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Abstract
For artificial systems that behave in response to the external world, we must use sensors

that observe its state. Many kinds of sensors have been developed to describe and understand

outside scenes and objects, and much work has been conducted on signal processing and

pattern recognition. Integrating many kinds of sensors and generating descriptions of scenes

and objects are fundamental problems in this research area.

The objective of this research is to propose a new sensor integration method based on sig-

nal correlation, which appears in multimodal observations using different kinds of sensors.

Since previous methods associate observations in a common position coordinate, applying

them to sensors that do not directly measure positions is difficult. To associate the observa-

tions in different kinds of sensors, we focus on signal correlation, which is a signal structure

that appears when localized multiple sensors observe a common scene. Although the ob-

served physical quantity is different, the changes in the scene result in correlated changes in

the observed signals. By evaluating the signal correlation among multimodal observations,

our method can associate observations without measuring a representation in a common co-

ordinate and be applied to integrate various sensors. Since our method focuses on signals

at the lower level of abstraction before computing the higher level features and performing

pattern recognition, we call it signal level integration.

The relationship among sensory signals is also important in the area of media conversion

that converts signals from one modality to another. In situations when we canft use specific

modality for communication and presentation, it is effective to use a different modality in a

complementary manner by media conversion. In previous media conversion methods, sig-

nals in different media are associated and converted in a common symbolic coordinate such

as recognized patterns and words that describe the impression of signals. However, much

information is lost when we represent signals in one medium in symbols. By converting

signals in one medium into another by keeping their signal correlation, many features in the

original medium are converted into another medium.

However, simply computing the correlation function does not extract clear and stable re-

lationships among multimodal observations. When objects move in a scene, it is difficult

to keep their multimodal correlations since each sensor only observes its local area. When

integrating observations in binary representations, we need to design a suitable method to
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compute the correlation. Since the observations are not always stable, we must consider the

instability in computing the correlations.

To achieve this goal, we expand the previous signal level integration method in three

points. First, we expand it so that it associates observations when the observed target moves

and the correlation among sensory signals is not stable by proposing a method that estimates

the target positions and simultaneously associates observations based on the maximization

of the correlation among the sensory signals. Second, we propose a new signal association

method for binary observations based on a statistical test. Third, when the observation confi-

dence changes based on the situation and affects the signal correlation, it is difficult to stably

associate observations. We propose an association method that evaluates observation confi-

dence and apply it to associate the leg motion of pedestrians and wearable accelerometers to

estimate stable signal correlation. Finally, we propose a new media conversion method that

converts omni-directional video to sound that keeps the impressions to signals in the original

media by considering the signal correlation.
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Chapter 1

Introduction

1.1 Background

For artificial systems that behave in response to the external world, it is necessary to use

sensors to observe its state. To describe and understand outside scenes and objects, many

kinds of sensors have been developed, and much work on signal processing and pattern

recognition has been conducted. In recent years, progress in communication networks and

sensors has greatly increased the amount of observation data from sensors. Toward recog-

nizing human behavior, the big data statistical analysis approach, which uses many sensors

in public locations and wearable devices, has drawn increasing attention. The integration of

many sensors is one fundamental problem in this research area.

Just as humans combine various kinds of sensory organs to observe scenes and objects, it

is also effective for artificial perceptual systems to combine many kinds of sensors. There

are two main advantages of integrating multiple sensors.1)

• Redundant observation: By observing the same features by multiple sensors and inte-

grating the observations, measurement results are obtained with higher accuracy. For

example, by integrating a camera and a distance sensor, both of which are observ-

ing the same object, more accurate position estimations are obtained. By integrating

the same physical quantity observed by multiple sensors, accurate representations of

targets are obtained.

• Complementary observation: By integrating sensors that cover different observation
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areas, the total amount of measurement results increases. By integrating sensors that

observe different physical quantities, the number of features that describes targets in-

creases. For example, by integrating a camera and a microphone, we obtain visual and

audio representations of targets. By integrating different physical quantities observed

using different kinds of sensors, we obtain multifaceted representations of targets.

To exploit these advantages, many studies have been conducted in the area of sensor inte-

gration2).3) Focusing on redundant observations by using multiple sensors, integration meth-

ods based on the Kalman filter4) are widely used, and other methods based on the particle

filters have been proposed5) to compute Bayes filter-based integration. In the research area

of ambient intelligence, many kinds of sensors are installed in office and home environments

to observe and identify daily behavior in projects like Smart House,6) Intelligent Room,7)

Aware Home,8) and Ubiquitous Experience Media.9) Progress in smaller and lower energy-

saving sensors has fueled the development of wearable sensors. Studies on position esti-

mation by integrating many wearable sensors and integrating wearable and environmental

sensors have been conducted10)11)12).13) Also in the research area of robotics that focuses

on human-robot communication, the effectiveness of integrating many kinds of sensors has

been shown, including audio-visual perception,14) multimodal interaction, and multimodal

robot learning.15)

Focusing on redundant and complementary observations using multiple sensors, increased

attention has been drawn to media conversion studies that propose algorithms to convert

signals in one modality to another. For example, in situations when we can’t use a specific

modality for communication and presentation, it is effective to use different modalities in

a complementary manner by media conversion. Another application of media conversion

expects a synergistic effect from using multiple modalities by adding another modality to the

original contents. By focusing on the possibilities of media conversion, much work has been

proposed to transfer the descriptions and the impressions of the original scene to another

medium, especially in the area of kansei information processing.

However, the previous studies on the integration of different kinds of sensors suffer from

the following problems:

• Integration is performed on the representation in a common coordinate. In most stud-
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ies, since integration is in a common position coordinate or a symbol system, it is

difficult to apply to sensors that cannot measure the representation in a given coordi-

nate alone.

• In previous studies, the abstract level of the representation is high. The correlated

multimodal information from different kinds of sensors is lost during the independent

conversion of each signal to a given representation. We cannot use the lost information

in the integration process.

In this thesis, we present solutions for the above problems for a new sensor integration

framework.

1.2 Limitation of Previous Sensor Integration Methods

1.2.1 Perceptual Binding Problem and Position-based Association of
Multisensory Signals

Consider the observation of a scene with different kinds of sensors. Before integrating the

observations, each sensor observes the scene independently and its observations are repre-

sented at each coordinate system. At this stage, since the relationship between these repre-

sentations is unknown, we must associate the observations to integrate them and construct

an integrated multimodal representation of the objects.

This problem is related to the binding problem in human perception. When we observe

objects using many features, a mechanism is needed to bind the information that is related

to each object and to distinguish it from others. The mechanism has not been identified

until now and called perceptual binding problem. We call the problem in artificial sensor

integration as the perceptual binding problem in engineering.

For example, imagine observing a few objects in a scene with cameras and microphones.

The objects in it are detected and represented in each sensor coordinate. Cameras represent

them by shapes and colors; microphones represent them by sound intensity. Generally, when

multiple objects are detected, the observations must be associated from both sensors that

represent the same object to construct a multi-sensor representation of each object.

To solve this association problem, conventional methods assume that each sensor generates



4 Chapter 1 Introduction

representation in a common coordinate, where observations are associated. In the previous

example of observing with cameras and microphones, the conventional method assumes

that both cameras and microphones detect the positions of objects and associates those that

are close to each other in the common position coordinate based on the knowledge of the

relationship between the camera and microphone coordinates. However, we can only apply

the position-based association method to integrate sensors that can measure the positions of

the objects in the scene. It is difficult to apply it to other kinds of sensors that do not directly

observe positions.

1.2.2 Representation in a Common Coordinate System at Higher Level
of Abstractions

Previous integration methods associate observations from different kinds of sensors on the

representation in a common coordinate. Usually the positions on the common coordinate are

estimated using each sensor and then close observations are associated.

However, since the representation in the coordinate is sometimes too abstracted, correlated

multimodal information is lost during the feature extraction and recognition processes to

obtain representation. We cannot use the lost information in the integration process. The

representation in a common coordinate sometimes lack important cues for integration.

Also, a common method toward media conversion is the pattern recognition-based method,

which defines the conversion rules between the patterns in two kinds of media. When a

pattern is detected in one medium, the associated pattern is presented in another. Another

approach to media conversion is based on words that represent impressions. This approach

associates patterns in multiple media by evaluating the relationship between the adjectives

and patterns in both media. These approaches might be limited since they associate media

by symbolic representations like pre-defined patterns and natural language. The following

are the restrictions of pre-defined symbol-based association: 1) patterns that are difficult

to represent in symbols are discarded in the recognition and abstraction processes, 2) the

association methods only detect and convert pre-defined patterns and unknown patterns are

discarded.

Therefore, in previous multi-sensor integration methods, the sensing system designers de-
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fine a common coordinate where the observed information is integrated and converted. An

advantage of the previous methods is that we can rely on developed techniques to detect the

representation on the coordinate since the meaning of the coordinate is easy to understand.

However, one problem is that important information is lost during the abstraction process to

compute the representation.

1.3 Sensor Integration Based on Signal Correlation

To cope with the problems, we provide a new sensor integration framework. We propose

an integration method that focuses on signal correlation in the observation of different types

of sensors. Our concept is called signal level integration, where observations are integrated

and converted before the abstraction and recognition processes to obtain representations in

common coordinates. Since we do not have to independently compute the representations in

a given common coordinate using each sensor, our method can be applied to integrate many

kinds of sensors, especially those that do not directly measure positions.

1.3.1 Signal Correlation in Human Perception

In general, we obtain redundant observations when we use multiple perceptual organs to

observe a scene. For example, when we observe with a camera and a microphone a person

clapping his hands, and the motion of his hands generates a sound, the motion observed in

the video and the sound observed by the microphone are expected to correlate. Although

these observations are independently performed, the observed signals share correlated com-

ponents. Signals that represent the same target in different modalities superficially look

differently, but they share similarity and correlation.

This correlation among observations is a signal structure that appears when localized mul-

tiple sensors observe a common scene. Humans always use multiple perceptual organs to

observe scenes and are exposed to correlated signals among these observations. It is natural

to assume that our perceptual systems are highly developed to perceive signal correlations.

For example, humans tend to associate correlated observations perceived by different organs

since they are likely to observe the same object.

Signal correlation plays an important role when we use our perceptual system in a com-
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plementary manner. Suppose we usually observe a scene using multiple perceptual organs.

When we can observe the same scene by only one perceptual organ, the observation with the

other organ is recalled and our perceptual experience is complemented. Humans resemble

information processing machines that watch not only the perceptual observations themselves

but always the signal correlations among observations as well.

In previous studies on artificial perception, much work has focused on the information pro-

cessing of each individual type of sensor. Although humans always exploit the relationship

among correlated signals, little attention has been given to artificial perception techniques

that evaluate and utilize signal correlation. We focus on the correlation among observed

signals and propose signal level integration methods of different kinds of sensors.

1.3.2 Integration at a Signal Level That Keeps Correlation Among Multi-
modal Signals

We associate multimodal observations and convert the observed signals in one modal-

ity into another based on the evaluation of the signal correlation among observations. Our

method integrates observed signals at an earlier level of abstraction. Compared to higher

level feature extraction and pattern recognition results, our method focuses on signals at

earlier levels of abstraction where the signal correlation among multimodal observations is

preserved. We call multisensory integration at this level signal level integration.

In our proposed signal level association method, we do not have to independently compute

the representation in the common coordinates from each sensor. Our method associates ob-

servations from different types of sensors by evaluating their signal correlation. Therefore,

we can associate the observations of sensors even if we cannot measure the position just by

sensors. For example, suppose we observe a person walking with cameras and wearable ac-

celerometers (Figure 1.1). From both sensors we obtain the signal components of vibrations

due to the walking. Our proposed method associates various types of sensors that are difficult

to associate in previous integration methods.

In our proposed signal level media conversion method, we do not rely on such symbolic

representation as pre-defined patterns and natural language. By getting correlated signals

among multimodal observations, observing targets in only one modality will recall the miss-
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camera

microphone

accelerometer

motion of feet

sound of
footsteps

body motion

Figure 1.1 Signal level correlation in observations

ing observations in another modality. Based on this complementary action of our sensory

systems, we propose a new media conversion method. For example, we can generate the

converted signals in the target modality so that humans can recall the signals in the original

modality by keeping the signal correlation between signals. This new media conversion is

based on the similarity among observations in different media at the signal level.

Figure 1.2 shows the process of observation and feature extraction from the observation

and the association among the observations. The vertical axis represents the abstraction

level of the observations, and the horizontal axis represents the types of sensors. Association

methods based on positions link the detected positions. In contrast, our proposed association

method based on signal level correlation associates at an earlier stage of abstraction: at the

signal level. In this paper, we propose methods of signal level association to apply to many

types of sensors and in many situations.

Recently, a new sensor integration method associates different kinds of sensors at an earlier

stage of perception.16) They focused on the fact that when two sensors observe a target there

is signal correlation among the signals and associated different physical quantities. They

observed two people with a camera and a microphone and showed that when they speak in

turn there are signal correlations between the intensity of the pixels close to the mouth and

the sound intensity. By focusing on the redundant correlation among signals, their method
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Figure 1.2 Integrating different kinds of sensors.

associates signals at an earlier stage of perception before the signal correlation is abstracted

away in the recognition process. This approach has been expanded and generalized by many

researchers17)18)19)20)21)22).23)

However, since studies have only been conducted for integrating a microphone and a cam-

era, this approach must be expanded to apply it to integrate other kinds of sensors. This

thesis expands this method based on many kinds of sensors and increases the possibilities of

an association method based on signal correlation.

1.4 Resaerch Issues and Approaches

To apply signal level association methods in many kinds of sensors and in many situations,

following research issues are significant.

Signal level association in various situations

We expand methods to associate moving targets in array sensors.

• Association of a moving target in video images: When the signals source moves,

previous method16) cannot associate observations. To cope with the problem, we

propose a method that estimates the positions of targets and associates observations
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simultaneously based on maximization of correlation among sensory signals.

• Association of moving targets in binary touch sensors: Observations of sensors

like touch sensor and event detection sensor are binary. Previous method assumed

continuous observation signals. We propose a new signal association method based

on a statistical test.

Signal level association based on unreliable observations

We propose methods that reliably extract signal level correlations.

• Association of unreliable observations: When observation confidence changes ac-

cording to situation and it affects to signal correlation, it is difficult to associate ob-

servations in stable manner. We propose an association method that evaluates obser-

vation confidence that is specific to types of sensors.

• Construct time-dependent correlation model: When observations are limited, com-

puted correlation among sensors is sometimes not reliable. We propose to model

time-dependent correlation model to associate observations.

Applications of signal level relationship

We use the signal level relationship in the area of tracking and indentification and media

conversion.

• Application to people tracking with identification: Recently people behavior in

public locations is observed and statistically analyzed and the results are attracting

attention in the area of environment design and marketing. We propose a method

that not only estimates positions but also identifies each person who carries wearable

sensors.

• Application to convert signals between different media: Based on signal level rela-

tionship between video and music, we propose a method that convert omni-directional

video to music that conveys similar impression. By listening generated music, the user

can imagine impression of the original scene.
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1.5 Thesis Outline

In chapter 2, we simultaneously detect and track a sound source based on the criteria of

mutual information maximization. The problem of detecting and tracking a sound source is

solved as an optimization problem to find the path that maximizes the mutual information

between video and audio signals. We describe a sensor fusion algorithm based on mutual

information maximization and apply it to the problem of sound source localization by com-

bining audio and visual signals.

In chapter 3, we propose a method that associates binary signals based on signal correlation

and explain an integration method of wearable and floor sensors that detects the positions

of people. Floor sensors consist of small unit sensors, each of which returns ‘1’ when

someone is standing on one of them and ‘0’ otherwise. To integrate these binary and

acceleration signals from wearable sensors, we propose an integration method that evaluates

signal correlation based on a statistical test.

In chapter 4, we propose an association method from among different kinds of sensors

that considers confidence in observation. Different kinds of sensors have different reliability

characteristics depending on the situation. We focus on the association of laser range finders

(LRFs) and wearable gyroscopes to track and identify each person and propose an association

method that considers the reliability of LRF observations.

In chapter 5, we propose a method that associates the leg motion of pedestrians and wear-

able accelerometers. LRFs observe pedestrians at the height of their feet and extract features

from a bipedal walking pattern. Wearable accelerometers also observe walking patterns.

Since walking rhythms differ from person to person, our proposed method can distinguish

pedestrians walking in a line. Another characteristic is that it only uses an accelerometer in

the wearable devices.

In chapter 6, we propose a new feature level media conversion method that generates

comfortable sounds to listen to the transfer impressions of visual scenes. We define a set of

low-level visual and musical features and conversion rules between them. Since the method

does not assume pre-defined entities in visual scenes, it transfers the impressions of unseen

visual scenes with unknown entities. By introducing music constraints in the generated
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sound, listening becomes more comfortable.

In chapter 7, we summarize and conclude our thesis.
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Chapter 2

Signal Level Associatition of
Moving Targets Based on Mutual
Information Maximization

The signal association method proposed by Hershey et al.16) associates different kinds of

sensors based on signal correlation. Their method is expanded and many audio-visual signal

association methods have been proposed. However, when the signal source moves in images

and the signal correlation is not stable, it is difficult to provide stable association. In this

chapter, expand the signal association method and solve the both the signal association prob-

lem and the position estimation problem by maximizing signal correlation between observed

signals. Experimental results show the effectiveness of the proposed method in sound source

localization problems for moving targets.

In this chapter, we propose to detect and track a sound source simultaneously based on the

criteria of mutual information maximization. The problem of detection and tracking a sound

source is solved as optimization problem to find the path that maximizes mutual information

between video and audio signal. In section 2.1, the sensor fusion algorithm based on mu-

tual information maximization is described. In section 2.2, we applied the algorithm to the

problem of sound source localization by combining audio and visual signal. In section 2.3,

experimental results are shown. In section 2.4, we conclude this chapter.
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2.1 Previous Work on Integration of Different Kinds of
Sensors at Earlier Stages

Recently, to associate visual and audio signal at the earlier stage of integration, Hershey et

al.16) proposed a direct integration method based on computing mutual information between

observed signals. They focused on signal correlation between the pixel intensities of the

speaker’s mouth and sound intensity. By extracting the redundancy of signals that observed

same target, they associate different kinds of sensors. Fisher III et al.17) expanded this

method and computed mutual information without assuming any model of signals. In these

works, different kinds of sensors are integrated at early stages based on statistical methods.

However, it is assumed that a few sensors continue to observe a signal source and that the

relation between sensory signals is stable for a period of time. So it is difficult to apply these

methods to a case where a signal source moves in the environment.

To cope with moving signal sources, object detection is applied in several studies. Slaney

and Covell18) applied face detection to detect pixels related to the speaker based on the canon-

ical correlation analysis. Li et al.20) computed the mutual information between sensory sig-

nals in the projection space where sensory signals are similar to each other. Ikeda et al.24)

extracted objects based on background subtraction and computed the mutual information be-

tween sensory signals. Fisher III and Darrel,22) Nock et al.23) also applied face detection

and computed the relation between sensory signals based on their previous methods17).19)

However, targets are limited since these methods require models to detect targets. Further-

more, these methods are not robust since a segmentation process is performed before the

integration process.

In this chapter, we propose to detect and track a signal source simultaneously based on

maximizing mutual information with a jointly Gaussian assumption. The problem of detect-

ing and tracking a signal source is solved as an optimization problem to find the path that

maximizes the mutual information between the video and audio signals.
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2.2 Signal Level Association Based on Mutual Information
Maximization

2.2.1 Common Signal Source Detection Using Mutual Information

Suppose we observe an information source with different kinds of sensors. Though the ob-

served signals are in different representations, these signals are correlated and share common

components. By detecting and evaluating correlated components from the observed signals,

the relations between sensors are measured and signals are integrated before the abstraction

process. When a pair of signals is correlated with each other, the knowledge of one signal

enables us to predict another signal. In the information theory, the predictability between

signals is defined as mutual information. So it is natural to use mutual information to esti-

mate the correlation between sensory signals. Hershey et al.16) used mutual information to

measure the correlation between audio and video signals.

Let A(t) be an audio signal, and V(t) an video signal from respectively. Mutual information

between A(t) and V(t) is represented as

I(A; V) = H(A) + H(V) − H(A,V) (2.1)

where H(A) is entropy of A(t), and H(A,V) is mutual entropy between A(t) and V(t). They

are defined as:

H(A) = −
∑

t

p(A(t)) log p(A(t)), (2.2)

H(V) = −
∑

t

p(V(t)) log p(V(t)), (2.3)

H(A,V) = −
∑

t

p(A(t),V(t)) log p(A(t),V(t)). (2.4)

.

Here, mutual information I is computed with a fixed-length time window whose length is

T. Now, let us assume that A(t) and V(t) are jointly Gaussian.16) The mutual information can

be replaced with
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1
2

log
1

1 − ρ(A,V)2 (2.5)

where ρ(x, y) is correlation function between A(t) and V(t).25)

A more general estimation method without assuming any distribution model is proposed

in.17) A few criteria are compared to estimate the correlation between the audio signal and

the video signal19) and they reported that the mutual information with a jointly Gaussian

assumption is the best in their experiments.

2.2.2 Detection of a Moving Signal Source

In,16) the statistical relation between video and audio is assumed to be static during the

computation of a statistical measure between signals. Thus, these methods cannot be applied

to a case that where signal source is moving in the environment. Suppose we are tracking a

sound source by using a camera and a microphone. Fig. 2.2 shows the computation of the

mutual information between the video signal and the audio signal. Since previous methods

computed the mutual information between the audio signal and the brightness of each fixed

pixel, they failed to capture the relation of the signals when the signal source moved.

t

Computed mutual information

Audio signal

Image sequence

Signal source

Figure 2.1 Computing mutual information between sensory signals when the signal source
does not move.
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Computed mutual information

tAudio signal

Image sequence

Moving signal source

Figure 2.2 Computing mutual information between sensory signals when the signal source
moves.

2.2.3 Computing Mutual Information Along an Estimated Trajectory

To cope with this problem, an object is detected before the mutual information is com-

puted24)23)20).26) These methods consist of two stages. In the first stage, the positions of the

target candidates are computed by image processing. In the second stage, mutual information

is computed between the audio signal and the video signal along the detected trajectory of

each candidate. By computing the mutual information along the detected path of the target,

it is possible to detect the sound source when the target moves (Figure 2.3).

Computed mutual information

t
Estimated trajectory

Audio signal

Image sequence

along the trajectory

Moving signal source

Figure 2.3 Computing mutual information along the trajectory of the signal source.
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When the sound source moves, mutual information is computed along its path. Now video

signal V(t, x) depends on time and position, and mutual information is computed according

to Equation 2.1 and the following formula:

H(V) = −
∑

t

p(V(t, x(t)))) log p(V(t, x(t)))), (2.6)

H(A,V) = −
∑

t

p(A(t),V(t, x(t))) log p(A(t),V(t, x(t))). (2.7)

where x(t) is the detected position of the sound source.

2.2.4 Detecting and Tracking a Moving Signal Source Based on Mutual
Information Maximization

In the two-stage approach, the tracking process and the sensor integration process are sep-

arated and it is difficult to recover tracking errors in the integration process. In this paper,

these stages are integrated into one process. We propose to detect and track the sound source

simultaneously based on the criteria of mutual information maximization. Since the detec-

tion and tracking process are performed according to a unique criterion, this method does not

suffer from the segmentation error of the detection process prior to the integration process.

When the trajectory of a moving signal source is unknown, the problem of detecting and

tracking is regarded as an optimization problem to find the trajectory that maximizes the

mutual information between video and audio signals. We propose to find the trajectory of

the sound source by performing a heuristic search using mutual information as a heuristic

evaluation function (Figure 2.4). There are many possible trajectories in the image sequence,

and the trajectory that maximizes the mutual information is selected.

2.2.5 Introducing Heuristics for Robust Estimation

Computing mutual information in moving regions

The estimated trajectory of a single pixel based on computing mutual information has

significant noise. Computed mutual information in a specific trajectory in the background
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tAudio signal

Trajectory2Trajectory1

Computed mutual information
along each trajectory

Image sequence

Figure 2.4 Detecting and tracking a target based on mutual information maximization be-
tween sensory signals

region sometimes has a large value. In this paper, we propose to compute the mutual infor-

mation along trajectories of regions. Each pixel in the region is supposed to move in parallel

and mutual information is computed along the trajectory. The correlation between the audio

signal and the trajectory of the region is evaluated with the average of the mutual information

of pixels in the region.

Introducing Motion model

The search process that maximizes the mutual information between sensory signals is

almost breadth first search at an early stage since mutual information is a poor heuristic

function when the length of the signals is short. So we introduce a motion model of the

target. Then the search process effectively finds the path that maximizes mutual information.

Applying smoothing filter on computed mutual information

To make search process stable, we propose to apply a smoothing filter on the array of

computed mutual information. We applied a spatial averaging filter on the computed mutual

information at each frame.
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2.2.6 Heuristic Search Algorithm Based on Mutual Information Maxi-
mization

To detect and track a sound source, we apply a heuristic beam search algorithm (Figure 2.5

(a)). In the algorithm, a hypothesis represents a trajectory of the sound source in the images.

During the search process, a list of hypotheses is updated. Where LIST is the hypothesis list,

H is a hypothesis in the list, and BEAM is a threshold of the number of hypotheses in the list.

In step 3, the velocity of each target is piecewise constant (Figure 2.5 (b)). All hypotheses in

list are replaced in step 2 and step3.

2.3 Experiments

To confirm the effectiveness of the proposed method, we apply the method to a sound

source location problem using one microphone and one video camera. The video signal is

sampled at 30 frames/second, and the image size is 160x120. V(t, x) in Equation 2.6 and 2.7

is the brightness of the pixel at time t and position x. The audio signal is sampled at 16 kHz,

and the average energy in each video frame is computed with a Hanning window. A(t) is

the average energy of audio signal. Fig. 2.6 shows samples of the video and audio signals,

respectively.

Search
Maximum number of hypotheses 1000

Region size [pixel] 100 x 100

Length of signals [frame] 256

Motion model
Update interval [frame] 32

Maximum acceleration [pixel/frame2] 1.0

Maximum velocity [pixel/frame] 2.0

Table 2.1 Parameters used in the experiment
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1. Initialize hypothesis list LIST with possible positions of the target in the image.

2. If the length of hypotheses in LIST is T, output the hypothesis with maximum mutual

information from LIST and exit.

3. For each hypothesis H = x1, . . . , xn, create new hypothesis H’ by adding next posi-

tions xn+1 that are predicted according to the motion prediction model. Remove H

from LIST and H’. Note that multiple positions may be generated according to the

prediction model.

4. For each hypothesis H, create new hypothesis H’ by adding next positions xn+1 that

are predicted according to the piecewise constant velocity model motion. Remove H

from LIST and H’. Repeat this step INTERVAL-1 times.

5. For each hypothesis H, compute mutual information along the trajectory between

audio and video.

6. Sort LIST in descending order based on the computed mutual information and select

highest BEAM hypotheses and discard others.

7. Goto 2.

a) Algorithm

before step3 after step3 after step4

INTERVAL
t

x1

xn xn

xn+1

b) Expansion of hypotheses. Each hypothesis in the hypothesis stack corresponds to a leaf

of the search tree.

Figure 2.5 Heuristic beam search algorithm that finds the trajectory that maximizes mutual
information computed along the trajectory
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Figure 2.6 The average energy of the audio signal (upper), example images in the video sig-
nal (lower).

The parameters of the experiment are shown in Table 2.1. In this experiment, we intro-

duced a motion model of the target that assumes the acceleration of the target is constant for

an interval. The update interval of the acceleration is set to 32 frames (about one second),

and the range of the acceleration and velocity is limited. This model assumes that the person

don’t walk fast and don’t change the direction frequently. The search is performed in the

horizontal direction in the images. The maximum number of hypotheses should be set to

any large value, and larger value will result in more precise search and longer time of the

execution. The region size is fixed to 100x100 that is about the size of the people in images

in the experiment. The length of signals used to estimate mutual information is 256 frames.

The length should be large enough to detect correlation between signals.
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2.3.1 Results of a Sound Source Detection

Figure 2.7 shows the result based on previous signal level fusion methods which assume

that the sound source does not move. The color of pixels in Figure 2.7 indicates the intensity

of the mutual information between the brightness of the pixel in the images and the energy of

the audio, where a darker color indicates a higher intensity of mutual information. The results

do not include any remarkably darker regions. This means the sound source localization has

failed.

2.3.2 Results of Searching Trajectory that Maximizes Mutual Information

Figure 2.82.9 shows the process of the search based on the proposed method. The graphs

in the figure show the trajectories of the best twenty hypotheses at frame = 32, 64, 128, and

256, respectively, where the horizontal axis is time and the vertical axis is the position of the

target. The computed intensity of mutual information of the best hypothesis at each frame

is also shown on the right of each graph. The mutual information is computed from the first

frame to the last frame in the left graph.

Figure 2.8 shows the results of search process of a hypothesis that are initially located in

the area of a walking person. The trajectory of the signal source is estimated by a heuristic

search that maximizes mutual information between the video signal and the audio signal.

The trajectories in hypotheses have converged and the intensity of mutual information is

remarkably high and location of the sound source is determined.

In contrast Figure 2.9 shows the result when the hypothesis is initially located at the area

of another person. The trajectories in hypotheses do not converged and intensity of mutual

information along any path is not high.

2.3.3 Detected Correlation of the Signals

Figure 2.10 shows the changes of the intensity of a pixel in the region of the left person’s

hand and the audio signal. There is no correlation between the signals. Figure 2.11 shows

the intensity of a pixel in the region of the right person’s knee on the detected trajectory.
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Figure 2.7 The changes of the intensity of the mutual information based on previous direct
fusion method. Computed mutual information is dissipated in the image.
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Figure 2.8 The search process of the proposed direct fusion method (1). In the left graphs, the
best hypothesis of the trajectory (solid line) and best twenty hypotheses (dashed
line) at frame = 32, 64, 128, 256 (t=1,2,4,8 [sec], respectively) are shown. Right
figures show computed mutual information in the region along the best hypothe-
sis.
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Figure 2.9 Search process of the proposed direct fusion method around the area of the people
who shake his hands.

They show strong correlation and they share many peaks in the graph. The pixel is in the

dark region in the Figure FS:fig:search-walker.

Figs. 2.8 show the process of the search algorithm when initial hypothesis is the correct

position of the sound source. (a)(b)(c)(d) show the hypotheses with high mutual information

at frame 64,128,192,256, respectively.
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Figure 2.10 The brightness of a pixel in the region of the left person who shakes his hand
(upper) and sequence of average power of sound signal (lower).

 

 

Figure 2.11 The brightness of a pixel in the region of the right person who walks with sounds
of footsteps (lower) and sequence of average power of sound signal (upper).

The moving path of the sound source is correctly tracked by the criterion of the mutual

information maximization.

2.4 Conclusion

In this paper we have presented a novel sensor fusion method at an early stage of process-

ing. By fusing different kinds of sensors at the signal level, correlated multimodal informa-

tion that is lost in abstraction process can be effectively used. To cope with moving signal

sources, we have proposed a method for finding the trajectory of the signal source by evaluat-
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ing the correlation between sensory signals. In our framework, the problem of detecting and

tracking of a signal source is regarded as an optimization problem to find the trajectory that

maximizes the signal correlation between sensory signals. We have proposed solving this

problem by a heuristic search algorithm, using mutual information with a jointly Gaussian

assumption as a heuristic function, and introduced a target motion model and a region-based

evaluation method for trajectories to effectively search for the trajectory. Compared to the

previous signal level sensor fusion method with object recognition, the proposed method

does not suffer from segmentation error in the detection process. We applied the proposed

sensor fusion method to detect and track a sound source using a camera and a microphone.

In the experiment, two people in motion are observed, and a walking person with audible

footsteps is detected and tracked in the images. We introduce a simple motion model of the

signal source. When the motion of the target is more complex, a more detailed model of the

target will be required. We plan to adapt the region size and the length to compute correlation

in search process. By preparing various initial hypotheses with different sizes of regions, the

hypothesis with the best size will be selected as the search process proceeds. By changing

the length to compute correlation according to the intensity of mutual information, the pro-

posed method will be expanded to cover wider applications with various time constants. In

the future, we plan to apply the proposed method to other kinds of sensors, and to investigate

a robust method for estimating the mutual information of signal sources in which the jointly

Gaussian assumption is not appropriate.

2.5 Associating Signals in Different Dimension

Dimension of observations of different kinds of sensors are sometimes different. To as-

sociate and integrate many kinds of sensors, it is important to associate observations in dif-

ferent dimensions. In previous methods, scalar observations are associated based on nor-

malized correlation and mutual information. In this chapter, we propose to associate three-

dimensional accelerometer and a pixel in video images.

Figure 2.12 shows the typical acceleration sensor signal when two people walks. Each

person has an acceleration sensor on the right hand. The acceleration signal is averaged

in each video frame. We consider each pixel as an independent sensor. The figures show
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 acceleration

video

correlationcorrelation

　

Figure 2.12 Association of wearable sensor and video. Computed absolute value of correla-
tion function between acceleration from wearable accelerometer and change of
inensity of each pixel in video.

the absolute normalized correlation between acceleration signal of a direction and intensity

of pixels. The figure shows clear correlation between these sensors. However, we need to

determine the direction of the acceleration sensor with highest correlation.

In general, when we observe motion of a person by using sensors in multiple dimensions,

there is a component that shows clear correlation among other sensors. We applied the

canonical correlation analysis (CCA) to estimate the direction that maximizes correlation

between signals. CCA finds the linear mapping that maximizes correlation between two

input signals.
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2.6 Computing Canonical Correlation Between
Acceleration Signals and Video Signals

Suppose we have N observations from two sensors and the dimension of observations are

p and q respectively. A data matrix is defined as

X = [x1, x2, . . . xp]T

Y = [y1, y2, . . . yq]T

where the row vectors xT
i (1 ≤ i ≤ p), yT

j (1 ≤ j ≤ q) in X and Y are vectors that represent N

data samples. Let X̃, Ỹ represents the results of subtracting average of each line. Our purpose

is to find a linear transformation a,b to X̃, Ỹ that maximizes correlation between aT X̃ and

bT Ỹ . a,b are computed based on canonical correlation analysis:

r(a,b) =
aT S XYb√

aT S XXa
√

bT S YYb
(2.8)

where S XX , S YY , andS XY are variance covariance matrices:

S XX =
1
N

X̃X̃T · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2.9)

S YY =
1
N

ỸỸT

S XY =
1
N

X̃ỸT

In order to have only a single solution, a,b we impose following constraints.

aT
i S XXai = 1 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (2.10)

bT
i S YYbi = 1

The a,b are obtained by applying singular value decomposition.

S −1
XXS XYS −1

YY = AΛBT (2.11)

Matrices A,B are othogonal matrices and Λ is a diagonal matrix. The first column vector of

A,B is the canonical correlation vectors a,b, respectively.
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By applying cannonical correlation to each pixel in video images and three dimensional

accelerometer, the most correlated direction of the accelerometer is derived. Let X represents

acceleration signals in N video frames.

X = [ax, ay, az]T

where ax represents x components of acceleration sensors at 1 · · ·N.

ax = [ax(1), · · · , ax(N)]T

(ax(t), ay(t), az(t)) represents acceleration at time t. A sequence of pixel intensity is repre-

sented as

Y = [Ix,y(1), · · · , Ix,y(N)]

where Ix,y(t) is pixel intensity at time t and (x,y) in image coordinate. Signal correlation

between three dimensional accelerometer and a pixel are derived by estimating transfor-

mation. We set N to number of frames in a few second. By repeating this estimation, a

sequence of direction of acceleration that maximizes signal coorelations are derived. Each

pixels are associated to one of acceleration sensors based on the cannonical correlation co-

efficient (Equation 2.11).

Then the absolute value of canonical correlation coefficients are computed and the value

is set to zero if it is under a threshold. Further erosion and dilation are performed to remove

isolated noisy pixels. Image regions are associated to one of accelerometers that maximizes

averaged absolute thresholded correlation.

2.7 Experiments

2.7.1 Associate Image Regions and Acceleration Sensors

To confirm the effectiveness of the proposed method, we apply the method to detect and

track people in a room. We observe two people by wearable accelerometers and two cameras.

The acceleration sensor used in the experiments is ADXL330 (Analog Devices, Inc.). All

people in the environment are assumed to have the sensor with the right hand. The motion of

the Wiimote is sensed by a 3-axis linear accelerometer located slightly left of the center of
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Specifications

Output signal 8 bit integer

Sampling frequency 70 Hz

Inteface Bluetooth

Figure 2.13 Acceleration sensor used in the experiments and specifications.

the controller (Figure 2.13). The signal is sampled at 70 kHz, and the signals are transmitted

via Bluetooth. The average of the signal is computed in each video frame. The video signal

is sampled at 30 frames/second, and the image size is 360x240. We compute inter frame

difference of intensity in each pixel. Typical signals of pixel intensity are shown in Figure

2.12.

First we recorded two people that are shaking their arms. Figures 2.14,2.15 shows the

computed correlation function between each pixel in the images and each acceleration sensor.

Next we recorded two people that walk across. Figure 2.16 shows the detection and track-

ing results when two people go across. The region with the highest average correlation is

detected and tracked in images for each acceleration sensor signal. The right of the figure

shows the trajectory of the region that maximizes correlation between sensory signals.
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person 2 person 1

a) video data from camera 1

person1-x person1-y person1-z

Person1

person2-x person2-y person2-z

Person2

b) Binding camera 1 and each axis of acceleration vector.

person1-prposed person2-proposed

c) Binding camera 1 and acceleration vector based on the proposed method.

Figure 2.14 Binding wearable accelerometer of each person and pixels in video (camera 1).
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person 2 person 1

a) video data from camera 2

person1-x person1-y person1-z

person2-x person2-y person2-z

b) Binding camera 2 and each axis of acceleration vector.

person1-proposed person2-proposed

c) Binding camera 2 and acceleration vector based on the proposed method.

Figure 2.15 Binding wearable accelerometer of each person and pixels in video (camera 2).
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Figure 2.16 Two people walk across. The left figures show the original images and the right
show computed correlation function between intensity of each pixel and the signal
from the acceleration sensor on the left person.
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Chapter 3

Signal Level Association of Binary
Signals

Binary signals are common observation signals from simple sensors like switches. In this

section, we propose a method that associates binary signals based on signal correlation. We

explain an integration method of wearable sensors and floor sensors that detect positions

of people. Floor sensors consist of small unit sensors and each sensor returns ’1’ when

someone is on a sensor and ’0’ otherwise. In order to integrate these binary signals and

acceleration signals from wearable sensor, we propose an integration method that evaluates

signal correlation based on statistical test.

3.1 Introduction

In order to realize intelligent environment that supports human activities, estimation of

positions and IDs of people is one of important issues. Floor sensors that consist of small

touch sensors on the floor are one of promising sensors that reliably detect our locations.

However, since floor sensors observe discrete footsteps, association ambiguity arises when

two people go across. A typical problem to track people with floor sensors is shown in Figure

3.1. Two candidates of associations from observations to person are shown. It is difficult to

distinguish these two associations only by floor sensor observations. To solve the problem,

we propose to combine wearable acceleration sensors. Wearable devices can keep ID infor-
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Interpretation 2Interpretation 1

Observed signals

Figure 3.1 The ambiguity of the association of floor sensor signals when two people get
close. Observations are superimposed in a certain period of time. Two candidates
of associations are shown on the right.

mation of the user, but it is difficult to locate the person by using wearable devices alone.

By combining observed positions by using floor sensors and IDs from wearable devices, the

system will be able to provide trajectories of all people with IDs. However, there are ambi-

guity in associations between trajectories and IDs. In this chapter, we propose to associate

these observations and estimate consistent trajectories based on signal correlation. Since the

signals from floor sensors and wearable accelerometer synchronize when they observe same

walking person, these two signals are not independent. The synchrony between the signals

is evaluated based on statistical test to find correct association. People tracking examples

are shown to confirm the effectiveness of the proposed method. Significant improvement in

correct association rate is achieved compared to the results only by floor sensors.

3.2 Related Works

Detecting positions and IDs of people is one of important functions for intelligent envi-

ronments. So far many works have been proposed to observe people and provide services

by integrating sensors in the environment and wearable devices6)7).9) The sensors used in
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previous works are classified into three main groups.

Vision sensors Vision sensors are widely used to understand the scene in the environment,

and much works have been done to recognize human behavior using vision sensors27).28)

Vision sensors provide much information about people in the environment, not only their

positions but shape, color, and gestures. A problem with cameras is that they suffer from

changes in the lighting conditions in the environment. Also, using cameras in public spaces

for identification purpose sometimes causes privacy issue.

Floor sensors By spreading touch sensor or pressure sensor network on the floor, the po-

sitions of people are accurately detected. Recently, floor sensors have received increasing

attention and several studies have been proposed to recognize human behavior using floor

sensors29)30)31)32)33).34)

Addlesee et al.29) and Orr et al.30) identified people based on changes in pressure at

the time of the landing by using a load cell. They focused on a footstep and did not track

people. Liau et al.35) put load cells on the floor, Murakita et al.32) put touch sensors on

the floor and they track people who walked on the sensors. Our method used similar people

tracking method by using floor sensors and also identify people by integrating other kinds

of sensors. Yamanishi et al.36) put pressure sensors on the floor and tracked and identified

people by shapes of footsteps. Since their method need high resolution pressure sensors, the

amount of data become too large to cover large area. Whereas floor pressure sensors are

used in previous studies29)30)31),36) we used touch sensors. Good points of touch sensors is

the simple structure of the sensor and the small amount of data to transmit, which enable to

cover large area in low cost.

Wearable devices

In ubiquitous computing, wearable devices have been used to locate people.10) Devices

that have been studied include IR tags,37) ultrasonic wave tags27) RFID tags38),39) Wi-Fi,40)

and UWB.41) Kourogi et al.11) integrates many kinds of wearable devices, such as accelerom-

eters, gyroscopes, geomagnetic sensors, and cameras, and they estimated positions by only

using wearable sensors. If the device ID is registered with the system, the person carry-
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ing that specific device can be located and identified. However, tag-based methods require

the placement of many reader devices in order to locate people accurately, so the cost of in-

stalling reader devices is problematic in large public places. Wi-Fi- and UWB-based methods

do not provide enough resolution to distinguish one person in a crowd. Furthermore, if users

of the system have to carry additional devices just to use the location service, the cost and

inconvenience should also be considered.

Wearable inertial sensors have also been used to locate a person by integrating observa-

tions42)12).10) Since integral drift has been problematic, it is important to combine observa-

tions with those of other sensors. Recently, many types of cellular phones have started to

incorporate accelerometers, and some people are carrying them in their daily lives. There-

fore, the approaches using acceleration sensors for locating people can effectively use the

infrastructure.

Another important point is to carry devices natural manner. Carrying additional devices in

daily life is not very comfortable.

Integrating of Environmental Sensors and Wearable Devices

Kourogi et al.11) integrated wearable inertial sensors, a GPS function, and an RFID tag sys-

tem. Woodman and Harle43) also integrated wearable inertial sensors and map information.

Schulz et al.13) used LRFs and ID tags to locate people in a laboratory, and they proposed a

method that integrates positions detected using LRFs and identifies people by using sparse

ID-tag readers in the environment. Mori et al.44) installed floor sensors and RFID tag readers

in a room and tracked and identified people who carry ID tags. They associated anonymous

trajectories and IDs from tags when a trajectory and an ID tags are observed close location.

Difficulties in their method are ambiguity remains when more than one ID tags are detected

from a reader device, and association is possible only when a person is close to a reader

device. More dense installation of reader devices will increase the spatial resolution to some

extent, but conflicts between reader devices are inevitable.

Integration based on Signal Correlation

In this section, we propose to integrate floor sensors and wearable acceleration sensors and

propose a method that associates observed trajectories and IDs by evaluating their correlation
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Table 3.1 Methods for people tracking and ID detection

method Accuracy of Accucacy of Privacy Ease of
position estimation personal identification issue carry

Environmental sensors
　 cameras ⋆ ⋆ ⋆ ⋆⋆ ⋆⋆ ⋆ ⋆ ⋆
　 floor sensors ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
Wearable devices
　 ID tags ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
　 ID tags with accelerometer ⋆⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆
Integration
　 floor sensors + ID tags ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆
　 floor sensros + ID tags ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆⋆
　 with accelerometer

In privacy issue, we evaluate if using the contents of the sensors always are socially acceptable, especially using face and body

images. In ease of carry, we evaluate convenience of having to carry around the wearable device. The accuracy of position estimation

by using ID tags depends on the spatial density of reader devices.

statistically. Floor sensors are very reliable, but it provide ambiguous tracking results and

does not provide any information to distinguish each person. This characteristic causes am-

biguity of association between observations and people. By combining reliable observations

of positions by floor sensors and wearable devices that users carry, the system can estimate

both accurate positions and IDs from wearable devices.

So far, sensor integration based on signal correlation has been studied mainly in the area

of audio-visual integration45)22).46) However, the floor sensors generate binary position in-

formation and new integration method is required. The proposed method in this section is

general method to integrate floor sensors and wearable devices.

Table 3.1 summarizes methods to estimate positions and IDs of people. There are many

possible combinations of integrating sensors and integration of floor sensors and wearable

accelerometers is one of promising approach. There are many ways to carry accelerome-

ters: attach to the foot, hand, and waist. We put accelerometer on the waist, since it is one

of common ways to carry cellular phones. Recently cellular phones are equipped with ac-

celerometer and wireless LANs, so signals from cellular phones are available without burden

on the user and practical applications of using these wearable sensors are expected11).47)
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3.3 Integration of Different Kinds of Sensors Based on
Statistical Test

In this section, we propose a integration method of following two types of sensors:

position sensors Sensors that observes positions of targets. The observations are not la-

beled with target IDs.

wearable sensors Sensors that is attached to each target. It observes the motion of the

target.

3.3.1 Multiple Target Tracking Using Position Sensors

Since the observations from the position sensor contain only position information and

do not contain ID information, ambiguities may arise in estimating trajectories of multiple

targets. Tracking multiple targets using the position sensors requires solution to both data

association and state estimation problems48)49).50) The most successful algorithm is the mul-

tiple hypothesis tracker (MHT).48) MHT generates and maintains a set of hypotheses, where

each hypothesis associates past observations with targets in a different way. Each hypothesis

is evaluated by its posterior probability and the final result is the hypothesis with the highest

probability. However, since MHT postpone decisions and examine all possible combination

association as a new set of observation arrives, the number of hypotheses grows exponen-

tially. The growth of the hypotheses is shown in Figure 3.2, where each branch denoting a

different assignment of an observation to a target. Though several heuristics are proposed

to cope with this problem, it is essentially difficult to select correct association only from

position sensors. A promising approach is to combine different kinds of sensors.

3.3.2 Evaluating Association Hypotheses by Integrating Different Kinds
of Sensors

In this paper, we propose to disambiguate the association by integrating wearable sensors.

For example, the signals from floor sensors and acceleration sensors on the body change in
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t

floor
sensor
signal

Figure 3.2 Exponential growth of the number of association hypotheses in the Multiple Hy-
pothesis Tracker. A path from the root node to a leaf node represents an associa-
tion hypothesis.

correlated manner if they observe same person. By evaluating the correlation between these

sensors, probable association hypotheses are selected and the number of hypotheses becomes

tractable (Figure. 3.3). The problem is how to evaluate correlation between position sensors

and wearable sensors. Since the signals are in the different representation, a method that

computes correlation between different kinds of sensors is required.

Position sensors and wearable sensors display synchrony and the signals are not indepen-

dent if they observe same information source. Recently, several studies of sensor integration

have been proposed by extracting synchrony between the signals from different kinds of sen-

sors based on statistical methods. Hershey et al.45) observed people speaking alternately

with a camera and a microphone. They extracted synchrony between the audio signal and

the brightness of the pixel around the speaker’s mouth. They localized the speaker in the

image by computing mutual information between the signals. This method has extended

and has been applied to especially sound source localization problem22).23) A limitation of

the method is the assumption that the target does not move in the images. In coping with a

moving target, object detection is applied18).24)

However, previous statistical sensor integration methods cannot be applied to the case

that multiple signal source overlap in the array sensor signals like video cameras and floor

sensors. Furthermore, since floor sensors are binary sensors that report the position and the
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Figure 3.3 Evaluation and selection of association hypotheses using correlation between floor
sensors and wearable sensors.

time and acceleration sensors are continuous sensor, another difficulty arises to use previous

method to evaluate synchrony.

3.3.3 Evaluate Synchrony Based on the Chi-square Test of Goodness-
of-fit

In order to evaluate synchrony between floor sensors and wearable accelerometer, we fo-

cused on the timing of footsteps. We propose to convert both signals into binary representa-

tion and apply a statistical test to evaluate correlation between binary signals. We generates
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Table 3.2 Two-way contingency table
y=1 y=0 計

x=1 z11 z10 z1.

x=0 z01 z00 z0.

total z.1 z.0 z..
The dot . represents that the sum is taken for all possible value of the index at the dot.

z. j =
∑

i zi j, zi. =
∑

j zi j, z.. =
∑

i
∑

j zi j.

multiple hypotheses of the trajectories from the position sensor array based on MHT and

select hypotheses by evaluating correlation between position sensors and wearable sensors.

We evaluate if the acceleration sensor signals on a target are independent from the sequence

of floor sensor signals in a MHT hypothesis. The association problem between signals from

different kinds of sensors is described as a hypothesis test.51) Whether time series x(t), y(t)

observes same information source is decided by a hypothesis test:

H0 : x(t), y(t) ∼ p(x)p(y)
H1 : x(t), y(t) ∼ p(x, y) (3.1)

where H0 states that the observations are statistically independent and H1 states dependent.

In the case of testing dependency between discrete signals, the chi-square test of goodness-

of-fit is applied.51) When both signals are in binary representation, a two-way contingency

table is created (Table 3.2).

When the null hypothesis H0 is presumed true (signals are independent), theoretical fre-

quency ẑi j are estimated as follows given peripheral frequencies (z1., z0., z.1, z.0) are fixed:

ẑi j =
zi. z. j

z..
(3.2)

where the dot . represents that the sum is taken for all possible value of the index at the dot.

Then χ2 value is computed after observing frequency zi j when the null hypothesis H0 is

presumed true:

χ2 = ΣiΣ j
(zi j − ẑi j)2

ẑi j
(3.3)

Then χ2 value is distributed as chi-square with ν = (nx−1)(ny−1) degree of freedom. Where

nx, ny are possible kinds of values of x, y. When both values are binary ν = 1, in the case of
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Table 3.2. When there are correlation between two signals, the H0 will be rejected since they

are not independent. From a set of hypotheses in MHT 3.2, we remove hypotheses that H0

are not rejected and considered independent (Figure 3.3).

Proposed algorithm is summarizes as Table 3.3.� �
1. As new observations are obtained, generate hypotheses of target trajectories

based on the observation of the position sensors.

2. For all generated hypotheses, convert the floor sensor signals associated to each

target to binary signals. Convert signals from acceleration sensors to binary

signals.

3. For all hypotheses, perform the chi-square test of goodness-of-fit to the binary

signals computed in 2.

4. If the pair of signals is considered independent in 3, remove the hypothesis.

5. Go to 1.� �
Table 3.3 Multiple Hypotheses Tracking Algorithm by Integrating Floor Sensors and Ac-

celeration Sensors.

3.4 Algorithm to Integrate a Floor Sensor and Acceleration
Sensors

In this section, the details of the algorithms to integrate floor sensors and acceleration

sensors based on the proposed association method are described.

3.4.1 Multiple Target Tracking Using the Position Sensors

An example of the observations of the floor sensor is shown in Figure 3.4. In the figure, the

observations in a period are overlapped. The problem of estimating trajectories of multiple

people based on floor sensors are:

1. Exponential growth of the number of hypotheses. Keeping all hypotheses is not real-

istic.



3.4 Algorithm to Integrate a Floor Sensor and Acceleration Sensors 47

Figure 3.4 Examples of floor sensor signals

2. Discrete changes of the observation. Since the floor sensors observes the feet of

people, only discrete positions of the feet are observed. And the observation of both

feet sometimes disappears.

We apply MHT to estimate possible trajectories of the targets. It is difficult to handle huge

number of hypotheses, but in the next step it is better to evaluate longer observation to decide

dependency between signals. We introduce following models and assumptions.

Modeling trajectories based on the Kalman Filter When body of each person moves

smoothly, floor sensors observe discrete footsteps. To estimate and predict trajectories from

observed footsteps, Kalman filter based state estimation is applied for each person. The state

vector of the target i at t consist of positions and velocities in two-dimensional coordinates.

Xi,t = [x, y, ẋ, ẏ]′ (3.4)

State model is based on the assumption that people do not change moving direction suddenly.

Xi,t = FXi,t−1 + wt (3.5)

where wt is noise vector with average 0 and

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (3.6)

where ∆t is sampling period. The observation vector Zi,t is computed using following obser-

vation model:

Zi,t = HXi,t + vt (3.7)
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where

H =
[

1 0 0 0
0 1 0 0

]
(3.8)

where vt is noise vector with average 0. Positive values are set to diagonal elements in wt, vt.

A standard Kalman filter update rule is applied. To cope with intermittent observation, only

the prediction step of the Kalman filter is executed when there are no observations that are

associated to the target.

association constraints

To reduce number of the association between the observation and the target, we introduce

following constraint.

1. Associate all observations that are adjacent to each other to the same target, and asso-

ciate the succeeding observation at same position to the same target.

2. Limit the observations that are associated to the target to positions whose Mahalanobis

Distance between the observation and the estimated position by the Kalman filter is

less than a threshold (f md threshold).50)

In the experiments, the constraint 1 was not broken even once when two subjects got very

closer. It depends on the size of unit floor sensor (10cm in experiments). When the size is

smaller, the constraint is always satisfied. Otherwise, the number of ambiguous association

becomes smaller and there are no need to introduce this constraint. Constraint 2 prunes the

observation that does not match the linear prediction model of Kalman filter. It is based on

the assumption that trajectories are smooth and do not jump.

3.4.2 Extracting the Binary Signal That Represents the Time of Contact

From both observed signals, binary signals are extracted that represents timings of foot-

steps.

Preprocess floor sensor signals

For each hypothesis, a binary signal f (t) that represents the time of contact is computed.
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 2 0  5  10  15 0

f(t) (binarized)

time [sec]

Figure 3.5 Extraction of the contact timings from floor sensor signals.

This conversion process is similar to differential processing in one dimensional signal.

f (t) =
{

1 |x(t) − x(t′)| > f step threshold,
0 otherwise

(3.9)

where

x(t) center of the current observations at t

x(t′) center of the observations at t’,

t’ is the latest time s.t. f (t′) = 1

and f step threshold is a threshold

We introduce the threshold since the center of the observation sometimes moves a little

after the contact of a foot to floor sensors. The threshold should be larger than the length of

the move, and we set the value to about half length of the sole (20cm in experiments). Then

f (t) is a binary signal that is 1 when there are new observation at a distance from previous

1s, otherwise 0. An example of the extracted binary signal from a person’s walk is shown in

Figure 3.5.

Preprocess acceleration signals

Figure 3.6 (1) shows an acceleration signal from a person who put an accelerometer on

the waist. Signals from acceleration signal show almost binary property that is correlated to

the walking motion. We convert acceleration signals to binary signals a(t) that represent the

time of contact (Figure 3.6) as follows.

1. An original observed signal.

2. Extract maximum difference of signals in a diff wlen frames. The large change of the

value is detected.

3. Smooth the signal computed in 2 in a small window (Hanning window, window length

= a smooth wlen). Compute local average signal in a large window (window length

= a localavg wlen)
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 0  5  10  15  20
time [sec]

(1) original signal

(2) |max-min|
in a small window

(3) smoothed signal
and averaged signal
in a large window
(4) a(t) (binarized)

Figure 3.6 Extraction of the contact timings from acceleration sensor signals.

4. Extract peak of the signal computed in 2 if the value is larger than local average. Set

binary signal a(t) as follows:

a(t) =


1 if threre is a peak at t and

greater than the local average,
0 otherwise

(3.10)

3.4.3 Evaluating Synchrony Between Sensory Signals Based on Chi-
square Test of Goodness-of-fit

For each association hypotheses, the chi-square test of goodness-of-fit is performed to

test if the binary signals a(t), f (t) are independent. In general, since sampling period is

different for each sensor, signals are averaged so that both binary signals has same sampling

period. In this case of associating floor sensors and accelerometers, floor sensors has longer

sampling period. So we generate a(t) in longer sampling period by assigning ’1’ if original

binary acceleration signal is 1 at least once in the period of one floor sensor signal, and ’0’

otherwise.

After sampling period is aligned, we compute a two-way contingency table based on last
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correlation length frames (a(t), f (t)) (Table 3.2)．(Table 3.2). zi j in the table represents fre-

quency of (a, f ) = (i, j) in the observation sequence. If a(t), f (t) are observation of same

person, the diagonal elements in the table will becomes larger. Then the test statistic is

computed according to Equation 3.3 and test following hypotheses.

H0: (a, f ) are independent

H1: (a, f ) are not independent

Since our purpose is selecting correlated and not independent associations, we select associ-

ations if H0 is rejected.

3.5 Experiments

We applied the proposed method to track two people in the room. Since difficulty in

tracking by using floor sensors arises when people get close, we focused on the situation that

two people go across. To apply our method in more crowded situations, resolving ambiguity

when two people go across is one of fundamental problems. This experiment confirms the

basic function of the proposed method.

3.5.1 Experimental Setup

Floor sensors

The floor sensor used in the experiments is VS-SS-SF55 (Vstone52)) shown in Figure 3.7.

A square region in Figure 3.7 is a unit sensor. A carpet is laid on floor sensor in use.

Accelerometers

The acceleration sensor used in the experiment is ADXL202 (Analog Devices, Inc.). The

sensor is attached to the waist of the body (Figure 3.8). The sensor measures acceleration

of two axes, and the signals of an axis that are close to horizontal plane are used in the

experiments as shown in Figure 3.8. The observed signals are sent to a host PC via Bluetooth.

Parameters The parameters used in the experiment are shown in Table 3.4. The parame-
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Specifications
Size of the detection unit 100mm × 100mm
Number of the detection unit 1400
Gross area 14.0 m2

Data format binary (on/off)
Sampling frequency 8 Hz (*)
Inteface RS-232C

(*) depends on the number of detection units.

detection unit

Figure 3.7 The floor sensor network used in the experiment.

Specifications
Data format 16bit integer
Sampling frequency 36Hz (*)
Inteface RS-232C

(*) an actual measured value in the experiments

Acceleration
sensor

The direction of acceleration
used in the experiments

Figure 3.8 The acceleration sensor
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Table 3.4 Parameters in the experiments.
Parameters used in processing floor sensor signals

Variance of w (position) (eq. (3.5)) (0.1)2

Variance of w (velocity) (eq. (3.5)) (0.1)2

Variance of v (eq. (3.7)) (0.5)2

f md threshold 1.2
f step threshold 20

Parameters used in processing acceleration sensor signals

a diff wlen 3
a smooth wlen 16
a localavg wlen 48

Parameters used in the statistical test

level of significance (α) 0.05
correlation length 40

ters related to floor sensors are determined empirically so that our tracker correctly tracks

one person. Window length parameter in preprocessing accelerometers (a smooth len) are

determined to compute average of one step walk. Windows length to compute correlation

(correlation length) is determined to enough length to compute synchronization in this ex-

periments.

Data acquisition

We captured two types of trajectories shown in Figure 3.9. The trajectories of two people

cross in type 1 (”cross”) and do not cross in type 2 (”pass”). Seven type1 data and six type2

data are used in the experiment. There is no false alarm in floor sensor data. The scenes

are recorded in video and correct associations are obtained for evaluation. We assumed the

number of people is known and all people in the environment have an acceleration sensor.
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1

2

1

2

Type 1: cross Type 2: pass

Figure 3.9 Two types of trajectories in the experiments.

Table 3.5 Experimental results. These figures show the times that the alogorithm correctly
associate floor senosor data to each person.

Expermental data Number of correct associations
Type Number of data By floor sensor By integration

cross 7 7 7
pass 6 2 6

3.5.2 Results

We performed two people tracking experiments based on the proposed method and com-

puted correct association rate between observation of floor sensors and target tracks. For

comparison, the results by only floor sensors (section 3.4) are computed.

The results are shown in Table 3.5. For ”cross” data, the baseline method correctly tracks

all case until the end. By introducing velocity term in the state of Kalman Filter, the method

succeeded to track straight trajectories. For ”pass” data, the baseline method often failed to

track people until end and failed to associate IDs to observed trajectories. In contrast, the

proposed method tracks people and associate correct IDs for all case by integrating acceler-

ation sensors.

The results are shown in Table 3.5. The figures in the table show the times each method

correctly associated floor sensor data to each person.
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Figure 3.10 Experimental envirnment.

3.5.3 Change in the Statistics

Here we analyze the change in the statistics in one typical result that the propose method

correctly associated and the baseline method failed. Figure 3.11 (a) shows the change in the

statistics (Equation 3.3) by using the baseline method and (b) shows the proposed method.

The arrow in figure shows the time two people approached. After the time, the statistics

decreased in (a) since the tracking failure by using floor sensors. In contrast, the statistics

increased in (b) by associating the hypothesis that maximizes correlation between the floor

sensors and the acceleration sensor. Above each graph in Figure 3.11, a two-way contingency

table and the difference between the theoretical frequency in shaded period are shown. In

Figure 3.11 (b) there are large difference between the theoretical frequency that shows signals

are not independent.

3.6 Discussion

Property of floor sensors Major specifications of floor sensors are spatial and time res-

olution, which are determined by the size of unit sensor (10 cm in the experiments) and
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Two people meet

a) The results using only floor sensors

b) The results using both types of sensors

 4    4       8
14  18    32
18  22    40

(1,1)  (1,0)  (1,*)
(0,1)  (0,0)  (0,*)
(*,1)  (*, 0)  (*, *)

Frequencies of (a,f) Observed�
frequencies

Difference between theoretical 
and observed frequencies
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Figure 3.11 The changes of the statistics in Eq.(3). The two-way contingency tables after two
people meet are also shown. The upper figure shows the value computed for the
tracking result only by floor sensors. The lower figure shows the value when the
acceleration sensor is integrated. In the integrated case, the hypothesis that signals
are not independent is selected and the difference between the theoretical and the
observed frequency is larger.

sampling period (0.125 seconds). They affect the performance of the proposed method With

regard to the time resolution, the walking frequency of average adults is 1.75 Hz53) (sampling

period is about 0.57 seconds). To distinguish timings of footsteps of one person, sampling

period should be no more than 0.5 second. Next, we discuss required sampling period to
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0.0

1.0

dt
�¢ �Â�Â-�¢

Figure 3.12 The probability that steps of two people are separately observed when the time
difference of the steps is dt. ∆ represents the sampling period, and δ represents
the period of walking steps. This figure shows the case ∆ < δ/2.

distinguish timings of footsteps of two people. Suppose sampling period of floor sensors is

∆. For simplicity, we assume period of footstep δ is same for both people. When the time

difference of landing between two people is dt, floor sensors always distinguish two steps

if ∆ ≤ dt, distinguish probabilistically if ∆ > dt. Figure 3.12 shows the probability with

respect to the difference of landing dt. As the Figure 3.12 shows, the average probability that

floor sensors distinguish two steps is 1−∆/δ. In the experiments the probability is 0.78 given

∆ = 0.125 and δ = 0.57. However it is ideal case and the probability will decrease when

there are observation error in sensors and observation delays as discussed in next topic.

In the observation in this experiment, floor sensor failed to observe landings in synchro-

nized to the corresponding accelerometer once a few seconds. It decreases the probability to

distinguish two steps from different people. On the other hand, the probability increases by

observing more footsteps. Therefore, by observing footsteps in appropriate periods, the pro-

posed method correctly distinguishes two people. However, longer observation will result

in exponential increase of MHT hypotheses and computational resource. In this experiment,

we determine based on the observation in five seconds.

With regard to the spatial resolution, in order to distinguish two close footsteps, smaller

unit sensor is preferable. To distinguish two lined feet of 10cm, the size of unit sensor should

be smaller than 10cm. The size in this experiment is 10cm. In observed data, two feet rarely

become very close and no two feet contact. Assuming that two feet may approach to the

closeness of 10cm, the size of unit sensor should be smaller than 20cm. However, smaller

size of unit sensor will result in larger amount of data to transmit and longer sampling period.

By improving response of floor sensors and introducing parallel sensing, we can realize

shorter sampling period. Testing the proposed method by using floor sensors in different
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specifications is our future plan.

Signal delay Depending on the size of the environment, the delay in transmission of acceler-

ation signals and it becomes difficult to synchronized observation. To cope with the problem,

1. estimate transmission delay in advance and correct delay when the delay is constant, 2.

assign timestamps before transmission when the delay changes. In this experiment, since

we used the time when the signal arrives at the host PC, the delay affect performance of the

proposed method. In fact, acceleration signals sometimes do not synchronize to the footsteps

of the same person observed by using floor sensors. To evaluate synchrony in stable manner,

we currently observe signals enough time. Improving the accuracy of the timestamps will

result in the shorter observation time to evaluate synchrony. It is desirable to use timestamps

in the wearable device and it is one of our plans. In addition, more flexible evaluation method

including modeling delay is promising approach.

Computational complexity The computational cost of the proposed method is proportional

to the number of MHT hypotheses. When the positions of people are not close, association

is not ambiguous and number of hypotheses does not increase. When people get close, the

number of hypotheses increases during the approach of two people. In this experiment, it

is difficult to compute online when the number of hypotheses becomes large. When the

number of people increases, the computational cost grows accordingly. Furthermore, it

becomes more difficult to distinguish different footsteps when number of people becomes

larger, which result in increased number of hypotheses. To cope with the problem, it is effec-

tive to use floor sensors that observe smaller sampling period to measure timing of footsteps

with high precision. Shorter sampling period realizes accurate decision of synchrony and

shorter time to accumulate enough statistics and finally smaller computational cost.

Recovery from false association Since the proposed method associates signals by evaluat-

ing synchrony in enough length of observations, the method find correct association. How-

ever once it associates wrongly after people go across, it is necessary to recover from false

association. For example, when a person changes his direction suddenly and the motion

model does not cover the strange motion, floor sensors do not generate correct hypothesis
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of trajectory and the method does not generate correct results. To cope with the problem,

it is possible to recover correct association by re-estimating association after the distance

between people becomes larger. Now floor sensors correctly estimate each correct trajectory

and association between signals will work perfectly. Since our system repeatedly re-estimate

association based on the latest observations, it recovers correct association though it wrongly

associate once.

Using many accelerometers In this experiment, we assume each person carries one ac-

celerometer. It is promising to put another accelerometer to shoes, which enable to observe

walking motion in more details. More accelerometer will enable us to understand various

daily behaviors not only walking. When we increase number of wearable sensors, it is im-

portant that we easily carry the sensors. Future plan includes proposing a general framework

of adding sensors in a flexible manner depending on the purpose.

3.7 Conclusion

In this section, we proposed a method that associates binary signals based on signal cor-

relation. To compute correlation between floor sensors that each unit sensor generates ’0’ or

’1’ and accelerometers that observe continuous acceleration, we extract binary signals that

represent footsteps from each sensor and associate them based on statistical test. We ap-

plied the proposed association method to track multiple people by associating floor sensors

and acceleration sensors that are attached to the human body. By associating trajectories

observed by using floor sensors and IDs from wearable accelerometer, our method estimate

both positions and IDs of people. Since many cellular phones have an acceleration sensor,

the proposed approach is realistic for this application. By using only floor sensors, it is dif-

ficult to estimate correct associations between observations and people since floor sensors

does not provide any ID information and trajectories are ambiguous. By selecting associa-

tion hypotheses that maximizes correlation, the correct association hypothesis is estimated.

In experiments, significant improvement in correct association rate is achieved.
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Chapter 4

Tracking and Identifying People

Different kinds of sensors have different characteristics of reliability depending on situ-

ation. To associate signals of different kinds of sensors in stable manner, it is important to

consider the reliability of observation of each sensor. In this chapter, we focus on association

of LRFs (laser range finders) and wearable gyroscopes to track and identify each person, and

propose an association method that consider reliability of observations of LRFs.

4.1 Related Works

4.1.1 Locating Pedestrians Using Environmental Sensors

LRFs have recently attracted increasing attention for locating people in public places. As

they have become smaller, it becomes easier to install them in environments. Since LRFs

observes only the positions of people, installation of LRFs does not raise privacy issue. Cui et

al.54) succeeded in tracking a large number of people by observing feet of pedestrians. Zhao

and Shibasaki55) also track people by using a simple walking model of pedestrians. Glas

et al.56) placed LRFs in a shopping mall to predict the trajectories of people by observing

customers at the height of waist. In summary, LRFs placed in the environment are good at

locating people precisely. However, it is difficult to use them to identify pedestrians when

they are walking in a crowded environment.
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4.1.2 Locating People by Using LRFs

In this chapter, we use a network of LRFs to estimate positions of people. LRFs are one of

promising devices that provide positions of people since they estimates positions accurately

in large crowded locations day or night, outdoors and indoors. As they have become smaller,

it becomes easier to install them in environments. Since LRFs observes only the positions of

people, installation of LRFs does not raise privacy issue. Cui et al.54) succeeded in tracking

a large number of people by observing feet of pedestrians. Zhao and Shibasaki55) also track

people by using a simple walking model of pedestrians. Glas et al.56) placed LRFs in a

shopping mall to predict the trajectories of people by observing customers at the height of

waist. Our method is based on Glas et al.,56) and we expands the methods according to each

experiment.

Figure 4.1 (a) shows raw observations by using LRFs. An LRF measures distance from

sensor to close targets. The sensor we mainly uses in experiments is UTM-30LX (Hokuyo

Automatic), which observes the distance of 30m and the angular range of 270 degrees in

specification (Table 4.1). A background model is first computed for each sensor by analyzing

hundreds of scan frames to filter out noise and moving objects. Points detected in front of

this background scan are grouped into segments within a certain size range and ones that

persist over several scans are registered as human detections. Each person is then tracked by

the particle filter using a linear motion model (Figure 4.1 (b)). Likelihood is evaluated on

the basis of the potential occupancy of each particle’s position. For example, humans cannot

occupy spaces that have been observed to be empty. Figure 4.1 (c) shows observed positions

of people in the environment with anonymous IDs. This tracking technique provides quite

stable and reliable position data, with a position error 6 cm. Further details on this algorithm

are presented in.56)

4.2 Associating LRFs and Werable Accelerometers

To associate signals from different kinds of sensors, it is important to evaluate confidence

of observations since each sensor has different characteristics of observations. In this sec-

tion, we associate LRFs installed in the environment and wearable accelerometers and locate
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a) Observation by LRFs
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b) Estimated positions by using particle filters
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c) Estimated positions with anonymous IDs

Figure 4.1 Person position estimation using LRFs

positions of people who carry accelerometers. We focus on angular velocity signals around

the vertical axis that are observed from environmental and wearable sensors. After angular

velocity is observed from two types of sensors, signals are compared to determine whether

two signals come from same person. In this framework, the problem of locating the person

with a wearable sensor is to compare the signal from the wearable sensor to all signals from

the people detected by environmental sensors and selects the person with the most similar

signal (Figure 4.2).

However, observed angular velocity by using LRFs is not reliable depending on the be-



64 Chapter 4 Tracking and Identifying People

Table 4.1 Specification of LRFs used in experiments

Product name Hokuyo Automatic UTM-30LX SICK LMS200

Scanning angle [degree] 270 180

Angular resolution [degree/sec] 0.25 0.25,0.5,1.0

Sampling frequency [Hz] 40 75.0, 37.5, 18.75

Range [m] 30 80 (max)

Measurement accuracy [mm] ± 30 ± 15 - 40

walking angluar velocity  from LRFs

walking angular velocity
from a gyroscope

Which person carries
the wearable device?

sensors in environment wearable sensors

Figure 4.2 Locate a person carrying a specific gyroscope by computing correlation between
wearable and environmental sensors.

havior of people. To associate LRFs and wearable accelerometer accurately, we propose to

evaluate confidence of observation of LRFs and introduce association method based on the

evaluation.
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4.2.1 Estimating Angular Velocities by Using Environmental Sensors

Our method expands the tracking algorithm explained in section 4.1. For each observed

trajectory, angular velocity is computed as:

v(t) = (x̃(t) − x̃(t − 1))/∆

θ(t) = arg(v(t)) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (4.1)

ωL(t) = (θ(t) − θ(t − 1))/∆

where x̃(t) is smoothed position vector，v(t) is velocity vector，∆ is sampling period，arg(v)

represents a function that returns direction of v，θ(t), ωL(t) are moving direction and angular

velocity, respectively. In general, the position and angular velocity of a person can change

independently. However, when people walk in daily lives, changes in angular velocities

could be mainly caused by changes of the walking directions. In fact, we found angular

velocity estimated by using LRFs are similar to that observed by using wearable gyroscopes

(Figure 4.3).

4.2.2 Estimating Angular Velocities by Using Wearable Inertial Sensors

Next we estimate angular velocities around the vertical axis of people who carry wearable

accelerometers. Angular velocities around three axes are observed for each person by using

body-mounted 3-axis gyroscopes. To estimate component around vertical axis of angular

velocities ωG,

ωG = Ω · ez (4.2)

where Ω is observed angular velocity vector, and ez is the unit vector of the vertical axis.

The suffix G of ωG represents that it is estimation by using gyroscopes. In principle, ez is

estimated by integrating the angular velocity signals,57) but we need initial posture of the

sensor and it is difficult to estimate accurate ez since drift error grows with time. Therefore,

we use accelerometers and compute the short-time average of the observed accelerometers

to estimate ez:

êz(t) = −
1

Lg

t∑
τ=t−L+1

a(τ) (4.3)
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Figure 4.3 An example signals from LRFs and a gyroscope in 20 seconds. a) Estimated
trajectory using LRFs. b) Estimated angular velocities. The vertical axis is the
angular velocity. Two signals are quite similar.

where a is the acceleration vector and g is the gravitational constant. In the experiments,

we set the length L to the number of samples for eight seconds. Though this estimation is

incorrect when people are walking, it does not suffer from drift error. In preparatory exper-

iments, we confirmed that this simple averaging can be used to estimate ez for our purpose.

When body motion is measured using inertial sensors, the sensor’s attachment position is

important. In preparatory experiments, we tested three different attachment positions: on the

head, chest, and waist. We found that the results for the head-mounted sensor were noisy,

while the results for the other positions were adequate and almost the same. In the following

experiments, the inertial sensor was placed on the person’s chest.
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4.2.3 Integration by Evaluating Correlation Between Angular Velocity
Sequences

Suppose many people carry wearable gyroscopes, we observe angular velocity ω( j)
G from

sensor j. At the same time, by using LRFs in the environment, we estimate angular velocity

ω(i)
L from observed trajectory of a person i. By associating two sensors (i, j) that observes

same person, we can estimate the position of a person who carries specific sensor j.

Before evaluating correlation between two sensors, we align sampling period of signals.

Since generally sampling periods of sensors are different, we average signals from sensors

with shorter sampling period and generate signals with same sampling period as another

sensors. Here we average signals from gyroscopes and generate averaged angular veloc-

ity ω( j)
G (t) with same sampling period as ω(i)

L (t) from LRFs. A simple method to evaluate

correlation between ω( j)
G (t) and ω(i)

L (t) is:

f1(i, j) =
1
T

T∑
t=1

|ω( j)
G (t) − ω(i)

L (t)| (4.4)

where Equation（4.4）is cost function and smaller cost means higher correlation. T is time

length to compute correlation (five seconds in experiments). We can estimate positions of the

person who carries sensors j by estimating person i that minimizes cost function Equation

（4.4）.

i∗ = argmin
i

( f1(i, j)) (4.5)

when no observation is available from either types of sensors, a small constant is used instead

of absolute difference of angular velocities in Equation 4.4. For each wearable device j, a

trajectory i is associated and our system can estimate the location of the person with sensor

j.

Smoothed angular velocity signals for 20 s from LRFs and from a gyroscope are shown

in Figure 4.3. Though these signals were observed from different viewpoints, they are quite

similar. Since observing a body’s angular velocity by using a gyroscope is straightforward

and free from drift error and since positions are estimated precisely using environmental
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Figure 4.4 System overview

sensors, our method enables a robust and precise location system. Figure 4.4 summarizes

the proposed system.

4.3 Sensor Integration Considering Confidence in
Observation

4.3.1 A problem of Estimating Angular Velocity Using Position Sensors

The simple method of comparing angular velocities (Equation 4.4) does not always pro-

vide reliable results. Angular velocities estimated using LRFs and gyroscopes are shown in

Figure 4.5. In the data for 20 s, the estimated angular velocities differed significantly when

the person stopped and changed direction. This difference arises because the error in the

angular velocity estimated using LRFs is larger when the velocity is low. In general, when a

target’s angular velocity is estimated using position-observing sensors, the confidence in the
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Figure 4.5 Example of signals produced for a low walking speed. a) Trajectory. The per-
son stopped once and changed direction. b) Estimated angular velocity signals
differed significantly when the person stopped.

estimated value depends on the target’s velocity.

Typical changes in confidence while estimating direction are shown in Figure 4.6. When

the position is observed with a certain precision, the direction is estimated from the difference

between the subsequent positions. The estimated direction is limited to a certain distribution

according to the target’s velocity (Figure 4.6 (a)). However, if the velocity is low, the distri-

bution is broad and the confidence is low (Figure 4.6 (b)). Since angular velocity is estimated

from the difference in directions, the confidence in the angular velocity also depends on the

target’s velocity. When the velocity is close to zero, it is difficult to estimate angular velocity.

This causes a problem when we locate people on the basis of Equation 4.4.
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Figure 4.6 Relationship between the target’s velocity and the variance of the estimated angle.

Evaluating Confidence in Observed Angular Velocity

When we observe positions by using sensors in the environment and estimate angular

velocities, the confidence in the estimated angular velocity depends on the person’s velocity.

Since we cannot trust the estimated angular velocity when the velocity is low, a simple

matching method using Equation 4.4 will fail to locate the person carrying a wearable sensor.

One approach for dealing with this problem is to consider the confidence in estimated

angular velocity when matching angular velocities. To confirm the effectiveness of this ap-

proach, we introduce a simple cost function based on target’s velocity. The cost function uses

a simple heuristic but is a robust method of evaluating observation confidence. A weight term

that depends on the target’s velocity is added to Equation 4.4:

f2(i, j) =
1
T

T∑
t=1

1
w(v)
|ω(i)

G (t) − ω( j)
L (t)| (4.6)

where v represents person’s velocity estimated by using LRFs, the term w(v) represents the

uncertainty of the estimated angular velocity, which depends on the target’s velocity. Larger

w results in lager uncertainty. In the following experiments, we approximated the uncertainty

of the angular velocity by using following formula:

w(v) = sin−1σL

v
(4.7)

where σL is the fixed standard deviation of the position sensor’s estimation error. As shown

in Figure 4.7, Equation 4.7 is based on simple geometrical estimation.
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Figure 4.7 Estimation of variance of direction based on the observed position

4.4 Experiments

4.4.1 Experimental Setup

We conducted experiments in an entertainment/shopping arcade located near the entrance

to Universal Studios Japan, a major theme park. We located people in a 20-m-radius area of

the arcade containing shops selling clothing and accessories on one side and an open balcony

on the other side. People in this area were monitored via a sensor network of consisting of

five SICK LMS-200 LRFs mounted at a height of 85 cm (Figure 4.8 (c)). We expanded the

system in56) by integrating wearable sensors to locate and identify people.

Each person in the environment was detected and tracked with a particle filter. By com-

puting the expectation of the particles, we estimated the position and velocity 25 times per

second. This tracking algorithm ran very stably and reliably with a measured position ac-

curacy of less than 6 cm for our environment.56) Two people in the environment each car-

ried one wearable sensor (WAA-006, ATR Promotions) with a three-axis gyroscope and a

three-axis accelerometer (Figure 4.9). In the experiments, the observed angular velocity and

acceleration signals were timestamped and sent to a host PC via Bluetooth.

Since our method locates people by comparing angular velocity time sequences, it is im-

portant to adjust the clocks of the LRFs and wearable sensors. In the following experiments,

the wearable sensor clocks were synchronized with the host PC when they initially estab-

lished a Bluetooth connection.

Another problem is the delay in the transmission from the wearable sensors to the host

PC. In the following experiments, signals were sent with timestamps added by the wearable
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LRFs

a) environment b) positions of LRFs

c) LRFs

Figure 4.8 Experimental environment. The circles in the photograph show the locations of
LRFs.

sensors. If the timestamp were set after the signals had been sent (e.g., by the host PC), the

results would be affected by sudden transmission delays.

4.4.2 Results

Estimated angular velocities of a walking person

Figure 4.10 a) shows the estimated angular velocity of a person who walked around in the

environment while carrying an inertial sensor. The angular velocity was estimated by two

different methods: using LRFs and using a gyroscope. The two estimates were similar and

changed in a correlated manner except for a few times (e.g. t =60 to 70, 100 to 110). Figure

4.10 b) shows the person’s estimated walking speed. It is clear that significant differences
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Product name WAA-006 (ATR Promotions)

Weight 20 [g]

Sampling frequency 500 [Hz]

Range (Gyroscope) ± 300 [deg/s]

Range (Acceleration) ± 2G

Interface Bluetooth

Figure 4.9 Wearable sensor device used in experiments.

between angular velocity estimates in 4.10 a) occurred only when the walking speed was

very low (dashed circles in the lower graph).

Identification of target people based on cost function

Figure 4.11 shows the computed cost function between the sensor-equipped person and all

the other people in the environment during a 20-s period based on Equation 4.6. The number

of lines represents the number of people and smaller values represent higher correlation

between signals. In Figure 4.11, the cost function of the target person (solid line) is clearly

lower than those of the other people (dashed lines). This means that the cost function was

lowest for the target person, who could be located very precisely using the tracking system

using LRFs. These results show clearly how our algorithm distinguished the person carrying

an inertial sensor when there were many people in the environment. Figure 4.11 c) shows

the estimated angular velocities of one person by using two kinds of sensors, which show

similar estimation results.
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a) Angular velocity computed using LRFs (dashed line) and a gyroscope (solid line).
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b) Walking speed using LRFs. When the person walks slowly (dashed circles), the angular

velocity estimates differed significantly.

Figure 4.10 Estimated angular velocities and velocities of a user walking in the environment.

The effect of introducing the weight to the cost function

Figure 4.13 shows the effect of evaluating observation confidence by introducing our

weight function. Figure 4.13 a) shows the cost function computed with a fixed averaged

weight in Equation 4.6, Figure 4.13 b) with the proposed weight function. The solid line

shows the cost function with the correct association. In the upper graph, the two lines some-

times touch and this could be the cause of failures. The lower graph enables the person to be

distinguished from other people much more clearly.

Effect of the length of observations

Comparative results for various lengths of the computing cost function (parameter T in

Equation 4.6) are shown in Figure 4.14. It was difficult to locate the person from only instant

observation. When T was set to at least 64 frames (about 3 s), the person was located almost
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c) Observed angular velocities of a person using both LRFs and a gyroscope

Figure 4.11 Results for locating a person carrying a wearable sensor in an environment con-
taining several people. The cost function for the person carrying the sensor was
the lowest and this person was clearly located.

correctly. In the bottom graph in Figure 13, for which T was set to 192 frames (about 8s),

the result is very clear.

4.4.3 Effect of Calibration Errors and Estimation Errors

Effect of error in time synchronization
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c) Angular velocity estimates for the person: they are very similar.

Figure 4.12 Results for locating another person carrying a wearable sensor in the same envi-
ronment as in Figure 4.11.

The proposed method assumes time synchronization between wearable devices and sen-

sors in the environment. In experiments, we synchronized time clocks of wearable devices to

a host PC. However, in real system time synchronization is not perfect and investigation the

change of accuracy in association due to the time synchronization error is important issue.

We added error artificially to the time clock of a wearable device and evaluate error in asso-

ciation. Figure 4.15 shows the correct association ratio with respect to the error (based on

Equation 4.6). When the error is positive, the clock of the wearable device is fast. The graph
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Figure 4.13 Effect of introducing the weight term into the cost function. When the cost func-
tion was computed using the weight term (b), the person could be distinguished
from other people very clearly.

shows robustness of our method to the synchronization error. Figure 4.16 shows the result

based on Equation 4.4 when we do not use proposed weight function. The graph shows a

decrease in association ratio when the error is negative, and this results shows effectiveness

of the proposed method.

Effect of calibration error of gyroscopes

In experiments, zero point offsets of gyroscopes are measured and calibrated. Since in real

situation it is not realistic to calibrate scale factor errors that depends on temperature, we did

not calibrate scale factor error. To confirm the effect of scale factor error, we introduced error

artificially and investigate association accuracy. Figure 4.17 shows the correct association

ratio with respect to the error. When the scale factor error is larger than 1.0, observed angular
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Figure 4.14 The cost function computed for different time period T. The costs are computed
for all people detected using LRFs. The ID of gyroscope is associated to the
trajectory with the lowest cost. These graphs represents results for T = 0.04, 1.3,
2.6, 5.1,7.7 [s] from the top to the bottom.

velocity is larger than the true value. The classification accuracy does not change when we

introduced error in all axes. Figure 4.18 shows the result based on Equation 4.4 when we do

not use proposed weight function. Still the accuracy is not very different and these results

show the robustness of this application to the scale factor error.

Effect of estimation error of vertical direction

To estimate angular velocities around the vertical axis, we approximate the vertical di-
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Figure 4.15 Effect of the time synchronization error in werable devices (proposed method)
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Figure 4.16 Effect of the time synchronization error in werable devices (fixed window)

rection based on Equation 4.3. To confirm the effect of the error in the estimated vertical

direction, we added error to the estimated direction artificially.

Figure 4.19 shows the correct association ratio with respect to the error. The classification

accuracy does not change when we introduced error in both x and y axes. Figure 4.20 shows

the result based on Equation 4.4 when we do not use proposed weight function. Still the

accuracy is not very different and these results show the robustness of this application to the

scale factor error.
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Figure 4.17 Effect of the scale factor error in gyroscopes (proposed method)
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Figure 4.18 Effect of the scale factor error in gyroscopes (fixed window)

4.5 Conclusion

In this chapter, we propose a method to evaluate confidence of observations to associate

different kinds of sensors. Since different kinds of sensors have different characteristics, it is

important to consider observation error and confidence of observations to compute correla-

tion between observed signals. We focused on association of LRFs and wearable accelerom-

eters and proposed a weight function to evaluate confidence of observations by using LRFs.

LRFs are one of promising devices to estimate positions of people in crowded public lo-
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Figure 4.19 Effect of the estimaed vertical direction error (proposed method)
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Figure 4.20 Effect of the error in the estimated direction (fixed window)

cations. A network of LRFs observes positions of people accurately in large area in both

outdoors and indoors. However, it is difficult for LRFs to identify each person. By associ-

ating mobile devices to observations by using LRFs, the system can provide both accurate

positions and IDs, which enable services that depend on positions in public locations. Pro-

posed method can provide a fundamental infrastructure for such applications.
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Chapter 5

Integration of Foot Motion and
Trajectories Based on Phase
Depend Features

5.1 Introduction

I nformation infrastructure that provides personal and location-dependent services in pub-

lic spaces like a shopping mall permits a wide variety of applications. Such a system will

provide the positions of friends who are currently shopping in the mall. When they have

many bags, users will call a porter robot, which can reach them by using the location system.

To enable location-dependent and personal services, we propose a system that locates and

identifies a pedestrian, who carries a mobile information terminal, anywhere in a crowded

environment.

Many kinds of location systems have been studied that provide the positions of pedestrians

by using sensors installed in the environment. For example, location systems using cameras

and laser range finders (LRFs) can track people in the environment very precisely. However,

it is difficult to identify each pedestrian or a person carrying a specific wearable device by

using only sensors in the environment.

On the other hand, in ubiquitous computing, many kinds of wearable devices have been

used to locate people. Since a location system using ID tags requires the installation of many
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reader devices in the environment for precise localization, it is not a realistic solution in large

public spaces. Wearable inertial sensors are also used to locate people, but the cumulative es-

timation error is often problematic. For a precise location system, it is important to integrate

other sources of information.

In order to locate a pedestrian carrying a specific mobile device anywhere in an environ-

ment, a promising approach is to integrate environmental sensors that observe people from

the environment and wearable sensors that locate the person carrying them. In this paper,

we propose a novel method integrating LRFs in the environment and wearable accelerom-

eters to locate people precisely and continuously. Since location systems using LRFs have

been successfully applied for tracking people in large public spaces like train stations and

the sizes of LRF units are becoming smaller, LRFs are highly suitable for installation in pub-

lic spaces. Since many cellular phones are equipped with an accelerometer for a variety of

applications, users who have a cellular phone do not have to carry any additional device. In

chapter 4, LRFs and wearable gyroscopes are integrated based on body rotation around the

vertical axis from both types of sensors. However, it was difficult to distinguish pedestrians

who move in a line when the trajectories are similar. Another problem in chapter 4is the

method’s use of gyroscopes, even though cellular phones equipped with gyroscopes are not

yet so common.

In this chapter, to cope with these problems, we propose a new method that extracts fea-

tures from a bipedal walking pattern. LRFs observe pedestrians at the height of feet and

estimate the positions of people and walking rhythms. The wearable accelerometer also ob-

serves walking rhythms. Since walking rhythms differ from person to person, the proposed

method can distinguish pedestrians walking in a line, and it uses only an accelerometer in

the wearable devices.

The rest of this chapter is organized as follows. First, we review previous studies. Then,

we discuss a method of integrating LRFs and accelerometers and how it can provide reliable

estimation. Finally, we discuss the application of our method to a practical system and

present the results of an experimental evaluation.
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5.2 People Tracking and Identification Using LRFs and
Wearable Accelerometers

5.2.1 Associating Signals from Environmental and Wearable Sensors

To locate each person carrying a wearable sensor, we focus on correlation of signals that

are observed from environmental and wearable sensors. After features of the motion are

observed using two types of sensors, signals are compared to determine whether the two

signals come from the same person.

In this framework, the problem of locating the person with a wearable sensor is reduced

to comparing the signal from the wearable sensor to all signals from the people detected by

the environmental sensors and then selecting the person with the most similar signal (Figure

5.1).

Suppose feet of pedestrians are tracked by using LRFs in the environment, and the motions

of both feet are estimated (Figure 5.2). Simultaneously, the timings of footsteps are observed

by using wearable accelerometers. If the signals from both kinds of sensors are from the

same pedestrian, we can assume that the two signals are highly correlated, since they were

originally generated from a common walking rhythm. We found the acceleration signal from

wearable sensors and acceleration of both feet that are estimated from tracking results are

highly correlated. In this paper we focus on walking behavior and propose an association

method of signals from both kinds of sensors based on signal correlation.

5.2.2 Tracking Biped Foot of Pedestrians by Using LRFs

Zhao and Shibasaki55) proposed a pedestrian tracking method by using LRFs at the height

of the feet. By observing the feet of pedestrians, not only the positions of pedestrians but

also the timing of their footsteps was observed. We modified our tracking system explained

in 4.1.

Then we compute velocity and acceleration of each foot from tracked positions:

v(t) = (x̃(t) − x̃(t − 1))/∆, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5.1)

aL(t) = | (v(t) − v(t − 1))/∆ |.
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walking motion from feet

walking motion from 
an accelerometer

Which person carries
the accelerometer?

sensors in environment wearable sensors

a) The concept of the proposed algorithm

Laser ranger finders Wearable accelerometer

Extract motion pattern
(from wearable sensors)

Extract motion pattern
(from sensors in an environment)

Associate each accelerometer
to one of detected pedestrians

Estimate foot motion 
of pedestrians

b) Flow of the proposed method

Figure 5.1 Locating a person carrying a specific wearable device by matching wearable and
environmental sensors

where is smoothed position vector, is velocity vector, is acceleration of one foot. Suffix L

represents that is an estimation from LRFs. represents sampling period.

To extract walking rhythm from the wearable accelerometer, we focus on the vertical com-

ponent of the observed acceleration. The vertical acceleration aA(t) is estimated from three-

dimensional acceleration vector a(t) and unit vector of vertical direction ez(t) as explained in

section 4.2.

Original and smoothed vertical acceleration signals are shown in Figure 5.3 (a). The ac-

celerometer is attached to the left waist. One footstep of the walk is about 500 milliseconds

in the graph, and the timing of the footsteps of both feet is clearly observed. Note that since
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Figure 5.2 Pedestrian walking in a shopping mall. The white marks represent the detected
feet of pedestrians. Motion of each pedestrian is observed using wearable ac-
celerometer and LRFs by tracking each foot.

the accelerometer is attached to the left waist, the impact of a footstep of the left foot is

clearer.

5.2.3 Associating Motion of Biped Foot and Body Acceleration

Figure 5.3 (b) shows the smoothed velocity and acceleration of each foot estimated by our

tracking method. When the speed of a pedestrian’s idling foot becomes lower and it finally

lands on the ground, a large vertical acceleration is observed. Therefore, we can expect the

impact of landing to be observed when the acceleration of the idling foot is negative. Note

that since LRFs observe at the height of the leg, the velocity does not become zero when the

foot lands.

Figure 5.3 (c) shows minimum of acceleration signals of both feet. This minimum of

acceleration (Figure 5.3 (c)) and the vertical acceleration signal (Figure 5.3 (a)) are highly

correlated (Figure 5.4).

To evaluate the correlation between the two signals, we propose computing Pearson’s cor-

relation function between the minimum foot acceleration from LRFs and the acceleration
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Acceleration (smoothed)
Acceleration (original)

a) Vertical acceleration from wearable accelerometer. Dashed line shows original signals

and solid line shows smoothed signal.
Left foot velocity (LRF)
Left foot acceleration (LRF)

Right foot velocity (LRF)
Right foot acceleration (LRF)

b) Velocity (solid line) and acceleration (dashed line) of left and right feet of a pedestrian

from LRFs.
Minimum of  acceleration (LRF)

c) Minimum of acceleration of both feet from LRFs (Equation (4)).

Figure 5.3 Examples of signals from LRFs and an accelerometer taken over eight seconds.
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Minimum of  acceleration (LRF)

Acceleration (accelerometer)

Figure 5.4 Examples of signals from LRFs and an accelerometer taken over eight seconds.
Superimposed signal of acceleration from accelerometer Figure 5.3 (a) and LRFs
(c)). Signals from same pedestrian shows clear correlation. The vertical axis is
adjusted to overlap both signals.

from the accelerometer.

f1(t) =
t∑

τ=t−T+1

âA(τ) âbiped(τ)/T, (5.2)

where âA(t) is normalized acceleration from wearable accelerometer, âbiped(t) is normalized

signal of abiped(t), which is minimum of acceleration of right and left foot aleft(t), aright(t) that

are computed from Equation 5.2:

abiped(t) = min(aleft(t), aright(t)). (5.3)

For each wearable accelerometer, the trajectory of the person who is carrying the sensor is

estimated by selecting the trajectory that maximizes Equation 5.2.

5.3 Evaluating Signal Correlation Depends on the Phase of
Walking

In a crowded scene, sometimes only one foot of a pedestrian is observed because of oc-

clusion. However, computing Equation (4) for acceleration from single foot results in low

correlation. This is because the acceleration from a wearable device record landing both

foot whereas the trajectory records motion of one foot. Figure 5.5 shows relation between

acceleration signals from one foot and a wearable accelerometer. In one cycle of acceler-

ation from single feet, signals shows both positive and negative correlation depends on the
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phase of walking. To cope with this problem, we propose correlation evaluation method that

focuses on the phase in cyclic walking behavior.

Accelerometer

Right foot acceleration (LRF)

Right foot velocity (LRF)

one cycle

positive
correlation

negative
correlation

Figure 5.5 Relation between acceleration signals from one foot and a wearable accelerome-
ter.

5.3.1 Relationship Between Acceleration of a Foot and Body

In order to associate cyclic signals that include both positively and negatively correlated

part depending on the phase, we propose to learn weight coefficients that models signal

correlation in each phase. Figure 5.6 shows computed correlation between observed acceler-

ation signals in each of 16 phase periods, which is division of one cycle defined based on the

peak of the foot velocity (See right foot velocity in Figure 5.5). We divided one cycle into

16 phase period. The horizontal axis in Figure 5.6 represents the phase period and the ver-

tical axis is average of aA(t) aL(t) in each phase period. There are clear positive correlation

in earlier phase periods and negative correlation in latter phase periods. Figure 5.6 shows

computed results for three subjects. This graph shows the variations among individuals are

not significant.
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Figure 5.6 Correlation between observed acceleration signals depends on the phase in cyclic
motion. The horizontal axis is the phase period which is division of one cycle
(See peaks of right foot velocity in Figure 5.5).

5.3.2 Associating Acceleration from a Foot and Body Based on the
Weight Depends on the Phase of Walking

Algorithm

1. Smooth observed velocity of a feet and extract local maximal and minimal value. Define

one cycle as the period between local maxima. In each time in a cycle, define the phase ϕ(t)

to zero at the time of local maxima, at local minima, and linearly interpolated phase at other

time.

ϕ(t) =


0 velocity is local maxima at t(= t1),
π velocity is local minima at t(= t2),
t−t1
t2−t1
π t1 ≤ t < t2,

(1 + t−t1
t′1−t2
π t2 ≤ t < t′1, t

′
1 is next local maxima.

(5.4)

2. Divide one cycle into M phase periods ϕk (k = 1 . . .M). We use M = 16 in experiments.



92 Chapter 5 Integration of Foot Motion and Trajectories Based on Phase Depend Features

In each period k, compute average of Equation 5.2 in each phase period.

avgk = average of âA(t) âL(t). (5.5)

where t is in ϕk and âA(t) âL(t) are normalized acceleration from wearable accelerometer and

tracking results using LRFs.

3. Define coefficients w according to the average. We use θ = 0.25 in experiments.

w(ϕ) =


+1 ϕ is in ϕk and avgk > θ,

−1 ϕ is in ϕk and avgk ≤ θ,
0 otherwise.

(5.6)

By using the weight function defined in Equation 5.6, evaluate correlation between sen-

sors:

f2(t) =
t∑

τ=t−T+1

aA(τ) aL(τ) w(ϕ(τ))/T. (5.7)

Based on Equation 5.7, the trajectory of the user is estimated by selecting the trajectory

that maximizes it. Figure 5.7 shows computed weight function in each phase period.

5.4 Experiments

5.4.1 Experimental Setup

We conducted experiments at a shopping mall in the Asia and Pacific Trade Center, in

Osaka, Japan (Figure 5.8). We located people in a 20-m-radius area of the arcade containing

many restaurants and shops selling clothing and accessories. People in this area were moni-

tored via a sensor network consisting of six LRFs installed at a height of 20 cm (Figure 5.9).

We a system in 4 designed for tracking a biped foot and expanded it to incorporate wearable

sensors to locate and identify people.

Each foot of a pedestrian in the environment was detected and tracked with a particle

filter. By computing the expectation of the particles, we estimated the position and velocity

25 times per second. This tracking algorithm ran very stably and reliably with a measured

position. Three people in the environment each carried one wearable sensor with a three-

axis accelerometer (same as 4.4). In the experiments, the observed acceleration signals were
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Figure 5.7 Trained weight function in each phase period.
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Figure 5.8 Experimental environment in a shopping mall (Figure 5.2 shows the left part in
this map).
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windows

elevator

A

B

Figure 5.9 Experimental setup. Positions of LRFs in a shopping mall are shown as a red
circles. The locations (A)(B) in the figure are also shown in Figure 5.8.

time-stamped and sent to a host PC via Bluetooth. Figure 5.10 shows estimated trajectories

of feet in four seconds. Sometimes only one foot of a pedestrian is observed.

5.4.2 Accuracy of Identifying Pedestrian

We tested with three subjects and four trials. Figure 5.11, 5.12, and 5.13 shows the changes

of computed correlation for each three wearable sensors at t=3,6,9,12,15. Figure 5.14 shows

the first 20 seconds of computed correlation between the wearable sensor on subjects and all

tracked foot when the subject was walking. Figure 5.14 (a)(b)(c) show the typical results for

subject 1,2 and 3.The colored lines show correlation of the subject. When the colored line is

the highest among all trajectories at the same time, the subject is correctly identified. In ex-

periments three subjects carried a wearable accelerometer and walked with other pedestrians

in a shopping mall. There are about 10 pedestrians in the environment shown in Figure 5.8.

In 15 experiments, the pedestrian who are carrying the sensor was almost correctly esti-

mated in the sequences. Table 13 shows accuracy of identification at 4, 6, 8, and 10 seconds
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Figure 5.10 Estimated trajectories of feet in four seconds. There were 12 pedestrians in the
period. The filled circles represent the latest positions. Sometimes only one foot
of a pedestrian is observed because of the effect of occlusion.

after the subject appeared. As the time becomes longer after the subject appeared, more

accurate correlation between signals becomes.

5.5 Discussion

5.5.1 Time Synchronization

Since our method locates people by comparing time sequences, it is important to adjust

the clocks of the LRFs and wearable sensors. In the following experiments, the wearable

sensor clocks were synchronized with the host PC when they initially established a Bluetooth

connection.
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Figure 5.11 Computed correlation function between werable sensor 1 and trajectories of all
feet. Filled circles show the current locations of pedestrians and the lines show
past trajectories in a few seconds. Brighter color of circles and lines shows higher
correlations. Clearly correlation of one of pedestrians becomes higher gradually.
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Figure 5.12 Computed correlation function between werable sensor 2 and trajectories of all
feet. Correlation of another pedestrian becomes higher gradually.
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Figure 5.13 Computed correlation function between werable sensor 3 and trajectories of all
feet. Correlation of another pedestrian becomes higher gradually.
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Figure 5.14 Correlation function computed between acceleration signal of a wearable ac-
celerometer sensor and each foot tracked in the environment. Colored line shows
correlation function of the subject who carries the accelerometer. The correlation
function for the subject is the highest in almost all period.
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Table 5.1 Accuracy of identification. As the time passed after the subject entered the track-
ing area, correlation becomes clearer and accuracy becomes higher.

Time after the Accuracy of

subject appeared [sec] identification[%]

4 71.0

6 85.0

8 85.0

10 92.0

Another problem is the delay in the transmission from the wearable sensors to the host PC.

In the experiments, signals were sent with timestamps added by the wearable sensors. If the

timestamp were set after the signals had been sent (e.g., by the host PC), the results would

be affected by sudden transmission delays.

5.5.2 Privacy Issues

When cameras are installed in public spaces, the problem of invasion of privacy is in-

evitably raised. Since LRFs do not observe the face or any other information that identifies

pedestrians, this issue is irrelevant to our method. The effect of the pose of accelerometer

In experiments, we attached wearable acceleration sensors to the waist of pedestrians. By

computing vertical component of the acceleration, the pose of the sensors does not affect

our method. However, acceleration signals differ depending on the position the sensor is

attached. We confirmed the differences that may arise when sensors are carried in different

ways: in a pocket, in hands, in a bag (Figure 5.15). The shape of the observed acceleration

signals is not completely same, but the detected peaks of acceleration are still clear and there

are no significant difference in computing correlation process.

5.6 Conclusion

In this chapter, to estimate both positions and IDs of pedestrians, we propose a method

that associates precise position information using sensors in the environment and reliable ID
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Figure 5.15 Examples of acceleration signals in different carrying conditions.
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information using wearable sensors. Since the tracking results of biped foot of a pedestrian

and the body oscillation of the same pedestrian correlate, we associate these signals from

same pedestrian that maximizes correlation between them.

Experimental results for locating people in a shopping mall show the precision of our

method. Since LRFs are now becoming common and people are carrying cellular phones

that contain accelerometers, we believe that our method is realistic and can provide a fun-

damental means of location services in public places. In future, we’d like to investigate our

method when pedestrians carry cellular phones in different ways. Since we can observe much

motions information of pedestrian from accelerometer, we’d like to expand our method to

understand pedestrian behavior.
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Chapter 6

Media Conversion that Transfers
Impression by Keeping Signal
Correlation

6.1 Introduction

In recent years, increasing attention has been drawn to media conversion studies that pro-

pose algorithms to convert signals in one modality to another. For example, in situations

when we can’t use specific modality for communication and presentation, it is effective to use

different modality in a complementary manner by using media conversion. Another applica-

tion of media conversion expects a synergistic effect of using multiple modalities by adding

another modality to original contents. By focusing on possibilities of media conversion,

much work has been proposed especially in the area of KANSEI information processing.

There are three kinds of approaches in previous media conversion methods.

A simple approach toward media conversion is pattern recognition based method. This

approach defines conversion rules between patterns in both media. When a pattern is de-

tected in one media, the associated pattern in another media is presented. Cronly-Dillion et

al.58)59) decompose line images into simple geometric shapes such as lines and rectangles

then present defined sound patterns based on conversion rules between geometric shapes and

sound patterns. Kobayashi and Ohta60) also extract landmarks from video and generate three
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dimensional sounds to navigate pedestrians using only sound information.

Another approach to media conversion is based on words that represent impression. This

approach associates patterns in multiple media by evaluating relationship between adjectives

and patterns in both media. Uenoyama et al.61) evaluated relationship between adjectives

and impression when subjects listen to drum play. Kumamoto and Ohta62) proposed to use

adjectives to search music clips. Yamawaki and Shiizuka63) discuss similarity of music and

visual color in terms of adjectives.

These approaches could be limited since these approaches associate media via symbolic

representation like pre-defined pattern and natural language. Restrictions of pre-defined sym-

bol based association are 1) patterns that are difficult to represent in symbols are discarded in

the recognition and abstraction process, 2) the association methods only detect and convert

pre-defined pattern and unknown patterns are discarded.

We believe similarity between media is not restricted to symbolic relationship. Signals that

represents same target in different media look differently in superficially, but these signals

have similarity and correlation. In this paper, we propose new media conversion approach

based on signal level relationship. Figure 6.1 summarizes approaches toward media conver-

sion in terms of abstraction level in conversion process.

Recognition Level

Adjective Level

Feature Level

Signal Level Image 
Signal

Sound
Signal

Sound
Feature

Visual
Feature

Adjective

Recognition 
Model 

Figure 6.1 The approaches of media conversion

To confirm the possibility of direct media conversion, we have proposed an approach in

signal level conversion (dashed arrow in Figure 6.1. The hypotheses are that observed sig-

nals contain components that do not depend on each media, and that the listener can under-

stand original visual scene by interpreting the video signal as sound. Based on the idea the
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method64) extracts a sequence of intensity in video signal and sends the sequence to sound

device directly. This approach is free from any abstraction and recognition process, however,

it is painful to listen the generated signal long time since it is similar to random noise and it

is difficult to understand the original scene.

Therefore, in this paper we propose a new feature level conversion method (thick solid ar-

row in Figure 6.1) that generates comfortable sounds to listen to transfer impression of visual

scene. We define a set of low-level visual features and musical features, and conversion rule

between these features. Since the method does not assume pre-defined entities in the visual

scene, the method transfers impression of unseen visual scene with unknown entities. Since

the method introduces music constraint in generated sound, it becomes more comfortable to

listen.

As related works in signal level media conversion, interactive systems that convert user

behavior to different media have been proposed. Yonezawa and Mase65) proposed a new

musical instrument that directly converts interaction to water flow to sounds. Eng et al.66)

proposed an intelligent space that user behaviors are detected and converted into video and

sound output. However, they do not focused on the transfer of information from source

media to destination media. Nagata et al.67) asked subjects with/without sound-color synes-

thesia and investigated their associations between musical features such as key, height, and

tone to visual feature such as hue, brightness, and saturation. They suggested subject without

synesthesia also have selective combination between musical and visual features. However,

they do not evaluate media conversion system in qualitative study. In this paper, we pro-

pose feature-level media conversion system that keeps impression in a source media. We

propose conversion rule from visual features musical feature that does not assume any pre-

defined symbolic model. Finally we evaluate developed media conversion system in terms

of information transfer.

Intermodal relationship in human perception

We usually take it for granted that each sensory modality is separate. However, strong

intermodal relationship has been reported as ”synesthesia”. Synesthesia is a neurological

condition in which stimulation of one sensory pathway leads to involuntary experiences in a

second sensory pathway.68) One in thousand people report such experience. Baron-Coen69)
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proposed a hypothesis that infants until four month old have perception similar to synes-

thesia. Synesthesia may be interpreted as phenomena that part of unconscious perceptual

processes are observed.

Though it is not very clearer compared to synesthesia, many people have same impression

to signals in different media. For example, sometimes we use the synesthesic expressions

like ”kiiroi koe (shrill voice)” and ”sibui iro (cool color)—” in Japanese, which suggest we

have similar impression to visual and auditory, taste and vision perception. The word ”Neiro

(tone)” is also visual expression to auditory perception. The presence of such expressions

suggests that there is general low level signal interaction in our sensory system.As an ex-

ample of more general relationship among media, we feel ”intense” impression to all kinds

of perception to strong signals. This suggests hypothesis that we feel physical quantity like

strength, rhythm, texture, direction as media dependent impression.

People who do not have synesthesia, though not very clearer as synesthesia, show inter-

modal relationship. McGurk and MacDonald70) showed impressive example of visual and

auditory interaction at the early stage of human perception that visual signal of speaking ”ba”

and auditory signal of ”ga” result in the perception of ”da”. Shimojo and Shams26) reported

several phenomena of one type of perception affecting to another.

Artificial systems that integrate many sensors at the earlier stage

Inspired by these findings in human perception, integration at the early stage of signal pro-

cessing has attracted increasing attention. Coen71) proposed a concept of signal integration

of multi modalities in multi abstraction level. Hershey et al.45) proposed locating talking

person in video by computing mutual information between pixel intensity in video and vol-

ume in sound. Grant and Seitz72) showed improvement of automatic speech recognition by

using visual information. We also proposed integration of vision and sound to locate moving

entities in the scene73)．

In the area of media conversion, inspiring by these findings we believe there are conver-

sion rules that associate multimodal signals that give similar impression. In this paper, we

construct new media conversion method by mapping visual and music features that give sim-

ilar impression. The visual scenes are observed by using omni-directional camera and visual

features from observed images are converted to music features. By using simple visual fea-
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tures without abstraction and pattern recognition, music is generated from any kinds of input

visual scene. We also propose to use multiple omni-directional cameras and detect positions

of sound source. The position of sound source is also transferred by simple conversion rule

of generated music signals. We evaluated the proposed media conversion system in terms of

information transfer. We evaluated if the subjects feel same impression in original scene by

only listening to the music generated by the system.

In section 6.2, a media conversion method from one omni-directional camera to music is

proposed. In section 6.3 the algorithm is expanded to multiple omni-directional cameras that

transfer special information of a signal source. In section 6.4 we evaluated the proposed

system.

6.2 Media Conversion from Omni-directional Video to
Music

Overview

Media conversion by using omni-directional cameras

In the proposed media conversion system, omni-directional cameras are used to observe

visual scene (Figure 6.2). An omni-directional camera consists of a downward convex mir-

ror and a camera that observes the mirror, which enable it to observe all directions. By

this feature of omni-directional cameras, the proposed media conversion system transfers

the impression of whole scene. In previous research64) we have already proposed a media

conversion system that converts omni-directional video images to sound signal. However

the sound that the system generates is similar to white noise and the method does not take

into account the comfort of the listeners. In this paper, the proposed system generates music

features that describe the impression of the observed scene and presents comfortable music

based on the computed features 6.3.

Representing impression of the scene by a set of features

The proposed method represents impression of the observed visual scene by using simple

video features. Since the method does not depend on pre-defined object model nor object
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Figure 6.2 An omnidirectional image and an omnidirectional camera
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Figure 6.3 Media conversion by mapping visual features to musical features

recognition, it is free from recognition error and can transfer impression of unknown objects

in the scene. The method transfers visual information that previous methods do not extract

from video images.

Table 6.1 shows the association between visual and music features. To generate music that

transfers impression of the visual scene, we associate features that both features will cause

same impression. Each association of features in the Table 6.1 is based on experimental

results or suggestions that there are relationship between our impressions of these features.

Note that the average background subtraction is the average of the difference between

current image and the background image, which is observed when no moving entities in the

scene. The foreground image consists of pixels that the difference between the current image

and the background image is larger than a threshold. Average frame difference is the average

of difference between successive video frames.

Global features and local features
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Table 6.1 Mapping from visual features to musical features

Image feature → music feature

(1) Average intensity minor / major of tonality

(2) Average hue tonality

(3) Average intensity height of chord

(4) Average saturation timbre

(5) Average frame difference tempo

(2) Average background subtraction volume

(7) Difference between hue chord

(8) Average intensity in foreground height of melody

There are two types of features both in visual and music features. One type of feature

is global features that represent overall impression of the visual and music scene (Table

6.1 (1)...(7)). Examples are average intensity and average background subtraction in visual

features, and tempo and tone in music features. Another type of feature is local features

that represent local information in each modality (Table 6.1 (8)). Examples are average

foreground intensity and melody (height in melody?). In the conversion rule, we associate

between each type of features.

Flow of the conversion process

The conversion process consists of repeated conversion from observation of an omni-

directional image to music in a few second. After visual features are extracted from omni-

directional images, music features are determined from associated visual features. Tonality,

chord, and other global music features are determined from associated global visual fea-

tures, and melody is selected from a set of fifty short sound series according to the local

visual feature (Figure 6.4). Each sound series consists of four music notes and the selected

series are transposed according to the selected tonic. To avoid monotony, sometimes random

sound series are selected. After the sound series are played, new omni-directional image

is observed and music is generated in same manner. Since the music is generated from an

observed omni-directional image, there is no long phrase or long term upsurge in music.

The conversion methods from each visual feature to music feature shown in Table 6.1 are
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Melody

Chord

Figure 6.4 An example musical sequence that is generated from an omni-directional image

described here. The evaluation of the proposed media conversion system is shown in section

6.4.

6.2.1 Association Between Visual and Music Features

(1) Major or minor of tonality

Adachi et al.74) reported that impression of music become brighter as visual intensity

becomes higher. The relationship between the impression of visual intensity and brightness

of music are also reported in.75) According to this knowledge, we determine minor or major

of the tonality based on the average intensity of video image. By comparing average intensity

I of video image and an empirical threshold I0, we determined the tonality as shown in the

Table 6.2.

Table 6.2 Mapping from brightness to major/minor key

Brightness Major/Minor

I ≥ I0 Major key

I < I0 Minor key

(2) Tonality

Nagata et al.67) suggested the relationship between tonality of music and hue in visual

image. According to this knowledge, we determine tonality based on the average hue as

shown in the table (Table 6.3)．
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Table 6.3 Mapping from hue to key

Hue Key

White C

Orange D

Yellow E

Green F

Cyan G

Red A

Blue B

(3) The height of the chord

Nagata et al.67) also reported that subjects have image of brighter color for higher-pitched

sound. According to this knowledge, we determine the height of chord based on the average

intensity I as shown in the table (Table 6.4).

Table 6.4 Mapping from brightness to octave

Brightness Octave

I < 100 -

100 ≤ I < 130 +1 octave

130 ≤ I < 150 +2 octave

150 < I +3 octave

Note: the range of the average velocity I is 0 ≤ I < 256.

(4) Tone

Nagata et al.67) reported that larger saturation in video images is related to increased high-

frequency component in sound. According to this knowledge, we determine music tone

based on the average saturation S in video images. For higher saturation in video, we add

high frequency component to sine wave (Table 6.5).

(5) Tempo

Sugano76) reported that subjects feel fast-moving video in harmony for music in fast
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Table 6.5 Mapping from saturation to tone

Saturation Tone

0.16 ≤ S the second harmonic

0.24 ≤ S the third harmonic

0.31 ≤ S the forth harmonic

0.39 ≤ S the fifth harmonic

0.47 ≤ S the sixth harmonic

Note: The range of S is 0 ≤ S < 1

tempo. Nagashima77) reported rhythm in video and music becomes closer and mutually

attracted. According to these knowledge, we determine the tempo of music based on total

number of pixels in inter frame difference in video (Table 6.6)．

Table 6.6 Mapping from frame difference to tempo

Frame Tempo

difference (crotchet)

D < 2 40

2 ≤ D < 5 48

5 ≤ D < 20 60

20 ≤ D < 60 80

60 ≤ D 120

(6) Volume

When there are many moving entities in environments, we find more noise there. We also

determine the volume of music based on total amount of observed motion. The volume is

determined by a linear equation of the amount of motion.

(7) Chord progression

Kitajima and Doi78) reported that a set of color in a visual image gives subjects similar

impression as a musical chord. Based on this knowledge, we determine musical chord pro-

gressions based on colors appeared in visual images. By considering the difference H of
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average hue in foreground and background image represent a harmony in color, we deter-

mine musical chord as shown in table. We selected stable chord (tonic) for smaller H and

unstable chord (subdominant, dominant) for larger H (Table 6.7).

Note that tonic (dominant, subdominant) chord represents chord that is build on the tonic

tone (the tone fifth above the tonic, the tone fourth above the tonic) in the key. For example

in C major, the tonic chord is C-E-G, the dominant chord is G-H-D, and the subdominant

chord is F-A-C.

Table 6.7 Mapping from difference of hue to harmony

Difference of hue Code

0 ≤ H < 5 Tonic

5 ≤ H < 20 Subdominant

20 ≤ H Dominant

However, independent selection of musical chord in each video frame sometimes results

in non-musical progression of chord. So we introduce following constraints and limit chord

progression. To avoid monotonic music, variation is introduced by using substitute codes.

1. Chord must move to a tonic chord after a dominant chord.

2. Though chord may move to any chord from subdominant chord, chord must move

from substitute chord II to dominant chord V.

6.3 Media Conversion that Transfers Spatial Information by
Using Multiple Omni-directional Video

The media conversion method proposed in the previous section does not transfer the posi-

tions of entities in the scene. By using multiple cameras and speakers, we propose to transfer

spatial features in the scene. In this section, we expand the media conversion method in the

previous section so that it extract positions of entities in the scene from omni-directional cam-

era network and transfer the observed location by difference of volume in multiple speakers.

The characteristic of the proposed method is the conversion is computed in each omni-

directional camera independently. Then the computed information is integrated by sum of
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musical signals generated by each camera. So our method is scalable and we can easily add

cameras and speakers to the media conversion system.

6.3.1 Configuration of Cameras and Speakers

Our conversion algorithm supposes two types of configurations:

1. By using devices consisting of an omni-directional camera and a speaker, generate

music from recorded visual scene at the location.

2. By installing omni-directional cameras in one place and speakers in another place,

transfer the impression of visual scene in the former place to the latter place and

generate music. For conducting experiments of media conversion in configuration 2,

we developed a device shown in the upper left of Figure 6.5 that an omni-directional

camera is put on the top of the device and a speaker is at the bottom.

background
subtraction

x

y

θ

target

person

omnicirectional
camera

omnicirectional
speaker

Figure 6.5 Position detection in a omnidirectional image
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6.3.2 Presenting Positions of Entities in the Scene by Conversion from
Two Omni-directional Cameras to Stereo Speakers

Detecting entities in omni-directional video image

It is straight forward to estimate direction of an entity from the camera by computing

background subtraction (see the lower bottom of Figure 6.5). For each area detected in the

background subtraction image, we compute the direction of the entity based on the furthest

point from the camera.

Transferring direction of the entity by using two cameras and speakers

camera2

target

camera1

θ1
θ2

baseline

Figure 6.6 Observing a target by two omnidirectional cameras

We integrate a pair of an omni-directional camera and a speaker to transfer the location

of an entity in the scene. Here we explain to transfer the approximate location of the entity

by using volume difference of the speakers based on the characteristic of omni-directional

cameras. Figure 6.6 shows two omni-directional cameras observes an entity, where θ1 and

θ2 represent angle of the entity relative to each camera from the baseline that connects two

cameras. Considering cosθ1 represents the relative position of the target 1 to the camera 1

(along) the baseline, relative position of the entity is approximated as sum of cosine of these

angles:

C = cos θ1 + cos θ2 (6.1)

C represents the position along the baseline approximately. Figure 6.7 shows the value of

C at each location in the scene and brighter color represents smaller value of C. Based on

the equation we can determine the volume of each speaker from the omni-directional camera
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independently without any central integration process. Integration is performed by the sound

mixing level. We determine the volume of two speakers as:

Figure 6.7 Visual display of the equation 6.1

Vol1 = V0 − V ∗C · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6.2)

Vol2 = V0 + V ∗C

Where V0 and V represents constants that limit the range of volume. The contribution of

volume change from a camera is determined based on the detected position in the camera. In

the following experiments, we use speakers that accept two input sources and the integration

of Equation 6.2 is performed in the mixer of the speakers. For each camera i, we can add

generated sound signal independently.

∆Vol1 = −V cos θi · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6.3)

∆Vol2 = +V cos θi

Transferring the 2D positions of the entities

To transfer the position perpendicular to the baseline, we integrate sine of the detected

angle:

S = sin θ1 + sin θ2 (6.4)

When a listener of generated music is at a position on the baseline, Equation 6.4 represents

the approximate vertical position in Figure 6.6. By expanding equation, we determine the

volume of speakers as follows.
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Vol1 = V0 + V ∗ (−C − S ) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6.5)

Vol2 = V0 + V ∗ (+C − S )

In the following experiments, we use further expanded method explained in next section.

Transferring the 2D positions of the entities by integrating multiple omni-directional
cameras and speakers

camera2

target

camera1

camera3camera4

θ4
θ3

θ2

θ1

Figure 6.8 Observing a target by four omnidirectional cameras

When there are more omni-directional cameras and speakers, the proposed method transfer

the location of the entity by controlling volume of speakers based on equation 3 for each pair

of speakers. For example when the number of omni-directional cameras and speakers is four

(Figure 6.8),

∆Vol1 ∝ + sin θ4 + sin θ1 − cos θ1 − cos θ2 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (6.6)

∆Vol2 ∝ + cos θ1 + cos θ2 + sin θ2 + sin θ3

∆Vol3 ∝ − sin θ2 − sin θ3 + cos θ3 + cos θ4

∆Vol4 ∝ − cos θ3 − cos θ4 − sin θ4 − sin θ1

6.4 Experiments

To confirm the effectiveness of the proposed media conversion method, we evaluated if

the subjects can imagine original visual scene only by listening to the generated music. We
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tested two proposed media conversion methods.

6.4.1 Omni-directional Video Stimuli

By using four omni-directional video, we recorded various scene shown in Figure 6.9.

Examples of the scene include a bright room without any person, a dark room with a walking

person, and a scene close to busy street. We recorded each scene two times by using four

omni-directional cameras, and we used one video for naturalization and another for testing.

For evaluating the method with an omni-directional camera proposed in section 6.2, we used

one of video from four cameras.

6.4.2 Experimental Setup

We synthesized one video image from four omni-directional cameras. To play with four

speakers in synchronation, we have used Hammerfall DSP (RME Co., LTD.). Figure 6.10

shows omni-directional camera used in the experiments. They are placed at the corner of

a square of side 1.5m. Speakers are placed at the corner of side 2.0m. We determine vol-

ume of four speakers based on the method proposed in section 6.3. Entity in the scene is

located by computing the center of gravity of background subtraction. Conversion from

omni-directional image to music is performed in real time on a PC by using MAX/MSP and

jitter (Cycling’7479)).

6.4.3 Experiments

Procedure We explained to subjects that the music is converted from the video. Firstly we

presented both an omni-directional video and generated music from the video in each scene

for naturalization. Then we presented only music that is generated from omni-directional

image for testing. Subjects are asked to select one of omni-directional video of original

visual scene.

Experiment 1. (method1, conversion from one omni-directional video) In experiment

1 the subject listen to the music that were generated by using the media conversion method
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scene moving entities
1 bright room no people
2 bright room one person walk
3 bright room a few people walk
4 dark room no people
5 dark room one person walk
6 cafeteria many people stay and walk
7 elevator hall no neople
8 busy street many cars
9 square no people

Figure 6.9 Example omnidirectional images in the experimental data and brief descripotions
of the environments



120 Chapter 6 Media Conversion that Transfers Impression by Keeping Signal Correlation

Figure 6.10 Experimental setup

with one omni-directional camera proposed in section 6.2. The participants were 15 adults

with age range between 20-30 years (13 males, 2 females). No subject reported the ability

to understand tonality and key by listening to music. Table 6.8 shows the accuracy of esti-

mation. For almost all except scene 6, the accuracy is more than 50%. Average accuracy is

58.5%.

Experiment 2. (methos2, conversion from four omni-directional video).

In experiment 2 the subject listen to the music that were generated by using the media

conversion method with four omni-directional camera proposed in section 6.3. The partici-

pants were 13 adults with age range between 20-30 years (11 males, 2 females). No subject

reported the ability to understand tonality and key by listening to music. Table 6.8 shows the

accuracy of estimation. For almost all except scene 7 and 8, the accuracy is more than 70%.

Average accuracy is 66.7%.

6.5 Discussion and Conclusion

6.5.1 Discussion

Comparison with the previous method

Since the generated music by using the previous media conversion method64) does not
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Table 6.8 Correct answer rate in the experiment

scene accuracy [%]
method 1 method 2

1 bright room (no peole) 60 77
2 bright room (one person) 47 70
3 bright room (a few people) 60 77
4 dark room (no people) 94 70
5 dark room (one person) 94 92
6 cafeteria 20 54
7 elevator hall 47 15
8 busy street 47 70
9 square 60 77
average 58.5 66.7

depend on the brightness and the color, it is limited in its ability to transfer impression of the

scene. The proposed method can transfer the impression of the scene by combining many

visual features.

Transfer of spatial information by music

In two experiments, significant decrease of accuracy appeared in scene 4 and 7, whereas

significant increase appeared in other scene except 5. Increase of accuracy appeared mainly

in the scene that there are moving entities. It suggests that the media conversion method

proposed in section 6.3 transfers motion information clearly and results in better accuracy.

On the other hand, decrease of accuracy appeared in the scene that there are no moving

entities. When there are not any motion in the scene, composed four omni-directional images

may not present clear impression of the scene.

Easiness of listening

By introducing musical constraints, subjects reported that the proposed media conversion

method generates more comfortable sound compared to the previous method.64) Subjects

also reported that the generated music is different from the expected music like sound. Since

the proposed method generates sound by connecting fragments of melody, the lack of long

and consistent melody may results in this impression. Also since the proposed method al-
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ters the tone by adding high frequency component to sine wave, the tone is different from

standard instruments. This point may cause a sense of discomfort. To generate more nat-

ural music sounds, introducing rules that keeps consistent melody and sounds of standard

instruments may decrease the discomfort.

Application of media conversion system

By introducing musical constraints, now it is possible to the generated music as back-

ground music that transfers the scene in the next room. That means the proposed media

conversion enable us to work in a room by watching displays while watch the state of the

next room by music.

However, the proposed associations between vision and music are, though they are based

on previous experimental knowledge, may not intuitive for listener. After we listen to the

original visual scene and generated music for a while, it is expected that we learn relationship

between these associations and we are able to understand the scene only by listening to the

music.

6.5.2 Summary and Future Work

We proposed new media conversion method from omni-directional video to music by con-

verting a set of visual features to musical features. Since the proposed method convert at

the early level of signal processing, which is based on simple signal features and not based

on symbolic representation, the method convert any kinds visual scene to music by keeping

impression of the scene. To transfer two-dimensional location of an entity in the scene, we

expanded to use multiple omni-directional cameras. We construct media conversion systems

and evaluate if the methods transfer impression of the original visual scene. Subjects listened

generated music and selected video of the original visual scene based on similarity of im-

pression. They correctly select original visual scene for 58.5% on average for the conversion

method with an omni-directional camera. The accuracy improved to 66.7% for the extended

method with multiple omni-directional cameras. These results suggests the impression of

original visual scene is transferred by the proposed media conversion method and the effect

of using multiple omni-directional system for transferring the location of an entity in the
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scene.

In future, we’d like to expand the method to handle multiple entities in the scene and

transfer their location independently. In the proposed method, we associated visual and

music feature that relationships are suggested in previous studies. However, the associations

sometimes differ in different studies. We’d like to confirm the effect when we select different

association between features. In this paper our focus of experiments is to confirm possibility

of media conversion in an application of transferring impression of visual scene to music and

estimate original scene from generated music. We’d like to further investigate contribution

of each feature and combination of features to transfer impression of visual scene.
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Chapter 7

Conclusion

Recently high-performance sensors and processors have become more common, and many

kinds of sensors are installed in public locations and on wearable devices. In such social

environments, observations using such sensors in our daily life have become commonplace

and many multimedia databases are now available. Since we cannot understand such huge

data as they are, we must extract and collate meaningful components from them.

This research extracts such components from the data by focusing on the signal level

correlations among the large amount of sensory data inherently contained in multisensory

observations. In previous approaches to multisensory integration, the observed signals are

processed in each sensor and their features and patterns are extracted. Then the extracted

features are integrated in pre-defined common coordinates or symbol systems that are defined

by the designers of perceptual systems. Compared to such an integration after recognition

approach, our signal level integration approach has the following merits:

• The signal level association method associates observations based on signal correla-

tions without knowledge of common coordinates or symbol systems. Previous asso-

ciation methods require that signals be on common coordinate systems.

• It associates the observations of many kinds of sensors including binary touch and

inertial sensors that do not observe position information. Previous association meth-

ods require that signals have identical physical quantities and be mainly limited to

positions.

• It extracts signal correlations that are abstracted away during the independent fea-
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ture extraction and recognition processes. Previous association methods discard such

critical correlation information. In this thesis, we expand the signal level correlation

method and apply it to many kinds of sensors and in many situations to tackle the

above research issues.

In this thesis, we expanded signal level correlation method and applied to many kinds of

sensors in many situations.

Signal level association in various situations

We expanded methods to associate moving targets in array sensors.

• Association of a moving target in video images: When the signals source moves,

previous method16) cannot associate observations. We simultaneously detected and

tracked a sound source based on the criteria of mutual information maximization.

The problem of detecting and tracking a sound source is solved as an optimization

problem to find the path that maximizes the mutual information between video and

audio signals. We described a sensor fusion algorithm based on mutual information

maximization and apply it to the problem of sound source localization by combining

audio and visual signals.

• Association of moving targets in binary touch sensors: Observations of sensors like

touch sensor and event detection sensor are binary. Previous method assumed contin-

uous observation signals. We proposed a method that associates binary signals based

on signal correlation and explained an integration method of wearable and floor sen-

sors that detects the positions of people. Floor sensors consist of small unit sensors,

each of which returns‘1’when someone is standing on one of them and‘0’ oth-

erwise. To integrate these binary and acceleration signals from wearable sensors, we

proposed an integration method that evaluates signal correlation based on a statistical

test.

Signal level association based on unreliable observations

We proposed methods that reliably extract signal level correlations.
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• Association of unreliable observations: When observation confidence changes ac-

cording to situation and it affects to signal correlation, it is difficult to associate obser-

vations in stable manner. We proposed an association method from among different

kinds of sensors that considered confidence in observation. Different kinds of sensors

have different reliability characteristics depending on the situation. We focused on

the association of laser range finders (LRFs) and wearable gyroscopes to track and

identify each person and proposed an association method that considers the reliability

of LRF observations.

• Construct time-dependent correlation model: When observations are limited, com-

puted correlation among sensors is sometimes not reliable. We proposed a method

that associated the leg motion of pedestrians and wearable accelerometers based on

time-dependent correlation model. LRFs observed pedestrians at the height of their

feet and extract features from a bipedal walking pattern. Wearable accelerometers also

observed walking patterns. Since walking rhythms differ from person to person, our

proposed method distinguished pedestrians walking in a line. Another characteristic

was that it only used an accelerometer in the wearable devices.

Applications of signal level relationship

We used the signal level relationship in the area of tracking and identification and media

conversion.

• Application to people tracking with identification: Recently people behavior in public

locations is observed and statistically analyzed and the results are attracting attention

in the area of environment design and marketing. We proposed a method that not only

estimates positions but also identifies each person who carries wearable sensors.

• Application to convert signals between different media: We proposed a new feature

level media conversion method that generates comfortable sounds to listen to the

transfer impressions of visual scenes. We defined a set of low-level visual and musical

features and conversion rules between them. Since the method did not assume pre-

defined entities in visual scenes, it transfered the impressions of unseen visual scenes

with unknown entities. By introducing music constraints in the generated sound, lis-
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tening became more comfortable.

In future researches in recognition, one of fundamental problems is closely associating

multimodal observations with each other in the various abstraction levels. Sensor informa-

tion processing has developed in the field of each type of sensor. However, humans have

developed our perceptual system by observing multimodal information. We believe that we

can find rich information in relationship among sensory observations. In order to understand

something, there is a need to associate something. Information is present in the association.

A promising way to realize an intelligent system that recognizes a scene is to closely as-

sociate multimodal observations in flexible manner at many levels of abstraction, from the

signal level to the symbol level.
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