

Title	Cyclometallation Reaction of Iridium Complexes with N-Aryl Perimidine Carbene and Hemilabile Nature of Carbene Ligands for Dehydrogenative Silylation Reaction
Author(s)	Choi, Gyeong Shin
Citation	大阪大学, 2014, 博士論文
Version Type	
URL	https://hdl.handle.net/11094/34506
rights	
Note	やむを得ない事由があると学位審査研究科が承認したため、全文に代えてその内容の要約を公開しています。全文のご利用をご希望の場合は、大阪大学の博士論文についてをご参照ください。

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (Gyeongshin Choi)	
Title	<p>Cyclometallation Reaction of Iridium Complexes with <i>N</i>-Aryl Perimidine Carbene and Hemilabile Nature of Carbene Ligands for Dehydrogenative Silylation Reaction (ペリミジンカルベン配位子を有するイリジウム錯体におけるシクロメタル化反応、ならびに脱水素シリル化反応におけるカルベン配位子のヘミレーバイル性に関する研究)</p> <p>Direct C–H bond cleavage and functionalization of hydrocarbons by homogeneous transition metal compounds has been developed over several decades due to its potential for industrial and synthetic applications. However, conversion of C–H bond activated species to functionalized products and control of the selectivity during the activation process still remain on issues of current interest. Thus, development of new catalytic reactions and design of active transition metal catalysts that functionalize C–H bonds with high selectivities are required under relatively mild reaction conditions. The author anticipated that iridium complexes, particularly those who have <i>N</i>-heterocyclic carbene ligands, are the most suitable candidates for C–H activation and functionalization. In this thesis, the author synthesized new iridium complexes having six-membered perimidine-based carbene ligands, which increase steric congestion and electron-donating ability compared to five-membered carbene ligands, and the author exclusively investigated the reactivity of newly synthesized iridium complexes for C–H functionalization.</p> <p>In Chapter 1, the author briefly reviews carboxylate-induced C–H bond activation by transition metal complexes in terms of mechanistic study after a short introduction of historical background and mechanistic concepts of C–H bond activation. The author thus summarizes C–H functionalization reactions with emphasizing borylation and silylation reactions catalyzed by late transition metals.</p> <p>In Chapter 2, the author describes the synthesis of iridium complexes, (cod)Ir(L)(OAc) (1a, L = Me^NPh^N perimidine-carbene and 1b, L = $\text{Me}^N\text{X}^N\text{Y}^N$ perimidine-carbene), which were then treated with 2-phenylpyridine to result in bis(cyclometalated)iridium complexes, ($\text{C}^{\wedge}\text{C}:$)$(\text{C}^{\wedge}\text{N})\text{Ir}(\text{OAc})$ (2a and 2b) ($\text{C}^{\wedge}\text{C}:$ = a cyclometalated <i>N</i>-aryl-<i>N'</i>-methylperimidine-carbene ligand and $\text{C}^{\wedge}\text{N}$ = a 2-pyridylphenyl ligand) via intra- and intermolecular C–H bond activation.</p> <p>In Chapter 3, the author discloses direct dehydrogenative silylation of pyridyl and iminyl substrates with triethylsilane (3 equiv) using 1b as a catalyst under toluene refluxing conditions in the presence of norbornene (3 equiv) as a hydrogen scavenger, and the silylation products were obtained in good yields. The author confirmed a reliable mechanism through not only isolation of some key intermediates and related iridium species but also deuterium labeling experiments. During the catalytic cycle, the perimidine-based carbene ligand acted as a hemilabile ligand via a cyclometallation/demetalation reaction. Cyclometalated monoanionic carbene ligation to the metal center increased the steric congestion around the iridium atom, and acted as a hydride acceptor, resulting in the formation of the neutral carbene ligand.</p>

論文審査の結果の要旨及び担当者

氏　名　(　Gyeongshin Choi　)	
	(職)　　氏　名
論文審査担当者	主　查　　教　授　　真島　和志 副　查　　教　授　　戸部　義人 副　查　　教　授　　直田　健 副　查　　准教授　　剣　隼人

論文審査の結果の要旨

本博士論文は、ペリミジン骨格からなるカルベン配位子を有するイリジウム錯体を用いた2-フェニルピリジン誘導体やベンジリデンイミン類のシクロメタル化反応、ならびに、触媒的な脱水素シリル化反応への応用と詳細な反応機構解析に関する研究についてまとめたものである。

芳香族化合物の炭素-水素結合の直接官能基化における反応中間体として、金属中心に配位可能な配向性部位を有する基質と金属錯体の反応によるシクロメタル化錯体の形成がある。一般に、シクロメタル化反応により新たに生成した金属-炭素結合が外部基質と反応することで新しい官能基が炭素上に導入され、炭素-水素結合の直接的な官能基化が進行することが知られている。従って、効率的な触媒の開発には、遷移金属錯体の構造や電子的性質がシクロメタル化反応に与える影響を深く理解することが必要である。

このような研究背景において、本申請者は、イリジウム錯体に対する配位子として、金属中心への強い電子供与性を有するとともに金属周りの立体的環境を制御可能な6員環カルベン配位子の一つであるペリミジンカルベン配位子を開発し、立体的・電子的に異なる種々の置換基を有するイリジウム錯体を合成した。これらのイリジウム錯体はフェニルピリジンを始めとした様々な配向基を有する有機化合物の炭素-水素結合切断に対して高い活性を示すことを明らかにした。さらに、その反応においてイリジウムに結合するカルボキシレート配位子が重要な役割を果たすことを明らかにした。これらの結果は、近年盛んに研究が進んでいる炭素-水素結合の直接官能基化反応の反応機構の解明に寄与する非常に重要な知見である。

さらに、本申請者は、新たに合成したイリジウム錯体が、炭素-水素結合の変換反応の優れた触媒となることを見出した。特に、有機化合物へのケイ素置換基導入が、その後の分子変換反応に対して重要な役割を果たすことから、イリジウム錯体を用いたシクロメタル化反応と有機シランの組み合わせによる触媒反応開発がすすめられ、脱水素シリル化反応の開発に成功した。本反応はピリジン環やイミンを配向基とする様々な有機化合物に適用可能である。本学位論文の際だった成果は、本触媒反応の詳細な反応機構解析を行った点であり、ペリミジンカルベン配位子が単なる電子供与性の強い配位子として作用するだけでなく、可逆的に配位子上のフェニル基のシクロメタル化とその解離を繰り返すヘミレーバイルな配位子として働くことを明らかにしたことである。このように、可逆的なシクロメタル化反応をヘミレーバイル性として捉えて触媒反応の配位子として利用する触媒系は他に例はなく、触媒反応における新しい配位子の役割を示した新規性の高い発見である。

以上より、博士（理学）の学位論文として価値のあるものと認める。