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TI1E Fig

1.1 HrEDE &
111 PEERTFOREML - BmElL

N T U RAL ORI E D ERFE T, BT ot RAOMMMEEHE LD S Z LT, AR

(IC: Integrated Circuit), JFIRARAEREAIE (LSI: Large-scale Integration) , AR RFRAREREAIEE (VLSI: Very

Large Scale Integration) & EFHE 2 @Okl T 7o, PEEFEFORAMMNOBIIEICE S E T, A K
— 775 CMOS ~DEEHLR &R E RN ER 2 PV RR b Y, FICEFT A X0 ks &t -
EMREIL R EGILTCEREY, ZoZ LITALRL—T OIERI YL LT, TORRIZIZDDOEENH D
HODOBUETIX AN EREIE EO T U P AZEIT 18 » A ZLIXfFICh L BENG. L—
T OFEE EBT_LRE SN TE R EE Ao v — M~ v 7 9 38R OB ZER 5 O faét &
U CRIES DML, 7 & A H, SEMTEAR, SRt & ORBICRE &2 Rz L TE T,
2000 “EFTHE 72> S ITHHIIC & DRk % 2 BREFI BB 2 £ 912720, Bl 2 KT 2720 D Cu
Bk D, Si¥7 A b L— k& ORGEREZ KT % SOI (Silicon on Insulator)®, B BEIE %2 b 5 E
Si?, BCARIE O %44 B 2 (9~ 5 175 B 2R D Low-k/Ultra low-k (ULK) #afgis 12, 4~ — MEgfLisn» &
DY — 7 B\ AT D High-k A Z L7 — kB e EOFHEAHME & HICEA S TE 72, 2010
fEIZ IBM 3% % L7z POWER7 7ut v " Tl 45 om »7 27 /a ¥+ /— KT SOI - Cu B -
Low-k/ULK #f&% FAVN T 567 mm> OF v 712 2 EEO b7 VA PNEFBE LTS, Fig 1.1 11X
POWER7 OF v 7ODHEETH Y, KHPITIIEMET =7y 7 2R LTz

KIFZETI, o —2 L OEREIT ) F v 7 EOSER R O T B TR O &k =
L9 Low-k/ULK & HlW 278 ZZBF5E 5 & 2. BARE O 8 AR DU Tl sg Tarab 4
2.

Fig. 1.1 The photograph of the IBM POWER?7 chip '*.



1.1.2 FEEERSOL Y 1L - BEEL

PERE T O EERL - mERICED, AT Y ONREOILRSLEZERZZINRA 52— T = A ZADHE
RPMT O, EAA AT HEERN O NS = R ==\ BERETH LD L/ A BT
N =D AN DOLZE MNP ED LN TETEY, ZOMMIES % bR oL PRI T
WD S Fig 1.2 135D 2013 EEERR A AR R EHM 0 — R~ v 7D OfiEx b LITER LY T 7
ThV, FREEITA L NNy =V ORI FROR— R~y T2 R LT\, F— 33—
7 at s Yl EoEmrEReRLEIE, BR8N 2012 4EIT 4600 TH D DITHF L 2022 4FIZ1E 5500 F
THINT 2 L PHIESNTVD. HEHE TEAERICE T 2012 40 1360 B2 205 2022 4£0 1900

IR E SIRFBOBEMBRIAEN TN D, Wide /O AE Y 19132016 4E7> 5 2018 4ED[E T/ AUF
DIRICESTRELS EUVHDBHZ D EPHRENTWS. £z, ot s A FTH Bt
T A MEETEHROVAE T Z A D LEEZ LN TS, — AT T30 1000 &2 LL ED
L TIXTF v THABEINE LTV v 7 F v PR T 4 I BRE VS, EAMi# T 1000 B LLF
DFERIZIZTA YR T 4 TR HNONTE L, BRI D K01, VU HOBEINICfE> TF
> 7 EOERSGT O Yy FIIMI b T Z L1 D

AW T, VAYRT A7, ZV97F TR T 4 TERNT Ny r— U R i5extg &
9 %. Fig. 1.3 1% PBGA (Plastic Ball Grid Array) O ThH 5. FEER LICF v T2 E AT 2 v F
MTHEEL, Fv 7 Lo & R Lo -2V A YR T 1 o 7 TR L7281, E
—/b REFIE, BGA AR —/VfF31F %47 5. Fig. 1.4 1% FCPBGA (Flip Chip Plastic Ball Grid Array) ¢ Wi [<] T
2. F v TREIEEICGK S Vo 7 2 AR OB T8k L, N T e i T D
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Fig. 1.2 Roadmap of maximum pin count by product segment ).



Mold resin

y,

Solder ball Organic substrate

Fig. 1.3 Schematic cross-section of PBGA.

Solder ball Organic substrate

Fig. 1.4 Schematic cross-section of FCPBGA.

DT o HE—=T 4 M T v T EIREICBAAT 5. Fig. 14 [JIFE M OV AR L2, F
v 7"HH 2 TIM (Thermal Interface Material) /1 L C&BH D 57-%2 Y () TEIET 23y 7 — D
ERflEbidZ b2,

FCPBGA (I PERE AT ST E 7223, AHEEMR ORI 10 pm PLETH 0 41% b Bl O
WM LI A E I TV D D &1, BERHLOMET B RE T OMREE +EH TE R ARV 2ob 5.
ZD7=®H, 2~3 um L N OWHIELRZTER T, BlEmE A5 ) ar A V=R T X -
A B R—F R EEFRER EICHEEL, 201 2 —R—% LICERTF v 72 BERT L2 L TF
> T ORMIERZE L L, @t s @B EZX D 2.5D & RTINS /Ny o — U TEREOAFFEBIHE 3
WRICITPTE 7). 25D /%y 7 — V% Xilinx 12 X Y FPGA (Field Programmable Gate Array) ~
JERA 2011 TR E SN . £ TF » 7 EFEE L, TSV (Through Silicon Via) 2/ L CF v 7
M DARERREE &2 k9% 3D-IC 23w /77— ¢, JEDEC (JEDEC Solid State Technology Association) (2 X %
Wide 1/0 A€ U & MPGA (Micropillar Grid Array Package) DAEYERE *, Micron (2 X % HMC (Hybrid
Memory Cube) D3 Y, Altera & TSMC IZ XD ~T 1P =7 & 3D-IC OFRMEMLBAFEDIE D 22 LT
KGR M ~DOEFREREE > TV D, R TIE, AEHRE A o F—FR—F, S 2 =K%
Fo7, FyTeF v TOEMERTEL O~ A 7 uEGE2H7 5 25D B LU 3D-IC Ny 7r— U b if
Jextge 9 5. Fig 1.5 125D Ny r— Y OWiaEIK T, AR RIZA 2 —AR—FEEHL, 20
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Chip Chip

Underfill resin

RDL

Solder joint — Interposer
A K A K R K A K A R ¢ &

A A A A A A A A A

/
Solder ball

Organic substrate

Fig. 1.5 Schematic cross-section of 2.5D package.

Bump

Underfill resin

RDL
\

Solder joint — Interposer

Solder ball

Organic substrate

Fig. 1.6  Schematic cross-section of 3D-IC package.

BT T HOEE TERT 5. A ¥ —AR—H EIZIZIZR" T RDL (Re-distribution Layer) & FF
TN RY A I FEffEc LBRBEEZERT 256 L, Si A v —R—FOga 120380
BIREF UM T o R 2o TRBMBEZERT 256005, Flead 2 —R—H13F v 7k
[ & HEAEe I &2 72 SEMANR SN TWA. Fig. 1.6 (2R T 3D-IC /Sy 7 —I Tl F v 713 E
LCHEfisnD. bEHOF YT A2 —FR—FORIZEIN DR OTF v FITTBEBEERT B
TORERKE L, MOERIX 25D Ny r— Y LEETH 5.

1.2 EERTFORERICHE S BEEREDOLEE

PIEREME M O @RI F 7 U AR FOMMIC LY EBLShTE . ROl - &
LRI ADE TR X AEMOMMIE L HED b TE 72, EAEOMM LTy & X X LR E T
@ RC (Resistive-Capacitive) FEIEN EHENEZ FBLT 2 ETORMELE > TS D, ZHUIXH L TAZ L
BAR O 2 Al 225 Cu lZZ T L TR 2R3 2 BLINBH A 17 & Ja MM o0 3 3R A R
D HANBAFE 1101 3T T & 2. Fig LT IXEEEKROT 7 7 m -  — K LRI IZ R 5 8l
AOBEHTH L. BlicT 7 /vy - /= 2R, ftlidrtees B4 L LTORT. 180 nm O fitf
T Cu FBROEADIEE Y, 130 nm OHALT Si0, (2 F Z iR L THFFER % 3.6 BRI NiF72 FTEOS
(Fluorinated Tetraethyl Orthosilicate, SIOF) >*>*) MEC#RIE DRz & U Clif S, £ 0% Low-k #,
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Performance

Low-k (k = 2.7 ~ 3.0)

FTEOS (k = 3.6)

Cu BEOL

180nm 130nm  90nm 65nm 45nm 32nm

Technology node

Fig. 1.7 Conceptual chart for innovations in the back-end-of-line (BEOL) layers.

Table 1.1 Material properties of dielectric films.

ULK (porus
SiO, FTEOS Low-k (SiCOH)
SiCOH)
Dielectric constant 4.1 3.6 2.7~3.0 2.4
Elastic modulus (GPa) 70 66 9.0 4.6
Poisson’s ratio 0.20 0.18 0.28 0.28
CTE (ppm/°C) 0.7 0.57 16.4 14

ULK # O A A TE 72, Low-k #13 Si0, 12 C Z ¥R L 72 SiOC %° SiCOH 72 EAMifiioh 23239 | —
AN LEREESR Y 3.0 LT O b D% 89, ULK #4113 SiOC <° SiCOH % Z LBk L 7=~ —7 * SiOC X°
R—T A SiCOH 72 EDH H AL > 12330 — I B ERN 2.5 LLF O b DA

Table 1.1 (ZAMFIE CRENTIZ 7= JE AR O M EHEME A 77 7. BEEREE R O/ & W & IR IR L
PR/ NS IR BEHM2 B Y, Low-k £, ULK #41E Si0, (2 b~ THUFZIEFR$(CTE: Coefficient of Thermal
Expansion) 23 —HrRK &\, &7z f@eiafE O AR AL 2B U CISHERE L S E TN S
TEOTHE AR S TV R0V, KFERMITREAREEDD 2 LN ELDHETH
D, ZEHREED D &R L BEBIIRE SR T 5 B2 bR TS P,

HERT R A DOFCHRE OWIH X O —F % Fig. 1.8 12779, 2 2 T 1x, 2%, 8x JBOF B DOfEE 4 %
fli>T(a) 5-2-1, (b) 522 LKLz 2 DORRLMEEEZRL TS, BHEHRITT U 2 Elo ki
low-k, ULK, FTEOS, SiO,, Al Xy FOIETHE SN bDTHD. 1x Lo L7cEidh b Ml 722 mlit
N— VTS A ECHRE T FREIC low-k #1, TD LD 4 BIZ ULK MEEHT 5. 2x & 8x DI
IEI Ix D2 5L 85DV — N ZHHT D EEL, 2x JBIZ ULK, 8x JEIZ FTEOS M\ %
AEaTIE IxEE 5 - 2x @A 2 )8 - 8x J@ %4 1 JERE LI 5-2-1 L RALL, IxEZ SE - 2x &
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Al pad

Al pad
Sio,
SiO,
8x FTEOS
8x FTEOS
2x ULK 2x ULK
1x ULK 1x ULK
1x Low-k 1x Low-k
Si Si

(a) 5-2-1 (b) 5-2-2

Fig. 1.8 Cross-sections of film stacks in the back-end-of-line layers (a) 5-2-1 and (b) 5-2-2.

Z2fE - 8x JB& 2 JERE Lok A 5222 LR T S —MRACy Y a7 XA hLr— ME RIZr—
TIVELRR D 72 D I A Bl L — L A L, Al 23y RO EEOESREIL 7 v — S VERRO 72

(AR EAR L — L AT 5. KA TIEBE LT OBV — /L OE8 % AV Cie b I 2Bl iE 2 1x
L, £OK 2 FEONL—NORBIEE 2x, £ 8 FD/NL—/VORHEZ 8x L L TW5H. ZOFITIX
Ix B LU 2x DJFIC RC IBIE A {KIT 5 72 Low-k & 5\ E ULK DIEFHERMEZIEE T D, 5
WiT 7 ) a VDTN, ATIREBEMEN Cu 2, TaTAE T DA v X THET Cu il z Bk
T5. VAXYRL RS T7 UV v 7 F v TSROy RFHb AN RERTY 7 & U TR SY —
BT 2 ORI TH 5. BlfE ORISR S Y — ISR A G D E R R T, T3
ZOMREERERP 2 X P EEAR SIS U TRIRT S, UAYRY FEHHWNET Y v FF v THEAED
R Rxy R EEISE R OB REIE, BUHE OB ECRR N Y — B IS D . Sl

TR Ny R FECIEERS B E LWL HIZT 52 EIFEERHRHENTHS.

1.3 F v 7O BRI OB
131 9A4¥R T4 7

TANXRT 4 2 73T v T ORI & U TR bR LIEE CTh 0 kx 22 X A 7D
=V THOWLNTE ., Fy7OREMIEICE S TEE ALOER L TEor ¥y 7 8K
WA Y RNy R (Bl 1) By F ORI LA R E o8l h L2 R Toh o 72, 1990 4FRIZ1E 100 pm
'y FORER R DAL BN ED STV 228 2D, 2000 EARLIES 100 wm BLF ORI A
A 0 BUETIE 35 pm By F O 2SN TN D D, UL YR T 1 v 7 OMEIEIZIE
KT 4 v TREOBE I OBE AL P, BN R— VRO IRZEL %, fifR oL —T Ik
DREERY, Ny FEOTr—T~—7 ORBOE/ME ) 72 Eiix B0 A MThhTE . K
ARANDTY T F TNy =T ORI, TUALYRY BNy =08 TR E RMTNT



RIAENTELT, 5% DNy RE v FOMAMIIZ 2022 4ETH 30 um £ &2 HNTWA D, FETIE
JeuT 7 ) v P —@ Low-k/ULK T /83 2 ETOUA YR T 4 2 T OFERBERNDIERIITO TR,
FOBIZHOWTIIREI TR~ 5

132 7V TFoTFRT 40T

TV T F T RT 4 IR DTy TEHHAMNIZ 1960 FRUZ IBM IZE > TAAS 7 L—Aha
VR a—HATICHEELEESNTZOEGD E L, FICEMEEa L B a—Z AT O ERTRAEICE S
THEH SN TE . FRYYNIET v 7 RIS N2, FAED s Shdl=a 7 B HN
HIVTUVEAY, 1970 AERAFIFEICIE Pb 2% 95%LA LD @RI A MEDIN D X 91272 -7 7). 13 A
PR T EHFEOF T2 ) 7n—52HWT 7Y v T F T RUT ¢ 0 7 THRT 2 HIL C4
(Controlled Collapse Chip Connection) & & F-EI, BUETSH ZOMFRIA LN TND. Fv 7
T 2EMIREFET I vy 7Bl TER, BRI A I REZHNWT 7+ PETZER LY
WRT v THEMUZT Vv T Ty TRUT 4 2 7 %AT D B 1992 AITBA%E S 7z >3, Ak 2 18
IENRT v TENIT Culidiit/e & & OBEAM & LU CTRIEZERE 25 17 ppm/°CFLE TH Y 8 ppm/°C 2
FEOTNIFTET I v 7 HEREERD L, 3ppm/PC D SiF v 7 L DIIEIFRED I A~ v FRKREL
2%, ZOREOENLNRT v THEREOT ) v T F T RT 4 T TS ERET DT v 7
EHMENCT v =T 4 VIR Z VD FIERR L2, BUETIZZ + bET LV bIEEEICENLD
L—F =T EZHNZEL KT v THERBEFRIC 2> T D P [ 5%, 15 mm T 0.15 mm £
F v 7L Sn-2.5Ag 1EATEE VT 0.30 mm EDOEARIZ 100 pm B FOT NV v FF v TRUT 7
1795 &, FEAROMIZIERED 3 ppm/°C, 8 ppm/°C, 15 ppm/°C DIGH, HEEEOENEIZEILK 0.7%,
#11.0%, #12.0%THY, MMy FOT Y v 7F v TRT 4 0 TR RREIER NS EE TH
D2 EERLIEY. 03 FEMBAELE D — R~y 7T, EAVRT vy 7RERROaTH, ELRT v
T ENENUERZ SRR B L OBER R H D Z L 2R L T0D Y. —flz% 5L ax b7 p—~
VABHEERANT BV KT T EATIE, 2 78T 2012 O 8 ppm/°C 124 LT 2022 4Tl 6 ppm/°C
N, FIZEIVRT » 7R TIE 2012 F0 45 ppm/°C (2% LT 2022 4Tl 20 ppm/°C OFRIEIEMSEEL (X-Y)
DRDHHNTND.

2006 4= 7 AT TS 772 RoHS  (RFFEAFWEM MM (X > TEOERABRSI S D Z &2
D, BEAMTHLEFALIIN T )V —ZAE~OBITBEATE TN 7Y v TF o TR T 47
2RI 2RO MEFITIRBI OB AR BN TN D P BNRILTF » 7 THE T U — T A TOEAREL A
HEATETCHD O BART v THEIRCTOTY v 7 F v TRT 4 T TRAVIIATEZ A58
BT, NI 95SWt% L ED Sl SIEATE L R 7Y VLI Sn-37Pb HEhITA TS B S
DOBREATHD. 77V —IZATEEHNDLGETE, Sn & Hwt%Ag OREKD /N 7" L SnAgCu (SAC)
DT Y INVEEMH OPRENTHD. Table 1.2 [ZHAVBIL U7 U —IZATEORLE L Yo 7R %
Y. AVIFIATE TV v I TF TR T 4 T EAT IR, 7Y Y VZ O SnPb fhIT A 7EOflA
TdH D 183°C UL MNEEE 2L & 22 D08, 87 U —1Z A TZOEA IR REE AT AY 220°C U132 & K9 40°C 5 < 72
5. EEEAVIZATE COBEATITEBUIZATZOREN KRR L 720, 817 U —IZA DA
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Table 1.2 Material properties of solders >

Melting temperature (°C) Young’s modulus (GPa)
Sn-95Pb 300 18.4
Sn-37Pb 183 31.7
Sn-3Ag 221 42.0
Sn-3Ag-0.5Cu 217 41.6
250
—©&— Consumer
—A— Mobile
—6— High performance
_ 200 f —— Cost Performance
€ & —— Peripheral
=2
g 150 | &\\%\\\m —
a = A
= =t —5——
> i
E 100
=
=
1 St ., . a
0
2010 2012 2014 2016 2018 2020 2022

Year

Fig. 1.9 Roadmap of maximum pin count by product segment '*.

YT RIIMAV AT OEEIICH AR TR 2 EE< D EEZLND. S HITEBAITATZIZPb D
SEMEDRE. TR T Y —IZATETELV RT v THERERNT TV v T F v TR T 4 T HAT

) & T T L FEROBIZIRIRE D I A~ v FIC X VAT ELOBIE N, MAVITATEOHEICHT
NXTEL D,

Fig. 1.9 I3%E#H A8 2013 4R A AR 0 — R~ v 7 1D OffEiz2 b L IfER L7777 TH Y,
BRI T AL N7 ) T F TR T 4 TRy Ry FOr— R~ v 7 &2Rx LT
L. B RARS, #HHETHELS, A M T r—~< X, GHEOEIT IV —IZZ VT T LA &
HELTWD. 2012 FCTIHERANME RAES, #HHEETHE, A M7 r—< X, @kRo& 7 2
U~f,%mﬂyPEy%ﬁ%m%hmmmemmwmmeumf%é.:h%@%%%%mm
ﬁﬁﬁ,mnﬁﬁﬁﬂxFﬁ7ﬁ%vyxfwmmEy%ﬁif%¢éﬂéﬁﬁﬁf%é.%Kﬁﬁ

¢%@%ﬁfiNMmt/?®7)/7?/7T/74/7T,%W@ﬁH%Mﬁﬂlmmwc

DYy, BEAHOENK20%THD ERESNTEY, EHICE Y F A 50 um IS D L85
%@éﬁ%&m&fk%<&é:&ﬁ%éhfvém 7V TF T RT 4 T ORI

HIEGEOE - BYSHITW{RT 20D EEZ HND. Fig. 9 FOXY 7 = F W33y R3F > 7
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WIZHEBE SN O THD. BIETHLR/NE vy F 40 um AEH SN TE Y, 2022 4121F 30 um £ TH
ML BT L EZ S5 TND. R T7=2F VD7) v TP F v TRT 4 70, FRICHARIZEWTHHR
BRECT VA NH A T I EICHE SR Ny =V AT TAuRY v RANUTITL D Au-lTATEHE
B O R ERMEbNTE L. IHETIHEAGENEST L7 ha~da 7 L—a UHICENRS Cu v
F—2W=T7 Y v FF o TFRT 4 TR S SO, AN OT T =g S
nty =R ETEEINTWNDS. £/ Cu BT I3 INF v IRy =V DR 57, 2.5D 3
V7 —=UR3DIC Ny =V TTF T A E =R =T HL0NITFT v e F v S EMME T TS
TOBROEERFINEZEZ SN TVND.

14 BHREF A —VORELFFEAN

Low-k ° ULK % H\ /= F v TR O JE MR OB SREE MK <, /8y r—y v 7 TfEH, X
V=V T %O 2 WERET B LWV Sy =D DRI Ko TF y TN O
A B IVECRRIE DS D RRREN 5 5. Low-k/ULK 7734 Al%, T3 AR TIXIERICHIET 5 L 9
EIN T TNy =Vl ARIAT &, RIS FEREENIC IV T, Xy 7 — U0 b OIS 7]
IR TT A ANEBITHEA R Z LIERREREE RO 2203 H 5. ZHUITF v 7 LRy r—T 0O
H{EFH (CPI: Chip-package interaction) D & L T Low-k/ULK tHAXDF /34 2 CEAEL L T 5 770,
AEEDOBENL, VAXYR T AT LTV 0T FvTRUT 4 T OENTNOHES BRI T
OB OYMRLEWE TR E R D7 T v IR A—VORK 2D T TEMRE R L OO
TNZAEBL, ZORNEELEZ LR TEN, IHERBAEBRT L FEERDDL L THD.

141 YATXRUT 4 v 7IZBT DI TR DS R E « BEREINC X 2 BEEREOME
T TROBES TR KR N%FEED Sid H VL Cu 2RI L7Z AlSy K EIZAR— LRy RTiTbhbis.
Al 2%y RREICITAREEOBILIESEK S5 - OB ERIFHOBESE TR HLR TN D, U A
YIS EIZ L DM TR S NTEAR—MEIF Y BT VICE > TRy RICHEER S, A—/L O
LW L BEIEEIINC K> THALIEZ Y Al OF AR LS EZBKRT D, A—ARy RIZBIT SR —L
DWBHIETEEBLCHER DL A B = X DI R =LK FOT a2 Z2EN, EHEEOHEICEETH
D, FEMZeBFRmE SRS TE R T,
TAXYRT 4 71285 Low-KULK T v 7O 3y R NEEHRE OMEIXR T« ZREOHE - B
FHHMZE > TRERZIZEEZLNTEY, R—LRhy REDOL—Y L THIZ Ny RBFHRND, U
A X TNRET/Ny ROHIDN D06 — FCHORmERG L Ly, (FRrERRER CRLBR DM
Dl E 22D PO U A YRy RIOBEARE 2 JEd 538k & LCIE Fig. 1.10 (IR U A
Y INVHABRBIES NG TWD. TA VI ARBRIIARIIL— T ENTT A Y OBE L2 ET
LR T, Fig. 1.11 (a) ISR TIA YOR v 7 TOMW N IEFT— N & 725, Low-k/ULK BRRAE %
WZT A ATRYT 4 TR Ny RTTHEBBICY A —U N d 556, Fig. 111 (b) IZRT X921
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Au wire

Organic substrate /
Fig. 1.10  Wire pull test.

ﬁ Wire\

Ball bond

= Dielectric layers

(a) Wire neck break (b) Pad tearout

Fig. 1.11 Breakage modes in wire pull testing (a) wire neck break and (b) pad tearout.
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EEIHIZ L EDIRTTIE VAR T 4 T HEBRPDORD Ty FEHPNREROHEZRD, VA
YRUT 4 v 7B TR N OIS IR 2 F28L9 2 B i 1S O S 2 R iz

142 7YV v FFyTRCT 4 0 TITBIT DIV FERIEOT v 7 L BROBYSE T K 2 @i
R DR
(1) AT AT X DI TR
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Flip chip joining
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Fig. 1.12  Schematic diagram of damage in ULK dielectric layer under the pad.

Damage

Fig. 1.13  Cross section photograph of flip chip joint and damage in ULK layer.
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HEHD FCPBGA O 7 BV ATHO T Y v T F v T RUT 4 7 DRT A —H b7 EICMZ TUL RO
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WTCHHET D 2 & T, RSO EER - 772 NEEOY ka2 &), VI T VT
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—AR—HFD TSV B F1L20 pum £T, TSV 10 pum TS 22 EnRkdDOL N THD P &
T ALY N LT 7R TSV Z BT HIIEZE TN, B RE R O /RO I T2 E L CHREEZ 1 5
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P OMAIFENE, £ 7 —R—FDTSVEE, Fv 7L X —R—FENENDEL % FHE R
ELTHY B, F£72Fig 1L14IRTF v, AU F—R—Y, HEEROERD 3 SO 57
NMTCT AT e =& CER L THEARICEAET I8 L OBMRZMPI L7, Fig. .14 D7 rE X 71
—X, AV F =RV TF v TEZEELTCT VX —T A NVEEA LR, A ¥ —R—V &R
BT 5 2 B i(a), RIS, V=R —PEEE LT ¥ —T VRS AL, Ty 7T aA
VB —R= PGS T DU ONAFF O 2 BPEHERib), Fv T A o —R—¥ ki, £ Z—FR—¥%
Bt blc~s v b L, FRFICHEGZITO(), &V 3 DD Z =2 RE LT

Logic chip  Memory chip Si or glass interposer

\ Solder joint
Bump /

™~ Organic substrate

Step-1 joining Step-1 joining

A 4 A 4
Underfill resin
S
Underfill apply Underfill apply
A 4 @
Step-2 joining Step-2 joining
(a) Two pass forward (b) Two pass reverse (c) One pass

Fig. 1.14 Three different process flows of chip and interposer joining for 2.5D package.
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—VORER, FvTOREE, BEAHOIXATZOMBHREOERFIZERL, ~A 7 n#EREHLE T
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Chapter 1 Background and objective

Chapter 2 Reduction of damage in the
wiring layers under wirebonding pad

» Homogenized mechanical properties of
various structures under the pad

* Influence of wirebonding load and ultrasonic
on stress in the wiring layers

* Relation between pad tearout and structures
under the pad

Chapter 3 Effect of mechanical
properties of joining materials for flip chip
on thermo-mechanical stress in the wiring
layer

» Mechanical properties of Sn-58Bi, In-3Ag
and SAC305

* Influence of melting temperature, proof
stress and creep properties on on stress in
the wiring layers

Chapter 4 Reduction of strees at the
microjoints and the wiring layer in 2.5/3D-
IC packages

Influence of mechanical properties of
interposer material and assembly flow in 2.5D
package

Influence of chip thickness, interposer
thickness, chip stack count and joining
material in 3D-IC package

Chapter4 Conclusion

Fig. 1.15 Reseach flowchart of this study.
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B2E TAYRUT 4 7ICBIT 5 FTHEMRBEEREICL 2ERES A —
DI

%D 2 WD VTR R Ny =TS BIE TN Ko TF » TINERD A VEKRE B
W 28ER H L. TA YR T 4 7 H2HWDLLEE T, Fig L1 IRLELIICTA ¥ 7L
BRIZBWCTERE—RTHDHIA YRy 78I TIERL, BEE—RTHHRY R85y KRB A X)L
BN S HBN D REE— RGN L mbENTND P79,

%41, 2D FEM (Finite Element Method) (2 XV U A YR T 4 > ZHHOfE & HEE I OFEIINRH &
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ZAWT/Ny RTEOBSEE Z KT & L TERSENOIG 152K, 2~y R TERELHRE O Ri{kic
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VT DER DA —VTT N AOWHIEMZ BEICHI LIZET LTI, MEaERonsyIal—
varFHERETDHETICZL OFITRLETH Y, 0L SOET VORI & IEFIZE <
725, FXUCxE U TARBFECIE, #uR LD ® DR N2 — o CRUIRE OIS 2 XEL 3 2 FIEICE
HL, WEIZX Y RDIZEEFNEE AW TISTIRIT 217 5 Z & CiE I FE Bl s 1 0 H i3 F Al %
1T 9 HIEOWMSLZ R AT, HERRIE DR ORI 2 2 S BTk 2 7o)y BT E O RCHAE IS 2 58
LIz k> TRD, ZORMEEZANTIA YR T 4 VIV fEEBEEERINCE Y Ry R OMGE
ZINIDISTI DAL, JEN AR TE D8y R TFEEELMI L7z, 22 TlE Cu e T & HHE
MO B EMITZRTHD LRHELZ. £, 22 TROEISHBIZHEN LM O LD TH
v, BEEEET & EEEOMBZ R DT~ A 7 BT IV TOFEMBIT A BRI L 72 5.

FEM OfERERFET 572, ULK # & FH\ 72 32 nm RO TF» 7 TUA Y RUT 4 v T OEBRELT
ofc. FEBRERN Oy RRPNORAER L Ry FTHEEOBREZT~, BE R E vz FEM
ENTRE R L U A Y T ARBRTONR Y REDPNOFRERICEVEAMEN R OND Z L 2 L.

22 Ny FTHEHREEOESHMERDOEH

Fig. 2.1 12T A YR R« Al Xy R FEB XY a2 VEROET VERT. fffT2Efe LTy
A YR REFLIT X FANZ 50 um, Y FANZ 25 pm OFEIKZ 5% E Lo N—7FT V& Hniz. R—
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3[5um v FOUALYRUT 4 T EBEELE

Ny RTREOEKEIL, Fig 1.8 (R T 2 FEEOHEE 2 iffr ki gt & Uiz, SAERBIEN D L 7 Rk %
Table 2.1 (Z/R9". 2 2 TIEASAVI MEESTMELE LTI S . Al/Xy R, Culifi3 8k TR TR
ZIULFRHEE, DoZIZLoTHERIND. EELOBEOFERFER, MR L OELEELSE
BL, RPOEIEZEN Lz, £EEEMEHZ W T R ICR T O 2 V-, 1x, 2x, 8x D
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Wirebond

Al pad

/

}Wiring layers

Si substrate

Fig. 2.1 Half model of wirebond, Al pad, wiring layers and Si substrate.

Table 2.1 Material properties.

Elastic modulus (GPa) Poisson’s ratio
Au ball 78 0.33
Al pad 48 0.33
Cu wiring 110 0.33
Si0, 70 0.20
FTEOS 66 0.18
Low-k 9 0.28
ULK 4.6 0.28
Cap dielectric 104 0.28
Si 165 0.22

HEARIE BT D ECEERE & U C Fig. 22 1R T X 9 R 2 OB EZ METT 5. Cu BdfICHWS T
2T A U TIECHEREET 2 —EDD>ETHAML, Cu DHEFIE~OILHZ RS IET 5729
E7 JBOIREHIZHENF v v THRIEAE T 50N — K TH L. B L BT 2 G bET 1 BORERE h
&L, 205 LEME DR % hl, €7 3O EEOHGIEDIE S % h2, €T #5530 X v v Tz
MEDE % h3 & EFK LTz,

Fig. 22 LT « A¥ v 7 LIESHEE CTIES O A X VERR Y — OF Rz T #EE L H DT,
Fig. 22(b) 1V —_U A UV EMERE T Z Rl VBB O RO/ F — Tl %, Table 221X 2405 OF
EERT. ZOR T, HMETT L ONRY m—3 g b UCERE A ~— R (s], 52) % A ZIVERD 1%,

17



2%, 3L LIek e bz, BT « A¥ v JiEE - —_ X A U TENEN VS-1, VS-2, VS-3,
Serp-1, Serp-2, Serp-3 LFES. 2x, 8x DHEDEITL, 1x DEADZNEN 2%, 5L LTWDHM,
Xy v SMBREOEI LY BIERVVEREH N TWA SICIIREESET 5.

Cross-sectional view Top view
Cu w1 s1 Dielectric
h1 HE
ne HE
w2 Cap dielectric Y
(a) Via stack T—» X
w3 s2
> —>
|-
h h2
h3
Y
(b) Serpentine t, X

Fig. 2.2 Cu line and via structures for homogenization (a) Via stack and (b) Serpentine.

Table 2.2 Dimensions of Cu line and via (unit: nm).

8x 2x 1x
h 1600 800 200
hl 960 240 120
h2 520 100 40
h3 120 60 40
wl 1760 440 220
w2 400 100 50
Via stack VS-1 1760 440 220
s1 VS-2 3520 880 440
VS-3 5280 1320 660
w3 1760 440 220
Serp-1 1760 440 220
Serpentine
s2 Serp-2 3520 880 440
Serp-3 5280 1320 660
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Ix JEIZ Low-k & ULK, 2x J8(Z ULK, 8x J&|Z FTEOS Oifuigif£ta fvy, ©7 A% v 7, P—r1r
B A NI 3 TS SO E O AL HE T, ANSYS Multiscale.Sim™ % W CHE(LET V&
TERLEGHNC LY 2o OREEZENEN TR E R T Y U HOEAFELZ RO, 22T, 1x
Low-k J&, 1x ULK J&, 2x ULK J&$ L 0 8x FTEOS B 1LEN T, Fig. 2.2 (29 X 9 7ol isifaiz i,
BT EHERRE, v v TR, Cu FCMB LN Cu BT THREN D ET AL v 7 BE O —U X
A ¥ DR Z AR L O IEARBNL & U CHE L ELT e o 2. BIEROBEA AN, Fig. 2.3@ICRT X 5 72208
FNCTATIC 2 DOMEAELE S NI TIELL T OQ.D)ZUCHEV, Fig. 23ISR T & 5 RIEHICEE
(22 DOMEDBLE S L7 fE TIEQR.2)RUTHE D .

FEe= V1E1+V2E2 (21)
Ee=(V)/E;+ V] Es! 2.2)

T 2T EATEARE, ENIMEN L o8, Ey 136 2 O, V3B L OREER, 1, i34k 2
DEFEETH Y,V & VoI,

V] + V2 =1 (23)

DORAR A 7=, ANSYS Multiscale.Sim® Tl (2.1)X, Q2)RX & MABbE THAKEOMAEEZITY. K
TV UL RBROFE LS.

T Stress Stress T
'+ Material 1
Material 1 // ——+ Material 2
1— Material 2
l Stress Stress l
(a) Parallel mixture (b) Perpendicular mixture

Fig. 2.3 Schematic of mixture of two materials (a) parallel mixture, and (b) perpendicular mixture.
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Fig. 2.4 (23RO LN EAMIER 2R T, Z O THE Ix JBO low-k M TOFRERITEM LTZ. 78
BHIE ST TH DD, HAEEOIEIFEIC L > TX, Y, Z FMOZNENOHMESR Ex, Ey, Ez 3#H
ROBMENEOND. BT AL v 72OV TIE X, Y FRNMHEOZD Ex & Ey 13F UHEE 72 5.
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ANSYS Mechanical® Ver.14 THEHT L7=. Au R — /WA R DL TE% O TR TN 24T - T\ A 72
PEARE LT, ALSy RIZIEE{ERIZ@EA Lz, 2 2 THOWE ALSy RORBRIE L 70 MPa T
B, R CTHRIZET VO~ MY v 7 A% Table 23 (29, ET /01, 2, 3%, 1x, 2x, Sx &%JE%
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Fig. 2.4 Composite elastic modulus of various combination of different dielectric films and wiring structures.
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Table 2.3 Model matrix of various structures.

Structures in 1x, 2x 8x layer stack Al thickness
Model type SiO, thickness (um)

and 8x count (pm)
1 VS-1 1.4 1L 2.1
2 VS-2 1.4 1L 2.1
3 VS-3 1.4 1L 2.1
4 Serp-1 1.4 1L 2.1
5 Serp-2 1.4 1L 2.1
6 Serp-3 1.4 1L 2.1
7 VS-1 0.7 1L 2.1
8 VS-1 2.1 1L 2.1
9 VS-1 14 OL 2.1
10 VS-1 1.4 2L 2.1
11 VS-1 1.4 1L 1.2
12 VS-1 1.4 1L 4.0

ETIN A4, 5, 61T A ORI AN— A B ST Serp-1, Serp-2, Serp-3 Z/AVND H DT
0o, ETTNT LR ITRAMEEZ VS-1IZEEL, Al7Sy RO Si0, DELHEZEEHTZ LD THS.
ETL9 L 101 XA UL FlfpEL VS-1 ICEEL, SxEEHWeWnwbol 2B ANZLOERD. £
TN E 121F VS 1 EET AL Sy REZREN 12um & 40um & LD THD.

232 HMERUEFEEHEREOMTERIC L o THIRBIZ A U BI5 1 Dbt

FNENDET L TR—IVAY ROX v 7 VEMEIIS L TR T 4 2 7DD M EEIBE
LT68.6mN %452, 73y RN ORMMGEEINZ AT D8 E 7=, Fig. 25137V 1 OF—E
IS a B = THY, Z HMOEMITHEMERINTWD. Fig. 2.6 (TET /L 1 O FTEOS E(a),

Capillary contact

Fig. 2.5 Contour diagram of first principal stress of model-1.
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First principal stress

First principal stress

First principal stress

(MPa)

(MPa)

(MPa)

80

Distance from the center (um)

(a) FTEOS layer

Distance from the center (um)

(b) 2x ULK layer

Distance from the center (um)

(c) 1x ULK layer

Fig. 2.6  Stress distribution from the center of model-1.
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2x ULK E(b), 1x ULK E(c)D&EDEAD L% 18 5 1 TOR—/VIR L KOO S DI 5540 &~
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Fig. 2.7 First principal stress (compressive stress) in 1x ULK layer under the center of ball bond (model-1, 2, 3,

4,5 and 6).
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Fig. 2.8 First principal stress (compressive stress) in 1x ULK with variable SiO, thickness (model-1, 7 and 8).
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Fig. 2.9 First principal stress (compressive stress) in 1x ULK with variable 8x FTEOS thickness (model-1, 9

and 10).
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Fig. 2.10 First principal stress (compressive stress) in 1x ULK with variable Al pad thickness (model-1, 11 and
12).
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Fig. 2.11 Analysis steps to simulate ultrasonic vibration during wirebonding.
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Fig.2.12 Maximum first principal stress at the top of 2x ULK layer.
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Fig. 2.13 Maximum first principal stress at the middle of 2x ULK layer.
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Fig. 2.14 Maximum first principal stress at the top of 1x ULK layer.
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Fig. 2.15 Maximum first principal stress at the middle of 1x ULK layer.
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Fig.2.16 Stress distribution at the top of 2x ULK layer of model-1 at step 1.
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Fig. 2.17 Stress distribution at the top of 2x ULK layer of model-1 at step 2.
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Fig.2.18 Stress distribution at the top of 2x ULK layer of model-1 at step 3.
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Fig. 2.19 Stress distribution at the top of 2x ULK layer of model-1 at step 4.
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Fig. 2.20 Stress distribution at the middle of 2x ULK layer of model-1 at step 1.
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Fig. 2.21 Stress distribution at the middle of 2x ULK layer of model-1 at step 2.
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Fig. 2.22  Stress distribution at the middle of 2x ULK layer of model-1 at step 3.
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Fig. 2.23  Stress distribution at the middle of 2x ULK layer of model-1 at step 4.
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Fig. 2.24 Maxmimum first principal stress (tensile stress) in the 2x ULK layer (model-1, 2, 3, 4, 5 and 6).
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Fig. 2.25 Maxmimum first principal stress (tensile stress) in the 2x ULK layer (model-1, 7 and 8).
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Fig.2.26 Maxmimum first principal stress (tensile stress) in the 2x ULK layer (model-1, 9 and 10).
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Fig. 2.27 Maxmimum first principal stress (tensile stress) in the 2x ULK layer (model-1, 11 and 12).
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Fig. 2.28 Via chain strudcture under the bond pad of the test chip.
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Fig. 2.29 SEM photograph of a pad tearout after FIB sectioning.
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Fig. 2.30 Pad tearout rate as a function of relative via density.
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Fig. 2.31 Pad tearout rate as a function of effective elastic modulus
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25 M5
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A UG L BICHMBENREWERICN AR TE D, BEEL 57 - 2AZ v RS LY
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K CTE 5. Si0, FTEOS OJEH A IS & 2x ULK & O F i CTIXIS KRS TE 203, HKIik
JIDA U % 2x ULK JEO L T E NG X 251588/ ORBIE A a7z, Si0,, FTEOS OJF
HDEEITA YO GRMERDNDGEICONT O ET I2LERHDH LEZXD.

Ry Ry RTFEIC R 2B - Bl E L2 FFoT v 72U T2 9 A YR U T 4 v 7 D%
BRAND, R SN oBEIER L L COREMIEEZIR T L LTy BN EOBFRERD L &3
v RRIDPSIS 2SR 2 D BIE & 70 5 ERHIERNR G ICHEE CTE 5 Z L3 otz 7272 LECKRHE
WX A TRRRDIGEICEMEITER T2 2 ERN TSN, SORDFERT —F TOMGENRLETH
D08, BoBEE 2 L ORGSR LSS ORI D Sy REDS I E KT 2 B e EURAS & 0 i
BETE4T 9 2 L I3RS C O Z — L DRGARICHEHATH DL EE 2D,

AHGE T AT UMD & D B 72 Bl S & 3 B RIC K o THEERHEZ KD 5 HIEIZE L T
WD, FEERVE - RETPED m OB S 7 — o TIEBEAL TRO D EEFEN CIC N 2 HEET D 2 &0
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BI3IE TYvTFyTEGAMBIOBBRIREER T Y v FF v T DRy FTFERED
RBOBYE TG 2 B8

3.1 #E
BAE, $h7 ) =1 A R IRE RO RBECBWTESELLTEY, 7Y v TFF v TFHEAETIIF v
7" EIZ Sn-Ag N T E M ED Sn-Ag-Cu DT LI NE—EHNHONRRENTHD. $h7 V) —IFATE

1%, Sn-Pb AT ATEITHA TG E <, 22 0MMERE mW e, IFATEHESHSTF v 7O/ y B R
HOBFE OIS D E < 72D, Fig. 112 [T X901, 7V w7 F v THEORBARFIZT v 7 L KR
DOFEZIRLRI D I A~ v FIZLVFHET DIGNT, FRZF v T a—F—fHE0/ 8y R TFEOBHREIC
AW 5% Low-k / Ultra low-k (ULK) #EEIEICIBWNT Y T v 7 R0F A=V 0N Z 0030, 2 OH4IE

F v TEHENOEETHEBE CHET I EAVAR Y MIAZDTZOFRTA AT LI TN D
V. ZOMBICH L TT Y v 7Ty TOHEERRE L TIF 5 2 & CEWMIIE ) 2 K92 72012, #x
PRARRLE L A T2 ORE A TaL T & 72 %%,

TUVABRED 7Y v 7F v 7Oy FIE 150 pum F2E F TR S TE TR Y, #5513 80 um 2
Lo TS, Ty THEAD X D MU A4 XIZB W TR O K & S 08 S 50T OB BRE
ICRBE 5252 LML TS % KBFZETIE, K@AITA T T8y N FEEREICAE L DI6H
P SH Z LICER L, KRS O 2 FEDOIT AT, Sn-58 mass%Bi(LAK Sn-58Bi, s 139°C) & In-3
mass%Ag(LARE In-3Ag, filsl 143°C), EERNBIA< VBTV S Sn-3 mass%Ag-0.5 mass%Cu( LA,
SAC305) it 3 D IFATE A HE L, HisERr (B2 0.5 mm, #2A0EHE 2.0 mm) Z/ER L T3[R
B ZITV, IRHEZ RO, 22 TH LN 0.5%IM & 7 U —T Rtk 2 VT, 1ZAE AT
& Cu T —02 O TEE EFIIATZOT VY VE— L O EDHE T FCPBGA 7V v/
F v TELHRIZ Ny R TEECRRE 202525 /1% FEM  (Finite element method) CHEAT L, #EATEE
7V T Ty TG MBI OBBAREER 7 Y » T F o THEEGMEIO 7 Y v 7 F v T D3y R
FoRE DBIG TIN5 2 2 8B % ff L7z

3.2 IIATERRIRER AT X 5 5 REBR
321 REBRFE

AHWFFE T Sn-58Bi, In-3Ag, SAC305 O 3 FEEDITA T Z UM L, Xifs HAPHZE LI-m@iIA s %
SHHIERLT 2 5157 TR 2R L 72, ZNENDIEATEA v 2y MERITATZORAE T O
EETHLUMUMLIL, BEE12mm OMMEER L. 20k, @3E2HWTHRy 7 L—k RiCT
FREF Z S+ 30°C OTRLE TR &, B 0.5 mm, AAEERE 2.0 mm O LR ORISR i A&
TERL U 72, RN A TZ OEEBERF O ELHE X 4~5Cls ThoTz. Z OB IZIXREI LB 3t X 720>
o7z, BIERBRICITE = SRR R NI B BR A LMH-207-10 Z W, 4 S:E DB EFE(B5.0x 107 s 1.0
x107s1,50x10% s, 1.0x 107 s") & 3 SofhDIRE(RIRQ5°C), 80°C, 120°C) THIEAFT - 72, EAHEIT
7 a A~y RO THIBE L, 3BT O35 4E T 25 £ CHIMEARE 2R L7, 3FEDIZATR
DRI ENENTEFREOREEITo 7.
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WIHIER &2 AT C v 2 —THIlT L, AFESRRES KOV /L < FEE RS & T TR A S 41T -
7. SHICInB3Ag DRBHIZ mA® 7 v a VAR Y vy —ZHWTA A B — A K DM EZ i L 7.
FZENOFE O Wi X SEM (Scanning electron microscope) & EDX (Energy dispersive X-ray
spectrometry) 12 X W #IEL7=.

322 HBRBR

Fig. 3.1(a)l% Sn-58Bi O #HIFEI D SEM BE TH 5. EDX DR HIIK G OFEMIL Sn A, HKIKE
DOFEIKIL Bi fH TH 5. Fig. 3.1(b)i In-3Ag D% 7~ 9. EDX D5 EM HIRIKE ORI ORI Agln,
Thh, TORXTIIFNO01 um 254 10 um THH. FRIKEOFERITI InFHTH 5. Fig. 3.1(c)ix
SAC305 DOflfikAZ <7 EDX DOifi e & 0 RIKEAOHMKLIE AgsSn Th D, 1FL A ED AgsSn FLD K&
SFIum L FTHD. EHRKAOEIT SnFITH 5. SnCu O&BELEWIT Z 0K i ET
HT EMWTERNPoT.

323 FIRABRRER

Fig. 3.2, Fig. 3.3, Fig. 3.4 |35[5EBA» 53K 7= Sn-58Bi, In-3Ag, SAC305 DELEE 5.0x 107 s™,
FHQSOWZB T 26N —EAHRTH D, Z Z CIERBOE ST B —E TERT 5 LB 2T,
BIERA > N T oW E AT EEZRD . RIS AR EOER L L TERIRE AN
TRDIEHLDTHS.

e=In[(L+A7) /L] 3.1

T 2T e X EA, LITVIESERE, AN THD. FROBERE, BEESEEROT — 2 bk

THRETROIMEE ERD, BH202%, IGH0DEEELILOTHD. ZOEMREIGSH —E MR
DRI BT ATED 0.2%i0 S % RK$d 7=, Z i 5 1% Sn-58Bi THJ 80 MPa, In-3Ag THJ 10 MPa, SAC305
THI42 MPa & 72 5. BlUSOITV Sn-58Bi & In-3Ag T DM 02%IM /N K E ZENBHENL TS, £
72 SAC305 |E M # O HHEIZITV 0.2%0 /) T 5.

T

(a) Sn-58Bi '

Fig. 3.1 SEM photographs of sectioned initial specimens for (a) Sn-58Bi, (b) In-3Ag and (c) SAC305.
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Fig. 3.2 Stress-strain curve for Sn-58Bi at the strain rate of 5.0 x 10° s at R. T.
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Fig. 3.3 Stress-strain curve for In-3Ag at the strain rate of 5.0 x 10 s at R. T.
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Fig. 3.4 Stress-strain curve for SAC305 at the strain rate of 5.0 x 10” s at R. T.

Fig. 3.5, 3.6, 3.7 13Z NN =EIRERSC), 80CHK LV 120°CIZE T D 55RIG ) & 2B A3 FE OFIE & 7R
J°. Fig. 3.8, 3.9, 3.10 iZTZNZEN=EEE, 0CHE LW 120CIZBIF AN EAREEOHEEZ RT. &
7= Fig. 3.1 I3 EAEE 5x 10* s (2B 2 51EG 1 & ILE M2 =T

Fig. 3.5 O =R TIX 3 BHOIXATE THRIS MR E S Ao 5 Z L3305 . Sn-58Bi 23 b 53R
JE D3 < 71~100 MPa, KU NT SAC305 D51 9RIR J) A% 41~53 MPa TH V), In-3Ag 23 bK< 8.3~
12MPa L 720, ZNZIEAEENEINT 5 &SRS D AHEMT 228 A 5405, Fig 3.6, Fig. 3.7
DZENZEN 80CTH L 1200CHLHA T Sn-58Bi & In-3Ag IX7E AL DN L7223 > THIFRIN 143
L TW5 2%, SAC305 1ZTEAHEEOHENNT X 5 515G ) O ANEEAZE TIdL7e\. Fig. 3.11 2 bR
FRIZ X D5RIE ) O T X Sn-58Bi Thet K& <, 120°CTliX Sn-58Bi & SAC305 5 [8E ) A3 [F] %%
272D Z gD, Fiz, In-3Ag OFIRIEINTERN D 120CHOM TR E R Z R LTV,

Fig. 3.8 T/r$ & 9 IZFEIE T Sn-58Bi, In-3Ag, SAC305 DIONTHR b EEHLEE DB E & BV TK
X 7pFEHIT 0. Fig. 3.9, Fig. 3.10 TR.H5 &9 Sn-58Bi lTIRED A& & HITOiERE< A0,
BHHE OO RO SN D, BAHHE 5x10° s D 1200C TOMONNL 25COHEDOKI 35 TH
5. ZAUE Sn-58Bi OFIEA 139CTHH Z LickbdEEXHND. —FHTIn-3Ag & SAC305 TiXiE
EEFICEDHMOORE R RITR SN2, In-3Ag Ol (143°C)IE Sn-58Bi (ZUT W ASTAE A2 NS
ROLND.
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Fig. 3.5 Relationship between tensile stress and strain rate at R. T.
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Fig. 3.6 Relationship between tensile stress and strain rate at 80°C.
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Fig. 3.7 Relationship between tensile stress and strain rate at 120°C.
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Fig. 3.8 Relationship between elongation and strain rate at R. T.
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Fig. 3.9 Relationship between elongation and strain rate at 80°C.
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.3.10 Relationship between elongation and strain rate at 120°C.
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Fig. 3.11 Relationship between tensile stress and temperature at strain rate of 5.0 x 10 s

324 7V —7Fk
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ZZT SIFEAMEE, AR, olIBEIST), n XS NfEHTH 5. Fig. 3.12, Fig. 3.13, Fig. 3.14
IFENENEIR, 80CHE LTV 120C TOHEELEE L EIL N OFEZ W77 7 TRLIEBDTH S.
IRIEARET — % K0 B/ ZRIETRD, ZNENOELER» HREA LIGTHES n 2Rk 7
Table 3.1 [ZZNZENDIZATEOREA LICNTFEEn 2 £ LD bDTHD. BEAITTATOIFA
ECRED ER-L & HICKEL< 2D, Sn-58Bi DFREE, = Z CHAZIREHFACIX 10”04 —4—T
AL D, In-3Ag DREIE 10" DA —F —ThH TN LHEL L. £72 SAC305 DFFEEKIE 10° D
F—H =D& 72D . Sn-58Bi DILIJFEE n (XIMED EFH- L L I T 5. T 2 TH B AL/ Sn-58Bi
DOIGHFEEITE S 10 mm OFREH WV CTHIE S 72BE# 7 Ol & FEEOEm 27~ LT\ 5. In-3Ag
DI SIFEELIE 80°C TR 10.4 L 720, G- IREEHIPH CHFREIMN & 2 WITHFRAD O mI3R LT
W, Z OIREEIFH TO In-3Ag OIS R OBER Z R TIZIEE HICE < DRETORENRLE L
ZH5. SAC305 DIGHRBUTIEED EH & L HicmL, WINoOEE TH RE2EE 10)& 7o
TW5. ZOflIE Sn-3.5Ag-0.75Cu D7 J — 72 R D IZBER ' O LT D TH 5.

Sn-58Bi & In-3Ag DFlFITIEVE ZAIZH DD, 80CE 120CDIGTTHEHIIRE S BAroTn D, £t
Ei L 120CICBIT 2R B REL BRI DO TH D, AW TILABHIRNLER 21T o 7. T
AERER A IS A RN D 7 ) — T RIS 5 2 AR BIZ OV TS LIZA B OB LETH 5.
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Fig.3.12 Relationship between true strain rate and true stress at R. T.
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Fig. 3.13 Relationship between true strain rate and true stress at 80°C.
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Table 3.1 Creep properties obtained with 0.5-mm-diameter specimens.

Solder Temperature (°C) Constant A (MPa/s) Stress exponent n

25 1.48x 10" 8.3
Sn-58Bi 80 4.07x10™" 45

120 251x 10" 3.1

25 1.30x 10" 8.3
In-3Ag 80 1.30x 10" 10.4

120 120x 10 9.6

25 1.08 x 1072 10.3
SAC305 80 441x10" 10.6

120 4.63x 10" 112

33 7V yFF v TEEOHBHEEDRII% DR
3.3.1 FEM f&Hre75 /v
L TR ONTEKIIATE OBBRHEE HNT 7Y v 7T THEAEREO /Ny R TFEESE IR ET DI
71% ANSYS Mechanical® Ver.14 O~ /L5 2 4 — )UFEHTIZ L 0 #§-7=. Fig. 3.15 1Z = = TH\ 7= FCPBGA
D 1/4 D~ 7 a7 )VERT . [HIER(ZDOF: Zero degrees of freedom)|Z T~ 7+ FARK D HLTHARK D F
v THEHEE EICRE L. 27T MEIT y S a—F—D T L YL E—, X7 UBM(Under bump
metallurgy) & v 7D Si, /Ny RBXUV Ny FIFHEREZEZTET /L E Lz, /S 73 Fig. 3.16(a)
WRTIXATER T L Fig. 3.16(b)0WIRT Cu 7 —N\0 70 2 O Z H 2. Table 2 IZ&H D
SHEATRT.UBM T ALYy R EIZ Cu, NiDIETIER L, Z0 LICA T E2BAT 5 LIRELTWD.
EWOF v 7 L0 REBRAEEINET Y v 7T v THEAHDOIETNUTE A ERE LN 2 & RLHTO
fENT CHERR S LT Y, AR TIIEBRORE ZITTF v 7LD O TNITRKEV 11.85 mm A & LT,
AWOEmSIZUBM L 7 L Y VE—FTEED TS0 um & L TAE R T ORESITET LD

Chip center Chip

ZDOF Substrate

Corner bump

Fig. 3.15 Macro model of FCPBGA (1/4 model).
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(a) Solder bump

Si Dielectric layers
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Cu pillar
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<+«— Ni

Presolder

(b) Cu pillar bump

Fig. 3.16 Micro model of (a) solder bump and dielectric wiring layer, and (b) Cu pillar bump and dielectric

wiring layer.

Table 3.2 Dimesnions used in this analysis.

Chip size 10.05 mm x 10.05 mm
Chip thickness 0.785 mm
Bump pitch 0.15 mm

Solder: 0.089 mm

Bump diameter
Cu pillar: 0.075 mm

UBM diameter 0.075 mm
Cu: 0.45 pm
UBM thickness
Ni: 2.0 pm
Joint height 0.050 mm
Substrate size 11.85 mm x 11.85 mm
Substrate thickness 0.856 mm
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DT O R & L IEITER DNy RRES 5 pm, SEH TSy RERE2S 17.5 pm O
MEICHTE LT, IZATEAN T ORKERIT 8 um TH 5. Cu V77— 2 pm DEHD Ni %
AL, 7VINET =T 15um DEALLEFEEL L, UBM O LY AKX —FTHER EE L. 72BN
Y150 um By FTTAT LA FLE & Lz,

7V T Ty THEENORIBETCORBAZ~Y 7 0 ET VCHRITL, RIBME THROEREEZFE ST
A BET VO AT ST, V7 7 LU RREIIRIIALEORS L L, BIZATZORES 70C
ETOHBHD 645, T0CHLHIBMETORHAN113s L d 7 a7 7 A NVERWE., FIXATEEH DT
EE7 V=7 L@ L. EF 27 ) —7 AN oflE TE b i v -, B R
IR AEE 5x 107 s TH BTN — OF B b h HARER R BUE 2R Y, ZEBITELD /T X —
Z A RGE LTz, Table 3.3 ([ZAMIE THWEAMERHEZ R T, FBIROSEEIL, —KNREL T v
FARORBIAEM, Culidfy, 77 AfkMEZ: E2ME LEARETH D, FIXATE ORI D%
ELRRITIELT ANSYS Mechanical®lZ & W sRO7-HUE TH 5. —fRANCAR SN TOAEIE 2 L0 &7
DRSO TH DA, WHEREOHL B A WD LT TEAEN RN D72 2T
X2 O E T DO FEEH N, ARFEITTIX Al Cu, Ni AR E LTH]-72. 7238 UBM &7,
N T TV INE— TLIAE—LERED Cu 7 ROZREAE T4 E B L&Y AIMC:
Intemetallic compound)23 B 45 . —XHIIC SR LA WITHIERD & <, @REEAMIZ L 58
BEROMMAOFEDOELITME CTE R WEAENH DA, Z 2 TOMIT CIXE RS O RH TEA
TELRETHDL LDREEXENTND.

Table 3.4 |ZIIARFENT THW AR T T LYV E =D G DR E/RT. ET/ba, b, ¢, diE\V
TET VY NE IR CIEATEEZ G, BT /0d, eld/N 7% SAC305 & L7 L Y V& —O I KRR
FATZE LTz, BERIET LY AT =2 Lo TThN D LEL L 7 7 L v ZREIRIRIE A 72 O flUR
Ll ET Vg h i, jIIRNVTECUET—LEL, TLYNE—THEAINDIEHETH L. ET IV
b & hi% SAC305 T Sn DEHBHIAZREL TL 7 7 Ly AEEE 180CIZ L= —AThH 5.

Table 3.3 Material properties (at R. T.) used in this analysis.

E (GPa) Poisson’s ratio CTE (ppm/°C)
Si 165 0.22 32
Dielectric layer 7.5 0.28 14
Substrate 22 0.30 17
Al 69 0.30 22
Cu 117 0.32 17
Ni 207 0.31 13
Sn-58Bi 12 0.40 15
In-3Ag 2.3 0.40 22
SAC305 12 0.41 22
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Table 3.4 Model matrix.

Model type Bump Presolder Ref. temp. (°C)

a SAC305 SAC305 220
b SAC305 SAC305 180
c Sn-58Bi Sn-58Bi 139
d In-3Ag In-3Ag 143
e SAC305 Sn-58Bi 139
f SAC305 In-3Ag 143

Cu pillar SAC305 220
h Cu pillar SAC305 180
i Cu pillar Sn-58Bi 139
J Cu pillar In-3Ag 143

332 fENTRER

Fig. 3.171&7 U v 7' F v THEEHICEIR E THHISNTZRETO, Fv 7 a—F—oXy RO
BEICBTAEETNVOE TN IOa L Z2—ThHbH. FROL ERTF v 7 Da—F—FuTET
WF Yy TORRFGETHL. a2 =D DO A — T~ CH—IZHRE L7z, SAC305 &
Sn-58Bi & W2 BT A TIRTF v THRMAN IR KO EMEIS N RAEL, Fv 7 a—F—lkKDF|5E
JISNDFEL TS Z ENGh 5. F£72 In-3Ag & W T-ET VTNV IR R R O MRS
HNPFELTOD. RROBIRIGINEZ D3 X —Kh BB LI WRTF v 7 a—F — Al 54
LTW5.

Fig. 3.18 IIHKET NDTF v T a—F —DON T FEHOMGEIZ AT HRROE—FIG &2 R"T. 2
T RTEERIGTHY, WO OET L a 2L U HEEEM TERLEZ. 7/ a & bid
N, TUINE—LHITSAC305 THY L7 7 L AR 220C02 5 180°CIZ TA D &I T103K)
10%EIH9 5. ZAUTK LET /L ¢ D Sn-58Bi DHAIIL 7 7 L ZIREN 139CITH 00 b T ET
v alZxtd D I3 6% DA T E 0. ZHITHEE O EIR & 22 % SAC305 D 7 Y — 773 Sn-58Bi
IZHARTRENZ L& 02%M AR/ NN STk DB BND. 22 THWZEIRTO SAS305 O
0.2%IMif /71349 42 MPa T& 5 DIZ%F L, Sn-58Bi @ 0.2%lit /)13 80 MPa TH 5. ET /L d D In-3Ag D
BB, BTV a [CHARTSTH 65%BA+ 5. ZhudL 7 7 LU RREE, 7 ) —7 R, 0.2%i0 )
DFEVWNRRESEEL WD EEZLND. FBILTO In-3Ag D 0.2%I[ /1135 10 MPa TH 5. ET /v
e & fIINU 7% SAC305 & L, LY AT —ZRRRITATZL LTEbDTHD. EF /M clTHLTE
TV e DIEINIR 14% LCTnD. BT /L e Tix SAC305 ORI FRE 2 2T OB FHE T
BLE & 720, BTV cIZHARNTZ V=T NRKREL, 02%MAON/NSWehEEX NS, £ET VA
(X LCET IV f OISIIER 24% K E V. ZHUL In-3Ag IR TYZ U —F N R&E L, 0.2%IM DK E
VN SAC305 OFEWAFIED BN Ie o T27e b E B Z BiILD. ET L g~j D Cu BT =N\ T DA,
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Fig. 3.17 Contour diagrams of first pricipal stress in the dielectric layer under corner bump for model a to j.
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Fig. 3.18 First pricipal stress in the dielectric layer under corner bump for model a to j.
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SAC305 DS LY )L Z—DFET /)L g, h Tk L Sn-58Bi DET /L i TIL 30%LL LIS 1380 L, In-3Ag
DEF IV | Tl 5% LIS NI T 5. ETITATENALY TOET L a~d & g~j & FNENIET 5
& SAC305 DAL Cu BT —DIE 9 53 20%LA BISHAEI L, In-3Ag DAL Cu BT —DIE 9 23K
14%IE IS5, ZHUE Cu OFEVEERIZCE 2 D EEZ HND. —J57 T Sn-58Bi DA Cu
T —DIE D B3 10%0E H1 238003 5 . Sn-58Bi 13 0.2%ii /)75 80 MPa & @\ M= O B ZE I s Kk & <,
NUTIARDEBENRE NO TR EHEERT 5.

ZINHDET ML DM T, In3Ag Z W H#AEHO 7 + 0« I —EB A5 /1IE 10 MPa FREE T
D, SAC305 Z WA ED 7 4+ « S—BAISTTATMPaiBETHDH. b 2 DODITATEES
ETPEAETIICEIE L T D, —J5 T Sn-58Bi DEAEID 7 4+ I —EB RAJETIIE 65~72 MPa FEJE
Th O BEERIRICE EEDH. 2O EAME[E TH D Sn-58Bi 1L A7 TR E RIS IMEBEN R 215 b
RWERTHD EEZXD. 72 Cu BT =AU HARRICHMIEETZIIC & 8% 5 2 L6 SAC305 N
FEOBISHNENT S L EZOND.

UEEXY m3Ag 20D E 7Y v 7 F o7 Oy RTEERE O Z IR 2R R RKRENT &
WNoyhroTz. Sn-58Bi DA, /N2 SAC305 DA N bIGMEESENH 5. Cu BT —Z W
5L SAC305 7L YL — L OMAEDETIE, IZATERCTOEE LD H 20%LL EIGHBEINT 5
ZEiTheB.

34 ®E

Sn-58Bi & In-3Ag @ 2 FFHOIKALSITATE & SAC305 DFF 3 FREHD 1T A 72 THEAE 0.5 mm OHHIFER
REFERL, 3 DOIRERMFL IO 4 DOELEESRMCTHIERRZIT 72, 20BN G, EHHE
5.0x 107 s, SR (25°C)D %A T Sn-58Bi, In-3Ag, SAC305 O 0.2%Ili /1137224 80 MPa, #J 42 MPa,
FI10MPa t7eo7-. £ TOZ U —71F In-3Ag, SAC305, Sn-58Bi DJETRKE W2 Lo Tz,
I I TELNIEAIT AT OBBIEYEEZ VLT, FCPBGA O 7 YV v 7F v THAEOHBARKICT v 7 |k
D%y R EECRRE ORI SR A 5571 % FEM TR L7=. Sn-58Bi & In-3Ag D@l AIXIFIES L
WS, BN DEWVIZ X0 Xy RIS 206 I CHEIC R > Tnd. 7 U —7BK
&<, 02%IM /A3 10 MPa & FEFIT/N S WA RAEIZ LV, In-3Ag & W7o 8255 28 T 0
WL, ISEBOENPRKE N LRG0 -T2, —J5, Sn-58Bi % W T-HEAE0IE 0.2%IM /12347 80
MPa & EWoOMMERIRIC L EF 0, ISHEBOSRIIRENTH L. £/ Cu BT —Rv 7
SAC305 D7 L Y )V E—% D4, SAC305 DIXATZ/N 7L SAC305 D L Y VH—DGAIZI
T 20%8L BIS 3 EEINT 5 & OFERZFT-. AT Cu BT — AU TR ERRICE EE D T LI
katEzzons.

AWIETIE, 7V v Ty TEAEOINICER L, TORBFIELMFEH L-. In-3Ag OFEAE%E
DISTRBENRIT KR Z VD, BHERIIRELS 2D EB2x6ND. Ny r— VIR, B o1 7
NTOMDEUSCE D7 v 7F v THAMOBBEEADMEHEMEIC G2 5 BE2EE LT, £
ERHITHEIERT X =T A WM EBIRT 2R EOLRPEELRD EEZBND.
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4 E BEEMZAETIANVEF—R—FLIERT v 72HBET 2y 5 —PD
<A 7 nEEHE L OF v 7 TEELRRE O SRR

4.1 &S

KETIL, BWEMEATIHA L —R—FLICT Y v FF v FRT 4 7 THEETF v 7 2 ##
TR =V DF v THEEHDO~A 7 aESEHB L OT v 7 FEERRE OIS MR E R L L
Tz, L LT, A F—AR—Y LT v 7% FHEET 5 25D Sy r—y kA v —FR—% E
BTy T EREET 5 3D-IC Ny r— D 2 D&Y Eife. 25D Ny r—U T, SRS
BZBHRFE LTF v T e A v Z—R—VFOEFIEY, 1 F—RN—FOMMERE, ¥ —F—
PORELRIFEH LTz, 3DIC /Ny 7 —V T, IS BEEZ2RFE L TTF v TDRER, A4 —
RNV DR, Fv T OEEE, BOMOBMAFEICER Lz, 2 2 TETF v THEA % OIS KR
i L, v —UHERREOEEMEICE D 2 B AT OB OV TOFEMITIT > TR0,

25D Nu =k, R EER CT& 54 v F —R—V 2 ABEIER LIcB# L, oA 2 —K
—Y RICHEE T~ 7 & il E LT G S 72D, 25D Ny —UTIRERT v T EERT S
A AR RKINC ), FoT e v Z—R—Y, 7 —R—Y LHEEIERTENTN
D~A 7 vEGHERD. FloA VX —R—FOMEHIT Y 3, 7T 2B L OEBERZ &3 7%
SNTEBY ZOEBIFELZNENRRLLOTHD. OOy —VlAL T T ek ATE
BT RE VA 7 B AT DI TIRB DR 0 IR 5 B RIINER D FCPBGA (2~ THEHMEIC
5. 25D Ny —DICHE#ET 5 F v 7L, FPGA O X 9 ICR i OF v FEAEEEH T AT Y
=T AERER DG L, vy F v, A®RYF S, TFasF w7, MEMS (Micro Electro
Mechanical Systems)F > 772 EORFET v T HBESEDHAT 0 V=T 2R EMDGE R b 5. A
RTEIu Yy 7 F v 7 EWide /O AT Y D2FFEOTF »~ 7 %+ 2HKD 25D Ry r—VEBEL,
PERD AWV HI TV D GHEIER HICHEET ~ 7 A #5895 MCM (Multi Chip Module)-FCPBGA & .
WL, ISHERY OBEEI TS, AV F—R—FL LTl ar, EREEDRR? 2 FBEO Y
TA, AEEROEN RT v TEOAEFEE L2 T LAEROF 4 #4752y EiFiz. ) ay
BROV T ADA o Z—R—H LAEME O a7 L ZAHMRTIIRLR ORI — VR R 572 0F L e
VoI Fo T ARV F T EBEETLGAETORICYA RO =R —F 2 HNDLZ LN TER
W D F T A AR O $idr EORHRSEIFICESE, 25D /Ny —Y & MCM-FCPBGA 2
NOREHRFFIL— L EHNTAS Yy = VR ERFT L. BEMREHC L0 Bl Ny r— Utk
AR, YU ay, 2FEON T AB LN T L AR CENENRL DA 2 oA v 2 —
R—HFEHNTFEM BT VEER L, A v X2 — R —FOMBIRHER~ A 7 n A EH OIS 18 A v %
— RV ORI G 2 BRI Fio, Fv7, A2 —F—V, FEERD 3 fEfkiks s
25D Ry =TT, FEADOIEFICL > TT a2 BUGTNENT D, RicF v T EA
VE—R—=FIEAET DHA, KA =R —F 2 HREREET 256, Ty TeA v F—R
— P L OB & RIS T 2 B0 3 DD % — O FEM 7 L 2 B LEQIEFE RN~ A 7
A DN LK VICH 2 DB~ HENEFF O BOMNT TIEa T L ABRDO A 7 — R —
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PRSI L722s, 2V avBRON T ADEA v F —KR—F DRI L 5 EES FRHITH T
3D-IC /Ny 7=V TlEA 2 —R—F LIS o F v P3G L 0 5. F v 7 OB
FoTDER, B —F—FOEMIT R a R MNIHEET ARERBERRNELETHSL. F-2F
v TSIy TORME L INHT20, AT TV v UV LIES T ORI G EMN % &
DHED Cu BT =N TRHNBILE. Cu BT =T EHND EESHMOITIATZEN DR, B
B AT TRBEREEYIET 2 IMCHEANEEMORELZ®mO LA TIETHLEELLNT
W5, L LRSS IMC G EBIEHMER D & SO NITE< kD EEZ LN TEY, 1TAEE
Cu OBV T AZNVZEE, CuSn DeBELEMLZ T2 THEA AR ML GMIT TR
PEROIIATZZETIZONLE LN E BB X OND. R TIE, 3D-IC Ny r—IIHEHT 55 v 7
OfElEL, Wk EROTF v T ORER, vV A H =R DRI L OB ORI R & 28
2T, FRTVF v TORY &~ A 7 aEREHICHNDIRNNCG 2 D EEMRHT L, Ty 7O &
~A 7 RS ERON ) AR D R A B LT,

42 A F—R—FLRICEERT v 72 FEEET 5Ny —Y L MCM FCPBGA DO ZUiR
BT

421 A EZ—R—Y LICEBETF v 72 FEEET 53y 7 — Y L MCM FCPBGA DREHERT
il S

Fig. 4.1(a) ICZ 2 CHW Y v 7 F v 7O TRLE %, Fig. 4.1(b) ICAE) F v 7O T HE
ZoRY. E7- Table 4.1 (ZIEF v 7Ly =V OB OFEMRHTRFEM 2R T, vy 7 F v L5
mm DT v 7150 um By FONTRTAVT LA TREIND E L. A€ Y F v 71X JEDEC
DOHE LT Wide /O A E Y O MPGA DFEHERIAS 2 (T EES W20 T RLE 2487 L 7=, Fig. 4.1(b) (TR
T LN TBETF TR A OOT 0 IV TERE S, ZRER0 7 a v 7 N T 40 um
x50 pm DO € FTHEAIRICHSN SN TWD . AREIER RI2F v 72887 2561218, AEROR
BL— L TZOE Y FONRCTNHEIEHLET) ZENTERNWED, AEVF v 7 ECTHERIC
KoTAUT% 200 um B FITHEET S ERE L. Z 2 TIEAEY O VO BuHks o5l % el
LT800 & L7-.

15 mm
10 mm

7 mm

15 mm

(a) Logic chip (b) Memory chip

Fig. 4.1 Bump layout images (not to scale) for (a) logic chip and (b) memory chip.
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Table 4.1  Features of chip and package.

Chip size (logic) 15mmx 15 mm

Chip size (memory) 10 mm x 7 mm

Chip thickness (logic and memory) 786 pm

Bump matrix (logic) 94 x 94

Bump matrix (MPGA memory) (6x50)x4

Bump matrix (custom memory) 30x 40

Signal I/0 count (logic) 1600

Signal I/0 count (memory) 800

Direct wiring between logic and memory 800

Bump pitch (logic) 150 pm

Bump pitch (MPGA memory) 40 um x 50 um

Bump pitch (custom layout memory) 200 um

Package size 42.5 mm x 42.5 mm

Package BGA pitch 1.0 mm

Package BGA ball count 1600

Thickness of one build-up layer 45 pm including Cu
Ny — DRERR & Bl — v

Fig4.2 |22 Z CTHW Ry r— URER O Wi O X % 7797, Fig4.2(a) 1BV RT v 7 HRka v
72 MCM FCPBGA Th 5. iR D & 5 IZBUTOAHEEMR DEHR/L—/LTIE Wide /O AE Y D7
I NOHERE S EHTZENRTERNWED, AEYF v 7 ETHEM LN 7% 200 um £ FITH
Bl 5 LE L7z, Fig 42(b) X3V arHDWIH T A& A X —R—PIZH = FCPBGA Th
L., AE—R=PF Iy s F o TBIRATY F v F0b0ORMEIT O BB EHT, 0
BOARIE 2> 5 AT RS FEA A~ DR 5 & L C TSV (Through Silicon Via) & % \ME TGV (Through Glass Via) 73 A
VA —AR—=PHRIEREIN TS, TSV B L TGV (31 ¥ — A — P RMmITHE FIRICELE S LD 0N
—WRITHD. A H—R—P L HEERITIIATE T~ A 7 uEA 35 LUE LTz, Figd2(c) 1I=
T U A B ORER A W2 G A v # —R—¥ & H 2 FCPBGA Th 5. ZZTH MCM FCPBGA &
FIERIC A Y EONRCFIIHEEE L2 ERELTWD. Table 42 (21X 2 Z CTHW=E N r—T 0 A
V=R PDEZLFEFIN— N EFE LD AEERE V) arBROT T AL 2 —R—FER
ZAVCHLERH FTRE 2BV — L A B L7z
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Logic chip Memory chip

Bump

Underfill resin

Organic
substrate

~—BGA ball

(a) MCM FCPBGA

Logic chip Memory chip

Bump

RDL Underfill resin

§ . C . NN S| or GIaSS
interposer

Organic
substrate

Solder
joint

A\ A A A A A A A A J

(a) Si or glass interposer FCPBGA

Logic chip Bump Memory chip

Underfill resin

Solder joint Organic

interposer

Organic
substrate

(a) Organic interposer FCPBGA

Fig. 4.2 Schematic cross-sections of package configurations used in this study.
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Table 4.2  Design ground rules assumed in this study.

Build-up layer (FCPBGA, organic interposer)

Line / space 15/15 pm

Via land diameter 85 um

Si interposer

TSV diameter 60 um
Line / space in RDL 4/4 um

Glass interposer

TGV diameter 80 um
Line / space in RDL 4/4 um
B A v Z—R—FOHEDEH

Fig 43 1A VA —FR—V Licue Y v /s F o722 ) F v P2 BT HNENREEEZRT. 22T
F ) arBIOHITAL U F—R—=H LIZ2F v 7% EE LIZREOTF v S D7 V7 T A% 0375
mm, Ai§A Z—R—P L2 F v F2RBRE LIZROF v 7RO )75 A% 3.0mm EAEE L

FIAEVF T DR0OIETRTRY Yy 7 F 7 OI0 EEHERMRTLEL, nYy s F v T Dk
DD 800 /O IFA > H —R—=F &/ LT/ r— OSBRI SN EELE. ATV D
4 OO TTayrsr0rbuYy s F IO 2 oOTay riEu Yy 7 F v TOLHENS EBR
ML, AEVF v 70oay vl FyTNLRTEHKED 2 >OT7ay 7 \2idayy 7 F v 70 L TFEh»
HENEI 20010 TORMTHZ L2 D. vy y 7 F v 7O LTS ORI LI R IR O %
Figd3HIZRTRIHICSIEEE L. Yy 7 F v T NE TSV H L WIE TGV ICH T HEAED 5 5,

R OF L d 53 TEO TSV/TGV IR 2 72 DI LB R Ik Dl 2 S2 & EFR L7z,

VY arBIOH T AL U H—R—F DR « AX—ZAD/L—/L 4/4um ZH\ S &SI, S2 132K
1.6 mm L7025, A VX —KR—V O/ VA XX, vy rFvTOREE, SI, S2BLOTSV/ITGV
MDA B —R—W i £ TOR/NERE (0.5mm S48E) I2X V23 mm &725. ZZTldA o2 —
R—W & HILR O ¥~ F % FBGA (Fine-pithe Ball Grid Array)2s CHE#RY72 0.65mm B F & LT
40x 40~ KU 7 AT 1600 /O ZHELRTE D 27 mm DA X —R— %A X&kOITICHNS
ZlE Ll ELICARROBFHZ L > Ta 7y LA E AW AHA % —FR—%1% 0.8 mm DA E
> F 3B mm ADOKRE &R L LB L.
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T§V or TGV yWiring in RDL

Other signal I/0 Memory interface 1/0

Interposer

Fig. 4.3 Typical layout of logic chip and memory chip.

Fig. 44 XNV R7 v 7HBERTO T U v 7 F v THEEH b 05 & 1 LBROREHN RiG 2R~ T
F o TEINEMDO N T L ZDRRAIDO N TRBIAR EV R T F a0 EJETHlE Y UBL#R % B
L, No7D7 2 RMERTDZEDRTERLL BRSOTZRBON TN LIERKNRTET « 42 - N
TNy ROMEIZKY 2ROV FT v 7@ T EHLZ1TH. EART 7 EO 1 ETH & HE
2T TR E 5.

EscapedTraceCount = % 4.1)

ZITPIEANUTE YT, DIFET T2 ROER, L ITERIED 2V ITEHRA <X — A TdH 5. FCPBGA
TiEaT7ELo L FloE LV RT v FEE Y 7T Ao5EHLICH S 72D, BV RT v 7 Eoikikix
a7 bwEOY 7 AR EH UICKEREHIC L > TRES. 2 2 TO FCPBGA DA TIXy 7o
FIEHLIC4BOEN KT v TREBMLEL /2D, BV RT v T HRO IO A7 505 TlE 4-2-4 O
WERRALEE L 725, a7 VAEROEHA v 7 —FR—% b > 7T A5 & H LICKEZ2 BT FCPBGA
EREFUTHY, BEERE 77N 1 ETOOENLVRT v 7FEaslv YT, a7y LATEI Ny
REIZ 1 ERAWSZ®, a7 LAERO— 75005 T 6+1 OB 0EEL s, £l avik
KT T AA B —R— 1> RDL JBIIAEARL—/LN 4/ 4 um D72 1 JETTRTOF| & H LA ATHE
L7200, TSVITGV O 7 v FaR T LHEE LR T2 @OlRMETHoLins.

Table 43 ([ZZN 6 DBMFHI LV G ONIAIEBRDOT A X, ik, EHZEH L. ZhbDHEAIZ
FEASWTROMITET VOIERE (TS 7.
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Via on bump pad

Trace on
2nd layer

Via land

~
Bump pad P
Traceon __, L: Line, space
top layer Q Q Q D: Via land diameter

P: Bump pitch

Fig. 4.4 Typical escape design from flip chip joints.

Table 4.3  Design ground rules assumed in this study.

MCM FCPBGA
Substrate layer stack-up 4-2-4
Thickness of MCM FCPBGA'’s substrate 1267 pm

Si/glass interposer FCPBGA

Layer count in RDL 2

TSV pitch 0.65 mm
Interposer size 27 mm x 27 mm
Substrate layer stack-up 1-2-1

Thickness of base organic substrate 970 um

Organic interposer FCPBGA

Layer stack-up 6+1

Solder joint pitch (interposer to substrate) 0.8 mm
Interposer size 33 mm x 33 mm
Substrate layer stack-up 1-2-1

Thickness of organic interposer 285 um
Thickness of base organic substrate 970 um
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422 FEM BHrE7NL

fEMTIZIX Ansys MechanicaleZffi ] L7, Fig. 451" T L9, Ty e A v F—R—VFOELH LA
L H =R LI DS D3 OO T r 27 u—2EE L T3D DO N—TEF L &R LT-. Fig.
45@a) ITRICT v T oA X —KR—VFIZEG L, ZTORAHERICA LV Z—R—F2HEET 55T
B, ZhEEEE & RS, Fig 4.5(0b) (381014 v X —R—V 2 FEIERICES L, TO%T v 752 A
HE =R —=PICHEAETOHATH Y, T E R L FES. Fig. 4.5(c) XF v 7 e A v 2 —AR—HEB X
OB IR 2 RS T 256 T, 2 a2 RIFEEGE & IESS. Fig. 4.5(a), (b) D 2 EOBS Z T+ 5
TeOIZENEIL 1 ERO#EGR O L 2 EHOBEAREOMEDOET VEER LTz, 2 R O#EARD
MR OET LTI, 1 EROBEGISIZIET v X —7 g VEHIE S ffiE s Lz, o) 77 Lo X
IREITT_TI80CE L, 25CITMEAZ DI &Y iR~ 1 XATZORAITH 220CTH 5723, L
ARG TG A ZEE L. 180CTD U 77 Ly AREZ WD & ERR & OMBIRE W Z & 23550
STHEY, ZZTEIDOYV 77 LRAREZRALE. 7V v 7 F v 7THAE/y RO NHEREIC)
MDISTIDNTIZIE, <V TF A7 — T O FiEE iz, 25 CREABOITA B E Xy K THE
DR DOERGENM% Fig. 4.6 \IR-T~vA 7 2T /VICHEA L, 23y R TFEEGRE OIS 04 % KD 7=,

Logic chip  Memory chip Si or glass interposer

X Solder joint
Bump /

\ )

Step-1 joining Step-1 joining Organic substrate

A 4 A 4

Underfill resin
e

Underfill apply Underfill apply

A 4 @
Step-2 joining Step-2 joining

(a) Two pass forward (b) Two pass reverse (c) One pass

Fig. 4.5 Three different process flows of chip and interposer joining for 2.5D package.
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Table 4.4(22.5D /Xy o — L OFENTIZ W T BRI 2 £ & O 72 2F O T 7 AT A & B THAIL,
F7 DRHEOEWVITRIZESRE CTH S, RDL TR Y A I K& Cu OEARME, A RT v 7 EIIE v
RT > 7k E Cu b DGR, 7 AMMEAD BV KT v 7@ EaTHITENTNORIEM & Cu ks
FOH T A & OBEFETH Y, ThEEARIZ AW TR L.

YV arv T ADA o —R—P T EHIC RDL ORCHE Z 7% 1 -k L 72 b, a7 L 2%
WHEREA X —R—=PIL 4 BN T AR LOEL RT v 7 E L, 5RO 3 BEH T AHEN
DOENRT v T e LT

Chip side Dielectric layers

Solder bump

Interposer side

Fig. 4.6 Micro model of a flip chip joint and dielectric layers.

Table 4.4  Material properties used in this analysis.

Elastic modulus (GPa) Poisson’s ratio CTE (ppm/°C)

Si 165 0.22 32
Glass-A 77 0.22 3.8
Glass-B 74 0.22 6.0
RDL” 28 0.24 17
Build-up layer™ 17 0.34 27
Build-up layer with

glass fiber™ 20 0.29 24
Core™™ 25 0.33 15
Underfill resin 9.5 0.35 25
Solder 27 0.35 25

:1 Composite property with Cu
**i Composite property with Cu and solder resist
) Composite property with Cu and glass fiber
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423 A U FZ—R—FOWBEHEIC L DIET - KD ~DEE

AHITIL Fig. 4.5(a) DNEFMEEGREOHEZMO B D . £loA v F—R—HFOEIL 200 pm & L7z
Table 4.5 IZARHICTWY EF 7T VOMAGDEEZE LD, V) a B, V¥ —R—FDOHHE
FERA~DOEREE y FITRFHRFTORE R 0.65 mm ¥y F L ED 7. TSV/TGV [ d#Eke/ N v ROE _LIChLE
TEHONRATH Y, BIRICESNLNTZ TSVITGY O Cu BEZFEH L, vV arv L 2fEON T
AZNENDA v H—R—H L Cu THAEFHEZ RO THIT 21T o 72, 72 V0 k& 0SB 20
2 TSV/TGV O E > F% 0.5 mm & 0.8 mm & A{fGE LEILEILD Cu B EDN LEEREE RO — 2%
BANL72. 0.65mm By FIZHAD L, 0.5mm By FOEAIE CuBEERE <, 0.65mm By FOHH
X Cu BEMELS R DETH .

FoT AV E—R—FEERDA LV F—R—F DRV

Fig 47 1XET N jOF v T A v Z—R—VEEHED Z FMOEMO a2 —ThbH. 12 ET /v
ThHHIZOKPOTHEBR /Ny 7 —VHRTON Yy NETHD. Ny r—UHRo 7 iz EEd e LT
RN & T o7, A v H—R—YorYyr7Fy TEEMOa—F—%KA FALL, AEVF T
BHMOa—F—%2 KA B ELE. YU arvBEOT T AL o F—RK—=PI3HRA > b A-B Rix 27
mm, A % —R—HIL33 mm THY, MCM FCPBGA IFHEEB D a—F—%2 A LB ELED
BT 425 mm & 72 5.

Fig. 4.8 & Fig. 49 1%, &MITETNLDORA L N A LKAV FBENENDOTF v T « f LV H—R—H
BO%D Z HROENTHD. v ar 2O T ADA 2 —KR—% (ET /L b—j) FTHA
FABLIOB TITRTEDEMTHY, XY OBRIZMETHL. ZNHTRTOETLTHRA Vb
B DEMLOIE ) BREV. ZHEA ¥ —R—F# & RDL OFFIRRBEDOI A~V Y FITLD DT,

Table 4.5  Model matrix in this analysis.

Model type Configuration Equivalent via pitch
a MCM FCPBGA -
b Si interposer 0.5 mm
c Si interposer 0.65 mm
d Si interposer 0.8 mm
e Glass-A interposer 0.5 mm
f Glass-A interposer 0.65 mm
Glass-A interposer 0.8 mm
h Glass-B interposer 0.5 mm
i Glass-B interposer 0.65 mm
Glass-B interposer 0.8 mm
k Organic interposer -
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Inter r
e; pose Corner point B

Corner point A
e

N,

Logic chip ZDOF point Memory chip
| EEEEERSS C IE— |
- A +
0

Fig. 4.7 Contour diagram of Z-direction displacement of an interposer and chips (model-j).

0.30
025 |
0.20 F
015 |
0.10 |
0.05 |
0.00
005 | b ¢ d e f g h [ j
-0.10 F
015 |
020 |
025 |
-0.30 |
-0.35

Z direction displacement (mm)

Model type
Fig. 4.8 Z-direction displacement at point A after flip chip joining.
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0.30
025 }
0.20 F
015
010 |
0.05
0.00
-0.05 | b ¢ d e f g h i j k
-0.10 F
-0.15 F
-0.20 F
-0.25 F
-0.30
-0.35

Z direction displacement (mm)

Model type

Fig. 4.9 Z-direction displacement at point B after flip chip joining.

AEYF TIPS WDTF v THEHT Y 70Dl EIICRROEMDBIND &2 Hivd. Fig
47 PO RTERND K2 IF v FHEH T U TIHMEREREER O T » 7 L A o 7 — R — I Em iRk
D RDL 3R EN 2 E L RV KV IT/NEL > TWD., ETE YT 05mm, 0.65mm, 0.8 mm T
ETEEDHET 1%REThololow, BT By FIZRDETNSWRET By TINS5,
TROLETEENEGL 78D EEMNNS K RDBEMAROHND. ZHITETHBENEMNIE A
B — R —FOEEHITRRE N K E <720 RDL & OBRRBEDO I A~ v FINSL 2 b7z B %
BND. ATAAAUF—FR—FT ) ar LW IERREZ RS, MERE )V a0 12 T
bHZEIZLY, YV ar A X =R TR 2 EOEMNE D B2 6ND. HTABA YV
B —R—L, PSRN T T XA LTI FE THIZRREA KR E {785 Z &H 5 RDL & OMMFZIRLRE
DIAZyTFORBIZLY, TFZA A A F—FR—F LV NS REfM LD EEZLND. MCM
FCPBGA (E7 /v a) 13F v 7 L AR OMIZ IR D I A~ v FIZLVIWEDKR Y L7 >THEY —
BRI THD. AV F v IV b RERe Yy I F o TOBHINTZZ Y TORA L N A TK
XRENNBEND. T2 TIE 425 mm ADOERDO 2 —F—DENTHDITOREREMEER>ThH.
HHA v H—FR—% (ET k) OHFEITHRA L N ATE, "M FB TARAODEN 2D, =
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Fig. 4.10 Contour diagrams of first pricipal stress in the low-k dielectric layer under corner bump point C for

(a) model-a, (b) model-c, (c) model-f and (d) model-i.
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Fig. 4.11 First pricipal stress in the low-k dielectric layer under corner bump point C.
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Fig. 4.12 Contour diagram of Z-direction displacement of an organic substrate, an interposer and chips
(model-c).
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Fig. 4.13 Z-direction displacement at point B after interposer joining.
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Fig. 4.14 Von Mises stress in volume average at the corner solder ball point D.
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Table 4.6  Model matrix in this analysis.

Model type Configuration Interposer thickness
a MCM FCPBGA -
b Si interposer 100 pm
c Si interposer 150 um
d Si interposer 200 um
e Glass-A interposer 100 pm
f Glass-A interposer 150 pm
Glass-A interposer 200 pm
Glass-B interposer 100 pm
i Glass-B interposer 150 pm
J Glass-B interposer 200 um
Interposer

/ . Corner point A \
: o

Logic chip ZDOF point Memory chip

T 202090 s e |
- A +

Fig. 4.15 Contour diagram of Z-direction displacement of an interposer and chips: sequence-a, step-1 joining,

model-h.
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Fig.4.16 Z-direction displacement at point A: sequence-a step-1 joining.
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Fig. 4.17 Contour diagram of Z-direction displacement of an interposer and chips: sequence-b, step-1 joining,

model-h.
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Fig. 4.18 Z-direction displacement at point B: sequence-b step-1 joining.
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Fig. 419 Contour diagram of Z-direction displacement of an organic substrate, an interposer and chips:

sequence-a model-b).
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Fig. 420 Contour diagram of Z-direction displacement of an organic substrate, an interposer and chips:

sequence-c¢ model-b).
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Fig. 421 Z-direction displacement at point A: sequence-a step-2 joining.
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Fig. 4.22 Z-direction displacement at point A: sequence-c.
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Fig. 4.23 Von Mises stress in volume average at the corner solder ball point C.
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Fig. 4.24 Contour diagrams of first principal stress in the dielectric layer under bump point B: (a) sequence-a

step-1 joining model-h, (b) sequence-b step-2 joining model-h, and (c) sequence-c model-h.
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Fig. 4.25 First principal stress in the dielectric layer under bump point B: sequence-a step-1 joining.
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Fig. 4.26 First principal stress in the dielectric layer under bump point B: sequence-b step-2 joining.
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Fig. 4.27 First principal stress in the dielectric layer under bump point B: sequence-c.
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A H =R —Y EEICIEFHESE RDL BB S, X RAVF v 7 e ¥ —R—F O FHITITTAR
TR L LTORY A I RBBRENTNWD EAGE LTz, FEBO{EZ Table 4.7 12777, My 7 F v
T U H =RV OELOEBELERRDL20, L0 HEIEROREEZEE LEZ., v arA
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NE—THDHELTLTWNDIEOA U H—R—F Ok E vy FH 100 pm TH D, HEAHTITITEE 10
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Fig. 4.28 3D-IC package configuration.
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Table 4.7 Dimensions of chips, interposer and package.

Chip size (top/middle) 7.5 mmx 7.5 mm

Interposer size 13.3 mm x 13.3 mm

Chip thickness (top) 100pm, 200 pm, 300 pm, 400 pm, 725 pm
Chip thickness (middle) 100 um

Polyimide thickness (middle chip, interposer) 5 um

Interposer thickness 50 um, 100 pm, 200 pm, 300 pm
RDL thickness (interposer) 10 pm

TSV pitch (middle) 50 um

TSV pitch (interposer) 100 pm

Bump pitch (top/middle) 50 pm

Bump diameter (top/middle) 30 pm

Bump height 10 pm

Joint height 10 pm

Package size 40 mm x 40 mm

Thickness of base organic substrate 760 um (400 um core)

Fig. 429 I Z Z CTHERR LT T AV Z2 T, Nor—VoxitEEa BB L C 14T 20z, 2 K
NF o TDTSVIEZTF v Fa—F—Ho6x 6 v ) v 5% (GE36 E)FMICET VL, Eoft

DER/IE TSV O Cu BT & 12 ANSYS Multiscale. Sim® D RE ALk & FIV TR U 7= B4 % 5
Liz. A4V —R—PFEZTXTOHEST TSV O Cu & OEEEIToT. A v F—R— & HHEFEAR
TRICEGIND LBEL, [ v —R—F L HEREREIIET VX =T VEFRELIZET VL L
7o. V77 Lo AREITRTOH & FERIC 180CITRRE L, MAME 2°C/s TEHEIRE TOMA L 721 DEL
Jix71% Ansys Mechanical® Ver. 14 CTi#4T L7-. Table 4.8 {22 Z CTHW M EMEEZ £ & 7. AL
SnAg (TATEDEE LIXATZN CuSn (@ BELEMb L7z 2 FEEZIY LiF7-. CnSn @ EHILEY
DRFPEITBER OBFZE 1100 DRLfiE & V=
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Fig. 4.29 Bird’s-eye view and cross-sectional view of FEM model with 3x middle chip stacks.

Table 4.8  Material properties used in this analysis.

Elastic modulus (GPa) Poisson’s ratio CTE (ppm/°C)
Si 165 0.22 32
RDL” 28 0.24 17
Cu 117 0.32 18
SnAg solder 27 0.35 25
CuSn IMC 110 0.30 16
Build-up layer ™ 17 0.34 27
Core™ 25 0.33 15
Underfill resin 9.5 0.35 25

?) Cornp051te property with Cu
o Comp051te property with Cu and solder resist
) Composite property with Cu and glass fiber

Table 4.9 ([ZAMIE CTHNT AT > T2 BT NV OMBGDEEZTT. by T F v T OELOEEINL S FiE
DEZTHRZ. I FAVF v TOBBROEEI N F o7, 2F v, 3F v 7O3IFETHS, Th
ZE X, 2x, 3x EEFLT 5. A OBMAOEE DR TIL, ISR~ X 91T SnAg 1TATZ E CuSn
EGRBREEAEHO 2 HEAZRY B, ZoROMAGDEE 4 O V¥ — KR —FEL L HAED
B bORETET IV ERD, TETAXATOELO n 121, 2, 3, 4 DFEFEEV YT, ThFhT
50 um, 100 um, 200 um, 300 um DA > Z —RN—FRELEZWHIT 5. Fig. 430124 X —R—HFFEAH 50
pm DA DAE T N O~FEDHAE HOE AR TR LT,
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Table 4.9 Model matrix (n=1: 50-pm-thick interposer, n=2: 100-pum-thick interposer, n=3: 200-pm-thick

interposer and n=4: 300-um-thick interposer).

Model type Top chip THK (pm) Middle chip stack Joint metallurgy
An 100 1x SnAg
Bn 200 1x SnAg
Cn 300 Ix SnAg
Dn 400 Ix SnAg
En 725 1x SnAg
Fn 200 Ix CuSn
Gn 200 2x SnAg
Hn 200 2x CuSn
In 200 3x SnAg
In 200 3x CuSn

. 725 um
. . Siinterposer
Middle chip

Top chip
100 pm

100 ym

- I
B1/F1 E1 G1/H1 11/J1

Organic substrate

Fig. 4.30 Schematic of dimensional variations of 3D-IC package assumed in this study (in case of 50-um-thick

interposer).
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Fig. 4.31 Contour diagram of von Mises stress at Cu pillar bump, solder joint, Cu land and TSV (model I1).
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Fig. 432 Z-direction displacement at the top chip corner and von Mises stress at the chip corner joint with

variable top chip thickness with 50-pm-thick interposer (Model A1, B1, C1, D1 and E1).
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Fig. 433 Z-direction displacement at top chip corner and von Mises stress at chip corner joint with variable

top chip thickness with 100-um-thick interposer (Model A2, B2, C2, D2 and E2).
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Fig. 4.34 Z-direction displacement at top chip corner and von Mises stress at chip corner joint with variable

top chip thickness with 200-pum-thick interposer (Model A3, B3, C3, D3 and E3).
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Fig. 435 Z-direction displacement at top chip corner and von Mises stress at chip corner joint with variable

top chip thickness with 300-um-thick interposer (Model A4, B4, C4, D4 and E4).

86



> FIEHM 200 pm OFETH/NE 72 5. Fig. 4.33, Fig. 434, Fig. 435 179 L 924 v H—R—HJL
A 100 pm, 200 pm, 300 pm L KTDE by 7F o ORI LT 2, HiFicEd 458
RIZTRTOA X =R —FRATRERIZD. ZHUL Ny 7Ty T OELDBET LRIEDN G < 78D
O THDHEEZLND. AV F—R—FELD 100 um, 200 um, 300 pum OHFAIZIEI RALF v 7L
A =R =Y OHESHOISINIHEFNIENL, Ny T F v T e v Z—HR—FDELN L HIZ 100
um O EERNWTC Ry 7 F v 7 eI FAF v TRIOBESHOI LD bEWEli L 72 5. FioA
—R—=POELNPETEI NLF v TV Z—R—FMOBESHOIENIFELIARL, vy 7T
> FJEAHD 100 pm DIGE TIHEA » H —R—HEHD 100 pm 76 300 pm (22T 2 & EDIEIIEK
S54KEL D, by T F v T eI NAF o TROBESEHOIEINL, A F—R—VDERIZE ST
TNV F T e A —R—PROBEEMDOIS NI ERERENMITIR LN, My TTF v TER
3725 um DA TA » HZ—R—PEHZH 50 um 7> 5 300 um (2 LT 25 & ZDIEINTHKI 31% 9 5.
A A —R—PELH 100 pm, 200 pm, 300 um OLEIZIL b v T F v 7 &I KAF v TROBEAEHO
JETNE S > 7 F y TR 100 pm ~ 725 pm OFH TH/MEZ R ZOM/MEE, FyTF T IR
NF T e f B —=KR=PD 3 @EET Ny T TF T oA v F—R—PFOELN T DB
TWD., A F—FR—=FRRENEL I FLTF v T e U F—R—FHOBEEHDICTINEL b0,
Ny 7F o7 EI AT v THBIOI RATF v T A U F—R—FHE O OB DOIE 1% & b
ARSI 5121%, & 2 TRl L725tE D TldA v —R—F—EHM 100 pm T v 7F v T ORI
% 100 pm DALABDENREL 2 D.

433 I MAVFyTOREE - A v F—R—FDELE L OESEHOBBEEIC L 2BEHISS) - F
v TR ~DEEE

ZZTIEET/V Bn, Fn, Gn, Hn, In, Jn OFERENS I FVF v T OREEE, 1 ¥ —F—FDE
FHF L OEA TR OBEWAFIEIC L 2 8A IS - T TR0 ~DO %5539 5. Fig. 436, Fig. 4.37,
Fig. 4.38, Fig. 439 132N A > ¥ —AR—FFE 50 pm, 100 pm, 200 um, 300 um T, I RAF v/
OFEE % 1x, 2x, 3x EBLERTHAED Ny T F v T a—F—OEN, Fy T F v LI RALF
YT OEEEMD T+« I—BRILS, I RATF T e U Z—R—FOEEGMOT+ + I—EX
JSNER LTI T 7 ThD. X NAVFy 7ORBEEGHET L BMITHEFTH D L, 1 o F—R—%Nn
B 2% L, EORBETOEMIT/NEL 0D, SEEHENIATEDOLE LeBREILEYDSE TENM
WCRERETA LN, ZHITESHOIESI 10 pm EIEFITHEW O EHRINDS., Py T F v
TEIRVFyTOBEGHMO T+« I—BRIGNE, A F—HR—FDELN 50 pm OBEITITFE
JEEOBEME L HIZh TN L, 4 v F—R—FDELN 100 um OHAIITRERIC X 59713
B, A A —R—=FDEZRH 200 pm & 300 pm OBAIITFEBEL ORI & & B HNT D AE A AR
bD. ETEGHPIIALEOELE L SREILAEYOSGE COEIMRARE L OTIE . I FL
Fo A U E—R—FOERMO T+ « I—BRILIE, FyTF 7L I NVF v FOBEARH
D74« I—BRGNLY BRIV, ZOEFA VF—FR—FORELPIET L IEFICHEIC D,
ZHUTED by TF T DR EEALS TG EOERLEFERETHY, X —FK—W Licfish

87



35

30
o
O —~
Z E 25
© =
S o 20
c g
85 15
S o
g 2
@25 10
a)
5
0

Fig. 4.36  Z-direction displacement at top chip corner and von Mises stress at chip corner joint
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Fig. 437 Z-direction displacement at top chip corner and von Mises stress at chip corner joint
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Fig. 4.38 Z-direction displacement at top chip corner and von Mises stress at chip corner joint
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middle chip stack and different solder joint metallurgy with 200-pum-thick interposer (Model B3, F3,

G3, H3, 13 and J3).
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Fig. 4.40 Von Mises stress at variable joining interface of 3x middle chip stacks with SnAg joint (Model 11, 12,
I3 and 14).
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Fig. 441 Von Mises stress at variable joining interface of 3x middle chip stacks with CuSn joint (Model J1, J2,
J3 and J4).
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