinder

Fig. 3.3.4 Measured radiation-wave amplitude ratio of a heaving circular cylinder

Fig. 3.3.5 Second-order vertical steady-force of a heaving circular cylinder

Fig. 3.3.6 Second-order oscillating force of a heaving circular cylinder

Fig. 3.3.7 Phase-difference of second-order oscillating force of a heaving circular cylinder

ADDED MASS (HEAVE)

Fig, 3.3.8 Added-mass coefficient of a heaving Lewis-form cylinder (S-2)

Fig. 3.3.9 Radiation-wave amplitude ratio obtained from the damping force of a heaving Lewis-form cylinder (S-2)

Fig. 3.3.10 Measured radiation-wave amplitude ratio of a heaving Lewis-form cylinder (S-2)

Fig. 3.3.11 Second-order vertical steady-force of a heaving Lewis-form cylinder (S-2)

Fig. 3.3.12 Second-order Oscillating force of a heaving Lewis-form cylinder (S-2)

Fig. 3.4.1 Added-mass coefficient of swaying cylinders ($\$-3,5-4$)

Fig. 3.4.2 Radiation-wave amplitude ratio obtained from the damping force of swaying cylinders (S-3, S-4)

Fig, 3.4.3 Measured radiation-wave amplitude ratio of swaying cylinders (S-3, S-4)

Fig. 3.4.4 Second-order vertical steady-force of swaying cylinders (S-3, S-4)

Fig. 3.4.5 Second-order vertical oscillating force of swaying cylinders $(s-3, s-4)$

Fig. 3.4.6 Added-mass coefficient of heaving cylinders (S-3, S-4)

Fig. 3.4.7 Radiation-wave amplitude ratio obtained from the damping force of heaving cylinders ($\mathrm{S}-3, \mathrm{~S}-4$)

Fig. 3.4.8 Measured radiation-wave amplitude ratio of heaving cylinders (S-3, S-4)

Fig. 3.4.9 Second-order vertical steady-force of heaving cylinders

Fig. 3.4.10 Second-order oscillating force of heaving cylinders (S-3, S-4)

Fig. 3.4.11 An example of experimental records of the diffraction problem of fixed cylinders (s-3, S-4)

Fig. 3.4.12 First-order wave-exciting force in sway of fixed cylinders $(S-3, S-4)$

Fig. 3.4.13 First-order wave-exciting force in heave of fixed cylinders $(S-3, S-4)$

Fig. 3.4.14 Drifting-force of fixed cylinders (S-3, S-4)

Fig. 3.4.15 Second-order vertical steady-force of fixed cylinders (S-3, S-4)

HORIZONTAL.

Fig. 3.4.16 Second-order horizontal oscillating force of fixed cylinders $(S-3, S-4)$

VERTICAL

Fig. 3.4.17 Second-order vertical oscillating force of fixed cylinders (S-3, S-4)

Fig. 3.5.1 An example of the experimental records of a fixed Lewis-form cylinder in waves ($S-5$)

Fig. 3.5.2 First-order wave-exciting force in sway of a Lewis-form cylinder (S-5)

Fig. 3.5.3 First-order wave-exciting force in heave of a Lewis-form cylinder (S-5)

Fig, 3.5.4 First-order wave-exciting moment in roll of a Lewis-form cylinder (S-5)

Fig. 3.5.5 Second-order horizontal bi-harmonics of a fixed Lewis-form cylinder in waves (S-5)

Fig. 3.5.6 Second-order vertical bi-harmonics of a fixed Lewis-form cylinder in waves (S-5)

Fig. 3.5.7 Second-order rolling bi-harmonics of a fixed Lewis-form cylinder in waves (S-5)

Fig. 3.5.8 An example of the experimental records of a free-floating Lewis-form cylinder in waves (S-5; C-1)
$\bar{x}_{1}^{(1)}$
2

Fig. 3.5.9 First-order responses in sway of a Lewis-form cylinder in waves (S-5)

Fig. 3.5.10 First-order responses in heave of a Lewis-form cylinder in waves (S-5)

Fig. 3.5.11 First-order responses in roll of a Lewis-form cylinder in waves ($\mathrm{S}-5$)

Fig, 3.5.12 Drifting-forces of a fixed and free-floating Lewis-form cylinder in waves ($\mathrm{S}-5$)

Fig. 3.5.13 Second-order vertical steady-force of a fixed and freefloating Lewis-form cylinder in waves (S-5)

Fig. 3.5.14 Second-order heeling-moment of a fixed and free-floating Lewis-form cylinder in waves (S-5)

Fig. 3.5.15 Second-order responses in sway of a Lewis-form cylinder in waves $(S-5)$

Fig. 3.5.16 Second-order responses in heave of a Lewis-form cylinder in waves $(S-5)$

Fig. 3.5.17 Second-order responses in roll of a Lewis-form cylinder in waves ($\mathrm{S}-5$)

Fig. 3.5.18 Moment-levers of the steady-heeling-moment with respect to the drifting force of a Lewis-form cylinder in waves (S-5)

名专
*

