

Title	Improving cellular process for monoclonal antibody and influenza vaccine production
Author(s)	Haredy, Ahmad
Citation	大阪大学, 2013, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/34447
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、 https://www.library.osaka-u.ac.jp/resource/thesis/#closed 大阪大学の博士論文について

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Synopsis of Thesis

Title: Improving cellular process for monoclonal antibody and influenza vaccine production

(細胞培養を用いた抗体およびワクチン生産における生産性向上に関する研究)

Name of Applicant: Haredy Ahmad Mohamad Mohamad Mohamad

Chapter 1: General Introduction

Immunobiologics are antigenic or antibody containing preparations such as a vaccines and antibodies. Mammalian cell has become one of the important hosts for the production of immunobiologics because of its capacity for post-translational modification and human protein-like molecular structure assembly.

Immunobiologics are divided into two main categories; end stage category or treatment (e.g antibodies) and protective categories (e.g vaccines). Immunobiologics production using mammalian cells suffers industry related problems mainly product low yield. In this thesis, improving methods for the mammalian cell bioprocesses for the production of two important immunobiologics (monoclonal antibodies and influenza virus vaccines) have been investigated.

Chapter 2 : Applying *ATF4* overexpression technology on monoclonal antibody producing Chinese hamster ovary cells.

To improve antibody production in Chinese hamster ovary (CHO) cells, the humanized antibody-producing CHO DP-12-SF cell line was transfected with the gene encoding activating transcription factor 4 (ATF4), a central factor in the unfolded protein response (UPR). Overexpression of ATF4 significantly enhanced the production of antibody in the CHO DP-12-SF cell line. The specific IgG production rate of in the ATF4-overexpressing CHO-ATF4-16 cells was approximately 2.4 times that of the parental host cell line. Clone CHO-ATF4-16 did not show any change in growth rate compared with the parental cells or mock-transfected CHO-DP12-SF cells. The expression levels of mRNAs encoding both the antibody heavy and light chains in the CHO-ATF4-16 clone were analyzed. This analysis showed that ATF4 overexpression improved the total production and specific production rate of antibody without affecting the mRNA transcription level. These results indicate that ATF4 overexpression is a promising method for improving recombinant IgG production in CHO cell.

Chapter 3: Improving cellular process and characterization of mammalian-cell-based influenza vaccines for pandemics

It is currently impossible to predict the next pandemic influenza virus strain. Thus a library of influenza viruses containing all hemagglutinin and neuraminidase subtypes and their genes have been established. In this chapter, construction of a mammalian cell based production process for the preparation of vaccines against emerging pandemic influenza viruses was performed. An influenza virus reassortant from the library, A/duck/Hokkaido/Vac-3/2007 (H5N1), was passaged 22 times (P22) in Madin-Darby canine kidney (MDCK) cells. The P22 virus had a titer of 2×10^8 PFU/ml, which was 40 times that of the original strain, with 4 point mutations, which altered amino acids in the deduced protein sequences encoded by the PB2 and PA genes. A formalin-inactivated whole-virion vaccine from the MDCK cell-cultured A/duck/Hokkaido/Vac-3/2007 (H5N1) P22 virus was then produced. Intranasal immunization of mice with this vaccine protected them against challenges with lethal influenza viruses of homologous and heterologous subtypes. Furthermore, intranasal

immunization with the vaccine induced cross-reactive neutralizing antibody responses against the homotypic H5N1 influenza virus and its antigenic variants and cross-reactive cell-mediated immune responses to the homologous virus, its variants within a subtype, and even an influenza virus of a different subtype were demonstrated. These results indicate that the constructed mammalian-cell-based process for emergency vaccine production is promising for producing the next generation of pandemic influenza virus vaccines.

Chapter 4: Influenza neuraminidase (NA) besides hemagglutinin (HA) is important for protection against influenza infections

Influenza vaccines are always judged by their ability to produce antibody against Hemagglutinin (HA) in serum using hemagglutinin inhibition assay (HI), where it is sought to be protective when HI antibody titer is ≥ 40 . Accordingly, all other proteins seemed to be ignored and are not assessed. Thus, Whole virion vaccines from Influenza A/duck/Hokkaido/77 H3N2 and its reassortant strains H3N4, H3N5, H3N7 with same HA and heterologous NA from the constructed influenza vaccine library were prepared. Mice were then vaccinated with equivalent vaccine doses from the vaccines prepared corresponding to protective and non protective HI titers. The result showed that at high HI titer (protective), hemagglutinin antibody response seems to be dominant, and the mice showed 100% viability. On the other hand, at lower HI titer (non-protective) the situation was not the same as only H3N2 immunized mice showed 100% survival rate, regardless that all immunized mice have the same HI titer. The protection at low HI titer was correlated to the presence of NA antibody. Since, seasonal or pandemic influenza strains might not match the vaccine strain leading to HI titer lower than expected, therefore both HA and NA are concluded to be important for influenza vaccine strain. The combination of HA and NA are important for Influenza vaccine seed strain library.

Chapter 5: General Conclusion

Monoclonal antibody and influenza vaccine production are of great economic importance. For monoclonal antibodies used in diagnostic or therapeutic purposes the amount of antibody produced seemed to be a major problem hence, an *ATF4* over-expression technology as solution to improve production rate was proposed and successfully applied. On the other hand, Influenza vaccine is currently produced in an egg based process which cannot produce enough doses in case of pandemic. Influenza cell-based vaccine production is still premature and has not been clearly investigated from science and engineering aspects. Accordingly, a vaccine production process was constructed and the efficacy of the produced vaccine was examined in mouse model with success. In conclusion, this study partially aids in improving monoclonal antibody and influenza vaccine productions by successfully applying solutions to their production related problems. Immunobiologics production is fast developing and fertile field for research with a lot to be investigated in the future.

論文審査の結果の要旨及び担当者

氏名 (Haredy Ahmad Mohamad Mohamad)		
論文審査担当者	(職)	氏名
	主査 教授	大竹 久夫
	副査 教授	藤山 和仁
	副査 教授	紀ノ岡 正博
	副査 招へい教授	大政 健史
論文審査の結果の要旨		
第1章 序論		
バイオ医薬品とは、バイオテクノロジーを用いた医薬品の総称であり、主に生物反応を用いて生産されている。特に免疫関連バイオ医薬品である抗体医薬およびワクチンの生産においては、動物細胞培養を用いた生産プロセスが特に重要な生産工程となっている。動物細胞培養を用いた生産プロセスにおける最も大きな課題の一つが、その生産性の低さである。本論文では、抗体・ワクチン生産における動物細胞培養生産に焦点をあて、生産性向上に関わる要因について検討を行っている。第1章では、免疫関連バイオ医薬品の現状、問題点について総括を行い、抗体医薬およびワクチン生産に関わる動物細胞培養を用いた生産プロセスにおける課題について取り纏めている。		
第2章 チャイニーズハムスター卵巣由来細胞(CHO細胞)を用いた抗体生産におけるATF4遺伝子の過剰発現による抗体生産性向上		
抗体医薬品の生産に最も汎用されているCHO細胞を用いた生産系においては、これまで細胞内における転写過程に焦点をあてた生産性向上手法が行われてきた。一方、高生産性細胞においては、転写過程のみならず、翻訳、および翻訳後過程も重要な項目である。そこで、本章ではヒト化抗体を生産する無血清培地馴化CHO DP-12-SF細胞を対象にして、翻訳・翻訳後工程において生じる小胞体ストレス応答に焦点をあてて、生産性向上法構築を試みている。小胞体ストレス応答に関連する因子として activating transcription factor 4 (ATF4)に焦点をあて、これをCHO DP-12-SF細胞に遺伝子導入することにより、生産性向上を達成している。ATF4遺伝子を発現させることにより、元細胞ならびに mock ベクター導入細胞と比較して、約 2.4 倍の比生産速度が達成されている。また、抗体重鎖、軽鎖の mRNA 量測定の結果より、本生産性向上の原因が、転写量の上昇ではなく、翻訳の亢進によるものと推定されている。これらの結果より、ATF4遺伝子の過剰発現が抗体生産性向上に効果があることを初めて実証している。		
第3章 パンデミックに対する動物細胞培養を用いたインフルエンザワクチン生産における細胞プロセス改良		
動物細胞培養を用いたインフルエンザワクチン生産は、そのリードタイムの短さならびにスケール変更により生産量の調整が可能という観点から、鶏卵を用いて生産する手法に比較して、よりパンデミック対策として適している。一方、動物細胞培養を用いたワクチン生産プロセスは、まだ十分にその手法が確立されていない。そこで、本章ではまずは Madin-Darby canine kidney (MDCK) 細胞を感染宿主としたワクチン生産について検討をおこなっている。インフルエンザウイルス A/duck/Hokkaido/Vac-3/2007 (H5N1) 株を用いて MDCK 細胞に対して 22 繼代を行った結果、当初より 40 倍高い 2×10^8 PFU/ml を達成し、解析の結果 H5N1 株において PB2 および PA 遺伝子において 4ヶ所の点突然変異が生じている。22 繼代後の MDCK 細胞より全粒子ワクチンを調製し、マウス鼻腔内に免疫することによってワクチンの効果を検証し、ホモタイプの H5N1 インフルエンザウイルスに対してもワクチン効果があることを検証している。		
第4章 インフルエンザウイルスのノイラミダーゼおよびヘマグルチニンのインフルエンザ感染に及ぼす重要性		
インフルエンザウイルスにおいては、ヘマグルチニンの型はワクチンにおいて重要な因子である。そこで、同じヘマグルチニンの型を持ち、異なるノイラミダーゼを持つインフルエンザ A/duck/Hokkaido/77 H3N2、H3N4、H3N5、H3N7 の 4 株を準備し、これを用いて全粒子ワクチンを調製しマウスに対するワクチン効果を H3N2 株に対して検証している。その結果、いずれの場合もワクチン効果が認められ、さらにヘマグルチニンアッセイ、中和抗体量ならびにインターフェロンγ測定を行い、抗体ならびに細胞媒介性免疫応答が引き起こされていることを実証している。		
第5章 総括		
本章は、免疫関連バイオ医薬品である抗体医薬およびワクチンの生産における現状を総括するとともに、本論文において得られた生産性向上に関わる結果を総括し、免疫関連バイオ医薬品生産における本研究の位置づけについて述べている。		
以上のように、本論文は免疫関連バイオ医薬品である抗体医薬およびワクチンの生産において主要な動物細胞培養プロセスに焦点をあて、新たな方法論を展開したものであり、よって本論文は博士論文として価値あるものと認める。		