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Spin Diffusion in a Two-Dimensional Degenerate Fermi Liquid

K. Miyake '~ and W. J. Mullin
School of Mathematical and Physical Sciences, University of Sussex, I'almer, Brighton, Sussex BN~ 9', England

(Received 2 August 1982)

The spin-diffusion coefficient D of a polarized two-dimensional degenerate Fermi Quid
is evaluated as a model of adsorbed He. Because in two dimensions, for zero or weak
polarization, the only allowed scattering angles are 0 and &, the transport coefficients
become expressible in terms of Landau parameters without approximation. For unpolar-
ized and weakly polarized systems it is shown that D - T lnT and 7' ln(polarization),
respectively. The two-dimensional kinetic equation is found to be exactly solvable.

PACS numbers: 67.50.Dg. 05.60.+w, 66.90.+ r, 67.70.+n

Of the possible transport properties of submono-
layer 'He adsorbed on a substrate, ' the one seem-
ingly most accessible to experiment is spin dif-
fusion, measured by NMR. For 'He on Grafoil
the time for a particle to diffuse to the edge of a
substrate platelet is less than the relaxation time
T„which invalidates the conditions necessary
for a direct mea, surement of the spin-diffusion co-
efficient D by use of spin-echo techniques. An in-
direct measurement of D through T, measure-
ments has been carried out' in the fluid phase of
adsorbed He, where relaxation is via field irreg-
ularities due to the substrate (analogous to the
"bounded diffusion" technique'). These measure-
ments were made at temperatures for which the
fluid behaves as a classical gas (where T, D-
-4T). Temperatures sufficiently low for ad-
sorbed 'He to behave as a degenerate two-dimen-
sional (2D) Fermi fluid have barely, if at all,
been reached. " A possible recent exception to
this may be the results of Bhattacharyya and Gas-
parini4 who claim to have found a, degenerate liq-
uid phase for 'He on thin He films. It is hoped
that this Letter will encourage further experimen-
tal exploration of this regime which we show
could be quite interesting. We examine spin dif-
fusion' in a 2D Fermi fluid; we find the following
results:

(1) The temperature dependence' of D is, for an
unpolarized Fermi gas, D '- &'In(&z/&) (I'z
= Fermi temperature) in contrast to the SD case

!
for which D '-T'. For a, weakly polarized gas

x~~ = p(Ep~ —SyB'—p, ~), (2)

where p, is the chemical potential for spin 0,
and P = I/kT. The gradient in the magnetization
which drives the spin current is assumed to be
caused by gradients in the p, The linearized
Boltzma, nn equation becomes

(QT «e, —e «e, ) the InT behavior changes to
lnP, where &, is the Fermi energy for spin 0 and
I' is the polarization. For a highly pola, rized sys-
tem the logarithm disappears and D -T'.

(2) It is found that an exact solution of the Boltz-
mann equation is possible as in the 3D Fermi gas.

(3) Because, as shown below, the allowed scat-
tering angle in a 2D degenerate Fermi system
has only two values, forward and backward, a
Fermi-liquid theory description of both static
and kinetic properties in terms of Landau param-
eters is more direct and unambiguous than in
3D.8

The kinetic equation will now be solved for ar-
bitrary polarization. For the purposes of clear
presentation the derivation will ignore Fermi-
liquid effects and the equation will be solved only
in variational approximation. However, at the
end we will quote the exact results, including
Fermi-liquid effects, for the unpolarized case.

The kinetic equation is linearized a,s usual' by
adding —(Bn~, /so~ )4~ to the local equilibrium
distribution function

n, .=[exp(x,.)+1] '

with

(Bnp /BEp )vp ' Vp = (p/A ) Q I3p + p + 5(Eg+E2 —E3 —6@)
t j

&& (-,'w, n, n, (1-n„)(l-n, )[C„+C„—C„—C, ]

+u, ,n„n, ,(1—n„)(1—~, )[4', +C'2, —~'s —4'g- )].
Pa.rticles 1 and 2 are incoming 3 and 4 outgoing. M is the scattering probability for collision be-
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tween spins cr and O'. A is the sample area. The
appropriate form for 4~ is

@, , = —v, ,~
Vp, ~q, cose, (4)

in which q, which should depend onx, , is taken
as a constant in our variational solution and e,.
is the angle between p,. and V'p . The spin cur-
rent for spin o is

3,=+n v~ = —X(0)p 'q vp /4m', (5)
po

where N(0) =m/ph' is the density of states and p,
is the Fermi momentum for spin 0. By use of
the Gibbs-Duhem relation at constant tempera-
ture and pressure, one can relate v1A to v(n+
—n ) where n is the spin-o particle density.
Then because total particle current must vanish
in a diffusion experiment we can show that q,
=q„=-q and

D =4vS'n, n q/m'n (6)

where n =n++n .
The sum over p~ in Eq. (3) is carried out using

the momentum 5 function and the sums over p„
p, are converted to integrals over e, and 8 (angle
between p, and p, ) and e, and 8, (angle of p, with

p, +p, ). As in the 3D treatment' the 8, variable
is changed to e„. however, it is in this change
that a fundamental difference with 3D arises.
Figure 1 shows the geometry of a collision be-
tween opposite spins. From the figure one has
p4'=p, '+l' —2lp, cos8„where l = lp, + p, l so that

d8, = m de~/lp3 sin83. (7)

If now we followed the 3D treatment, the denomi-
nator of (7) would be evaluated by placing all mo-
menta on appropriate Fermi circles. However,
the denominator in (7) would then become p+p
&& sin8, so that the integral over 0 would diverge
logarithmically at 8 =0 and w (in SD, sin8 in the
solid angle eliminates any divergence). Obvious-
ly we must be more careful in 2D. By a bit of
geometry we can show that

o ~ o &o lp3s ln03

"2' "e+Q ( ~ )d9 de, [~, ( ),)„,, (8)

where F= —,(e, +e ) is the average Fermi energy
and b'= —,'(e, —e )'+e„e sin'8. (Note that we
have set e, =e, and e, =e but not e, = e, .) In (8)
the integration over &4 gives unity whenever &3 is

~

m '(kT)' (p, '+p .')
l

~& sin8ur, (9, qR)

FIG. 1. Kinematics of a (+, -) collision. The two
Fermi circles are labeled + and —;AB = pq+p2. Energy
and momentum conservation can be used to show that
all p; lie on an "energy circle" (centered at 0). When

p3 and p4 are on the Fermi circles, one sees that the
scattering angle y has only two possible values, for-
ward, with E=J (p=0), andbackward with G=K (p
= 7t- for small polarization).

within the limits shown which occur at points C
and D on the energy circle in Fig. 1. One sees
that the e, density of states is integrably singular
at these points. In the unpolarized case, where
b &9 & v -4 where & =kT/&F, the term (&, —&),
which is ~ (kT)' because of the Fermi distribution
functions included in ( ~ ~ ), can be dropped com-
pared to 5'=a~'sin'8 and the e, limits can be tak-
en as 0 and ~. For this region of 8, Eq. (8) gives
a result of order T lnT. For l8l ~ 6 and p —6
& 9 & p+L the e, factor cannot be dropped but Eq.
(8) can be seen to give a contribution of order T
and this region of integration may be neglected
relative to the other. Thus an effective "cutoff"
at 8=6 is introduced.

From Fig. 1 one can see that, as long as 0 is
not within 6 of 0 or p, the scattering angle in 2D
is limited to the forward direction (rp =0) and to
backward scattering [y = pa(p+, p, 8), not quite
equal to v in a polarized systemj. Thus the an-
gles 0,. in C~, must be evaluated appropriate to
forward and backward scattering. The contribu-
tion from forward scattering vanishes. (Such a
scattering does not impede a spin current )Also.
in a variational approach no scattering between
like spins occurs. " After carrying out all the in-
tegrations, ' we find
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We note that in the polarized case the angular fac-
tors (from the C';) have canceled out any diver-
gence as ~ —0,&; however in the unpolarized case
the integrand in (9) behaves as (1-cos8)/sin9
which diverges at & and requires attention to the
cutoff there. We examine Eq. (8) in several spe-
cial cases:

(i) Unpolarized fluid (p+=p =pz). The angular
factor in Eq. (11) peaks up sufficiently sharply
as ~ -& that it is accurate to leading order in
temperature to evaluate , at ~ =& with p& =&

and take it out of the integral. Then Eqs. (8) and
(11) yield

(10)

where T,=z, /k. Note that the logarithmic depen-
dence is now absent and that p is actually closer
to 2& than & for large polarization.

Equation (3) may be solved exactly to leading
order in & in 2D for arbitrary polarization. The
reason this is possible is because we have been
able to separate energy and angular integrations
as shown in the paragraph between Eqs. (8) and
(9). Once this is done, procedures similar to
those in BD (Ref. 11) may be followed. Further-
more, for the unpolarized case we are able to
evaluate D in terms of the Landau theory of Fer-
mi liquids. ' We find

(1 + E;)C (A) T~ '
am* [Q (=1) A ']' T ln(T, /T)' (12)

As we have seen, the M" behavior arises because
the density of states behaves like 1/sin& until 8

gets to within& of &.
(ii) Weakly polarized fluid (kT «e, —~ «e). ln

tMs case the angular factor in Eq. (9) still be-
haves like 1/sin& as &-&; however, when 9 ap-
proaches to within an angle - (e, —e )/e - P —= (n„

n)/-n it drops quickly to zero providing a differ-
ent cutoff (»&) than in the unpolarized case. The
result for D is the same as Eq. (10) with 1n(I'z/T)
replaced by ln(1/P). Physically this cutoff in
angular factor is a result of the fact that back-
scattering (p =&) violates momentum conserva-
tion in a head-on collision (& =&) when I p, I

=
I p, l

=P+ &
I p, l

=
I p, l =P . P olarizations which satisfy

the criteria of this section should be relatively
easy to achieve by brute force" fields and per-
haps by optical pumping.

(iii) Highly polarized fluid (kT «~ +«+). One
finds from Eq. (9) that

The I' ' and& ' appearing in Eq. (12) are the 2D

analogs of the 3D dimensionless Landau interac-
tion and scattering amplitude parameters, re-
spectively (i =s, symmetric; a, antisymmetric).
ln 2D, functions of ~ are expanded in terms of

cosmic. ' One can show that the&" and A are re-
lated bye '=& '/(1+c~ '), where c =1 if m
=0 and ~ otherwise. ' The factor C(&) is the Sykes
and Brooker" correction factor for relating the
variational and exact diffusion constants; ~ is a
parameter expressible in terms of 4 ' andA '.
Details will be given elsewhere.

The fact that an exact solution is possible is of
interest since so few examples of solvable Boltz-
mann equations are available. However, the man-
ner in which D is expressible in terms of Landau
parameters is perhaps of greater interest. The
squared sum in the denominator of Eq. (12) is
proportional to , (&,&). The Landau-theory
scattering amplitude applies only to P =0 {and by
symmetry also to p =&). Any attempt to express
scattering amplitudes at angles p other than 0
and & (as must be done for SD transport coeffici-
ents) involves interpolation and approximation.
However, in 2D for weak or zero polarization
only p =& is involved in ~, {8,g) (& also includes
terms in p =0). Thus the static thermodynamic
properties and transport coefficients can be ex-
pressed without approximation in terms of the
Landau parameters. One might hope then that the
measurement of the properties of a degenerate
adsorbed 'He system might lead to a more clear-
cut test of Landau's theory than is possible in
bulk 'He systems. The logarithmic temperatur e
or polarization dependence of D would represent
a reliable indication that the system being ex-
amined was truly 2D and degenerate. The fact
that a large number of Landau parameters seems
to enter into Eq. (12) should present no difficulty.
If the estimate given by Havens-Sacco and Widom'
is accurate, the sum over & in (12) should be in
powers of (kza)'/8ln(kza) =0.01 for all coverages
of interest, where kz ——Pz/h and a is the scatter-
ing length. ' Thus only one or two Landau param-
eters need be kept in practice. We hope that ex-
periments as suggested may be possible in the
near future. The 2D 'He liquid reported in Ref.
4 may provide a suitable system for such experi-
ments.
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Scaling Treatment of Critical and "Chaotic"' Dynamics of the Dilute Heisenberg Chain
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A lattice rescaling method is applied to the equations of motion of the dilute Heisenberg
chain and leads via a probabilistic integral equation to an iterative map for the charac-
teristic frequency P and concentration p, Dilution induces a crossover in the p scaling
from "chaotic" (ergodic and mixing) behavior, corresponding to the sampling of the pure
band, to periodic orbits corresponding to isolated cluster response. A dynamic scaling
form is obtained for the critical dynamics by fixed-point analysis.

PACS numbers: 64.60.Fr, 64.60.Ht, 75.30.Ds, 75.40.Fa

Much recent progress has been made in under-
standing static critical properties of disordered
systems by the use of lattice rescaling methods. '
Up to now, however, there has been no satisfac-
tory development of such methods for the dynamic
properties, partly because of some construction-
al and interpretive difficulties in lattice rescaling
methods for the dynamics of the pure case' and

partly because of insufficient care with the disor-
der, These difficulties are overcome in this I et-
ter. I will treat the particular case of the diluted
Heisenberg chain at absolute zero.

I give here the first lattice-rescaling treatment
transforming the distribution function of the dy-

namic variable. I extract an equation for the
scaling of the characteristic frequency which is
able to deal with the critical dynamics and to
treat both band (extended) and localized (cluster)
response. The scaling equation is an iterative
map' ' with control variable ranging, as the con-
centration variable sca1es, from values yielding
chaotic" behavior associated with band response

to values yielding a hierarchy of bifurcated stable
orbits corresponding to isolated cluster dynamics.

If one is not interested in the full crossover,
the low-frequency (critical) dynamics can be ob-
tained simply by linearizing about the doubly un-
stable zero-frequency percolation fixed point of
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