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第第第第 1 章章章章    研究背景研究背景研究背景研究背景  

1.1 電磁流体現象電磁流体現象電磁流体現象電磁流体現象  

電磁流体現象とは、電磁力が流体に対し主要な外力として働き、それによる流体の移動・

変形が電磁場にも影響を及ぼし、結果として流体と電磁場が相互作用しながら進行する現

象のことである。工業的にこれらの現象をみた場合、例えば、静電噴霧現象 (1) -(4)を利用し

た空気清浄機 (5)、磁性流体 (6)を利用した磁気シール (7)や軸受 (7)など多くの利用例がある。交

流磁場中で金属を浮かしたまま溶解させる電磁浮遊現象 (8)を利用すれば、金属に対する壁

からの汚染を防げるため、純度の高い合金の精製や、高精度な実験が可能になる。ほかに

もアーク溶接中における溶融池での現象や、コールドクルーシブル中 (9) - (12)におこる材料の

挙動など、さまざまな電磁流体現象が存在し、それぞれがさまざまな分野で利用されてい

る。  

しかし、一般に流体現象と電磁場現象が複雑に相互作用するこういった現象に関しては、

電磁力により流体形状が大きく変形することが理論的な考察を困難にしている。また、流

体内部の物理量を測定することも簡単ではない。それゆえ、これらの現象を利用する上で

のさまざまなパラメータなどは大抵、何らかの経験則に基づいて決められているのが現状

である。そのため現象のメカニズムそのものに未だブラックボックスな面も多く、それら

を定量的に明らかにするためにも、こういった現象に対する数値計算が重要となる。  

1.2 従来の界面追跡法従来の界面追跡法従来の界面追跡法従来の界面追跡法  

本研究で扱う電磁流体現象は、単に流体と電磁場が相互作用するものではなく、どれも

流体の自由表面が大きな変形を受ける現象である。このような現象を、現在主流となって

いる流体解析手法、すなわち差分法や有限要素法などで解く場合、表面の定義をどのよう

に行うか、あるいはその時間変化をいかに追跡するかが問題となる。そこで従来よりさま

ざまな界面追跡手法が開発されてきた。よく使用される主だったものを以下に列挙し、そ

の利点と欠点について簡潔に述べる。  

1.2.1 VOF(volume of fluid)法法法法  

VOF 法 (13)は Fig.1.1に示すように、空間を格子で区切り、各要素上でそれぞれ流体の充

填率 F を定義する手法である。ここで F は 0 から 1 までの値をとり、0 は空気要素 (図中白

色 )、1 は流体要素 (図中青色 )を表し、それ以外は界面を形成する要素であることを表す。

また正確な界面の位置はたとえば F=0.5を満たす位置と定義される。図 1.1 は便宜上、正

方格子を用いているが、基本的に VOF法における F の定義は格子の制限を受けないため、
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差分法のみならず有限要素法などでも使用可能である。  

差分法や有限要素法で離散化の対象となる、流体の運動方程式は以下に示すナビエ・ス

トークス方程式である。  

( ) guuu
u +∇+∇−=∇⋅+

∂
∂ 21 ν

ρ
P

t
     (1-1) 

ここで、u は流体の速度、ρは密度、P は圧力、νは動粘性係数、 g は重力加速度である。  

式 (1-1)により各要素での速度分布が求まると、充填率 F は以下の移流式を解いて時間更新

される。  

( ) 0=∇⋅+
∂
∂

F
t

F
u        (1-2) 

かし式 (1-2)を数値的に精度よく解くことは一般に難しく、大抵の場合、はじめシャープで

あったＦの分布も、計算を進めるにつれ誤差が蓄積し数値的な拡散をみせる (14)。これは表

面がぼやけてしまったことを意味し、表面張力や電磁力の計算精度を著しく低下させる。

さらに、図 1.1 から明らかなように、この手法は充填率を計算するための空気要素の存在

を前提としており、特に 3 次元流体解析においては、計算時間や使用メモリの点が不利と

なる。ただし本稿のように電磁流体現象への数値解法として VOF 法を採用する場合は、も

ともと空気領域における電磁場を計算する必要があるために、この点は欠点にはならない。 

 

Fig.1.1 VOF法におけるマスの充填率  

1.2.2 Level set 法法法法
(15),(16)  

VOF 法において充填率 F を定義したように、Level set法においても Level set関数φとい

うものが定義される。ただし φは界面との距離である。すなわち初期状態において、計算

点 i の座標を (xi ,yi ,zi )、そこから界面に垂線をおろし、界面との交点の座標を (x0,y0,z0)とす

れば、計算点 i における Level set関数は  
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( ) ( ) ( )2
0

2
0

2
0 zzyyxx iiii −+−+−=φ      (1-3) 

と定義される。ただし、ここで得られた φには負号をもたせ、界面で φ=0、流体側で φ>0、

気相側でφ<0とする。φは単に界面との距離にすぎないから、流体の初期形状が決まれば各

計算点におけるφの初期分布は簡単に計算することができる。それ以降は VOF と同様に、

式 (1-1)を解いて各計算点の速度分布が得られたのち、Level set関数は次式の移流方程式を

解いて時間更新される。  

( ) 0=∇⋅+
∂
∂ φφ

u
t

       (1-4) 

 もしも φが解析の間中、界面との距離を表すというその定義を常に厳密に満足し得るな

らば、当然、毎ステップ時において常に次式が成立するはずである。  

1=∇φ         (1-5) 

しかしこれも、VOF 法のところで述べたように、移流系の方程式 (1-4)を数値的に解くこと

の難しさから、時間が進むにつれて式 (1-5)が満足されなくなり、表面の定義があいまいと

なる。Level set法ではこれを防ぐために、φの初期化を定期的に行う必要がある。この初

期化方法に関してはいくつか提唱されているが、一般によく使用されるものは次式である

(14)。  

( )φ
δφ

φφ ∇−
+

=
∂
∂

1~ 22t
       (1-6) 

ここで、δはパラメータであり、格子幅の 1から5倍程度の値が使用される。また t~は流体の

運動を計算するときに使用する時間スケールとは別の人工的な時間スケールである。Level 

set関数の初期化とは、すなわち式 (1-6)をφが定常になるまで繰り返し計算することである。

φが定常になったとき、式 (1-6)の左辺がゼロとおけるから式 (1-5)が満たされる。  

    このように、Level set法では VOF 法と違い、関数の初期化を行うことで表面認識の精度

低下を防ぐことができる。ただし流体計算には直接無関係な式 (1-6)の繰り返し計算を行う

必要があるため、計算時間が増加するという欠点がある。また、このように Level set関数

の初期化を多く行うと、体積保存性が著しく低下することが報告されており (15)、別途、体

積補正を行う必要がある。このように、Level set法は精度の良い計算を可能とするものの、

そのための処理が煩雑であるという欠点がある。また VOF 法と同様に、Level set法も空気

要素の存在を前提にしている。ただし電磁流体現象解析においてはそれが欠点ではないこ



 4 

とは、VOF 法のところで述べたとおりである。  

1.2.3 ALE 法法法法 (14) , (17) 

ALE(Arbitrary Lagragian-Eulerian)法は主に有限要素法で自由表面をともなう流体解析を

行う際に使用される界面追跡法である。その名が示すとおり、計算点を流体速度とともに

移動させるラグランジュ的視点と、計算点を固定するオイラー的視点を混在させた手法と

なっている。その特徴は、自由表面を構成する節点に限り、流体の速度 uとは別に、節点

の移動速度 ûを定義することにある。以後、本稿では ûを節点速度と呼ぶことにする。流

体速度と節点速度との関係は、自由表面における運動学的見地から次式を満足する必要が

ある。  

( ) 0ˆ =⋅− nuu         (1-7) 

ここで n は自由表面の単位法線ベクトルである。式 (1-7)は表面を通して質量が輸送されな

いことを表している。  

ALE 法では式 (1-7)を満たすように各自由表面節点の節点速度 ûを求め、それに従い節点

を移動させることで流体の変形が表現される。しかし、 ûの自由度は次元数であるので、

式 (1-7)ひとつだけでは成分を決定できない。そこで (次元 -1)個の何らかの拘束条件を追加

する必要がでてくる。使用される拘束条件としては、例えば以下のようなものがある。  

ⅰ )節点の移動方向をある特定の方向 (鉛直方向や水平方向 )に限定する。すなわち、  

0ˆ =⋅ tu         (1-8) 

ここで、、、、例えば移動方向を鉛直方向にとるなら t は水平方向の単位ベクトル、移動方向  

を水平方向にとるなら鉛直方向の単位ベクトルである。  

ⅱ ) 節点の移動方向を自由表面の法線方向とする。すなわち、  

0ˆ =× nu         (1-9) 

ⅲ )節点の移動方向を自由表面節点の uと一致させる。これは変数をラグランジュ的に見る

ことに等しく、事実上、ûは uが求まった段階で自動的に得られることになる。当然式 (1-7)

を満足する。  

 ところで、任意の自由表面変形を扱うには、表面節点が自由な移動を許されている必要

がある。ⅰ )の条件ではそれが十分ではない。よってⅱ )またはⅲ )の条件が適当と思われる

が、節点の自由な移動は解析メッシュの過度な歪みを引き起こすため、別途、節点配置を

適切に変化させることでその歪みを低減するアルゴリズム (スムージング )を導入するか、

または定期的にリメッシュする必要がある。しかし有効なスムージングの方法は解析する
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対象によって変わり、それにともなうパラメータの決定なども、ある種の経験を必要とす

る。また節点が移動することによる物理量の補間をどう扱うかという問題もある。リメッ

シュに関しても、当然、計算コストの増加という問題がある。  

  ところで、界面追跡として ALE 法を使用する場合は、VOF 法や Level set法に見たよう

な空気要素の存在を必要としない点が有利である。また流体表面の定義が明白なことも、

表面張力と電磁力の高精度な計算を可能とする。  

1.3 オイラー的視点のための移流項計算オイラー的視点のための移流項計算オイラー的視点のための移流項計算オイラー的視点のための移流項計算  

 流体の運動を記述するにはラグランジュ的視点を用いる場合とオイラー的視点を用いる

場合がある。ここで、ラグランジュ的視点とは、流体のある微小領域に観測点が乗ってい

て、その移動とともに観測点も移動するもの、すなわち移動座標系である。この場合、計

算点に働く加速度はひとつの質点に働く加速度として単純に扱われる。一方、オイラー的

視点は観測点が空間に固定されているもの、すなわち静止座標系である。このように空間

に固定された計算点における加速度は、単純な速度の時間微分にはならず、自身の四方八

方から流入してくるぶんを考慮にいれる必要がある。これが式 (1-1)にみるように左辺第 2

項に現れる。  

1.2.1から 1.2.3でみた従来の界面追跡手法は主に差分法や有限要素法で使用されるが、

そこで使用される流体の運動方程式は、式 (1-1)に示すように、流体の運動をオイラー的に

とらえた場合の式となっている。その際、式 (1-1)中における左辺第二項は移流項と呼ばれ、

VOF 法における式 (1-2)や Level set法での式 (1-4)でも述べたように、精度よい解析が困難

である。そのため差分法や有限要素法で流体解析をする場合、この移流項をいかに精度良

く計算するかに重点がおかれ、風上差分法 (18)や、SUPG 法に基づく安定化有限要素法 (14)

などが開発されている。しかしそれらを用いても、移流項の計算精度には限界があるのが

現状である。  

1.4    メッシュ生成メッシュ生成メッシュ生成メッシュ生成の問題点の問題点の問題点の問題点  

  有限要素法や有限体積法などは、精度のよい解析が行える一方で、そのプリプロセスの

段階で、解析対象を三角メッシュや四角メッシュ（3 次元解析なら四面体メッシュや六面

体メッシュ）などに分割する必要がある。このようなメッシュ生成プロセスは、単に計算

時間がかかるだけではなく、物体の形状が複雑であるときなどは、メッシュが生成できず

に計算が停止してしまうこともある。また、流体は時々刻々その形状が変化するため、メ

ッシュ生成において CAD 情報を用いることができない。そのため、節点配置次第では、
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メッシュの材質判定に特別の注意を必要とする。そのような例を、Fig.1.2に示す。図には

２つの物体が近接しているモデルをデローニ分割 (19) , (20)した際に得られるメッシュ図を想

定して描いている。流体問題として捉えれば、液滴が分裂した直後や、2 つの液滴が衝突

する直前の様子に等しい。このとき、通常の処理だと図に示したように 2 つの物体間にも

メッシュが作成される。便宜上、これを空気メッシュだと仮定すると、同図下にあるよう

に、これがひとつの物体をメッシュ分割したものではなく、2 つの物体が空気を介して存

在している状態だというふうに材質判定することはそう簡単ではない。なぜなら図中には

空気計算点なるものは存在せず、物体メッシュを構成する要素 -節点関係と、空気メッシュ

を生成する要素 -節点関係はまったく区別できないからである。おなじようなことは流体形

状が凹型になったときにも生じる。そのような状態を Fig.1.3に示す。図に示すメッシュ分

割図が与えられたとき、それが凸型の対象なのか、凹型の対象なのかを判断することは簡

単ではない (19) , (20)。  

  また、メッシュ分割は基本的に、界面がユーザーの意図したとおりに作成される保証も

ない。それを図示したものを Fig.1.4に示す。図中、左と右で節点配置は同じである。いま、

赤の物体と青の物体が平らな面を境界として接している状態を計算しようとしているもの

とする。このとき図中左図のようにメッシュが作成されれば問題はないが、右図のように

なると間違った境界情報を用いてしまうことになる。  

 このように、メッシュを用いた解析は精度がよいが、メッシュの生成やその材質判定の

段階において、さきほど述べたような問題を回避するための煩雑な処理が要求されること

になる。  
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Fig. 1.2  材質判定の困難な例  

 

Fig. 1.3  対象が凹型なときの材質判定  

 

Fig. 1.4  界面の破壊  
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1.5 メッシュフリーメッシュフリーメッシュフリーメッシュフリー法法法法  

  計算点 (節点 )とメッシュの両方を用いて解析を行う有限要素法や有限体積法と異なり、

計算点のみで解析を行う手法を総称してメッシュレス法 (21) -(23)と呼ぶ。メッシュレス法は

計算点しか使用しないため、メッシュ生成に起因するさまざまな問題から解放される。そ

のような意味を強めて、メッシュレス法をメッシュフリー法と呼ぶこともある。現在、さ

まざまなメッシュフリー法が開発され、それぞれ一長一短があると思われるが、おおまか

にメッシュフリー法であるがゆえの利点を挙げると以下のようになる。  

①  メッシュ作成にかかる時間が節約できる。  

②  メッシュが生成できずに計算が止まることがない。  

③  流体が大変形してもリメッシュが不要である。  

④  メッシュ生成に起因する界面の破壊が起こらない。  

⑤  メッシュの材質判定に悩まなくてよい。計算点の材質さえわかっていればいい。  

⑥  計算点おける物理量の近似の次数は、計算点ごとに独立して設定することが可能である。 

⑦  未知数だけでなく、その導関数も各計算点で連続となる。  

⑧  計算点の移動、追加、削除が容易である。そのため、計算点の配置をアダプティブに決

めることにも適している。  

⑨  変数のラグランジュ的な取り扱いとも相性がよく、流体計算に適用すれば、移流項の計

算をしなくてすむ。従って、移流項の数値不安定性からも解放される。  

このように、流体解析にメッシュフリー法を採用すれば、メッシュに関する問題と移流項

に関する問題から本質的に解放される。また、差分法などだと計算点を空間に固定するた

めに、複雑な界面形状を表現するためには Level Set関数などを別途定義してやる必要があ

ったが、メッシュフリー法だと計算点を自由に移動し直接計算点の配置で境界を表現でき

るため、そのような処理も不要となる。  

 

1.6 研究目的と方針研究目的と方針研究目的と方針研究目的と方針  

  本研究の目的は、自由表面の大変形を伴う電磁流体現象に対する、高精度かつ簡易な数

値解析手法の開発である。そのためには流体解析と電磁場解析の２つを行う必要がある。

流体解析に関しては、上述したように、メッシュを用いる有限要素法の場合、そのメッシ

ュ情報を用意する段階で複雑な処理が要求される。また、メッシュが生成できずに計算が

止まってしまうこともある。差分法の場合はこのようなメッシュ生成の問題は生じないが、
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その場合、界面の変形は VOF 法や Level Set 法などを用いて計算することになる。しかし

先述したように、両者とも時間の経過とともに界面の定義が曖昧になり、表面張力や電磁

力の計算精度を低下させる。界面決定関数の数値的な拡散を防ぐ方法も考案されてはいる

が、どの技法を用いれば効果が得られるかは問題に依存し、その取扱いも煩雑となる。  

そこで本研究では、流体解析手法として、メッシュを一切用いないメッシュフリー法を

使用する。ひとくちにメッシュフリー法といってもさまざまなものがあるが、本研究では

重み付き最小二乗法に基づく手法を採用する。その具体的な計算手順などは第 2 章以降で

述べるが、メッシュフリー法を用いればメッシュ生成に起因する計算コストや煩わしさを

なくせるだけでなく、界面の位置の定義も明確なため、計算精度も高い。また、メッシュ

フリー法は変数をラグランジュ的に扱いやすく、式 (1-1)の運動方程式から移流項を取り除

くことができ、これに起因する数値誤差を回避できるといった利点もある。  

次に、流体に働く電磁力の計算であるが、これは大きく、2 つの方法を試み、その有効

性を調査した。  

 一つ目は、電磁場の計算もまた、流体と同じメッシュフリー法で解く方法である。詳し

くはあとで述べるが、マクスウェルの方程式を微分系で記述してメッシュフリーで解く。

その際、空間全体に空気計算点を生成する必要が出てくるが、その生成方法についても検

討したものを紹介する。  

 二つめは、電磁場の計算を境界要素法で解くものである。方程式は積分系となるが、上

述の手法に対し、空気計算点を必要としないという利点をもつ。  

最後に、本論文の構成について述べる。第 1 章では研究の背景とその方針について述べ

た。第 2 章ではメッシュフリー法について詳述し、第 3 章ではそれを用いた流体解析アル

ゴリズムについて、実際の解析例を交えながら説明する。また、電磁流体の解析に先立っ

て、第３章の最後に流体解析の精度を検証する。第 4 章では、メッシュフリーの流体解析

に対し、同じくメッシュフリーの電磁場解析を行った研究について、その成果を報告する。

第 5 章では、メッシュフリーの流体解析に、境界要素法を組み合わせた手法についてその

研究成果を報告する。最後に第 6 章にて、全体のまとめとする。  

なお、本研究では基本的に磁場を扱わず、電場と流体が相互作用する現象、いわゆる電

気流体力学に話をしぼって報告する。また、各章で引用した参考文献は、それぞれの章の

末尾に列挙する。  
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第第第第 2 章章章章    メッシュフリー法メッシュフリー法メッシュフリー法メッシュフリー法  

2.1 メッシュフリー法の特徴と利点メッシュフリー法の特徴と利点メッシュフリー法の特徴と利点メッシュフリー法の特徴と利点  

  計算点 (節点 )とメッシュの両方を用いて解析を行う有限要素法や有限体積法と異なり、

計算点のみで解析を行う手法を総称してメッシュフリー法 (1 )- (3)と呼ぶ。近年、コンピュー

タの性能のめざましい向上を受けて、複雑で大規模な 3 次元形状の解析が盛んに行われる

ようになってきた。そのとき使用されるメッシュ数が、数百万から１億を超えることも、

決して珍しいことではなくなってきている。しかしながら、そのような大規模な対象のメ

ッシュを作成する場合、メッシュ生成に必要とされる時間が数時間から、場合によっては

１日以上かかることもあり、結果として数値解析の計算コストのうち大部分をメッシュ生

成が占めるようになってしまう。それでも静解析の場合は一度メッシュを生成すればよい

が、流体の動解析の様に時々刻々、形状が変化する場合、定期的にリメッシュを行う必要

があり、そのたびに再度、長い時間をかけてメッシュを生成しなおさなければならない。

さらに、物体の形状が複雑になってくると、打切り誤差などの影響によりメッシュ生成の

プロセスが失敗し、計算が続行できない場合もでてくる。3 次元のメッシュ生成プロセス

は非常に複雑であり、どうして失敗したのか、どうすればその失敗を防げるのかを理解す

るのは簡単ではない (4 ) -(5)。  

 現在使用されるこうしたメッシュ生成ソフトは、大抵の場合、CAD から情報を読み取っ

て物体のメッシュ分割を行えるようになっており、メッシュの材質判定なども CAD から

の情報を使って定義が可能となっている。しかし１章にて述べたように、流体問題を含む

いわゆる移動境界問題においては、その初期形状に関してのみ CAD からの材質情報を用

いることができるが、ひとたび境界が移動してリメッシュを行うと、どのようにして各メ

ッシュの材質を決定するかが問題となる。またそれ以前に、界面がユーザーの意図したも

のとは異なったかたちで生成されることもある。  

 このように、メッシュを用いた解析は精度がよいが、メッシュ情報を用意するプリプロ

セスの段階で煩雑な処理や時間のかかる処理が求められる場合もあり、そのような背景を

受けて近年、メッシュフリーで解析を行うメッシュフリー法に注目が集まっている。メッ

シュフリーは計算点しか使用しないため、メッシュ生成に起因するさまざまな問題から解

放される。そのような意味を強めて、メッシュフリー法をメッシュフリー法と呼ぶことも

ある。現在、さまざまなメッシュフリー法が開発され、それぞれ一長一短があると思われ

るが、おおまかにメッシュフリー法であるがゆえの利点を挙げると以下のようになる。  
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⑩  メッシュ作成にかかる時間が節約できる。  

⑪  メッシュが生成できずに計算が止まることがない。  

⑫  流体が大変形してもリメッシュが不要である。  

⑬  メッシュ生成に起因する界面の破壊が起こらない。  

⑭  メッシュの材質判定に悩まなくてよい。計算点の材質さえわかっていればいい。  

⑮  計算点における物理量の近似の次数は、計算点ごとに独立して設定することが可能であ

る。  

⑯  未知数だけでなく、その導関数も各計算点で連続となる。  

⑰  計算点の移動、追加、削除が容易である。そのため、計算点の配置をアダプティブに決

めることにも適している。  

⑱  変数のラグランジュ的な取り扱いとも相性がよく、流体計算に適用すれば、移流項の計

算をしなくてすむ。従って、移流項の数値不安定性からも解放される。  

 

メッシュフリー法ではメッシュを用いないために、計算点同士の接続関係が明瞭ではな

くなる。そのため、Fig.2.1に示すように、計算点 i に関する種々の値を計算する際、影響

半径と呼ばれるある決められた半径 Ri の領域を考え、その影響半径内に存在する周辺計算

点群を用いて計算を行う。一般的に、メッシュフリー法では計算点 i 付近において、位置

r における物理量 uを以下のように、影響半径内の計算点の物理量の線形結合で表現する。  

( ) ( )∑Φ=
N

j
jj

h uu rr        (2-1) 

ここで、uh は u の近似曲面、N は影響半径内の計算点数、Φ  j は uh を求める際の計算点 j

の寄与率を表しており、影響半径内における位置の関数であり、本稿ではこれを形状関数

と呼ぶ。uhの x、 y、 z方向の微分は単純にΦ  j を微分してそれぞれ次式となる。  

( ) ( )
∑ ∂

Φ∂
=

∂
∂ N

j
j

j
h

u
xx

u rr
       (2-2) 

( ) ( )
∑ ∂

Φ∂
=

∂
∂ N

j
j

j
h

u
yy

u rr
       (2-3) 

( ) ( )
∑ ∂

Φ∂
=

∂
∂ N

j
j

j
h

u
zz

u rr
       (2-4) 

  結局のところ、メッシュフリー法で物理量を離散化するという問題は、周辺計算点の形
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状関数Φ  j をいかに求めるかという問題に帰着し、それぞれの手法によって形状関数の定義

が異なる。主だったメッシュフリー法でΦ  j がどのようにして定義されているかを次に述べ

る。  

i

iR

 

Fig. 2.1  影響半径と周辺計算点  

 

2.2 メッシュフリー法の分類メッシュフリー法の分類メッシュフリー法の分類メッシュフリー法の分類  

ひとくちにメッシュフリー法といっても、様々なタイプのものが考案されている (1 )- (3)。

離散化の原理という観点から分類すれば、最小二乗法系列に基づくもの (1) -(3)、PIM(Point 

Interpolation Method)に基づくもの (6)、RPIM(Radial PIM)に基づくもの (7 ) (8)、MPS法 (9 )、SPH

法 (10) ,(11)などが挙げられる。以下、それぞれの手法について、簡単に解説する。解説は 2

次元解析を例にして進めるが、3 次元への拡張は容易に行える。これもメッシュフリー法

の特徴のひとつである。  

2.2.1 最小二乗法系統に基づくメッシュフリー法最小二乗法系統に基づくメッシュフリー法最小二乗法系統に基づくメッシュフリー法最小二乗法系統に基づくメッシュフリー法  

    ある物理量 u の分布が、計算点 i の影響半径内で多項式近似できるものとする。線形近

似する場合、2 次元解析なら以下のように表される。  

( ) yaxaauh ∆+∆+= 321r        (2-5) 

ここで、Δは計算点 i との相対距離を表す。また、ai  ( i=1,2,3)は多項式の各項に対する係

数であり、影響半径内では定数とする。近似曲面 uhは影響半径内の計算点 j の位置におい

て計算点 j が実際に持っている物理量 uj と必ずしも一致するとは限らず、何らかの誤差が

生じる。影響半径内の計算点におけるその誤差の二乗和 J を以下のように定義する。  



 15

{ }

{ }2
3

22
3232

22
213121

2
1

2
321

222222 jjj

N

j
j

N

j
j

uyuayaxuayxaaxauayaaxaaa

uyaxaaJ
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         (2-6) 

  Jが最小となるときの各 aiの値は、Ｊを aiで偏微分した値がゼロになるときであるから、

次の 3 式を考えれば良い。  
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∂
∂

i
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 上式に式 (2-6)を代入すれば、  
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     (2-8) 

が得られ、さらにこれを行列形式にすることで、次式を得る。  
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上式をガウスの消去法などで解くことにより、各 ai  が求まる。このとき、計算点 i におけ

る uhの微分値はそれぞれ、  

( )
2a

x

uh

=
∂

∂ r
        (2-10) 

( )
3a

y

uh

=
∂

∂ r
        (2-11) 

となる。以上が、最小二乗法によるメッシュフリー法の概要である。より高次の近似も同
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様であり、もし u が 2 次近似され、  

( ) yxayaxayaxaauh ∆∆+∆+∆+∆+∆+= 6
2

5
2

4321r     (2-12) 

と表現されるなら、計算点 i における 2 階微分やラプラシアンは次のようになる。  

( )
42

2

2a
x

uh

=
∂

∂ r
       (2-13) 

( )
52

2

2a
y

uh

=
∂

∂ r
       (2-14) 

( ) ( )54
2 2 aauh +=∇ r        (2-15) 

 次に、重み付き最小二乗法によるメッシュフリー法について説明する。近似曲面と実際

の物理量の誤差 J を表す際、計算点 i により近い計算点に大きな重みをかけて、次のよう

にする。  

{ }∑ −∆+∆+=
N

j
jij uyaxaawJ 2

321       (2-16) 

ここで、wi j は重み関数と呼ばれ、計算点 i と j の相対距離 r i j が小さいほど大きな値をもつ

ように設計された関数である。式 (2-16)は、近似曲面 uhが、計算点 i により近い点の物理

量を重視して作成されることを意味する。wi j としては種々のものが提案されているが、本

研究では次式で示すスプライン型重み関数を用いた (1 )。  
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式 (2-16)より、解くべき連立方程式は線形近似の場合で次のようになる。  
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上式を解くことにより、式 (2-10)、 (2-11)から各微分値を得る。  

  話をより一般化するために、多項式近似の基底関数行列 p(r)を定義する。1 次近似、 2

次近似の場合でそれぞれ、  
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( ) ),,1( yxT ∆∆=rp        (2-19) 

( ) ),,,,,1( 22 yxyxyxT ∆∆∆∆∆∆=rp       (2-20) 

である。 p(r)を用いて、uhは以下のように表される。  

( ) ( ) ∑
=

==
m

j
jj

Th apu
1

arpr       (2-21) 

ここで、 a は多項式の各項に対する係数を値に持つ未定係数行列であり、影響半径内では

定数ベクトルである。また、mは基底関数の項数、pj は j 番目の基底を表す。a は、uhと各

計算点の uj との誤差 J が最小となるように決定される。最小二乗法を用いた場合、J は以

下のように表される。  

( )( )∑
=

−=
N

j
jj

T
ij uwJ

1

2
arp        (2-22) 

J が最小値を取るとき、a での偏微分がゼロになるから、その停留条件より次式が得られる。 
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     (2-23) 

式 (2-23)をガウスの消去法などで解くことで、未定係数行列 a が求まる。a が得られれば、

それを用いて 1 階微分、2 階微分、発散、ラプラシアン、回転などが定義できる。  

ところで、式 (2-23)において、  

( ) ( )j
T

N

j
jijw rprpA ∑

=
=

1

       (2-24) 

( )∑
=

=
N

j
jijw

1

rpB         (2-25) 

],,[ 21 N
T uuu K=u        (2-26) 

とおくと、式 (2-23)は簡単に、  

BuAa =         (2-27) 

となる。両辺に左から A -1をかけることにより、  

BuAa 1−=         (2-28) 

が得られる。これを式 (2-21)に代入し、式 (2-1)と見比べてみると、uh を求めるための周辺

計算点 j の寄与率であるΦ j   は次式で定義されることがわかる。  
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ここで、A -1の下付き添字 khは、A -1の k 行 h 列成分を表し、B の添字は、B の h 行成分の

うち、計算点 j が関係している成分を表す。このようにして求まったΦ j    を用いて、uhは式

(2-1)より算出される。いま、影響半径内の計算点の位置が得られれば、A -1、B は定数であ

るから、Φ  j の n 階微分は式 (2-29)において単に各 pkを n 階微分すればよい。特に、影響半

径の中心である計算点 i においては、2 次近似した場合は、  
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となるから、uhの x 方向、y 方向への 1 階、2 階微分はそれぞれ次式となる。  
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u の勾配などを求める際、式 (2-28)で得られた a より直接その値を算出してもよいが、Φ  j

は一度計算しておけば計算点の配置が変わらない限り不変なので、式 (2-34)から (2-37)は勾

配などを求めたい変数が異なっても再利用でき、都合が良い。また、ここまでは各計算点

の u の値がわかっていて、その勾配などを求める際の手順について説明したが、たとえば

各計算点で u の値が未知であり、これを陰的に求める場合などは、式 (2-34)から (2-37)など

を用いて支配方程式を離散化する必要がある。  
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 例として、いま u が次式で示すラプラス方程式を満たし、これを陰的に解くことを考え

る。  

( ) ( ) ( )
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x

u
u

rr
r        (2-38) 

u を求めたい計算点の総数を N0とすると、上式を離散化して N0×N0の係数行 M を得るこ

とになる。この係数行列 M の i 行 j 列は、計算点 i に関するラプラシアンを離散化する際

の uj の寄与率の値となる。u を 2 次近似した場合、その 2 階微分は式 (2-36)、 (2-37)で近似

されるから、係数行列の i 行 j 列である M i j は、  
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となる。  

本研究では、ここまでで述べた重み付き最小二乗法を離散化手法として採用しているが、

参考までに、移動最小二乗法による手法も説明しておく。重み付き最小二乗法では、例え

ば式 (2-17)のように、計算点 i で最も値が大きくなるような wi j を使用した。これは、近似

曲面 uhが、計算点 i 上で最も精度がよく、計算点 i から離れるにつれて実際の uj との誤差

が大きくなることを意味している。そこで、例えば Fig.2.2にあるように、計算点 i から離

れた点 l での uhの値やその微分を求めたい場合、重み関数としては式 (2-17)を使用するの

ではなく、その中心を l までシフトさせた、  
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を使用したほうが精度のよいことが推測される。このように、移動最小二乗法では、同

じ影響半径内であっても値の欲しい場所に合わせて重み関数の中心をシフトさせる。計算

点 i 上では重み付き最小二乗法で得られた uhの値と移動最小二乗法で得られた uhの値は一

致するが、計算点 i からわずかでもずれれば、両者はわずかに異なった分布を示す。従っ

て、計算点 i においてでさえ、移動最小二乗法で得られた uh の微分値は式 (2-34)や (2-35)

では表せない。重み付き最小二乗法では A -1、B は定数行列であったが、それが wi j を含ん

でいるために移動最小二乗法では位置の関数となる。従って、Φ  j の微分は単に各 pk を微

分するだけではなく、次式となる。  
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  上式中に A -1の微分を求める箇所があるが、これは次式の関係式より算出する。  
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       (2-41) 

  このように、移動最小二乗法は重み付き最小二乗法に比べ数式が複雑となるが、重み付

き最小二乗法が計算点 i から離れるにつれ近似曲面の精度が下がっていくのに対し、移動

最小二乗法ではそれが起こらないという利点をもっている。  

次に、影響半径内の計算点数と次数の関係や、デルタ関数特性、行列の正則性などにつ

いて述べる。式 (2-19)や (2-20)にあるように、u を m 個の基底の線形結合で表現する場合、

影響半径内には最低でも m 個の計算点がなければ、A の行列式はゼロとなり、計算するこ

とはできない。よって、影響半径内の計算点数 N が常に N ≥  mとなるように、影響半径の

大きさ Ri を決定しなければならない。しかし、たとえ N ≥  mであっても、A の行列式がゼ

ロとなる場合が存在する。その代表的な計算点配置が、Fig.2.3 に示すようなものである。

この場合、u は y 方向には 2 次近似可能であるが、 x 方向には 2 つの座標しかないため、1

次近似しかできない。このような計算点配置に対し、式 (2-20)にあるような基底で近似を

行うと、A -1が得られず計算は破綻する。また、理論上は計算点配置が Fig.2.3からわずか

でも乱れ、x 方向に 3 つ以上の座標が得られれば A -1は計算可能であるが、実際の数値計算

時には大きな誤差を含んだものとなる。このように、A -1のロバスト性が保証されていない

（A が正則であるという保証がない）点が、最小二乗法系統に基づくメッシュフリー法の

欠点である。  

また、A -1が精度よく得られたとして、そのとき N= mであるならば、近似曲面 uhは各計

算点の uj を完全に通過する。そして最小二乗法、重み付き最小二乗法、移動最小二乗法の

3 つの手法で得られたそれぞれの uhは完全に一致する。もし N> mであるなら、uhは計算

点 i においてさえ、その物理量 ui を通るとは限らない。ただし基底として式 (2-19)や (2-20)

ではなく、1 を除外した次式を用いれば、uhは少なくとも ui だけは確実に通る曲面となる。  

( ) ),( yxT ∆∆=rp         (2-42) 
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( ) ),,,,( 22 yxyxyxT ∆∆∆∆∆∆=rp       (2-43) 

これは、uhをそれぞれ以下のように近似したことに相当する。  

( ) yaxauu i
h ∆+∆+= 21r        (2-44) 

( ) yxayaxayaxauu i
h ∆∆+∆+∆+∆+∆+= 5

2
4

2
321r     (2-45) 

  このように、最小二乗法系統に基づくメッシュフリー法では、近似曲面と実際の物理量

が必ずしも一致しない。これを、デルタ関数特性を持たない、という。デルタ関数特性と

は、形状関数が自身の位置において 1 で、他の計算点上でゼロとなることをいう。すなわ

ち、  

iji δ=Φ          (2-46) 

である。ここで、δはクロネッカーのデルタを表す。形状関数がデルタ関数特性を満たさ

ない場合、陰的な解法において、ディリクレ型の境界条件を課しても近似曲面がその値を

完全に通らないことが問題となる。本研究ではこの問題に対し、ディリクレ型の境界条件

を設定された境界計算点において、重み関数の値を式 (2-38)で得られたそれではなく、極

端に大きな値、例えば 1000などと設定することで、近似曲面が境界条件と大きく外れない

ようにしている。  

 なお、本研究では重み関数として式 (2-38)を採用したが、他の関数などを試してみても

解析結果はそれほど変化しないことを確認している。従って、重み付き最小二乗法に基づ

く離散化は影響半径の大きさ、近似の次数、重み関数の選定の 3 つがパラメータとして挙

げられるが、解析精度に及ぼす影響は前半の 2 つの因子が支配的である。  

i

l

 

Fig. 2.2  物理量を得たい点 l が点 i の遠方にある場合  
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Fig. 2.3  完全な 2 次近似が不可能な計算点配置  

 

 

2.2.2 PIM(Point Interpolation Method)に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法  

ある物理量 u が、計算点 i の近辺で多項式近似できたとする。最小二乗法系統の離散化

手法では、多項式の項数 mを定め、これより十分大きい N 個の計算点を用いて式 (2-21)の

ように uhを定めた。PIM はこれに対し、項数 m を影響半径内の計算点数 N と同じだけ用

いる。すなわち、計算点 i の近辺において、uhは次のように表される。  

( ) ( ) ∑
=

==
N

j
jj

Th apu
1

arpr        (2-47) 

基底ベクトル PTとしては最小二乗法系統のときと同様に、多項式の各項を用いる。ただ

し項数は影響半径内の計算点数 N と一致させる必要があるので、基底ベクトルはある次数

の多項式を完全に記述する形になるとは限らない。すなわち、たとえば N=7 の場合、uh

は次のようになる。  

( ) 3
76

2
5

2
4321 xayxayaxayaxaauh ∆+∆∆+∆+∆+∆+∆+=r    (2-48) 

 Δy3、Δ xΔ y2、Δx2Δy などの項を無視しているため、これは 3 次近似の完全系ではな

い。通常、計算点数が N であるとき、  N 個の基底は Fig.2.4に示すようないわゆるパスカ

ルの三角形を用いて選定される (3 )。Fig.2.4は 2 次元解析の場合であるが、3 次元解析の場

合はパスカルの三角形を拡張したいわゆるパスカルのピラミッドを用いる。  

  PIM では、uh がデルタ関数特性を満たすように設計される。すなわち、式 (2-47)で表さ

れる uhが、計算点 j における物理量 uj を通過するとき、ai に関して次の N 元連立方程式を

得る。  
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   (2-49) 

上式を解くことで、多項式近似に必要な各項の係数を求めることができる。以上が PIM

による離散化である。ここで、  
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],,[ 21 N
T aaa K=a        (2-51) 

],,[ 21 N
T

s uuu K=d        (2-52) 

とおくと、式 (2-49)は簡単に、  

sQ daP =         (2-53) 

となる。両辺に左から PQ
-1をかけることにより、  

sQ dPa 1−=         (2-54) 

が得られる。これを式 (2-47)に代入し、式 (2-1)と見比べてみると、uh を求めるための周辺

計算点の形状関数は次式で定義されることがわかる。  

[ ] 1
321

−=ΦΦΦΦ= Q
T

N PpΦ L      (2-55) 

ここで、ΦΦΦΦ  は周辺計算点の  Φ  を格納したベクトルを表す。PQ
-1は計算点配置が得られば決

まる定数行列であるから、形状関数の微分は PTの微分をすることに等しく、  

1−

∂
∂=

∂
Φ∂

Q

T
j P

r
p

r
        (2-56) 

である。式 (2-56)を式 (2-2)から (2-4)に代入することで、uhの勾配等を得る。  

最小二乗法系統のメッシュフリー法と比べると、PIM の特徴は uhが各計算点位置におい

てその計算点の物理量と完全に一致する、すなわちデルタ関数特性を満たす点である。た

だし最小二乗法系統の場合がそうであったように、PQの正則性は数学的に保証されていな

い。Fig.2.3に示したような計算点配置では、PIM の離散化も計算が破綻する。  
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また、PIM は uhがすべての uj を通過するため、計算点に重み付けを行う必要がなく、重

み関数を使用しない。そのため重み関数の選定に悩まされることもない。近似の次数は周

辺計算点数 N と同じであるから、結局パラメータとしては影響半径の大きさのみとなる点

が特徴として挙げられる。  

 

Fig. 2.4  多項式の各項を示すパスカルの三角形  

 

2.2.3 RPIM(Radial PIM)に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法  

最小二乗法系統の離散化や PIM による離散化は多項式近似を用いており、高精度な計算

が可能である。ただし欠点として、係数行列の正則性が保証されていないことが挙げられ

る。これに対し、基底として多項式を用いるのではなく、各計算点の相対距離に関する何

らかの動径関数を用いる方法が RPIM である。最大の特徴は、得られる係数行列の正則性

が数学的に保証されており、計算が破綻することがない点である (12) , (13)。  

いま、計算点 i における物理量 u の微分を求めたいとする。計算点 i を中心とする影響

半径内の計算点数を N とする。このとき、影響半径内で u が N 個の動径関数 Rj を用いて

次のように近似されるとする。  

( ) ( ) ∑
=

==
N

j
jj

Th aRu
1

arRr        (2-57) 

このとき、aj は各動径関数に対する係数である。Rj は計算点 j と計算点 i の相対距離 r i j を

用いて適当に作成された関数である。例えば Table 1に示すようなものがよく使用される。    

PIM がそうしたように、RPIM でも上式の uhが各計算点の uj を通過すると考える。例え

ば Gaussian(EXP)型の動径関数を使用するとして、影響半径内に 6 つの計算点が存在する

とき、1 番目の計算点に関して uhは次式を満たす。  

( ) ( ) ( ) ( )
( ) ( ) ( ) 6

2
165

2
154

2
14

3
2

132
2

121
2

111

expexpexp

expexpexp

acracracr

acracracruh

−+−+−+

−+−+−=r
    (2-58) 
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これと同様の式があと 5 つの計算点に関しても成立する。一般に影響半径内の計算点数が

N であるなら、次の N 元連立方程式を得る。  

sQ daR =         (2-59) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
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

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

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rRrRrRrR

rRrRrRrR

L

MMMMM

L

L

332211

2233222211

1133122111

R     (2-60) 

a と dsはそれぞれ式 (2-51)、 (2-52)と同様である。両辺に左から RQ
-1をかけることにより、 

sQ dRa 1−=         (2-61) 

が得られる。これを式 (2-57)に代入し、式 (2-1)と見比べてみると、uh を求めるための周辺

計算点の形状関数は次式で定義されることがわかる。  

[ ] 1
321

−=ΦΦΦΦ= Q
T

N RRΦ L      (2-62) 

RQ
-1は計算点配置を得ることができれば決まる定数行列であるから、形状関数の微分は RT

の微分をすることに等しく、  

1−

∂
∂=

∂
Φ∂

Q

T
j R

r
R

r
       (2-63) 

である。これを式 (2-2)から (2-4)に代入することで、uhの勾配等を得る。  

  RPIMは PIM と同様に、デルタ関数特性を満たす。また、式 (2-60)のようにして得られる

RQ は必ず正則であることが数学的に保証されていることが最大の特徴といえる。ただし

Table 1で示したような動径関数の線形結合で u を近似すること自体、数学的な根拠に基づ

いているわけではなく、結果として近似の精度は動径関数の形状に依存する。また Table 1

に示したように、考案されている主な動径関数はいくつかのパラメータを内蔵しているの

が常である。結局、ある問題に対し、どのような動径関数を用いるのが最適なのかを理解

することは非常に困難であり、その適切な選定は経験を要すると思われる。  

 

Table 1 RPIMで使用される代表的な動径関数  

名前  式  ユーザーによるパラメータ  

MQ ( )q

ijj CrR 22 +=  C、q 

Gaussian(EXP) ( )2exp ijj crR −=  c 
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TPS 
η
ijj rR =  η  

2.2.4 SPH(Smoothed Particle Hydrodynamics)に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法  

ここでは SPHに基づく離散化について述べる。SPHは一般的には単なる離散化の概念を

表すものではなく、その離散化に基づいて各計算点をラグランジュ的に取り扱うその解析

手順まで含めて SPHと呼ばれているが、ここではその核となる離散化部分についてのみ述

べる。  

物理量 uが、計算点 i の影響半径内で周囲の計算点からの形状関数の重ねあわせで式 (2-1)

のように表現できるとする。このとき、最小二乗法系統や PIM、RPIM などが形状関数Φ  j

に関する連立方程式を作成し、ガウスの消去法などを用いて陰的にこれを求めたのに対し、

SPH では予め決められた関数を用いて陽的に各Φ  j を決め打ちする。すなわち、SPH では

Φ  j は次のように表される。  

( ) ( ) jjj VW ∆−=Φ rrr        (2-64) 

ここで、ΔVj は計算点 j の体積を表す。また、W(r)はカーネル関数と呼ばれる動径関数で

あり、一般には W(0)で最大の値を取り、W(Ri )でゼロに漸近する釣り鐘型の形状をしてい

る。W(r)としてはさまざまなものが考案されているが、詳細は省略する。また、質点であ

る計算点のΔVj の算出であるが、SPHでは計算点をラグランジュ的に移動させるため、初

期状態での各計算点の体積が定義されていれば、あとはそれを使い続ければ良い。初期状

態での各計算点の体積の定義には任意性があるが、通常は解析対象をおおよそ等間隔に配

置された計算点の集合で離散化し、1 つの計算点の体積は全体積を総計算点数で除するこ

とで得られる。このように SPHでは、計算点が移動してもΔVj の算出を可能にしておく必

要性から、変数をラグランジュ的に扱うのが主であり、その扱い方も含めて SPHという手

法として説明される。  

  uhの微分はこれまでに述べたメッシュフリー法と同じく、式 (2-2)から (2-4)で表される。

すなわち形状関数Φ  j の微分値と uj の線形結合である。形状関数の微分は次式となる。  

( ) ( )
j

jj V
W

∆
∂

−∂
=

∂
Φ∂

r

rr

r

r
       (2-65) 

  通常、カーネル関数は数式で表現されるため、式 (2-65)中の偏微分の値も簡単に得られ

る。  

 SPHの特徴は、Φ  j を陽的に定義できる点である。そのため、他のメッシュフリー法で議

論されたような、行列の正則性の問題からは根本的に解放され、計算の安定性が高い。た
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だし、RPIM のときと同様に、uhの表現としてどのようなカーネル関数を用いるのがよい

かは一概には言えず、近似の精度はカーネル関数に依存する。特に式 (2-65)にあるように、

変数の微分はカーネル関数の微分と同型であるから、uj の分布が同じでも、カーネル関数

が大きく変われば微分値も大きく変化することになる。また、基本的に SPHで得られる形

状関数はデルタ関数特性を満たさない。加えて、ΔVj の算出の都合から、常に解析対象を

ある程度、均等な距離の計算点配置で模擬し続けなければ、高い精度が得られないという

問題点がある。そのため SPHに基づく数値解析では、常に計算点の配置が均等になるよう

な工夫が施される。しかし物体の表面においては、影響半径内の片側にしか計算点が存在

しないため、基本的に表面での計算精度の低下は避けられない。また、計算点の配置に大

きな粗密を設けられないがゆえ、特に 3 次元解析においては非常に多くの計算点を必要と

する。  

2.2.5 MPS(Moving Particle Semi-implicit)法法法法に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法に基づくメッシュフリー法  

ここでは MPS法に基づく離散化について述べる。MPS法も SPH法と同様に、その離散

化の精度を保つためには計算点配置を均等にしてやる必要があり、そのため計算点配置を

均等にする計算手順を含めて MPS法であり、単なる離散化概念のみを指す言葉ではない。

しかしここでは、その核となる物理量の離散化についてのみ述べる。  

これまでは、まず物理量 u が各手法でどのように表現されるかという点に重きをおいて

説明をしてきた。uhの表現形がわかれば、その微分系は単に uhを直接微分することで得ら

れた。しかし MPS法では、支配方程式を積分系で扱うことは少なく、常に微分系で扱うこ

ともあって、uhの表現形そのものはあまり論議されない。uhを明確に定義せず、例えばそ

の微分は一般に次式で示される。  

∑
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ここで、d は解析次元であり、2 次元解析時は d=2、3 次元解析時には d=3である。 ijw は

重み付き最小二乗法のところで述べたような重み関数であり、計算点 i に近いほど大きな
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値を持つように設計された関数である。 ijw としては式 (2-17)を用いてもよいが、一般によ

く使用されるのは次のようなものである。  

( )








≤<−

>
=

)0(1

)(0

i
ij

i

i

ijij Rr
r

R

Rr

rw       (2-69) 

また、 in は粒子数密度と呼ばれ、重み関数の総和として定義される。すなわち、  

∑
≠

=
ij

iji wn         (2-70) 

 式 (2-66)から式 (2-68)は、次のような考えに基づいている。いま、Fig.2.5に示したように、

計算点 i の周囲に 2 つの計算点 j 1と j 2が存在しているとする。ただし、r i j1 と r i j2 のなす角

が 90°であるとする。このとき、計算点 i の近傍で u が 1 次近似できるなら、 x 方向への

微分は計算点 i 上で次式で近似できる。  
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次に、Fig.2.6のように、8 つの計算点が周囲に存在している場合を考える。ただし図にあ

るように、それぞれ 2 つずつ、相対距離ベクトルが直行するペアが 4 組ある状態を考える。

このとき、式 (2-71)と同様にして、 x 方向への微分は、  
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のように表される。式中、式 (2-71)のようにして得られる xu h ∂∂ を 4 つ足しあわせている

ため、帳尻合わせとして 4 で除している。いま、周辺計算点数が 8 であるから相対距離ベ

クトルが直行するペアが 4 組でき、結果的に 4 で除したわけであるが、一般に周辺計算点

数が N(偶数であるとする )である場合には、 xu h ∂∂ は次式で表される。  
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さらに、3 次元解析時には、互いに直行するベクトルは 3 つで一組と数えるから、より一

般には式 (2-73)は次式となる。  
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       (2-74) 

上式において、各計算点に重み関数を用いて重み付けし、N の代わりに各重みの総和で除
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してやれば、これは式 (2-66)となる。y、 z方向も同様である。  

本来なら、この式は Fig.2.6にあるように、周囲の計算点配置が特別な場合でなければ成

立しない。しかし、多少の誤差を許容して、ある程度周囲の計算点が均等に配置していれ

ばこの式で微分を計算してしまおうというのが MPS法である。実際、式 (2-66)から (2-68)

を計算点配置が均等からわずかに乱れた配置に適応しても、極端に精度が悪くなるという

ことはない。  

 MPS法の特徴は、SPHと同じく、各計算点の形状関数を陽的に求められる点である。そ

のため安定な解析が可能となる。また、重み関数は単に重み平均として使用するだけなの

で、その選定が微分値の決定に大きく影響は及ぼさないと思われる。ただし MPS法ではこ

の重み関数を微分演算子の離散化以外にもさまざまな用途で利用しており、それらの影響

で結果的に解析全体としては精度が重み関数の選定に左右される。また、SPHと同様に解

析対象を均等な間隔の計算点で表現する必要があるため、表面において精度が低く、また

3 次元解析時には非常に多くの計算点を必要とする。  

このような問題があるにも関わらず、形状関数を陽的に計算できる利点は安定性の観点か

らは非常に魅力的であり、現在、自由表面を含む流体計算などに頻繁に利用されている。  

i

1j

2j  

Fig. 2.5  計算点 i の周囲に置かれた点 j 1と j 2 

i

1j

2j

3j

4j

5j

6j

7j

8j  

Fig. 2.6  計算点 i の周囲に置かれた 8 つの点  

2.3 メッシュフリー法における弱形式と強形式メッシュフリー法における弱形式と強形式メッシュフリー法における弱形式と強形式メッシュフリー法における弱形式と強形式  
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ここまでは、影響半径内での物理量やその微係数をどのように離散化するかという問題

に対し、いくつかの手法における取り扱いを説明した。さらに、離散化の手法が決まって

も、これを用いて支配方程式を弱形式で解く手法と強形式で解く手法とに大別され、今日、

非常に多くのメッシュフリー法が存在する。弱形式で解く手法として代表的なものはエレ

メントフリーガラーキン法 (2)などがある。これは離散化手法としては通常、移動最小二乗

法を用いるが、弱形式であるため体積積分が要求されるため、結局はなんらかのバックグ

ラウンドセルを用いる必要がある。また、物体の境界形状が複雑である場合にはそのバッ

クグラウンドセルの取扱いにも注意を払う必要がある。一方、強形式に基づく手法は積分

を行う必要がないため、取扱いが容易であるが、弱形式を行った場合に比べ、安定性や精

度の面で劣るといわれている。   

2.4 本研究で用いるメッシュフリー法本研究で用いるメッシュフリー法本研究で用いるメッシュフリー法本研究で用いるメッシュフリー法  

本研究では、重み付き最小二乗法によるメッシュフリー法を用いて流体解析を行う。理

由は、精度がよいことと、計算点の配置に均等性を強いないため、解像度の変化や計算点

の追加、削除などにも柔軟に対応できるためである。PIM や RPIM にも同様の利点が見い

だせ、しかもこの 2 つは形状関数がデルタ関数特性を満たすため、より高精度な解が期待

できると思われるかもしれないが、実際のところ、デルタ関数特性は流体の動解析におい

て逆に計算の不安定性を増加させる要因となる場合もある。動解析では、さまざまな数値

誤差が蓄積するため、各計算点の速度といった物理量は、計算が進むに連れて数値的なが

たつきを含んだものとなる。物理量近似がデルタ関数特性を満たす場合、そのがたつきを

正確に反映した分布となるため、その微係数の分布も数値的にがたつき、それが次のタイ

ムステップ時にはますますもとの物理量分布を滑らかではなくし、やがて数値的な不安定

性を招いてしまうことがある。特に PIM は、一般に重み付き最小二乗法を用いた場合に比

べ、形状関数の分布が急峻になりやすい。これは、計算点の物理量分布がなめらかなもの

から乱れたときに、得られる uh が大きく変動しやすいことを意味している。また、RPIM

はその計算結果が動径関数の選定に大きく依存するが、重み付き最小二乗法では重み関数

の選定の影響をあまり受けない。これらのことを踏まえて、本研究では重み付き最小二乗

法を採用するに至った。  

なお、基本的には重み付き最小二乗法よりも移動最小二乗法のほうが精度がよいとされ

ているが、支配方程式を弱形式として処理する場合は、領域積分をガウス積分により算出

するため、計算点が存在しない点においても物理量分布やその微係数が必要となる。その
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ため重みの中心を固定し続ける重み付き最小二乗法を用いた場合と、ガウスの積分点位置

に合わせて重みの中心をシフトできる移動最小二乗法を用いた場合では、精度の差が大き

く現れてくるものと予想される。しかし本研究では支配方程式を強形式で離散化する。す

なわち、計算点位置における物理量やその微係数の値がわかれば十分である。そして計算

点位置に限れば、重み付き最小二乗法で得られる結果と移動最小二乗法で得られる結果は

ほとんど変化しない。そのため本研究ではより扱いの単純な重み付き最小二乗法を採用し

た。  

ところで、物理量の近似として重み付き最小二乗法を用いた場合、影響半径内の計算点

数 N が基底の項数 mよりも小さい場合は、計算を行うことができないということはすでに

述べた。そこで本研究では、特に断りのない限り近似の最大次数を 3 次とし、2 次元解析

時には以下のルールに従い mを決定する。  

( )
( )
( )








<=
<<=
<<=

=
N

N

N

m

133

1362

631
       (2-75) 

 本論文で後に述べる解析は、比較的穏やかな流れの問題であるため、実際に計算を行な

っていて N<3になることはなかった。しかし、筆者が自信の研究を通して、本論文で取り

上げる事象以外にもさまざまなモデルに本手法を適応してみた結果、特に激しい流れを計

算する場合には、計算点の一部が飛散し、N<3 となってしまう場合があった。メッシュフ

リー法は物体を計算点の集合で再現する手法であるが、このように飛沫した計算点に関し

ては、もはや物理的に何かを表現しているとは言いがたい。そのような場合には、N<3 と

なるような計算点をメモリから削除することで対処した。本メッシュフリー法は各計算点

において SPHなどのように体積が与えられているわけではなく、その点において密度が定

義されているのみである。そのため、計算点の追加や削除を行なっても、それによって体

積保存則や運動量保存則が破られることはない。  
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第第第第 3 章章章章    メッシュフリー法による流体解析メッシュフリー法による流体解析メッシュフリー法による流体解析メッシュフリー法による流体解析  

3.1 本章の流れ本章の流れ本章の流れ本章の流れ  

  電磁流体現象の解析の説明に先立って、本章では自由表面を含む流体問題を重み付き

最小二乗法に基づくメッシュフリー法を用いてどのように計算しているかを述べる。この

手法は古くから研究されていたにも関わらず、自由表面を含む問題にはあまり用いられて

こなかったようである。その理由として、自由表面を含む流体の運動を計算するためには、

単に微分演算子が離散化できればよいというだけでなく、自由表面計算特有の難しさを解

決する必要があったからだと思われる。そこで本研究では表面判定や表面張力の計算、法

線ベクトルの算出、計算点の自動追加・削除など、種々の工夫を施し計算の精度と安定性

を向上させた。本章ではまず支配方程式について述べたあとに、おおまかな計算アルゴリ

ズムを示し、そのあとで筆者が導入したいくつかの工夫点を述べていく。その際、必要に

応じて実際の解析結果を交えて説明を行う。そして最後に、理論解が明らかになっている

簡単な問題に本手法を適応し、流体解析の計算精度を検証する。  

3.2 支配方程式支配方程式支配方程式支配方程式  

  本研究では非圧縮性流体を取り扱う。したがって支配方程式は次式に示す運動量保存則

と体積保存則となる。  

u
u 21 ∇+∇−= ν

ρ
P

Dt

D

       (3-1) 

0=⋅∇ u         (3-2) 

ここで、D/Dt はラグランジュ微分を表し、u は流体の速度ベクトル、 t は時間、 ρ は密度、

P は圧力、ν は動粘性係数である。なお、本研究では無重力空間における液滴を扱うため、

重力の影響は考慮しない。また、変数をラグランジュ的に扱うため、移流項の計算は不要

である。  

 表面張力による圧力は次式のヤング・ラプラスの式で表される。  

ssP γκ=
        (3-3) 

ここで、Ps は表面張力による圧力を、 sκ は表面形状の曲率を、 γ は表面張力係数を表す。

一般には、こうして求まった圧力 Psは CSF(Continuum Surface Force)モデル (1)を用いて体積

力 (単位体積あたりに働く力 )として扱われることが多い。しかし CSFモデルの場合、数値

的なスムージングの影響により、本来表面のみに働く表面張力が内部にも発生する結果が

得られ、精度はそれほど高くない。また、表面がある厚みを持った遷移層として計算され
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る VOF法や Level Set 法と異なり、本研究のように表面がシャープに表現されるような手

法の場合、CSFモデルを適応するためには何らかのかたちで表面の厚み
．．．．．

を定義してやる必

要がある。いま、この厚みを dδ とすると、働く体積力は次のようになる。  

in
d

s
s nf

δ
γκ=         (3-4) 

ここで、 fsは表面張力による体積力、n inは内向きの単位法線ベクトルを表す。表面の厚み

dδ に任意性がある点と、先述したように精度がそれほど高くない点を理由として、本研究

では CSFモデルのように表面張力を体積力として処理しない。その代わり、流体内部の圧

力 P を陰的に求める際、表面計算点において式 (3-3)で得られた圧力 Psをディリクレ型の境

界条件として用いるものとする。詳しい手順については後述する。  

3.3 流体計算アルゴリズム流体計算アルゴリズム流体計算アルゴリズム流体計算アルゴリズム  

3.3.1 計算点の位置と速度の更新計算点の位置と速度の更新計算点の位置と速度の更新計算点の位置と速度の更新  

 式 (3-1)、 (3-2)に基づいた各計算点の速度更新について以下に計算手順を述べる。まず、

式 (3-1)に対して半陰解法を適用する。すなわち、まず式 (3-1)から圧力項を無視した次式を

陽的に計算する。  

( )kk t uuu 2* ∇∆+= ν        (3-5) 

ここで、uk
は kステップ時の速度ベクトルを表す。またこのようにして得られた新しい速度 u*は、圧力

項を無視しているため正しい次ステップの速度ではない。そのような意味で、これを仮の速度と呼ぶ。 

仮の速度 u*は一般に式(3-2)を満足しない。そこで k+1ステップでの速度ベクトルは、次式に示すように、

u*に対して圧力勾配による速度修正を行ったものとする。 

P
tk ∇∆−=+

ρ
*1 uu        (3-6) 

uk+1
が式(3-2)を満たすとすると、上式の発散をとって、 

*2 u⋅∇
∆

=∇
t

P
ρ

        (3-7) 

が得られる。本研究では式(3-7)により圧力分布を求める際、流体表面に位置する計算点に対し、式(3-3)

の値をディリクレ型の境界条件として用いる。 

式(3-6)、(3-7)より速度が得られれば、k+1ステップ時の計算点の座標は 2次のルンゲクッタにより 

( )11

2
++ +∆+= kkkk t

uurr                    ....     (3-8) 
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として更新される。ここで rk
は kステップ時の計算点の位置を表す。 

3.3.2 表面の取り扱い表面の取り扱い表面の取り扱い表面の取り扱い  

 式(3-6)、(3-7)を用いて速度を更新した場合、何らかの数値誤差の蓄積は避けられない

ものの、基本的に各計算点の速度の発散はゼロに近い値をとる。しかしそれは、圧力を計

算した流体内部の計算点の場合であって、表面に位置する表面計算点に関しては、これら

の式より得られた圧力分布から速度を修正しても、速度の発散がゼロに近づくことは難し

い。通常は、計算が進むにつれて非常に大きな値となってしまう。しかし表面計算点の速

度発散が大きな値であっても、それが表面であるうちは問題がない。なぜならば、式 (3-7)

は内部計算点においてのみ計算されるため、表面計算点の速度発散の値は圧力分布に影響

しないからである。しかし計算が進むにつれ、さきほどまで表面であった計算点が次ステ

ップにおいて内部計算点になる場合もある。このとき、この計算点の速度発散の値は非常

に大きいために、計算される圧力値もまた、非現実的な分布を示す。結果、非常に大きな

圧力勾配によって、計算点は大きな速度を持ち、計算を破綻させてしまう。  

 そこで本研究では、表面計算点を、表面に位置する流体計算点とみなすのではなく、あ

くまで表面位置を示す質点とみなす。流体計算点ではないため、その速度は運動方程式に

従うのではなく、内部計算点からの補間により求める。具体的には、以下の手順により全

計算点の速度を更新する。  

①  式 (3-5)を用いて、内部計算点のみ仮の速度 u*を求める。  

②  u*を用いて、内部計算点の∇・u*を求める。その際、影響半径内において表面計算点

を除いた内部計算点のみで重み付き最小二乗法による速度場の近似を行う。  

③  式 (3-6)、 (3-7)により内部計算点の速度 uk+1を求める。  

④  各表面計算点の uk+1 を、その周辺の内部計算点を用いて重み付き最小二乗法による外

挿から算出する。  

このように、速度発散がゼロに近い内部計算点から速度を外挿することで、表面計算点の

速度発散を常に小さく保つことができる。  

3.3.3 表面判定方法表面判定方法表面判定方法表面判定方法  

 表面計算点では表面張力を計算したり、圧力のディリクレ境界条件を課したりするため、

全計算点のなかでどの計算点が表面に位置する表面計算点であるかを判定することは非常

に重要である。一般に MPS法や SPH法などでは、流体を表す計算点群がほぼ均等に配置

されていることを利用して表面判定を行う。例えば MPS法では、式 (2-70)で示した粒子数
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密度 ni が、ある基準より大きければ内部、小さければ表面であると判定する (2 )。これは、

表面計算点では影響半径内の計算点の数が極端に小さくなることを利用した方法である。

しかしこの方法は、計算点の配置に大きな疎密がないことを前提としている。また、閾値

の選定が難しく、表面が 2 層現れたりする場合もある。もともと MPS法や SPH法では、

微分演算子の離散化方法そのものがある程度の計算点分布の均等性を要求していたが、重

み付き最小二乗法を用いたメッシュフリー法では、計算点分布に疎密を持たせても精度の

よい解析が可能である。そのため、表面判定においても、疎密をもった計算点分布に対応

できる手法が望ましい。そこで本研究では、以下のようにして計算点の表面判定を行なっ

ている。  

  まず、全計算点において、計算点密度勾配ベクトル D を定義する。これは計算点が密に

存在している方角を指すベクトルであり、周辺計算点の形状関数の勾配を用いて定義する。

すなわち、2 次元解析の場合、  
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ここで、 i
xD 、 i

yD はそれぞれ計算点 i における D の x 方向成分、 y 方向成分を表す。また、

D の算出に関しては、影響半径内における自身の影響は無視し、また重み関数 wi j はすべて

1 として計算している。  

このようにして得られた D は、内部計算点においてはそれぞれの点において不規則な方

角を指しがちであるが、表面計算点においてはおおよそ内向き法線ベクトルと同じ方向を

指すことになる。参考のため、２次元の円形液滴を計算対象とした際の、各計算点の D 分

布を Fig.3.1に示す。ただし、Fig.3.1では D の大きさを正規化して、すべて同じ大きさの

矢印で表示している。  

  すでに述べたように、表面計算点において D はおおよそ内向き法線ベクトルと同じ方向

を指す。そこでもし、計算点 i が表面であるならば、Fig.3.2に示すように、影響半径内の

他の計算点はすべて D i と同じ方向に存在しているはずである。すなわち、周辺計算点 j に

関して、その相対距離ベクトルを r i j とおくとき、すべての点 j に関して、  

0>⋅
ij

ij

i

i

r

r

D

D         (3-11) 
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となるはずである。逆に言えば、式 (3-11)を満たさない周辺計算点がひとつでもあれば、

計算点 i は内部計算点であると判定できる。実際には、凹な形状を再現できることも考慮

して、あるパラメータ βを導入し、次式が成立する場合には表面計算点、成立しない場合

には内部計算点であると判定している。  

β>⋅
ij

ij

i

i

r

r

D

D         (3-12) 

本稿ではβ  = - 0.5を採用している。これは、おおよそ 120°の凹角まで表現できることを

意味している。β  が小さいほど鋭い凹角を再現できるが、計算点に疎密があったときなど

に誤差を含みやすくなる。  

D

 

Fig. 3.1  D の分布  (左  : 全体  右  : 拡大 ) 

i

表面計算点

内部計算点

計算点iにおけるD
 

Fig. 3.2  表面計算点における D と周辺計算点の位置関係  

3.3.4 曲率の算出と表面形状の修正曲率の算出と表面形状の修正曲率の算出と表面形状の修正曲率の算出と表面形状の修正  
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 表面張力による圧力は式 (3-3)で表され、各表面計算点における曲率の値が必要となる。

曲率を求めるには種々の方法が考えられ、最も頻繁に用いられるものは、法線ベクトルの

発散から定義するものである。しかしこの場合、曲率計算の精度は、発散という演算子の

離散化に伴う誤差の他に、法線ベクトルの算出に伴う誤差の影響も受ける。計算点群の座

標のみから法線ベクトルを精度よく算出することは簡単ではなく、そのため曲率分布は誤

差を多く含んだものとなってしまう。そこで本研究では、たとえば 2 次元解析において流

体の表面形状が局所的に y=f(x)とおけたとき、  

5.12

2

2

1














∂
∂+

∂
∂−

=

x

f

x

f

κ         (3-13) 

として計算する方法 (3 ) , (4 )を採用している。3 次元解析の場合は表面形状を z=f(x,y)とおいた

とき、  

( ) 












∇+

∇⋅−∇= 5.12
1 f

fκ        (3-14) 

として計算できる。表面形状 f は、表面計算点の座標を用いて重み付き最小二乗法により

近似する。  

 上記の方法だと、 f の勾配が大きい場合には一般に計算精度が低下する。その点を踏ま

えた計算手順を、2 次元解析を例に Fig.3.3に示す。まず、曲率を求めたい表面計算点 i の

計算点密度勾配ベクトル D i が y 軸に平行になるまで、計算点 i およびその周辺計算点の座

標を回転する。こうして得られた新しい座標系 YX ′′ において、各表面計算点の高さ y′を用

いて重み付き最小二乗法により近似曲面を定義する。式 (3-13)中の 1 階微分や 2 階微分な

どは式 (2-34)や式 (2-36)を参考にその近似曲面の直接微分により求める。この場合、式 (2-34)

や式 (2-36)における u が各計算点の高さ y′に相当することになる。こうして求められた曲

率をもとに表面張力による圧力 Psが式 (3-3)より得られ、その値は、前述したように、圧力

に関する方程式 (3-7)のディリクレ境界条件として使用される。  

  なお、本研究で定義しているベクトル D は、表面計算点においては内向き法線ベクトル

と概ね一致するが、それでも正しい法線ベクトルではない。本研究では表面張力を圧力の

ディリクレ境界条件としてスカラー型で使用するため、流体の運動を計算するにあたって

法線ベクトルは必要でないが、表面張力の計算に限らず、何らかの理由により表面計算点
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における正確な法線ベクトルが必要となるときもある。その場合には、本手法によって流

体の局所的な表面形状 f が多項式近似のかたちで求まっているのだから、それに垂直な単

位ベクトルを直接算出することで対応する。  

  ところで、重み付き最小二乗法による離散化はデルタ関数特性を有しないために、上記

のようにして得られた近似曲面は、表面計算点の位置を正確に通過するわけではない。本

研究では、流体の表面の位置というものを、表面計算点の実際の位置ではなく、それによ

って得られる近似曲面の位置であると捉えている。従って、毎ステップ終了後、表面計算

点 i に注目したとき、Fig.3.4にあるようにその位置を近似曲面上に移動する作業を行って

いる。図は誇張して書かれたものであり、実際に 1 ステップの間に移動する量は非常に小

さい。しかし毎ステップこの処理を行うことによって、数値誤差に起因する表面形状のが

たつきを防ぎ、安定な解析を行うことができる。  

i
D

i

D

Rotation

x

y

x′

y′

 

Fig. 3.3  曲率計算時の座標系回転 . 

近似曲面

表面計算点 表面計算点

i i
計算点i を

曲面上へ移動

 

Fig. 3.4  表面計算点の位置修正  

3.4 計算点の追加・削除計算点の追加・削除計算点の追加・削除計算点の追加・削除  

3.4.1 計算点の追加・削除計算点の追加・削除計算点の追加・削除計算点の追加・削除の必要性の必要性の必要性の必要性  

  メッシュフリー法で解析を行なっていると、時間が経つにつれて計算点が密になったり、

疎になる箇所ができてくる。影響半径内において周辺計算点が疎になると、計算が不安定

になる場合がある。また、計算点が密に集合していると、いわゆるクーラン数の関係で、
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時間刻み幅を小さく設定しなければならなくなる。これらの問題を解決するため、本研究

では、計算点が疎になった箇所には計算点を追加し、距離が近づきすぎた計算点は削除す

るような設計となっている。以下に、そのアルゴリズムについて簡単に説明する。  

3.4.2 計算点の追加計算点の追加計算点の追加計算点の追加  

 3.3.2 で定義した計算点密度勾配ベクトル D は、計算点が多く存在する方角を指すベク

トルである。ならば、その反対の方角が計算点の密度が低い方角であることを意味する。

そこで毎ステップの終了時に、全内部算点に関し次式で示す位置に新しい流体計算点を導

入することを試みる。  

i
ii

new L Drr −=         (3-15) 

ここで、 r i は計算点 i の位置ベクトル、 rnewは新しい計算点の位置ベクトルである。また

L i は本研究では平均解像度と呼ばれ、計算点 i におけるおおよその計算点間距離を表す。

また、表面計算点に関しては D が内向きを指すため、-D 方向に計算点を設置することはし

ない。むしろ表面付近での計算精度を向上させるためには、表面のすぐ内側にたくさん計

算点が設置されていたほうが都合がよい。そのため本研究では、表面計算点 i に関しては

次式で示す位置に新計算点を導入する。  

i
ii

new L Drr 5.0+=        (3-16) 

  本研究では毎ステップの終わりに式 (3-15)、(3-16)で示す位置に新計算点の導入を試みる

が、既存の計算点との距離が近すぎる場合には導入を行わない。具体的には、既存計算点

j との距離が次式を満たす場合には導入しない。  

jj
new L75.0<− rr        (3-17) 

また、 rnew が表面の外側に位置する場合も導入しない。これは表面判定のときと同様に

して、周囲の表面計算点 j に対し、  

0<
−
−

⋅
j

new

j
new

j

j

rr

rr

D

D
        (3-18) 

を満たしてしまう場合に、導入を行わないようにしている。  

 この手法を用いることで、計算点の密度が疎になった箇所に自動的に計算点が追加され、

安定な解析が可能となる。新計算点を導入することが決まれば、 rnew における物理量はそ

の周囲の計算点から重み付き最小二乗法近似により算出する。  

3.4.3 計算点の削除計算点の削除計算点の削除計算点の削除  

 通常、SPH法や MPS法だと、計算点同士が不必要に近づくと誤差が非常に大きくなる。
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重み付き最小二乗法に基づくメッシュフリー法の特徴として、このような場合でも特に誤

差が極端に大きくなるといったことがない点が挙げられる。極端な場合、計算点同士が重

なってしまっても、単にその位置における計算点の形状関数が重なった 2 つの点に分配さ

れるだけであり、特に問題にはならない。しかし計算点の距離が近づくと、その分、時間

刻み幅を小さく設定せざるを得ない。それを避けるために、本研究では内部計算点 i に注

目したとき、その影響半径内の計算点 j との距離が次式を満たす場合、計算点 i を削除す

る。  

iij Lr 2.0<         (3-19) 

3.5    解析の有効性や精度の検証解析の有効性や精度の検証解析の有効性や精度の検証解析の有効性や精度の検証  

3.5.1 2 次元非粘性液滴次元非粘性液滴次元非粘性液滴次元非粘性液滴の解析による本手法の有効性の確認の解析による本手法の有効性の確認の解析による本手法の有効性の確認の解析による本手法の有効性の確認  

 ２次元の非粘性液滴の振動する様子を解析し、大変形する自由表面問題に対する本手法

の有効性を確認する。ただしここでいう２次元とは円筒座標などでなく、紙面奥行き方向

に無限に続く２次元問題とする。液滴の物性値を Table 1に、解析諸元を Table 2にそれぞ

れ示す。重力を含むいかなる外力も働かないものとし、液滴に次式で示す初期速度を与え

て振動させた。  

Ayu

Axu

y

x

=
−=

        (3-20) 

ここで、ux、uyはそれぞれ速度の x 成分、y 成分を表す。ただし、液滴中心を原点としてい

る。また A は定数であり、大きいほど液滴が変形することになる。  

  液滴の初期形状を Fig.3.5に示す。表面を精度よく計算するため、内部の計算点に対し表

面計算点を倍の細かさで配置している。図中、青色の点が内部計算点、赤色が表面計算点

を示す。本稿で示す表面判定方法を導入することにより、表面が正しく一層のみ定義され

ていることがわかる。  

  Fig.3.6、Fig.3.7に、A=30000のときの液滴の形状変化および圧力変化を示す。液滴の変

形形状はほぼ楕円になる。液滴が変形すると、それを妨げるように表面張力が働き、それ

によって内部の圧力が変化している様子がわかる。メッシュを用いないため、液滴が大変

形しても容易に解析が行える。  

 さらに、A=50000のときのそれぞれの変化を Fig.3.8、3.9 に、A=70000のときのそれぞ

れの変化を Fig.3.10、3.11 示している。初速度が大きいと、液滴の変形は楕円形から離れ

たものになることがわかる。ただし A=70000時に関しては時間刻み幅を 5e-8(s)として計算
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した。  

 Fig.3.12は、A=50000のときの 10µs時の計算点配置である。液滴振動のように一方向か

らの圧縮を受けるような問題では、ラグランジュ的に計算点を移動させた場合、図にある

ように解像度の異方性が顕著に生じてしまう。つまり、液滴内部において、X 軸方向には

密に計算点が並んでいるが、Y 軸方向への配置は疎であるため、軸によって解像度が異な

り、計算が不安定になってしまう。  

例えば式 (2-20)の基底を用いて 2 次近似する場合、最低でも両軸方向に 3 層の計算点が

存在しなければ、行列が正則でなくなり、計算が破綻してしまう。しかし本研究では 3.4.3

で説明したように、X 軸方向に計算点が密になれば適宜、それを削除し、逆に Y 軸方向に

計算点の配置が疎になった箇所には計算点が追加されるしくみになっている。そのときの

様子を Fig.3.13に示す。実際、このしくみを導入しないと、すぐに計算が破綻してしまっ

たが、計算点を自動追加することで、解析を続けることができる。  

 

 

 

 

 

 

Table 1 物性値 

密度 (kg/m3) 1000 

粘性係数 (Pa・s) 0 

表面張力係数 (N/m) 0.07196 

初期半径 (µm) 35 

 

 

Table 2 解析諸元 

時間刻み幅 (s) 1e-7 

初期平均解像度(m) 1.4e-6 
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Fig. 3.5  初期計算点配置  

 

Fig. 3.6  A=30000時の形状変化および表面判定 . 

左から t=0,18,36,54,72,90 (µs)  

 

Fig. 3.7  A=30000時の形状変化および圧力分布 (Pa). 

左から t=0,18,36,54,72,90 (µs)  



 44

 

Fig. 3.8  A=50000時の形状変化および表面判定 . 

左から t=0,18,36,54,72,90 (µs)  

 

Fig.3.9  A=50000時の形状変化および圧力分布 (Pa). 

左から t=0,18,36,54,72,90 (µs)  

 

Fig.3.10  A=70000時の形状変化および表面判定 . 

左から t= 0,26,44,63,91,112 (µs) 
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Fig.3.11  A=70000時の形状変化および圧力分布 (Pa). 

左から t= 0,26,44,63,91,112 (µs) 

 

Fig.3.12  A=50000時の計算点配置  (10µs時 ) 

 

Fig.3.13  計算点の追加および削除   左から、 t=10,14,18(µs) 

3.5.2 3 次元非粘性液滴次元非粘性液滴次元非粘性液滴次元非粘性液滴の解析による本手法の精度の確認の解析による本手法の精度の確認の解析による本手法の精度の確認の解析による本手法の精度の確認  
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 計算の精度を検証するために、さきほどの問題を 3 次元に拡張して計算を行った。非粘

性液滴が外力のない環境下で振動するとき、その振動数 f r は次式で示されることがわかっ

ている (5 )。  

M
fr 3

322 πγ=         (3-21) 

ここで、M は液滴の質量である。式からわかるように、 f r は振動の振幅に依らない。初期

半径 35µm の液滴の場合、上式から計算される振動の周期は 5.42e-5(s)となる。  

 式 (3-21)が成立するのは、振動の振幅が小さい場合に限られる。そこで、あまり振幅を

大きくしないよう、本稿では次式で示す初期速度を与えて解析を行った。  

zu

yu

xu

z

y

x

200

100

100

=

−=
−=

        (3-22) 

このときの液滴形状を Fig.3.14に示す。図からわかるように、液滴の形状はほぼ楕円体と

なる。そこで、離心率 (長軸÷短軸 )の時間に対する変化をプロットしたものを Fig.3.15 に

示す。図より、液滴の振動の周期は約 5.45e-5(s)と読み取れ、理論解である 5.42e-5(s)と非

常に近い値であることがわかる。  

最後に、粘性液滴の数値解析を行った。動粘性係数の値としては 1e-6[m2/s]を用いた。

そのときの離心率の変化を Fig.3.16に示す。図より、粘性により振動が時間とともに指数

関数的に収まっていく様子がわかる。  

 

Fig. 3.14  3次元非粘性液滴の形状変化 . 
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Fig. 3.15  3次元非粘性液滴の離心率 . 

 

時間[sec]

離
心
率

 

Fig. 3.16  3次元粘性液滴の離心率 . 

3.6    本章のまとめ本章のまとめ本章のまとめ本章のまとめ  

重み付き最小二乗法を用いて、メッシュフリーで流体の自由表面問題を解く手順を説明

した。もともと、この手法は自由表面を含まない流体問題に関しては以前から利用されて

きたものである。それを自由表面問題に拡張するにあたり、本研究では精度と安定性の観

点から以下の技法を導入した。  

 

ⅰ）  式 (3-9)、 (310)で定義される計算点密度勾配ベクトル D を用いて表面判定することに
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より、正しく一層の表面計算点を得られるようにした。  

ⅱ）  表面形状を多項式近似し、式 (3-13)、 (3-14)により曲率を算出した。  

ⅲ）表面張力の値は外力項として用いるのではなく、圧力を解く際の境界条件として使用

した。  

ⅳ）表面計算点は単なる境界を表す点と考え、その速度は内部計算点からの外挿で求めた。  

ⅴ）液滴内部において、計算点配置が疎になった箇所には計算点を追加し、密になりすぎ

た箇所では計算点を削除することで、解析の安定性を保つようにした。  

 

  これらの技法を導入したものを用いて、自由振動する液滴の挙動を解析した。メッシュ

を用いないため、液滴が大きく変形しても問題なく解析を行うことができた。さらに、３

次元非粘性液滴の振動の周期を理論解と比較したところ、非常に近い値を得ることができ、

本手法による解析の有効性が示された。  
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第第第第 4 章章章章    メッシュフリー法による電気流体現象の解析メッシュフリー法による電気流体現象の解析メッシュフリー法による電気流体現象の解析メッシュフリー法による電気流体現象の解析  

4.1 重み付き最小二乗法による電場解析重み付き最小二乗法による電場解析重み付き最小二乗法による電場解析重み付き最小二乗法による電場解析  

3 章にて、メッシュを用いず計算点のみで流体解析を行う手順について述べた。ここで

は、2 章で示した重み付き最小二乗法に基づくメッシュフリー法を電場解析に応用する方

法について簡単に述べる。また、本章では一様電界中におかれた水滴の挙動変形を解析す

る。解析の初期モデルを Fig.4.1に示す。ただし重力はないものとする。  

 

4.1.1 支配方程式支配方程式支配方程式支配方程式  

本章では電磁場解析のうち、静電場のみを扱う。また、水滴は完全に誘電体であるとし、その導電率

はゼロであり、いかなる真電荷も存在しないものとする。よって支配方程式は電位に関するラプラス方

程式となる。 

( ) 0=∇⋅∇ φε
  ...........................................................     

(4-1) 

ここで、φは電位を、ε  は誘電率を表す。電位の勾配より電界を得、それを用いて単位面積

あたりの静電応力として次式を用いる。  

( )( )22*22
02

1
tnitnos EEEEf −−−= εε

 
         (4-2) 

ここで、fsは単位面積あたりの静電応力、ε0は真空の誘電率、ε∗は水滴の比誘電率、Etは電

界の接線方向成分を表す。電界の法線方向成分は水滴界面において空気側と水滴側とで不

連続になり、それぞれ Eno、En iと表している。なお、本稿における液滴は真電荷を有しな

いため、接線方向の応力は発生しない。  

なお本研究では、式 (3-3)で表される表面張力による応力と式 (4-2)で表される静電応力を

合わせたものを、水滴内部の圧力分布を求める際のディリクレ型境界条件として使用して

いる。  
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Fig. 4.1  解析初期モデル  

 

4.1.2 離散化離散化離散化離散化  

本章では式 (4-1)のラプラス方程式を陰的に解く。電位は計算点 i の近傍で多項式近似さ

れる。ただしそのときの基底は式 (2-20)などではなく、1 を除いた式 (2-43)などを使用する。

これは、計算点 i に関して作成された電位の近似曲面が、少なくとも計算点 i の電位φ ιだけ

は必ず通る曲面であることを意味する。  

式 (4-1)を離散化して得られる係数行列 M の i 行 j 列は式 (2-39)を参考に次式となる。  
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     (4-3) 

ここで、M i j は M の i 行 j 列を、 ε  ι、 ε  j は計算点 i、 j の誘電率を表す。また、式 (4-3)は M

の非対角成分を表し、対角成分はその非対角成分の総和で表す。このようにして得られた

行列は非対称疎行列となる。その解法には対角スケーリングつき BiCGStab2法を用いる。 

 ところで、差分法でも有限要素法でも、通常はラプラシアンを離散化して得られる係数

行列の対角成分は、すべて負になる。しかし重み付き最小二乗法によるメッシュフリー法

で離散化すると、ときどき対角成分が正の値をとることがある。このような場合、
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BiCGStab2法の収束が遅くなるだけでなく、得られる答えも大きな誤差を含んだものとな

っている場合がある。これは周囲の計算点配置に対し、必要以上に高次の離散化を行った

ときに現れ、むしろ近似の次数を落とした方が精度・安定性の面で適している場合が多い。

そこで本稿では、計算点 i に対し求まった M i i が正であった場合、近似の次数 m をひとつ

落として再計算している。最終的に 1 次近似まで落ちてしまった場合は、通常だとラプラ

シアンを離散化することはできないが、メッシュフリーに差分法の考えを取り入れること

で、擬似的に 1 次近似でもラプラシアンを離散化することが可能である (1 )。本稿でも文献

(1)を参考にこの技法を取り入れているが、説明は省略する。  

  式 (4-1)を解くことで各計算点の電位が得られたら、それの勾配を取ることで電界ベクト

ルが求まる。ただし式 (4-2)に示したように、流体表面では電界ベクトルが流体側と空気側

の 2 種類存在する。たとえば Enoを得たい場合、影響半径内に存在する計算点のうち、流

体内部の計算点を無視して電界ベクトル Eoを算出する。それと外向き単位法線ベクトル n

との内積を取ることで、Enoを得る。Enoが得られれば、Eniは比誘電率との関係から次式を

用いて算出される。  

noni EE
*

1

ε
=

 
         (4-4) 

また、Etは電界ベクトル Eoを用いて次式で求められる。  

nEtE ⋅−=⋅= nooot EE
 
         (4-5) 

4.1.3 空気計算点の生成空気計算点の生成空気計算点の生成空気計算点の生成  

  メッシュフリー法で電磁場解析を行う場合、メッシュを用いずにどのようにして空気計

算点を生成するかが問題となる。これに関する本研究での取り扱いを以下に述べる。なお、

実際の解析結果を交えて説明を行う。解析モデルは Fig.4.1に示したものである。  

いま、水滴に関してはすでに計算点群で表現されているものとする。これに対し、まずは解析領域端

に適当な間隔で空気計算点を設置する。この段階での計算点の配置を Fig.4.2に示す。 

次に、境界上のある計算点 i に注目したとき、その計算点位置における平均的な計算点間距離 Liを算

出する。Liは厳密に隣点との距離である必要はなく、その点における解像度を表す目安である。そして

すべての計算点に対し、影響半径 Riの大きさはこの Liの定数倍とする。すなわち、 

ii RLR =
 
                                   (4-6) 

本稿ではすべての計算点に対し、R=2.8としている。 

次に、境界上の各計算点に対し、法線方向に空気計算点を生成する。その際、Fig.4.3に模式的に示す
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ように、Liと粗密パラメータβを用いて、空気計算点の間隔が界面から離れるにつれて大きくなるよう

に設定する。本稿では全法線ベクトルに対し、β=1.15としている。生成された空気計算点 j の平均計算

点距離は単純にそのときの間隔を採用している。すなわち、計算点 i から n 回目に生成された空気計算

点 j の Ljは、 

i
n

j LL β35.0=
 
     (4-7) 

とする。影響半径は式(4-6)より決定される。 

単純に法線方向に空気計算点を追加したのでは、そのまま液滴内部や解析領域の外にも点を設置して

しまう。従って、法線が交差したり、境界に侵入するようなときに、法線方向への点群の設置を中止す

る必要がある。本稿では以下のいずれかの条件を満たしたとき、境界計算点 i に関してそれ以上法線方

向に空気計算点を生成しないものとする。 

 

ⅰ）既存の計算点のごく近辺に設置してしまうとき。具体的には、新しく設置した空気計算点 j と既存

の計算点 m(空気とは限らない)との距離が以下の関係式を満たすとき、点 j の設置を諦め、計算点 i の法

線上にそれ以上点を追加しない。ただし、|r jm|は点 j と mの相対距離を表す。 

mjmjjm LrLr 3.0 3.0 <∧<
 
     (4-8) 

ⅱ）新点 j が物体の境界や解析領域を乗り越えて設置されたとき。具体的には、Rj内に境界計算点 mが

存在したとき、その単位法線ベクトル nmと相対距離 r jmが以下の条件を満たすとき、点 j の設置を諦め、

計算点 i の法線上にそれ以上点を追加しない。 

0>⋅
jm

jm
m

r

r
n

 
     (4-9) 

ただし、rjmは点 j から mに向かう相対位置ベクトルとする。 

このようにして得られた計算点分布を Fig.5に示す。この状態でも計算は可能であるが、精度を向上

させるため、さらに計算点の配置を細かくすることを考える。具体的には、 

境界上の点から n回目に生成された空気計算点群と n+1回目に生成された空気計算点群の中点に、新点

を導入する。その様子を模式的に示したものを Fig.6に、実際に計算された計算点配置を Fig.7に示す。

ただしここでも、式(4-8)、(4-9)を満たす場合は新点を導入しない。新点 i の Liは中点を計算するために

選んだ 2点の平均とし、影響半径は式(4-6)で定める。 

  最後に、各空気計算点において、計算点密度勾配ベクトル Dを定義する。これは第 3章にて述べたも

のと同一である。Diは計算点の配置が密になっている方角を表すから、その反対方向は計算点の配置が

疎になっている方角である。その方角に Liだけ離れた箇所に新点を生成する。ただし式(4-8)、(4-9)を満
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たす場合は導入しない。得られた計算点配置を Fig.8に示す。ただしここでの新点 j の Ljは、既存の周

辺計算点の Lの分布から最小二乗法により補間して求めている。 

本稿では各タイムステップにおいて以上のプロセスを行い、空気計算点をその都度生成

する。  

 

 

Fig. 4.2  計算点配置 (境界のみ ) 左 :全体  右 :液滴周辺 . 

計算点数=2685 

Boundary

Node

iLβ35.0 iL235.0 β iL335.0 β iL435.0 β

iL

iL i

Normal line of node i.
 

Fig. 4.3  法線ベクトル方向への空気計算点の生成  
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Fig. 4.4  法線方向への計算点追加。  左 :全体  右 :液滴周辺  

計算点数=9651 

 

Fig. 4.5  中点への計算点の追加  

 

Fig. 4.6  中点への新点追加後。  左 :全体  右 :液滴周辺  
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計算点数=19050 

 

Fig. 4.7  -D i 方向への新点の追加後。  左 :全体  右 :液滴周辺  

計算点数=19971 

 

4.2 解析結果解析結果解析結果解析結果  

本稿では、一様電場中に置かれた水滴の挙動を解析する。モデルの初期寸法は Fig.4.1に示した。解

析領域の底面部と上面部にそれぞれ符号の異なる電位 Vのディリクレ型境界条件を課した。側面部は自

然境界条件とした。中心には半径 35µmの水滴が静止している。ただし本稿での解析はすべて奥行き無

限大の 2次元解析とする。また、液滴は誘電体であり、真電荷は有していないものとする。解析条件を

Table 1に示す。 

解析領域下部に-4000[V]、上部に 4000[V]の境界条件を与えたときの水滴の挙動を Fig.4.8に示す。Y

方向への一様電場の影響を受けて、液滴が縦に振動していることがわかる。ただし青点が内部計算点、

赤色が表面計算点を表す。また、このときの空気計算点を含めた全計算点の分布を Fig.4.9に示す。青色

の点が流体計算点、水色の点が空気計算点を表している。同じ時刻の液滴周辺における計算点分布を拡

大して Fig.4.10に示す。液滴が変形しても、その形状に沿うようにして空気計算点が生成されているこ

とがわかる。 

次に、電位分布、静電応力分布、圧力分布をそれぞれ Fig.4.11、4.12、4.13に示す。Fig.4.11からわか

るように、電位分布は一様電界のそれとは異なり、液滴の存在によりわずかに歪んでいる。そのため液

滴の表面には応力が働く。ただし液滴表面における電位の歪を見やすくするため、コンター図の最大値

と最小値を調節している。静電応力は液滴表面の上下の極付近において大きな値を取り、液滴を縦に引

き伸ばす役を果たしている。極付近においてははじめ、表面張力よりも静電応力が優っているため、圧

力は負の値をとる。一方、赤道部は静電応力が弱く、表面張力が支配的となり、圧力は正の値をとる。
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結果、液滴は赤道部が押され、極部が引っ張られるかたちで縦に変形する。液滴が十分に変形すると、

極付近では静電応力よりも表面張力のほうが大きくなり、縦に伸びた液滴形状は，元の円形に戻ろうと

する。 

表 1 解析条件 

Table 1 analysis condition. 

密度[kg/m3] 1000 

粘性係数[Pa・s] 0.001 

表面張力係数[N/m] 0.07196 

時間刻み幅[s] 1e-7 

1stepあたりの CPU time[s] 約 10 

CPU (Intel Core i7) [GHz] 3.3 

 

 

(a) t=0                    (b) t=51sµ               (b) t=103 sµ  
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(d) t=156 sµ             (e) t=208.5 sµ               (f) t=261 sµ  

Fig. 4.8  流体形状  

 

(a)t=0                    (b) t=51sµ               (c) t=103 sµ      

 

(d)t=156 sµ             (e) t=208.5 sµ               (f) t=261 sµ  
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Fig. 4.9  計算点配置  

 

(a)t=0                                  (b) t=51sµ  

 

(c)t=103                                 (d) t=156sµ  

 

(e)t=208.5                                (f) t=261 

Fig. 4.10  液滴周辺の計算点配置  
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(a)t=0                    (b) t=51sµ               (c) t=103 sµ    

 

 

(d)t=156 sµ             (e) t=208.5 sµ               (f) t=261 sµ  

Fig. 4.11  液滴周辺の電位分布 [V] 
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(a)t=0                    (b) t=51sµ               (c) t=103 sµ  
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(d)t=156 sµ             (e) t=208.5 sµ               (f) t=261 sµ  

Fig. 4.12  静電応力分布 [N/m2] 

 

 

(a)t=0                    (b) t=51sµ               (c) t=103 sµ  
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(d)t=156 sµ             (e) t=208.5 sµ               (f) t=261 sµ  

Fig. 4.13  圧力分布 [N/m2] 

 

4.3 解析精度解析精度解析精度解析精度  

解析の初期モデルは単に一様電場中に奥行き無限大の誘電体(水滴)円柱が置かれている状態である。

このときの電位分布は理論上、次式のようになることが知られている(2)。 
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ここで、E0は液滴から十分離れた一様電界強度を、Vo、Viはそれぞれ液滴の外側と内側の電位を表す。

また、Rは液滴の半径、r は液滴中心からの距離、θは Y座標からの偏角を表す。また、ε∗は水滴の比誘

電率を表す。この式より、水滴表面における空気側への電界強度 Enは 

2
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0
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r

ER
EEn

θαθ +=       (4-11) 
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となる。Fig.4.14に、水滴表面においての電位に関する理論解 Voと解析結果 Vとの比較を示す。図中、

横軸θは Y座標からの偏角を表す。また縦軸は、両者の差を解析結果の値で除した誤差を表示している。

誤差は電界が集中する極付近で最大となるが、それでも 0.25%の範囲内におさまっていることがわかる。 

  次に、水滴表面における空気側への電界強度 Enの比較を Fig.4.15に示す。図から読み取れるように、

解析値には 10%ほどの誤差が見られる。 

 重み付き最小二乗法で離散化する際、解析領域端などでは影響半径内の片側にしか計算点が存在しな

い。このような状況で高次近似すると解が不安定になり、単に 1次近似したときよりも精度が低下する

場合がある。水滴表面付近において、電位分布を求める際は、影響半径内には空気計算点および流体計

算点の両者が存在しているので問題はないが、そのあと空気側の電界強度 Enを求める際には、影響半径

内に存在している計算点のうち、内部流体計算点はその影響を除外して近似曲面を作成する必要があ

る。すなわち、解析領域端における精度低下と同じ問題が生じることになる。すでに述べたように、本

研究では近似曲面のラプラシアンを計算した際、行列の対角成分が正であった場合、近似の次数 mをひ

とつ落として再計算するが、そうして得られた m が電位を求めた際のそれよりも低次となる場合があ

り、電界精度の低下につながったと思われる。また、本研究では電場解析時の影響半径の大きさを式(4-6)

で計算しており、Rの値としては 2.8を用いている。これを小さくすれば精度の向上が見込まれる。実

際、R=2.4としたときの結果を Fig.4.16に示す。解析結果と理論解の差が小さくなっていることがわか

る。しかし、基本的に影響半径は小さい値を用いれば精度がよいが、そのぶん解が不安定になる。実際、

R=2.4とした場合は初期形状においては精度がよいが、あまり長時間、解析を行うことができなかった。 

( )radθ

V

VV o−

 

Fig. 4.14  水滴表面における電位分布の解析誤差  
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Fig. 4.15  水滴表面における電界分布の解析誤差 (R=2.8) 

解析値

理論値

( )radθ

( )mVEn /

 

Fig. 4.16  水滴表面における電界分布の解析誤差 (R=2.4) 

4.4 まとめまとめまとめまとめ  

流体が自由表面を有し、大変形する電磁流体問題に対する数値解析手法として、重み付き最小二乗法

によるメッシュフリー法の使用を提案した。また、そのための空気計算点の生成方法についても述べた。

手法の精度および有効性を調べるため、これを一様電場中におかれた水滴の挙動解析に適用した。その

結果、大変形する電磁流体現象に関して、本手法が有効的な手段と成りうるという結論を得た。 

従来の差分法に Level Set法や VOF 法を適応したもの、あるいは有限要素法に ALE 法を

適応した手法などに比べて、本手法が持っている利点を挙げると次のようになる。  
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①  メッシュを用いないため、メッシュが生成できずに計算が破綻することがない。  

②  あるメッシュが空気メッシュなのか流体メッシュなのか、その判定に気を配る必要がな

い。  

③  有限要素法では電界ベクトルが計算点上ではなく、各メッシュの重心で定義されるため、

静電応力もメッシュ重心にて定義される。そのため各計算点に働く静電応力を算出する

には、メッシュ重心で定義された応力分布から何らかの平滑化を用いる必要があり、制

度の低下の要因となっていた。しかし本手法では各計算点にて電界および応力が定義さ

れるため、そのような精度の低下がない。  

④  界面の位置は表面計算点の位置で正確に表現されるため、VOF 法や Level Set法のよう

に静電応力の分布が界面定義の不正確さによる数値拡散の影響を受けることがない。  

⑤  有限要素法では各メッシュ内で一定の誘電率や等磁率を使用するため、非線形問題を考

える際、メッシュを介してこれらの分布が不連続に定義されてしまう。しかし本手法で

は計算点上でこれらの値を定義し、計算点以外の箇所では計算点上の値から補間を行う

ため、物理量の不連続が生じない。  

⑥  計算点をラグランジュ的に移動させるため、流体運動方程式中のいわゆる移流項を考え

る必要がなく、その数値的な取り扱いに起因するさまざまな誤差から開放される。  

 

電場問題の精度は、空気計算点の配置やその物理量近似のレベルに強く依存する。すなわち、主に空

気計算点に関して、計算点配置、各計算点の影響半径、近似の次数の 3つが非常に重要な因子となって

くる。電磁流体現象をメッシュフリーで扱おうとする本研究の難しさは、支配方程式をメッシュフリー

で離散化することではなく、むしろこの 3つのパラメータをどのように考えるべきかという点にある。

感や経験に寄らない手法の確立を目指すのであれば、この 3つのパラメータを何らかのかたちでコンピ

ュータに能動的に決定させるいわゆるアダプティブ法の導入が必要である。 

あるいは、もし空気計算点そのものを必要とせずに電場計算が実行できるのであれば、このような問

題に悩まされることもなくなる。次章ではそのような連成解析手法について述べる。 

4.5 参考文献参考文献参考文献参考文献  

(1) G. Shobeyri, M.H. Afshar,” Corrected discrete least-squares meshless method for simulating free surface flows”, Engineering 

Analysis with Boundary Elements 36 (2012) 1581–1594. 

(2) 竹山 説三,” 電磁気学現象理論”,  丸善,1949. 
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第第第第 5 章章章章    メッシュフリー法と境界要素法の連成解析メッシュフリー法と境界要素法の連成解析メッシュフリー法と境界要素法の連成解析メッシュフリー法と境界要素法の連成解析  

5.1 境界要素法との連成による利点境界要素法との連成による利点境界要素法との連成による利点境界要素法との連成による利点  

3 章にて、重み付き最小二乗法に基づくメッシュフリー法による流体解析について述べ

た。4 章ではこれに対し電場解析手法も同じメッシュフリー法にて解くことを試みたが、

本章では、流体解析は 3 章にて説明したメッシュフリー法で行い、電場解析を境界要素法

で計算する手法について報告する。  

4 章では電場解析をメッシュフリー法で解いたが、支配方程式を微分系のまま扱ったた

め、空間全体に空気計算点を生成しなければならなかった。通常、有限要素法だとデロー

ニ分割により空間全体にメッシュを作成する。また、そのとき必要な空気計算点はそのす

べてをユーザーが用意する必要はなく、コンピュータが適宜生成してくれるアルゴリズム

の研究も盛んに行われている。しかしメッシュフリー法にて空気計算を生成する場合は、

メッシュフリーである以上、デローニ分割は使用できない。メッシュという概念を用いず

に空間全体に空気計算点を生成する汎用的なアルゴリズムは、著者の知る限りにおいては

存在せず、従ってその生成はある程度の経験や問題に依るパラメータなどを用いて行わざ

るを得なかった。しかし電磁場問題における微分方程式の解の精度は主に空気計算点の配

置に強く依存するため、結局、どのようにして空気計算点を生成するかという問題が常に

ユーザーを悩ませることになる。  

これに対し、境界要素法 (1 ) (2 )は物体表面のみを離散化し、空気計算点を一切必要としな

い手法である。そのため空気計算点をどのように配置すべきかという問題から根本的に解

放される。もちろん、空気計算点の配置が不適切であったために解の精度が下がるという

心配もない。流体解析で使用した計算点群に対し、新たに新しい計算点を生成する必要も

ないため、連成にも適していると思われる。すなわち、流体計算点を用いて重み付き最小

二乗法により流体解析を行ったあと、流体の表面計算点を使って表面メッシュを作成する。

そのメッシュを用いて境界要素法により各表面計算点における静電応力を算出し、それを

次ステップの流体解析に反映する、ということを繰り返すのが、本手法の大まかな流れと

なる。  

ところで、1 章にて解析にメッシュを用いると、その生成に時間がかかること、生成ア

ルゴリズムがメッシュの生成に失敗して計算が停止してしまうことがあること、メッシュ

の材質判定などの際に界面の破壊などの悩ましい問題が起こることなどを指摘した。境界

要素法は物体（本研究では流体）の表面をメッシュ分割する必要があるため、境界要素法
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を使用することは 1 章でのこれらの指摘に反するように思われるかもしれない。しかし実

際は、メッシュを生成するのは表面だけであるため計算時間はあまり問題にならない。ま

た、メッシュ生成時のアルゴリズムエラーに関しては、そのほとんどが空気計算点を自動

生成する際に発生する。しかし境界要素法は空気計算点を使用しないためにこのようなエ

ラーは回避される。実際、著者は自身の研究を通して、境界要素法のメッシュ生成時にア

ルゴリズムが停止するということはなかった。また、空気メッシュが存在しないために、

流体メッシュと空気メッシュの界面で、界面形状がユーザーの意図に反したものとなる危

険性もない (Fig.1.2参照 )。これらの理由より、境界要素法を使用してもメッシュフリー法

の利点を損なわず、かつメッシュ法の欠点も引き継がないような解析手法の実現が可能で

あると考えられる。  

次に本章の構成について述べる。本章ではまず始めに境界要素法を用いた電場解析につ

いて述べたあとに、それとメッシュフリーの流体解析手法との連成について述べる。そし

てそれを用いた電磁流体現象の数値解析の精度を検証する。精度の検証には、予め理論解

が明らかとなっている問題を用いたが、これは流体を誘電体ではなく、導電率が無限大の

完全導体と近似しているため、本研究でも精度の検証部分に関しては、流体を完全導体と

して扱った。  

また、流体の導電率を無限大とするのではなく、ある有限の値を用いて計算することで、

クーロン分裂と呼ばれる現象の数値解析も行った。まずはクーロン分裂という現象につい

て述べたあとに、その数値解析結果についても本章にて報告する。  

5.2 境界要素法による電場解析境界要素法による電場解析境界要素法による電場解析境界要素法による電場解析  

5.2.1 支配方程式支配方程式支配方程式支配方程式  

本節では境界要素法による電場解析について述べる。ただし、説明は特に断らない限り

3 次元解析について述べる。また、始めに流体を完全導体と近似した場合の解析について

述べる。  

支配方程式は次式に示すように、電位に関するラプラス方程式である。  

02 =∇ φ
  ...................................................................     

(5-1) 

ここで、 φは電位を表す。また、流体を導体近似するため、解析領域は空気領域のみとな

り、支配方程式は上式にあるように誘電率を含まない形で表現できる。電位の勾配より電

界を得、それを用いて単位面積あたりの静電応力 feとして次式を用いる。  
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2
05.0 noe Ef ε=

  ..........................................................     
(5-2) 

流体を完全導体と近似するため、電界はすべて界面に垂直であり、また流体内部に電界は

存在しない。  

境界要素法は有限要素法と違い、対象の境界のみを離散化する手法である。要素形状と

しては有限要素法と同様に三角形要素、四角形要素などがあり、次数に関しても一定要素、

1 次要素、2 次要素などが使用されるが、 本研究では三角形 1 次要素を用いて解析を行う。  

境界要素法で式 (5-1)を離散化するにあたり、理論の出発点となるのはグリーンの第二定

理である。これは、Fig.5.1に示すように、境界 Γで囲まれたある領域 Ω内において微分可

能な任意の関数 φ、 *φ が次式を満たすというものである。  

( ) Γ








∂
∂−

∂
∂=Ω∇−∇∫ ∫

Ω Γ

d
nn

d
*

**22* φφφφφφφφ
     

(5-3) 

ここで Ωd 、 Γd はそれぞれ Ω、 Γの微小単位を表す。また、 n∂∂ は勾配のうち境界 Γに垂

直な成分を表す。ただしその向きは Fig.5.1に示すように、境界に外向きを正とする。上式

中の φは任意の関数としてよいが、いま、この φが電位でありかつ式 (5-1)のラプラス方程

式を満たすならば、これを式 (5-3)に代入して、  

( ) Γ








∂
∂−

∂
∂=Ω∇−∫ ∫

Ω Γ

d
nn

d
*

**2 φφφφφφ
     

(5-4) 

を得る。次に、別の任意の関数
*φ として、次式を満たすような関数を故意に選択する。  

0*2 =+∇ iδφ
     

(5-5) 

ここで、 iδ はディラックのデルタ関数であり、下付き添字はこの関数が計算点 i において

1 の値を持ち、それ以外ではゼロとなることを意味する。ディラックのデルタ関数は超函

数のひとつであり、さまざまな特徴を持っている。ここではそのうちのひとつである次式

を利用する。  

ii d φδφ =Ω∫
Ω      

(5-6) 

これは、電位分布にディラックのデルタ関数 iδ を作用させたものを領域積分すると、計算

点 i における電位 iφ と一致することを意味している。このことより、式 (5-4)の左辺は次の

ように変形できる。  
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( ) ( )

i

i dd

φ

φδφφ
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Ω=Ω∇− ∫∫
ΩΩ

*2

     
(5-7) 

よって、式(5-4)は、 

Γ








∂
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∂= ∫

Γ

d
nni

*
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(5-8) 

となる。 

  式(5-5)を満たすような *φ は、2次元問題では 

r

1
ln

2
1*

π
φ =

     
(5-9) 

であり、3次元問題では、 

rπ
φ

4
1* =

     
(5-10) 

となることがわかっている。ここで r は計算点 i からの距離を表す。式(5-9)は単位電荷量を持った線電

荷が作るポテンシャル場に等しく、式(5-10)は単位電荷量を持った点電荷が作るポテンシャル場に等し

い。ここでは 3次元問題を例に説明を続けるため、式(5-10)を式(5-8)に代入すると、 

Γ




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

∂
∂+

∂
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Γ
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rnri 2
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(5-11) 

が得られる。境界要素法ではこれを内部積分方程式と呼ぶ。この式が意味しているのは、例えば Fig.5.2

に示すように、すべての境界においてφの分布とその法線方向微分値 n∂∂φ (すなわち電界の法線方向

成分)がわかっていれば、Ω内の任意の点 i における電位 iφ は式(5-11)のようにそれらの境界積分として

得られるということである。この場合、式中の r は点 i と境界との距離となる。 

 次に、点 i をΩ内部の点ではなく、境界Γ上の点へと移動させる。境界においても基本的な考えは変

わらないが、内部点の場合は全方位からの境界に関する積分であったのに対し、境界では積分範囲がΩ

側のみであるために事情が異なる。詳細は境界要素法の教科書に譲ることとして、結論だけ記せば、境

界上の点 i において、式(5-11)は次式となる。 

Γ
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

∂
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∂
∂= ∫

Γ
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c ii 2
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4

1 φφ
π

φ
     

(5-12) 

ここで、 ic は点 i における境界の角度で決まる量であるが、後で示すように、その値を具体的に得る必

要はない。境界要素法では式(5-12)を境界積分方程式と呼ぶ。 
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 Fig.5.2に示したように、実際にすべての境界における電位とその法線方向微係数が得ら

れている場合はごく稀であり、普通は Fig.5.3に示すように、境界ではどちらか片方のみ、

すなわちディリクレ型かノイマン型のどちらかの境界条件しか与えられていない。いま、

境界を構成する計算点数を N とすると、式 (5-12)の演算に必要な値はそれぞれの点におけ

る φと n∂∂φ であり、2N 個の値が必要となる。しかしそれぞれの点においてどちらか片方

の値は境界条件として得られているとすれば、未知数の数も N である。式 (5-12)をそれぞ

れの計算点上で考えてやれば式の数も N であり、未知数と一致する。従って、これを連立

して解けば、各計算点における φまたは n∂∂φ の値を得ることができる。  

Ω

Γ

n  

Fig. 5.1  境界 Γで囲まれた閉領域 Ω  
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Fig. 5.2  一様電界場における境界条件  
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Fig. 5.3  一般的な境界条件  

5.2.2 三角形三角形三角形三角形 1 次要素の取り扱い次要素の取り扱い次要素の取り扱い次要素の取り扱い  

  Fig.5.4に示すように、境界 Γを微小要素で表現したとする。図はわかりやすいよう 2 次

元問題における線要素として描いているが、3 次元問題の場合は境界 Γが三角形要素で表

現されているものとする。このとき、境界積分方程式における境界積分は、この微小要素

上での積分の総和として表現される。そこで、以下はひとつの要素に注目し、この要素上

での積分について考える。その際、要素を構成する計算点の番号は全体を通しての番号で

はなく局所的な番号として記述する。  

 また、デカルト座標のままでは任意形状の三角形の計算が煩雑となるので、面積座標を

導入する。面積座標について、以下に簡単に説明する。いま、Fig.5.5に示すように、3 つ

の頂点 P1、P2、P3で構成される三角形を考える。このとき、三角形内に任意の点 P を導入

し、これによって三角形を 3 つに分割する。ここで Fig.5.5中、 iSは分割された各三角形の

面積を表す。このとき、面積座標 (u,v,w)を導入し、それぞれ、  

S

S
w

S

S
v

S

S
u 321 ,, ===

     
(5-13) 

と定義する。ここで Sは最初の三角形の面積である。また、その定義から以下の関係式も

導かれる。  

1=++ wvu
     

(5-14) 

すなわち、 (u,v,w)のうち独立な値は 2 つのみである。いま、点 P の位置が決まると、ただ

一組の (u,v,w)が指定されるから、デカルト座標における積分を面積座標における積分へと
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変換することができる。また、このようにして定義された面積座標は結局 1 次要素におけ

る各頂点の形状関数に等しい。そのため、三角形要素上にて、 φまたは n∂∂φ はその要素

の端点における値を用いて次のように表される。  

321 φφφφ wvu ++=
     

(5-15) 

321 wqvquqq ++=
     

(5-16) 

ただし、 n∂∂φ を qと置き直している。  

  三角形要素上の積分はガウス積分を使うと便利である。ガウス積分を用いれば、三角形

要素上でのある関数 f(u,v,w)の積分値 I は次式で表される。  

∑
=

≅
n

k
ii fwI

1      
(5-17) 

ここで、n は使用する積分点の数を表し、wi および f i は i 番目の積分点における重みと関

数 f の値である。上式はすなわち、三角形上の関数 f をすべて積分しなくても、ある決め

られた点 (積分点 )における f の値にある決められた重みをかけて足しあわせるだけで積分

値 I の精度のよい近似が可能であることを示している。積分点の数が多いほど精度のよい

計算が可能であり、使用する積分点数に応じて、その座標 (面積座標 )と重みが予め決めら

れている。参考として n=3、7 の場合における積分点の位置と重みを Table 5.1に示す。  

いま、積分点の面積座標と重みが Table 5.1から得られ、その位置における被積分関数の値

は式 (5-15)、 (5-16)を用いて算出できる。従って、要素上での面積分の値が得られることに

なる。  

 実際には、デカルト座標における積分を面積座標での積分に変換するのだから、上述し

たガウス積分による積分値に対し、いわゆるヤコビアン J を乗じる必要がある。ヤコビア

ンとは、座標変換によって積分の微小面積などが変化するために生じる帳尻合わせの係数

のことである。例えばある関数 f をデカルト座標で積分する代わりに極座標で積分する場

合、積分領域を eΩ とすると、  

∫∫
ΩΩ

=
ee

rdrdffdxdy θ
     

(5-18) 

となり、積分要素 θdrd の前に r を乗じてやる必要がでてくる。この場合、この r をヤコビ

アンと呼ぶ。同様にして、3 次元デカルト座標における積分を球面座標系に変換した場合

は、  
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ϕθθ ddrdrffdxdydz
ee

∫∫
ΩΩ

= sin2

     
(5-19) 

となり、ヤコビアンは θsin2r となる。このように、積分を実行する座標系が変換されれば、

必ずそれに伴うヤコビアンを求めなければならない。本稿で使用するヤコビアンについて

は後で述べることとして、いまは単に J で表す。よって、式 (5-12)を境界要素を用いて離

散化した式は次式となる。  
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(5-20) 

ここで、Neは要素数を表し、Jkは k 番目の要素におけるヤコビアンを表す。下付き添字の

kj は、k 番目の要素における j 番目の積分点位置における値であることを表す。従って、 ikjr

は境界計算点 i と k 番目の要素における j 番目の積分点との距離を表す。nkjは k 番目の要

素における j 番目の積分点位置における外向き単位法線ベクトルを表す。通常だと境界要

素形状は平面 (ポリゴン )であるから、要素内で法線ベクトルは一定となる。しかし本研究

では後で示すように、要素形状を平らとせず、ベジエによる曲面近似を行う。従って同じ

要素内でも場所によって法線ベクトルは異なる。その求め方に関しては後述する。  
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  Table 5.1 三角形座標での面積積分の分点と重み  

積分点数 n 

(近似次数 ) 

積分点の位置を示す模式図  i  面積座標  

(u,v,w) 

重み  

wi  

3 

(2 次 ) 1

2

3

 

1 

2 

3 

(0,1/2,1/2) 

(1/2,0,1/2) 

(1/2,1/2,0) 

1/3 

1/3 

1/3 

7 

(3 次 ) 

2

3

1
4

5

6

7

 

1 

2 

3 

4 

5 

6 

7 

(1/3,1/3,1/3) 

(0,1/2,1/2) 

(1/2,0,1/2) 

(1/2,1/2,0) 

(1,0,0) 

(0,1,0) 

(0,0,1) 

27/60 

8/60 

8/60 

8/60 

3/60 

3/60 

3/60 

 

 

 

Ω

 

Fig. 5.4  メッシュによる境界近似  
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3P

1P 2P

P
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3S

 

Fig. 5.5  面積座標  

5.2.3 連立方程式の作成連立方程式の作成連立方程式の作成連立方程式の作成  

  式 (5-20)における kjφ 、 kjq などは、 k 番目の要素における j 番目の積分点位置における値

である。その積分点の位置は面積座標で表され、 kjφ 、 kjq は k 番目の要素を構成する 3 点

における φ、 qの値を用いて式 (5-15)、(5-16)と表される。そこで、まずは式 (5-20)の右辺第

2 項を左辺に移行し、  
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(5-21) 

とする。式 (5-20)または式 (5-21)は計算点 i に関する境界積分方程式であるが、q の積分に

関する項において、計算点 j に関する係数を ijG 、 φの積分に関する項において、計算点 j

に関する係数を ijĤ とおくと、式 (5-21)は次のようになる。  

∑∑ =+
N

j
kjij

N

j
jijii qGHc φφ ˆ

     
(5-22) 

また、次のような行列 ijH を定義する。  

( )
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


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iij
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ij ˆ

ˆ

     
(5-23) 

よって、式 (5-22)は次のようにおける。  

∑∑ =
N

j
kjij

N

j
jij qGH φ

     
(5-24) 

上式は計算点 i に関する方程式であり、これを境界に位置する N 個の計算点だけ用意し、

それらをまとめて次のように表す。  

GQHU =
     

(5-25) 
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ここで H、U、G、Qはそれぞれ ijH 、 jφ 、 ijG 、 jq をまとめたベクトルである。 

  いま、N 個の φ、 qのうち、常にどちらかは既知である。そこで H、U、G、Q に対し既

知な量は 0H 、未知な量は H ′などのように表記すると、式 (5-25)は既知量と未知量に分離

できて次式となる。  
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(5-26) 

ここで係数行列を A、未知数ベクトルを X、解行列を B とおいた。上式が境界要素法にて

解くべき連立方程式であり、その係数行列は非対称密行列となる。本研究ではその解法に、

対角スケーリング付き BiCGStab2法を用いている。  

 ところで、解析領域 Ω内で電位が一様に分布していたとすると、すべての境界で q はゼ

ロになるから、式 (5-25)は、  

0=HU
     

(5-27) 

となる。すなわち計算点 i に注目すれば、 

∑
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=+++++
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ˆ

021 LL

     
(5-28) 

となることがわかる。すなわち、係数行列の対角成分である iiH は非対角項の総和を用いて表現できる

ため、実際に ic を計算する必要はない。 

5.2.4 角点の問題とベジエによる曲面近似角点の問題とベジエによる曲面近似角点の問題とベジエによる曲面近似角点の問題とベジエによる曲面近似  

  これまでは、境界を構成する計算点の数が N であり、その各点において φ、 qがどちら

かひとつずつ定義されていることを前提に説明をしてきた。しかし実際には、通常、境界

は平面要素を用いた折れ面 (ポリゴン )で表現されるため、ひとつの境界計算点において法

線ベクトルが複数定義される。その場合、 qは電位の法線方向微分値であるから、 qもま

た複数定義されることを意味する。そうなると方程式の数に対し未知数の方が多くなり、

さまざまな煩雑な処理が必要となる。そこで本研究では境界を折れ面ではなくベジエ曲面

(3)で表現し、流体表面から角をなくすことで、各計算点においてただひとつの qが定まる

ようにしている。以下、その方法について説明する。  

  Fig.5.5で示したように、三角形内の任意の点は頂点の座標と面積座標を用いて次のよう
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に表現できる。  

( ) wvuwvu 321,, PPPP ++=
     

(5-29) 

ここで、P は点 P の位置ベクトルを表す。P1、P2、 P3も同様である。 (u,v,w)= (1,0,0)のとき

点 P は P1に一致し、(u,v,w)= (1/3,1/3,1/3)のときは点 P は三角形の重心と一致する。式 (5-29)

は P を (u,v,w) の 1 次式で表しており、(u,v,w)が変化すれば点 Pは三角形内を移動するが、

P1、P2、 P3 が同一平面にある以上、点 P がその平面から出ることはない。ここで、Fig.5.6

に示すように、6 つの点で構成された 4 つの三角形の集合を考える。  まず⊿P1P6P5、⊿

P6P2P4、⊿P5P4P3に注目し、ある (u,v,w)の値を用いて、それぞれの三角形内に 1 つの点を

定める。ここではそれを P165、P624、 P543とする。次に Fig.5.7に示すように、この 3 点を頂

点とする新たな平面三角形を考え、その三角形内の点 P を (u,v,w)の 1 次式で表す。  

( ) wvuwvu 543624165,, PPPP ++=
     

(5-30) 

もし P1～P6 が同一平面上にないならば、このようにして定義された P もまた、ひとつの

平面に固定されず曲面上の点となる。P165などをさらに P1～P6を用いて (u,v,w)の 1 次式で

表現し、それを式 (5-30)に代入すると次式となる。  
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(5-31) 

これは、P を(u,v,w) の 2次式で表現したとみることができる。すなわち 2次のベジエ曲面である。本研

究では 3次のベジエ曲面を用いており、その場合、Fig.5.8で示す P1～P10を用いて P は以下のようにな

る。 
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uvwuvvuwu

uwvwwvwvuwvu

10
2

9
2
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PPPPPPP
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+++++=

  
(5-32) 

  次に、このようなベジエ曲面における接線ベクトルの求め方について説明する。(u,v,w)が変化すれば、

P はこの曲面上を移動するのだから、接線ベクトルは単に(5-32)を(u,v,w)に関して偏微分することによっ

て得られる。例えば式(5-29)で示されるように、曲面ではなく平面三角形である場合は、 

31 PP
P −=

∂
∂

一定vu      
(5-33) 

32 PP
P −=

∂
∂

一定uv      
(5-34) 

となる。平面三角形であるから場所に寄らず接線ベクトルは一定となる。接線ベクトルを得ようと思え

ば他にも P を vを固定して wで偏微分したり、wを固定して uで偏微分したりと、全部で 6つの方法が
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挙げられる。しかし式(5-14)より、例えば 

一定一定 vv uw ∂
∂−=

∂
∂ PP

     
(5-35) 

となるため、6つの接線ベクトルのうち独立なものは 2つだけであり、式(5-33)と(5-34)を考えれば十分

である。 

  3次のベジエ曲面の場合は、接線ベクトルは次のようになる。 
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(5-36) 
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(5-37) 

  次に、始めに与えられた平面三角形 P123から、どのようにしてその内部に Fig.5.8にあるような P4～

P10を生成するのかについて説明する。例えば P3において、式(5-36)、(5-37)で定義される接線ベクトル

は(u,v,w)=(0,0,1)より、 

( )363 PP
P −=

∂
∂

一定vu      
(5-38) 

( )353 PP
P −=

∂
∂

一定uv      
(5-39) 

となる。これを図示すると Fig.5.9のようになる。すなわち、P6と P3を結ぶ直線がひとつめの接線ベク

トルであり、P5と P3を結ぶ直線が 2つめの接線ベクトルであることがわかる。ならば、もし予め P3に

おける 2つの接線ベクトルが求まっていれば、そこから P5と P6の位置を逆算できることになる。 

 しかしながら、通常は境界計算点 P3における接線ベクトルが得られていることは稀である。しかし法

線ベクトルが定義されていることはよくある。本研究でも、3.3.2 にて述べたように流体の境界計算点

における法線ベクトルは計算点密度勾配ベクトル D を用いて計算できる。あるいは、3.3.4 で述べた

ように、曲率の計算時に表面形状を多項式近似し、その多項式に直行するベクトルとして定義しなお

せば、より精度のよい法線ベクトルが得られる。 

  Fig.5.10に示すように、1 辺を構成する両端点での法線ベクトルを n1、n2とし、それぞ
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れの点においてもう片方の点へと向かう接線ベクトルを t1、t2とするとき、t1、t2は n1、n2

を用いて次のように表現できる。  
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(5-40) 

ただし、R は n1が定義される頂点から n2 が定義される頂点へと向かう平面三角形上のベ

クトルである (Fig.5.10)。  

  よって、P1～P3における法線ベクトルがわかっていれば、式 (5-40)を用いて P4～P9の位

置が定まる。P10の位置には任意性があるが、次式で定義することが多い。  

( ) ( )987654
3

32110 12

3

12

2
PPPPPPPPPP ++++++++−= w

  
(5-41) 

以上が 3 次のベジエ曲面の説明である。平面要素を用いた場合とベジエ曲面を用いた場合

の差異は、式 (5-21)における Jk、 r i k j  、nk j の違いとして表わされる。平面要素を用いた場

合とベジエ曲面を用いた場合とでは (u,v,w)が与えられたときの座標が異なるため、r i k j の値

が異なってくる。一般には、平面要素を用いた場合より実際の形状に近い r i k j を使用する

ことができる。また、ヤコビアン J は 2 つの独立な接線ベクトルの外積の絶対値で定まる。

すなわち、  

( )
一定一定 uv vu

wvuJ
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(5-42) 

また、その外積の向きが法線方向であるから、単位法線ベクトルは  
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(5-43) 

として表される。 (u,v,w)が与えられればその値を用いて式 (5-36)(5-37)より接線ベクトルが
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求まり、その外積をとることでヤコビアンと単位法線ベクトルが求まる。それを式 (5-21)

に代入すれば、平面要素の場合よりも高精度な計算が可能となる。また、先に述べたよう

に、ベジエ曲面を使用することで角点がなくなることが最大の利点である。  

 

1P
2P

3P

4P5P

6P

156P 624P

543P

 

Fig. 5.6  ある (u,v,w)により定められた 3 点  
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Fig. 5.7  2次のベジエ曲面  
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Fig. 5.8  3次ベジエ曲面の制御点  
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3P

5P6P

接線ベクトル
 

Fig. 5.9  接線ベクトルと制御点の関係  

ベジエ曲面

1n

11 τt k=22 τt k=

2n

R  

Fig. 5.10  法線ベクトルを用いた接線ベクトルの推定  

 

5.3    メッシュフリー法による流体解析との連成メッシュフリー法による流体解析との連成メッシュフリー法による流体解析との連成メッシュフリー法による流体解析との連成  

  本連成解析の簡単なフローチャートを Fig.5.11に示す。流体の運動方程式を圧力項を無

視して解いた後、流体の表面計算点を用いてデローニ分割により表面三角形メッシュを得

る。それを用いて境界要素法を実行する。式 (5-26)を解けば、各計算点における q の値が

得られる。これは noE に等しく、そこから各計算点に働く静電応力を式 (5-2)から算出でき

る。本研究ではその値を流体の運動方程式中で外力項として扱うのではなく、圧力を陰的

に解く際の式 (3-7)のディリクレ型境界条件として扱う。より正確には、境界条件は次式と

なる。  

ess ffP −=
     

(5-44) 

ここで、Psは圧力のディリクレ型境界条件値を表す。 fsは式 (3-4)で示す表面張力である。

上式は、表面張力が静電応力より優っている場合は流体を圧縮するような圧力が生じ、反

対に静電応力が表面張力より優っている場合は流体を膨張させるような圧力が生じること

を意味している。  
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  式 (5-44)を用いて圧力のポアソン方程式をメッシュフリー法にて解き、各計算点の速度

を更新し、それを所望のタイムステップまで繰り返すことで電磁流体現象を解析する。  

start

流体粘性項計算

デローニ分割

境界要素法による電場計算

圧力計算

境界条件:式(5-2)(3-4)

計算点位置更新

Time+=dt

end
 

Fig. 5.11  連成解析フローチャート  

 

5.4    流体の完全導体近似と解析精度の検証流体の完全導体近似と解析精度の検証流体の完全導体近似と解析精度の検証流体の完全導体近似と解析精度の検証  

5.4.1    解析領域端の取り扱いと完全導体近似解析領域端の取り扱いと完全導体近似解析領域端の取り扱いと完全導体近似解析領域端の取り扱いと完全導体近似  

  本連成解析の精度を確認するため、Fig.5.12 に示すような一様電界中の液滴の挙動を解

析した。ただし液滴は導電率無限大の完全導体とする。  

いま、液滴表面が N 個の計算点で構成されているものとする。式 (5-12)の境界積分には

液滴表面だけでなく、解析領域端上での積分も含まれる。従って本来ならば解析領域端も

要素を用いて離散化しなければならない。しかし今回の場合に限れば、一様電界中の解析

領域端における φ、 qは Fig.5.12 に示したようにあらかじめ求まっている。そのため、要

素を用いて離散化せずとも、その境界積分の値は理論的な考察が可能である。以下、それ

について簡単に説明する。  

いま、Fig.5.12にあるように、液滴計算点のあるひとつの点 i について、境界積分方程式

(5-12)を考える。液滴表面を lΓ 、解析領域端を aΓ と置くと、式 (5-12)の右辺はそれぞれの領

域に関する項に分離できて、  
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(5-45) 

となる。ただし電界の法線方向成分を q で置き直している。このうち右辺第 3 項と第 4 項

について考える。ただし解析領域は直方体であるとし、その寸法は Fig.5.12に示したよう

に、底面および上面は一辺 L の正方形であるとし、直方体の高さを H とする。  

 まずは側面部について考える。側面部については q=0であるため、第 3 項の積分値はゼ

ロとなる。従って積分値を F とすると、F は次のように表される。  
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(5-46) 

  いま、4 つあるうちの 1 つの側面部に注目し、計算点 i とその側面部との幾何学的関係

が Fig.5.13(a)のようになっているものとする。ただし図は x 軸に平行な側面部について描

いてある。また計算点 i から側面部に垂 線をおろし、その長さを dh とする。また

Fig.5.13(b)(c)にあるように、垂線を基準に水平方向に角度 ϕ 、垂直方向に角度 θ を定義す

る。積分領域である側面部が x 軸に平行であるから dΓ=dydzであり、  
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より、  
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である。従って、  
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となる。また、  
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であるから、  
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よって、式 (5-46)は、  
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となる。また、zは液滴の中心 (解析領域の中心 )において z=0であるとすると、θを用いて  
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と変形できる。ただし最初の等式の右辺第 1,2 項をまとめて係数 C と置いている。これを

式 (5-52)に代入すると、  
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となる。式から明らかなように、この値は計算点 i の座標が与えられれば算出可能である。

他の側面部についても同様であるので説明は省く。  

  次に上面について考える。このとき積分値 F は上面における電位値を V1とすると、  
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とおける。ここで、計算点 i と上面との幾何学的関係を側面部のときと同様に Fig.5.14の

ように仮定する。計算点 i から上面に垂線をおろし、その長さを dhとする。またその垂線

を基準に角度 ϕ 、θ を定義する。式 (5-55)の右辺第 2 項に関しては、側面部における議論と

の類推で  
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となる。式 (5-55)の右辺第 1 項に関しては式 (5-49)、 (5-50)より、  
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となる。ここで、  
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であることを利用すると、  
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となる。 φについても同様である。従って式 (5-57)は、  
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(5-60) 

となる。下面についても同様であるため説明は省く。このようにして得られた解析領域端

における積分値を式 (5-26)の解行列の中に加えることで、解析領域端を実際に離散化せず

に解析を行うことができる。  

  以上のことより、Fig.5.12 の解析を行うには液滴表面のみ要素分割すればよいことがわ

かる。液滴の表面の計算点数は N であり、その点においては φ、 qの両方が未知である。

そのため、一見すると未知数の数が 2N であるように思われるが、実際には液滴を完全導
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体と近似するため、液滴表面における φは同じ値をとる。それを代表電位 0φ と表記するこ

とにすると、未知数は N+1となる。計算点数が N であるから、境界積分方程式も N 個しか

作れない。残りのひとつの式は次のガウスの法則である。  

∫
Γ

=Γ
l

Q
dEn

0ε
     

(5-61) 

ここで、Q は液滴が持っている電荷量、 0ε は真空の誘電率である。Fig.5.12の解析では Q=0

を扱う。式 (5-61)は積分を要素単位の総和に置き換え、さらにひとつの要素に関する積分

を面積座標とガウス積分を用いて計算すればよい。結果、上式は N 個の qに関する線形方

程式となる。これを式 (5-26)の A に付け加えて解くことになる。  

 

4mm

完全導体
液滴

V=φ

0E
dn

d =φ

0

0

=

=

dn

d

zE

φ
φ

0

0

=

=

dn

d

zE

φ
φ

0E
dn

d

V

−=

−=
φ

φ

H

L

 

Fig. 5.12 解析初期モデル  
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Fig. 5.13 計算点 i と解析領域側面との幾何学的関係  
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Fig.5.14 計算点 i と解析領域上面との幾何学的関係  

 

5.4.2    解析結果解析結果解析結果解析結果  
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Fig.5.12に示すモデルに対し、一様電界強度(正確には上下面に与える電位)をいろいろと変化させて

解析を行った。解析条件を Table 5.2に示す。また、初期状態における計算点配置を Fig.5.15に、それに

対応する境界要素を Fig.5.16に示す。Fig.5.15には 6503個の計算点が存在し、そのうち表面計算点、す

なわち境界要素法における未知数は 1434個である。 

はじめに電界がない条件下での計算された表面張力分布を Fig.5.17に示す。ただし式(3-3)で得られた

圧力値に対し、各計算点における単位法線ベクトルを作用させて、ベクトル表示している。電界がない

ため静電応力は働かず、液滴表面には表面張力のみが作用する。液滴の初期形状は球形であるため、表

面張力による圧力は場所によらずほぼ一定値となっていることがわかる。球形の液滴に働く表面張力は

理論上、次式で表される。 

R
Ps

γ2=
     

(5-62) 

ここでγ は表面張力係数、Rは液滴の半径である。本解析では表面張力係数が 0.07196[N/m]であるから、

この場合の表面張力による圧力の理論値は上式より 71.96[N/m2]である。Fig.5.17における解析結果に対

し、この理論値との誤差の標準偏差をとったところ 2.46であった。 

次に、上面に V=18250[V]、下面に V= -18250[V]を与えたときの初期状態における液滴表面の応力ベク

トル(表面張力と静電応力の合力ベクトル)、および十分時間が経過したあとの定常状態時の水滴形状を

Fig.5.18、Fig.5.19にそれぞれ示す。初期状態においては、一様に働く表面張力に対し、静電力は Z軸方

向に強く現れる。そのため、Z軸方向に関しては表面張力による圧縮力が緩和され、水滴形状は縦に引

き伸ばされた楕円体となって安定する。印加電圧が大きいほど、より縦に伸びた楕円体となる。上下面

に対し V=±12500、±17500、±18250 [V]と電圧を印加させた場合の定常時の形状を Fig.5.20にまとめ

る。ただし、安定な形状が得られるのは電圧値が 18250 [V]ほどまでで、これを少し超えると、液滴形状

は時間とともに成長し、定常状態を迎えなかった。これはあとで示すように理論解とも一致する傾向で

ある。一様電界強度を上げていくとやがて液滴の安定形状が得られなくなる理由は、電界が十分大きい

と流体が変形して先端の曲率が大きくなった際に、それによる表面張力の増加よりも、電界集中による

静電応力の増加のほうが勝るからである。反対に、外部電界が十分小さいときに水滴形状が楕円体で落

ちつくのは、流体が変形した際に静電応力の増加よりも表面張力の増加のほうが勝るからである。 
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Fig. 5.15  初期計算点配置  

 

Fig. 5.16  初期表面要素配置  

71.96[N/m2]

 

Fig. 5.17  初期状態における表面張力分布  

71.96[N/m2]

 

Fig. 5.18  初期状態における表面の応力分布 (V=±18250 [V]) 

 

Fig. 5.19  上下に±18250 [V]印加時の定常状態時の液滴形状  
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Fig. 5.20  定常状態時の液滴形状比較  

(左から V=±12500, ±17500, ±18250 [V]) 

5.4.3    精度の検証精度の検証精度の検証精度の検証  

一様電場中の液滴は、電界がある程度小さければ楕円体、あるいはそれに非常に近い形

状となって静止する。このときの短軸の値を Ra、長軸の値を Rbとし、水滴の変形量を Rb/Ra

と定義する。水滴の初期半径 R、一様電界強度 E0、表面張力係数 γ をパラメータとして、

Rb/Raの理論値が Taylarに導かれている (4 )。なお、Taylarの理論解においても、本報と同様

に水滴は導体近似されている。この理論値を Fig.5.20に実線で示す。図中には、液滴半径

R=2mmの場合の本研究における解析結果も示している。2つの曲線は定量的によく一致し、

本解析手法を用いて高精度な解析が行われていることがわかる。また同図より、理論的に

は横軸の値が約 1.62よりも大きくなると、それに対応する Rb/Raの値が定義されない、す

なわち絶対不安定領域であることを示しており、1.62がその閾値であるとわかる。解析で

得られた閾値もほぼ同様の値を示している。  
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Fig. 5.20  変形量に関する理論値と解析結果の比較  
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5.5    クーロン分裂の数値解析クーロン分裂の数値解析クーロン分裂の数値解析クーロン分裂の数値解析  

5.5.1 クーロン分裂現象クーロン分裂現象クーロン分裂現象クーロン分裂現象  

真空中で液滴が保持することのできる電荷量には限界があり、外部電界を無視する場合、

以下のレイリー限界の式 (5)で表されることが知られている。  

.8 3
0lim RQ γεπ=

     
(5-63) 

ここで limQ は限界の電荷量、Rは液滴の半径である。仮に電荷量が式 (5-63)で表される量を

下回っていたとしても、液滴が蒸発することによって半径が減少するため、やがてはこの

限界値を迎えることになる。このとき、静電力による張力が表面張力による圧縮力を上回

り、液滴はいくつかの微小な帯電液滴を射出し、自身の電荷量を下げることで安定化しよ

うとする。これをクーロン分裂と呼ぶ。なお、混乱を避けるため本稿では今後、分裂前の

液滴を初期液滴、分裂後、射出された微小な液滴を子液滴、残された液滴を親液滴と呼ぶ

ことにする。このレイリー分裂は例えばインクジェット技術や静電スプレー、あるいはそ

れらを利用した微粒子成膜技術などで利用されており、工学上、分裂後の親液滴と子液滴

の質量や電荷量の分布に興味がもたれる。  

Rayleighが式 (5-63)を導いて以降、多くの研究者が実験的にこの式の精度を確認してきた

(6 )- (11) , (13) - (15)。Doyleら (6 )はミリカンの油滴実験と似た装置を用いて半径 30-100µm ほどの水、

イソプロピル・ベンゼン、アニリン、フタル酸ジオクチルの帯電した液滴を用いて実験を

行い、分裂のタイミングが式 (5-63)で示唆されるものに近いことを確認した。彼らの実験

では、初期液滴は約 30%の電荷を子液滴の射出によって消失するという結果を得たが、子

液滴の数が不明なため、子液滴の電荷量は不明であった。質量の変化に関しては、彼らの

技法では測定できなかった。Abbas and Lathamは (7 )、半径 30-200 µm ほどの水、アニリン、

トルエンの液滴に関する同様な実験を行い、分裂時に式 (5-63)が成立すること、および水

の場合は親液滴の電荷は初期液滴の約 75%、質量は 70-80%であるという結果を得た。

Schweizer and Hanson(8 )は 15-40 µm ほどの n-octanolの液滴を用いて実験を行い、分裂時の

比電荷が式 (5-63)で示唆される値と標準偏差 4%で一致していることを確かめた。また、初

期液滴が子液滴の射出によって消失する質量と電荷量はそれぞれ約 5%、23%であり、また

これらの値は初期液滴の半径に依存しないことも確認している。  

例えば Doyle らの実験が静止した大気中で行われたのに対し、Richardsonら (9 )は半径

1-10 µm ほどのフタル酸ジオクチルと硫酸の液滴実験を真空中 (10-5Torr)で行った。これは
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帯電液滴の電界による、大気の絶縁破壊などの影響を除くためである。子液滴の射出によ

る質量および電荷の消失は、フタル酸ジオクチルの場合でそれぞれ  約 2.25%と 15%、硫酸

の場合は 0.1%以下および 49.4%であった。分裂のタイミングはフタル酸ジオクチルの場合、

レイリー限界とよく一致したが、硫酸ではレイリー限界の 84%であった。また、いずれの

液滴も初期液滴と親液滴の質量比や電荷比は初期液滴の径に依存せず、また、初期液滴の

電荷の正負にも依らないという結果を得た。  

このように、用いる液滴の種類によって親液滴の物理量が異なるが、その因果関係は完

全には解っていない。また、実験のほとんどは式 (5-63)の正しさを証明するものであった

が、一部、レイリー限界よりも早くに分裂するという結果が得られているのも事実である。

これが単に観測技術に起因するものなのか、分裂の機構に深く関わる因子によるものなの

かは完全には解っていないが (10)、Duft ら (11)は、液滴が蒸発することで、液滴内部の微量

な汚染物質の濃度が上がり、それが表面張力係数を低下させる可能性を指摘している。も

しそうなら、式 (5-63)中で予め測定しておいた表面張力係数を使用した場合、見かけ上、

レイリー限界よりも低い電荷レベルで分裂が起こったようにみえる。彼らは時間振動する

四重極ポテンシャル中での液滴の振動の振幅と遅れ角が、その液滴の電荷レベルと関係し

ている (12)ことを利用し、分裂時の表面張力係数が未知でも分裂のタイミングがレイリー限

界と近いかどうかを測定する技法を考案した。それにより、半径 50µm ほどのエチレン・

グリコール液滴が分裂するタイミングはレイリー限界に非常に近いこと、さらに、一般的

に知られている表面張力係数を用いて式 (5-63)より分裂時の電荷を推定すると、みかけ上、

レイリー限界に達していないようにみえることを確認している。  

式 (5-63)の精度や、分裂後の親液滴の物理量に関してはこれまで多くの調査がなされて

きたが、子液滴に関する調査は現在においても乏しい。また、初期液滴の大きさ (通常、

100 µm 以下 )に対して子液滴の大きさが非常に小さく、射出される速度も大きいため、分

裂する瞬間を光学的に捕らえることに成功した実験は少ない。したがって液滴がどのよう

に分裂するのかは長い間謎であり、いくつかの仮定が提案されているのみで、実際のとこ

ろは未知の部分が大きく、そのことが子液滴の質量や電荷量の推定を困難にしている理由

のひとつであった。  

ようやく近年になり、Duft ら (13) - (15)によって半径 20-40 µm ほどのエチレン・グリコール

や水滴が分裂する様子が撮影された。それにより、分裂前の液滴の形状は回転楕円体に近

く、長軸上の両端からそれぞれ反対方向に小さな子液滴を射出することがわかった。子液
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滴の個数はおおよそ 100 個ほどと推定しているが、依然としてその正確な数や質量、電荷

量などは不明であった。また、彼らの実験では (15)エチレン・グリコールの場合、初期液滴

は子液滴の射出により電荷の約 30%を失うが、質量の変化は 0.5%以下であった。  

これらの実験例に対し、理論や数値計算により分裂の様子や分裂後の質量と電荷量を推

定しようという試みが、幾人かの研究者によりなされている。Roth and Kelly (16)は、初期

液滴の表面張力によるエネルギーと電荷密度によるエネルギーの和が、分裂後の親液滴と

子液滴がもつ同様のエネルギーと、分裂直後の幾何学的配置から推定される親 -子間および

子 -子間のポテンシャルエネルギーの和に等しいという仮定から、初期液滴に対する親液滴

や子液滴の半径比や電荷比を求めている。その際、未知数を減らすために質量保存則と電

荷保存則を導入しているが、加えて、分裂後の親と子の表面電荷密度が等しいという仮定

を用いている。また、分裂直後の系のポテンシャルエネルギーを算出するためには子液滴

の数と親液滴に対するその幾何学的配置 (すなわち、射出される方向 )を仮定してやる必要

がある。当時は分裂の様子が完全に未知であったため、彼らは親液滴に対して子液滴が一

度に対称に射出されるという仮定を用いている。すなわち、子液滴の数が 2 つなら直線状

に、3 つなら正三角形状に、4 つなら正方形または正四面体状に射出されると仮定している。

後に Shrimpton(17)は子液滴が親液滴に対して半直線状に射出されるという仮定のもとに、

Roth and Kellyと同様の手法を用いて計算を行なっている。利用できる実験結果が存在しな

いために、両者の論文の正当性を論じることは簡単ではないが、両者の結果を見比べれば

わかるように、分裂後の幾何学的配置に対する仮定が結果に与える影響は大きいようであ

る。よってどのような幾何学的配置が正しいのかを見極めることは重要である。また、

Shrimptonは Roth and Kellyが用いた、分裂後の親と子の表面電荷密度が等しいという仮定

とは別に、子の表面電荷密度が初期液滴の電荷密度に等しいという仮定でも計算を行なっ

ている。結果は親子の表面電荷密度が等しい場合と大きく異なっており、電荷密度に関す

る仮定の重要性を示唆している。  

Giglio ら (15)はエチレン・グリコール液滴を導体かつ非粘性と仮定し、その形状や電位分

布などを球面調和関数で表現することで、分裂時の液滴の変形する様子を求めた。この手

法は液滴と電場の問題に対して非常に有効的な手法と考えられるが、球座標の使用が強い

られるため、分裂を扱うのが難しいという欠点をもつ。そこで彼らは自分たちの計算で液

滴が分裂しそうになると、わざと実験により得られた電荷消失量に等しいだけの電荷を液

滴から除去してやることで分裂を模擬し計算を続行している。そのため、親液滴の変形す
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る様子は実験のそれとよく似ているが、射出による電荷や質量の変化などは解析できなか

った。  

これらの手法とは異なり、Brazier-Smithら (18)は、半径 1mmの水滴がレイリー分裂しよ

うとして変形していく過程を、流体の運動方程式と電場の式の両方を考慮に入れて時間発

展的に計算している。彼らは水滴を完全導体かつ非粘性流体と仮定し、軸対称モデルを使

用した。彼らの計算スキームでは水滴の分裂までは扱えなかったようであり、そのため分

裂後の親液滴や子液滴の個数や物理量などは求められないが、少なくとも分裂直前の初期

液滴の形状は回転楕円体に近く、長軸と短軸の比が約 2.5 を超えると、長軸の先端から直

線状に子液滴が射出されるようである。Betelúら (19)は境界要素法を用いて 3 次元解析をす

ることで同様の計算結果を得ているが、彼らの計算スキームもまた、分裂を再現すること

はできなかった。また、彼らは液滴の初期形状をわざといびつな球形にしてやると、分裂

時の挙動が軸対称とは大きく異なることを確認している。  

Brazier-Smithらや Betelúらが自分たちの解析のなかで液滴を完全導体 (導電率が無限大 )

と近似したのに対し、Burton(20)らは有限な導電率の考えを導入し解析を行った。それによ

り、導電率が小さいほど初期液滴は長く伸び、大きめの子液滴を射出するという結果を得

た。より定量的には、子液滴の半径は導電率の -2/3 乗に比例し、その電荷量は導電率に反

比例するというものであった。しかし彼らの計算スキームもまた分裂を扱うことはできな

かったようで、複数生成されるであろう子液滴の、その最初の１つが初期液滴から切り離

される直前で解析は終了している。それゆえ、子液滴の個数や、分裂後の親液滴の質量、

電荷などは計算できていない。  

このように、レイリー分裂に適用されてきた計算スキームはどれも流体の分裂をうまく

追えるものではなかったために、分裂後の物理量の推定を行うことはできていない。ある

いは、それを行うためにはさまざまな仮定を導入してやる必要があるのが現状である。こ

れらのことを踏まえて、本稿では、親子の液滴の幾何学的配置や表面電荷密度に関する仮

定を用いず、また時間に対して流体の運動方程式と電場の式を連成させて解くことにより、

液滴の分裂挙動および分裂後の物理量の分布の推定を試みる。液滴としては水を想定し、

密度や粘性係数などは水の値を使用するが、導電率は大きな値と小さな値の 2 種類を用い、

導電率が現象に与える影響について調査した。  

5.5.2 境界要素法における電荷を持った誘電体の計算と有限な導電率の考慮について境界要素法における電荷を持った誘電体の計算と有限な導電率の考慮について境界要素法における電荷を持った誘電体の計算と有限な導電率の考慮について境界要素法における電荷を持った誘電体の計算と有限な導電率の考慮について  

5.5.2.1 方程式方程式方程式方程式  
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  液滴が静止した状態で十分な時間が経てば、液滴表面における電荷密度分布は定常に達し、電界は静

電界となる。このとき、液滴表面は等電位面となり、液滴内部には電界が存在しない。すなわち電界分

布は液滴が完全導体であるときのそれと一致する。しかし液滴が変形すると表面積が増減するために、

表面における電荷密度分布も変化する。その結果、液滴表面は等電位面から僅かにずれ、その内部には

電界が発生する。液滴が非ゼロの導電率κeを有すれば、液滴内部に電流が流れ、電荷が移動することで

電荷密度分布は再び定常に達する。液滴の変形速度に対し、導電率が十分に大きければ瞬時に多くの電

荷が移動でき、電界分布は完全導体のときとさほど変化しない。しかし導電率が小さいと電荷の供給が

追いつかず、電界は完全導体のそれとは異なった分布を示す。電荷が常に表面に存在していると仮定し

たとき、表面電荷密度の時間変化は次式で表される。 

nu ⋅−= snleEDt

D σκκσ

     
(5-64) 

ここでσは表面電荷密度を、Enl は液滴表面における、液滴内部の電界の法線方向成分を表している。n

は表面における外向き単位法線ベクトルを表す。上式の右辺第 1項は液滴内部の電界により電流が流れ、

電荷が供給されることを意味している。対して右辺第 2項は、液滴が変形することで局所的な表面積が

変化し、表面電荷密度が変化することを表している(20)。 

 また、電位は式(5-1)のラプラス方程式に従う。ただし液滴の表面における境界条件として、次

式を満たさなければならない。  

σεε =− nlna EE0
     

(5-65) 

ここで、Enaは液滴表面における空気側の電界成分のうち、界面に垂直な成分を表す。また

ε は液滴の誘電率である。  

液滴に働く単位面積あたりの静電応力は次式となる。  

( ) ( ){ }2222
02

1
tnltnas EEEEf −−−= εε

     
(5-66) 

また、接線方向の単位面積あたりの応力 f tは次式で表される。  

tt Ef σ=
     

(5-67) 

本研究では完全導体近似における解析のところで述べたように、表面張力による応力と静

電応力を合わせたものを、液滴内部の圧力分布を求める際のディリクレ型境界条件として

使用している。  

5.5.2.2 連成解析手順連成解析手順連成解析手順連成解析手順  

  以下、連成解析手順について簡単に述べる。フローチャートを Fig.5.21に示す。解析の
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初期状態としては、液滴表面における電荷は均等に配置されているものとする。まずはそ

の初期電荷密度分布を算出する。まず 1 ステップ目において、 5.4 で述べた完全導体近似

を用いて電場計算を行う。そこから  

noE05.0 εσ =
  ...........................................................     

(5-68) 

として、各計算点における初期電荷密度を計算する。 

 以降のステップでは、流体の運動方程式を圧力項を無視して解いた後、流体の表面計算

点を用いてデローニ分割により表面三角形メッシュを得る。それを用いて境界要素法を実

行する。式 (5-65)を考慮にいれた境界要素法の計算手順については後述する。境界要素法

による計算終了後、各計算点における q の値から式 (5-66)、(5-67)を用いてそれぞれ垂直方

向 fsと水平方向の応力 f t を得る。 fsは表面張力とともに圧力を陰的に解く際のディリクレ

型境界条件として扱う。 f t は次ステップにおいて流体の運動方程式 (3-1)を解く際のノイマ

ン型境界条件として用いる。圧力が求まり、各計算点の速度が求まれば、その速度に従っ

て計算点を移動させる。またその際、式 (5-64)を解いて各計算点の表面電荷密度を更新す

る。  
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start

デローニ分割

境界要素法による電場計算

（完全導体近似）

流体粘性項計算

境界条件:式(5-67)

デローニ分割

境界要素法による電場計算

（誘電体近似）

境界条件：式(5-65)

圧力計算

境界条件:式(5-66)(3-4)

計算点位置更新

Time+=dt

end

電荷移動量更新

 

Fig. 5.21  連成解析フローチャート  

5.5.2.3 境界要素法における誘電体の取り扱い境界要素法における誘電体の取り扱い境界要素法における誘電体の取り扱い境界要素法における誘電体の取り扱い  

  いま、式 (5-64)を用いて、ある時刻における表面電荷密度が得られているものとする。

それを式 (5-65)のかたちで境界条件として使用する方法について説明する。  

 解析対象は、無重力空間に半径 Rの液滴が存在している系である。このとき、解析領域

端を無限遠まで広げると、そこでは電位およびその法線方向微分値はともにゼロとみなせ

るから、解析領域端における積分を無視することができる。このように、無限遠の解析領

域を考慮できる点も境界要素法の利点のひとつである。  

  解析領域端を計算から除外できるため、計算点の数は液滴の表面計算点数 N である。こ

れに対し、液滴表面においては電位 φ とその法線方向微分値 q の両方が未知であるため、

未知数は 2N である。そこで解析領域を Fig.5.22に示すように、空気領域 1Ω と液滴内部 2Ω

との２つにわける。まずは空気領域 1Ω に関して式 (5-25)を参考に連立方程式を作成する。
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このとき液滴界面における法線ベクトルは Fig.5.23 に示すように 1Ω にとっての外向きで

あるものとする。5.2.3 においてはこれを未知な項と既知な項に分離し、式 (5-26)を得たが、

今回は φ と q のすべてが未知であり、既知な項は存在しない。そのため式 (5-25)を展開し

たものは式 (5-26)のようにはならず、  
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     (5-69) 

と表される。このとき A は Fig.5.24に示すように N×2N の正方行列であり、X は 2N 次元

ベクトルである。また、Q′は q の集合であるが、具体的には空気側の微分値 naE の集合で

あるものとする。  

当然このままでは式 (5-69)から解を得ることはできない。次に、液滴内部 2Ω に注目して

境界積分方程式をたてる。式の建て方は 1Ω に注目した時と同様であるが、異なる点とし

てまず、法線ベクトルは 2Ω にとっての外向きに変更する (Fig.5.25)。また、 Q′は naE の集

合であるが、 2Ω に注目した場合、境界積分方程式に含まれる q は液滴側の nlE である。そ

こで境界積分方程式 (5-21)を建てる際、式 (5-65)を参考にして q の箇所に  

ε
σ

ε
ε −== na

nl

E
Eq 0

     
(5-70) 

と代入する。上式の右辺第 1 項は未知であるが、第 2 項は境界条件であるから既知である。

したがって、 2Ω に注目した場合の境界積分方程式は、  
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(5-71) 

となる。ここで、 σB は N 個の計算点における εσ の値を格納したベクトルである。以上

より、最終的に解くべき連立方程式は次式のようになる。  
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(5-72) 

上式を解くことで各計算点における電位および naE が求まる。 nlE は式 (5-65)から求めなお

す。得られた両者を用いて式 (5-66)より静電応力を得る。  

 

2Ω

1Ω

 

Fig. 5.22  ２つの解析領域  

2Ω

1Ω 単位法線ベクトル

 

Fig. 5.23  1Ω に関しての法線ベクトル  
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Fig. 5.24  1Ω に関して建てられた連立方程式  

2Ω

1Ω 単位法線ベクトル

 

Fig. 5.25  2Ω に関しての法線ベクトル  

5.5.2.4 解析結果解析結果解析結果解析結果  

  解析の初期モデルは、Fig.5.22に示したように、空間に半径 R=35 mµ の水滴が浮かんで

いる状態である。重力や外部電界はないものとする。物性値を Table5.3に示す。ただし導

電率としては 1e-6[S/m]と 5e-5[S/m]の 2 種類のケースを解析した。この液滴に式 (5-63)で示

されるレイリー限界に等しい電荷を与える。一見、モデルが球対象であるために変形は生

じないように思えるが、実際には解析誤差などの影響でわずかに液滴が変形し、一度変形

が始まると徐々にその変形速度を増していく。しかし、実際にこのようなやり方で変形を

待っていると、初期の段階でいたずらに解析時間を浪費することになる。そのため本研究

では液滴の初期形状として、わずかに Z 軸方向に伸びた回転楕円体を用いている。この初

期楕円体における長軸と短軸の比は 1.03である。こうすることで Z 軸方向に変形を促して
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いる。  

  まずはじめに、導電率が 1e-6[S/m]のときの液滴の変形を Fig.5.26または Fig.5.27に示す。

Fig.5.26は液滴表面における表面電荷密度を、Fig.5.27は電位分布をそれぞれ示している。

液滴表面における電位は、最初は等電位である。しかし液滴が変形すると、先端部では表

面積が増大するために表面電荷密度が低下する。これは式 (5-64)の右辺第 2 項による効果

である。そのため電位は液滴中心付近のほうが高くなる。電荷の移動に対し、液滴の変形

速度の方が優っているため、液滴先端部における静電応力は完全導体のときに比べると非

常に低く、そのため先端部においてはやがて静電応力よりも表面張力が支配的となって、

先端部は丸みを帯びる。結果、図に示したように 2 箇所にくびれが生じ、比較的大きな子

液滴が生成される。  

 次に、導電率が 5e-5[S/m]のときの液滴の変形を Fig.5.28に示す。先ほどとは異なり、導

電率が高いために電荷の供給が十分に行われ、液滴先端部がとがるほど、静電応力が大き

くなっていく。結果、表面張力は支配的でなくなり、液滴先端部が尖ったところで微小な

子液滴がたくさん射出される結果を得た。解析で用いた解像度では分裂する瞬間や射出さ

れた子液滴の挙動を精度よく解析することは難しかった。しかしながら、一般に導電率が

大きいと射出される子液滴は小さく、導電率が小さいと大きな子液滴が射出されるという

ことはさまざまな研究者の実験結果より指摘されており、本解析においてもその傾向を定

性的に確認できた。  
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t=0[µs]                       t=192[µs]              t=242[µs]

t=251[µs]                    t=254[µs]             t=261[µs]
 

Fig. 5.26  表面電荷密度 (導電率=1e-6[S/m]) 
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t=0[µs]                       t=192[µs]      t=242[µs]

t=251[µs]                t=254[µs]           t=261[µs]
 

Fig. 5.27  電位分布 (導電率=1e-6[S/m]) 

0[µs]           151.70[µs] 160.04[µs]     160.08[µs]     161.84[µs]
 

Fig. 5.28  液滴形状の変化 (導電率=1e-6[S/m]) 

5.6 まとめまとめまとめまとめ  
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  第 4 章で述べた手法は、いわゆる微分系の解法である。微分系の解法を電磁場問題に適

応する場合、空気中に計算点を設置する必要がある。通常、電磁場問題の計算精度はこの

空気計算点の位置に強く依存するため、空気計算点位置の決定には気を配らなければなら

ない。これは従来の差分法や有限要素法による解法においても問題であるし、第 4 章で述

べた手法でも、まったく同じことがいえる。  

そこで本研究では、第 4 章で述べた手法とは別に、境界要素法との連成解析も提案した。

これは流体の表面計算点群のみを用いて電位と電界分布を得る手法で、空気計算点を必要

としないために、上述したような問題から根本的に解放されることを目的として開発した。 

差分法や有限要素法などの従来の手法および第 4 章で述べた手法に対し、本手法の利点を

挙げると次のようになる。  

①  流体の表面しかメッシュを生成しないため、あるメッシュが空気メッシュなのか流体メ

ッシュなのか、その判定に気を配る必要がない。  

②  界面の位置は表面計算点の位置で正確に表現されるため、VOF 法や Level Set法のよう

に静電応力の分布が界面定義の不正確さによる数値拡散の影響を受けることがない。  

③  計算点をラグランジュ的に移動させるため、流体運動方程式中のいわゆる移流項を考え

る必要がなく、その数値的な取り扱いに起因するさまざまな誤差から開放される。  

④  空気計算点を使用しないため、その位置に気を配る必要がない。また、空気計算点の位

置が不適切であったがために精度が下がるというような心配もない。  

⑤  解析領域端を設定せず無限遠を扱える。特に電場問題はときとして非常に遠くまで電界

が及ぶことから、微分系の解法だと非常に広い解析領域を設置する必要がある。当然、

それに応じて未知数も増加する。しかし本手法では未知数の増加なしに無限遠を扱える

ため、電場問題に適した手法だといえる。  

⑥  微分系の解法では、まず各計算点における電位を得、それの勾配を計算することで電界

分布を得ていた。勾配という演算を数値的に扱う際にも、必ず何らかの数値誤差が生じ

るため、電界分布は基本的に電位分布より精度が劣ってしまう。静電応力は電界強度の

二乗に比例するため、電界分布の精度は非常に重要である。一方、境界要素法では電位

と電界 (正確には電界の法線方向成分 )の両方を未知数として連立方程式を作成するた

め、電界分布の精度は電位分布の精度と同程度である。従って静電応力の分布も非常に

精度がよい。また、表面形状をベジエ曲面で近似することで表面形状から角点をなくし、

計算精度を上げるとともに、積分方程式の取り扱いも簡便なものになった。  
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本手法を一様電界中における完全導体近似された流体の変形挙動解析に適応した。その

結果は理論解に非常に近いものであり、本手法の精度が高いことを示していた。また、流

体を有限な導電率を持ったものと近似し、液滴表面における電荷の移動を解くとともに、

クーロン分裂と呼ばれる現象についても解析を行った。その結果、本手法がこのような現

象に有効なこと、液滴の分裂に関しても計算が可能であることなどが示された。特にクー

ロン分裂の解析に関しては、従来の先行研究では皆、分裂する直前までの挙動しか計算で

きていなかったが、本研究では分裂後の様子まで解析できる。そのため、次々と新しい分

裂が起こるクーロン分裂のような現象に対する数値解法として非常に優れているといえる。 
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第第第第 6 章章章章    まとめと結論まとめと結論まとめと結論まとめと結論  

6.1 研究の背景とそれに対するアプローチ研究の背景とそれに対するアプローチ研究の背景とそれに対するアプローチ研究の背景とそれに対するアプローチ  

電磁流体現象は現代の工学において非常に重要な現象である。このような現象はときに

流体の自由表面の大変形や分裂を含む。しかしそのような現象に対する現代の数値解析技

術はいまだ貧弱であり、これを是正する新しいアプローチが望まれている。  

自由表面の大変形や分裂を含むこれらの現象を数値計算するにあたり、従来より行われ

てきた主な手法は差分法に VOF 法や Level Set法を取り入れたものか、有限要素法に ALE

法を取り入れたものの二つに大別されてきた。有限要素法に ALE 法を取り入れた手法の場

合、電磁場解析に関してはほとんど何の問題も生じないが、メッシュ生成やその材質の決

定プロセスに関して注意深い取り扱いを行う必要があった。これに対し、差分法に VOF

法や Level Set法を取り入れる手法は事実上、メッシュに関するトラブルは回避されるが、

界面定義の精度が低いという問題があった。表面張力や電磁力は界面形状に強く依存する

ため、界面の定義が曖昧だと、解析される現象は本来のそれと全く別の挙動を示すことが

ある。  

 また、これらの手法は計算点をオイラー的視点で扱うため、流体の支配方程式中に移流

項と呼ばれる項が出現する。これを少ない誤差で数値的に解くことは非常に困難であり、

さまざまな技法が考案されている。しかしどの技法がよい効果を生み出すかは解析対象に

依存する傾向があり、その選定は経験を要する。  

このような問題に対し、本研究ではまず大変形する流体解析に対し、重み付き最小二乗

法に基づくメッシュフリー法を採用した。これはメッシュを用いず計算点のみで微分方程

式を離散化する手法であるため、有限要素法が抱えていたようなメッシュの取り扱いに関

する問題点はすべて克服される。また、計算点はラグランジュ的に流体の速度場に従って

移動されるため、流体の運動方程式中から移流項を取り除くことができ、これに起因する

数値誤差からも解放される。計算点がラグランジュ的に移動することから、界面の位置は

表面計算点の位置として直接表現されるため、VOF 法や Level Set法のように界面定義が

曖昧ではなくなる。すなわち、表面張力や静電応力などを精度よく求めることが可能とな

る。  

電磁流体の解析に先立って、第 3 章にてこのメッシュフリー法を用いて無重力空間にお

ける単一液滴の振動挙動を解析した。従来の手法だと、このような問題では液滴の変形が

大きすぎるために計算が途中で破綻したり、計算精度が大きく低下したりしてしまう。ま
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たそれらを防ごうと、煩雑な処理が求められることになる。しかし本手法ではメッシュを

用いておらず、また計算点をラグランジュ的に移動させるため、特別な処理を行わなくと

も液滴の大変形挙動の高精度な計算を行うことができた。さらに独自の表面判定方法を導

入することにより、流体計算点群のなかから表面に位置している計算点のみを正確に区別

し、精度のよい表面張力項の計算を行えた。得られた表面張力の値は、従来の計算手法の

なかでは界面の厚さを用いてこれを体積力に変換するいわゆる CSFモデルにより扱われる

ことが多かったが、これだと本来表面のみに働く表面張力を内部にまで発生させてしまう

ことになり、精度が低下する。本研究ではこれを防ぐために、表面張力の値を流体内部の

圧力を求める際の境界条件として使用することで、体積力に変換することなく計算を行っ

た。これにより非常に精度のよい計算が可能となった。また変形により計算点配置が疎に

なるような箇所には自動的に新計算点が導入されるしくみを整え、変形に伴う計算精度や

安定性の低下を防止した。これらの技法の導入により、液滴の大変形を簡単に扱えている

ことを確認した。また、振動の周期に関する理論解との比較より、本手法の精度が非常に

高いことも確認した。  

電磁流体現象を数値計算することの難しい点は、そのほとんどが流体の大変形を扱うこ

との難しさに起因している。しかし本研究では上述したように重み付き最小二乗法に基づ

くメッシュフリー法の導入により、この難しさを克服した。残るは電磁場問題をどう扱う

かである。ただし本研究では磁場は扱わず、電場のみの解析とした。  

すでに述べたように、大変形する流体の周囲における電場を解析するために、従来のよ

うに有限要素法を使用した場合、メッシュ生成に起因する問題に頭を悩ませることになる。

また差分法と VOF 法や Level Set法との連成では、界面定義の精度の低さから、精度の高

い静電応力の算出が難しい。そこで本研究では 2 つの方法を試みた。ひとつめは、流体の

周囲に空気計算点を適宜生成し、それらを用いて流体解析と同じメッシュフリー法にて電

場解析を行うものである。ふたつめは、流体の表面計算点群のみを用いて境界要素法で電

場解析を行うものである。次に、この両者の手法について、その特徴をまとめる。  

6.2 両連成手法についてのまとめ両連成手法についてのまとめ両連成手法についてのまとめ両連成手法についてのまとめ  

6.2.1 メッシュフリー法のみによる連成解析メッシュフリー法のみによる連成解析メッシュフリー法のみによる連成解析メッシュフリー法のみによる連成解析  

詳しくは第 4 章で述べたが、重み付き最小二乗法に基づくメッシュフリー法で流体解析

を行ったあとに、流体の周囲に空気計算点を配置し、それらを用いて電位に関するラプラ

ス方程式を同じく重み付き最小二乗法に基づくメッシュフリー法で解くことで全体の電位
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分布を得る手法を開発し、これを一様電界中の液滴の変形挙動の解析に適応した。各計算

点位置における静電応力は表面張力と合わせて圧力を求める際のディリクレ型境界条件と

して使用した。  

従来の差分法に Level Set法や VOF 法を適応したもの、あるいは有限要素法に ALE 法を

適応した手法などに比べて、本手法が持っている利点を挙げると次のようになる。  

⑦  メッシュを用いないため、メッシュが生成できずに計算が破綻することがない。  

⑧  あるメッシュが空気メッシュなのか流体メッシュなのか、その判定に気を配る必要がな

い。  

⑨  有限要素法では電界ベクトルが計算点上ではなく、各メッシュの重心で定義されるため、

静電応力もメッシュ重心にて定義される。そのため各計算点に働く静電応力を算出する

には、メッシュ重心で定義された応力分布から何らかの平滑化を用いる必要があり、制

度の低下の要因となっていた。しかし本手法では各計算点にて電界および応力が定義さ

れるため、そのような精度の低下がない。  

⑩  界面の位置は表面計算点の位置で正確に表現されるため、VOF 法や Level Set法のよう

に静電応力の分布が界面定義の不正確さによる数値拡散の影響を受けることがない。  

⑪  有限要素法では各メッシュ内で一定の誘電率や等磁率を使用するため、非線形問題を考

える際、メッシュを介してこれらの分布が不連続に定義されてしまう。しかし本手法で

は計算点上でこれらの値を定義し、計算点以外の箇所では計算点上の値から補間を行う

ため、物理量の不連続が生じない。  

⑫  計算点をラグランジュ的に移動させるため、流体運動方程式中のいわゆる移流項を考え

る必要がなく、その数値的な取り扱いに起因するさまざまな誤差から開放される。  

 

電位分布の精度は、液滴周辺の空気計算点の配置に強く依存する。そこで本研究では液

滴表面の法線ベクトルを利用して空気計算点を生成するアルゴリズムを開発した。詳しく

は第４章で述べたが、これにより時々刻々と変形する液滴の周囲に、その液滴形状とほぼ

相似に近い空気層を生成することが可能となった。第４章での解析結果から、本手法が大

変形する電磁流体現象に対し、非常に有効な手法であるとの結論を得た。  

6.2.2 メッシュフリー法による流体解析と境界要素法による電場解析の連成メッシュフリー法による流体解析と境界要素法による電場解析の連成メッシュフリー法による流体解析と境界要素法による電場解析の連成メッシュフリー法による流体解析と境界要素法による電場解析の連成  

6.2.1で述べた手法は、いわゆる微分系の解法である。微分系の解法を電磁場問題に適応

する場合、空気中に計算点を設置する必要がある。通常、電磁場問題の計算精度はこの空
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気計算点の位置に強く依存するため、空気計算点位置の決定には気を配らなければならな

い。これは従来の差分法や有限要素法による解法においても問題であるし、6.2.1で述べた

手法でも、まったく同じことがいえる。  

そこで本研究では、6.2.1 で述べた手法とは別に、境界要素法との連成解析も提案した。

これは流体の表面計算点群のみを用いて電位と電界分布を得る手法で、空気計算点を必要

としないために、上述したような問題から根本的に解放されることを目的として開発した。 

6.2.1で述べた手法に対し、本手法の利点を挙げると次のようになる。  

① 空気計算点を使用しないため、その位置に気を配る必要がない。また、空気計算点の

位置が不適切であったがために精度が下がるというような心配もない。  

② 解析領域端を設定せず無限遠を扱える。特に電場問題はときとして非常に遠くまで電

界が及ぶことから、微分系の解法だと非常に広い解析領域を設置する必要がある。当然、

それに応じて未知数も増加する。しかし本手法では未知数の増加なしに無限遠を扱えるた

め、電場問題に適した手法だといえる。  

③ 微分系の解法では、まず各計算点における電位を得、それの勾配を計算することで電

界分布を得ていた。勾配という演算を数値的に扱う際にも、必ず何らかの数値誤差が生じ

るため、電界分布は基本的に電位分布より精度が劣ってしまう。静電応力は電界強度の二

乗に比例するため、電界分布の精度は非常に重要である。一方、境界要素法では電位と電

界 (正確には電界の法線方向成分 )の両方を未知数として連立方程式を作成するため、電界

分布の精度は電位分布の精度と同程度である。従って静電応力の分布も非常に精度がよい。

また、表面形状をベジエ曲面で近似することで表面形状から角点をなくし、計算精度を上

げるとともに、積分方程式の取り扱いも簡便なものになった。  

 

詳しくは第 5 章で述べたが、本手法を一様電界中における完全導体近似された流体の変

形挙動解析に適応した。その結果は理論解に非常に近いものであり、本手法の精度が高い

ことを示していた。また、流体を有限な導電率を持ったものと近似し、液滴表面における

電荷の移動を解くとともに、クーロン分裂と呼ばれる現象についても解析を行った。その

結果、本手法がこのような現象に有効なこと、液滴の分裂に関しても計算が可能であるこ

となどが示された。特にクーロン分裂の解析に関しては、従来の先行研究では皆、分裂す

る直前までの挙動しか計算できていなかったが、本研究では分裂後の様子まで解析できる。

そのため、次々と新しい分裂が起こるクーロン分裂のような現象に対する数値解法として
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非常に優れているといえる。  

このように、本手法は電場計算に境界要素法を用いているため、空気計算点を必要とし

ないなど、先に 6.2.1 で述べた手法にはない利点を持っている。しかし一方で、本手法に

は 6.2.1 で述べた手法にはなかった欠点が三つある。計算時間がかかること、プログラム

の汎用性が低いこと、非線形問題に弱いことである。これらはすべて境界要素法に起因す

るものである。以下、順番に説明していく。  

 境界要素法で得られる係数行列は一般に非対称の密行列になる。微分系の解法に比べる

と空気計算点を必要としない分、未知数が少ないために係数行列の大きさは小さい。しか

し微分系の解法がたかだかバンド幅数十の疎行列であるのに対し、ほぼすべての要素が非

ゼロの値を持つために、結果としてその連立方程式の演算には非常に多くの時間とメモリ

を必要とする。一般には必要とされる計算時間とメモリは未知数の二乗で増えるといわれ、

特に 3 次元解析においては、そのことが事実上、解像度の向上の妨げとなっている。本研

究でも、特に液滴が分裂する瞬間において、本来であればかなりの高解像度が求められる

ことになるが、上記の理由により十分な解像度を取れているとは言いがたい。  

  境界要素法におけるこのような問題に対し、従来より連立方程式の解法をより高速にす

る手法として例えばツリー法や (1 )高速多重極法 (2 )の使用などが検討されてきた。これらは

本来、天体などの多体問題の運動を計算する手段として考案された技法であるが、多体問

題と境界要素法の積分方程式の類似性を利用して、それを積極的に利用したものである。

または、そもそも未知数を陰的に解くのではなく、陽的な計算を反復させて定常解を得る

手法 (3)なども近年考案され、その有効性を示す研究も精力的に行われている。この場合、

陽的な計算であるから、膨大なメモリを必要としないという利点を得る。この手法は境界

条件が与えられれば、それを満たすポテンシャル場はただ一通りであるという理論に基づ

いており、陽的な計算で境界条件を満たすなんらかの定常解が得られれば、それが解だと

いうことになる。本研究でもそのような技法を導入することで、メモリや計算時間に対す

る境界要素法の欠点を克服すれば、例えば液滴が千切れる箇所により非常に多くの計算点

を配置することで解像度を上げ、より精度の高い解析を行うことができる。  

 また、二つ目の欠点は境界要素法のプログラムが汎用性に乏しいことである。その理由

として、トポロジーの変化に弱い点が挙げられる。ここでいうトポロジーとは幾何学的関

係のことであり、大雑把にいえば解析対象の閉曲面の個数やその位置関係のことである。

閉曲面の形状が異なっていても、その個数と位置関係が同じであれば、それは同じトポロ
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ジーであると判断される。例えば Fig.6.1 に描かれた 4 つの解析対象は、どれも空間に 3

つの媒質が存在しているものであるが、それぞれトポロジーが異なる。そして、境界要素

法はその連立方程式を作成する際に、注目する計算点と境界との距離 r や、境界における

法線ベクトル n などを利用する。すなわち、連立方程式の作成に境界の幾何学的情報が直

接含まれていることを意味している。これにより、境界要素法は境界の形状によって変化

するポテンシャル場を精度よく計算できるわけであるが、裏を返せば境界の幾何学的関係

が変われば、連立方程式の構成もそれに応じて変化させなければならない。実際、本研究

でも液滴を完全導体と近似したときは空気領域というただ 1 つの閉曲面を考えればよく、

連立方程式の構成は式 (5-26)のようになった。しかし液滴の導電率を有限とし、液滴内部

と空気領域という 2 つの閉曲面を考えた後者の解析では、連立方程式の構成は式 (5-72)で

表され、前者の解析とは異なる。微分系の解法だと、連立方程式を作成するプログラムに

わずかの工夫を施すだけで、トポロジーが変化しても使い回しの効くコードの作成が可能

である。しかし積分系の解法だと、基本的にトポロジーの変化に対し汎用的なコードの開

発は難しい。本章で扱った問題は、最初はただ 1 つの液滴が複数個に分裂する問題である。

筆者が開発したコードはそのような問題にだけ使用出来るように工夫されたものであり、

任意のモデルを扱えるものではなかった。本研究の目標であるような、流体が大変形する

現象は、トポロジーが時々刻々と変化することが多い。そのため、任意のモデルを簡単に

扱えるようなコードのしくみを整えれば、本手法をより多くの問題に適応することができ

る。  

境界要素法の三つ目の欠点は、物理量の非線形計算に弱い点である。境界要素法は境界

にしか計算点を配置しないために、物体内部における物理量の非線形性を基本的には考慮

できない。正確には、境界要素法においても内部の非線形性を考慮する手法は考案されて

いるが (4 )、結局内部もメッシュ分割する必要があり、境界要素法本来の利点が損なわれて

しまう。  
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Fig. 6.1  トポロジーの異なる 4 つの解析対象  

 

6.3 結論結論結論結論  

自由表面が大変形する電磁流体現象に対する汎用的な数値解析手法を開発するという

本研究の目的に対して、流体と電場問題の両方を重みつき最小二乗法で解く手法と、電場

解析のみ境界要素法に頼る２つの手法を提案した。最初に提案した、すべて重みつき最小

二乗法で解く手法は、従来より電磁流体現象に対して使われてきた差分法や有限要素法に

基づく手法に対して、いくつもの利点を持った手法であるといえる。ただし、従来の微分

系の手法がそうであったように、電位分布は空気計算点の配置の影響を強く受ける。一方、

境界要素法との連成手法では、空気計算点を必要としないためにそのような問題が生じな

い。この手法は非常に精度がよいが、計算時間や使用メモリの増加、トポロジーの変化に

弱い、非線形計算などに向かないなどの問題もある。  

以上のことを踏まえると、第 4 章で述べたように流体と電磁場の支配方程式を両方とも

微分系で書き表し、これらをメッシュフリー法にて解く方法が総合的によいと考える。こ

の手法は従来より主であった差分法、有限要素法に基づく手法に比べ、明らかにメリット

が多い。空気計算点の配置に留意しなければならないという問題はあるが、これは従来の

手法にもいえることである。対して、もし計算したい問題が、本研究で取り上げたクーロ

ン分裂のようにトポロジーの変化がある程度予想できるか、あるいはトポロジーが全く変
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化しない問題で、物理量を線形と近似していい場合や、なるべく広い解析領域を用いたい

場合などは、境界要素法との連成を行ったほうがよい。電磁流体現象の多くは物理量の測

定の難しさゆえに現象そのものにブラックボックスな面があることが多く、現象を簡略化

してその原理を研究するような場合には、境界要素法と連成させた手法でも対応できる場

合が多く、むしろそのほうが精度などの面でよい結果が期待できる。   
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