NMR / NQR STUDIES OF MAGNETISM AND SUPERCONDUCTIVITY IN IRON PNICTIDES

A dissertation submitted to
THE GRADUATE SCHOOL OF ENGINEERING SCIENCE
OSAKA UNIVERSITY
in partial fulfillment of the requirements for the degree of
DOCTOR OF PHILOSOPHY IN SCIENCE

BY

HIROAKI KINOUCHI

MARCH 2014
Abstract

A new family of superconductors containing tetrahedral iron-pnictide layers has attracted considerable interest because of their high transition temperature (T_c), some of which exceeds 50 K, and because of similarities with the high-T_c copper-oxide superconductors. Superconductivity emerges in close proximity to a magnetic ground state, just like the copper oxides. This suggests that magnetic interaction is relevant to superconductivity also in the iron pnictides. However, the microscopic origin is not yet fully understood despite of intensive investigations. One reason for this is that the iron pnictides are intrinsically multi-orbital, inducing significant variation in their physical properties, such as T_c, superconducting gap, and magnetic ordered moments. In order to get an insight into the multi-orbital nature of the iron pnictides, we have carried out systematic nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) experiments on a new series of the iron-pnictide superconductors (Ca$_4$Al$_2$O$_6$)$_2$Fe$_2$(As$_{1-x}$P$_x$)$_2$ with an isovalent substitution of P for As. Such chemical substitution primarily tunes some structural parameters due to the different ionic size but does not add any carriers. This fact provides us with the good opportunity to study the correlations of superconductivity, magnetism and local structure around Fe atom.

In chapter 5, I focus on the As-end member compound (Ca$_4$Al$_2$O$_6$)$_2$Fe$_2$As$_2$, which shows superconductivity at $T_c \sim 27$ K. Measurement of nuclear-spin-relaxation rate $1/T_1$ reveals a significant development of two-dimensional antiferromagnetic spin fluctuations down to T_c, and points to unconventional nodeless superconductivity.

Moreover, I compare physical properties of the P-end member compound (Ca$_4$Al$_2$O$_6$)$_2$Fe$_2$P$_2$, which superconducts at $T_c \sim 17$ K, with those of (Ca$_4$Al$_2$O$_6$)$_2$Fe$_2$As$_2$ in chapter 6. Our 31P NMR data suggest that in the P-end member compound, nodal superconductivity is established under the background of the development of antiferromagnetic spin fluctuations. The expected superconducting gap structure makes a contrast to nodeless superconducting gap at the As-end member compound.

Chapter 7 deals with systematic 31P- and 75As- NMR studies on (Ca$_4$Al$_2$O$_6$)$_2$Fe$_2$(As$_{1-x}$P$_x$)$_2$, which unravel that the nodeless superconducting state ($0 \leq x < 0.5$) evolves into an antiferromagnetic state ($0.5 \leq x \leq 0.95$), and eventually into the nodal superconducting state ($x \sim 1$) through an isovarent substitution of P.
for As. To understand the evolution of different types of electronic ordering, the ground state of the iron pnictides with nominal Fe$^{2+}$ state in the iron-pnictide layer are plotted in a two-dimensional plane of structural parameter. The map shows that the antiferromagnetic order taking place when the pnictogen height above the Fe plane h_{Pn} is in the range of $1.32\text{Å} \leq h_{Pn} \leq 1.42\text{Å}$, intervenes between nodeless and nodal superconductivity, and this event is universal irrespective of the materials. I believe that these findings bring a breakthrough to the solid understanding of iron-pnictide superconductors.
Contents

Abstract

1 Introduction
 1.1 Superconductivity ... 1
 1.2 High-temperature (high-T_c) Cuprates 1
 1.3 Iron Pnictides and Chalcogenides 3

2 Background
 2.1 Crystal Structure ... 5
 2.2 Physical Properties ... 6
 2.2.1 Phase Diagram ... 6
 2.2.2 Magnetic Structure ... 9
 2.2.3 Pairing Symmetry and Gap Structure 10
 2.3 Band Structure and Fermi Surface 11
 2.4 Factors Affecting T_c ... 12
 2.5 Pairing Mechanism ... 13
 2.6 Similarities and Differences with Cuprates 14

3 Experimental Methods and Principles 15
 3.1 Nuclear Magnetic Resonance (NMR) 15
 3.1.1 Nuclear magnetic resonance phenomena 15
 3.1.2 Nuclear spin Hamiltonian 15
 3.1.3 Knight shift .. 17
 3.1.4 Antiferromagnetic powder pattern in NMR under external
 fields .. 18
 3.2 Nuclear Quadrupole Resonance (NQR) 19
 3.3 Nuclear spin-lattice relaxation rate $1/T_1$ 20

4 Sample Description.. 24

5 Experimental Results .. 30
 5.1 Unconventional Superconductivity and
 Spin Fluctuations in $(Ca_4Al_2O_6) Fe_2As_2$ 30
 5.1.1 Motivation .. 30
5.1.2 Results and Discussion ... 30
5.2 Possible Nodal Gap Superconductivity
 in (Ca_4Al_2O_6)Fe_2P_2 .. 39
 5.2.1 Results and Discussion ... 39
5.3 Phase Diagram of Ca_4Al_2O_6Fe_2(As_1-xP_x)_2 44
 5.3.1 Motivation .. 44
 5.3.2 Results and Discussion ... 44

6 Summary ... 52
Bibliography .. 63
List of Publications ... 65
Acknowledgments ... 66
List of Figures

1.1 T_c for various materials which showed the highest T_c at the times, including metals, alloys, copper-oxides, and pnictides. 2

1.2 Crystal structure of (a) La$_{2-x}$Sr$_x$CuO$_4$ and (b) YBa$_2$Cu$_{6+x}$[8]. (c) AFM ordering in the CuO$_2$ plane. (d) Schematic phase diagram of the cuprates[9]. 3

1.3 Crystal structures of six major families: iron pnictides (a) (AeM$_2$O$_6$)Fe$_2$Pn$_2$, (b) RFePnO, (c) AeFe$_2$Pn$_2$, and (d) AFePn, and iron chalcogenides (e) AeFe$_4$Ch$_5$ and (f) FeCh. 4

2.1 (a) Tetrahedral layer of FeX (X=As, P, Te, Se, S). Inset shows top view of the layer. (b) Magnetic ordering and structural distortion in the FeX layer. Image is taken from a reference [19]. 5

2.2 Phase diagrams for 1111 family: (a) LaFeAsO$_{1-x}$F$_x$[23] and (b) Ce FeAsO$_{1-x}$F$_x$[24]. 6

2.3 Phase diagrams for 122 family: (a) electron doped Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$[27], (b) hole doped (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$[28] and (c) isovalent doped BaFe$_2$(As$_{1-x}$P$_x$)$_2$[29]. 7

2.4 Phase diagrams for (a) Na(Fe$_{1-x}$Co$_x$)As[30] and (b) Fe(Fe$_{1-x}$Se$_x$)[40]. 8

2.5 (a) Three-dimensional plot of the superconducting-gap size (Δ) of (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ measured at 15 K by ARPES techniques[52]. (b) The spin component of 57Fe Knight Shift deduced by subtracting its orbital component, revealing a spin-singlet SC state.[19]. 9

2.6 The band structure of the five-band model of LaFeAsO. The Fermi Surface at $k_z = 0$ is shown on the middle[63]. 10

2.7 T_c vs (a) Pt-Fe-Pt bond angle[67] and (b) pnictogen height above the Fe plane[69] for various iron-pnictide superconductors. 11

2.8 The fully gapped (a) s+ wave and (b) s++ wave gap are schematically shown. The solid red (blue) curves represent positive (negative) sign of the gap. 12

3.1 Energy diagram of the nuclear spin system with $I = 3/2$ at the external field. The degeneracy of the nuclear spin levels is solved by the Zeeman interaction $\mathcal{H}_{\text{Zeeman}}$. 13

3.2 Energy diagrams of nuclear spin system with \(l = 3/2 \). (a) The degeneracy of the nuclear spin levels is solved by the electric quadrupole interaction \(\mathcal{Q}_Q \) at zero field. Here, \(h_Q = 3e^2qQ/2l(2l - 1) \). (b) \(\mathcal{Q}_{Zeeman} \) dominated spin levels are modified by \(\mathcal{Q}_Q \). \(\Delta \) represents \(h_Q (3 \cos^2 \theta - 1)/4 \) where \(\theta \) is the angle between the principle axis of EFG and external field.

3.3 (a) Schematic image of distribution of nuclei. \(\theta \) is the angle between the direction of the external magnetic field \(\mathbf{H} \) and that of the internal magnetic field \(\mathbf{H}_{int} \). (b) The simulated NMR linehape in normal (black) and AFM state (blue) for the powder sample.

3.4 SC gap functions \(\Delta(\phi, \theta) \) in \(k \)-space for (a) isotropic full gap, (b) line-node gap, and (c) point-node gap model. Color indicates sign of \(\Delta(\phi, \theta) \) (red: + and blue: −). .

3.5 Energy dependences of DOS for quasiparticles in the SC state \(N(E) \) which is normalized by the DOS at the Fermi level in the normal state \(N_0 \) for various SC models. \(\Delta(T) \) represents \(\Delta_0 \tan h[1.82(1.018(T_c/T - 1))^{0.51}] \).[82, 83]

3.6 \(T \) dependences of \(1/T_1 \) normalized by that at \(T_c \) for various SC models. The peak just below \(T_c \) for isotropic full-gap model is called the Hebel-Slichter coherence peak.[84]

4.1 (a) Crystal structure of \((Ca_4Al_2O_6)Fe_2(As_{1-x}P_x)_2\). (b) \(a \)-axis and (c) \(c \)-axis (top) views of FePn layer. Structural parameters of the nearest-neighbour Fe-Fe distance \(r_{Fe-Fe} \), the pnictogen height measured from the Fe plane \(h_{Pn} \), and the \(Pn-Fe-Pn \) bond angle are displayed.

4.2 Powder XRD patterns of \((Ca_4Al_2O_6)Fe_2(As_{1-x}P_x)_2\) with (a)\(x=0.5 \) and (b)\(x=0.75 \) observed at 297K.

4.3 (a)\(x \) dependence of \(a \)-axis and \(c \)-axis length in \((Ca_4Al_2O_6)Fe_2(As_{1-x}P_x)_2\). (b) Plots of pnictogen height \((h_{Pn}) \) from the Fe plane versus \(x \). The \(h_{Pn} \) are determined from powder x-ray(circles) and neutron(squares) diffraction measurements at room temperature.

4.4 (a) Temperature dependence of the magnetic susceptibility of \((Ca_4Al_2O_6)Fe_2(As_{1-x}P_x)_2\). Black arrows indicate the onset of superconducting transitions. (b) Temperature dependence of the resistivity of \((Ca_4Al_2O_6)Fe_2(As_{1-x}P_x)_2\). Resistivity anomalies (kink) are indicated by black arrows.

5.1 \(^{75}\) As-NQR spectra of CaAl42622 (As). The inset shows \(T \) dependence of \(^{75}\)\(\nu_Q \) of CaAl42622 (As), indicating that neither structural phase transition nor no magnetic order takes place in CaAl42622 (As).

5.2 Recovery curves of \(^{75}\)As nuclear magnetization \(m(t) \) at (a) 50 K and (b) 20 K. (c) \(T \) dependence of \(1/T_1 \) for CaAl42622(As). The solid curve is a simulation fitted to a relation \(1/T_1 \sim 1/(T + \theta) + b \) with parameters \(a = 37, \theta = -20 \) K, and \(b = 0.023 \).
5.1 (a) Plots of 75As-NQR $T_1(T_c)/T_1$ normalized at T_c against T/T_c for CaAl42622(As), along with the results of BaK122(OPT) with $T_c=38$ K[47], La1111(OPT) with $T_c=28$ K [90], and La1111(HOVD) with $T_c=5$ K[102]. Note that T dependences of T_{15} and T_{11} normalized at T_c for CaAl42622(As) are almost the same below T_c. The solid curves are simulations in terms of the s_\pm-wave model with multiple SC gaps (see text). (b) T dependence of 75As-$(1/T_1 T)_s$ normalized at $T=250$ K. 34

5.2 (a) Plots of 75As-NQR $T_1(T_c)/T_1$ normalized at T_c against T/T_c for CaAl42622(As) and BaK122(OPT) with $T_c=38$ K[47]. The curves are simulations in terms of the s_\pm-wave model with two isotropic gaps with various values of $r_S \equiv N_S^3/\left(N_S^3+ N_S^5\right)$. Here N_L and N_S represent the respective DOSs with large and small SC gaps. The experimental result for CaAl42622(As) was reproduced with $r_S \sim 0.1$, which is smaller than $r_S \sim 0.3$ for BaK122(OPT) [47]. (b) Similar plots for CaAl42622(As), La1111(OPT) with $T_c=28$ K[90] and La1111(HOVD) with $T_c=5$ K[102]. The experiment for CaAl42622(As) can be also reproduced by assuming a negative value of $\alpha_c \sim -0.86$, which contrasts with $\alpha_c \sim 0.33$ in La1111(HOVD) and $\alpha_c \sim 0$ in La1111(OPT). 36

5.3 The energy dependences of the density of states used above simulations. 37

5.4 T dependence of 31P NMR spectrum for CaAl42622(P). Knight shift decreases below $T_c (=17$ K). 40

5.5 T dependence of the 31P-NMR- $1/T_1 T$ and Knight shift K for CaAl42622(P). 41

5.6 (b) Plots of 31NMR - $T_1(T_c)/T_1$ and (c) $(T_1 T)^{-1}/(T_1 T)^{-1}_c$ versus T/T_c in the SC state at $x=1$ along with that at $x=0$ [15]. The T-linear dependence in $1/T_1$ well below T_c at $x=1$ indicates the presence of the residual DOS at E_F in association with the nodal SC in contrast with the nodeless SC at $x=0$ [15]. 42

5.7 (a) T dependence of 31P $(T_1(T_c)/T_1)$ normalized T_c for Ca$_4$Al$_2$O$_6$Fe$_2$P$_2$, along with the results reported for Ca$_4$Al$_2$O$_6$Fe$_2$As$_2$. The multiple fully gapped s_\pm-wave model allows us to deduced the energy dependences of the density of states (c) through the fitting of the experimental $1/T_1$. (b) T dependence of $(T_1 T)^{-1}$ normalized at $T \sim 250K$ for Ca$_4$Al$_2$O$_6$Fe$_2$P$_2$ and Ca$_4$Al$_2$O$_6$Fe$_2$As$_2$. 43

5.8 T dependence of (a) 31P-NMR and (b) 75As-NMR spectrum at $x=0.75$, pointing to the onset of AFM order below 60 K. The red solid line in (b) shows a successful simulation of the 75As NMR powder-type spectrum. 45

5.9 x dependence of 31P-NMR spectrum at 10 K along with a simulation. 46
5.12 x dependence of respective internal fields $^{31}H_{\text{int}}$ and $^{75}H_{\text{int}}$ at 31P and 75As.

5.13 T dependence of 31P-NMR $^{31}(1/T_1 T)$ in 0.2$\leq x \leq$1 along with 75As-NQR $^{75}(1/T_1 T)$ at $x=0$ at the normal state. Note that the $^{31}(1/T_1 T)$s for 0.5 $\leq x \leq$ 0.95 diverge toward T_N, below which the 31P-NMR spectrum exhibits a rectangular-like shape in association with the onset of an AFM order (see Fig. 1(b)).

5.14 (a) Phase diagram against x in (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$. The commensurate AFM order occurs in 0.5 $\leq x \leq$ 0.95, which intervenes between the nodeless SC in 0 $\leq x \leq$ 0.4 and the nodal SC at $x=1$. Each empty symbol near the phase boundary between the nodeless SC phase and the AFM ordered phase means that each sample contains a tiny fraction of minority domain exhibiting either AFM order or nodeless SC due to a possible spatial distribution of As/P content.

5.15 Map of the AFM ordered phase (filled symbols) and the SC phase (empty symbols) for (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ plotted in the two-dimensional plane of structural parameters of the Fe-Fe distance $a_{\text{Fe-Fe}}$ and h_{Pn}. Here, the emergent phases for various Fe-based compounds with the Fe$^{2+}$ state in (FePn)$^-$ layer through the isovalent substitution at pnictogen (Pn) sites are presented with respect to Fe(Se,Te)[73, 131], LiFe(As,P)[123, 109], BaFe$_2$(As,P)$_2$[124, 114, 125, 126, 127], LaFe(Sb,As,P)O[20, 130, 108, 107], NdFeAsO[112], and (Sr$_4$M$_2$O$_6$)Fe$_2$(As,P)$_2$ (M=Mg$_{0.5}$Ti$_{0.5}$[115, 116], Sc[117, 110]). The symbol (+) denotes the compounds which are not superconductive. The AFM order taking place universally in the range of 1.32 $A \leq h_{Pn} \leq$ 1.42Å intervenes between the nodeless SC in $h_{Pn} >$ 1.42Å and the nodal SC in $h_{Pn} <$ 1.32Å. Dotted line is a linear relation of h_{Pn} versus $a_{\text{Fe-Fe}}$ at each value of α.

6.1 Summary of NMR / NQR studies on an isovalent system (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$.

8
Chapter 1

Introduction

Some historical events concerning superconductivity are recalled, and some key properties and theories of superconductivity are briefly described in this chapter.

1.1 Superconductivity

Superconductivity is a phenomenon in which the electrical resistance of a substance suddenly drops to zero at a particular temperature (T_c). Since the first observation in mercury by Heike Kamerlingh Onnes in 1911[1], hundreds of superconducting materials have been discovered by the continuous efforts of many physicists and material scientists as shown in Fig. 1.1. The microscopic description of superconductivity was produced by John Bardeen, Leon Neil Cooper, and John Robert Schrieffer (BCS) in 1957[2]. A key conceptual element in the BCS theory is the formation of electron pairs (known as Cooper pairs) through the interaction with lattice vibration (phonon). It is generally agreeable that superconductivity in metals and intermetallic compounds can be explained by the BCS theory. Such superconductivity is known to be incompatible with magnetism. For example, Alexey A. Abrikosov and Lev P. Gor'kov showed that magnetic impurities disrupt superconductivity[3].

1.2 High-temperature (high-T_c) Cuprates

In 1986 Johannes Georg Bednorz and Karl Alexander Müller reported a discovery of superconductivity in Ba-La-Cu-O ceramics with T_c higher than 30K[4]. The following year, the liquid nitrogen temperature (77 K) barrier was broken with the discovery of a related compound $\text{YBa}_2\text{Cu}_3\text{O}_{7-x}$, which is superconducting at \sim90K[5]. Soon after that, the T_c of copper-oxide superconductors (so-called “cuprates”) reached 134K at ambient pressure[6] and \sim 150K under high pressure[7], as shown in Fig. 1.1. These discoveries surprised a lot of
physicists who had believed that the maximum T_c would be about 30K, and opened a new field of material science.

All high-T_c cuprate superconductors share the common structural feature, containing the cupper-oxide (CuO_2) plane separated by “block layers”, as shown in Fig. 1.2 (a) and (b). The block layers play a significant role as a charge reservoir, and the electric conduction occurs in the CuO$_2$ plane. Figure 1.2 (d) shows a schematic phase diagram of high-T_c cuprates. The undoped parent compounds are antiferromagnetic Mott insulators where a single electron is localized on the copper site due to the strong on-site Coulomb repulsion. Spins of nearest neighbours are aligned antiparallel to each other. High-T_c superconductivity emerges after introducing mobile holes or electrons into the CuO$_2$ plane which suppress the static antiferromagnetic order. This implies that there is an intimate relationship between superconductivity and magnetism. The magnetic spin-spin interaction between electrons are often thought to be important for the formation of Cooper pairs, although a consensus on the mechanism causing the high T_c in these materials has not been reached yet.

Figure 1.1: T_c for various materials which showed the highest T_c at the times, including metals, alloys, copper-oxides, and pnictides.
1.3 Iron Pnictides and Chalcogenides

The newly discovered iron (Fe)-based superconductors undermine the uniqueness of the cuprates and have prompted the community to rethink what is important and what is not for the appearance of high-T_c superconductivity.

The first Fe-pnictide superconductor LaFePO was discovered by Hosono’s group at the Tokyo Institute of Technology in 2006[10]. The T_c is only $\sim 4K$. A breakthrough came with the fluorine (F)-doped LaFeAsO that shows $T_c \sim 26K$[11] which rise to $\sim 43K$ under pressure[12]. Reports on even higher T_c’s of up to $\sim 55K$, achieved by replacing lanthanum by rare earth ions with smaller ionic radii, followed quickly[13, 14]. This temperature exceeds the T_c of MgB$_2$ (39K) and is next to the cuprates. Meanwhile, a large number of layered compounds containing the antifluorite-like FePn (Pn= pnictogen) or FeCh (Ch= chalcogen) in each structure have been proved to become superconducting. They are classified into four groups of iron pnictides and two groups of iron chalcogenides according to their chemical formula, as shown in Fig. 1.3. We
have focused on a new series of iron pnictides, which contain perovskite-type thick block layer. These compounds give us a good opportunity to investigate the difference between the iron pnictides and the cuprates due to similar two-dimensional structure.

In this thesis, I present systematic nuclear quadrupole resonance (NQR) and nuclear magnetic resonance (NMR) experiments, which demonstrate that an Fe-based new superconductor \((\text{Ca}_4\text{Al}_2\text{O}_6)\text{Fe}_2(\text{As}_{1-x}\text{P}_x)_2\) possesses a peculiar electronic phase diagram. We will also discuss the ground state of undoped iron pnictides with \(\text{Fe}^{2+}\) oxidation state in \((\text{FePn})^-\) layer from a structural point of view. The results presented in this thesis have been published in several references\([15, 16]\). Additional related measurements performed by collaborators on crystal grown as part of this thesis have also been published\([17, 18]\).

Figure 1.3: Crystal structures of six major families: iron pnictides (a) \((\text{Ae}_4\text{M}_2\text{O}_6)\text{Fe}_2\text{Pn}_2\), (b) \(\text{RFePnO}\), (c) \(\text{AeFe}_2\text{Pn}_2\), and (d) \(\text{AFePn}\), and iron chalcogenides (e) \(\text{Ae}_2\text{Fe}_4\text{Ch}_5\) and (f) \(\text{FeCh}\).
Chapter 2

Background

I introduce the current research situation of the iron-based superconductors in this chapter.

2.1 Crystal Structure

All Fe-based superconductors have a common structural feature consisting of a tetrahedral Fe\(Pn\) (\(Pn=\text{As, P}\)) or Fe\(Ch\) (\(Ch=\text{Te, Se, S}\)) layer in which Fe atoms form a square lattice perpendicular with \(Pn\) or \(Ch\) anions residing alternatively above and below the plane as shown in Fig. 2.1. These tetrahedral layers are separated by “block layer” such as rare-earth atoms (\(R\)) and oxygen, alkaline-earth atoms (\(Ae\)), and alkali atoms (\(A\)). The interlayer distance between the Fe planes enlarges in the order of \(\text{FeSe, } A\text{FeAs, } Ae\text{Fe}_2\text{As}_2, Ae_2\text{Fe}_4\text{Se}_5, R\text{FeAsO, } (Ae_4M_2O_6)\text{Fe}_2\text{As}_2\).

Figure 2.1: (a) Tetrahedral layer of Fe\(X\) (\(X=\text{As, P, Te, Se, S}\)). Inset shows top view of the layer. (b) Magnetic ordering and structural distortion in the Fe\(X\) layer. Image is taken from a reference [19].
2.2 Physical Properties

2.2.1 Phase Diagram

Figure 2.2-2.4 summarizes several available phase diagrams reported in $RFePnO$, $AeFe_{2}Pn_{2}$, $AFePn$, and $FeCh$.

- $RFePnO$ (abbreviated as 1111 for its 1:1:1:1 ratio of the four elements)
 The stoichiometric parent arsenides undergo a tetragonal to orthorhombic (T-O) structural transition at T_S and then form a stripe-type AFM ordering at a slightly lower temperature T_N, 10-20K below\[20, 21, 22\]. Chemical substitutions decrease both T_S and T_N in a similar fashion, and induce superconductivity where the static AFM order is destroyed. On the other hand, a phosphide LaFePO exhibits superconductivity without any carrier doping\[10\].

- $AeFe_{2}Pn_{2}$ (122)
 In contrast with the “1111” family, the AFM transition is coincident with the T-O structural distortion\[25, 26\]. The AFM phase overlap with a domelike SC phase and the maximum T_c is realized at the phase boundary.

- $AFePn$ (111)
 For NaFeAs series, the parent compound lies just within a SC dome that can be traversed by the addition of 0.1 electrons per Fe atom, and shows coexistence of antiferromagnetism and superconductivity over a region less than 0.025 electrons per Fe wide. In addition, A T-O structural transition precedes the AFM ordering like the “1111” family\[30\]. On the other hand, LiFeAs\[31, 32\] and LiFeP\[33, 34\] were shown to be bulk superconductors in its undoped, stoichiometric form.

- $FeCh$ (11)
 Like the “122” series, the structural and AFM transitions occur simultaneously in FeTe \[35\]. When the long-range static AFM order is suppressed by isoelectronic substitution of Te with Se, superconductivity appears and the incommensurate AFM order with the in-plane propagation wave-vector ($\delta\pi, \delta\pi$) direction (along the diagonal direction of the Fe-Fe square) becomes short-range spin fluctuations\[36\]. FeSe undergoes the T-O structural transition near 70K\[37\], and superconduct at $T_c \sim 8$K\[38\], which increases to 27 K at 1.48 GPa\[39\].
Figure 2.2: Phase diagrams for 1111 family: (a) LaFeAsO$_{1-x}$F$_x$[23] and (b) CeFeAsO$_{1-x}$F$_x$[24].
Figure 2.3: Phase diagrams for 122 family: (a) electron doped $\text{Ba(Fe}_{1-x}\text{Co}_x\text{)}_2\text{As}_2$[27], (b) hole doped $(\text{Ba}_{1-x}\text{K}_x\text{)}\text{Fe}_2\text{As}_2$[28] and (c) isovalent doped $\text{BaFe}_2(\text{As}_{1-x}\text{P}_x)_2$[29].
Figure 2.4: Phase diagrams for (a) Na(Fe$_{1-x}$Co$_x$)As[30] and (b) Fe(Te$_{1-x}$Se$_x$)[40].

2.2.2 Magnetic Structure

As mentioned above, superconductivity in most of the Fe-based superconductors emerges in close proximity to a magnetic ground state. Investigation of the magnetism is thus a first step toward understanding the mechanism that causes high-T_c superconductivity. So far, neutron scattering experiments have resolved the magnetic structure in some parent compounds of the Fe-based superconductors. As illustrated in Fig. 2.1 (b), most parent compounds, except for FeTe[36], share a magnetic order which is antiferromagnetic in one direction and ferromagnetic in the other within ab plane. This magnetic structure has been explained from both itinerant- [41, 42] and localized- [43] electron point of view.
2.2.3 Pairing Symmetry and Gap Structure

Knight shift is proportional to spin susceptibility and thus provides direct measure of the symmetry of the Cooper pair. Knight-shift measurements revealed that the Cooper pairs are in the spin-singlet state, implying an even order parameter (OP) symmetry (that is, s-wave, d-wave symmetry and so on) [44, 45, 46, 47, 48, 49]. So far, this experiment has been done on main members of the four families, including samples of the 1111- [44, 45], 122- [46, 47], 111- [48], and 11-systems[49], and therefore, it is reasonable to assume that superconductivity in the Fe-based compounds is universally spin singlet. However, it is much complex to determine the nature of the OP in momentum space, particularly the presence or absence of nodes. For instance, NMR spin-lattice relaxation rate ($1/T_1$) measurements show no Hebel-Slichter (HS) coherence peak just below T_c and power-low decay far below T_c, excluding the possibility of conventional s-wave state[44, 45, 46, 47, 49]. On the other hand, it has been established from penetration depth measurement[50, 51] and angle-resolved photoemission spectroscopy (ARPES)[52, 53, 54, 55, 56, 58, 57, 59, 60] that the s-wave SC state is realized in usual Fe-based superconductors. These conflicting results have been explained by the theoretically proposed “s_{\pm}-wave” state (please see section 2.5).

Figure 2.5: (a) Three-dimenssional plot of the superconducting-gap size (Δ) of (Ba$_{0.6}$K$_{0.4}$)Fe$_2$As$_2$ measured at 15 K by ARPES technique[52]. (b) The spin component of 57Fe Knight Shift deduced by subtracting its orbital component, revealing a spin-singlet SC state.[19].
2.3 Band Structure and Fermi Surface

The electronic structure of the Fe-based superconductors has been intensively studied both theoretically and experimentally. These main results are summarized as follows. (i) All the compounds possess a similar electronic structure. (ii) The stoichiometric parent compounds are semimetal with equal number of negative and positive charge carriers, and the dominant contribution to the density of states at Fermi level (E_F) derives from the five Fe 3d orbitals lightly mixed with Pn (or Ch) p orbitals. (iii) The Fermi surfaces (FSs) comprise disconnected quasicylindrical sheets with two hole pockets (α_1, α_2) at the center of the Brillouin zone (Γ point) and two electron pockets (β_1, β_2) centered its corner (M point) as shown in Fig. 2-4. An additional hole pockets sit around the Γ point [or the wave vector $(\pm \pi, \pm \pi)$ in the unfolded Brillouin zone], and its presence is very sensitive to structural details. (iv) When extra electrons are injected, the electron pockets expand and the hole pockets contract. Conversely, hole doping makes the hole pockets larger and the electron pockets smaller. One important feature is that the hole and electron pockets can be fairly well nested by a wave vector of (π, π) [or $(\pi, 0)$ and $(0, \pi)$]. And this FS nesting can induce a collinear AFM order, which is consistent with the observed. However, the observed magnetic moment per Fe atom is much smaller than expected from first-principles calculations[61]. In addition, first-principles calculations have expected that the electronic structure becomes two-dimensional according as the interlayer distance between the Fe planes enlarges[62].

Figure 2.6: The band structure of the five-band model of LaFeAsO. The Fermi Surface at $k_z = 0$ is shown on the middle[63].
2.4 Factors Affecting T_c

- Spin dynamics
 NMR experiments revealed that in Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$[64] and BaFe$_2$(As$_{1-x}$P$_x$)$_2$[65] T_c is optimized near an AFM quantum-critical point (QCP). And superconductivity vanishes in the heavily overdoped compounds, where low-energy AFM spin fluctuations are absent. This strongly suggests that there is an intimate relationship between superconductivity and antiferromagnetism. Moreover, for these optimally doped compounds T_c appears to be scaled to spin-fluctuations temperatures[66].

- Structural parameters
 The T_c in Fe-based superconductors intimately related with parameters characterizing local structure around Fe atoms. In particular, Lee et al. shows that the highest T_c is obtained when Pn (or Ch)-Fe-Pn (or Ch) bond angle α forms a regular tetrahedron ($\alpha \sim 109.5^\circ$)[67]. The importance of bond angle has also been pointed out by Zhao et al[68]. On the other hand, it has been shown by Mizuguchi et al. that T_c systematically varies with the distance between the pnictogen and Fe plane (h_{Pn}), and reaches its maximum around 1.38Å[69].

![Figure 2.7: T_c vs (a) Pn-Fe-Pn bond angle[67] and (b) pnictogen height above the Fe plane[69] for various iron-pnictide superconductors.](image)
2.5 Pairing Mechanism

Because of the close proximity of AFM order and superconductivity in the phase diagram, the possibility of magnetically mediated superconductivity has been extensively studied. Two different approaches, based on the itinerant spin fluctuations promoted by FS nesting[70, 71] and the local AFM exchange couplings[72], predict s-wave state with sign reversal of the SC-gap function between electron- and hole- FSs (the s_\pm-wave state). This scenario is supported by scanning tunneling microscopy on Fe(Te, Se)[73] and inelastic neutron scattering on (Ba,K)Fe$_2$As$_2$[74]. Moreover, it has been theoretically pointed out that the sign reversal of the gap function on the well-nested FSs lead to the suppression of HS peak and low-temperature power-law behavior in $1/T_1$ as if nodeless SC gaps (magnitude of order parameter, $|\Delta|$) open on all FSs[75, 76, 77].

Conversely, the orbital-fluctuation-mediated s-wave state without sign reversal (the s_{++}-wave state) has also been proposed[78]. This idea is based on the multiorbital nature of the iron pnictides, and can naturally explain an orbital polarization of d_{xz} and d_{yz} Fe states in the orthorhombic phase (x, y, and z represent orthorhombic axes)[79] as well as softening of the lattice characterized by the shear modulus C_{66} above T_S[80]. Recently, a laser-ARPES study on BaFe$_2$(As$_{0.65}$P$_{0.35}$)$_2$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ reported that the SC gap is almost identical among the observed three holelike FSs, and the importance of orbital fluctuations in the pairing mechanism was claimed[81]. However, many other ARPES results on BaFe$_2$As$_2$[52, 53, 54, 55, 56], LiFeAs[57], and FeTe$_{1-x}$Se$_x$[60] have shown FS-dependent SC gaps.

![Figure 2.8](image.png)

Figure 2.8: The fully gapped (a) $s\pm$ wave and (b) s_{++} wave gap are schematically shown. The solid red (blue) curves represent positive (negative) sign of the gap.
2.6 Similarities and Differences with Cuprates

These Fe-based compounds share many similarities with the cuprates despite the marked differences in the chemical compositions as follows:

1. Both contain stacked square lattice layers of transition metals, and d electrons are responsible for physical properties.
2. Their electronic properties are two-dimensional.
3. Superconductivity emerges in close proximity to a magnetic ground state, and magnetic correlations has been suggested to be crucial for the superconductivity.

On the other hands, in following respects Fe-based superconductors are different from cuprates.

1. The parent compounds of Fe-based superconductors are bad metals, while those of cuprate superconductors are insulating.
2. In iron pnictides, all five Fe d-bands are partially occupied and cross the Fermi level. However, the cuprates are single-band systems.
3. In most iron pnictides and chalcogenides, AFM order is always accompanied by a tetragonal-to-orthorhombic lattice distortion. SC pairing through orbital (or structural) fluctuations is also proposed.
4. Superconductivity can be induced not only by charge doping but also by applying external pressure or by isoelectronic doping, whereas in cuprates application of pressure only enhances already existing T_c.
Chapter 3

Experimental Methods and Principles

3.1 Nuclear Magnetic Resonance (NMR)

NMR is a local, real-space probe where the behavior of nuclear spins can be monitored on site-to-site basis. Since nuclei are coupled to the surrounding electrons via hyperfine interactions, NMR is widely used in solid-state studies. Its advantage is that not only static properties but also dynamics can be detected through a spin-lattice relaxation rate $1/T_1$, which relates to a dynamical susceptibility $\chi(q, \omega)$. Furthermore, it is well known that NMR is a powerful tool to reveal the SC state. For example, the shift of a resonance peak called Knight shift sensitively depend on the spin state of Cooper pairs.

3.1.1 Nuclear magnetic resonance phenomena

Under an external magnetic field H_{ext}, the interaction Hamiltonian for a nuclear spin moment $\mu_N = hI\gamma_N$ is given by

$$\mathcal{H}_Z = -\mu_N \cdot H_{\text{ext}}$$

(3.1)

which produces the split of the energy levels with $2I + 1$. When a ac-magnetic field H_1 with $\omega_0 = \gamma_N H_{\text{ext}}$ is set perpendicular to the direction of H_{ext}, energy absorption and emission are observed between the neighboring spin levels. Figure 3.1 shows the energy diagram of the nuclear spin system with $I = 3/2$ at the external field.

3.1.2 Nuclear spin Hamiltonian

In addition to the above Zeeman interaction, the nuclei interact with electrons by following magnetic and electric interactions in a substance: the former attributes to the Knight shift, and the latter is the origin of nuclear quadrupole
Figure 3.1: Energy diagram of the nuclear spin system with \(l = \frac{3}{2} \) at the external field. The degeneracy of the nuclear spin levels is solved by the Zeeman interaction \(\mathcal{H}_{\text{Zeeman}} \).

resonance (NQR).

A nuclear spin \(I \) with a quadrupole moment \(Q \) is represented following by Hamilton under magnetic field \(\mathbf{H}_{\text{ext}} \),

\[
\mathcal{H} = \mathcal{H}_Z + \mathcal{H}_{\text{HF}} + \mathcal{H}_Q.
\] (3.2)

The second term in eq. 3.2 is induced, since the quadrupole moment interacts with electronic field gradient (EFG) by surrounding electronic field, described as

\[
\mathcal{H}_Q = \frac{e^2 q Q}{4I(2I-1)} \left[3I_z^2 - I(I+1) + \eta(I_x^2 + I_y^2) \right].
\] (3.3)

Here, \(q \) is defined as \(eq \equiv V_{zz} \) using potential \(V \). \(V_{\alpha\beta} \) \((\alpha, \beta = x, y, z) \) shows the value of \(V_{\alpha\beta} \equiv \partial^2 V/\partial \alpha \partial \beta \) at the origin. \(eq \) gives the gradient of \(z \) direction. \(\eta \equiv (V_{xx} - V_{yy})/V_{zz} \) is the asymmetry factor. The last term in eq. 3.2 is magnetic interaction through hyperfine coupling,

\[
\mathcal{H}_{HF} = \gamma_N \gamma_e g \hbar^2 \left[\frac{8\pi}{3} \delta(r) \mathbf{I} \cdot \mathbf{S} - \left(\frac{\mathbf{I} \cdot \mathbf{S}}{r^3} - \frac{3(\mathbf{I} \cdot \mathbf{r})(\mathbf{S} \cdot \mathbf{r})}{r^5} \right) + \frac{\mathbf{I} \cdot \mathbf{I}}{r^3} \right]
\] (3.4)

where \(\gamma_e \) is an electronic gyromagnetic ratio. The first term of this expression is called Fermi contact interaction, showing the contribution from \(s \) electrons with finite probability at nuclear positions as shown in \(\delta(r) \). The second and last terms represent a classical dipole-dipole interaction and interactions between nuclear spins and electronic orbital angular momentum, respectively, which are contributed from non-\(s \) electrons.
3.1.3 Knight shift

The magnetic interaction between a nuclear spin and surrounding electrons is represented by \mathcal{H}_{HF}. Defining the internal magnetic field at nuclear position induced by electrons as H_{loc},

$$\mathcal{H}_{HF} = -\gamma_N I \cdot H_{loc}$$

$$H_{loc} = -\gamma_e \hbar \left[\frac{8\pi}{3} \delta(r)S - \left(\frac{S^2}{r^3} - \frac{3(S \cdot r)r}{r^5} \right) + \frac{I}{r^3} \right]$$

is shown. This time-dependent H_{loc} is shown as follows,

$$H_{loc}(t) = \langle H_{loc} \rangle + \delta H_{loc}(t).$$

The averaged value $\langle H_{loc} \rangle$ makes the extra field, giving rise to NMR line shift. Therefore, an effective field that nuclear spin receive is expressed as,

$$H_{eff} = H_{ext} + \langle H_{loc} \rangle$$

$$=(1 + K)H_{ext}$$

$$K \equiv \frac{\langle H_{loc} \rangle}{H_{ext}}.$$
The K, called Knight shift, is composed of temperature (T)-dependent spin part and T-independent orbital part,

$$K(T) = K_s(T) + K_{\text{orb}},$$

$$K_s(T) = \frac{A_s}{N_A \mu_B} \chi_s(T),$$

$$K_{\text{orb}} = \frac{A_{\text{orb}}}{N_A \mu_B} \chi_{\text{orb}}.$$

Here, A_s (A_{orb}), χ_s (χ_{orb}), N_A, and μ_B are a spin (orbital) part of hyperfine coupling constant, a spin (orbital) susceptibility, the Avogadro’s number, and the Bohr magneton, respectively. When electron correlations are disregarded, χ_s corresponds to the Pauli paramagnetic susceptibility, $\chi_{\text{Pauli}} = 2\mu_B^2 N(E_F)$. The spin part of the Knight shift $K_s(T)$ is the efficient probe to reveal the Cooper pairing state. For spin singlet pairs, an absolute value of $K_s(T)$ is decreasing upon cooling below T_c since χ_s comes close to zero due to offsetting spin momentum. By contrast, for spin triplet pairs which have finite spin momentum, $K_s(T)$ hardly changes upon cooling below T_c.

3.1.4 Antiferromagnetic powder pattern in NMR under external fields

If an AFM ordering occurs in powder sample, NMR spectrum undergoes an appreciable broadening by the internal magnetic field as shown in Fig. 3.3. In powders, the angle (θ) between the direction of the external magnetic field H and that of the internal magnetic field H_{int} is randomly distributed. As a result, the distribution of nuclei that experiences the resonant magnetic field H_0 with $H_0 = \omega_0/\gamma_N$ in the external magnetic field between H and $H + dH$ is described as

$$P(H)dH = \frac{2\pi rsin\theta}{4\pi r^2} rd\theta = \frac{1}{2} sin\theta d\theta$$

$$= \frac{1}{2} d(cos\theta).$$

Since $H = H_0 + H_{\text{int}} cos\theta$, in the AFM ordered state, it can be expressed as

$$P(H) = \frac{1}{2} \frac{d(cos\theta)}{dH} = \frac{1}{2H_{\text{int}}}$$

for the range of $H_0 - H_{\text{int}} < H < H_0 + H_{\text{int}}$. Here, ω_0 is the NMR frequency and γ_N is the nuclear gyromagnetic ratio. This equation gives a rectangle powder pattern of full width $2H_{\text{int}}$.

18
Figure 3.3: (a) Schematic image of distribution of nuclei. θ is the angle between the direction of the external magnetic field H and that of the internal magnetic field H_{int}. (b) The simulated NMR linehape in normal (black) and AFM state (blue) for the powder sample.

3.2 Nuclear Quadrupole Resonance (NQR)

If $I \geq 1$, the nuclei have unique sized nuclear electric quadrupole moments which are reflected in an asymmetric charge distribution of nuclei,

$$eQ = e \int_V \left(3z^2 - r^2 \right) d\nu,$$

where z is the spin quantization axis. When the nuclei are located in lower symmetry than cubic, the degeneracy of the nuclear spin levels is solved by the electric quadrupole interaction \mathcal{H}_Q although at zero field as indicated in Fig 3.2. If the split is large enough, namely in the MHz range, the NQR spectroscopy is feasible. The resonance frequency is given by

$$v_m = \frac{E_m - E_{m-1}}{\hbar} = \frac{(2m - 1)\nu_Q}{2},$$

where $\nu_Q = \frac{3e^2qQ}{2I(2I - 1)}$. Since the frequency sensitively depend on the crystal symmetry and the charge distribution around the observed nuclei, NQR is powerful tool to detect phase transition, such as structural transition and charge order, in strongly correlated electron systems.
3.3 Nuclear spin-lattice relaxation rate $1/T_1$

A nuclear spin is relaxed by the fluctuating component of internal magnetic field, $\delta H_{\text{loc}}(t)$. The nuclear spin-lattice relaxation rate, $1/T_1$ is represented as follows.

$$\frac{1}{T_1} = \frac{\gamma_e^2}{4} \int_{-\infty}^{+\infty} \left(\delta H_{\text{loc}}^+(t)\delta H_{\text{loc}}^+(0)e^{i\omega t} \right) + \left(\delta H_{\text{loc}}^-(t)\delta H_{\text{loc}}^+(0)e^{-i\omega t} \right) dt$$

$$= \frac{\gamma_e^2}{4} \sum_q A_q A_{-q} \int_{-\infty}^{+\infty} \left(S_q^+(t)S_{-q}^-(0)e^{i\omega t} \right) + \left(S_{-q}^-(t)S_q^+(0)e^{i\omega t} \right) dt$$

Here, note that the \mathcal{H}_e and the S_q are electronic Hamiltonian and Fourier component of the electronic spin S, respectively, and

$$A(t) = e^{\mathcal{H}_e t/\hbar} A e^{-\mathcal{H}_e t/\hbar}, \quad \langle A \rangle = \frac{\text{Tr}[A e^{-\mathcal{H}_e/\hbar}]}{\text{Tr}[e^{-\mathcal{H}_e/\hbar}]}.$$ (3.18)

We derive the following expression by using the fluctuation-dissipation theorem,

$$\frac{1}{T_1} = \frac{2\gamma_e^2k_B T}{\mu_B^2} \sum_q A_q A_{-q} \frac{\text{Im} \chi(q, \omega_0)}{\omega_0}.$$ (3.19)

In the case of electron correlation is small enough to disregard it, the imaginary part of susceptibility is written as follows,

$$\text{Im} \chi(q, \omega) = 4\pi\mu_B^2 \sum_k \left[f(E_{k+q}) - f(E_k) \right] \delta(E_k - E_{k+q} - \hbar \omega)$$ (3.20)

If we assume that A_q does not depend on q, then we derive the following relation,

$$\frac{1}{T_1} \approx \frac{\pi}{\hbar} A^2 \int_0^{\infty} \int_0^{E'} N(E)N(E') f(E) \left[1 - f(E') \right] \delta(E - E') \, dE \, dE'$$ (3.21)

$$= \frac{\pi}{\hbar} A^2 N(E_F)^2 k_B T.$$ (3.22)

This expression and Knight shift gives so-called Korringa relation:

$$\frac{1}{T_1} = \frac{4\pi k_B}{\hbar} \left(\frac{\gamma_e}{\gamma_e} \right)^2,$$ (3.22)

where γ_e is a electric gyromagnetic ratio.

From Eq. 3.21, $1/T_1$ in the SC state which is normalized by that at T_c is generally given by

$$\frac{T_1(T_c)}{T_1} = \frac{2}{k_B T_c} \int_0^{E_F} \frac{N_s(E)^2 + M_s(E)^2}{N_0^2} f(E) \left[1 - f(E) \right] \, dE$$ (3.23)
where

\[N_s(E) = \frac{N_0}{4\pi} \int_0^{2\pi} \int_0^\pi \frac{E}{\sqrt{E^2 - |\Delta(\phi, \theta, T)|^2}} \sin \theta d\theta d\phi, \]

(3.24)

\[M_s(E) = \frac{N_0}{4\pi} \int_0^{2\pi} \int_0^\pi \frac{\Delta(\phi, \theta, T)}{\sqrt{E^2 - |\Delta(\phi, \theta, T)|^2}} \sin \theta d\theta d\phi, \]

(3.25)

and \(N_0 \) are the density of states (DOS) for quasiparticles in the SC state, the anomalous DOS originating from the coherence effect of the transition probability, and the DOS at the Fermi level in the normal state, respectively. Here, the \(T \) dependence of the SC gap function is expressed by \(\Delta(\phi, \theta, T) = \Delta(T)\Delta(\phi, \theta) \) where \(\Delta(T) \) represents \(\Delta_0 \tanh[1.82(1.018(T_c/T - 1))^{0.51}] \)[82, 83]. Measurements of \(T_1 \) below \(T_c \) give valuable information about the structure of SC gap.

Figure 3.4: SC gap functions \(\Delta(\phi, \theta) \) in \(k \)-space for (a) isotropic full gap , (b) line-node gap, and (c) point-node gap model. Color indicates sign of \(\Delta(\phi, \theta) \) (red: + and blue: -).
• isotropic full gap

Figure 3.4(a) shows the gap function in k-space, $\Delta(\phi, \theta) = \Delta_0$ for an isotropic s-wave gap model. As a result of angular integration in Eqs. 3.24 and 3.25, $N_s(E)$ and $M_s(E)$ are given as follows:

$$N_s(E) = \begin{cases} 0 & (|E| < \Delta(T)) \\ \frac{N_0E}{\sqrt{E^2-|\Delta(T)|^2}} & (|E| \geq \Delta(T)) \end{cases} \quad (3.26)$$

$$M_s(E) = \begin{cases} 0 & (|E| < \Delta(T)) \\ \frac{N_0\Delta(T)}{\sqrt{E^2-|\Delta(T)|^2}} & (|E| \geq \Delta(T)). \end{cases} \quad (3.27)$$

The energy dependence of $N_s(E)$ and T dependence of $T_1(T_c)/T_1$ for this model are shown in Figs. 3.5 and 3.6, respectively. $N_s(E)$ and $M_s(E)$ are diverged at $E = \Delta(T)$, which cause the peak in $T_1(T_c)/T_1$ just below T_c called the Hebel-Slichter coherence peak [84]. At low-T, $1/T_1$ is proportional to $\exp(-\Delta_0/k_BT)$. The SC gap size Δ_0 can be estimated by using this relation.

• line-node gap

Figure 3.4(b) shows the gap function in k-space, $\Delta(\phi, \theta) = \Delta_0e^{i\phi}\cos \theta$ for line-node gap model. $N_s(E)$ and $M_s(E)$ are represented by

$$N_s(E) = \begin{cases} \pi \frac{N_0E}{\Delta(T)} & (|E| < \Delta(T)) \\ \frac{N_0E}{\Delta(T)} \arcsin \left(\frac{\Delta(T)}{E} \right) & (|E| \geq \Delta(T)), \end{cases} \quad (3.28)$$

$$M_s(E) = 0. \quad (3.29)$$

The energy dependence of $N_s(E)$ and T dependence of $T_1(T_c)/T_1$ for this model are shown in Figs. 3.5 and 3.6, respectively. $1/T_1$ in low-T region is proportional to T^3 which is reflected in $N_s(E) \propto E$ in the $E - E_F \ll \Delta(T)$ region.

• point-node gap

Figure 3.4(c) shows the gap function in k-space, $\Delta(\phi, \theta) = \Delta_0e^{i\phi}\sin \theta$ for point-node gap model. $N_s(E)$ and $M_s(E)$ are represented by

$$N_s(E) = \frac{N_0E}{2\Delta(T)} \ln \left| \frac{E + \Delta(T)}{E - \Delta(T)} \right|, \quad (3.30)$$

$$M_s(E) = 0. \quad (3.31)$$

The energy dependence of $N_s(E)$ and T dependence of $T_1(T_c)/T_1$ for this model are shown in Figs. 3.5 and 3.6, respectively. $1/T_1$ in low-T region is proportional to T^5 which is reflected in $N_s(E) \propto E^2$ in the $E - E_F \ll \Delta(T)$ region.
Figure 3.5: Energy dependences of DOS for quasiparticles in the SC state $N_s(E)$ which is normalized by the DOS at the Fermi level in the normal state N_0 for various SC models. $\Delta(T)$ represents $\Delta_0 \tanh[1.82(1.018(T_c/T - 1))^{0.51}]$. [82, 83]

Figure 3.6: T dependences of $1/T_1$ normalized by that at T_c for various SC models. The peak just below T_c for isotropic full-gap model is called the Hebel-Slichter coherence peak [84].
Polycrystalline samples of (Ca$_4$Al$_2$O$_{6-\varnothing}$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ with a nominal content of $0 \leq x \leq 1$ were synthesized by the solid-state reaction method using the high-pressure synthesis technique described elsewhere [17, 18]. Due to the oxidation of the starting materials, a nominal value of \varnothing in the prepared samples may be empirically nearly zero, even though $\varnothing \sim 0.20$. Powder X-ray diffraction (XRD) measurements with Cu K_α radiation at room temperature, indicate that these samples are almost entirely composed of a single phase, and the lattice parameters such as the lengths along a-axis and c-axis decrease monotonously with increasing x, ensuring a homogeneous chemical substitution of P for As.

Figure 4.1: (a) Crystal structure of (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$. (b) a-axis and (c) c-axis (top) views of FePn layer. Structural parameters of the nearest-neighbour Fe-Fe distance a_{Fe-Fe}, the pnictogen height measured from the Fe plane h_{Pn}, and the Pn-Fe-Pn bond angle are displayed.
To examine the further detailed structural parameters (atomic positions), neutron powder diffraction (NPD) measurement have been also performed on (Ca₄Al₂O₆)Fe₂As₂ and (Ca₄Al₂O₆)Fe₂P₂ by the high-resolution powder diffractometer HERMES of the Institute for Materials Research, Tohoku University, installed at the JRR-3 reactor of JAEA in Japan. Incident neutron wavelength was fixed at 1.8484Å using a Ge monochromator. The data were analyzed by the Rietveld method using the Rietan program. Table 4.1 shows the atomic positions of the x=0 and x=1 compounds determined by Rietveld refinements of NPD data. The estimated Fe-As (P)-Fe bond angle $\alpha = 102.1^\circ$ (109.4°) is narrowest among all the iron-arsenide (phosphide) superconductors. As for the intermediate compounds between x=0 and 1.0, we have not yet performed NPD measurement. Thus, the atomic position of x=0.5 and 0.75 were tentatively deduced by the analysis of powder XRD patterns through Rietveld refinements as presented in Fig. 4.2. The XRD patterns were collected by a MoKα radiation ($\lambda=0.7107\text{Å}$) with an imaging plate detector. Rietveld refinements were performed with the software Materials Studio Reflex of Accelrys, Inc. The result is shown in Table 4.2. The z coordinates of oxygen atoms of O(1) and O(2) were fixed to pre-optimized positions by the DFT calculations using the CASTEP code[85]. The x dependence of the pnictogen height (h_{Pn}) is shown in Fig. 4.3, along with the lattice parameters (a and c-axis lengths). The monotonous variation was also seen in h_{Pn} as seen in a and c-axis lengths, but the h_{Pn} data by XRD are slightly larger than the interpolation of the NPD data of the end members. This probably arises from the difference in method: (i) the reliability factor of the Rietveld refinement obtained from NPD data ($R_{\text{wp}} \approx 5\%$) is smaller than that obtained from powder XRD data ($R_{\text{wp}} \approx 7\%$). (ii) some of the parameters must be fixed in Rietveld refinements in XRD. Then, we naturally suppose that linear variation of h_{Pn} will be observed in the intermediate compounds if we perform NPD measurement in the future, because the linear variation of a and c-axis lengths suggests that the lattice parameters in the intermediate compounds follow Vegards law. Then, in the Fig. 4 of chapter 5, we deduced h_{Pn} in the intermediate x region from a linear interpolation from x=0 to x=1.0, which is based on more reliable NPD data.
Table 4.1: Structure parameters of (Ca₄Al₂O₆)Fe₂(As_{1-x}P_x)₂ with <i>x</i> = 0 and 1 (space group <i>P4/nmm</i>) determined by a Rietveld refinement of NPD data at room temperature. <i>B</i> is the isotropic atomic displacement parameter.

(a) <i>x</i> = 0

- Lattice parameters: <i>a</i> = 3.7133(1)Å, <i>c</i> = 15.4035(6)Å
- Reliability factor: <i>R_{wp}</i> = 5.261%
- Fe-As: 2.387Å, Fe-As-Fe: 102.1°

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>Site</th>
<th><i>x</i></th>
<th><i>y</i></th>
<th><i>z</i></th>
<th><i>B(Å^2)</i></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>2<i>a</i></td>
<td>3/4</td>
<td>1/4</td>
<td>0.0</td>
<td>0.47(5)</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.0794(2)</td>
<td>0.66(8)</td>
<td></td>
</tr>
<tr>
<td>Ca(1)</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.7997(3)</td>
<td>0.18(9)</td>
<td></td>
</tr>
<tr>
<td>Ca(2)</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.5819(3)</td>
<td>0.33(11)</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.3181(4)</td>
<td>0.50(14)</td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>4<i>f</i></td>
<td>3/4</td>
<td>1/4</td>
<td>0.2969(2)</td>
<td>0.50(6)</td>
<td></td>
</tr>
<tr>
<td>O(2)</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.4340(3)</td>
<td>0.69(9)</td>
<td></td>
</tr>
</tbody>
</table>

(b) <i>x</i> = 1

- Lattice parameters: <i>a</i> = 3.69277(9)Å, <i>c</i> = 14.9270(5)Å
- Reliability factor: <i>R_{wp}</i> = 4.779%
- Fe-P: 2.262(3)Å, Fe-P-Fe: 109.4°

<table>
<thead>
<tr>
<th>Atom</th>
<th>Site</th>
<th>Site</th>
<th><i>x</i></th>
<th><i>y</i></th>
<th><i>z</i></th>
<th><i>B(Å^2)</i></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe</td>
<td>2<i>a</i></td>
<td>3/4</td>
<td>1/4</td>
<td>0.0</td>
<td>0.40(5)</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.0875(3)</td>
<td>0.06(9)</td>
<td></td>
</tr>
<tr>
<td>Ca(1)</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.8113(3)</td>
<td>0.30(9)</td>
<td></td>
</tr>
<tr>
<td>Ca(2)</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.5822(4)</td>
<td>0.65(14)</td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.3109(5)</td>
<td>0.60(14)</td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>4<i>f</i></td>
<td>3/4</td>
<td>1/4</td>
<td>0.2910(2)</td>
<td>0.90(6)</td>
<td></td>
</tr>
<tr>
<td>O(2)</td>
<td>2<i>c</i></td>
<td>1/4</td>
<td>1/4</td>
<td>0.4304(3)</td>
<td>0.81(9)</td>
<td></td>
</tr>
</tbody>
</table>
Figure 4.2: Powder XRD patterns of (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ with (a)$x=0.5$ and (b)$x=0.75$ observed at 297K.
Table 4.2: Structure parameters of \((\text{Ca}_4\text{Al}_2\text{O}_6)\text{Fe}_2(\text{As}_1-x\text{P}_x)_2\) with \(x = 0.5\) and 0.75 determined by a Rietveld refinement of powder XRD data at 297K. A Pseudo-Voigt function was used in this refinement.

<table>
<thead>
<tr>
<th>P content</th>
<th>(x=0.5)</th>
<th>(x=0.75)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>(P4/nmm)</td>
<td>(P4/nmm)</td>
</tr>
<tr>
<td>Lattice parameters/Å</td>
<td>(a = 3.705 \pm 0.001) (c = 15.152 \pm 0.007)</td>
<td>(a = 3.698 \pm 0.001) (c = 15.057 \pm 0.007)</td>
</tr>
<tr>
<td>Cell volume/Å³</td>
<td>(V = 208.0)</td>
<td>(V = 205.9)</td>
</tr>
<tr>
<td>Reliability factors</td>
<td>(R_{wp} = 7.25%) (R_p = 11.81%)</td>
<td>(R_{wp} = 6.79%) (R_p = 11.02%)</td>
</tr>
<tr>
<td>Global isotropic temperature factor/Å²</td>
<td>(U = 0.012 \pm 0.001) ((B = 1.0))</td>
<td>(U = 0.015 \pm 0.001) ((B = 1.2))</td>
</tr>
<tr>
<td>Atomic parameters:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe</td>
<td>(2a(3/4, 1/4, 0))</td>
<td>(2a(3/4, 1/4, 0))</td>
</tr>
<tr>
<td>As/P</td>
<td>(2c(1/4, 1/4, 0.095 \pm 0.001)) (2c(3/4, 3/4, 0.201 \pm 0.002)) (2c(3/4, 3/4, 0.421 \pm 0.002))</td>
<td>(2c(1/4, 1/4, 0.319 \pm 0.002)) (2c(3/4, 3/4, 0.419 \pm 0.002))</td>
</tr>
<tr>
<td>Ca(1)</td>
<td>(2c(3/4, 3/4, 0.289 \text{[fixed]}))</td>
<td>(2c(1/4, 1/4, 0.316 \text{[fixed]}))</td>
</tr>
<tr>
<td>Ca(2)</td>
<td>(2c(1/4, 1/4, 0.319 \pm 0.002)) (2c(3/4, 3/4, 0.419 \pm 0.002))</td>
<td>(2c(1/4, 1/4, 0.316 \pm 0.002))</td>
</tr>
<tr>
<td>Al</td>
<td>(4f(3/4, 1/4, 0.289 \text{[fixed]}))</td>
<td>(4f(3/4, 1/4, 0.294 \text{[fixed]}))</td>
</tr>
<tr>
<td>O(1)</td>
<td>(2c(1/4, 1/4, 0.432 \text{[fixed]}))</td>
<td>(2c(1/4, 1/4, 0.430 \text{[fixed]}))</td>
</tr>
</tbody>
</table>

Figure 4.3: (a)\(x\) dependence of a-axis and c-axis length in \((\text{Ca}_4\text{Al}_2\text{O}_6)\text{Fe}_2(\text{As}_{1-x}\text{P}_x)_2\). (b) Plots of pnictogen height \((h_{\text{PN}})\) from the Fe plane versus \(x\). The \(h_{\text{PN}}\) are determined from powder x-ray(circles) and neutron(squares) diffraction measurements at room temperature.
Bulk T_cs for $0 \leq x \leq 0.4$ and $x=1.0$ were determined from an onset of SC diamagnetism in the susceptibility measurement, whereas no SC transition was identified in $0.5 \leq x \leq 0.95$. Notably, the solid solutions in the non-superconducting range exhibit resistivity anomalies at temperatures of 50-100K as shown in Fig 4.4 (b). The behavior is reminiscent of the resistivity kink commonly observed in various non-superconducting parent compounds that signals the onset of orthorhombic distortion and/or AFM long-range order.

![Graphs showing the temperature dependence of magnetic susceptibility and resistivity](image)

Figure 4.4: (a) Temperature dependence of the magnetic susceptibility of $(Ca_4Al_2O_6)_2Fe_2(As_{1-x}P_x)_2$. Black arrows indicate the onset of superconducting transitions. (b) Temperature dependence of the resistivity of $(Ca_4Al_2O_6)_2Fe_2(As_{1-x}P_x)_2$. Resistivity anomalies (kink) are indicated by black arrows.
Chapter 5

Experimental Results

5.1 Unconventional Superconductivity and Spin Fluctuations in (Ca$_4$Al$_2$O$_6$)Fe$_2$As$_2$

5.1.1 Motivation

Relatively high SC transition has been reported in iron pnictides with a thick perovskite-type block layer, in which the interlayer distance between FePn layers is more than ~ 13 Å [17, 86, 87, 88]. For example, T_c is ~ 47 K for [Ca$_4$(Mg$_{0.25}$Ti$_{0.75}$)O$_y$](Fe$_2$As$_2$)[87], and ~ 37 K for (Sr$_4$V$_2$O$_6$)(Fe$_2$As$_2$)[88], which rises up to 46 K by the application of pressure[89]. In these series of Fe-based compounds, neither structural transition nor magnetic order has been reported so far, differentiating them from other Fe-based superconductors which exhibits superconductivity when an AFM long-range order coupled with a structural distortion is suppressed by either chemical substitution or application of pressure. On the one hand, T_c of the Fe-based superconductors is intimately related with local structural parameters such as a Pn-Fe-Pn bond angle of FePn$_4$ tetrahedron (Lee’s plot)[67] and/or a height of pnictgen from Fe-plane[69]. In this context, systematic investigations on Fe-based superconductors with a thick block layer are required in order to get insight into some correlation between T_c and structural parameters and/or AFM spin fluctuations.

In this section, the results of 75As-NQR studies on (Ca$_4$Al$_2$O$_6$)Fe$_2$As$_2$ with $T_c = 27$ K (denoted as CaAl42622(As) hereafter) is described. Measurement of nuclear-spin-relaxation rate $1/T_1$ unravel the development of significant AFM spin fluctuations and point to unconventional nodeless superconductivity.

5.1.2 Results and Discussion

75As-NQR measurements have been performed on a coarse powder sample at zero external field. Figure 5.1(a) shows 75As-NQR spectrum of CaAl42622(As)
at 20, 40, and 100 K. 75As-NQR frequency ($^{75}v_Q$) is ~ 22.6 MHz, which is the largest among Fe-based superconductors so far. In RFeAsO$_y$ (denoted as R1111 hereafter), note that $^{75}v_Q$ becomes large when an a-axis length decreases[90, 91]. Since $^{75}v_Q$ is proportional to an electric field gradient at 75As nuclear site yielded by local distributions of on-site electron density and lattice ions around an 75As nucleus. In this context, the fact that $^{75}v_Q$ in CaAl42622(As) is the largest among other Fe-based compounds may be because its a-axis length is the shortest. The 75As-NQR spectrum is almost temperature (T) independent in a range of 10 K and 200 K, as shown in the inset of Fig. 5.1, demonstrating that neither structural phase transition nor magnetic order takes place in CaAl42622(As).

An asymmetric shape of the 75As-NQR spectra in CaAl42622(As) is probably caused by some distribution of oxygen deficiency δ.

75As-NQR $1/T_1$ is obtained by fitting a recovery curve of 75As nuclear magnetization to a single exponential function for $I=3/2$,

$$m(t) \equiv \frac{M_0 - M(t)}{M_0} = \exp \left(-\frac{3t}{T_1}\right).$$

(5.1)

Here M_0 and $M(t)$ are the respective nuclear magnetizations for a thermal equilibrium condition and at time t after a saturation pulse. In CaAl42622(As), $m(t)$ was reproduced by a single component of $1/T_1$ above 40 K, but not below ~ 40 K, as shown in Figs. 5.2(a) and 5.2(b), respectively. Since the short component $1/T_{1S}$ and the long one $1/T_{1L}$ below ~ 40 K exhibit almost the same T dependence
Figure 5.2: Recovery curves of 75As nuclear magnetization $m(t)$ at (a) 50 K and (b) 20 K. (c) T dependence of $1/T_1T$ for CaAl42622(As). The solid curve is a simulation fitted to a relation $1/T_1T \sim a/(T + \theta) + b$ with parameters $a = 37$, $\theta = -20$ K, and $b = 0.023$.

when normalized at T_c (see Fig. 5.3(a)), we focus on the T dependence of $1/T_{1S}$ which is a dominant component below 40 K. Figure 5.2(c) shows the T dependence of the spin-lattice relaxation rate of 75As nuclei divided by temperature, $1/T_1T$ for CaAl42622(As). The $1/T_1T$ in the normal state increases significantly upon cooling down to T_c. The AFM spin fluctuations in Fe-based superconductors are enhanced by the nesting of hole and electron Fermi surfaces (FSs). In general, $1/T_1T$ is described as

$$
\frac{1}{T_1T} \propto \sum q |A_q|^2 \frac{\chi''(q, \omega_0)}{\omega_0},
$$

where A_q is a wave-vector (q)-dependent hyperfine-coupling constant, $\chi(q, \omega)$ a dynamical spin susceptibility, and ω_0 an NQR frequency. When a system is close to an AFM QCP, two-dimensional (2D) AFM spin-fluctuation model predicts a relation of $1/T_1T \propto \chi_Q(T) \propto 1/(T + \theta)$ [92]. Here, staggered susceptibility $\chi_Q(T)$ with an AFM propagation vector $q=Q$ follows a Curie-Weiss law. Since $1/T_1T$ diverges towards $T \rightarrow 0$ when $\theta = 0$, θ is a measure of how close a system is to an AFM QCP. Actually, as shown by the solid line in Fig. 5.2(c), the $1/T_{1S}T$ in CaAl42622(As) can be fitted by assuming $1/T_1T \sim a/(T + \theta) + b$ with parameters $a = 37$, $\theta = -20$ K, and $b = 0.023$. It is unexpected that θ is negative, meaning that the staggered susceptibility would diverge toward 20 K, and hence an AFM order would be anticipated below ~ 20 K. As a matter of fact, in the case of Ba(Fe$_{1-x}$Co$_x$)$_2$As$_2$ and BaFe$_2$(As$_{1-x}$P$_x$)$_2$, the AFM order sets in when θ becomes negative[64, 65]. However, SC occurs below $T_c=27$ K in CaAl42622(As), instead of an AFM order. This is because a thick blocking layer between the FeAs layers
makes an interlayer magnetic coupling weak, suppressing an onset of AFM order. Besides, the structure consisting of perovskite blocks bonded by strong covalent bonding prevents a structural phase transition into an orthorhombic phase. These might be the main reasons why an AFM order of FePn layers is absent in the Fe-pnictides family with the thick block layers.

The band calculation for CaAl42622(As) reported by Miyake et al. revealed that an additional hole FS around Γ' (±π, ±π) in the unfolded FS regime appears explicitly as a result of the small α ∼ 102°, whereas one of two-hole FSs at Γ (0, 0) is missing[93]. Eventually, it is concluded that the well nested FS topology between hole FSs at Γ and Γ', and electron FSs at M((0, π) and (π, 0)) enhances a Stoner factor of antiferromagnetism in CaAl42622(As) [94]. This event leads to the development of AFM spin fluctuations and hence is consistent with the experiment presented here.

Next, we address SC characteristics emerging under the background of AFM spin fluctuations. Figure 5.3(a) shows a plot of $T_1(T_c)/T_1$ normalized at T_c against T/T_c, exhibiting a steep decrease upon cooling without the coherence peak just below T_c. The T dependence of $1/T_1$ seems to follow a T^7 dependence down to $0.3T_c$, which is quite unique as compared with the T^3 in optimally-doped La1111(OPT) with T_c=28 K [90, 95] and the T^5 in optimally-doped Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ (BaK122(OPT)) with T_c=38 K[47]. Notably, Fig. 5.3(b) shows the T dependence of $1/T_1T$ normalized at $T=250$ K in these compounds. We remark that as AFM spin fluctuations are more significantly enhanced, a power-law reduction in $1/T_1$ below T_c becomes steeper from $\sim T^3$ to $\sim T^7$.
Figure 5.3: (a) Plots of 75As-NQR $T_1(T_c)/T_1$ normalized at T_c against T/T_c for CaAl42622(As), along with the results of BaK122(OPT) with $T_c=38$ K [47], La1111(OPT) with $T_c=28$ K [90], and La1111(HOVD) with $T_c=5$ K [102]. Note that T dependences of T_{1S} and T_{1L} normalized at T_c for CaAl42622(As) are almost the same below T_c. The solid curves are simulations in terms of the s_\pm-wave model with multiple SC gaps (see text). (b) T dependence of 75As-$\frac{1}{T_1T}$ normalized at $T=250$ K.
In previous studies\cite{47, 96}, the non-universal T-dependence in $1/T_1$ was consistently accounted for by a multigap nodeless s_\pm-wave pairing model\cite{97, 98, 99, 100, 101}. In the s_\pm-wave model with two isotropic gaps, an initial decrease of $1/T_1$ without the coherence peak just below T_c is due to the opening of a large SC gap with $2\Delta^L_0/k_B T_c$\cite{96}. As seen in Fig. 5.4(a), the initial decrease in $1/T_1$ just below T_c in CaAl42622(As) is similar to that in BaK122(OPT). This means that the large SC gap is comparable in these compounds. On the other hand, the $1/T_1$ for CaAl42622(As) decreases more steeply than in BaK122(OPT) as temperature falls well below T_c. This is primarily because the fraction of the density of states (DOS) at the Fermi level for FSs with a small SC gap, $r_S = N_S / (N_L^S + N_S^S)$, is smaller for CaAl42622(As) than for BaK122(OPT). Here N_L and N_S represent the respective DOSs with large and small SC gaps. Actually, the result was well reproduced, assuming that $r_S < 0.1$ for CaAl42622(As) is smaller than $r_S > 0.3$ for BaK122(OPT)\cite{47}. It is deduced that N_S^S is significantly smaller in CaAl42622(As) than for BaK122(OPT).

Next, we present an attempt to simulate a relaxation behavior below T_c for various Fe-based superconductors by changing the coefficient of coherence factor α_c. In this simulation, $\alpha_c = 1$ is assumed for sign-conserving intraband scattering and $\alpha_c = -1$ for sign-nonconserving interband scattering. The value varies in the range $-1 \leq \alpha_c \leq 1$ dependent on the weight of their contribution in the nuclear relaxation process. In the previous studies on the heavily-overdoped LaFeAsO$_{1-x}$F$_x$(La1111(HOVD)) with $T_c=5$ K\cite{102} and optimally-doped La1111 (OPT) with $T_c=28$ K\cite{90}, the experiments were reproduced with $\alpha_c \sim 0.33$ for La1111(HOVD) and $\alpha_c \sim 0$ for La1111(OPT), as shown in Fig. 5.4(b), which is attributed to the fact that the nesting condition of FSs becomes significantly worse in heavily overdoped regime. On the other hands, in CaAl42622(As), AFM spin fluctuations develop significantly due to more dominant interband scattering than in the others. Relevant to this event, the experiment can be also reproduced by assuming a negative value of $\alpha_c \sim -0.86$, as indicated in Fig. 5.4(b), which contrasts with the previous studies. Here, $r_S \leq 0.1$ and $2\Delta/k_B T_c = 6.1$ were used along with other parameters used in La1111(OPT) with $T_c = 28$ K\cite{47, 102}. It should be noted that the overall T dependence of $1/T_1$ below T_c in Fe-based superconductors is consistently accounted for by the s_\pm-wave model with isotropic multiple gaps mainly through changing the coefficient of coherence factor α_c. We highlight the fact that the dominant interband scattering due to the nesting of hole and electron FSs is responsible for the marked enhancement of 2D AFM spin fluctuations and the sign-nonconserving interband scattering is responsible for the T^2-like reduction behavior in $1/T_1$ without the coherence
peak below T_c.

Figure 5.4: (a) Plots of 75As-NQR $T_1(T_c)/T_1$ normalized at T_c against T/T_c for CaAl42622(As) and BaK122(OPT) with $T_c=38$ K[47]. The curves are simulations in terms of the s_+-wave model with two isotropic gaps with various values of $r_s \equiv N_s^L/(N_s^L + N_s^S)$. Here N_L and N_S represent the respective DOSs with large and small SC gaps. The experimental result for CaAl42622(As) was reproduced with $r_s \sim 0.1$, which is smaller than $r_s \sim 0.3$ for BaK122(OPT) [47]. (b) Similar plots for CaAl42622(As), La1111(OPT) with $T_c=28$ K[90] and La1111(HOVD) with $T_c=5$ K[102]. The experiment for CaAl42622(As) can be also reproduced by assuming a negative value of $\alpha_c \sim -0.86$, which contrasts with $\alpha_c \sim 0.33$ in La1111(HOVD) and $\alpha_c \sim 0$ in La1111(OPT).
Figure 5.5: The energy dependences of the density of states used above simulations.

We have shown two possible simulations to reproduce the characteristic T dependence of $1/T_1$ in the SC state of CaAl42622(As). It is notable that, in either case, the assumption of $r_s \leq 0.1$ and $\alpha_c \leq 0$ were necessary, implying that the SC gaps on hole and electron FSs are nodeless with comparable sizes and the opposite signs. This event may be related to the band-calculation result that one of the hole FSs around $\Gamma(0,0)$ disappears[93]. Nevertheless, AFM spin fluctuations are more significant in CaAl42622(As) with $T_c=27$ K than in La1111(OPT) with $T_c=28$ K, but T_c is comparable for both. This result reveals that AFM spin fluctuations are not a unique factor for enhancing T_c. Theoretically, within a spin-fluctuation mediated pairing theory on a five-orbital model, Usui et al. have claimed that the reduction of multiplicity of FSs in CaAl42622(As) is a main reason why the T_c of CaAl42622(As) is not so high even when AFM spin fluctuations are more remarkable than in existing Fe-based superconductors[94]. Since the FS topology is tuned by varying structural parameters such as pnictogen height and As-Fe-As bond angle α, further systematic experiments are desired on a same series of Fe-based compounds.

Finally, we comment on an s_{++}-wave model within orbital-fluctuation mediated pairing theory[78]. In general, the suppression of the coherence peak takes place in the strong-coupling regime of s-wave SC with relatively high T_s since strong-coupling effect causes T_c not only to increase, but also causes the lifetime of quasiparticles to shorten due to some damping effect[103, 104]. For example, in a strong-coupling s-wave superconductor TlMo$_6$Se$_{7.5}$ with $T_c=12.2$ K, the coherence peak is suppressed due to the phonon damping effect more significantly than in a weak-coupling one Sn$_{1.1}$Mo$_6$Se$_{7.5}$ with $T_c=4.2$ K[103]. A similar behavior was also observed for MgB$_2$ ($T_c \sim 40$ K) and NbB$_2$ ($T_c=5$ K)[104]. In Fe-based superconductors, the marked decrease of $1/T_1$ just below T_c is most significant in CaAl42622(As) with $T_c=27$ K among existing Fe-based supercond-
ductors, despite the fact that T_c is not so high relatively. It seems unlikely that the suppression of the coherence peak observed universally in most Fe-based superconductors can be systematically accounted for in terms of an s_{++}-wave model. Moreover, a non-magnetic impurity effect in La1111 compounds is not compatible with the s_{++}-wave state at all; While the crystal structure and electronic state are not modified by non-magnetic Zn substitution, the SC with $T_c = 24$ K disappears by 3% Zn substitution [105, 106].
5.2 Possible Nodal Gap Superconductivity in (Ca$_4$Al$_2$O$_6$)Fe$_2$P$_2$

In spite of the tremendous studies on the FeAs-based superconductors, the SC mechanism of Fe-pnictides still remains controversial. In most of the FeAs-based compounds, the AFM spin fluctuations associated with nesting between multiple FSs are widely observed in association with the occurrence of superconductivity; the FSs are fully gapped in the SC state. On the other hand, the FeP-based compounds possess quite different magnetic and SC nature from their arsenide counterparts though both share a similar FS topology. Furthermore, the superconductivity of the FeP-based compounds mostly exhibits without chemical doping at ambient pressure, and their SC states has been suggested to possess nodes in the gap function by the penetration depth measurements on LaFePO[107, 108] and LiFeP[109] and by point-contact Andreev-reflection spectroscopy measurement on (Sr$_2$Sc$_2$O$_6$)Fe$_2$P$_2$[110]. Additionally, neither structural nor magnetic phase transition has been reported so far in these systems. Early NMR experiments on (La$_{0.87}$Ca$_{0.13}$)FePO showed moderate ferromagnetic spin fluctuations in the normal state. These experimental facts are in contrast with those of the usual FeAs-based superconductors[111]. We believe that the superconductivity of the FeP-based and FeAs-based compounds may originate from the same framework of pairing mechanism.

In this section, we describe the results of 31P NMR studies on (Ca$_4$Al$_2$O$_6$)Fe$_2$P$_2$, which exhibits the highest $T_c \sim 17$ K among the FeP-based superconductors. The experimental results have revealed the unconventional superconductivity emerging under the presence of AFM spin fluctuations, which is the first report among all FeP-based superconductors. This allows us to deal with FeP-based compounds as well as in FeAs-based ones, when the pnictogen height (h_{Pn}) is as high as that of FeAs-based ones.

5.2.1 Results and Discussion

A powder sample of CaAl42622(P) was used for the NMR measurements of 31P nucleus ($I = 1/2$, $^{31}\gamma/2\pi = 17.237$MHz/T). Figure 5.6 shows 31P NMR spectra obtained by Fourier transformation of the spin-echo signals in a fixed magnetic field of 1 T. The NMR spectrum consists of a single and isotropic line as expected for $I = 1/2$ nuclei. Thus, we determined the 31P Knight shift ^{31}K from a peak position of the spectrum. Note that $^{31}K = 0$ was determined with using H$_3$PO$_4$ as a reference. As indicated in Fig. 5.7, the ^{31}K is nearly T invariant in the normal state, but decrease below $T_c \sim 17$K.
Figure 5.6: T dependence of ^{31}P NMR spectrum for CaAl42622(P). Knight shift decreases below $T_c (= 17$ K).

Nuclear spin-lattice relaxation rate $1/T_1$ was obtained from the recovery of nuclear magnetization by fitting with a theoretical curve of $m(t) \equiv [M_0 - M(t)]/M_0 = \exp(-t/T_1)$, where M_0 and $M(t)$ are the respective nuclear magnetization of ^{31}P for the thermal equilibrium condition and a time after the saturation pulse. Figure 5.7 shows T dependence of $1/T_1$, which increases upon cooling down to T_c like CaAl42622(As). Since the ^{31}K does not change in the normal state, this $1/T_1$ result indicates that the spin fluctuations at $q \neq 0$ develop toward T_c. Actually, as shown by the red curve in Fig. 5.7, the T dependence of $1/T_1$ for CaAl42622(P) can be fitted by assuming $1/T_1 = a/(T + \theta) + b$ with parameters $a = 1.81$, $\theta = 39.4$ K, and $b = 0.027$. This indicates that the strong AFM spin fluctuations induce high-T_c superconductivity in the (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ series. The similar trend appears in 122 superconductors; the enhancement of $1/T_1$ above T_c becomes distinct in going from optimally doped SrFe$_2$(As$_{1-x}$P$_x$)$_2$ with $T_c \sim 26$ K, BaFe$_2$(As$_{1-x}$P$_x$)$_2$ with $T_c \sim 30$ K, to (Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ with $T_c \sim 38$ K.
Next, we address the SC characteristics in CaAl42622(P) with $T_c \approx 17$ K. Figure 5.8(a) presents the T dependence of $T_1(T)/T_1$ of 31P-NMR in the SC state at CaAl42622(P), which decreases markedly without any trace of a coherence peak below T_c, followed by a T-linear dependence well below T_c. This $T_1T=\text{const.}$ behavior at low-T probes the presence of residual density of states (RDOS) at the Fermi level at an external field $H = 1T$, pointing to the SC realized with nodal gap. This nodal SC at $x=1$ is in contrast with the nodeless SC at CaAl42622(As). For CaAl42622(As), the $1/T_1T$ decreases steeply without any coherence peak down to zero toward $T \to 0$ K as presented in Fig. 5.8(b) [15].

Generally, the RDOS at E_F is induced for the nodal SC state by either applying H or the presence of some impurity scattering. Since $1/T_1T$ is related to the square of RDOS at E_F (N_{res}^2), the ratio of RDOS to a normal-state DOS (N_0) is given by

$$\frac{N_{\text{res}}}{N_0} = \sqrt{\frac{T_1(T)_{T=T_c}^{-1}}{T_1(T)_{T=0}^{-1}}}.$$ \hspace{1cm} (5.3)

This relationship enables us to deduce $N_{\text{res}}/N_0 \sim 0.33$ for CaAl42622(P) and $N_{\text{res}}/N_0 \sim 0$ for CaAl42622(As). The solid line for CaAl42622(P) in Fig. 5.8(b) is a tentative simulation based on the multiple-gap s_\pm-wave model. In this model, the nodal gap is on one of the multiple bands that is responsible for the RDOS and a larger gap with $2\Delta_L/k_B T_c = 3.7$ is on other bands that are mainly responsible for SC [128].

Figure 5.7: T dependence of the 31P-NMR- $1/T_1T$ and Knight shift K for CaAl42622(P).
(b) Plots of ^3P NMR - $T_1(T_c)/T_1$ and (c) $(T_1T)^{-1}/(T_1T)^{-1}$ versus T/T_c in the SC state at $x=1$ along with that at $x=0$ [15]. The T-linear dependence in $1/T_1$ well below T_c at $x=1$ indicates the presence of the residual DOS at E_F in association with the nodal SC in contrast with the nodeless SC at $x=0$ [15].
Figure 5.9: (a) T dependence of $^{31}P \left(T_1/T_c \right) / T_1$ normalized T_c for Ca$_4$Al$_2$O$_6$Fe$_2$P$_2$, along with the results reported for Ca$_4$Al$_2$O$_6$Fe$_2$As$_2$. The multiple fully gapped s_{\pm}-wave model allows us to deduced the energy dependences of the density of states (c) through the fitting of the experimental $1/T_1$. (b) T dependence of $(T_1 T)^{-1}$ normalized at $T \sim 250K$ for Ca$_4$Al$_2$O$_6$Fe$_2$P$_2$ and Ca$_4$Al$_2$O$_6$Fe$_2$As$_2$.
5.3 Phase Diagram of \(\text{Ca}_4\text{Al}_2\text{O}_6\text{Fe}_2(\text{As}_{1-x}\text{P}_x)_2 \)

5.3.1 Motivation

The parent compounds of Fe-based superconductors are AFM semimetal characterized by an average iron valence \(\text{Fe}^{2+} \) in \((\text{Fe}\text{Pn})^-\) layer separated by various block layers. These compounds are \(\text{RFeAsO} \) (“1111”) \((\text{R}=\text{rare earth})[11, 20, 112], \ A\text{eFe}_2\text{As}_2 \) (“122”) \((\text{Ae}=\text{Alkaline earth})[113, 114], \) and \((\text{Ae}_4\text{M}_2\text{O}_6)\text{Fe}_2\text{As}_2 \) (“42622”) \((\text{M}=\text{Sc, V, Al, etc.})[115, 116, 117]. \) By contrast, the onset of AFM order has not yet been reported in Fe-phosphide parent compounds with the \(\text{Fe}^{2+} \) in \((\text{Fe}\text{P})^-\) layer. For \(\text{AFePn} \) (“111”) family, the parent compound \(\text{NaFeAs} \) exhibits an AFM order like other undoped iron arsenides [118, 119, 120], whereas a fully gapped or nodeless SC emerges in \(\text{LiFeAs} \) without any carrier doping [121, 122, 123, 109]. Meanwhile, the isovalent substitution of \(\text{P} \) for \(\text{As} \) in \(\text{BaFe}_2(\text{As}_{1-x}\text{P}_x)_2 \) (hereafter denoted as \(\text{Ba122(As,P)} \)) brings about the SC with nodal gap [124, 125, 126, 127]. Thus, the compounds with the \(\text{Fe}^{2+} \) state in \((\text{Fe}\text{Pn})^-\) layers undertake an intimate evolution into either the nodeless SC in \(\text{LiFeAs} \) and \(\text{(Ca}_4\text{Al}_2\text{O}_6)\text{Fe}_2\text{As}_2 \) [15] or the nodal SC in \(\text{Ba122(As,P)} \) without any change in the valence condition of the \(\text{Fe}^{2+} \) in the \((\text{Fe}\text{Pn})^-\) layer. To gain further insight into a novel phase evolution when the \(\text{Fe}^{2+} \) state is kept in \((\text{Fe}\text{Pn})^-\) layer, we have dealt with \(\text{(Ca}_4\text{Al}_2\text{O}_6)\text{Fe}_2(\text{As}_{1-x}\text{P}_x)_2 \) (hereafter denoted as \(\text{CaAl42622(As,P)} \)) in which the \(\text{Fe}^{2+} \) state is expected irrespective of the \(\text{P} \)-substitution for \(\text{As} \) in \((\text{Fe}\text{Pn})^-\) layer separated by a thick perovskite-type block[15, 17]. Here, note that a highly two-dimensional electronic structure in these compounds is in contrast with the three-dimensional one observed in \(\text{Ae122(As,P)}(\text{Ae}=\text{Ba, Sr}) \) [124, 127, 128].

In this section, we present a peculiar phase diagram for \(\text{CaAl42622(As,P)} \) with the isovalent chemical substitution of \(\text{P} \) for \(\text{As} \) and hence without any carrier doping. \(^{31}\text{P} \)- and \(^{75}\text{As} \)-NMR studies have revealed that a commensurate AFM order taking place in 0.5 \(\leq x \leq 0.95 \) intervenes between a nodeless SC in 0 \(\leq x \leq 0.4 \) and a nodal one around \(x=1 \). We highlight that as the substitution of \(\text{P} \) for \(\text{As} \) decreases a pnictogen height measured from the Fe plane \((\text{h}_{\text{Pn}})\), the nodal SC state evolves into an AFM-order state and subsequently into a nodal SC state, while keeping the \(\text{Fe}^{2+} \) state due to the isovalent substitution of \(\text{P} \) for \(\text{As} \). We remark that this finding points to the importance of the electron correlation effect for the emergence of SC as well as AFM order in iron pnictides in general.

5.3.2 Results and Discussion

Figure 5.10 (a) shows temperature \((T)\) dependence of the \(^{31}\text{P} \)-NMR spectrum at \(x=0.75 \) at a fixed frequency \(f_0=97 \text{ MHz} \). At temperatures higher than 70 K, the \(^{31}\text{P} \)-NMR spectrum is composed of a single sharp peak. The spectrum becomes significantly broader upon cooling below 60 K and finally exhibits a
rectangular-like spectral shape at \(\sim 10 \) K. This characteristic NMR shape is a powder pattern expected for the case where the \(^{31}P \) nucleus experiences a uniform off-diagonal internal hyperfine field \(H_{\text{int}} \) associated with a commensurate stripe-type AFM order of Fe-3\(d \) electron spins [129](see subsection 3.1.4). From this, the \(^{31}H_{\text{int}} \approx 0.19 \) T at \(^{31}P \) is estimated at 10 K for \(x=0.75 \). The \(^{75}H_{\text{int}} \approx 0.58 \) T at \(^{75}\text{As} \) is evaluated from fitting \(^{75}\text{As}-\text{NMR} \) spectrum as shown in Fig 5.10 (b). Here, note that \(^{75}H_{\text{int}} \) is larger than \(^{31}H_{\text{int}} \) because of the hyperfine-coupling constant \(^{75}A_{\text{hf}} \) being larger than \(^{31}A_{\text{hf}} \). Using the relationship of \(^{75}H_{\text{int}}=^{75}A_{\text{hf}}M_{\text{AFM}} \), a Fe-AFM moment \(M_{\text{AFM}} \approx 0.23\mu_B \) is estimated assuming \(^{75}A_{\text{hf}} \approx 2.5T/\mu_B \) which is cited from previous reports [129, 44].

Figure 5.10: \(T \) dependence of (a) \(^{31}\text{P}-\text{NMR} \) and (b) \(^{75}\text{As}-\text{NMR} \) spectrum at \(x=0.75 \), pointing to the onset of AFM order below 60 K. The red solid line in (b) shows a successful simulation of the \(^{75}\text{As} \) NMR powder-type spectrum.
In order to present a systematic evolution of the low-T phase as a function of P-substitution, the respective figures 5.11 and 5.12 indicate the x-dependences of 31P-NMR spectrum and the internal fields of $^{31}H_{int}$ and $^{75}H_{int}$ at 10 K. The M_{AFM} increases from $0.16\mu_B$ at $x=0.95$ to $0.28\mu_B$ at $x=0.5$, and becomes zero at $0 \leq x \leq 0.4$ and $x=1$. Note that the M_{AFM}s in these compounds were smaller than in another parent 42622 compound [Sr$_4$(MgTi)O$_6$]Fe$_2$As$_2$[116], but larger than in (Sr$_4$Sc$_2$O$_6$)Fe$_2$As$_2$ [117].

Figure 5.11: x dependence of 31P-NMR spectrum at 10 K along with a simulation.

Figure 5.12: x dependence of respective internal fields $^{31}H_{int}$ and $^{75}H_{int}$ at 31P and 75As.
Figure 5.13(a) shows the T dependence of $^{31}(1/T_1T)$ of 31P-NMR for $0.2 \leq x \leq 1$ along with that of $^{75}(1/T_1T)$ of 75As-NQR for $x=0$. The nuclear spin-lattice relaxation rate $(1/T_1)$ of 31P-NMR was obtained by fitting a recovery curve of 31P nuclear magnetization to a single exponential function $m(t) = (M_0 - M(t))/M_0 = \exp(-t/T_1)$. Here, M_0 and $M(t)$ are the respective nuclear magnetizations for a thermal equilibrium condition and at time t after a saturation pulse. In general, $1/T_1T$ is proportional to $\sum_q |A_q|^2 \chi''(q, \omega_0)/\omega_0$, where A_q is a wave-vector (q)-dependent hyperfine-coupling constant, $\chi(q, \omega)$ a dynamical spin susceptibility, and ω_0 an NMR frequency. When a system undergoes an AFM order with a wave vector Q, staggered susceptibility $\chi_Q(T)$, following a Curie-Weiss law, diverges towards T_N. As a result, the measurement of $1/T_1T$ enables the determination of a Néel temperature T_N. Actually, as shown by the solid lines in Fig. 5.13(a), the $1/T_1Ts$ for $0.2 \leq x \leq 1$ can be fitted by assuming $1/T_1T \sim a/(T - \theta) + b$ [92]. Remarkably, the $1/T_1Ts$ for $0.4 \leq x \leq 0.95$ diverge toward $T = \theta$, that is identified as T_N, because the rectangular-like NMR spectral shape points to the onset of AFM order below $T \sim \theta$, as seen in Fig. 5.10. In Fig. 5.14, the estimated T_N is plotted as the function of x.

![Figure 5.13](image_url)

Figure 5.13: T dependence of 31P-NMR $^{31}(1/T_1T)$ in $0.2 \leq x \leq 1$ along with 75As-NQR $^{75}(1/T_1T)$ at $x=0$ at the normal state. Note that the $^{31}(1/T_1T)s$ for $0.5 \leq x \leq 0.95$ diverge toward T_N, below which the 31P-NMR spectrum exhibits a rectangular-like shape in association with the onset of an AFM order (see Fig. 1(b)).
The present NMR studies on CaAl42622(As,P) have revealed that as the P-substitution \(x \) increases, the nodeless SC state with \(T_c = 27 \sim 20 \text{K} \) in \(0 \leq x \leq 0.4 \) evolves into the AFM state in \(0.5 \leq x \leq 0.95 \), and eventually to the nodal SC state with \(T_c = 17 \text{K} \) at \(x = 1 \) as presented in Fig. 5.14. In another context, the AFM order intervenes between the nodeless SC and the nodal SC. This phase diagram is quite outstanding among numerous Fe-pnictides reported thus far. For example, it was reported that only the nodal SC state emerges in Ba122(As,P) [125, 126, 127]. To shed light on the occurrence of AFM order in the intermediate P-substitution range of \(0.5 \leq x \leq 0.95 \), the AFM ordered state and the SC one for CaAl42622(As,P) are plotted in the two-dimensional plane of structural parameters of the nearest-neighbour Fe-Fe distance \(a_{\text{Fe-Fe}} \) and \(h_{\text{Pn}} \) by filled and empty symbols in Fig. 5.15, respectively. Here, the results are also presented on this plane with respect to 1111 [20, 130, 112], 122 [124, 114], 111 [118, 120], and 42622-based compounds [115, 116, 117] with the Fe\(^{2+} \) state in the \((\text{FePn})^-\) layer through the isovalent substitution at pnictogen sites. As a result, it is demonstrated that the AFM order in the \((\text{FePn})^-\) layer takes place universally irrespective of materials when \(h_{\text{Pn}} \) is in the range of \(1.32 \text{Å} \leq h_{\text{Pn}} \leq 1.42 \text{Å} \). It is noteworthy that when \(h_{\text{Pn}} > 1.42 \text{Å} \), the nodeless SC emerges in Fe(Se,Te) [73, 131] and LiFeAs [123, 109] with the Fe\(^{2+} \) state in the \((\text{FePn})^-\) layer as well as the case for CaAl42622(As,P) with \(0 \leq x \leq 0.4 \). On the other hand, when \(h_{\text{Pn}} < 1.32 \text{Å} \), the nodal SC takes place for Ae122(As,P) \((\text{Ae}=\text{Ba,Sr})\) [124, 125, 126, 127, 128], LiFeP [109], LaFePO [108, 107], and (Sr\(_4\)Sc\(_2\)O\(_6\))Fe\(_2\)P\(_2\) [110]. In this context, the quite unique and important ingredient found in CaAl42622(As,P) is that the nodeless SC and the nodal SC are separated by the onset of AFM order. According to this empirical rule, it is reasonably understood that in the parent 111 compounds without any chemical doping, LiFeAs, and LiFeP [123, 109] exhibit the nodeless and nodal SC, respectively, whereas NaFeAs exhibits the AFM order [118, 120]. The novel two-dimensional map of the AFM ordered phase and the SC phase of Fig. 5.15 is universal irrespective of a material’s details, pointing to the importance of correlation effect for the emergence of SC as well as AFM order.
Figure 5.14: (a) Phase diagram against x in $(\text{Ca}_{4}\text{Al}_{2}\text{O}_{6})\text{Fe}_{2}(\text{As}_{1-x}\text{P}_{x})_{2}$. The commensurate AFM order occurs in $0.5 \leq x \leq 0.95$, which intervenes between the nodeless SC in $0 \leq x \leq 0.4$ and the nodal SC at $x=1$. Each empty symbol near the phase boundary between the nodeless SC phase and the AFM ordered phase means that each sample contains a tiny fraction of minority domain exhibiting either AFM order or nodeless SC due to a possible spatial distribution of As/P content.
Figure 5.15: Map of the AFM ordered phase (filled symbols) and the SC phase (empty symbols) for \((\text{Ca}_4\text{Al}_2\text{O}_6)\text{Fe}_2(\text{As}_{1-x}\text{P}_x)\text{Pn}_2\) plotted in the two-dimensional plane of structural parameters of the Fe-Fe distance \(a_{\text{Fe-Fe}}\) and \(h_{\text{Pn}}\). Here, the emergent phases for various Fe-based compounds with the Fe\(^{2+}\) state in \((\text{FePn})^-\) layer through the isovalent substitution at pnictogen (Pn) sites are presented with respect to Fe(Se,Te)[73, 131], LiFe(As,P)[123, 109], BaFe\(_2\)\((\text{As,P})\text{Pn}_2\)[124, 114, 125, 126, 127], LaFe\((\text{Sb,As,P})\text{O}\)[20, 130, 108, 107], NdFeAsO[112], and \((\text{Sr}_4\text{M}_2\text{O}_6)\text{Fe}_2(\text{As,P})\text{Pn}_2\) \((M=\text{Mg}_{0.5}\text{Ti}_{0.5})[115, 116], \text{Sc}[117, 110])\). The symbol (+) denotes the compounds which are not superconductive. The AFM order taking place universally in the range of 1.32 Å \(\leq h_{\text{Pn}} \leq 1.42\)Å intervenes between the nodeless SC in \(h_{\text{Pn}} > 1.42\)Å and the nodal SC in \(h_{\text{Pn}} < 1.32\)Å. Dotted line is a linear relation of \(h_{\text{Pn}}\) versus \(a_{\text{Fe-Fe}}\) at each value of \(\alpha\).
Finally, the present results on CaAl42622(As,P) are considered in terms of a systematic evolution of Fermi-surface (FS) topology as the function of h_{Pn} according to the band calculations based on the five-orbital model reported previously [93, 94, 63, 132]. In general, the Fe-pnictides have similar FSs composed of disconnected two-dimensional hole pockets around $\Gamma(0,0)$ and $\Gamma'(\pi,\pi)$, and electron pockets around $M[(0,\pi)$ and $(\pi,0)]$ points. For the case of $x=0$ with a very large $h_{Pn}=1.5$ Å due to a narrow As-Fe-As bond angle $\alpha \approx 102^\circ$, a hole FS around Γ' is quite visible at the Fermi level, whereas one of the two-hole FSs at Γ is missing [93], and hence the FS nesting condition is much better than in others [93, 94]. By contrast, for the case of $x=1$ with a very small $h_{Pn}=1.31$ Å due to $\alpha \approx 109.5^\circ$, the two-hole FSs at Γ and one hole FS at Γ' appear as well as in $Ln1111$ with $T_c >50$ K [63, 132]. Although the FS multiplicity for $x=1$ is larger than that for $x=0$, the nesting condition of FSs in $x=1$ is worse than in $x=0$, bringing about the reduction in the Stoner factor for AFM correlations more significantly [94] as confirmed from the result in Fig. 5.9 (b). In the intermediate region of x, the band calculation suggests the slight development of χ_Q and the reduction of eigenvalue in Eliashberg equation for s_{\pm}-wave pairing around $x \sim 0.7$ [132, 133]. As for the nodal SC at $x=1$, although its h_{Pn} is comparable to those of $Ae122(As,P)(Ae=Ba,Sr)$ [124, 128], the origin of the nodal SC may differ from that in 122 compounds because of a highly two-dimensional electronic structure in the (FePn)$^-$ layer separated by a thick perovskite-type block for CaAl42622(P).
Chapter 6

Summary

To conclude this thesis, we remark the extensive NQR and NMR studies on the new series of iron-pnictide superconductors \(\text{Ca}_4\text{Al}_2\text{O}_6\text{Fe}_2(\text{As}_{1-x}\text{P}_x)_2 \) with the pervskite-type thick block layer, focusing on the normal and superconducting state properties.

1. Antiferromagnetic Spin Fluctuations and Unconventional Nodeless Superconductivity in \((\text{Ca}_4\text{Al}_2\text{O}_6)_\text{Fe}_2\text{As}_2 \)

The \(^{75}\text{As}\)-NQR studies on \((\text{Ca}_4\text{Al}_2\text{O}_{6-y})(\text{Fe}_2\text{As}_2)\) with \(T_c = 27 \text{ K} \) have unraveled the development of two-dimensional AFM spin fluctuations and pointed to the unconventional nodeless superconductivity; The dominant interband scattering due to the nesting of hole and electron FSs is responsible for the marked enhancement of 2D AFM spin fluctuations and the sign-nonconserving interband scattering is responsible for the \(T^7 \)-like reduction behavior in \(1/T_1 \) without the coherence peak below \(T_c \). The \(T \) evolution in \(1/T_1 \) in the SC state was consistently accounted for by the \(s_\pm \)-wave multiple gaps model. The present result also suggests that the DOS with the small SC gap is totally reduced in association with the disappearance of some part of Fermi surfaces. From the fact that \(T_c = 27 \text{ K} \) in this compound is comparable to \(T_c = 28 \text{ K} \) in the optimally-doped \(\text{LaFeAsO}_{1-y} \) in which AFM spin fluctuations are not dominant, we remark that AFM spin fluctuations are not a unique factor for enhancing \(T_c \), but a condition for optimizing SC should be addressed from the lattice structure point of view.

2. Nodal Gap Superconductivity in \((\text{Ca}_4\text{Al}_2\text{O}_6)_\text{Fe}_2\text{P}_2 \)

\((\text{Ca}_4\text{Al}_2\text{O}_6)_\text{Fe}_2\text{P}_2\) exhibits \(T \)-linear dependence of \(1/T_1 \) well below \(T_c \), implying the superconductivity realized with nodal gap. This nodal superconductivity is in contrast with the nodeless superconductivity at the arsenide counterparts \((\text{Ca}_4\text{Al}_2\text{O}_6)_\text{Fe}_2\text{As}_2 \). Furthermore, our \(^{31}\text{P}\) -NMR experiments on \((\text{Ca}_4\text{Al}_2\text{O}_6)_\text{Fe}_2\text{P}_2\) is first successful in indicating the formation of unconventional superconductivity in the context of AFM spin fluctuations among all FeP-based...
superconductors, which include LaFePO and LiFeP, behind the above important result. This fact allows us to treat FeP-based compounds as with FeAs-based ones.

3. Phase Diagram of Ca$_4$Al$_2$O$_6$Fe$_2$(As$_{1-x}$P$_x$)$_2$

The 31P and 75As-NMR studies on (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$ have revealed the novel phase diagram including the nodeless SC ($0 \leq x \leq 0.4$) and the nodal SC ($x=1$) intimately separated by the onset of commensurate AFM order ($0.5 \leq x \leq 0.95$). It is highlighted that as a result of the fact that the P-substitution for As decreases the pnictogen height from the Fe plane, the AFM order taking place in the range of $1.32 \, \text{Å} \leq h_{Pn} \leq 1.42 \, \text{Å}$ intervenes between the nodeless SC and the nodal SC and this event is universal irrespective of materials with the Fe$^{2+}$ state in the (FePn)$^-$ layer. In this context, the s_{\pm}-wave SC scenario mediated by spin fluctuations is quite promising when noting that this model has consistently accounted for our systematic experiments on series of compounds such as 42622, 1111, 122, and others reported thus far.

The multiorbital nature of the iron-based superconductors makes it difficult to understand the mechanism which leads to superconductivity, but I believe that our findings bring a breakthrough.

Figure 6.1: Summary of NMR / NQR studies on an isovalent system (Ca$_4$Al$_2$O$_6$)Fe$_2$(As$_{1-x}$P$_x$)$_2$.

P-substitution for As decreases h_{Pn} without carrier doping
Bibliography

List of Publications

Articles in Refereed Journals

1. H. Kinouchi, H. Mukuda, M. Yashima, Y. Kitaoka, P. M. Shirage, H. Eisaki, and A. Iyo, “Antiferromagnetic Spin Fluctuations and Unconventional Nodeless Superconductivity in an Iron-Based New Superconductor \((\mathrm{Ca}_4\mathrm{Al}_2\mathrm{O}_{6-y})(\mathrm{Fe}_2\mathrm{As}_2)\): \(^{75}\text{As} \text{Nuclear Quadrupole Study}\),” Physical Review Letters 107, 047002 (2011).

2. K. Yamamoto, H. Mukuda, H. Kinouchi, M. Yashima, Y. Kitaoka, M. Yogi, S. Sato, H. Ogino, and J. Shimoyama, “Antiferromagnetic Order and Superconductivity in \(\text{Sr}_4(\text{Mg}_{0.5-x}\text{Ti}_{0.5+x})_2\text{O}_6\text{Fe}_2\text{As}_2\) with Electron Doping: \(^{75}\text{As-NMR Study}\),” Journal of the Physical Society of Japan 81, 053702 (2012).

3. T. Dulguun, H. Mukuda, T. Kobayashi, F. Engetsu, H. Kinouchi, M. Yashima, Y. Kitaoka, S. Miyasaka, and S. Tajima, “Unconventional multiband superconductivity with nodes in single-crystalline \(\text{SrFe}_2(\text{As}_{0.65}\text{P}_{0.35})_2\) as seen via \(^{31}\text{P} \text{NMR and specific heat}\),” Physical Review B 85, 144515 (2012).

4. H. Mukuda, S. Furukawa, H. Kinouchi, M. Yashima, Y. Kitaoka, P. M. Shirage, H. Eisaki, and A. Iyo, “High-Tc Nodeless \(s_\pm\)-wave Superconductivity in \((\text{Y,La})\text{FeAsO}_{1-y}\) with \(T_c=50\text{K}: \(^{75}\text{As-NMR Study}\)”, Physical Review Letters 109, 157001 (2012).

5. H. Kinouchi, H. Mukuda, Y. Kitaoka, P. M. Shirage, H. Fujihisa, Y. Gotoh, H. Eisaki, and A. Iyo, “Emergent phases of nodeless and nodal superconductivity separated by antiferromagnetic order in iron-based superconductor \((\text{Ca}_4\text{Al}_2\text{O}_6)\text{Fe}_2(\text{As}_{1-x}\text{P}_x)\): \(^{75}\text{As- and} \ ^{31}\text{P-NMR studies}\)”, Physical Review B 87, 121101 (R) (2013).
1. H. Kinouchi, H. Mukuda, M. Yashima, Y. Kitaoka, P-M. Shirage, H. Eisaki and A. Iyo, “Antiferromagnetic spin fluctuations and s-wave Superconductivity (Ca$_4$Al$_2$O$_{6-y}$)(Fe$_2$As$_2$) probed by As NQR”, 26th International Conference on Low Temperature Physics (LT26), 16P-B086, Beijing, China, August 2011.

2. H. Kinouchi, K. Kitaoka, P. M. Shirage, H. Fujihisa, Y. Gotoh, H. Eisaki, and A. Iyo, “Contrasting Superconducting Property in Fe-based superconductors (Ca$_4$Al$_2$O$_{6-y}$)(Fe$_2$P$_{n_2}$) [Pn =As and P]”, The 19th International Conference on Magnetism with Strongly Correlated Electron System (ICM2012), AF1328, Busan, Korea, July 2012.

The work described in this thesis would never have been possible without supports from a great number of people.

First, I would like to thank my adviser, Prof. Yoshio Kitaoka, for his contribution to my graduate education and research. I was lucky to have the opportunity to be a part of his research group. From him I learned how to approach the problem and fun in every aspect of research. I will always appreciate his exceptional kindness and sincerity.

I would also like to thank all my collaborators in Kitaoka group. In particular, Assoc. Prof. Hidekazu Mukuda has spent a lot of time and effort to guide me, encourage me, do experiments and discuss with me. I received a lot of experimental helps from Dr. Sunao Shimizu and Dr. Mitsuharu Yashima. Ms. Takako Fukuroya assisted me in transacting my business. I am glad to have spent six years with colorful colleagues, Dr. Fumiya Kanetake, Nobuyuki Terasaki, Takashi Ohara, Shoichi Taniguchi, Tomonori Sakaguchi, Nobukatsu Tamura, Hiroki Yamashita, Keita Itohara, Hirofumi Naruwa, Tatsuya Unemori, Hideaki Nishimura, Shin-ichiro Tabata, Yuichiro Yasui, Katsuyoshi Uematsu, Shiho Iwai, Mariko Nitta, Satoshi Furukawa, Dulguun Tsenduren, Keisuke Yamamoto, Kazuhiro Nishimoto, Takuya Kaneda, Shota Ueki, Fuko Engetsu, Yuko Tanaka, Naoki Kimoto, Kyohei Tani, Shouta Maki, Masashi Miyamoto, Ryuji Yusuke Yanai, Takayoshi Shiotani, Nozomu Shiki, Naoto Kawaguchi and Takashi Matsumura. I am grateful for the friendship and support of Ayato Iyama, Takashi Honda, Shinya Okamoto and Akio Sakai.

I must also thank Dr. Parasharam M. Shirage at Indian Institute of Technology Indore, Dr. Hiroshi Fujihisa, Dr. Yoshito Gotoh, Dr. Hiroshi Eisaki and Dr. Akira Iyo at National Institute of Advanced Industrial Science and Technology, who provided me with high-quality samples and shared their wonderful experiments; Dr. Hidekazu Usui and Prof. Kazuhiko Kuroki for valuable comments and suggestions from a theoretical point of view.

I would also like to thank my thesis defense committee members, Prof. Hiroshi Miyasaka, Prof. Masaaki Ashida and Assoc. Prof. Koichi Kusakabe, for many helpful comments and insightful questions.

Finally and most importantly, I would like to express my gratitude to my family. They constantly supported me in all my pursuits, encouraged me and believed in me.