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Fast electron generation in the presence of coronal plasma in front of a solid target (typically referred to
as preformed plasma) in laser-matter interaction in the intensity range of 1019–1021 W/cm2 is studied in a
one-dimensional slab approximation with particle-in-cell (PIC) simulations. Three different preformed plasma
density scale lengths of 1, 5, and 15 μm are considered. We report an increase in both mean and maximum energy of
generated fast electrons with an increase in the preformed plasma scale length (in the range 1–15 μm). The heating
of plasma electrons is predominantly due to their stochastic motion in counterpropagating electromagnetic (EM)
waves (incident and reflected waves) and the presence of a longitudinal electric field produced self-consistently
inside the preformed plasma. The synergetic effects of this longitudinal electric field and EM waves responsible
for the efficient preformed plasma electrons heating are discussed.
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I. INTRODUCTION

Laser-matter interaction at relativistic intensities
(Ilaser > 1018 W/cm2) has been a topic of immense
interest and extensive investigation, both experimentally
and theoretically, due to its significant effects on a number
of applications, including fast ignition, [1] electron-ion
acceleration, [2,3] electron-positron pair production, [4] etc.
One topic that has attracted considerable attention is the role
of preformed plasma, produced by intrinsic laser prepulse
(i.e., nanosecond pedestal) on laser-matter interactions and its
subsequent effect on fast electron generation and transport.
This preformed plasma density scale length could be as high
as 15–20 μm (in planar targets) for a typical energy contrast
of 10−5 between the prepulse and energetic main pulses of
energies 10–100 kJ. Even in the case of a laser system with a
high-energy contrast ratio (∼10−8), considerable plasma can
be expected to build up in front of a dense target due to plasma
expansion for a relatively long-pulse (∼20 ps), high-intensity,
high-power laser, especially in the relevant fast ignition
experiments. Therefore, the interaction of the short-pulse laser
with preformed plasma is inevitable in laser-solid interaction
experiments, particularly with 1-μm lasers.

The problem of the fast electron generation due to the
relativistic intensity laser absorption in such preformed plasma
has been addressed in a number of experimental and theoretical
studies. Typically, laser-plasma interaction (LPI) generated
fast electrons are characterized by the slope temperature Thot of
their energy spectrum. The two scalings most widely used for
the mean energies (Thot) of fast electrons are the experimentally
determined Beg’s scaling [5] or Wilks’ numerically modeled
ponderomotive scaling [6]. These scalings do not address the
dependence of Thot on finite-scale-length preformed plasma in
front of the target. However, the recent experiments [7,8] and
numerical modeling [9–11] have suggested that the presence
of preformed plasma can significantly affect the fast electron
energy distribution. In general, these studies have reported an
increase in the fast electrons’ mean energy with increasing
preformed plasma scale length. Similar trends were also

observed in the particle-in-cell (PIC) simulations [12,13]
performed for the intensities of the order of 1019 W/cm2.
However, the physics of such increases in the fast electron
energy with increasing preformed plasma is still not well
understood. Also, to the best of our knowledge, preformed
plasma scale length effects on fast electron generation over
the wide intensity range of 1019–1021 W/cm2 have not been
systematically studied.

In the present work, we address this problem with a
systematic numerical study of LPI at relativistic intensities
achievable with present day laser technology (i.e., from 1019

to 1021 W/cm2) for various preformed plasma scale lengths
typically expected in the experiments (i.e., from 1 to 15 μm).
We have studied the dynamics of fast electron generation
due to the interaction of a short pulse laser with preformed
plasma in a one-dimensional (1D) slab approximation with 1D
three-velocity (1D3V) PIC simulations for three preformed
plasma scale lengths of 1, 5, and 15 μm. The choice of a
simplified 1D approximation, because it is computationally
cheap, allows us to simulate the LPI over a wide range of
preformed plasma scale lengths and laser intensities. The
simulations are performed with both mobile and immobile
ion assumption. In the majority of our simulations, the ions
are considered to be immobile in order to keep the interaction
independent of solid target material. The effect of ion mobility
and ponderomotive steepening of the plasma density profile [9]
is studied by performing separate simulations for the case of
fully ionized aluminum. The multidimensional effects of LPI
such as laser self-focusing [14] and filamentation [15] may
play a role in the experiments. However, these effects are
neglected in the present work for simplicity.

This paper is arranged as follows: The details of numerical
modeling and simulation results are given in Sec. II. The
electron dynamics caused by the synergetic effects of the
electromagnetic (EM) waves and longitudinal electric field are
discussed in Secs. III and IV with the help of PIC simulations.
Section V addresses the effect of ion mobility on fast electron
production. Final conclusions are given in Sec. VI.
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II. THE RESULTS OF PIC MODELING WITH
IMMOBILE IONS

The simulations are performed with the PIC code, Large
Scale Plasma (LSP) [16,17], used in 1D3V phase space.
LSP, being an implicit PIC code, allows the use of the grid
resolution greater than the Debye length without causing
excess numerical heating. This feature makes it suitable for
simulating laser-solid interactions at relativistic intensities. For
example, the Debye length for plasma at a density of 1023 cm−3

and 5 keV electron temperature is ∼1.6×10−3 μm. LSP relaxes
the stringent computational requirement of resolving such
small spatial scales. A spatial resolution of 80 cells per laser
wavelength (=1 μm) with 300 particles per cell is used in the
simulations. The cell size, �x = 1.25×10−2 μm, ensures that
the collisionless skin depth and lowest preplasma scale length
(1 μm) are well resolved. The time step c�t = 10−3 μm is
chosen to satisfy the Courant stability criterion [17]. The initial
plasma density profile is taken as [11]

nex = Znsolid

1 + exp[−2(x − x0)/Lp]
, (1)

where Lp denotes the preformed plasma scale length, Z is the
ion charge state, and nsolid is the solid ion density. Simulations
are run with preformed plasma scale lengths of 1, 5, and 15 μm.
Fully ionized aluminum plasma with an initial temperature of
5 keV is used in the simulations. The selection of aluminum
would only affect mobile ion simulation results through its
ion inertia. Of course, the implicit assumption here is that
the slow ion motion can be neglected on the time scales of
fast motion of electrons in the laser field and ion motion
would affect the LPI only through the modification of the
preformed plasma profile. The linearly polarized laser enters
the simulation box from the left boundary (Fig. 1) with the
laser pulse reaching maximum intensity in ten laser cycles
(i.e., 33 fs). The simulations are run with three different laser
intensities of 1019, 1020, and 1021 W/cm2. The direction of
laser propagation is defined as the X direction, whereas the
laser electric and magnetic fields are pointed in the Z and
Y directions, respectively. The fast electron energy spectrum
is obtained by analyzing the electrons behind the relativistic
critical density surface (inside the counting box B as shown
by dotted lines in Fig. 1). Figure 1(b) shows the temporal
variation of Poynting flux through plane AA′ for the case of
I = 1020 W/cm2. The quasisteady state of the simulation is
defined as the time when the laser net forward energy flux
becomes approximately constant and equal to the particle
energy flux entering the solid target. The estimate of the
fast electrons’ mean energy based on electron distribution
functions is obtained when this quasisteady state is reached.
For example, in Fig. 1(b), a quasisteady state is reached after
∼400 fs. Fast electron refluxing [18] from the back of the target
is avoided by choosing longer target dimensions. Therefore,
results presented in this paper are valid under the thick target
approximation with no refluxing of electrons from a foil’s
rear surface into the LPI region. Such electron refluxing could
significantly modify these simulations [18].

One issue that is critically important in high-intensity laser-
matter interaction is to correctly characterize the fast electrons’
energy spectrum. In general, the most important quantity of

0 20 40 60 80
10

18

10
20

10
22

10
24

x(μ m)

P
la

sm
a 

d
en

si
ty

 (
cm

−3
)

0 200 400
0

2

4

6

8

10

x 10
19

Time (fs)

< 
S

 >
 (

W
/c

m
2 )

A’

A

B

(a) (b)

Laser

γ n
c

FIG. 1. (Color online) Schematic of simulation setup. The lin-
early polarized laser enters the simulation box from the left boundary
and travels in a +X direction. The laser intensity in this simulation is
1020 W/cm2 whereas preformed plasma scale length is 5 μm. The fast
electrons generated by laser-plasma interaction are counted inside the
solid inbox B for the analysis of electron energy distribution. Rela-
tivistic critical density surface is shown by dotted (red) lines in (a).
The temporal variation of laser forward energy flux through plain
AA′ is shown in (b).

interest is the mean energy (Emean) of generated fast electrons
going into the target. Typically this quantity is determined
by fitting the electron distribution function, f(E) [shown
in Fig. 2(a)] by a function of the form A0 exp(−E/Thot),
where Thot is called the slope temperature [11]. The electron
distribution function f(E) is normalized as

n =
∫ ∞

0
f (E) dE, (2)

where n is the electron density and E is the kinetic energy
of an electron. But this direct correlation between Emean

and Thot breaks down when the electron energy spectrum is
non-Maxwellian, which is usually the case with high-intensity
laser-matter interactions. Therefore, the mean energy of fast
electrons obtained from this method is very sensitive to the
energy range chosen to fit the spectrum, especially in the
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FIG. 2. (Color online) (a) Electron energy distribution inside the
target for laser intensity of 1020 W/cm2 and 15 μm preplasma scale
length. (b) Cumulative heat flux carried by the electrons inside the
target. The mean energy Emean is defined as the energy for which half
of the total heat flux qT is carried by hotter electrons and the other
half by colder electrons.
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low-energy part of the spectrum [11]. The more meaningful
estimate of the fast electron mean energy, especially for fast
ignition [1] studies, can be made based on the electron energy
flux distribution function or heat flux w(E) defined in the
following way:

q (E) =
∫ E

0
w(E) dE =

∫ E

0
f (E)EVx dE, (3)

where q(E) is the heat flux carried along the laser propagation
direction by the electrons with energies less than E, and Vx is
the electron velocity in the laser propagation direction. Thus,
the total heat flux qT carried by the electrons inside the target
is given by

qT =
∫ ∞

0
w(E) dE =

∫ ∞

0
f (E)EVx dE. (4)

Now, we define the mean energy Emean of the fast electron
spectrum as the energy at which half of the total electron heat
flux (0.5qT ) is captured. Figure 2(b) illustrates the method of
calculating the mean energy used in this paper. This method
gives us a direct quantitative estimate of the energy at which
the incident laser energy is converted into the fast electron
energy without the introduction of any arbitrary lower-energy
cutoff, which was used in Ref. [11].

The fast electron energy spectra obtained for the three
preformed plasma scale lengths (Lp = 1, 5, and 15 μm)
at three laser intensities (I = 1019, 1020, and 1021 W/cm2)
are analyzed by the above-mentioned method. Figure 3(a)
shows the fast electron energy spectra at the laser intensity
of 1020 W/cm2. The dependence of the mean electron energy
on laser intensity and preformed plasma scale length is plotted
in Fig. 3(b). It is clear that the longer-scale-length preformed
plasma results in the higher mean energy of fast electrons, in
agreement with earlier published experimental and numerical
work [7–10]. For the long preformed plasma cases (i.e.,
5 and 15 μm), the Emean obtained is higher than the laser
ponderomotive energy Ep [6] for the corresponding laser
intensity. In addition, we also observe that the maximum
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FIG. 3. (Color online) (a) Electron energy distribution inside the
target for three preformed plasma scale lengths for a laser intensity
of 1020 W/cm2. (b) The mean energy of electrons obtained by the
method described in Fig. 2(b) for various preformed plasma scale
lengths and intensities. The increase in both the mean and maximum
energy with increasing preformed plasma scale lengths is evident
from these plots. The ponderomotive energies corresponding to laser
intensities 1019, 1020, and 1021 W/cm2 are 0.9, 3.8, and 13 MeV,
respectively.

energy of fast electrons in the spectrum (Emax) increases with
an increase in the preformed plasma scale length. For example,
for the laser intensity of 1020 W/cm2, the mean energies for 1,
5, and 15 μm cases are ∼3.1, 6.3, and 14 MeV, respectively,
whereas the ponderomotive energy at this intensity is 3.8 MeV.
The corresponding maximum energies for these scale lengths
are 25, 75, and 100 MeV, respectively.

Finally, we performed the χ2 minimum fitting on the mean
energies obtained for the various intensities and preformed
plasma scale lengths with a fitting function of the form Emean =
κIα

LL
β
p, where IL and Lp are the laser intensity normalized by

1.37×1018 W/cm2 and the preformed plasma scale length
in μm, respectively. This fitting gives Emean as

Emean (MeV) = (0.72 ± 0.13) (IL)0.36±0.02 (LP )0.5±0.06 . (5)

Note that the above fitting is obtained for the laser intensity
range of 1019–1021 W/cm2 and preformed plasma scale length
range of 1–15 μm.

Thus, we find that both the mean and the maximum energies
of the generated fast electrons increase with an increase in
the preformed plasma scale length. In order to understand
the underlying physics of the above-mentioned results, we
have analyzed the dynamics of the electrons as the laser starts
interacting with the preformed plasma. In the next section, we
discuss the dynamics in detail.

III. THE DYNAMICS OF ELECTRONS IN LASER
INTERACTION WITH PREFORMED PLASMA

(IMMOBILE IONS)

As described above, the mean electron energy and spectra
are affected by the preformed plasma scale lengths. Now,
the key question is: What is the mechanism of the plasma
electrons’ heating which leads to such varying spectra with
preformed plasma scale lengths? In this section, we will
address this question.

The essential feature of electron heating by an EM wave
is the phase randomization of electrons in an oscillating field
of the wave. This is due to the fact that a single electron
oscillating coherently with the electric field of a plane wave
gains zero cycle averaged energy since the electron energy
gain in one half cycle is exactly equal to the energy loss in the
next half cycle. This is generally referred to as the Woodward-
Lawson theorem [19]. The various causes of this breaking of
phase coherence in LPIs are electron-ion collisions [20], laser
ponderomotive force (V × B force) [21], counterpropagating
EM waves [22,23], etc. Especially for the high-intensity short
pulse lasers, the J × B heating [21] and stochastic heating
[22,23] by counterpropagating EM waves are considered to
be the dominant heating mechanisms. We will investigate the
electron heating process by analyzing the electron phase-space
(Px vs X) dynamics at various stages of the interaction.

Figure 4 describes the dynamics of laser interaction with
preformed plasma during the initial stages for the case of a laser
intensity of 1020 W/cm2 and a preformed plasma scale length
of 5 μm. The phase-space density D(X,Px) shown in Figs. 4(a),
4(c), and 4(e) gives a number proportional to the number of
electrons found between X and X+dX having longitudinal
momentum in the range (Px,Px + dPx). The normalized
electrostatic potential due to the longitudinal electric field Ex
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FIG. 4. (Color online) Laser interaction with preformed plasma during initial stages of laser propagation through underdense plasma.
(a), (c), and (e) The phase-space density (plotted on color scale) and electrostatic potential due to the longitudinal electric field (solid red
line) at times 133.4, 166.8, and 200 fs, respectively. Corresponding electron and ion plasma densities and laser electric fields are plotted
in (b), (d), and (f), respectively. Electron phase-space mixing by counterpropagating EM waves can be seen from (e) and (f). Note that
mixing occurs only in the region of incident and reflected waves (from 30 to 50 μm). The laser propagates up to 48 μm, as can be seen
from (f).

is also shown in the red curve. The electron momentum is
plotted in the usual dimensionless units of γ β. Figures 4(b),
4(d), and 4(f) are the electron (red line) and ion (blue line)
densities and the laser electric field Ez corresponding to
the times shown in Figs. 4(a), 4(c), and 4(e), respectively. In
the very early stages of laser propagation through underdense
preformed plasma [Figs. 4(a) and 4(b)], all the electrons are
swept away in the forward direction (+X direction) by the
laser ponderomotive force, leaving behind immobile ions.
This forward electron acceleration by the ponderomotive force
is evident from 2ω electron oscillations. The electrostatic
potential due to charge separation in the underdense plasma
tries to pull the electrons in the backward direction. As the laser
propagates further toward a critical density surface [Figs. 4(c)
and 4(d)], the electrons experience a stronger backward pull
due to increasing electrostatic potential. Negative values of
momentum in Fig. 4(c) illustrate the backward movement of
some of the electrons. Now, the reversal of longitudinal electric
field polarity (in the −X direction) in response to this backward
movement of electrons can be seen from the potential curve in
Fig. 4(c). Finally, we observe the strong phase-space mixing
when part of the incident light is reflected back from the
relativistic critical density (γoscnc) surface which is present
at ∼48 μm for this simulation [Figs. 4(e) and 4(f)]. Here, γosc

for laser vector potential a0 is defined as γosc = √
1 + a2

0/2.
The phase-space mixing occurs in the region (between 30 and
50 μm) where we have two counterpropagating EM waves
(incident and reflected laser light). The increase in the electron
energy with the disappearance of distinct 2ω oscillations in

this region clearly demonstrates the stochastic electron heating
[22,23] by these two counterpropagating waves. We also
observe strong nonlinear electrostatic plasma waves produced
by the laser ponderomotive force, travelling predominantly
down the density gradient (against the direction of incident
laser propagation, i.e., −X direction) as in the resonance
absorption. But the contribution of these waves to electron
heating via wave-particle interactions such as Landau damping
is found to be insignificant. The peak value of electrostatic
potential of these plasma waves is much smaller than the actual
energy gain by the electrons seen in the simulations. Therefore,
for the laser intensities simulated in this paper, we find that
the stochastic heating by counterpropagating EM waves is the
dominant mechanism.

As the electrons’ heating continues, the stochastic motion of
electrons in counterpropagating EM waves leads to the mixing
of phase-space fluid. This results in the homogenization of
phase-space density in the region of mixing. This physical
picture can be easily seen in the later phase-space density plots
shown in Fig. 5. The colors in these plots show the local
phase-space density. Also, this representation of phase-space
density clearly indicates how the electrons’ energy spectrum
varies with spatial coordinates (e.g., the flow of phase-space
fluid). Thus, from Fig. 5 we can infer that the very high-
energy tail (shown by the blue color) of the electron distribution
inside the target is essentially due to the electrons in the low-
density region of the preformed plasma. Here, we would like to
emphasize the fact that this phase-space fluid trajectory should
not be mistaken as the trajectory of an individual electron
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2). The increase in the maximum value of the
potential and corresponding decrease in the electron density escaping
toward the low-density side demonstrates how plasma confines these
electrons.

in that region of phase space. This is especially true in the
phase-space mixing region.

The electron heating near the relativistic critical density
surface results in an increase in electron pressure (neTe)
in the region of laser absorption. The pressure gradient causes
the heated plasma expansion from the absorption region.
The electrostatic potential well (solid red line in Fig. 5)
self-consistently appears in response to the plasma electrons’
expansion from this region. In other words, the plasma
electrons’ heating causes the setting up of this longitudinal
electrostatic potential well to maintain quasineutrality. The
progressive increase in the maximum value of potential [from
Fig. 5(a) to 5(c)] and a corresponding decrease in the electrons
escaping to the lower density side (from 0 to 30 μm, in
Fig. 5) demonstrates how plasma potential changes in order
to maintain quasineutrality. It should be noted that this
potential also brings the cold, fresh electrons from the solid
target into the interaction region. The cold electrons finally
enter the target as heated electrons. This explains how the
quasisteady state is achieved in these simulations (typically
in 200–400 fs depending upon the preformed plasma scale
length).

With this picture of the preformed plasma electrons’ heating
in mind, we now try to investigate the differences in the
electron energy spectra inside the target for different preformed
plasma scale lengths by comparing the quasisteady-state
phase-space density plots of different scale lengths (5 and
15 μm) for the same laser intensity of 1020 W/cm2 (Fig. 6).
Note that the relativistic critical density surface is defined
as X = 0 in these figures. Clearly, we see an extension of
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FIG. 6. (Color online) Comparison of phase-space plots for
(a) 5 μm and (b) 15 μm preformed plasma scale lengths (laser inten-
sity= 1 × 1020 W/cm2). Note the extension of the phase-space mixing
region (0 to −45 μm) for the case of 15-μm preformed plasma with
higher energies compared to 5-μm preplasma. Also, the electrostatic
potential well developed in the preformed plasma due to the electron
heating is wider for long-scale-length preformed plasma.

the phase mixing region in the case of a shallower density
profile (Lp = 15 μm) with a wider potential well due to the
reduced longitudinal electric field. Here, the electric field is
weakened because of the long scale length of the preformed
plasma (Ex ∼ Th/Lp). The increase in electron energy for the
same phase-space density [shown by the same colors found in
Figs. 6(a) and 6(b)] indicates the increase in mean energy in
the case of long-scale-length preformed plasma compared to
the short-scale-length preformed plasma. Also, the maximum
energy of electrons seen inside the target is greater for
the 15-μm scale length case. Thus, these observations are
consistent with the results reported in Sec. II. From this we
conclude that the extension of the phase-space mixing region
in the presence of a wider potential well leads to higher mean
and maximum fast electron energies for the case of long-scale
preformed plasma. In addition, we observe that the mean
energies for these two cases are higher than the ponderomotive
energy Ep at the given laser intensity (Fig. 3). For example,
for laser intensity 1020 W/cm2, Ep is 3.8 MeV whereas mean
energies for 5 and 15 μm are 6.37 and 17.25 MeV, respectively.
These results indicate that the electron heating process is
strongly influenced by this longitudinal electrostatic potential
well.

In order to investigate the exact physics behind this increase
in electron energies in the presence of long-scale preformed
plasma with mean energies greater than ponderomotive energy,
we performed a separate set of simulations with counter-
propagating EM waves with and without the electrostatic
potential well. Note that the counterpropagating EM waves
and electrostatic potential well associated with the expansion
of heated plasma electrons are found to be essential features of
the LPI for all the preformed plasma scale lengths. The width
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FIG. 7. (Color online) Single electron phase-space trajectories with counterpropagating EM waves and longitudinal electric field.
(a) Stochastic electron motion without longitudinal electric field. (b) The electron motion in the presence of a constant longitudinal electric
field. The electron, once detrapped due to the constant push of electric field, continues to move with the forward-going wave. This is defined
as locking with the forward wave. (c), (d), (e) The electron dynamics in the presence of quadratic potential well (shown by blue line) for the
electron initial positions of 0, −20, and −30, respectively. The electron, starting higher up in the potential (e), gains more energy due to locking
with either of the waves.

and the depth of this well are decided by various factors such as
plasma heating, preformed plasma scale length, ion mobility
(this will be demonstrated in Sec. V), etc. The numerical setup,
results, and physics of electron heating in the presence of a
potential well are discussed in the next section.

IV. THE SYNERGETIC EFFECTS OF
COUNTERPROPAGATING EM WAVES AND

ELECTROSTATIC POTENTIAL WELL ON THE
DYNAMIC OF ELECTRONS

The phase-space dynamics in counterpropagating EM
waves with or without the presence of an electrostatic potential
well can be clearly understood by first analyzing the motion
of a single electron in such a field. We have studied such
motion by numerically solving the 1D3V electron equation
of motion with the standard Boris algorithm [24]. Figure 7
shows the phase-space trajectories of a single electron under
various conditions. The intensity of both the counterpropa-
gating linearly polarized EM waves is taken as 1020 W/cm2.
Figure 7(a) shows the trajectory of the electron in the absence
of a longitudinal electric field. The characteristic features of
electron motion, consisting of trapping (shrinking of phase-
space area, i.e., adiabatic invariant) and detrapping of the
electron are clearly evident from this figure. The maximum
normalized longitudinal momentum seen is ∼30. Next, in
Fig. 7(b), we introduce a constant longitudinal electric field
(i.e., linearly increasing the normalized potential represented
by the blue line) in addition to these counterpropagating EM
waves. Because of the constant electric field, which pushes the
electron continuously in +X direction in this case, the phase
slippage of the electron with respect to the forward propagating

wave is reduced and therefore the electron starts moving with
the forward propagating (+X) EM wave. We define this process
as electron locking with the forward wave. Note that the energy
gain of the electron is much greater than the electrostatic
potential. Thus, the longitudinal electric field helps in reducing
the phase slippage of an electron with respect to one of the
EM waves, thereby causing the nonlinear increase in energy
of the electron due to locking with that wave. In the next
three cases [Figs. 7(c)–7(e)], we analyze electron motion for
different initial positions (at t = 0) in a quadratic electrostatic
potential well (shown by the blue line). These cases mimic the
situations in the actual simulations described in the previous
section. In each of these cases the electron starts from rest
with the initial positions [X = 0, −20, –30 μm for Figs. 7(c),
7(d), and 7(e), respectively]. From Figs. 7(c)–7(e), we see that
the electron, once detrapped, oscillates in the potential well
by getting locked alternately with the forward and backward
EM wave. During this process the electron also gains energy
continuously, thereby climbing up the potential during each
cycle of forward and backward motion. This feature is clear
from Fig. 7(e) where the electron starts from X = −30 μm,
but after one cycle of oscillation climbs up in the potential
to X = −35 μm. Also, note the increase in the maximum
energy of the electron, as it starts from a region of stronger
electric field. The stronger electric field acts as a moderator in
reducing the phase slip of the electron with respect to the EM
wave, thereby causing higher acceleration due to increased
locking distance with either wave. This is consistent with
the results in actual simulations where the maximum energy
component of the spectrum inside the target comes from the
electrons accelerated from the underdense plasma, which is
also a region of higher electrostatic potential (Fig. 6). Also,
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section.

large preformed plasma allows longer acceleration length to
these electrons locked with the forward wave, thereby resulting
in an increase in the maximum energy. Keeping the single
particle dynamics in mind, it is now easy to interpret the results
of the PIC simulations performed to explain plasma heating
in two counterpropagating EM waves with and without an
electrostatic potential well.

The numerical setup and results demonstrating plasma
heating due to counterpropagating EM waves in a potential
well (at steady state) are shown in Fig. 8. The two linearly
polarized EM waves with equal intensity of 1020 W/cm2

enter the simulation box from the left and right boundaries
[Fig. 8(a)]. The plasma density in these simulations is
1016 cm−3. This extremely low value of plasma density
ensures that the self-consistently excited longitudinal electric
fields (including plasma waves) are negligible, and plasma
heating is entirely due to the counterpropagating EM waves
and the externally imposed electrostatic potential well. As
can be seen from Fig. 8(a), simulations are run for two
different potentials [potential A (red curve) and potential B
(blue curve)]. We also performed a simulation without the
potential well for comparison. The phase-space densities for
the cases without potential [Fig. 8(b)] and with potential A
[Fig. 8(c)] clearly show the increase in electron energies in the
presence of the potential well. Note the different PX range for
the Y axis in Figs. 8(b) and 8(c). The comparison of electron
momentum distribution is given in Fig. 8(d). For the no-
electrostatic-potential case [black curve in Fig. 8(d)], we find
that the full width of the distribution is approximately twice the
normalized ponderomotive potential (∼3.8 MeV). The phase-
space trajectory of a single electron in counterpropagating EM
waves, shown in Fig. 7(a), is consistent with the phase-space

density plot of Fig. 8(b). Also, the maximum energy obtained
(γ ∼ 30) is consistent in both these simulations. On the other
hand, the simulations with a potential well show a larger
width of the momentum distribution function [blue and red
curve in Fig. 8(d)], indicating a higher mean energy. Also,
note that increasing the width and depth of the potential well
results in an increase in the electron mean energies. The
maximum energy with a potential well is also significantly
larger than the case without a potential well. Both these
results are consistent with the actual preformed plasma scale
length simulation results reported in the previous section. The
concentric islandlike structures with increasing width along
both Px and X axes seen in the phase-space density plot
[Fig. 8(c)] are due to the increase in energy gain by an electron
due to the larger locking distance with either of the waves
in the presence of a longitudinal electric field. Again, this
trend is clear from the single particle dynamics explained in
Figs. 7(c)–7(e).

Thus we can explain the plasma heating mechanism for the
counterpropagating EM waves in the presence of an electro-
static potential well. The higher mean and maximum energies
seen with the longer preformed plasma scale length can also be
explained with this heating mechanism. The larger potential
well in the case of long-scale-length preformed plasma results
in the extension of the phase-space mixing region, thereby
causing an increase in the mean energy with an increase in
the preformed plasma scale length. The higher maximum
energy is essentially due to the longer locking distance with
the forward-going wave. The longitudinal electric field plays
the role of moderator in locking an electron with one of the EM
waves by reducing the phase slippage of the electron with that
wave. Finally, we apply this physical picture to the simulations
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with mobile ions. The results of mobile ion simulations are
discussed in the next section.

V. PIC SIMULATIONS WITH MOBILE IONS

We now turn our attention to the dynamics in the presence
of mobile ions. Fully ionized aluminum (Z = 13) is chosen
for these simulations. The results of the simulation for an
initial 5-μm preplasma density scale length and laser intensity
of 1020 W/cm2 are shown in Fig. 9. In the case of mobile ion
simulations, ions are free to respond to the longitudinal electric
field on the time scales decided by the charge to mass (Z/M)
ratio of the ion. The steepening of the plasma density profile
near the relativistic critical density surface, similar to recently
reported results [9], is observed [Fig. 9(a)]. This steepening and
the formation of the low-density shelf in front of the relativistic
critical density surface can be explained by looking into ion
motion [Fig. 9(d)] in the presence of a longitudinal electric
field [Fig. 9(b)] induced due to plasma heating and the resulting
electron pressure gradient. The ions near the potential minima
(X ∼ 45 μm) are pushed in both ±X directions, thereby causing
a uniform low-density shelf in front of a relativistic critical
density surface. Note that the maximum energy of the forward-
going ions (∼180 MeV) is consistent with the maximum
electrostatic potential (Zeϕ). The density of this lower shelf
decreases as it expands towards vacuum. This extension of the
low-density shelf toward the vacuum results in the widening
of the potential well. Extension of the phase-space mixing
region of electrons [Fig. 9(c)] in the preformed plasma due
to the wider potential well results in stronger heating of the
plasma, which also causes deepening of the potential well
due to the increase in plasma electron pressure. The ions

are accelerated by the longitudinal electric field caused by
the electron pressure gradient. The comparison of mobile
ion simulations [Figs. 9(b) and 9(c)] with immobile ions
simulations [Fig. 6(a)] clearly demonstrates this mechanism.
Naturally, we find higher laser absorption in the case of mobile
ion simulations compared to immobile ion simulations. For
example, for the initial 5-μm preformed plasma density scale
lengths and laser intensity of 1020 W/cm2, we find ∼30%
absorption with mobile ions compared to 10% absorption
with immobile ion simulations. Note that laser absorption
is determined from laser Poynting flux as explained in
Sec. II (Fig. 1). The comparison of cumulative electron heat
flux going into the target is plotted in Fig. 9(f). The electron
heat flux for mobile ion simulations (blue line) is 16% whereas
it is 10% for immobile ions (red line). Also, note that almost
80% of the total electrons’ heat flux is carried by electrons
having energy below 5 MeV for mobile ions due to an increase
in the number of fast electrons [Fig. 9(e)] in this range.

This trend of increase in the laser absorption with mobile
ions continues for other initial preformed plasma scale lengths
as well. In Fig. 10 we give laser absorption percentages
for various initial preformed plasma scale lengths and laser
intensities. In general, we find an increase in the laser
absorption with increasing preformed plasma scale lengths, as
is the case of immobile ion simulations. This is consistent with
the physical picture we have described (i.e., larger phase-space
mixing region with longer preformed plasma due to a wider
potential well). We would like to note that although we see a
significant increase in laser absorption with mobile ions, the
underlying physics of this increase for electrons is the same as
that of plasma heating due to counterpropagating EM waves
and the presence of an electrostatic potential well described
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with the help of immobile ion simulations. Also, for the case of
a laser with 1021 W/cm2, we observe slightly higher absorption
at a scale length of 1 μm as compared to a scale length of 5 μm.
A similar trend is reported in the work of Lefebvre et al. [13].
We plan to investigate this phenomenon in detail in the
future.

VI. CONCLUSION

One-dimensional numerical modeling of laser-matter inter-
actions predicts the increase in both the mean and maximum
energy of generated fast electrons with increased preformed
plasma scale lengths for the range of laser intensities 1019–
1021 W cm−2. The stochastic heating of electrons due to
counterpropagating EM waves (incident and reflected waves)
is found to be the dominant preformed plasma heating mecha-
nism. The longitudinal electrostatic potential well, developed
self-consistently in the preformed plasma, plays a crucial role
in the further heating of the electrons. The constant push
in one direction by this longitudinal electric field causes a
reduction in the phase slip between the electron and one of the
EM waves. This finally results in higher-energy gains by the
locking of the electron with one of the two EM waves. This is
found to be the underlying physics behind the higher-energy
gain in the presence of a longitudinal electric field. The
extent of the potential well is decided by the preformed
plasma scale length. The potential well gets wider with an
increase in the preformed plasma scale length, thereby causing
extension of the phase-space mixing region. This explains
the stronger heating and higher mean energy of generated

fast electrons in the presence of a larger preformed plasma
scale length. The electrons contributing to the high-energy
tail of the spectrum come from the underdense region of
preformed plasma. These electrons, after getting locked with
the forward-going EM wave, gain more energy due to longer
interaction time (and distance) with the wave. This explains the
increase in maximum energy of electrons with the increasing
preformed plasma scale length.

The effect of ion motion is studied by performing separate
simulations with mobile ions. The ions respond to the lon-
gitudinal electric potential produced due to plasma electrons
heating, which results in the steepening of the plasma profile
near the critical density surface (generally referred to as
ponderomotive steepening). The expansion of the low-density
shelf towards the vacuum causes the extension of the region of
phase-space mixing. Therefore, significantly higher absorption
is found in the mobile ion simulations compared to the
immobile ion simulations.

The multidimensional effects of laser propagation through
underdense plasmas such as filamentation, self-focusing,
defocusing, etc., are neglected in the present 1D studies.
Also, 1D representation cannot be applied when preformed
plasma scale length becomes considerably larger than the
laser spot size, which is typically 10–20 μm. Furthermore,
it should be noted that results presented in this paper are
mainly applicable in the preformed plasma scale length
range of 1–15 μm, and different laser absorption and fast
electrons energy coupling can be expected with much larger
preformed plasma scale lengths (i.e., Lp → ∞). The strong
prepulse can damage the solid target. This may constrain the
maximum preformed plasma scale length one can expect in
the experiments. Finally, we would like to point out that,
although we see an increase in fast electrons energy with
increasing preformed plasma scale length, for applications
such as fast ignition [1] large preformed plasma can be
detrimental due to the shift of relativistic critical surface away
from the core. We plan to address some these limitations of our
present work, especially the multidimension effects, in future
studies.
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