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Abstract

Behavior of solutions of nonlinear partial differential equations is delicately in-
fluenced by the nonlinear terms. Such phenomenon is of interest in the theory of
partial differential equations, in the context of mathematical modeling, as well
as in the area of mathematical physics. In this paper, particularly interested in
the effect of a compactly supported coefficient added on the nonlinear terms, we
study the behavior of positive solutions to porous medium equation with localized
reaction, and semilinear elliptic equation with localized nonlinearity.

The first half mainly deals with the critical exponents concerning the large-
time behavior of positive solutions to porous medium equation with localized
reaction in multi-dimensional space. We concluded our results with two main
theorems — the two-dimensional case and the higher dimensional case. Especially
for the latter one, namely, when the space dimension is not less than three, we
clarified the relationship between the behavior of nonnegative solutions and the
exponents contained by the diffusion and reaction terms of the equation. In
addition, for further discussion of the support of blow-up solutions, a property
concerning the support of solutions is also proved.

In the second half, to continue to study the effect of the localized nonlin-
earity on the behavior of solutions to partial differential equations, we studied
the role of a localized coefficient in a priori estimate for positive solutions to the
semilinear elliptic equation. For the semilinear elliptic equation without localized
nonlinearity, the existence of an a priori bound for all positive solutions is a well-
known result. However, we discovered that under the influence of the localized
nonlinearity, certain conditions should be imposed to guarantee the existence of
the a priori bound. In our two main theorems, we respectively obtained two
types of such conditions for the existence of the a priori bound. Furthermore, for
future work, we suggested possible improvement of the result, and presented a
corresponding semilinear parabolic problem where our arguments and techniques
may be applicable.
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Chapter 1

Introduction

In the first half of this paper, we consider the Cauchy problem

{ ur = A(u™) + a(z)uP, (z,t) € R" x (0,T), (1.0.1)

u(z,0) = up(z), r e R,

where integers m > 1,p > 0, the cut-off function a(x) > 0, the initial function
uo(x) is continuous and nonnegative but not identical with zero, and both a(x)
and wup(x) are compactly supported.

The motivation for the following study lies in [7], which discovered the rela-
tionship between the behavior of nonnegative solutions to the problem and the
exponents m and p when the space dimension n = 1. The result is that for

{ U = (um)m: + a(m)up, (xvt) € R x (O’T)’ (1.0.2)

u(z,0) = up(z), reR,

whether the solutions blow up or not depends on m and p, as shown below:
HIfo<p< mTH, then all the solutions to (1.0.2) are globally defined;

(ii)If 2 < p < m+ 1, then all the solutions to (1.0.2) blow up in finite time;
(iii)If p > m+ 1, then both global solutions and blow-up solutions to (1.0.2)
exist.

We call pg = mTH and pc = m+1 the critical exponent for global existence and
the Fujita exponent, respectively. Based on these results, we hope to understand
the two exponents for the multi-dimensional case.

For the Cauchy problem of the porous medium equation (PME, for short
in the following) possessing reaction term without the cut-off function a(x) in
the space dimension higher than one, namely the case a(x) = 1, Deng-Levine
[3], Galaktionov-Vazquez [8] and Levine [15] have studied the role of exponents
in blow-up problems: it has been discovered that pg = 1 and pc = m + %
Levine and Sacks [16] have discussed the relationship between the reaction term
and the behavior of solutions more generally; Pinsky [17] has made a relevant
study of the semilinear heat equation with localized reaction. However, just as



what is mentioned in [7], the relevant multidimensional problem for (1.0.1) is still
“a subject of a future work”. We have partially solved the problem([14]), and
obtained the following results.

When the space dimension is not less than three, there are similar results to
the one-dimensional case:

Theorem 1 When n > 3,
(i)If 0 < p <m , then all the solutions to (1.0.1) are globally defined;
(i5)If p = m, then the solutions to (1.0.1) blow up in finite time or not depending
on the form of the cut-off function a(x) and the size of the initial data ug(x);
(i5i)If p > m, then the solutions to (1.0.1) blow up in finite time or not depending
on the size of the initial data uo(z).

For the two-dimensional case, what can be discovered presently is the follow-
ing.

Theorem 2 When n = 2,
(I)If 0 <p< mTH, then all the solutions to (1.0.1) are globally defined;
(ii)If p = m, then the solutions to (1.0.1) blow up in finite time, provided the cut-
off function a(x) and the size of the initial data ug(x)satisfy proper conditions;
(i5i)If p > m, then the solutions to (1.0.1) blow up in finite time, provided the
size of the initial data ug(x) satisfies a proper condition.

For the case mTH < p < m, we have not obtained any result yet, and whether

there exist global solutions for the case p > m is still unknown.

Additionally, in numerical computation of PME, the localization method is
often employed. For the purpose of the numerical simulation on supp a, we must
consider whether the solutions blow up on supp a.

At present, we have obtained a result concerning the support of a solution
and the support of the cut-off function. In particular, we prove that whether a
solution blows up or not, the intersection of its support and the support of the
cut-off function will be non-empty at some time:

Theorem 3 There exists t € (0,00) such that supp u(-,t) N supp a # (.

In the latter half, we continue to investigate the effect of the localized nonlin-
earity on the behavior of solutions to partial differential equations. In particular,
we study the role of such a(z) in a priori bounds for positive solutions to the
semilinear elliptic equation

—Au = a(zx)uP in Q, w=0on N (1.0.3)
where p > 1, 2 C R" is a bounded domain with C? boundary 952, and

0<a=a(z)e Cy(), a#0. (1.0.4)



Here a € Cy(2) means that a = a(z) is a continuous function with its support
contained in ).

If a(z) = 1, or, more generally, a(x) is continuous and strictly positive in
Q, Gidas-Spruck [10] and de Figueiredo-Lions-Nussbaum [6] have obtained a fa-
mous result that there exists an a priori bound for all positive solutions which
guarantees actual existence of the solutions, provided that

1<p< (1.0.5)

n—2

We show that this property still holds for (1.0.3) if we reduce the nonlinearity to
some extent or impose some assumptions on a(zx).

Theorem 4 Let

n
1 —_— 1.0.
<p<—5 (1.0.6)

Then there exists C = C(Q,a(x),p) such that
1wl oo () < C.
for any solution u = u(x) to (1.0.3).
Theorem 5 Let p be in (1.0.5), and a = a(zx) in (1.0.4) satisfy
(i)  w={z € Qa(r) >0} is star-shaped with C* boundary
(i) a€ CYw) (1.0.7)
(iii) 92 <0 on Ow

where v denotes the outer unit normal vector. Then there exists C = C(Q2, a(z),p)
such that

1wl oo () < C.

for any solution u = u(x) to (1.0.3).






Chapter 2

Porous medium equation with
localized reaction

2.1 Preliminaries

As a basis for the proof, we must properly define the weak solution to prob-
lem (1.0.1) that locally exists and is unique. The most usual way is to define
it using integration by parts, and then prove its existence and uniqueness. This
is convenient for standard PME, i.e. u; = A(u™), whereas for the PME with
localized reaction, it is difficult to prove the existence and uniqueness. Another
feasible method is the application of analytical semigroup and interpolation space
to semilinear PDE, as in [19]. However in this section, we realize the construc-
tion of the proper solution by employing the extension of monotonic semigroups,
exactly the same method used by Galaktionov-Vazquez in [9].

To start with, let X be an ordered topological space of functions QO — R,
where ) is an open subset of R"?, R, = [0,00) U {oc}; B be a subspace of X
which approximates X in a certain way, as explained below; and Sy be a semi-
group acting in B. Now we need to extend S; to act on X. For this purpose, we
have to make the following assumptions:

(S1)S; is order-preserving;
(S2)S; is continuous and X-closed with respect to monotonic, increasing conver-
gence(m.i.c. for short in the following).

In the second place, we consider a family of “approximation” operators {P, :
X — B}nen satisfying the following conditions:

(P1){P,} is ordered: for every u € X and n > m, P,u > Ppu holds;
(P2)P, is continuous under m.i.c.;
(P3)As n — oo, we have Pyu — u,u € X.



Next, we define the extension of S;: for every u € X and ¢t > 0, we put
Tiu = lim S;P,u.
n—oo

Proposition 2.1 T; is a semigroup in X that extends Sy and is continuous
under m.i.c.. The limit in the above expression is independent of the approrima-
tion sequence {P,} satisfying conditions (P1)-(P3).

For our application, we assume X to be the space of nonnegative, measurable
functions R™ — R4, and B is chosen so that the equation

u = A(u™) + f(u), m>0

generates a semigroup S; in B that satisfies (S1) and (S2). We have to assume
the function f to be Lipschitz continuous so that S; will be well-defined in B.
Finally, the operator P, can be any of the usual cut-off operators that produce
bounded functions.

This construction possesses generality and applies to the case when the reac-
tion term involves the space invariable, i.e. f(x,u), if only it is Lipschitz contin-
uous. For f(z,u) = a(x)uP, which corresponds to problem (1.0.1), let g(u) = u?,
and, without loss of generality, let the cut-off function a(x) be the characteris-
tic function of the closed ball B(0,L): a(x) = XB(o,)(z), L > 0. Perform the
following approximation to f: Define

1, lz| < L —277L,
aj(a;) = 2jL71(L— ‘x’)) L—9270L < ’1“ <L,
0, 2| > L;
2ju, 0§u<2_1jfp,
g9i(w) =< . 97TH <y <, (f 0<p<1),
jp’ UZ]7
_Jwr, 0<u<y . )
g](“’) - { jp7 m 2 ] (Zf p Z l)a

then {a;} and {g;} are both nonnegative, monotonically increasing, and Lipschitz
continuous sequences, and meanwhile it holds that aj(z) — a(z) for any z € R"
while gj(u) — g(u) for any u € [0,00). Then let

fi(z,u) =aj(x)g;(u), (z,u) € R"x[0,00).

We can easily prove that {f;} is a sequence of increasing, nonnegative, and Lip-
schitz continuous functions that satisfy

fiz,u) = f(z,u), (z,u) € R"x[0,00).



Now let Sg be the semigroup generated by the equation
u = A(™) + fi(z,u)

acting on B, and th be its extension to X as constructed above. Thus, for every
u € X, we define ' ,
Tiu= lim T}u = lim lim S} (Pyu).
J—00 j—o0 k—o0
Another natural definition performs the two approximation processes at the same
time: '
U = lim S} (Pju).
Jj—00
Proposition 2.2 The above two definitions are equivalent and provide a
semigroup in X that is continuous under m.i.c.. The limit is independent of
the approzimation sequences {P;} and {f;}. Furthermore, we have the equiva-
lent definition ‘
Tw= lim SJPu.
J,k—00
This extended semigroup is called the limit semigroup. For the initial function
ug € X, the function u : Q x [0,00) — Ry defined by

u(x,t) = Tiup(z)
is called the proper solution of problem (1.0.1).

Proposition 2.3 The proper solutions satisfy the standard comparison the-
orem with respect to the data. In addition, the proper solution is minimal with
respect to any kind of weak solution of the problem that satisfies the maximum
theorem with respect to bounded weak solutions.

2.2 Proof of Theorems 1 and 2

The above discussion has ensured the local existence and uniqueness of the proper
solution to (1.0.1), and the practicality of the weak comparison theorem for u €
L®(R™) N HY(R™). The essential method in the proofs of this section is the
method of comparison, namely, to construct a globally defined supersolution in
order to prove the global existence, or to construct a blow-up subsolution to prove
that the solutions blow up. In the following we assume that the space dimension
n > 1, unless otherwise stated.
Now we begin with a simple proof.

Lemma 2.1 If 0 < p <1, all the solutions to problem (1.0.1) are global.



Proof. From the conditions concerning a(z) and ug(z), we naturally assume
that |a(z)] < M,0 < wup(x) < C, where M and C are positive numbers. Thus the
solution to the Cauchy problem

up = MuP, (z,t) e R" x (0,7,
u(z,0) =C, ze€R",

namely,

1
_ C' P+ (1 —p)Mt]Tr, 0<p<I1,
u(a;,t)_{ [C’eMt ( )M] oo

is a supersolution to problem (1.0.1). Hence when 0 < p < 1, the solution of
(1.0.1) is defined for all ¢ € (0, 00), and therefore (1.0.1) has only global solutions.
This proves Lemma 2.1. O
Put another way, there may exist blow-up solutions to (1.0.1) only if p > 1.
In the following, we shall prove two lemmas regarding the existence of global
solution to (1.0.1) when n > 3. We shall employ the Liouville property of semi-
linear elliptic equation ([11] and [20], p.223, 1A).

‘s : * _ n+t2
Proposition 2.4 Whenn >3, if ¢ > 2" —1= "5

5, then the equation

AU+U?=0, z€R", (2.2.1)

has a solution U € C*°(R"™) with U(z) > 0,z € R".

Thus we have: when n > 3, if p > m and ¢ > maz{Z, Z—J_rg}, then there exists

a positive solution U(x) to equation (2.2.1). Since a(z) is compactly supported,
we can take a constant A > 0 large enough to guarantee that

a(z) < NMUTm, z e RM (2.2.2)

Lemma 2.2 Letn > 3. Assume p >m and q > max{L, Z—fg} If the initial
data satisfies

up(x) < /\*1Ui, xR, (2.2.3)

where U € C®(R") is a positive solution to (2.2.1) and X is a large enough
positive constant satisfying (2.2.2), then the solutions of (1.0.1) are global-in-
time.

Proof. Let ¢y(x) = \7HU x)]% We shall prove that the stationary solution
o () is a supersolution to (1.0.1). Substituting its expression into the equation
in (1.0.1), we have
A(PR) + AT = 0.



It follows from (2.2.2) that
a(x) < NPT GTYTTm = XITMGIT TP g e R, (2.2.4)

Thus,
(Ox)e =0=A(PY) + A" PN > A(PX) + alz)@h.

Moreover, by (2.2.3),
oa(z) = A" WUm > up(x), =€ R

Therefore, ¢y (x) is a supersolution to (1.0.1) and thus all the solutions to (1.0.1)
are globally defined. This proves Lemma 2.2. O

Lemma 2.3 When n > 3, if p < m, then all the solutions to (1.0.1) are
global.

Proof. At this time Z—fg > 1> £ and thus by Proposition 2.4, (2.2.1) has
a positive C* solution U(z) if ¢ > :%2 Since p — m < 0, for any continuous
and compactly supported initial function ug(z) and compactly supported cut-
off function a(x), there exits a small enough positive constant \ satisfying both
(2.2.2) and (2.2.3). Therefore, it is proved exactly the same way as before that
oa(z) = Afl[U(x)]% is a supersolution to (1.0.1). This completes the proof of
Lemma 2.3. O

In the above, we have proved, by constructing the global supersolution to
problem (1.0.1), that when the space dimension n > 3, if p > m and the size of
the initial data is “small”, then (1.0.1) has only global solutions; while if p < m,
then all the solutions are globally defined, disregarding the choice of the initial
function.

Next, we shall explain that all the solutions to problem (1.0.1) are global if 1 <
p < mTH, again by constructing a global supersolution. While this construction
is realized with the help of a result in [7]:

Proposition 2.5 If0 < p < mT“, then all the solutions to (1.0.2) are global.

Lemma 2.4 If1 <p< mT+l7 then every solution to (1.0.1) is global.

Proof. Since a(x) is a nonnegative and compactly supported function, we
assume, without loss of generality, that 0 < a(z) < 1. Proposition 2.5 shows that
in the case when the space dimension is one, the solutions to the Cauchy problem

wy = (W) gz + X[—r,p)w’s (z,t) € R x (0,7,
w(z,0) = ¢(x), r€R,



are globally defined.
When n > 1, we define
u(x,t) = w(z,t), x = (x1,....,xy),t € (0,T),

)Z[—L7L] (.ZU) = X[-L,L) (.2’,'1),(]5(17) = ¢(l‘1), €= (xlv "'axn)7

then @ is a global solution to the following problem:

{ iy = A@™) + Xz, (2,t) € R x (0,7), (2.2.5)

u(z,0) = ¢(x), xR,

Since ug(x) is compactly supported, it also has compact support in 1. Thus
we can choose ¢, such that supp ug C supp ¢ and sup ug < (;3(:5) for x € supp wuy,
which imply that @ is a supersolution to (1.0.1). Consequently, problem (1.0.1)
has only global solutions. This concludes the proof of Lemma 2.4. ([

Then, we shall use the energy method (originally from [2]) to show that when
p > m, problem (1.0.1) has blow-up solutions if the initial function ug(z) satisfies
some given condition.

Define the energy function

1
E(t) = 3 / § IV (u™)|*dx — pZLm o a(z)uPT™dz.

Lemma 2.5 When p > m, if there exists ty > 0 such that E(ty) < 0, then
all the solutions to (1.0.1) blow up in finite time.

Proof. Since u € LPT™(R™) N H}(R™), by the definition of E(t) we have

E'(t) = /n<V(um), V(u™))dr —m a(x)uP ™™ Ly de

R”
= — A(u™)mu™ tugde —m a(x)uP T tuyde
R'"/ R'n/
= m u™ g (—A(™) — a(x)uP)d
R’ﬂ
= —-m ™ Hug|?dx <0,
R”

which shows that E(t) is decreasing. Thus E(t) < E(tg) < 0 for any ¢ > t.
Now we define another energy function

1 1
M(t) = —|—1/ / u™ Y (z, 5)dzds.
m 0 n

For any t > ty, we have M (t) > 0,

1
M'(t) = -1—1/ u™ (2, t)dx > 0,
m R"

10



and
M”(t):/ umHutd:I::/ u™(A(u™) + a(z)uP)dz
Rn n
= —/ |V(um)|2d:r—|—/ a(x)uPT™dx
n Rn

p+m 1
= — |- d p+md
m [ Z/Rn’ (w™)? x+p—|—m a(x)u m]

- (1—p2+mm>/"|V(um)\2dx.

From p > m it follows that — (1 — & +m) > 0, thus the inequality

PRy > 2L

M//t>
()_ m m

(—E(ty)) > 0 (2.2.6)

holds; namely, for any ¢ > ty, we have M"(t) > C > 0, where C is a certain
positive constant. Since M’(ty) > 0 and M(ty) > 0, we obtain, after integrating
the above expression over the interval [tg,t], that M'(t) > Ct + Cy, where C; is
a constant. Therefore, M'(t) — oo as t — co.

In the following we shall prove that there exists T' < oo such that M(t) — oo
ast—T.

Notice that E’(t) can also be written as

4m m+1

and thus
t 4m t m+1
BE) - Etto) = | E/(s)ds = —— " / / W), Rdads.
) to (m + 1)2 to n ’(

Since E(ty) < 0, we have

dm t m+l 9

M"(t) p+m // )s|?dads.
to mn

Multiplying the above expression with the defining expression of M(t), we have

M(t)M"(t) pi—;’n // " 2dl‘d3// i s|2dxds.
m to n to n

11

Thus, by (2.2.6),



By the Cauchy-Schwarz inequality,

2
MM () > et { / / datds}
m + 1 to n
1 1 2
_ ptm [/ um+1(x,t)dx—/ um“(w,to)da:}
Rn Rn

m+1|{m+1 m+1
p+m.. ., / 2
= M M (to)]”.
BT M(1) — M (1)
Due to the fact that M’'(t) — oo in the limit ¢ — oo and since f’;’—ﬁ > 1 for
p > m, there exists a constant o > 0 such that

MEM" () > (1 + a)M™(2), (2.2.7)

when t is large enough. This is equivalent to the proposition that M™% is a
concave function. (In fact, M~ is concave if and only if

(M—a)// _ (_aM—a—lM/)/
= (—a)(—a—1)M (M)’ + (—a)M " 'M" <0,

which is equivalent to (2.2.7). )

Since M (t) > 0, there exists 0 < T < oo such that M ~%(T) = 0, and therefore
M(t) - ocast—T.

Furthermore, we claim that M"(t) — oo ast — T.

Assume the opposite, namely, that M”(t) is bounded in [0,7]. Let M"(t) <
2C, for t € [0,T], where C] is a positive constant. Integrating the inequality
twice over the interval [0, 7], we obtain that M(t) < C1t? + Cat + C3,t € [0,T],
where Cy and C3 are constants. The right side is bounded in [0,7], and so is
M (t), which contradicts that M(t) — oo as t — T. Hence M"(t) — oo in the
limit t — 7.

At the last stage we prove that u(z,t) blows up. By (1.0.1),

d 1
pr (m i 1um+1> = u"uy = v A(u™) + a(z)uP T,

12



and thus

M) = i(l umH(x,t)dw)

a(z)u " dr < meas(supp a)u(-, t)[[5™,

IA
T
3

and consequently u(z,t) blows up in the sense of L>°-norm. This proves Lemma
2.5. O

From Lemmas 2.2 and 2.5, we can conclude that when the space dimension
n > 3 and p > m, whether the solutions to problem (1.0.1) blow up or not
depends on the initial data: when the size is “small”, all the solutions are global;
on the contrary, when it is “large”, the solutions blow up.

Finally, we consider the case p = m.

When n > 3, Proposition 2.4 and the proof of Lemma 2.2 apply in this case.
Let ¢ > 2 and U(z) be a positive solution to equation (2.2.1). If a(z) and
up(x) satisfy

a(r) <UL zeR™, (2.2.8)
up(z) < Um, z€R" (2.2.9)
then all the solutions to (1.0.1) are global. Hence the following lemma:

Lemma 2.6 Whenn > 3 and p = m, all the solutions to (1.0.1) are globally
defined if a(x) and uo(x) satisfy (2.2.8) and (2.2.9) respectively.

At last, we shall prove that when the cut-off function a(z) satisfies some
certain condition, (1.0.1) has only blow-up solutions.

Lemma 2.7 When n > 2 and p = m, all the solutions to (1.0.1) blow up if
a(x) satisfies
a(x) >6 >0, ze€ Bgr(0)(R>1),

where § is a constant such that § > Ar, and Ag is the first eigenvalue of —A in
ball Br(0).

Proof. By the assumption,

_A¢ = /\R(ba HARS BR(O)a
{ 6(x) =0,  z€dBr0) (2:2.10)

13



where ¢ is the first eigenfunction corresponding to Ag such that [|¢]| = 1.
Let

B(t) = / u(z, t)p(x)dz,
Br(0)
so that

B = [ (a@™+a(@)im)o()ds
Br(0)

ou™

- / Adu™dx + / U sds
Br(0) 9Br(0) On

— / umaqde%—/ au™ pdx.
oBr0)  On Br(0)

Consider the right side. By Hopf’s lemma, |. OB1(0) umg—f;dS < 0. Combined with
a(z) > 0 and (2.2.10), we have

Et) > (0 An) / oumdz.

BRr(0)

After integrating it over [0, ],

E(t) > E(0) + (5 — Ag) /0 /B s

Notice that

3|

E(t) = /BR(O) updr = /BR(O) ugpmep m dx

1 m—1

< ey | | :
B </BR<0)U ’ x) </BR(0>¢ x)
E™(t) < (/B o u%dx) el :/B o u™ ¢dz.

Thus, we have

or

E(t) > E(0) + (5 — Ar) /0 "B (s)ds.

Since F(0) > 0 and 6 — Ag > 0, E(t) blows up in finite time since m > 1. While
according to the definition,

E(t) = / uddzr < ||ullool|Bfl1 = [|ulloo-
Br(0)

14



Consequently there exists T' < oo such that ||u(,t)||cc — o0 as t — T. This

proves Lemma 2.7. U
The above discussion has explained that the case p = m differs from the case

p > m (n > 3), in that whether the solutions to (1.0.1) blow up or not depends

not only on the size of initial data, but also on the form of the cut-off function.
These lemmas complete the proof of Theorems 1 and 2.

2.3 Proof of Theorem 3

Case 1. Let the solution to (1.0.1) be globally defined, that is, 7" = oco. The
Cauchy problem

{ u=A™),  (z.t) eR" < (0,T), (2.3.1)

u(z,0) = up(z), x€R",

has a self-similar solution ug(z,t) with constant energy (i.e. the Barenblatt
solution, [20], p.19-21):

|=

n g o
7‘[/‘ = t_ no+2 | —m8 ———— ( 2 — 2t_6> ,
US(QT ) |:2(7’LO‘+ 2) Mo |‘T| i

2

Wherea:m—l,ﬁzm,

(Eo) —n 2(no +2) %F(%+1_~_%)E no2
pr— f— 7.r

1o = 10(Eo . raan 0
and Eo = fRn u(z, t)dzr is a fixed positive constant chosen beforehand.

Since the maximum point and the size of support of ug(z,t) are proportional
2

m—1

to t7#+2770 and notg respectively, we can appropriately choose 7 such that
ug(z,to) < ug(x) for some tg > 0. Then let ¢y be the initial time, and @g(x,t) be
a Barenblatt solution to the Cauchy problem corresponding to (2.3.1) starting at
to. We can choose ug(z,t) as a subsolution to (1.0.1).

Since notg — 00 as t — oo, supp ug(-,t) expands as time passes. While for
the support of the solution to (1.0.1), we have supp u(-,t) D supp us(-,t). Hence
there exists ¢ € (0,00) such that supp u(-,t) N supp a # 0.

Case 2. Let the solution blow up in finite time T" < co. By the definition of
blow-up set:

B(U) = {$|31‘n — x,tn — T_,S.t. lim u(xnatn) — oo}’
n—oo

there exists some ¢ in the neighborhood of T" such that B(u) C supp u(-,t). Thus
it suffices to prove supp a N B(u) # () in the following,.

15



Assume the opposite, namely, that u(x,t) does not blow up on supp a. Since
supp a is compact and v € H}(R™), u(z,t) is uniformly bounded on supp a
within its time of existence, that is, there exists a constant M > 0 such that

sup |u(z,t)]| < M
xeESUpp a

for any ¢t € (0,7). Additionally, since u(x,t) is a blow-up solution, by Lemma
2.1, we have p > 1, and thus vP~! is also uniformly bounded on supp a. Now let
lauP~| < My (M is a positive constant), and we obtain

up < A(u™) 4+ Myu, (z,t) € R" x (0,T). (2.3.2)
After the transformation
vz, t) = e Mily(z, 1),
inequality (2.3.2) takes the form
vy < eMTDMEA (M),

For t € (0,T),e™ DM js hounded: em~DMit < ¢ (C is a positive constant),
and thus the above inequality can be further written as

ve < CA(W™).

Again perform the transformation

o(x,t) = v(x,

6)7
and we finally obtain
oy < A@™), (z,t) e R" x (0,T).

Notice that 9(z,t) has the initial data o(z,0) = ug(0).

It follows that o is a subsolution to problem (2.3.1). Therefore, as in Case 1,
we can choose an appropriate Barenblatt solution ug(z,t) such that ug(x,0) >
up(x),xz € R"™. By comparison, we have

O(x,t) <ug(z,t), (xz,t)eR"x(0,T),

which contradicts the assumption that o(x, t) blows up as ¢ — T'~. This concludes
the proof of Theorem 3. O
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Chapter 3

Semilinear elliptic equation
with localized nonlinearity

We take the solution u € H}(2) to (1.0.3) with a(z) and p satisfying (1.0.4) and
(1.0.5). The standard elliptic regularity then guarantees u € W?24(Q) for any
q > 1. For simplicity, we assume n > 3.

3.1 Proof of Theorem 4

First, we apply Kaplan’s method ([21]) to obtain some a priori bound.

Lemma 3.1 If a = a(z) satisfies (1.0.4), the value
M = ([0l € T3, [ a@)o(w)Pde =1} >0

is attained by ¢1 = ¢1(x) satisfying

—A¢1 = Ma(x)p1, o1 >0 1in Q, ¢ =0 on ON. (3.1.1)
Proof . We show first that A; is attained at some ¢ € H}(€).
To begin with, take a minimizing sequence {¢y} C H}(Q) satisfying
/ a(x)|ép(x)*dz = 1, and HV(;SH%Q(Q) — A1 as k — o0. (3.1.2)
Q

Thus {V¢y} is bounded in L?(Q), and so is {¢x}, by Poincaré’s inequality.
Therefore, {¢x} is bounded in H(). By the weak compactness of reflexive
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Banach space, there exists a subsequence {¢y; }32; C {dx}72, (we still denote it
as {¢r}32, in the following) and ¢ € H'(2), such that

¢p — ¢ in H'(Q).
Furthermore, ¢ = 0 on 02 in the trace sense, so
¢ € Hy(Q).

Then, since {¢} is bounded in H{ (), by Rellich-Kondrachov Compactness The-
orem, {¢;} has a convergent subsequence in L?(€2). Thus, we have

br — ¢ in L2(Q).
Since

] [ a6l = 196Pyie] < el [ 16= 60l + onld
Q Q

< Nallzec@yllo = drll2) (1l 2(0) + 16kl 2 () — 0 as k — oo,

by (3.1.2),

[ atoPds = [ aloras+ [ alloP ~ lonP)do = 1.
Q Q Q
Thus, by the definition of Ay,
A1 < HV¢H%Q(Q)' (3.1.3)

On the other hand, since ||V - [[12(q) is a norm of H(Q), by the weak lower
semi-continuity of norms in Banach space, together with (3.1.2), we have

This and (3.1.3) yield
A= [VellTe -
Finally, since
VI8l L2(0) = Vel 20

letting ¢1 = |¢|, we conclude that \; is attained at ¢1 € H}(€).
We show next that the minimizer ¢; is indeed a solution of (3.1.1).
What we have obtained so far can be rewritten as (see [5], p. 463-464)



where the energy functional

1
I[¢] = §HV¢H%2(Q)7
and the admissible class
o ={¢ € Hy(Q)|J[¢] = 0},

in which the functional of the side condition is

Ji8) = /Q G(é(x), a(x))dz, with G(6,a) = ag|* — |§2|

namely,

/Qa(x)|qb(x)\2dx =1 (3.1.4)

By the principle of Lagrange multiplier, there exists a real number A such that
¢1 is a weak solution of the boundary value problem
oG .
—A¢pi(x) = Aa—(z)(cbl(x), a(x)) = 2Xa(z)¢p1(z) in Q, ¢1(x) =0 on 09,

which, together with the side condition (3.1.4) and the definition of A;, yields
that

2\ = 2)\/ algPde = / Vo - Vordr = \i.
Q Q
Hence, ¢ solves
—A¢1 = )\1a<$)¢1, ¢1 Z 0 in Q, ¢1 =0 on 0f). (3.1.5)
If there exists xg € Q such that ¢;(xg) = 0, then

—¢1(70) = sup(—¢1).
0

Since (3.1.5) implies A(—¢1) > 0, by the strong maximum principle, —¢; must be
constant in Q. By making use of (3.1.5) again, we have ¢; = 0, which contradicts
the side condition (3.1.4). Therefore, ¢; > 0in €2, and consequently solves (3.1.1).
O

Henceforth, by replacing ¢;(z) by mgél(x), we normalize the above
Q
¢1 = ¢1(.’L‘) >0 by

/ a(z)pr(x)dx = 1.
Q
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Lemma 3.2 If a = a(x) satisfies (1.0.4), then each 1 < ¢* < 5 admits
C=C(Q,a(x),p,q") such that

[ull o) < C (3.1.6)
for any solution u € HE(Q) to (1.0.3).

Proof . By Lemma 3.1 and the convexity of function g(y) = y? for p > 1, we
apply Jensen’s inequality to obtain

(/ﬂ a(x)éwdx)p < /ﬂa(aj)up¢1d$= /Q(_AUMde

— /Q(—Agbl)udx:)q/ a(x)prude,

Q

from which it follows that
1
/ a(z)uprdr < A7,
Q
and furthermore
_p
/ a(x)uPprde = /\1/ a(z)prudr < A7,
Q 0
Since ¢1 > 0 within Q and w CC €,
1 >8>0, in w.

Thus,

AP1 Z/a(x)up¢1dx > 5/a($)updx:5/ a(z)u’dz,

Q

namely,
|Aul 1y = /Qa(:c)updx <5

Applying Brezis-Strauss L! estimate (Lemma 23 in [1]):

lulwra@) <7 Cl@)lAully @) + llullroe), 1<7a< 32,
together with the boundary condition, we obtain

lullwra@) <7 C1(,a(x),p,q), 1< q< 2.
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Then, it follows from Sobolev’s inequality that
”uHLq* () SEI CQ(Q’ (l(l'),p, Q)a

where & =1 — 1 e [-2;, 1), namely, (3.1.6) holds for any ¢* € [1,-25). O

Now we are ready to prove Theorem 4 using a standard bootstrap argument
based on (3.1.6).
Proof of Theorem 4. Considering (1.0.6), we choose a constant s > 1 satisfying

both

1 _1

= 3.1.

s < 5 ( 7)
n

—_ 3.1.
ps < (3.1.8)
Notice that (3.1.7) is vacuous when n > 4, since in that case p > 1 and (3.1.8)
imply s < %5 % < B2 o none2 — B By (3.1.6) and a € Cop(Q2), it holds

that

law? | s (o) <7 Ci(p, 5,9, a(x)). (3.1.9)

Then, replacing ¢* with s in (3.1.6) since s < "5 by (3.1.8), we apply the elliptic
L# estimate (see [13]), the compactness of €2, and (3.1.9) to obtain

ullwz.s () <7 Ca(p, 5,92, a(z)).

Since 2 < % by (3.1.7), the Sobolev’s inequality implies

1 1 2
3 * _
HUHLQI(Q) < C3(p7 qvaa(J’(m))a E - g - E
Notice that = <1-— < q%, namely, ¢f > ¢*.
Next, by (3 1.8),
* -2
@ ns n S,
P n—2s 2
so there exists a constant s; > s such that
n
51 < 5 and ps; < qj. (3.1.10)
In a similar fashion, we can show
lull s ) < Calpo a5, 2a(a)), — = — — (3.1.11
UiLas () 1(p, g2, 2, ol @ s1on 111)

By (3.1.10), % < % — % = %, namely, ¢5 > ¢7.
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Iterating this process, we can find a strictly increasing sequence {g;} such
that

3 *
lull it gy <> Cs (.5 2, ).
Thus, for all r > n,
ullzr (), lav? || ) <7 Colp,r, Q2 a(x)).
Then the elliptic L™ estimate and the compactness of €2 lead to

HUHWQ”"(Q) SH 07(]), T, €2, CL(I')),

n

and Morrey’s inequality with v =1 — I implies
H’U’HCL'Y(Q) SE' Cs(pv Y Qa a(x))

Consequently, by the definition of Holder norm and the arbitrariness of r > n,
we obtain the desired a priori bound for w. O
Theorem 4 can also be proved by blow-up analysis.
To start with, the harmonic function theory implies the following lemma.

Lemma 3.3 Under the assumption of (1.0.4), it holds that

[ull oo @) = llull Lo (w) (3.1.12)
for any solution u € H}(Q) to (1.0.3).

Proof . Since w is harmonic in Q \ w, it follows that

]l oo (@\w) = [[ul] Lo (90u0w)

from the maximum principle. Hence we obtain (3.1.12) by the zero boundary
condition. O
The local a priori estimate in w, on the other hand, is obtained as in ([10]).

Lemma 3.4 If p and a = a(z) satisfy (1.0.4) and (1.0.5), then any compact
set K C w admits C = C(K,Q,a(x),p) such that

[ul| ooy < C

for any solution u € H}(Q) to (1.0.3).
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Proof . Assuming the contrary, and take a sequence of solutions {ux} to (1.0.3)
satisfying

u|loo = ur(zx) = +00, k — o0. (3.1.13)
with z, € K. Passing to a subsequence, we obtain
Tp — Too, k — 00.

For the rescaled solution

_2_
~ p—1

g (x) = pp " up(pre + o)

with pg > 0 defined by

2 2
—1

pp un(ar) = k| o) = 1,
it holds that
ur =0 as k— oo (3.1.14)
and
—Ady, = a(pr + x)uy, 0 < ap < ap(0) =1

in B (o)) where d = %dist(xoo, 09). Passing to a subsequence again, by elliptic
L" estimate, Morrey’s inequality, the Arzela-Ascoli theorem, and then a diagonal
argument ([10]), we obtain

U, — Uso 1N Wfo’CT(R"), 1 < Vg < oo,

g — U in CLP(RY), B=1-12,
with u satisfying

—Ausy = a(Too)uly, 0 < s < ux(0) =1 1in R™. (3.1.15)

Since zo € K C w, we have a(r~) > 0 and the Liouville property proven by
([11]) guarantees that there is no such us, in the case of (1.0.5). O

Another proof of Theorem 4. If the global a priori estimate to (1.0.3) fails,
we have (3.1.13) with z; € w by Lemma 3.3. Passing to a subsequence we have

Tp = Too EW, as k — 00

and then z, € w is impossible by Lemma 3.4 under the assumption of (1.0.4)
and (1.0.5).
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Therefore, o, € Ow. Hence uy, is harmonic in R™, which together with
(3.1.15) yields

Uso =1, in R",
by the strong maximum principle. Namely,

i — 1 locally uniformly in R".

_n_

In particular, for any ¢* < "5,

/ g(2)? dr — |B1(0)] >0, as k — oo. (3.1.16)
lz|<1
On the other hand, letting 2’ = ugx + 5, we have

2 q*
[ wra= [ <ug-1uk<x’>) pimds’
|lz|<1 | — 2| <pere

2¢* _ . 2¢* _ .
= prt / ug(2)? dx’ < prt / ug (27 da’
|2/~ | <wp Q

2q* 2q*
_ p—1 " < CouP?t N
= Hg [l o Q) = L2py

The last inequality is implied by (3.1.6). Now, notice the exponent in the above
inequality. Taking ¢* = w, by (1.0.6), we have ¢* < "5 Therefore, by
(3.1.14),

/ tg(2)7 dz — 0 as k — oo,
|z|<1

which contradicts (3.1.16). O

3.2 Proof of Theorem 5

Proof of Theorem 5. We mainly follow the procedure of [6] and divide the proof

into three steps.
Step 1. L' bound for Vu in a neighborhood of 0€2.
Firstly, since u is harmonic in © \ w, by mean value theorem,

[ ull oo (5) < C1(p, Q,a(x), K), "K CC Q\ w. (3.2.1)

In fact, u € C(Q2\w) is harmonic, if and only if for any ball B = Br(y) CC Q\w,

1
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where w,, is the volume of unit ball in R". Thus, for any z € K, taking Bg(z)
with radius

R= %min{dist(K, ), dist(K, Ow)},

we have

u(x)] = < Cy(K)||ull 1 (o), Vo € K.

Co(K) /d uds

Recalling (3.1.6) with ¢* = 1, we obtain (3.2.1).
Next, choosing

Q1 = {& € Q|dist(x, 090) < %dist(w,(‘)(l)},

it is clear that 0 = 0Q U I\ ©;]. Taking (3.2.1) and the boundary condition
in (1.0.3) into consideration, we have

[ ull oo @00) = lull L apor0a)) <7 Ca(p, 2, al@)). (3.2.2)

Then, by the strong maximum principle for harmonic functions,
[l oo @iyy = el Lo (o01) < C(p, 2, al(x)). (3.2.3)

Finally, since a(z)u(x)? = 0 in ©; and (3.2.3), for any s > n, applying elliptic L*
estimate and the compactness of €1y,

lullwe.s @) <7 Cals, Q) (lulls () + lalyu(-P s @y) < Cs(p, 5,2, a(z)).

Then by Morrey’s inequality,
n
lullora@ry <& Coly, Q) lullwas ) < Crlp, 5,9, a(@)), y=1- 3
By the definition of Hélder norm and the arbitrariness of s, we obtain

[Vull Loy < Cs(p, Q,a(x)). (3.2.4)

Step 2. Applying Pohozaev’s identity (Lemma 1.1 in [6], originally from [18])
to obtain the a priori bound for Vu in L2.
Let

1
p+1

f(z,t) = a(x)t?, F(z,t) = /0 f(z,s)ds = a(x) Pt (z,t) € QA x Ry,

and
oF 1 Oa

%(xvt) = ﬁ%(:ﬁ)tpﬂ, i=1,...,n, (z,t) €¢w x R4.
K3 (2
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Then (1.0.3) is rewritten as
—Au = f(z,u(z)) in Q, w=0on N

and the applicable version of Pohozaev identity is

/ 2 ()| Vu(z)dS
o0

= 2n/ﬂF(m,u)dw+2§Lwi$(w,u)dx—(n—2)/9f(x,u)udx

2 2
= — [ nauPldz + /(:17 - va)uPTdr — / (n — 2)auPdz,
p+1Jo p+1J, Q
(3.2.5)
where ¢ = 1(x) = (11(2), ..., tn(2))T denotes the unit outward normal to 2 at x.
The proof mostly follows [21] (p.9-10) but the integration that produces the
second term on the right-hand side is tackled differently.
For notational convenience, we write
ou 0%u
= :
8.131' K 83328%

U; =

Consider Gauss divergence formula

/ V -bdxr = / b - dS, (3.2.6)
Q 0N

where vector field
n
b =b(z) = (z-Vu)Vu = szuz Fugy ey ).
i=1
The integrand on the left-hand side is

n

n
vV-b = Z[(Z xiui)uj]j = Z(dijuiuj + Tiuiiu; + Hfz‘uiujj)
— —

J=1 i
= Doul+ ) wuguy+ Qwu) (Y ugg)
¢ 2% i J
= |vu]® + inuijuj + (2 - Vu)Au,
.3

so we denote the left-hand side of (3.2.6) as
/ V - bdr = / |Vul|?dz + Jo + J3.
Q Q
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Let
Iij—/xiuijujd:c.
Q
Iz'j = /(uj)ixiujdx: —/ ’U,j<l‘iu]')id:(}—|-/ Uj.%'inLidS
Q Q o0
= / xiLiu?dS—/uj(uj—l—miuij)dx:/ xibiu?dS—/u?dx—Iij,
N Q o0 Q

which implies

1 1
Ij; = 3 /69 a:ibiu?dS ~3 /Qu?dx

Thus
Jo = ZIij = 1/ x| Vul?dS — n/ |Vu|dz.
7 2 Joq 2 Ja

Now we proceed to calculate J3. We should pay attention to the integral domain
since some terms are only defined on w.

Jy = /Q(x~Vu)Audx: —/Q(x-Vu)f(x,u)dx: —/w(ac-Vu)f(x,u)dx
- —Z[inuif(x,u)dm:Zin <§Z(:¢,u>— (F(:L",u))i> dx
- Zz/wmi((gi(:x,u)dm—/w;-VF(m,u)d:U
- Z:j/wmigi(x,u)dm—/&J(x-u)F(x,u)ds+LnF(x,u)dx.

Since a(x) = 0 on dw, F(z,u(x)) = Iﬁa(%)u(az)ﬁ”rl = 0 on Jw. Thus,

OF
J3 = Zi:/wxiaxi(x,u)dw—i-/gn}?(x,u)dw

Therefore, the left-hand side of (3.2.6) is

1
/v-bdac = n/F(a:,u)dm—i—(l—n)/ |Vu]2d:z:+/ x| Vul*dS
Q % 27 Jo 2 Joa

OF
+ zi:/wxiaxi(x,u)dw (3.2.7)
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On the other hand, since
Vu(z) = £|vVu(x)|(x), on

by the zero boundary condition of (1.0.3), the right-hand side of (3.2.6) is
/ b udS = (x - Vu)Vu - 1dS = / x - | vul2dS. (3.2.8)
o0 o0 onN

Then (3.2.6), (3.2.7), (3.2.8) and

/|Vu2d;v:—/uAuda::/f(ac,u)udx
Q Q Q
vield (3.2.5).

Now we return to the proof of Theorem 5. (3.2.5) is rewritten as

ptl
2 Jon

= / [naupH + (z- Va)up+1 — Mz(])maup“} de

_ /w [n_ (n_2)2(p+1)—|—(x-v)loga} P de

z - o(x)|Vu(x)|*dS

_ /w 8+ a(z)] auP*dz, (3.2.9)
where
B=n-— ("_2)2(17“) —p+1-2(p—1)>0,
and

a(z) = (x-V)loga(x).
By (iii) of the assumption (1.0.7) and a(z) = 0 on dw, we have
Va(z) = —|Va(z)|v(z), |Va(z)|>0 on dw,
which together with (i) of (1.0.7) yields
z-Va(z) = —|Va(z)|z-v(x) <0 on dw.
z-va(x)

Thus, since a(z) = ~a@  mw, by (ii) of (1.0.7), we obtain

li —
61{% SBF a(x) 00,
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where ws = {z € wl|dist(z,0w) < §} for 6 > 0. In particular, there exists § > 0
and C1 > 0 such that

B+ a(r) < —C1 in ws. (3.2.10)
Moreover, for any K CC w, by Lemma 3.4,
ull oo 1) <7 Ca(K). (3.2.11)
Besides, by (ii) of (1.0.7),
18+ ()| poe (1) <7 Cs(K).
This, together with (3.2.11) and a € Cp(£2), implies that
118 + a()aC)u(-)P g ) <5 Ca(K). (3.2.12)
Now, taking K = w \ ws, by (3.2.9), (3.2.10) and (3.2.12), we have

p+1

5 x - v(z)|vu(z)|?dS < Cl/ auP T dz + Cs. (3.2.13)
o0

ws
While by (3.2.4) in the previous step,

p+1

2 2 3
| o v@u) dS‘SCG(p,Q) | 1vu@)as <* Crip. 2.a(0)).

so the left-hand side of (3.2.13) is bounded from below. Therefore,
/ auPTdz < Cs(p, Q, a(x)).
ws
By making use of (3.2.11) and a € Cy(Q2) again,
/\ auP T dz < Co(p, Q, a(x)).
w\ws

Hence

/ ]Vu|2d:v = —/ uAudr = / auPTrdz = / auPTdz < Cg + Cy,
Q 0 Q w

namely,

HVUHLQ(Q) SH ClO(pagaa(x))- (3214)
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Remark 1 This is the only place we use the assumption (1.0.7). Further-
more, from the proof we see that (1.0.7) can be weakened: it suffices to require

lim sup(z - V) loga(z) < — n_w

3.2.15
N0 ws 2 ’ ( )

from which (3.2.10) follows immediately.

Step 3. To conclude the a priori bound for u.
Notice that f = f(z,u(x)) = a(x)u(x)P satisfies:

f(z,-) is bounded on [0, L] for any L > 0 uniformly in z € ,(3.2.16)
n+2
n—2

t_1}+m f(x,t)t77 = 0 uniformly in z € Q for 0 = (3.2.17)

We show that (3.2.14) implies the a priori bound for w.
For all » > 1, by the equation and its boundary condition (1.0.3),

/fxu de——/(Au) ’”da:_—/(v V)" da
= /Qwv /|w]2”1dx— ) /\v )|?dz.

By (3.2.17) and (3.2.16), for all € > 0, there exists Ce > 0 such that
flz, )t < et + C..

Thus,

- 1)2
/ ]V(u%l)ﬁda:: (TH/ flz,uw)u"de < Coe/ u"7dx + C.
Q r Jg Q

Since by Sobolev’s inequality,

n—2
</ uqu> = (w5 |2 4 gcl/ |V (w5 ) 2d,
Q Ln=2(Q) Q
letting
n-2 _r+l o_nlrtD
q om0 2 - on—=2"
we have

n—2

(/ uqda;) " §Cge/ur+"dx+0é/.
Q Q
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On the right-hand side, we note the exponent of w:

n—2 2n 2
r+o=(r+1)+(c—-1)=¢q - -

n—2n’

and thus by Holder’s inequality,

n—2 n—2 2
</ uqu) ! < Cae </ uqdm> ! </ un2n2dx> t cr.
Q Q Q

Moreover, (3.2.14) and Sobolev’s inequality imply
2n_
/ un—2dzr < Cjs.
Q

Therefore, choosing € in (3.2.18) small enough, we obtain

n(r+1)

v
n—2" rz1

lull o) < Ca(q), for ¢ =
and in particular,
ull ooy < Ca(q), g = n.

Furthermore, by (3.2.17) and (3.2.16),
v
Hf(vu())HL%(Q) < 05((])7 qz=n.
Thus for all s > n, by elliptic L® estimate and the compactness of €2,

ullwzs) <7 Cols, Q) (ullps) + 1 (@, 0)l|zs() < Cr(s,Q),

and then by Morrey’s inequality,

n
lellen @) <> Cs(r, Dllullwasiey < Colr, Q). v =1-2

(3.2.18)

(3.2.19)

(3.2.20)

(3.2.21)

Consequently, by the definition of Holder norm, we obtain the a priori bound for

u.

3.3 Open problems

O

Based on the above results, we present here two open problems for future work.
FElliptic Problem. The first one concerns whether the assumption (1.0.7) on

a = a(x) in Theorem 5 can be further weakened.
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Specifically, assuming dw € C!, (ii) and (iii) of (1.0.7), we have for any
Ty € Ow,

Va(zo) = —|Va(zo)|vo,
so that by the Taylor expansion,
a(x) = —|Va(zo)|(x — zo) - vo + o(|x — x0]), as z — xp, T € w, (3.3.1)

where 1y = v(xg) denotes the outer unit normal vector at zy. In addition, we
notice that
da
Va(zg)| = —=(xg) > 0.
[Va(zo)| = =5 (o)
We wonder whether (3.3.1), or, more generally, the assumption that for any
o € Ow there exist o > 0 and m > 0 such that

a(z) = —a(z — z0) - vo|(z — z0) - o] L+ o(|z — 20|™),z € w — zo (3.3.2)
suffices to admit the a priori bound
[ull oo () < € = C(©, a(x), p)

for any solution u = u(z) to (1.0.3).
To study this problem, one may apply the blow-up analysis with the argument
of Du-Li [4] in discussing the limiting points of the maximizing point sequence
Parabolic Problem. We have also attempted to study the initial boundary
value problem for the corresponding semilinear parabolic equation

up = Au+a(x)u?  inQx(0,7T)
u(z,0) =up(z) >0 inQ (3.3.3)
u=20 on 09 x (0,T)
with ug € C(Q). We wonder if, similar to the case a(z) = 1, studied by Giga
[12], there exists an a priori bound for positive solutions, provided (1.0.5) and
a = a(z) satisfies some conditions.
Concretely speaking, we wish to show that under the same assumption in
Theorem 5, or some weaker assumption such as (3.3.1) or (3.3.2), there exists
C = C(p,Q,a(x), |uol| () such that

sup [[u(-, )| o) < C
>0
for any solution u = u(z,t) to (3.3.3) global-in-time.
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A possible proof may follow the procedure of [12], but the limit of the con-
verging sequence of points have to be discussed in a different manner. In fact,
since the other arguments hold true in this case, the proof would be completed
if only the same lemma in [12] could be proved.

Conjecture. Let Q C R" be a bounded domain with C? boundary 0%, p
be in (1.0.5), and a = a(x) satisfy (1.0.7), or some weaker assumption such as
(3.3.1) or (3.3.2). Let u = u(x,t) be a strong solution to (3.3.3), and assume that
there exists a finite constant IV > 0 such that

T
/O /Q |ug|dzdt < N, (3.3.4)

and that

sup wu is attained in Q x (to,T) (3.3.5)
Qx(0,7)

where tg > 0. Then there is a constant A which depends only on N and ¢y, and
is independent of u, ug and 7', such that

u(z,t) < Ain Q =Q x [0,7).
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Chapter 4

Conclusion and comments

In the first half, we studied the critical exponent for global existence pg and the
Fujita exponent po for the porous medium equation with localized reaction in
multi-dimensional space. In two spatial dimension, despite some results obtained
in Theorem 1, there are still problems left unsolved, while in the case n > 3, The-
orem 2 elucidated the relationship between the behavior of nonnegative solutions
and the exponents p and m. Additionally, in Theorem 3, we showed a property
concerning the support of nonnegative solutions.

From these results we can observe that the construction of critical exponents
is greatly different from the case when the reaction is not localized, namely,
a(z) = 1. Especially when n > 3, the critical exponent py = pc = m is even
unrelated to the spatial dimention n. Besides, we remark that in the case n > 3,
all results concerning the existence of global solution are obtained thanks to the
Liouville property of semilinear elliptic equation, since it enabled us to construct
a global supersolution for comparison. This is also the reason why we failed to
obtain a complete result for the case n = 2, since this property holds only in
spatial dimensions higher than 2.

In the second half, we studied the role of such a(x) in a priori estimate for
positive solutions to the semilinear elliptic equation. Different from the case
a(z) = 1 where the existence of an a priori bound for all positive solutions is
guaranteed, to obtain the a priori bound, we have to reduce the critical exponent,
or to impose some assumptions on the localized coefficient a(x), as stated in
Theorem 4 and Theorem 5 respectively. For the latter result, as future work, we
also suggested possible improvement in that the assumptions may be weakened.
Finally, we presented an open problem concerning the a priori estimate for the
corresponding semilinear parabolic equation.

The main complexity caused by the localized nonlinearity lies in the argu-
ments conducted in the neighborhood of dw. Recall w = {z € Q|a(xz) > 0}. This
compelled us to impose appropriate assumptions on a(x) in order to prove the
existence of the a priori bound. We also observe that throughout both halves of
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the dissertation, Liouville property of semilinear elliptic equation played a crucial
role: it not only realized the construction of global supersolution in the first half,
as stated above, but also served to engender the contradiction in the proof of
Theorem 4 by blow-up analysis.
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