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Abstract 

 
With the increase of use of technologies in industries, the globalisation of business 

structure is driven by the complex environment and various requirements from the 

customers. Global supply chain planning becomes a key issue for enterprises to win in 

the global market. Supply chain planning problems are classified according to various 

features such as types of decisions, operations, competition and coordination. The 

ultimate objective of global supply chain planning is to achieve global optimisation 

coordination and cooperation forecasting uncertain markets. In this thesis, the 

coordination of global supply chain planning between one manufacturer and multiple 

suppliers under demand uncertainty is investigated. A Stackelberg game theoretic 

approach is applied to coordinate the manufacturer and the the suppliers under demand 

uncertainty. It is assumed that the manufacturer is a leader and the suppliers are 

followers. Therefore, the manufacturer’s decision problem is investiaged first. The 

problem is formulated as a mixed integer nonlinear programming problem including 

integral terms. Solution approaches are proposed to solve the problem. Next, game 

theoretic models for global supply chain planning are introduced to coordinate the 

manufacturer and the suppliers in order to improve profits and enhance competiveness. 

Another important factor in supply chain coordination is the quality of products, 

because it changes the price of products. A game theoreic model with the asymmetric 

quality information is investigated.  
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This thesis describes the following contributions. First of all, the manufacturer’s 

decision problem with quantity discounts in supply chain planning under demand 

uncertainty is studied. Quantity discount is a price reduction strategy offered by 

suppliers to buyers who purchase a large number of products at once, which is 

considered one of important coordination mechanism. Quantity discounts are applied to 

reduce the total costs for the manufacturer’s decision model. The problem is formulated 

as a mixed integer nonlinear programming problem (MINLP) with integral terms which 

is an NP-hard problem. An outer approximation algorithm with a heuristic is proposed 

to solve the problem.  

Secondly, a reformulation of the supply chain planning problem with quantity 

discounts under demand uncertainty is proposed in order to reduce the computational 

time. The stochastic model is reformulated by a normalisation technique into an 

equivalent deterministic form. The stochastic model is treated by the expectation of the 

objective function. Then, the previously proposed outer approximation approach is used 

to solve the reformulated problem. 

Thirdly, a game theoretic model for supply chain coordination problem is derived. 

The supply chain coordination problem involves one manufacturer and multi-suppliers 

under demand uncertainty. The relationship between the manufacturer and the suppliers 

is modeled by a noncooperative game. The noncooperative game model is analysed by 

the Stackelberg equilibrium where the manufacturer is regarded as a leader and the 

suppliers as followers. By deriving suppliers’ optimal response functions, the optimal 

price discounts are obtained. 

Finally, a game theoretic model to coordinate single manufacturer and multiple 

suppliers with asymmetric information under demand uncertainty is addressed. In the 
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model, it is assumed that the quality information is asymmetric. The quality of 

components purchased from suppliers is unknown to the manufacturer while it is known 

to the suppliers. Two scenarios (average case and worst case) are investigated for the 

manufacturer to estimate the quality of components. Computational experiments are 

conducted to illustrate the features of the proposed models with different parameters. 

The results show the validity of the proposed model.    
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Chapter 1 

Introduction 

1.1 Background 

With increased globalisation and offshore sourcing, comprehensive global supply chain 

management becomes an important issue for enterprises. Supply chain is regarded as 

one of important topics to be investigated due to business globalisation in the past 

decades. Many researchers have investigated global supply chain planning from 

different perspectives, such as inventory planning, transportation network or risk 

management [32, 64, 81, 90]. Hulsmann et al. [43] gave a theoretical analysis of 

autonomous cooperation and control (ACC) in order to improve the adaptivity and 

competitiveness of global supply chains. They investigated five constitutive 

characteristics of ACC to competence replication, reconfiguration, and detainment to 

response the complex and changing environment of global supply chains. Jiao et al. 

proposed an agent-based multi-contract negotiation system for global manufacturing 

supply chain coordination. A multiobjective mixed integer nonlinear programming 

(MINLP) model for a global process supply chain optimisation problem was introduced 

by Liu and Papageorgiou [60], involving the consideration of production, distribution 

and capacity expansion. Vidal and Goetschalckx [87] presented a model for the 
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optimisation of a global supply chain that maximises the after tax profits of a 

multinational corporation, and it includes transfer prices and the allocation of 

transportation costs as explicit decision variables. The model also considers the 

selection of transportation modes based on approximate expressions for the inventory 

costs generated by the utilisation of each transportation mode. Goh et al. [31] studied a 

stochastic model of the multi-stage global supply chain network problem incorporating 

a set of related risks, namely, supply, demand, exchange, and disruption. They 

presented a multi-stage stochastic model for supply chain networks by providing a 

general formulation of the multi-stage supply chain network problem operating under a 

scenario of a variety of risks. 

1.2 Demand Uncertainty 

Business globalisation imposes the need to consider elements from a new perspective: 

new objectives should be considered, different from the ones typically applicable to the 

individual supply chain echelons. For instance, marketing uncertainty should be 

managed taking into account the roles of decision makers in global supply chain [12]. 

Unlike traditional supply chains, global supply chain management requires companies 

to enhance their competitiveness and capture market share in the global market. In 

today's ever changing global markets, maintaining an efficient and flexible supply chain 

is critical for every enterprise, especially when revailing volatilities in the business 

environment are given [36]. Demand estimation can lead companies to reduce 

opportunity loss costs in order to improve customer satisfaction because the demand 

fluctuation can affect production or inventory plans. 

Many researchers assume that demand is deterministic to reduce the complexity of 
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supply chain planning. However, it is more realistic to involve the demand uncertainty 

to the resolve supply chain planning problems. A supply chain design problem for a 

new market opportunity under demand uncertainty in an agile manufacturing setting 

was proposed by Pan and Nagi [74]. Afterwards, Hsu and Li [39] presented a series of 

models to investigate the supply chain design problems for manufacturers in response to 

economies of scale and demand fluctuations. Their study focuses on the evaluation of 

reliability and the adjustment of the supply chain network design to respond to different 

demand fluctuations. Li and Liu [57] studied a multi-period supply chain planning with 

one supplier and one buyer. The decision policy which is characterised by the unit 

selling price and the quantity that is coordinated through quantity discounts. Shin and 

Benton [83] developed a quantity discount model for a single buyer and a single 

supplier under uncertain demands changing basis of both parties’ economic lot sizes. 

However, the model is based on the assumption of economic order quantity (EOQ) 

model. Demand uncertainty should be managed taking into account the roles of many 

players for global supply chain planning. Xiao et al. [92] proposed a game theoretic 

model of a three-stage supply chain consisting of one retailer, one manufacturer and one 

subcontractor to study ordering, wholesale pricing and lead-time decisions under 

demand uncertainty. Hua and Li [40] introduced retailer-dominant noncooperative game 

models for a newsvendor problem by introducing the sensitivity of the retailer's order 

quantity to the manufacturer's wholesale price. They found that the manufacturer and 

the retailer can bargain to cooperate at any level of retail-market demand uncertainty 

with exogenous retail price. Al-Othman et al. [2] developed a multi-period stochastic 

planning model for a petroleum organization consisting of all activities related to crude 

oil production, processing and distribution in uncertain market demands and prices. A 
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stochastic formulation has been developed, which is based on the two-stage problem 

with finite number of realisations. Afterwards, Awudu and Zhang [4] proposed a 

stochastic production planning model for a biofuel supply chain under demand and 

price uncertainty. They formulated the problem as a stochastic linear programming 

model to maximise the expected profit. Then, they applied Benders decomposition with 

Monte Carlo simulation technique to solve their proposed model. 

1.3 Quantity Discount 

Coordination is another important issue that should be addressed when dealing with 

global supply chain management. Coordinated supply chain performance refers the 

execution of a precise set of actions. Unfortunately, supply chain members fail to 

achieve optimal performance due to the conflict interest. For instance, the members are 

primarily concerned with optimising their own objectives [9]. Thus, discount contracts 

become an effective mechanism to coordinate the supply chain members. Quantity 

discount is a price reduction strategy offered by suppliers to buyers who purchase a 

large number of products at once. The application of quantity discounts contributes to 

reducing the buyer’s total costs and increasing supplier’s profit [41, 54, 65]. In this 

research, quantity discount is used as an important technique to coordinate the 

manufacturer and the supplier in supply chain planning. Many researchers focus on 

buyer-vendor coordination by applying various discount contracts in order to optimise 

supply chain planning [10, 20, 21, 45]. Li and Liu [57] developed an optimisation 

model for illustrating how to use a quantity discount policy to achieve supply chain 

coordination. A supplier-buyer system involving selling one type of product with 

multi-period and probabilistic customer demand is considered. Sarmah et al. [80] 
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introduced the basic buyer and vendor coordination models, and reviewed the literature 

dealing with buyer and vendor coordination models that have used the quantity discount 

under deterministic demand. Li et al. [58] attempted to improve the cooperation of a 

buyer and seller system in an inventory control system. Afterwards, they discussed how 

quantity discount works in the system to divide additional profits. The effectiveness of 

quantity discounts and volume discounts as coordination mechanisms between a vendor 

and a retailer was analysed by Viswanathan and Wang [88]. Qin et al. [77] considered 

volume discount and franchise fees as a coordination mechanism in a system consisting 

of a supplier and a buyer. The problem is analysed by a Stackelberg game. A number of 

techniques are applied to resolve discount contract problems by researchers in order to 

obtain the optimal solutions. Tsai [85] solved a nonlinear supply chain model capable of 

treating various quantity discount functions simultaneously, including linear, single 

breakpoint, step, and multiple breakpoint functions. Linearisation techniques are utilised 

to solve a nonlinear model. The piece-wise linear model is approximately solved in 

order to obtain an approximate global optimum. A mixed integer nonlinear 

programming model for order allocation considering different capacities, failure 

probability and quantity discounts was developed by Meena and Sarmah [62]. They 

showed that the formulated problem is NP-hard in nature and a genetic algorithm was 

applied to solve it. Lee et al. [53] also applied genetic algorithms to solve the lot-sizing 

problem with multiple suppliers, multiple periods and quantity discount which is 

reformulated as a a mixed integer programming model.  

1.4 Game Theoretic Model 

The game theoretic models have been extensively studied in different manners in the 
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past years. Game theoretic approach, as a well-known method, is widely used in supply 

chain coordination. Game theory is generally divided into noncooperative games and 

cooperative games. Nagarajan and Sosic [66] gave an extensive survey on applications 

of cooperative game theory in supply chain management. In their paper, they 

emphasised two important aspects of cooperative games: profit allocation and stability. 

Yang et al. [95] presented an assembly supply chain system consisting of one retailer 

and two suppliers with forecast updating. Huang et al. [41] introduced a three-level 

noncooperative game model considering suppliers and components selection, pricing 

and inventory. The retailers’ problem focuses on replenishment cycles and retail prices 

for products. Furthermore, various contract strategies are widely used in game theoretic 

models in order to achieve coordination of supply chain planning [50, 72, 105]. Zhao et 

al. [106] used a cooperative game theoretic approach in a manufacturer-retailer supply 

chain with option contracts. They developed an option contract model using wholesale 

price mechanism as a benchmark to coordinate the supply chain and achieve 

Pareto-improvement. Palsule-Desai [73] introduced revenue sharing contracts as a 

coordination mechanism to build a two-period supply chain model wherein the actual 

proportion in which the supply chain revenue is shared among players depends on the 

quantity of revenue generated. Corbett et al. [17] used shared-savings contracts by 

considering the double moral hazard framework where the shared-savings contracts 

combine a fixed service fee with a variable component based on consumption volume. 

By using this contract, supply chain planning is improved to lead to a more efficient 

choice by the two parties. Quantity discount is regard as one of important strategies 

among those contracts which is intensively studied by many researchers in order to 

reduce total costs and improve profits. Krichen et al. [48] considered an economic order 
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quantity problem involving a single supplier that offers quantity discounts and allows 

retailers to delay payments. They proposed a solution approach that generates stable 

coalition structures for the retailers taking into account the delay in payments. A 

manufacturer-retailer supply chain model was proposed to study the coordination of 

cooperative advertisement when the manufacturer offers price deductions to customers 

by Yue et al. [102]. They obtained a necessary and sufficient condition for the price 

reduction to ensure an increase of manufacturer’s profit, and a search procedure for 

determining such an optimal price reduction. They also considered when price discounts 

are offered by both the manufacturer and retailer [103]. They showed that the 

manufacturer always prefers Stackelberg equilibrium, but there was no definitive 

conclusion for the retailer. In Stackelberg game, the leader’ decision is solved 

considering all possible reactions of its follower in order to maximise its own profits. 

Meanwhile, the follower`s optimal reaction is determined by considering the leader`s 

decision as its input parameters. 

1.5 Noncooperative Game Theoretic Model 

Game theory is generally divided into cooperative game theory and noncooperative 

game theory. In cooperative games, all players cooperatively make contributions in 

order to maximise the whole system’s profits. In noncooperative games, each play 

makes decisions independently to maximise its own profits. In this thesis, a global 

supply chain planning is investigated when the manufacturer appropriately decides the 

production plan and purchase components from its outsourcing suppliers while retailers 

properly purchase products from the manufacturer. Each supply chain member makes 

decisions independently in order to maximise its own profits. Thus, it is more 
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reasonable to apply the noncooperative game in realistic situations. A number of works 

have done by many researchers to apply noncooperative game to resolve various 

coordination problems in supply chain planning. Cai et al. [11] studied the optimal 

pricing and ordering with partial lost sales from a two-stage theoretic perspective. They 

anlysed solutions of noncooperative games for the buyer and the seller, and provided 

insights into both the deterministic and stochastic demand models. Erickson [23] treated 

the strategic interdependence problem involving marketing and operational decisions by 

a noncooperative differential game. A feedback Nash equilibrium is derived by 

considering price and advertising costs which are controlled by marketing. Yang et al. 

[96] developed a model of a general closed-loop supply chain network of raw material 

suppliers, manufacturers, retailers, consumers and recovery centers which are analysed 

by the theory of variational inequalities. Guardiola et al. [34] studied the coordination of 

actions and the allocation of profit in supply chain under decentralised control in which 

a single supplier supplies to several retailers with good for replenishment of stocks. The 

decisions of the supplier and the retailers are analysed by a noncooperative game. Meng 

et al. [63] introduced a novel competitive facility location problem about a firm that 

intends to entry an existing decentralised supply chain comprised of three tiers of 

players with competition: manufacturers, retailers and consumers. Variational 

inequalities are applied for the supply chain network equilibrium with production 

capacity constraints. The “manufactuer-Stackelberg” game is widely used in supply 

chain literatures [14, 24, 35, 52, 75]. Yu et al. [101] improved members’ profits of 

supply chain systems between a manufacturer and its retailers incorporating the 

inventory policy by studying Stackelberg game problems where advertising, pricing and 

inventory replenishments are all involved. In the Stackelberg game, players make 
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decisions sequentially where the leader dominates the game. Chen et al. [15] examined 

manufacturer’s pricing strategies in a dual-channel supply chain, in which the 

manufacturer is a Stackelberg leader and the retailer is a follower. A bi-level 

programming approach is applied by Sadigh et al. to investigate a multi-product 

manufacturer-retailer supply chain where demand of each product is jointly influenced 

by the price and advertising expenditure [78]. They proposed a Stackelberg game 

framework with two scenarios. Under the competing supply chain, Wu [91] examined 

the impact of buyback policy on retail price, order quantity and wholesale price in a 

duopoly of two manufacturer-retailer supply chains. The buyback contract allows that 

the buyer can return unsold products to the seller after the demand is realised. Two 

channel policies including vertical integration and manufacturer’s Stackelberg are 

considered. Yu et al. [100] discussed how the vendor can take advantage of inventory 

and market-related information in a vendor managed inventory system for increasing his 

profit by using a Stackelberg game.  

1.6 Quality 

Another issue that must be incorporated into a global supply chain management strategy 

is quality. The rapid growth of globalisation has increased companies’ competitiveness. 

Many companies in the global business environment are facing fierce competition on 

price and quality simultaneously. In order to win in the global business environment, 

competition is shifting from price to quality in many industries in order to achieve high 

customer satisfaction [28]. Thus, a global supply chain planning concerning price and 

quality is needed to be optimised simultaneously in order to help multinational 

enterprises for decision makings in the global business environment. 
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The quality problem of products associating with defects from suppliers or in the 

production process is widely investigated [13, 61, 94]. In 1998, Banker et al. [5] studied 

the impact of various factors on quality in different competitive environments. Xie et al. 

[94] also introduced a model which involves quality of products in competing supply 

chains. Both of them assume that demand is influenced by quality levels of products. 

Franca et al. [27] introduced a method to evaluate the risk of poor quality. Defects are 

minimised to improve the sigma quality level which a simple statistic that puts a given 

defect rate on a “six-sigma” scale. Hsieh and Liu [38] established game models in a 

supply chain consisting of one manufacturer and one supplier, both having imperfect 

production and inspection processes. They investigated the supplier’s and the 

manufacturer’s quality investment and inspection strategies with different degrees of 

information revealed. Perfect and imperfect quality items were considered in an 

integrated production-inventory model by Sana [79]. A cost-effective production and 

distribution system is established to improve response to customers as well as the 

quality of products. 

1.7 Symmetric Quality Information 

Quality issues have been studied intensively for supply chain planning. Most of 

researches assume that quality information is complete. However, it is difficult for 

enterprises to observe complete quality information. From more practical perspective, it 

is important to assume asymmetric information due to different business strategies in 

the global supply chain planning. Bauso et al. [6] dealt with the repeated nonasymmetric 

congestion games in which the players cannot observe their payoffs at each stage. They 

provided a consensus protocol that allows the convergence of the players’ strategies to 
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the Pareto optimal Nash equilibrium. Kyparisis and Koulamas [51] derived sufficient 

conditions for the existence and uniqueness of the Stackelberg-Nash–Cournot 

equilibrium for a supply chain problem with a single manufacturer and multiple 

asymmetric retailers. They assumed that the manufacturer supplies a homogenous 

product to all retailers with the retail price determined by a general nonlinear inverse 

demand function. Lau et al. [52] considered a dominant manufacturer wholesaling a 

product to a retailer, and the retailer sells it to the consumer. They model the general 

supply chain problem by a manufacturer-Stackelberg game under a deterministic and 

asymmetric information framework.  

1.8 Motivation  

The objective of the thesis is to propose an effective coordination approach to resolve 

manufacturing, inventory and purchasing in order to achieve global supply chain 

optimisation. Thus, a game theoretic approach is proposed to coordinate one 

manufacturer and multiple suppliers in global supply chain management. A Stackelberg 

game is applied where the manufacturer is assumed to be a leader. The manufacturer’s 

decision problem with quantity discounts is introduced first. The quantity discount 

problem involving quantity discounts with supplier selection is formulated as a mixed 

integer nonlinear programming problem which is NP-hard. Therefore, an outer 

approximation algorithm with a heuristic is proposed in order to solve the problem 

efficiently. A reformulation of the supply chain planning problem is applied in order to 

reduce the computational time. Next, quantity discounts in a game theoretic model are 

addressed to coordinate supply chain members with uncertain demands. Moreover, a 

game theoretic model with assymetric quality information is proposed.  
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1.9 Structure of This Thesis   

 

Figure 1.1: The structure of the thesis. 

 

In this thesis, game theoretic approaches are introdocued to coordinate one 

manufacturer and multiple suppliers in global supply chain planning under demand 

uncertainty. A Stackelberg game is applied to achieve the coordination between a 

manufacturer and suppliers. The manufacturer is a leader and suppliers are followers. 

The chapters of the thesis are related as shown in Fig. 1.1.  

In Chapter 1, the background of this thesis is stated. A game theoretic approach to 

global supply chain planning problem is addressed. Several critical issues should be 

Chapter 3: OA with a heuristic 

Chapter 4: Reformulation 

Chapter 1: Introduction 

Chapter 2: Preliminaries 

Chapter 7: Concluding remarks 

Manufacturer’s model 

Solution approach 

Chapter 5: quantity discounts  

Chapter 6: asymmetric quality 

Suppliers total profit maximisation 

Leader 
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Manufacturer’s total profit 

maximisation 

Stackelberg Game 

Game theoretic approach 
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involved in global supply chain planning.  

Chapter 2 presents basic theories which are used in the thesis, such as supply chain 

management, game theory, pricing game and outer approximization approach for 

mixted integer nonlinear programming problem. 

In the thesis, a Stackelberg game theoretic model is introduced in global supply chain 

planning where the manufacturer is treated as a leader. Thus, the manufacturer’s 

decision problem with quantity discount contracts under demand uncertainty is 

addressed first. The quantity discount problem under demand uncertainty is formulated 

as a mixed integer nonlinear programming (MINLP) problem. Chapter 3 and Chapter 4 

focus on solution approaches to this manufacturer’s decision model. In Chapter 3, an 

outer approximation (OA) algorithm with a heuristic is proposed to solve the MINLP 

problem. 

In Chapter 4, both of incremental discount and all units discount models are 

considered. The outer approximation method is used to solve the problems. In order to 

reduce the computational complexity, the model is further reformulated into a stochastic 

model by replacing integral terms with expectation formulation. By replacing the 

integral terms, the resulting equivalent deterministic optimisation model is a convex 

programming problem. 

In Chapter 5, a noncooperative game theoretic model involving one manufacturer and 

multiple suppliers is addressed. The noncooperative game model is analysed by a 

Stackelberg game where the manufacturer is a leader and the suppliers as followers. By 

deriving suppliers’ optimal response functions, optimal price discounts are created. 

In Chapter 6, the game theoretic model with the asymmetric quality information is 

introduced. The quality of components is unknown by the manufacturer while it is 
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known by the suppliers. Two scenarios (average case and worst case) are investigated 

for the manufacturer to estimate the quality of components. The coordination problem is 

modelled by a Stackelberg game where the manufacturer is the leader and suppliers are 

followers. 

Finally, concluding remarks of the thesis are given in Chapter 7. 
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Chapter 2 

Preliminaries 

In this thesis, game theoretic models in global supply chain management are addressed. 

Game theoretic approaches are applied to coordinate supply chain members. This 

chapter introduces fundamentals such as supply chain management, game theory, 

pricing game and an outer approximation algorithm for mixed integer nonlinear 

programming problems.  

2.1 Supply Chain Management 

A supply chain is composed of all parties involved, directly or indirectly, in fulfilling a 

customer request. The supply chain includes not only the manufacturer and suppliers, 

but also transporters, warehouses, retailers, and even customers themselves [16]. A 

supply chain involves the constant flow of information, product and funds between 

different stages. Supply chain management encompasses the planning and management 

of all activities involved in sourcing, procurement, conversion, and all logistics 

management activities. Importantly, it includes also coordination and collaboration with 

channel partners, which can be supplier, intermediaries, third-party service providers, 

and customers. Logistics management is a part of supply chain management. Simply, 

supply chain consists of series of activities and organizations through which materials 
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flow on their way from the initial suppliers to final customers. 

  The supply chain system often appears to be quite complex including many functions 

within a firm and many organisations along the supply chain. Fig. 2.1 provides a 

framework of supply chains. The figure shows that there are three major issues which 

need to be considered when supply chain problems are analysed.   

 

Figure 2.1: The supply chain management model. 

 

 The physical flow of goods 

 The information flows and systems which underpin the flow of goods 

 The organizational and management structures which control the supply chain 
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Fig. 2.1 shows that the management and control of the supply chain include 

fragmented control, single firm control and partnerships. The physical flow of goods is 

the process that raw materials are delivered from suppliers to manufacturers. The raw 

materials are used for production, and finished products are stored in the warehouse. 

Finally, the products are sent through retailers to end users. Along the physical flow of 

goods, several information management activities are involved, such as order 

processing, demand forecasting and so on.   

2.2 Game Theory 

Game theory provides a tool to analyse situations involving conflicts and cooperation 

between players. A cooperative game is a game where groups of players ("coalitions") 

may enforce cooperative behavior, hence the game is a competition between coalitions 

of players rather than between individual players. An example is a coordination game, 

when players choose the strategies by a consensus decision making process. A 

noncooperative game is one in which players make decisions independently. The 

noncooperative game is generally divided into Nash and Stackelberg games for dealing 

with simultaneous and sequential non-cooperating decision-making by multiple players 

which are introduced by Kogan and Tapiero [47]. 

2.2.1 Nash game 

A Nash equilibrium is defined as a solution concept of a noncooperative game involving 

two or more players, in which each player is assumed to know the equilibrium strategies 

of the other players, and no player has anything to gain by changing only his own 

strategy unilaterally.  

http://en.wikipedia.org/wiki/Solution_concept
http://en.wikipedia.org/wiki/Non-cooperative_game
http://en.wikipedia.org/w/index.php?title=Equilibrium_strategy&action=edit&redlink=1
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Consider a game, with the strategies Niyi ,...,1,   being feasible actions which N  

players may undertake. All possible strategies of a player i  form a strategy set iY  of 

the player. A payoff (objective function) ),...,,( 21 Ni yyyJ , Ni ,..,1  is evaluated 

when each player i  selects a feasible strategy ii Yy  . Since two-player games can be 

straightforwardly extended to multiple players and to simplify the presentation, we 

further assume that there are only two players A  and B . 

Definition 2.1 

A pair of strategies ( ** , BA yy ) is said to constitute a Nash equilibrium if the following 

pair of inequalities is satisfied for all AA Yy   and BB Yy   

),(),( ***

BAABAA yyJyyJ   and ),(),( ***

BABBAA yyJyyJ  .                    (2.1) 

The definition implies that the Nash solution is 

)],([maxarg **

BAA
Yy

A yyJy
AA

  and )],([maxarg **

BAB
Yy

B yyJy
BB

 ,                (2.2) 

and a unilateral deviation from this solution results in a loss. We assume this problem is 

static, strategy sets are not constrained and the payoff functions are continuously 

differentiable. The first-order (necessary) optimality condition results in the following 

system of two equations in two unknowns *

Ay  and *

By : 

0
),(

*

*





 AA yy

A

BAA

y

yyJ
 and 0

),(
*

*





 BB yy

B

BAB

y

yyJ
.                         (2.3) 

In addition, the second order (sufficient) optimality condition which ensures that we 

maximise the payoffs when 

0
),(

*

*





 AA yy

A

BAA

y

yyJ
 and 0

),(
*

*





 BB yy

B

BAB

y

yyJ
.                        (2.4) 



19 

 

 
 

2. PRELIMINARIES 

 

 

Equivalently, one may determine )],([maxarg)( BAA
Yy

B

R

A yyJyy
AA

  for each 
BB Yy   

to find the optimal response functions )( B

R

AA yyy   of player B  and )( A

R

BB yyy   

of player B , which constitutes a system of two equations in two unknowns.  

2.2.2 Stackelberg game 

Stackelberg strategy is applied when there is an asymmetry in power or in moves of the 

players. As a result, the decision-making is sequential rather than simultaneous as in the 

case of Nash strategy. The player who first announces his strategy is considered to be 

the Stackelberg leader. The follower then chooses his optimal response to the leader’s 

move. The leader thus has an advantage because he is able to optimise his objective 

function subject to the follower’s optimal response. Formally this implies that if, player 

A , for example, is the leader, then )( A

R

BB yyy   is the same optimal response for 

player B  as determined for the Nash equilibrium. Since the leader is aware of this 

response, he then optimises his objective function subject to 

))(()( A

R

B

R

AB

R

AA yyyyyy  . 

Definition 2.2  

In a two-person game with player A  as the leader and player B  as the follower, the 

strategy AA Yy *  is called a Stackelberg equilibrium for the leader if, for all Ay , 

))(,())(,( **

A

R

BAAA

R

BAA yyyJyyyJ  ,                                     (2.5) 

where )( A

R

BB yyy   is the optimal response function of the follower, when the leader’s 

decision is AA Yy  . 

It implies that the leader’s Stackelberg solution is  
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)],([maxarg)( BAA
Yy

B

R

A yyJyy
AA

 .                                      (2.6) 

That is, if the strategy sets are unconstrained and the payoff functions are 

continuously differential, the necessary optimality condition for the leader is 

0
),(

*

*





 AA yy

A

BAA

y

yyJ
.                                               (2.7) 

To make sure that the leader maximises his profits, we check also the second-order 

sufficient optimality condition 

0
),(

*2

*2





 AA yy

A

BAA

y

yyJ
.                                              (2.8) 

2.3 Pricing Game 

Consider a two-echelon supply chain consisting of a single supplier selling a product 

type to a single retailer over a period of time. The supplier has ample capacity and the 

period is longer than the supplier’s lead-time which implies that the supplier is able to 

deliver on time when any quantity q  ordered by the retailer. The retailer faces a 

concave endogenous demand, )( pq , which decreases as product price p  increase, i.e., 

0




p

q
and 0

)(
2

2






p

pq
. The supplier incurs unit production cost c  and sells at unit 

wholesale price w , i.e., the supplier’s margin is cw .  

  Let the retailer’s price per unit be mwp  , where m  is the retailer’s margin. 

Both players, the supplier and the retailer, want to maximise their profits margin times 

demand which are expressed as )()()( mwqcwwJ s   and )()( mwmqpJ r  , 

respectively as shown in Fig. 2.2.  
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Figure 2.2: Vertical pricing competition. 

 

This leads us to the following problems. 

The supplier’s problem 

)()(max),(max mwqcwmwJ
w

s
w

                                    (2.9) 

s.t.  cw  .                                                      (2.10) 

The retailer’s problem 

  )(max),(max mwmqmwJ
m

s
m

                                       (2.11) 

  s.t.  0m ,                                                      (2.12) 

      0)( mwq .                                                 (2.13) 

  Note that from cw  and 0m , it immediately follows that cmwp  . In 

contrary to the vertical competition between the two decision-makers, the supply chain 

may be vertical integrated or centralised. Such a supply chain is characterised by a 

single decision-maker who is in charge of all managerial aspects of the supply chain. 

We then have the following single problem as benchmark. 

The centralised problem 

  )()(max)],(),([max),(max
,,,

mwqcmwwmJwmJwmJ
wm

sr
wmwm

         (2.14) 

  s.t.  0m ,                                                      (2.15) 

Supplier:  

Retailer:  
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      0)( mwq .                                                 (2.16)  

To distinguish between different optimal strategies, we will use the superscript n  

for Nash solutions, s  for Stackelberg solutions and * for centralised solutions. 

 

System-wide optimal solution 

We first study the centralised problem by employing the first-order optimality 

conditions. The first- order optimality conditions are as follows:  

0
)(

)()(
),(











p

pq
cmwmwq

m

wmJ
,                           (2.17) 

0
)(

)()(
),(











p

pq
cmwmwq

w

wmJ
.                           (2.18) 

  Since both equations are identical, only the optimal price matters in the centralised 

problem, *p , while the wholesale price 0w  and the retailer’s margin 0m  can 

be chosen arbitrarily so that wmp * . This is because w  and m  represent internal 

transfers of the supply chain. Thus, the proper notation for the payoff function is )( pJ

rather than ),( wmJ , and only optimality condition is  

0
)(

)()(
*

** 





p

pq
cppq .                                         (2.19) 

  Let 0)( pq  and cP  . Then it is easy to verify that, 

0
)(

)(
)()()(

2

2

2

2





















p

pq
cp

p

pq

p

pq

p

pJ
.                          (2.20) 

  That is, the centralised objective function is strictly concave in price for ],[ Pcp . 

This implies that the equation has a unique solution. 
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2.3.1 Nash equilibrium 

To determine the Nash equilibrium, which corresponds to simultaneous moves of the 

supplier and retailer, we next consider the optimality conditions for the supplier’s 

objective function. It is obtained as  

0
)(

)()(
),(











p

mwq
cwmwq

w

wmJ s .                          (2.21) 

  One can readily verify that the supplier’s objective function is strictly concave in w , 

0
),(

2

2






w

wmJ s and, thus, the supplier’s optimal response function of Eq. (2.21) is 

unique as well. As a result, the Nash equilibrium ),( nn mw  is found by solving the 

following system of equations: 

0
)(

)( 





p

mwq
mmwq ,                                        (2.22) 

0
)(

)()( 





p

mwq
cwmwq .                                    (2.23) 

  Solving the system composed of Eq. (2.22) and Eq. (2.23), we obtain 

0 mcw  and 0
)2(

)2( 





p

mcq
mmcq .                       (2.24) 

  Assuming that the solution 0)(,  PqPmw  cannot be optimal since it leads to 

zero profit for all supply chain members, we conclude with the following result. 

Proposition 2.1 

The pair ),( nn mw , where 
nm  satisfies the following equation 

0
)2(

)2( 





p

mcq
mmcq

n
nn

,                                    (2.25) 

and cmw nn  constitutes a unique Nash equilibrium of the pricing game with 

2
0

cP
mn 

 . 
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2.3.2 Stackelberg equilibrium 

Next we assume that the supplier makes the first move by setting the wholesale price. 

The retailer then decides on what price to set and the quantity to order. To find the 

Stackelberg equilibrium, we need to maximise the supplier’s objective with m  subject 

to the optimal retailer’s response )(wmm R  determined by  

))(()(),( wmwqcwwmJ R

s  .                                     (2.26) 

  Differentiating the supplier’s objective function we have 

0
)()(

)())((
),(















w

wm

p

mwq
cwwmwq

w

wmJ R
Rs ,               (2.27) 

where 
w

wmR



 )(
 is determined by differentiating Eq. (2.26) with m  set equal to 

0)
)(

1(
)()()(

)
)(

1(
)(

)(
2

2






























w

wm

p

pq
m

p

pq

w

wm

w

wm

p

mwq
wm

RRR
R . (2.28)  

Thus, 

2

2

2

2

)()()(

)()(

)(

p

mwq
m

p

mwq

p

mwq

p

mwq
m

p

mwq

w

wmR




























.                     (2.29) 

Eq. (2.29) naturally implies the greater the supplier’s wholesale price w , the lower 

the retailer’s margin m . 

  Based on Eq. (2.27) and Eq. (2.29), we conclude that a pair ),( ss mw constitutes a 

Stackelberg equilibrium of the pricing game if there exists a joint solution in w  and 

m  of the following equations: 

0
)(

)()( 





p

mwq
cwmwq ,                                    (2.30) 

0
)(

)( 





p

mwq
mmwq ,                                        (2.31) 

where we have 
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2

2

2

2

)()()(

)()(

p

mwq
m

p

mwq

p

mwq

p

mwq
m

p

mwq

w

m




























.  

2.4 Mixed Integer Nonlinear Programming (MINLP) 

Mixed Integer Nonlinear Programming (MINLP) refers to the mathematical 

programming with continuous and discrete variables and nonlinearities in the objective 

function or constraints. The use of MINLP is a natural approach of formulating 

problems where it is necessary to simultaneously optimise the system structure 

(discrete) and variables (continuous). 

  The form of a general MINLP is 

min ),( yxf ,                                                     (2.32) 

  s.t. 0),( yxg ,                                                  (2.33) 

     Xx ,                                                      (2.34) 

Yy integer.                                                (2.35)              

The function ),( yxf  is a nonlinear objective function and ),( yxg  is a vector-valued 

nonlinear constraint function. The variables yx,  are decision variables, where x  is a 

real number and y  is an integer value. X  and Y  are bounding-box-type restrictions 

on the variables. 

  MINLP problems are difficult to solve precisely, because they inherit all the 

difficulties of both of mixed integer programs (MIP) and nonlinear programs (NLP): the 

combinatorial nature of mixed integer programs (MIP) and the difficulty in solving 

nonconvex (and even convex) nonlinear programs (NLP), because many MIP and NLP 

become theoretically difficult problems (NP-hard). Thus, it is not surprising that solving 
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MINLP can be a challenging and daring venture. Fortunately, the component structure 

of MIP and NLP within MINLPs provide a collection of natural algorithmic approaches, 

exploiting the structure of each subcomponent.  

2.5 Outer Approximation 

In order to solve MINLP problems, this section will introduce one of well-known 

techniques that is Outer-Approximation (OA), which is used to solve MINLP problems 

widely. Namely, we introduce the OA approach which was developed by Duran and 

Grossmann [22]. The main characteristics of the MINLP problem are linear with respect 

to the integer variables and convex with respect to continuous variables. The general 

MINLP mathematical function can be represented as follow: 

  )(P )(min xfycZ T  ,                                           (2.36)                                                   

  s.t. 0)(  Byxg ,                                             (2.37) 

         nRXx  ,                                               (2.38) 

         mRUy  ,                                              (2.39) 

where the nonlinear function RRf n :  and those in the vector function )(xg  are 

assumed to be differentiable on the compact polyhedral convex set

},:{ 11 axARxxX n  ; ,:{ YyyU  integer, }22 ayA  is a finite discrete set. 

Y corresponds to the unit hypercube mY }1,0{ .
21,, AAB  and 

21,, aac  are 

matrices and vectors of comfortable dimensions, respectively. 
nR  is n -dimensional 

real vectors. mR  is m -dimensional nonnegative real vectors.  

The basic ideas of OA are explained as follows. Because of the linearity with respect 

to discrete variables, the continuous and discrete feasible spaces of program ( P ) can be 
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treated independently. Furthermore, the continuous space corresponds to the intersection 

of a finite number of compact convex regions, where each region is determined by a 

different discrete parameterisation. Hence, linearity with respect to continuous variables 

can be introduced into the problem ( P ) if a polyhedral representation is provided for 

each of those compact convex sets. To achieve this goal, OA of a convex set by 

intersection of its collection of supporting half-spaces can be used. 

Since )(xf  in the objective function is convex, problem )(P  can be rewritten as 

the following program with a linear objective function:  

  )( 0P  ycZ Tmin ,                                              (2.40)                                  

  s.t. 0)( xf ,                                             (2.41) 

  0)(  Byxg ,                                             (2.42) 

      ],[,, UL ffUyXx   .                                   (2.43) 

where   is a scalar variable. Lf  and Uf  are valid finite bounds given by 

}:)(min{ XxxffL  , and }:)(max{ XxxffU  . It is assumed that the following 

suitable form of Slater’s constraint qualification holds: there exists a point Xx  such 

that 0)(  Byxg  for each VUy  , where 0)(:{  ByxgyV for some

Xx }. 

Let )(yF  be a set defined as follows for each VUy   : 

 }0)(,0)(],,[,:,{)(  ByxgxfffXxxyF UL  ,            (2.44) 

We note that )(yF  for each VUy   is a closed convex set. 

From the property of convexity, we have 

   )()()()( iTii xxxfxfxf ,                                (2.45) 

ByxxxgxgByxg iTii  )()()()( .                                  (2.46) 
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Then, the feasible region of the program ( 0P ) can be defined by the following infinite 

set of supporting half-spaces: 









,,0)()()(

,,0)()()(

TiByxxxgxg

Tixxxfxf
iTii

iTii 
                                 (2.47)                                    

where UyffXx UL  ],,[,  . )( ixf  is the n -gradient vector and )( ixg  is 

the pn  jacobian matrix. The half-spaces (2.47) correspond to the approximation of 

the convex set defined by 0)(  xf  and 0)(  Byxg  by the pointwise 

maximum of the collection of their linear supports. 

  Examples of outer approximation at a finite number of points are illustrated in Fig. 

2.3. In Fig. 2.3, ,, 1211 HH and ,, 2221 HH correspond to supporting half-spaces of 1g  

and 2g , respectively, at points 1x  and 2x .  

 

 

Outer approximation of the feasible region of program ( 0P ) is as shown in Eq. (2.47), 

renders linearity in the constraints and objective of function of ( P ). It leads to the 

following semi-infinite mixed-integer programming formulation: 

  )( 1P  ycz Tmin ,                                              (2.48)                                                                                                        

s.t. Tixxxfxf iTii  ,0)()()(  ,                         (2.49) 

 

 
 

 

  

 

 

 

 

 

 

Figure 2.3: Outer-approximation of a convex function in R. 



29 

 

 
 

2. PRELIMINARIES 

 

 

TiByxxxgxg iTii  ,0)()()( ,                        (2.50) 

      UyffXx UL  ],,[,  .                                   (2.51)  

 

Lemma 2.1: When the assumptions with respect to functions and sets in problem ( 0P ) 

hold, problems ( 1P ) and ( 0P ) are equivalent. 

 

Master Program 

The set VU   is discrete and finite. The concept of projection of program ( P ) onto 

the discrete space can be used to identify selected continuous points ix  for 

outer-approximation in problem ( 1P ). The projection of program ( P ) onto y  is given 

by 

}]0)()(:)({inf[min 


yBxgxfycZ T

Xxy
.                            (2.52) 

For given VUyi  , the infimum value function of the “inner” problem in Eq. 

(2.1) is precisely the optimal value of program ( P ) for fixed iy . For each VUyi  , 

the infimum is attained and corresponds to the optimal value )( iyZ  of the nonlinear 

programming subproblem. We have  

  ))(( yS  )(min)( xfycyz iTi  ,                                    (2.53)                        

          s.t.  XxByxg  ,0)( .                                  (2.54) 

It is clear that program ( P ) is not a convex program in x  and y  jointly, but fixing 

y  renders it so in x  for ( )( yS ). Thus, the first observation is that for iy  to be a 

candidate for the optimal solution to problem ( P ), iy  must be such that ( )( iyS ) is 

feasible (i.e., )VUyi  , and then the best continuous point 
ix  associated with iy  

is the optimal solution of the corresponding subproblem ( )( iyS ).  
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Secondly, according to theorems for characterisation of integer polyhedra and linear 

programming theory, the mixed-integer solution to problem ( 1P ) is such that the integer 

part iy  is an extreme point of the convex hull of feasible integer solutions 

)(( VUConv  ), and the continuous part is given by the boundary point ( )(,( ii xfxx  ) 

in the linear support to )(xf  which is represented by Eq. (2.45) associated with y . 

Therefore, as given by projection of program ( P ) onto y -space, the finite set of 

continuous points 
ix  to be considered for outer approximation in problem ( 1P ) are 

actually the optimal solutions of the subproblems ( )( iyS ) defined for the finite number 

of all integer points VUyi  . The master program in its final form is then given by 

the following mixed-integer linear programming program:  

)(M  ycz Tmin ,                                             (2.55)   

s.t. Tixxxfxf iTii  ,0)()()(  ,                         (2.56) 

        TiByxxxgxg iTii  ,0)()()( ,                         (2.57) 

     UyffXx UL  ],,[,  ,                                    (2.58)                                               

where ixiT :{ optimal solution to },...,2,1),( kiyS i  . 

 

Relaxed the master program at iteration k  is 

  )( kM  ycz Tmin ,                                             (2.59)                                                                                                                                                                    

s.t. kyx ),( ,                                              (2.60) 

          UyffXx UL  ],,[,  ,                                  (2.61) 

where   

},,0)()()(

,0)()()({

TTiByxxxgxg

xxxfxf

kiTii

iTiik



 
    

          ixiT :{ optimal solution to },...,2,1),( kiyS i  . 
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Then the outline of the solution algorithm is obtained as follows: 

(i) at iteration k , solve the solved master program ( kM ) that ignores all but some of 

the constraints in ( M ) (i.e., ignores }\{ kTTi ). 

(ii) if the solution to ( kM ) and ( 1, kyx ) does not satisfy certain termination criteria, 

solve the subproblem to ( )( 1kyS ) to determine the continuous point 
1kx  for OA. 

(iii) construct the new relaxed master ( 1kM ) by intersecting the feasible space at 

iteration k  with the set of closed half-spaces associated with 1kx . 

 

Asuume that ( P ) has a finite optimal solution for given ni Rx   by 

}.,0)()()(,0)()()(:,{)( 1RByxxxgxgxxxfxfyxxC iTiiiTiii  

The concerete algorithm for solving )(P  is written as follows: 

Step 1: Set mn RR 0 , lower bound 0Z , upper bound 1,*  iZ . 

Select an integer combination Uy , or VUyi   if available. 

Step 2: Solve the iy - paramterised NLP subproblem ( )( iyS ) 

)(min)( xfycyZ iTi  , 

s.t.   XxByxg  ,0)( . 

One of the following cases occurs: 

a) Problem ( )( iyS ) has a finite optimal solution ( ))(,( ii yZx ) where )( iyZ  is valid 

upper bound on the optimal value of MINLP problem ( P ). In this case, update the 

current upper bound: )}(,min{ ** iyZZZ  . If )(* iyZZ  , set ii xxyy  ** , . Set 

)(1 iii xC , and go to Step 3. 

b) Problem ( )( iyS ) is infeasible (i.e., iy  not included in V ). In this case, go to Step 

3. 

Step 3: Solve the current relaxed MILP master program ( iM ) 
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 ycZ Ti min ,                                                                                          

s.t.  iyx ),( , 

      *1 ZycZ Ti   , 

      1,, RUyXx   , 

y ( set of integer cuts ). 

One of the following cases occurs: 

a) Problem ( iM ) does not have a mixed-integer feasible solution. In this case, stop. 

b) Problem ( iM ) has a finite optimal solution ii ZyxZ ),,,(  is an element in the 

monotonic sequence of lower bounds on the optimal value of the MINLP program ( P ); 

y is a new integer combination to be tested in the algorithm. In this case, set yyi 1  

and 1 ii  to indicate a new iteration, and return to Step 2. 

  The above iterative procedure indicates that algoritm consists of solving an 

alternating sequence of nonlinear programming subproblems ( )(yS ) and relaxed mixed 

integer linear master program ( ). It should be noted that if all the functions in 

problem )(P  are linear, the relaxed master program at the first iteration would be 

identical to the orginal problem, and hence the above algorithm converge in a finite 

number of steps to the optimal solution of problem )(P . In general, the algorithm 

consists of solving an alternating sequence of problems: 

(1) nonlinear programming subproblem ( )(yS ). 

(2) relaxed mixed integer linear master programs ( iM ). 

 

 

 

 

iM
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Chapter 3  

Supply Chain Optimisation with Quantity 

Discount Policy under Demand Uncertainty 

3.1 Introduction 

Nowadays, the application of supply chain management is widely used in the field. 

Supply chain management is defined as an effective and efficient planning strategy 

including a series of activities such as production, distribution, sales and so on. By 

information sharing, inventory reduction can be achieved. Meanwhile, delivering goods 

with the minimum cost by the minimum lead time is one of important strategies in 

supply chain management. The key to the success of supply chain management is to 

build rational mathematical models and develop an efficient algorithm [69, 85]. With 

the development of algorithms, more complicated models of large scale problems 

including nonlinear objective functions and constraints can be solved [29, 33]. For 

instance, most of the conventional models assume that the demand is deterministic. 

However, it is not practical because demand always fluctuates in the real market. Thus, 

it is common to assume that the demand follows standard a normal distribution [35, 46].  

It is necessary to investigate quantity discount models in supply chain planning in 

order to coordinate supply chain members. For practical manufacturing systems, it is 
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important to consider long term planning such as yearly strategic planning in order to 

set the schedule for contract numbers, production planning and inventory planning. 

Based on this planning, the midterm planning is determined. In this chapter, a quantity 

discount model with the supplier selection for the long term planning is considered. 

Additionally, production, inventory and supplier selecton are determined 

simultaneously. Quantity discount is regarded as a pricing strategy between 

manufacturers and suppliers where prices can be discounted according to purchasing 

quantities. By quantity discounts, purchasing quantities are increased for suppliers, and 

the total cost can be reduced. The quantity discount problem is formulated as an MINLP. 

The objective of this chapter is to propose an efficient algorithm to solve the problem. 

In general, supplier selection problems are divided into single sourcing models and 

multiple sourcing models. Quantity discounts are generally divided into incremental 

quantity discounts and all-units discounts. The unit purchasing prices are constant in 

incremental discount models if order quantities are in the same quantity interval. 

However, the discount rate for each unit purchased is based on the order quantity in 

all-units discounts. In other words, if the order quantity increases, the unit purchasing 

price decreases in all-units discount models.  

  The rest of the chapter is organised by the following sections. Section 3.2 describes 

literature review for related works. In Section 3.3, the quantity discount model proposed 

by Zhang and Ma [104] is intrdouced. An outer approximation method is applied to 

solve the problem efficiently in Section 3.4. Computational experiments are 

demonstrated in Section 3.5. Section 3.6 summarises the chapter and states the future 

research. 
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3.2 Literature Review     

Supplier selection and quantity discount problems for supply chain optimisation are 

widely studied by many researchers. Liao et al. [59] proposed supplier selection 

problem where the demand follows a standard normal distribution which is solved by a 

genetic algorithm. 

  There is a number of works which have been done to consider quantity discounts. 

Burke et al. [9] investigated quantity discounts in the centralised purchasing 

organization. Benton [8] proposed heuristic approaches to solve quantity discounts 

considering multiple products and resource capacities. Li and Liu [57] demonstrated the 

availability of quantity discount models with uncertain demands. Crama et al. [18] 

presented a nonlinear mixed integer programming model for the optimal procurement 

with total quantity discounts and its linearisation technique. Shi et al. [82] proposed a 

quantity discount model to consider the buyer’s risk with uncertain demands for supply 

chain planning. Wang [89] considered quantity discount policies as coordination 

mechanisms in a decentralised distribution system. Discount policies based on the 

buyers’ individual lot size and the annual volume in a general setting with 

heterogeneous buyers and the price-sensitive demand are developed. In the chapter, the 

quantity discount problem under demand uncertainty which is formulated as a mixed 

integer nonlinear programming problem is addressed.  

  The quantity discount supply chain optimization problem is mathematically 

formulated as a mixed integer nonlinear optimization problem (MINLP) [19]. The 

optimisation approaches to mixed integer nonlinear programming (MINLP) problems 

have been investigated for many years. A general decomposition approach to mixed 

integer linear programming problems was introduced by Benders’ decomposition [7]. 
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For Benders’ decomposition technique, decision variables are partitioned into 

continuous and binary variables. The dual problem of the inner linear programming 

problem for fixed feasible integer variables is solved to obtain the upper bound. The 

lower bound is derived by solving the relaxed master problem with the fixed feasible 

dual variables. Geoffrion [30] expanded the methodology into general MINLPs. 

Afterwards, Duran and Grossmann [22] developed an outer approximation algorithm for 

a class of MINLP problems. Linearity of the integer (or discrete) variables, and 

convexity of the nonlinear functions involving continuous variables are the main 

features of MINLPs. The outer approximation scheme for solving a class of MINLPs is 

defined by a finite sequence of relaxed MILP master programs and NLP subproblems. 

Theoretically, the convergence of the algorithm can be ensured by the finite steps. 

However, the size of problems effects the computational time to obtain exact solutions. 

Thus, it is difficult to solve quantity discount models including supplier selection by the 

conventional approach due to the large size of the problem. In this chapter, an outer 

approximation algorithm is proposed to solve the problem. The master problem is 

formulated by fixing discrete variables. The upper bound is derived by solving the 

master problem using the linearisation and heuristics. The lower bound is derived by 

solving the relaxed master problem. The effectiveness of the proposed method can be 

confirmed by computational results. 

3.3 Supply Chain Planning Model 

In this section, the supply chain planning problem with quantity discounts under 

demand uncertainty is introduced. Nomenclatures for the model are used for both of 
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Chapter 3 and Chapter 4. 

3.3.1 Nomenclature  

Indices: 

i : types of raw materials 

j : number of suppliers 

k : types of finished products 

l : discount intervals 

Parameters: 

ka : estimated opportunity loss cost for under stocking of one unit of product k  

kb : estimated inventory holding cost for over stocking of one unit of product k  

ijlc : unit prices of raw material i  purchased from supplier j  at interval l 

S

ijld : lower bound of quantity of raw material i  from supplier j  at interval l 

H

ijld : upper bound of quantity of raw material i  from supplier j  at interval l 

ke : unit production cost for product k  

)( kzf : probability density function where kz  is a random demand obeying a normal 

distribution 

ikg : number of units of raw material i  required to produce one unit of product k  

jL : number of intervals of discounts for supplier j  

jm : management cost associated with supplier j  

ijn : amount of internal resource for supplier j  required to produce one unit raw 
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material i  

Q : resource capacity of the manufacturer 

jq : resource capacity of supplier j  

kr : unit sales revenue for product k  

N : maximum number of suppliers 

kt : resource required by the manufacturer to produce one unit of product k  

kz : random demand for product k  

kẑ : mean value of random demand for product k  

k : deviation of random demand for product k  

)( kk zOP : overproduction cost function for product k  

)( kk zSH : shortfall cost function for product k  

H

jlV : lower bound of interval l for the total volume for supplier j   

S

jlV : upper bound of interval l for the total volume for supplier j  

)( kk zUC : undesirable cost function due to the shortfall and the overproduction for 

product k   

jl : all-units discount rate at interval l for supplier j  

Decision variables: 

ijlu : binary variable which takes 1 if raw material i  is purchased from supplier j at 

interval l , and 0 otherwise. 

ijv : binary variable which takes 1 if the manufacturer buys raw material i  from 

supplier j , and 0 otherwise. 

jw : binary variable which takes 1 if supplier j  is chosen for any purchased raw 
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material, and 0 otherwise.   

ijlx : quantity of raw material i  purchased from supplier j  at discount interval l  

ky : production quantity of product k during the planning horizon 

3.3.2 Problem description  

The mathematical model of the supply chain planning problem was formulated by 

Zhang and Ma [104]. It considers a single-period supply chain planning problem for 

multiple suppliers and one manufacturer. The supply chain planning problem in Fig. 3.1 

describes that supplier ),..,1( Jjj   is selected to provide raw materials ),..,1( Iii  , 

then through one manufacturer to produce different kinds of products ),..,1(  Kkk  . 

The demand for finished products is uncertain but it is assumed that the probability 

distribution is known. The market demands are independent for each product. Suppliers 

determine price which depend on the quantity for each order. The problem is to find the 

optimal production level for the manufacturer, the quantity of raw materials purchased 

from suppliers, and the price of raw materials which is paid by the manufacturer in 

order to maximise the expected profit subject to both the manufacturer and supplier’s 

capacities. 

3.3.3 Quantity discount model 

Quantity discount is described as a mechanism that the purchasing prices depend on the 

quantity. Generally, the following two types of quantity discounts are commonly 

applied: 

i. Incremental discount: the price is decided by the discount interval of purchasing 
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quantity ijx  of raw material   from supplier   given by ],[ ijij dUdL . ijdL  and   

 

Figure 3.1: Supply chain network model. 

 

ijdU  are the minimum and maximum purchasing quantity in the discount interval. 

With the increase of purchasing quantity, the unit purchasing cost )( ijxP  is 

chosen according to the discount interval. 

ii. All units discount: if the total purchasing quantity 
i

ijx  of raw material i  

from supplier j  is more than certain amounts, the total purchasing cost 


i

ijxP )(  is discounted by the corresponding discount interval. 

In this chapter, the incremental discount policy is applied.  

3.3.4 Modelling 

In this chapter, the total supply chain is considered from the manufacturer’s perspective. 

The decision variables include the purchasing quantity of raw materials, production, 

supplier selection variables and quantity discount related variables. The constraints 

 

 

Supplier 1 

Supplier  

Raw material 1 

Raw material  

Manufacturer 

Product 1 

Product  
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consist of the required resources for production, resource capacities for suppliers, 

quantity discounts and the supplier selection.  

  The objective function is the maximisation problem which considers the sales 

revenue, the inventory cost, the opportunity cost, the opportunity cost, the purchasing 

cost and the production cost. In the model, we consider one manufacturer which 

purchases different types of raw material ),..,1( Iii   within discount interval 

),...,1( Lll   from the supplier ),..,1( Jjj   in order to produce product 

),..,1( Kkk   under demand uncertainty. 

The quantity discount supply chain planning problem is formulated as the following 

mixed integer nonlinear programming (MINLP) problem: 

.

})()]([)()]([{max

111 1 1

1
0

j

J

j
j

K

k
kk

I

i

J

j

L

l
ijlijl

y kkkkkkkkkkkk

K

k

y

kk

wmyexc

dzzfyzazrdzzfzybzr

j

k

k

  

  

  




        (3.1)                                                                                  

Eq. (3.1) represents the expected sales revenue which is minus to the inventory cost and 

the opportunity loss cost, the purchasing cost, the production cost and the supplier 

management cost. Actually, the negative value of demand should be considered in the 

expectation of Eq. (3.1). In real life situations, the demand is always positive. Therefore, 

the truncated normal distribution with positive demand is considered in the objective 

function. Thus, it is an approximation of the true maximum expected profit. 

The constraints are as follows: 

 Required raw materials: the amount of raw materials is required in order to satisfy 

production, 

 
  


K

k

J

j

L

l

ijlkik ixyg
j

1 1 1

, .                                            (3.2)  
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 Capacity constraints: the production and purchasing quantity should satisfy the 

resource capacity for factories and suppliers, 

 Qyt
K

k

kk 
1

,                                                     (3.3)                                                                                                                                                                         

    
 


I

i

jj

L

l

ijlij jwqxn
j

1 1

, .                                             (3.4) 

 Quantity discount related constraints: purchasing quantity cannot exceed the 

corresponding upper bound and lower bound of the discount interval,  

 ljiudx ijl

H

ijlijl  ,,, ,                                              (3.5)                                                                                                                                                    

   ljiudx ijl

S

ijlijl  ,,, ,                                              (3.6)                                                                                                         

   jivu
jL

l

ijijl 
1

,, .                                                 (3.7) 

 Management cost constraints: management cost occurs if the supplier is contracted 

by the manufacturer, 

jivw ijj  ,, .                                                  (3.8)  

 Nonnegative and binary variable constraint: 

ljiwvuyx jijijlkijl  ,,},1,0{,,,0, .                                (3.9) 

 Single source model: only one supplier is allowed to choose if one type of raw 

materials is purchased,  

iv
J

j

ij 


,1
1

.                                                    (3.10)   
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 Multiple sources model: the maximum number N  of supplier can be chosen if one 

type of raw materials is purchased, 





J

j

ij iNv
1

, .                                                  (3.11)    

3.4 Solution Approach 

3.4.1 Conventional approach 

It is known that there is difficulty in solving the formulated MINLPs. It is impossible to 

apply the current solver to the MINLP with integral terms. Zhang and Ma [104] 

proposed an approach by using the external nonlinear programming problem (NLP) 

solver function combined with the standard branch and bound algorithm. At each node 

of the search tree, the relaxed problem is an NLP model which is solved by the 

commercial NLP solver (CONPT, NINOS, SNOPT). However, it is difficult to obtain 

exact solutions within a reasonable time by using the branch and bound algorithm. Thus, 

an outer approximation method is proposed to solve the problem. 

3.4.2 Outer approximation method 

The main characteristics of the following MINLP problem )( 1P  include the linearity of 

integers or discrete variables and the convexity of the nonlinear function involving 

continuous variables: 

  )( 1P   ))((min xfycT  ,                                           (3.12)                                                             

  s.t. 0)(  Byxg ,                                           (3.13)                         
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,}1,0{},|{ nn yRxxXx                            (3.14)                   

where x  is a continuous variable of n  dimensional vector and y  is a binary 

variable of N  dimensional vector. X  is a nonempty, compact and convex set and the 

functions f  and g  are convex in x . f  and g  are once continuously 

differentiable. 

Fixing y  variables to a 0-1 combination, which is denoted as hy , the problem is 

formulated as    

)( 2P   ))((min xfycT  ,                                          (3.15)                                                                             

  s.t. 0)(  hByxg ,                                        (3.16)                                                                                      

  Xx .                                                    (3.17)                                                     

The upper bound is obtained from the solution of the primal problem if the problem is 

feasible. It is obvious that program )( 1P  is not a convex program in x  and y  jointly, 

but fixing y  renders it so in x  for program )( 2P . Therefore, hy  can be a candidate 

for the optimal solution to the problem )( 1P . Therefore, the problem )( 2P  is 

equivalent to the following minimisation problem )( 3P  over x  and y  variables 

separately: 

 )( 3P   ))((minmin xfyc hT

y
x h

 ,                                             (3.18)                                                                                       

 s.t.     0)(  hByxg ,                                          (3.19)                                                                                                                                          

NyXx }1,0{,  .                                     (3.20)                                                                                                                                      

  The projection of the problem in the space of y  variables further enables )( 3P  to 

be written in the following form, which is the relaxed master problem )( 4P : 

)( 4P   )))(()((minmin hhhhT

yx
xxxfxfyc

h
 ,                        (3.21)                                                                                                                               

s.t.    (3.19), (3.20), 
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Byxxxgxg hhh  ))(()(0 .                         (3.22)                                                                                                

  Adding cuts, the problem can be written as follows: 

 )( 5P   )(m i nm i n OA

hT

yx
yc

h
 ,                                        (3.23)     

s.t.     (3.19), (3.20), (3.22),                                                                                                                

 ))(()( hhh

OA xxxfxf  ,                          (3.24)                                                                                                                                      

    
 


h hBi NBi

hh

i

h

i BhByy ,1|| ,                       (3.25) 

where }0|{},1|{  h

i

hh

i

h yiNByiB .                                                                                                                                                       

The basic idea of the outer approximation is similar to the one in generalised Benders 

decomposition that an upper bound and a lower bound are derived on the MINLP 

solution at each iteration. The upper bound is obtained from the solution of the primal 

problems with fixed y  variables ( hyy  ), while the lower bound is obtained from the 

solution of the master problem. The master problem is solved with the fixed hx  of the 

primal solution. The lower bound is derived based on an outer approximation of the 

nonlinear objective function and constraints around hx . The solution of the master 

problem provides information on the next fixed 1hy . 

3.4.3 Primal problem 

The primal with fixing 0-1 binary variables 
T

jijijl wvuy }]{},{},[{ to 

Th

j

h

ijl

h

ijl

h wvuy }]{},{},[{  yields the following optimisation problem:  

,
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11 1 1
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     (3.26)                                                                           
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s.t.  (3.2), (3.3), 

        
 

I

i

L

l

h

jjijlij

j

jwqxn
1 1

, ,                                         (3.27)  

 ljiudx h

ijl

H

ijlijl  ,,, ,                                           (3.28)                                                                                                                                                                       

 ljiudx h

ijl

S

ijlijl  ,,, ,                                          (3.29)                                         

 lkjiyx kijl  ,,,,0, .                                        (3.30) 

By taking the first partial derivative with respective to ky , we obtain 

)()()( kkkkkkk

k

yFbarear
y

L





,                              (3.31) 

where L is the Lagrange function of Eq. (3.26). )( kyF  is a cumulative density 

function. From the condition 0)()(
)(2





kkkk

k

k yfbar
y

yL
, the objective function 

is convex. The primal problem is a nonlinear optimisation problem with equality and 

inequality constraints. The problem can be solved exactly by a sequential quadratic 

programming (SQP) technique.  

3.4.4 Master problem 

The outer approximation can be obtained by the intersection of a finite set of supporting 

functions. The following master problem can be written by using solutions obtained in 

the previous section which is derived by the linearisation technique: 

)(min
1 1 1 1

  
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j
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jjijlijlOA

j

wmxc ,                                   (3.32)       

s.t.  (3.2) - (3.11), (3.28), (3.29),  
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The master problem is to determine the binary variable configuration with the outer 

approximation of the objective function with the linear supporting function, which can 

be solved by a commercial MILP solver. 

3.5 Algorithm 

The decomposition algorithm consists of the master subproblem to derive a lower 

bound, and the primal problem with a fixed y  to derive an upper bound. The 

optimisation algorithm is described as follows: 

Step 0 (Initialisation of parameters) Define the maximum number of iterations 
maxH .      

Initialise the continuous variables kijl yx ,  and binary variables jijijl wvu ,, . Define the 

tolerance parameter   for evaluating convergence. Set the iteration number 1H . 

Step 1 (Primal problem) Solve the primal problem for 
1 h

kk yy . The optimal solution   

ky  is obtained by solving the primal problem optimally. If this problem is feasible, 

store the optimal solution for the primal problem. Update the upper bound. 

Step 2 (Relaxed master problem) Formulate the master problem using the current 

solution of the primal problem derived at Step 1. The linearisation of objective function 
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around 
h

ky  is executed. The mixed integer linear programming problem is solved. 

Select the lower bound, and also select corresponding value of y  as 
min

ky . Set 

min1

k

H

k yy 
. 

Step 3 (Check for convergence) If UBLB  or 
maxHH  , then the algorithm is 

terminated. Otherwise 1 HH , and return to Step 1.  

3.6 Heuristics 

SQP is an iterative method applied to solve the NLP with inequality constraints. If the 

size of problem increases, the computational time will also increase. In this section, a 

heuristic approach is applied to production decision. The nonlinear term results in the 

increased computational time in the model. Thus, the heuristic approach is utilised to 

determine variables in the nonlinear term in order to reduce computational time. By 

taking the first partial derivative with respect to ky , we obtain 

0)()()(  kkkkkkk yFbarear .                               (3.35) 

The solution 
*

ky  of Eq. (3.35) is an infeasible solution of the orginal problem if it 

cannot satisfy the capacity constraint. If the production decreases, the opportunity loss 

costs may occur. If the purchasing quantity is increased, the total profit decreases. Thus, 

the feasible solution should be obtained by minimising the increase of the objective 

function, while the production is adjusted by increasing the purchasing costs. Let 
'

ky  

denote the difference of 
*

ky . We can formulate the problem as follows: 

)( 1HP     
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' )(min ,                                  (3.36) 

s.t. (3.27) - (3.30), 



49 

 

 
 

3. SUPPLY CHAIN OPTIMISATION 

 

 

  
  

K

k

J

j

L

l
ijlkkik ixyyg

j

1 1 1

'* ,)( ,                             (3.37) 





K

k

kkk Qyyt
1

'* )( .                                      (3.38) 

where M  is a large positive number. The problem is formulated as a linear problem. 

Therefore, it can be solved by the simplex method easily. If feasible solutions exist, we 

obtain the upper bound by solving the primal problem. However, if they are not optimal 

solutions by fixing 0-1variables, they cannot be treated as feasible updated solutions by 

OA. Thus, the following problem is formulated by using the fixed ky  which is 

obtained from the primal problem: 

)( 2HP   )(min
1 1 1 1
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s.t. (3.4) - (3.9), (3.11), 

  
  

K

k

J

j

L

l
ijl

h

kik ixyg
j

1 1 1

, ,                                  (3.40) 

where ijijlijl vux ,,  and jw  are determined by )( 2HP . If the feasible solution of )( 2HP  

exist, we obtain the upper bound by solving the primal problem. The algorithm for 

solving the primal problem by heuristics is as follows: 

Step 0 The optimal 
*

ky  is obtained by solving Eq. (3.35). 

Step 1 Solve )( 1HP . If a feasible solution exists, the solution is stored. The upper bound 

is obtained, and go to Step 2. If a feasible solution does not exist, go to Step 3. 

Step 2 Solve )( 2HP  by fixing ky . If no feasible solution exists, compare it with the 

solution obtained at Step 1. Then, choose the better one.  

Step 3 Solve the relaxed primal problem.  
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3.7 Computational Experiments 

The model is solved by OA. The Intel Pentium 4 3.4 GHz and 1GB memory computer 

is used. The primal problem is solved by the fmincon function in Matlab ver7.4.0.287 

(R2007a) optimisation toolbox. The relaxed problem is solved by CPLEX MATLAB 

interface (CPLEXINT) integrating CPLEX 10.1 and MATLAB functions. 

3.7.1 Illustrative examples 

In order to demonstrate the performance of the proposed method, two types of examples 

are conducted by using the incremental discount model. We set two examples to 

demonstrate that the proposed method can solve relatively larger scale problem 

instances in example 2 efficiently. In example 1, there are 2 products, 5 raw materials, 4 

suppliers, and 2 incremental discount intervals. In example 2, there are 5 products, 5 

components, 5 suppliers, and 3 incremental discount intervals. The parameters for the 

experiments are generated randomly in the range shown in Table 3.1 and Table 3.2. The 

parameter setting is based on the data provided by Zhang and Ma [104]. The update 

time of the upper bound cannot exceed 10 and the duality gap is less than 1%, and the 

update time of the lower bound is 1000.  

3.7.2 Results and discussion 

Five cases of instances are generated and solved by the proposed method. The results 

are shown in Table 3.3 and Table 3.4, respectively. LBD, UBD, Time and Iter. indicate 

the lower bound, the upper bound, the computation time [sec.] and the number of  
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Table 3.1: Parameters for example problems (case 1). 

kr  500-750 ke  120-135 ikg  0-1 

kt  79.5-80.5 
ijn  0.75-1.25 kb  100-170 

k  25.1-25.2 
jm  100-150 Q  3200 

2

k  3.7-4.0 
jq  35-45 ka  10-12 

S

ijld  0.001,10.000 H

ijld  10,100 
ijlc  14-40 

 

Table 3.2: Parameters for example problems (case 2). 

kr  150-250 ke  23-40 ikg  1-4 

kt  1-3 
ijn  1-3 kb  10-100 

k  160-200 
jm  350 Q  2000 

2

k  60-80 
jq  450-550 ka  50-150 

S

ijld  0.001,10.000 H

ijld  1000,10000 
ijlc  5-17 

 

iterations, respectively. DGAP is the duality gap that DGAP = (UBD-LBD)/LBD 100 

[%]. The results demonstrate that the proposed method can derive near-optimal 

solutions for problem instances. From the results, we can observe that the computational 

time increase significantly as the size of the problem increases. This is because the 

direct integral computation is used for the optimisation of primal problem. The direct 

integral computation increases the number of iterations. It takes 40 seconds to solve the 

primal problem and less than 1 second to solve the relaxed problem in Case 1. Thus, we 

can say that it requires more time to solve primal problems in order to obtain optimal 
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solutions. It takes more than 300 seconds to solve the primal problem in Case 2. The 

reason is that the size of problem is increased in Case 2.  

Table 3.3: Computational results for case 1. 

Instance LBD UBD DGAP[%] Time[s] Iteration 

1 1.95 × 10
4
 1.95 × 10

4
 0.00225 113.0 20 

2 2.14 × 10
4
 2.14 × 10

4
 0.00575 90.1 20 

3 1.75 × 10
4
 1.75 × 10

4
 0.00608 99.7 20 

4 1.99 × 10
4
 1.99 × 10

4
 0.0563 111.0 20 

5 2.04 × 10
4
 2.05 × 10

4
 0.0677 94.6 20 

 

Table 3.4: Computational results for case 2. 

Instance LBD UBD DGAP[%] Time[s] Iteration 

1 2.68 × 10
4
 2.70 × 10

4
 1.00 1.08 × 10

4
 630 

2 2.88 × 10
4
 2.88 × 10

4
 0.00491 1.09 × 10

3
 40 

3 2.88 × 10
4
 2.89 × 10

4
 0.468 9.02 × 10

2
 30 

4 2.93 × 10
4
 2.95 × 10

4
 0.781 5.95 × 10

3
 330 

5 2.92 × 10
4
 2.93 × 10

4
 0.322 7.78 × 10

2
 30 

3.7.3 Performance evaluation  

In this section, we compare three methods which are OA-SQP, OA combined with 

heuristics and Zhang and Ma’s method (optimal) for Case 3. Case 3 consists of 5 raw 

materials, 4 suppliers, 2 products and 2 discount intervals. The computational 

environment is the same as the previous section. The result is shown in Table 3.5. From 

the result, the lower bound and the upper bound are the same for SQP method. And, the 

computational time is 87.4 seconds. Thus, we can conclude that the OA method is 

effective to solve the problem. It takes 60 seconds to obtain the exact solutions by 

Zhang and Ma’s method and the SQP method for small size problems. However, the 

time will increase significantly by exact algorithms when the size of problems is large. 
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It only takes less than 2 seconds to obtain solutions by OA combined with a heuristic. 

However, the duality gap is worse. For the small size problems, the difference between 

the lower bound and the upper bound does not change even if more computational time 

is given by OA-Heuristic. Thus, it is more efficient to use the exact algorithm to handle 

small size problems. 

Table 3.5: Computational results for case 3. 

Method LBD UBD DGAP[%] Time[s] Iteration 

Optimal 4.77 × 10
3
 - - 60 - 

OA-SQP 4.77 × 10
3
 4.77 × 10

3
 0 87.4 30 

OA-Heuristic 4.34 × 10
3
 5.04 × 10

3
 8.91 1.50 40 

3.7.4 Computational results for large scale problems 

In this section, computational examples for large scale problems are conducted. In case 

4, there are 20 raw materials, 12 suppliers, 10 products and 2 discount intervals. The 

parameter setting is shown in Table 3.6. We compare OA-Heuristic and OA-SQP for 5 

cases. And, the results are shown in Table 3.7 and Table 3.8. We set that the update 

time of the lower bound is less than 5, the duality gap is less than 1% and the update 

time of the upper bound is less than 100. From Table 3.7, it takes about 988 seconds to 

obtain solutions by 19.5% duality gap using OA-Heuristic. The convergence could not 

be confirmed within 2000 seconds by using OA-SQP. From Table 3.8, it needs 22800 

seconds to solve primal problem in case 1. Thus, we conclude that it is effective to 

handle large scale problems by using OA-Heuristic.  
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Table 3.6: Parameters for example problems (case 4). 

kr  150-300 ke  24-55 ikg  0-4 

kt  1-3 
ijn  0-3 kb  10-100 

k  120-330 
jm  350 Q  3200 

2

k  40-100 
jq  2500-12500 ka  50-190 

S

ijld  0.001,10 H

ijld  10,100 
ijlc  2-17 

Table 3.7: Computational results of OA-Heuristic for case 4. 

Instance LBD UBD DGAP[%] Time[s] Iteration 

1 1.58 × 10
5
 1.83 × 10

5
 13.8 1.24 × 10

3
 76 

2 1.84 × 10
5
 2.38 × 10

5
 22.5 1.14 × 10

3
 81 

3 1.40 × 10
5
 1.72 × 10

5
 18.4 9.54 × 10

2
 60 

4 1.51 × 10
5
 1.83 × 10

5
 17.5 7.33 × 10

2
 51 

5 1.18 × 10
5
 1.57 × 10

5
 25.2 8.69 × 10

2
 55 

Table 3.8: Computational results of OA-SQP for case 4. 

Instance LBD UBD DGAP[%] Time[s] Iteration 

1 8.99 × 10
4
 2.10 × 10

5
 - 2.28 × 10

4
 1 

2 1.31 × 10
4
 2.39 × 10

5
 - 2.26 × 10

4
 1 

3 7.95 × 10
4
 2.06 × 10

5
 - 2.30 × 10

4
 1 

4 8.26 × 10
4
 2.16 × 10

5
 - 2.29 × 10

4
 1 

5 4.91 × 10
4
 1.69 × 10

5
 -   2.30 × 10

4
 1 

3.8 Summary 

In this chapter, a solution approach to a quantity discount model in supply chain 

planning with uncertain demand is developed. An outer approximation algorithm with a 

heuristic is proposed to solve the problem. The master problem is formulated by fixing 

discrete variables. The upper bound is derived by solving the master problem using the 

linearisation and heuristics. The lower bound is derived by solving the relaxed master 
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problem. The effectiveness of the proposed method is confirmed by computational 

results. 
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Chapter 4 

A Reformulation of Supply Chain Planning 

Problems under Demand Uncertainty  

4.1 Introduction 

Supply chain optimisation ensures efficient operations that consist of purchasing, 

manufacturing and all logistics activities function optimally. Quantity discount is a price 

reduction strategy offered by suppliers to buyers who purchase a large number of 

products at once. The application of quantity discounts contributes to reducing the 

buyer’s costs and the total profits [54, 57, 65]. Generally, quantity discounts are divided 

into incremental quantity discounts and all-units discounts. The unit purchasing prices 

are constant in incremental discount models if order quantities are in the same quantity 

interval. However, the discount rate for each unit purchased is based on the order 

quantity for all-units discounts. In other words, if the order quantity increases, the unit 

purchasing price decreases in all-units discount models.  

In this chapter, quantity discount problems under demand uncertainty are addressed. 

The mathematical model for the incremental discount model introduced in Chapter 3 is 

used in this chapter as well. The problem is formulated as a mixted integer nonlinear 

programming problem including integral terms. In Chapter 3, an outer approximization 
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algorithm with a heuristic is proposed to solve the problem. In Chapter 4, an exact 

algorithm is applied to solve the problem. The model includes integral terms due to the 

uncertain demand. It requires huge computational efforts to handle the integration of 

multivariate probability functions. Therefore, the stochastic model is reformulated by a 

normalisation technique into an equivalent deterministic form to reduce the 

computational time. Furthermore, the models are extended to consider both of 

incremental discounts and all-units discounts.  

The main contribution of this chapter is to reformulate supply chain planning 

problems with quantity discounts under demand uncertainty which is formulated as a 

MINLP with integral terms. The model is reformulated by using a normalisation 

technique in order to improve efficiency of the algorithm. The supply chain planning 

problem is formulated as a stochastic model due to demand uncertainty. It is assumed 

that the uncertain demand obeys a standard normal distribution. Thus, the standardised 

normal form is used to represent the stochastic model by an equivalent deterministic 

form.   

The rest of the chapter is organised by the following sections. Section 4.2 describes 

the literature review for related works. In Section 4.3, the incremental discount model is 

defined, which is formulated as a mixed integer nonlinear programming problem. An 

outer approximation method is applied to solve the problem efficiently. The 

normalisation technique is also used to reduce the computational efforts in Section 4.4. 

The all-units discount model is explained in Section 4.5. Computational experiments are 

demonstrated in Section 4.6. Section 4.7 summarises the chapter. 
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4.2 Literature Review 

Considerable efforts have been made for supplier selection problems with price discount 

models. Supplier selection problems can be broadly classified into single sourcing 

models and multi-sourcing models [1]. While purchasing a range of products, the 

quantity discount is considered for single item and multiple items models. There are two 

main streams of the discount structure: quantity discounts and volume discounts. For 

quantity discount, sales of volume of products do not affect prices and the discount of 

other products. For volume discount, the discount depends on total amount of sales 

volume but not the quantity or variety of purchased products. Quantity discounts are 

generally divided into incremental discounts and all-units discounts. Both of 

incremental discounts and all-units discounts in the supply chain optimisation model 

considering multi-sourcing are introduced in this chapter. 

Kim et al. [46] presented a mathematical model taking into account the selection of 

suppliers, decision of ordering products under demand uncertainty with the given 

capacity limits of suppliers and manufacturers. They developed an iterative algorithm to 

solve the model using Karush Kuhn Tucker (KKT) condition. Zhang and Ma [104] 

extended their work to consider the quantity discount and fixed costs. They provided a 

solution approach using the external nonlinear programming problem (NLP) solver 

function combined with the standard branch and bound algorithm. At each node of the 

search tree, the relaxed problem is an NLP model which is solved by the commercial 

NLP solver. Tsai [85] developed a supply chain model with the quantity discount policy 

utilizing linearisation techniques. A nonlinear model is approximated to a mixed integer 

linear programming problem. In Zhang and Ma’s model, the all-units discount model is 

developed to determine the production level, order quantity and supplier selection under 
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demand uncertainty. The model developed by Zhang and Ma is utilised to consider both 

of all-units discounts and incremental discount [104]. In the all-units discount model, 

the problem includes a nonlinear term caused by the all-unit discount policy. A 

technique is applied to linearise the master problem.  

  The supplier selection problems with the quantity discount models, which are 

formulated as mixed integer programming problems and nonlinear programming 

problems, have been studied by using exact algorithms and heuristic algorithms.  

Crama et al. [18] presented a nonlinear mixed integer programming model for optimal 

procurement with total quantity discounts and its linearisation technique. Goossens et al. 

[33] addressed an exact algorithm for procurement problems with the total quantity 

structure in terms of the fixed charge network flow formulation. Burke et al. [9] 

analysed a variety of supplier pricing schemes including linear discounts, incremental 

unit discounts and all unit discounts by a heuristic procedure. Liao and Rittscher [59] 

considered a multi-objective supplier selection model under stochastic demand 

conditions. They provided a genetic algorithm for the objective of the multiple cost 

minimisations for quality minimisation, delivery minimisation and flexibility 

maximisation. Many researchers considered a variety of supplier selection problems 

from different perspectives with quantity discounts. The exact algorithms and heuristic 

algorithms are applied in their works. In this chapter, an exact algorithm is applied to 

solve quantity discount problems. By using the exact algorithm, a reformulation is 

required in order to reduce computational time. 

In the previous studies, various quantity discount models with different nonlinear 

quantity discount schemes are widely studied. In this chapter, an exact algorithm is 

addressed to solve incremental discount and all-units discount problems with uncertain 
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demands which are formulated as mixed integer nonlinear programming problems with 

integral terms. However, the model includes integral terms due to the uncertain demand. 

It requires huge computational efforts to handle the integration of multivariate 

probability functions. Therefore, the key issue is to avoid handling integral terms 

directly in MINLP problems. The contribution of the chapter is to reformulate the 

problem in order to reduce the computational time. The stochastic model of MINLP 

problems is reformulated as equivalent deterministic forms.  

4.3 The Incremental Discount Model 

Nomenclatures 

Indices: 

i : types of raw materials 

j : number of suppliers 

k : types of finished products 

l : discount intervals 

Parameters: 

ka : estimated opportunity loss cost for under stocking of one unit of product k  

kb : estimated inventory holding cost for over stocking of one unit of product k  

ke : unit production cost for product k  

)( kzf : probability density function where kz  is a random demand obeying a normal 

distribution 

jL : number of discount intervals for supplier j  

jm : management cost associated with supplier j  
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M : large constant 

kr : unit sales revenue for product k  

kz : random demand for product k  

kẑ : mean value of random demand for product k  

k : deviation of random demand for product k  

)( kk zOP : overproduction cost function for product k  

)( kk zSH : shortfall cost function for product k  

H

jlV : lower bound of interval l for the total volume for supplier j   

S

jlV : upper bound of interval l for the total volume for supplier j  

)( kk zUC : undesirable cost function due to the shortfall and the overproduction for 

product k   

jl : all-units discount rate at interval l for supplier j  

Decision variables: 

ijlu : binary variable which takes 1 if raw material i  is purchased from supplier j at 

interval l , and 0 otherwise. 

ijv : binary variable which takes 1 if the manufacturer buys raw material i  from 

supplier j  ,and 0 otherwise. 

jw : binary variable which takes 1 if supplier j  is chosen for any purchased raw 

material, and 0 otherwise.   

ijlx : quantity of raw material i  purchased from supplier j  at discount interval l  

ky : production quantity of product k during the planning horizon 
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)( kYF : probability density function subject to 
k

kk
k

zy
Y



ˆ
  

)( kY : cumulative distribution function subject to 
k

kk
k

zy
Y



ˆ
  

In this chapter, the supply chain model which is introduced in Chapter 3 is used. The 

mathematical model for supply chain planning problem is formulated by Zhang and Ma 

[104]. Thus, the quantity discount supply chain planning problem is formulated as the 

following mixed integer nonlinear programming (MINLP) problem: 

,
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ljiwvu jijijl  ,,},1,0{,, .                                      (4.11) 

The objective function of Eq. (4.1) includes integral terms due to demand uncertainty. 

The objective is to maximise the total profit for the manufacturer. The first term 

represents the expected revenue minus the inventory holding cost for the manufacturer 

while the production quantity is more than the actual demand. The second term is the 

expected revenue minus the penalty cost for shortage while the production quantity is 

lower than the actual demand. The third, the fourth and the last term are the 

procurement cost for raw material, the production cost and the management cost, 

respectively. The management cost for the manufacturer is to maintain supplier j  for 

the management /development activities. Eq. (4.2) is the raw material requirement 

constraint ensuring that production can be achieved by the purchase. Eq. (4.3) indicates 

that the production capacity is limited by constraints. Eq. (4.4) describes required 

resources for producing raw materials, which should not exceed the total quantity of 

resources reserved by the supplier for the manufacturer. Eq. (4.5) and Eq. (4.6) represent 

the quantity of raw materials from the supplier that is bounded by the lower and upper 

bound of a certain quantity discount interval. Eq. (4.7) is the assignment constraint of 

the quantity discount. Eq. (4.8) is related to the management cost, which is incurred if 

the supplier is selected to provide any raw material. Eq. (4.9) represents the 

multiple-sourcing constraint indicating that at most )2( NN suppliers for the 

provision of one raw material is allowed. Eq. (4.10) and Eq. (4.11) denote the 

nonnegative and integer constraints. 

4.4 Reformulation 

The model formulated in the previous section is difficult to handle because the problem 
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includes the nonlinear integral term in MINLPs. In the previous chapter, the 

outer-approximation algorithm with a heuristic was proposed to solve the MINLP 

problem. However, it is necessary to reformulate the problem in order to increase the 

efficiency of the optimisation algorithm. 

  The primal problem including the integral equation can be simplified from another 

aspect. Due to demand uncertainty, the model is considered as a stochastic model that 

product demands are assumed to be multivariate normally distribution random variables. 

By reformulation, the resulting equivalent deterministic optimisation model is nonlinear 

programming problems (NLP) with the convex continuous model [76]. 

  While in the deterministic model the planned production quantity is always realised, 

however, it is not always true in the stochastic case. The stochastic model for quantity 

discount assumes that product demands fluctuate, which implies that there is a deviation 

between the realisation of random variables demand kz  and production quantity ky . 

Therefore, the sold quantity of product k  can be expressed by the minimum between 

kz  and ky . The relation can be expressed as follows:  

),(min kk yz . 

Therefore, the sales revenue from products is  
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The undesirable cost from the shortfall and overproduction is 
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The stochastic single period quantity discount with supply chain planning model is 
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formulated as follows: 
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s.t.  (4.2) - (4.11),  

where we define 
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  The undesirable cost equation of the shortfall kSH  and the overproduction kOP  is 

expressed by  
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]),(max[),0(max)( kkkkkkkkk zyzbzybzOP  .                     (4.16) 

 

In order to simplify the calculation of the expectation, the normal distribution can be 

recast into the standardizing normal form with a mean of 0 and a variable 1. By 

checking the Z-transformation form with the known mean value k  and the standard 

deviation 2

k  of the demand, the expectation can be calculated. Let F  be the 

probability density function, and   be the cumulative distribution function. 

Let 
k
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kẑ  denotes the mean value of kz . 
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Thus, there are two situations, kk YX   and kk YX  . We have    

kkkk YXYYE  ][ .                                                (4.18) 

According to the definition of the expectation of a standard normal distribution 

excluded kk YX  , we have 

kXE[
)(

)(

2)(

2

1

2

1

]

2

2

2

2

1

2

1

2

1

k

k

k

X

Y

k

X

Y

k

X

k

kk
Y

YF

Y

e

dXe

dXeX

YX

k

k
k

k
k


























 .           (4.19) 

By substituting Eq. (4.18) and Eq. (4.19) into Eq. (4.17), we obtain 
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Therefore, we have 
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The resulting primal problem can be formulated as 
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s.t.  (4.2) - (4.11), (4.20) - (4.22). 

This primal problem is a nonlinear programming problem with stochastic functions. 

Even though the reformulation includes the integral term in the normalised function, the 

integral terms can be computed in advance. Therefore, the problem can be solved 

efficiently by a SQP method combining external statistical function with statistic tool 

box in the MATLAB function. 

4.5 The All-units Discount Model  

The quantity discount models include two types of models, the incremental discount 
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which is explained in the previous section and the all-units discount. In this section, the 

all-units discount model is introduced. 
S

jlV  denotes the lower bound of interval l  for 

the total volume for supplier j . 
H

jlV  denotes the upper bound. jl  is the all-unit 

discount rate on interval l  Therefore, the procurement cost is formulated as 
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)1()(  , where jlu  is a binary variable which takes 1 if the discount 

interval l  is applied, 0 otherwise. ijc  is the unit price of raw material i  purchased 

from supplier j . ijx  is the quantity of raw material i  purchased from supplier j . 

  The supply chain planning problem with the all-units discount policy is formulated as 

the following nonlinear optimisation problem: 
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s.t. (4.3), (4.8), (4.9),  
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  The all-units discount problem is also formulated as a mixed integer nonlinear 

programming problem. The model is quite similar to the previous one. Therefore, the 

previously described reformulation and the outer approximation method which is 

introduced in Chapter 3 can be applied in this model. The problem includes a nonlinear 

term caused by uncertain demands. The primal problem with fixing 0-1 binary variables 

T

jijjl wvuy }]{},{},[{ to 
Th

j

h
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h

jl

h wvuy }]{},{},[{  yields the following optimisation 

problem: 
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s.t.  (4.3), (4.11), (4.25) - (4.29). 

  The outer approximation can be obtained by the intersection of a finite set of 

supporting functions. These supporting functions correspond to the linearisation of the 

objective function. The master problem can be written as 
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  The linearisation of the master problem can be achieved. The master problem can be 

reformulated as the following mixed integer linear problem which can be solved by a 

commercial solver: 
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s.t.  (4.3), (4.8), (4.9), (4.25)-(4.30), (4.33) - (4.36), 
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where M  is a large constant. 

4.6 Numerical Examples 

4.6.1 Illustrative example 

In order to demonstrate the performance of the proposed method, two types of examples 

are conducted by using the incremental discount model. Two examples are conducted to 

demonstrate that the proposed method solves relatively larger scale problem instances 

for Example 2 efficiently. In Example 1, there are 2 products, 2 raw materials, 2 

suppliers, and 2 incremental discount intervals. In Example 2, there are 5 products, 5 

components, 5 suppliers, and 3 incremental discount intervals. The experiments for 

comparision are also conducted to examine the efficiency of normalisation technique in 

the proposed algorithm. The parameters for the experiments are generated from 

randomly generated numbers in the range shown in Tables 4.1 and 4.2. 
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Table 4.1: Parameters for example 1. 

kr  500-750 ke  120-135 ikg  0-1 

kt  79.5-80.5 
ijn  0.75-1.25 kb  100-170 

k  25.1-25.2 
jm  100-150 Q  3200 

2

k  3.7-4.0 
jq  35-45 ka  10-12 

S

ijld  0.001,10.000 H

ijld  10,100 
ijlc  14-40 

4.6.2 Results and discussion 

Five cases of instances are generated and solved by the proposed method. In 

computational experiments, CPLEX MATLAB interface (CPLEXINT) integrating 

CPLEX and MATLAB functions is used. The proposed algorithm is encoded in 

MATLAB language. The primal problem is solved by fmincon function in MATLAB 

optimisation toolbox. The statistical toolbox is also used for the expectation 

reformulation by normalisation technique. The MILP master problem is solved by 

Table 4.2: Parameters for example 2. 

kr  150-250 ke  23-40 ikg  1-4 

kt  1-3 
ijn  1-3 kb  10-100 

k  160-200 
jm  350 Q  2000 

2

k  60-80 
jq  450-550 ka  50-150 

S

ijld  0.001,10.000 H

ijld  1000,10000 
ijlc  5-17 
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CPLEXINT function. The maximum number of iterations is set to 100. The 

convergence condition is that the lower bound is not updated 100 times or duality gap is 

less than 1%. To reduce computational efforts, the primal problem was solved one time 

per ten times of replications. An Intel Core2Duo 3.0 GHz processor (E8400) with 3GB 

memory was used. Computational results for direct integration are shown in Table 4.3.  

Table 4.3 shows the results of the integral formulation. Table 4.4 shows the 

computational results of the reformulated of the model. The results demonstrate that the 

proposed method can derive near-optimal solutions for problem instances. However, in 

Table 4.3 and Table 4.4, the computation time becomes much longer as the problem size 

increases. This is because the direct integral computation is used for the optimisation 

Table 4.3: Computational results for direct integral formulation. 

Example LBD UBD DGAP[%] Time[s] Iter. 

1-1 1.962 × 10
4
 1.969 × 10

4
 0.00240 25.8 2 

1-2 2.152 × 10
4
 2.172 × 10

4
 0.00575 21.4 2 

1-3 1.749 × 10
4
 1.749 × 10

4
 0.00607 39.9 2 

1-4 2.008 × 10
4
 2.009      0.0563 25.9 2 

1-5 2.044 × 10
4
 2.045 × 10

4
 0.0677 25.2 2 

Ave. 1.974 × 10
4
 1.974 × 10

4
 0.0276 27.6 2 

2-1 2.140 × 10
4
 2.761 × 10

4
 22.489 9619 100 

2-2 2.863 × 10
4
 2.891 × 10

4
 0.9960 3571 100 

2-3 2.871 × 10
4
 2.887 × 10

4
 0.5610 759 11 

2-4 2.943 × 10
4
 3.057 × 10

4
 3.7155 5293 100 

2-5 2.915 × 10
4
 3.032 × 10

4
 3.8700 11702 100 

Ave. 2.746 × 10
4
 2.926 × 10

4
 6.3265 6189 82 
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Table 4.4: Computational results for reformulation by normalisation technique. 

Example LBD UBD DGAP[s] Time[s] Iter. 

1-1 1.953 × 10
4
 1.958 × 10

4
 0.00236 25.8 2 

1-2 2.141 × 10
4
 2.158 × 10

4
 0.81003 21.4 2 

1-3 1.749 × 10
4
 1.749 × 10

4
 0.00607 25.6 2 

1-4 1.997 × 10
4
 1.997 × 10

4
 0.03560 25.9 2 

1-5 2.035 × 10
4
 2.049 × 10

4
 0.07253 25.2 2 

Ave. 1.975 × 10
4
 1.982 × 10

4
 0.18532 30.3 2 

2-1 2.733 × 10
4
 2.775 × 10

4
 1.5452 1003 100 

2-2 2.966 × 10
4
 3.094 × 10

4
 4.1175 702 100 

2-3 2.875 × 10
4
 2.889 × 10

4
 0.4681 902 30 

2-4 2.928 × 10
4
 3.341 × 10

4
 12.356 1033 100 

2-5 2.934 × 10
4
 3.339 × 10

4
 12.113 1029 100 

Ave. 2.887 × 10
4
 3.088 × 10

4
 6.1200 934 100 

 

of primal problem. The direct integral computation increases the number of iterations. 

There are cases (case 1-1 and case 1-4) that upper bounds in Table 4.4 are smaller than 

lower bounds in Table 4.3 caused by the numerical error between the computation of the 

expected reformulation and direct integration.  

Practically, the size of supply chain planning problem that the manufacturer faces is 

quite large. The manufacturer should make decision for various types of products from 

different suppliers. Thus, the development of an efficient algorithm becomes extremely 

important. It is expected to solve larger scale problems by combining the 

outer-approximation method and a normalisation technique. The conventional approach 
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proposed by Zhang and Ma [104] can solve only small size problems with almost the 

same time as the proposed method. However, the proposed algorithm can solve larger 

size problems more efficiently, because Zhang and Ma’s approach is based on branch 

and bound algorithm. 

4.7 Summary 

In this chapter, a solution procedure for supply chain planning problems with quantity 

discounts is addressed. The supply chain problem is formulated as a mixed integer 

nonlinear programming problem with integral terms. A novel outer approximation 

algorithm has been applied to solve the MINLP problem. The reformulation of integral 

function by a normalisation technique for demand uncertainty has been proposed to 

reduce the computational effort for the primal problem in the decomposition algorithm. 

Computational experiments have shown that the proposed method can derive a 

near-optimal solution with a small duality gap with less computational effort. From 

computational results, it indicates that that the manufacturer’s profit can be optimised 

by quantity discounts with less computational effort. 

  In this chapter, one single period of supply chain planning is investigated. However, 

the multi-period supply chain planning could be further studied in order to be applied in 

a wider industrial area. The detailed consideration of supplier selection such as quality, 

reliability and so on is not included in this chapter. This is also an interesting area of 

future work. More efficient algorithms should be developed for large scale problems 

with the improvement of the computation of bounds in a reasonable computational time. 
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Chapter 5 

Optimal Quantity Discount Contract for Supply 

Chain Optimisation with One Manufacturer and 

Multiple Suppliers under Demand Uncertainty 

5.1 Introduction 

An economic structure is transformed into a new landscape composing of a trilogy of 

interactive forces that include globalisation, trade liberalisation, and the information 

technology and communications revolution. Enterprises are facing challenges of the 

integration of business, technology, process along supply chains in order to succeed in 

the new economic environment. The integration of the supply chain becomes crucial in 

the global business environment. Therefore, many companies are trying to achieve the 

integration of the supply chain by implementing cooperation and collaboration across 

the value chain. They are expanding, merging, contracting or redesigning their supply 

chains [43]. In this chapter, an optimal contract strategy is derived from a Stackelberg 

equilibrium in a two-echelon supply chain system by considering production, inventory 

and pricing with uncertain demands.  

The chapter is motivated by a problem of improving agility, in the context of short 

life cycle products and increasing product variety. Manufacturers in many industries 
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with high customisation and short life cycle products are willing to improve contract 

decisions to reduce costs and inventories. They are facing challenges to handle 

uncertain demands, frequent ordering and the selection of suppliers. For instance, in 

electronic component industries, both random yield and uncertain demands are common 

occurrences. For such industries, manufacturers who produce short life cycle products 

have to adjust manufacturing planning after one period of business planning in order to 

satisfy customers’ diverse requirements. In order to consider the integration of business 

decisions and manufacturing planning, the planning is executed within one single period 

as long-term decisions. The life cycle of electronic components is quite short. Thus, the 

demand of products fluctuates. Efficient contracting decisions for a short life cycle 

product supply chain considering demand uncertainty become important. In this chapter, 

the manufacturing planning under demand uncertainty incorporating optimal contract 

decisions is considered. The optimal contract decisions are developed to reduce 

negation time and costs so that they can build the long-term partnership with contracted 

suppliers.  

This chapter considers one manufacturer and its multiple suppliers who are involved 

in purchasing different types of components, assembling and selling multiple finished 

products within single period. The manufacturer makes contracts with suppliers to 

improve efficiency of supply chain planning in order to reduce costs and maximise 

individual profits. The contract decision is made through a negotiation between the 

manufacturer and multiple suppliers based on prices of components and quantities of 

purchased components. The relationship between the manufacturer and suppliers is 

modelled by a noncooperative game. A Stackelberg game is applied where the 

manufacturer is the leader and the suppliers are followers. In order to obtain an 
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equilibrium, suppliers’ optimal response functions are derived analytically. The response 

functions can be represented by incremental quantity discount policy. Thus, a quantity 

discount is incorporated into the manufacturer`s model with the selection of suppliers. It 

is assumed that the manufacturer as a leader and suppliers are followers. By deriving 

suppliers’ optimal response functions, optimal discount schedules are created. 

Eventually, the resulting function is formulated as a mixed integer nonlinear 

programming problem with integral terms. In order to reduce the computational 

complexity, the problem is reformulated by using a normalisation technique which is 

introduced in chapter 4.  

The objective of this chapter is to propose a Stackelberg game theoretic model 

between the manufacturer and multiple suppliers by considering production, prices and 

the selection of suppliers simultaneously under demand uncertainty. An optimal quantity 

discount schedule can be obtained from optimal response functions. There are some 

contracts such as buyback contracts and revenue-sharing contracts that increase overall 

profits by making the supplier share some of the buyer’s demand uncertainty. In this 

chapter, suppliers encounter setup and inventory holding costs due to the lot sizing 

policy. Quantity discounts are effective to coordinate supply chain if the supplier has 

large fixed costs per lot. Such contracts can encourage the manufacturer to buy in larger 

lot sizes that can reduce costs for the supplier. An optimal quantity discount is derived 

from a Stackelberg equilibrium to resolve the manufacturer` decisions with the selection 

of suppliers with uncertain demands. 

This chapter is organised as follows. Relevant literatures are briefly reviewed in 

Section 5.2. Section 5.3 defines the problem and notations. The mathematical models of 

a noncooperative game are formulated, and the proposed algorithm is introduced in 



78  

 

 
 

5. OPTIMAL QUANTITY DISCOUNT 

 

 

Section 5.4 and 5.5. Section 5.6 gives some computational results and analysis. Finally, 

the summary is given in Section 5.7. 

5.2 Literature Review  

The game theoretic models have been extensively studied in different manners in the 

past years. Yu et al. [101] improved the members’ profits of supply chain systems 

between a manufacturer and its retailers incorporating the inventory policy by studying 

Stackelberg game problems where advertising, pricing and inventory replenishments are 

all involved. Esmaeili et al. [25] proposed the seller-buyer coordination model by 

noncooperative and cooperative game theory where the unit marketing expenditure and 

the unit price charged by the buyer influence the demand of products. The coordination 

of a supply chain consisting of a manufacturer and a retailer with return policy was 

proposed by Xiao et al. [93]. Yang et al. [95] presented an assembly supply chain 

system consisting of one retailer and two suppliers with forecast updating. Those 

researches mainly focus on inventory management coordinating buyers and vendors by 

game theory. The partnership between manufacturers and suppliers is not solved. This 

chapter focuses on the negotiation between one manufacturer and multiple suppliers. 

There are some works to investigate the partnership between the manufacturer and 

the supplier in game theoretic models. Huang et al. [42] introduced a three-level 

dynamic noncooperative game theoretic model considering suppliers and components 

selection, pricing and inventory. Each supplier faces the problem to make decisions 

based on prices for components. The manufacturer has to determine the setup time 

interval for production, wholesale prices, and to make supplier’s and component’s 

selection decisions. The retailers’ problem focuses on replenishment cycles and retail 
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prices for products. A multiple-suppliers and single manufacturer assembly supply chain 

was investigated by Leng and Parlar [56]. The suppliers produce components which are 

assembled by the manufacturer. They discussed the decentralised assembly supply chain 

to find Nash and Stackelberg equilibrium, and coordinate it by cost-sharing contracts.  

As the above examples illustrate, a number of game-theoretic models for optimizing 

the supply chain have been proposed. Yet, an important issue which is rarely mentioned 

or omited in those literatures is the consideration of demand uncertainty involved in 

game theoretic models. Most of the studies assume that demand is price-sensitive or 

depending on some variables.  Hennet and Arda [37] studied different types of 

contracts to coordinate channel partners which are facing a random demand and a 

random lead-time along supply chain. They still assumed that the demand is unitary 

according to a Poisson process. However, there was a work which considers demand 

uncertainty in a three stage supply chain introduced by Xiao et al. [93]. They resolved 

coordination of one retailer, one manufacturer and one subcontractor. They developed a 

newsvendor model to investigate the order quantity, wholesale pricing and lead time 

decisions. However, contract decisions are provided to integrate manufacturing planning 

and supplier’s decision in supply chain management. 

The above literatures employ the game theoretic models to coordinate business 

partners along the supply chain. In this chapter, quantity discounts are introduced in a 

game theoretic model to coordinate the manufacturer and its suppliers. Quantity 

discount is considered as an important pricing strategy. Sarmah et al. [80] introduced 

basic buyer and vendor coordination models, and reviewed the literature dealing with 

buyer and vendor coordination models that have used the quantity discount under 

deterministic demand. Li et al. [58] attempted to improve buyer and seller system 
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cooperation in an inventory control system. Afterwards, they discussed how quantity 

discount works in the system to divide additional profits. The effectiveness of quantity 

discounts and volume discounts as coordination mechanisms between a single-vendor 

and a retailer was analysed by Viswanathan and Wang [88]. Qin et al. [77] considered 

volume discount and franchise fees as a coordination mechanism in a system consisting 

of a supplier and a buyer. The problem is analysed by a Stackelberg game. 

The main contribution of this chapter is that an optimal discount contract is 

introduced, which is derived from suppliers’ optimal response functions between the 

manufacturer and multiple suppliers with uncertain demands. The problem is analysed 

by a Stackelberg game where the manufacturer is a leader and suppliers are followers. 

In order to obtain an equilibrium of the game, supplier’s optimal response functions are 

derived. The optimal response function can be represented by a quantity discount policy. 

Thus, quantity discount contracts are incorporated into the manufacturer’s model 

considering the supplier’s selection with uncertain demands.  

5.3 Problem Description and Notation 

Electronic component manufacturing industries are considered as an example in this 

chapter. In the model, one manufacturer which purchases different types of component 

),..,1( Iii   from the supplier ),..,1( Jjj   is considered in order to assemble 

finished product ),...,1( Kkk   under demand uncertainty. The manufacturer 

assembles a variety of finished products under the consideration of the production 

capacity and the selection of proper suppliers. The manufacturer faces random demands. 

Each supplier determines its selling prices of components by considering the economic 

lot size policy. The supply chain model in this chapter is shown in Fig. 5.1. For the 
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game sequence, the manufacturer determines the order quantity of components and 

selection of suppliers first. Then, the contracted suppliers decide prices of components 

based on the manufacturer’s decisions. 

Figure 5.1: Supply chain model. 

 

The manufacturer’s model is the maximisation of the total profit which includes 

expected revenue, understocking, overproduction, procurement, production costs and 

transaction costs. The model was studied by Kim et al. [46] and Zhang and Ma [104]. 

The concept of economic lot sizing is applied in the supplier’s model. The objective is 

to optimise the total profit definied by the gross revenue minus the sum of purchasing 

costs, setup and inventory holding costs. Suppliers make its pricing decisions based on 

the economic lot sizing policy. For suppliers, large orders usually increase the gross 

revenue, but it results in the increases of other costs, such as labor costs. Therefore, the 

suppliers should determine the optimal selling price ijp  based on the economic lot size 

ijQ . The supplier’s selling price is determined in a way to recover its fixed and variable 

costs, such as ij

ij

ij

ij L
Q

S
p  , which is proposed by Kuzdrall and Britney [49]. 𝑆𝑖𝑗 is 

defined as the supplier’s fixed cost including the setup cost and any fixed per-order 

Assembling 

Manufacturer 

Components Finished products 

Supplier 1 

Supplier 2 

Supplier 𝑗 

Uncertain demand 
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profit. The supplier’s variable cost such as the labor cost is represented by ijL .  

The objective of this chapter is to propose a Stackelberg game theoretic model with 

uncertain demands. In the noncooperative game model, the manufacturer as a leader 

first determines production, order quantities of components and the selection of 

suppliers. The suppliers are assumed as followers to decide prices and the economic lot 

sizes. 

 

Indices: 

i : types of components 

j : number of suppliers 

k : types of finished products 

Decision variables:  

Manufacturer 

ijd : order quantity of component i  from the supplier j  

ijv : binary variable which takes 1 if the manufacturer buys component i  from 

supplier j  , and 0 otherwise. 

jw : binary variable which takes 1 if supplier j  is chosen for any purchased 

component, and 0 otherwise.   

ky : production quantity of product k  during the planning horizon 

Supplier 

ijp : unit selling price of component i  for supplier j  

ijQ : economic lot size of component i  for supplier j  
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Parameters: 

Manufacturer 

ka : estimated opportunity cost for understocking of one unit of product k  

kb : estimated inventory holding cost for overstocking of one unit of product k  

jc : resource capacity of the supplier j  

ke : unit production cost for product k  

)( kzf : probability density function obeyed by the demand of the product k  

ikg : number of units of component i  required to produce one unit of product k  

jm : transaction cost associated with supplier j  indicating that the manufacturer 

should be charged in order to make contracts with suppliers 

ijn : amount of the internal resource for supplier j  required to produce component i  

kr : unit sale revenue cost for product k  

U : production capacity of the manufacturer 

kz : random variable of demand for product k  obeying by a normal distribution  

kz ∼ ),ˆ( 2

kkzN  , where kẑ  is the mean value of kz  and 2

k  is the standard 

deviation of kz  

Supplier 

ijA : inventory holding cost of component i  for supplier j  

ijL : supplier j  variable cost such as labor cost of component i  

M : sufficiently large positive number 

ijh : unit purchasing cost of component i  charged to supplier j  

ijS : setup cost for component i  for supplier j  
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5.4 The Noncooperative Model 

This section introduces a noncooperative model where the manufacturer determines 

production, order quantities of components and the selection of suppliers. The suppliers 

decide selling prices of components by considering the economic lot sizing policy. 

5.4.1 The Stackelberg game theoretic model 

Due to the demand uncertainty, the manufacturer’s objective function is formulated as a 

stochastic model. The manufacturer’s objective function is the maximisation of the total 

profit consisting of sales revenue, overstocking / understocking penalty costs, 

production costs, purchasing costs and transaction costs. Then the manufacturer’s 

problem becomes    

,

)]},0(max),0(max),(min[{max

11 1 1

1

j

J

j
j

K

k

I

i

J

j
ijijkk

K

k
kkkkkkkkk

wmdqye

yzazybzyrE

  

 

  


          (5.1) 
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 11

, ,                                            (5.2)                                              
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K

k
kk 
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,                                                   (5.3)                                                        

  jwcdn jj

I

i
ijij 



,
1

,                                              (5.4)                                                     

  jivw ijj  ,, ,                                                (5.5)                                                            

  kjivwyd ijjkij  ,,},1,0{},1,0{,0,0 .                        (5.6)                                

The supplier j ’s objective function is formulated by the economic lot size policy. 

The objective function consists of the revenue, purchasing costs, fixed and variable 

costs, and inventory holding costs. Then the supplier j ’s problem becomes 
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1

 




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  s.t. jihp ijij  ,, ,                                                 (5.8)                                                              

      jipij  ,,0 ,                                                 (5.9)                                                                                                                             

where we define 

ij

ij

ij

ij L
Q

S
p  .               

Note that Eq. (5.2) represents that ordered components should not be less than the 

required production quantity. Eq. (5.3) represents the production capacity. Eq. (5.4) 

ensures that the internal resource required for the procurement is less than the supplier’s 

capacity. Eq. (5.5) is related to the transaction cost, which is incurred if the supplier is 

selected to provide any component. Eq. (5.6) is the nonnegative constraint.  

For the supplier’s model, Eq. (5.7) is the supplier j ’s total profit objective function 

consisting of the gross revenue, purchasing costs, setup costs, labour costs and 

inventory holding costs. Eq. (5.8) gives the price constraint. Eq. (5.9) is the nonnegative 

constraint. 

The manufacturer and suppliers are analysed by a Stackelberg game where the 

manufacturer is a leader and suppliers are followers. Thus, the supplier’s model 

becomes a constraint for the manufacturer’s model when the Stackelberg game theoretic 

model is solved. The model becomes a bilevel programming problem. 

5.4.2 Analysis of the model  

The equilibrium of a Stackelberg game is usually solved by a backward induction 

procedure. It generally works as follows. The follower’s (supplier) problem must be 



86  

 

 
 

5. OPTIMAL QUANTITY DISCOUNT 

 

 

first solved to get reaction functions of leader’s (manufacturer) decision results. The 

manufacturer’s decision problem is solved considering all possible reactions of its 

followers for maximizing the profits. For every possible leader’s action, every 

follower’s optimal reaction can be determined by considering the manufacturer’s 

decisions as its input parameters. In this chapter, the problem is analysed such that the 

manufacturer first design production by determining production, purchasing quantities 

of components and the selection of suppliers in order to satisfy uncertain demands. The 

negotiation process is illustrated in Fig. 5.2. Therefore, the supplier’s optimal response 

functions should be derived firstly. Then, the manufacturer’s decision is solved by 

substituting supplier’s response functions as constraints.  

 
  

Manufacturer  

 

Supplier 1 

 

Supplier 2 

 

Supplier 3 

 

 Selection of 

suppliers 

 Order quantity of 

 components 

Selling price of 

components 

 Figure 5.2: Negotiation process. 

 

The backward induction procedure for finding the equilibrium point of a Stackelberg 

game is complex, because multiple followers are involved. Therefore, the supplier j ’s 

optimal response function should be derived first. 

First, the objective function can be rearranged as  










I

i
ijij

ijij

ij

ijijijijij

ijijijijj
Lp
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S

dLpLS
dhdp

1

]
)(2

))((
[ .                (5.10)                         



87 

 

 
 

5. OPTIMAL QUANTITY DISCOUNT 

 

 
In order to obtain supplier j ’ s optimal response function, the first partial derivative 

of supplier’s profit function (5.10) with respect to ijp  is derived, we have 














I

i
ijij

ijij

ij

ijijij
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ij

j
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dLS
d

p 1
2
]

)(2

)(
[ .                             (5.11)                                      

Because the second partial derivative of Eq. (5.10) with respect to ijp  is 

0
)( 32

2









ijij

ijij

ij

j

Lp

SA

p
.                                           (5.12) 

By solving the equation 0




ij

j

p
, we obtain the critical point of the equation with an 

increasing and concave function. 

For each component  , we obtain 

ijij

ijij

ijij
dL

SA
Lp

2

2

 .                                                (5.13)                                                   

Eq. (5.13) shows a nonlinear relationship between the order quantity ijd  and the 

price ijp . We observe that ijp  decreases if ijd  is increased. Therefore, this 

relationship can be represented by a quantity discount schedule.  

From Eq. (5.13), we notice that the situation that 0ijd  is neglected. When 0ijd , 

it indicates that supplier j  is not selected so that 0ijp . Thus, the following 

constraint should be added in the manufacturer’s model: 

0 ijij Mvp ,                                                    (5.14) 

where M is sufficiently large. Eq. (5.14) indicates that 0ijp  if the manufacturer 

does not purchase component i  from supplier j . In other words, when 0ijd , the 
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manufacturer does not purchase components so that 0ijp . 

5.5 Solution Procedure  

In this model, the supplier’s optimal pricing response decisions are solved firstly. 

Analytically, the relationship of prices and the order quantities of components is found 

by the supplier’ model. Eq. (5.13) implies that if the relationship is satisfied, the 

supplier’s optimal decision can be assured by solving the manufacturer’s function. This 

relation function is the constraint in the manufacturing decision problem. Discount 

strategies are widely used to encourage buyers to purchase more products. There are 

two main streams of discount structure: quantity discounts and volume discounts. For 

quantity discount, sales of the volume of products do not affect prices and discount of 

other products. The price can be discounted while the quantity of purchased products 

within certain range of quantities. For the volume discount, discounts depend on the 

total amount of sales volume but not on the quantity or variety of the purchased 

products.  

By embedding Eq. (5.13) into the manufacturer’s objective function, the 

manufacturing decision problem with the incremental discount policy can be formulated 

as follows: 

,

)]},0max(),0max(),min([{max

11 1 1

1

j

J

j
j
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j
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wmdqye

yzazybzyrE

  
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
           (5.15)                                                                                                                                                                         

s.t.  (5.2) - (5.6), (5.8), (5.9), (5.13). 

The model is a mixed integer nonlinear programming problem (MINLP) with integral 

terms. It is difficult to solve MINLP problems due to the computational complexity. In 
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order to derive optimal solutions efficiently, it is necessary to reformulate the problem. 

Therefore, the reformulation technique in Chapter 4 is applied. Thus, the resulting 

objective function can be formulated as 

j

J

j
j

K

k
kk
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k

I

i

J

j
ijijkkk wmyedqOPESHEREE    

   111 1 1

)]()()([max ,         (5.16)                                                                                                         

where we define 

  ]))(1()([ˆ)( kkkkkkkk YYYFrzrREE   ,                            

  )]))(1()([)( kkkkkk YYYFaSHE   ,                                                                                                     

  )]()([)( kkkkkk YFYYbOPE   .                                     

The function is also expressed by the error function. Then, this MINLP problem can 

be easily implemented in General Algebraic Modelling System (GAMS). There are 

some special functions which can be implemented in GAMS, such as the error function. 

The following error function errorf (.) in GAMS implements a variant on this: 

dtexerrorf
x t




 2

2

1

2

1
)( ,                                         (5.17) 

which is the cumulative distribution function of the standard normal distribution. Thus, 

)
)ˆ(

(
k

kk zy
errorf




 expresses the cumulative distribution function. 

The final manufacturing decision problem can be represented as follows: 
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s.t. (5.2) - (5.6), (5.8), (5.9), (5.13), 
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Solution Algorithm  

The proposed algorithm consists of the following steps: 

Step 0: Initialisation: Set the parameters of the manufacturer and supplier’s model. 

Step 1: Derive the supplier’s optimal response function of Eq. (5.13). 

Step 2: Derive an incremental quantity discount schedule. 

Step 3: Solve the manufacturer’s production planning problem with Eq. (5.18) and the 

incremental quantity discount schedule derived at Step 1.  

Step 4: Obtain the optimal manufacturer’s profit and suppliers’ profit. 

5.6 Analysis with Experiments  

This section presents a case study which is aimed at illustrating the features of the 

proposed model and demonstrating the performance of the algorithm. 

5.6.1 Case study 

A case study about personal computer peripherals manufacturing is provided. Consider 

a supply chain consisting of four suppliers )4( J  and one manufacturer. The 

manufacturer produces two types of finished products )2( K  such as a speaker and a 

monitor from five types of electronic part )5( I  seen in Fig. 5.3. The demand for the 

products is assumed to obey a normal distribution with mean value 15ˆ kz  for each 

product. The set of standard deviation 2

k  is 12 for each product. A PC with Intel(R) 

CoreTM i7-3770 3.4 GHz processor and 8GB memory is used for the computation. The 

program is coded by GAMS23.7. 
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Figure 5.3: Supply chain configuration. 

5.6.2 Analysis of results 

We set initial parameters and solve the MINLP problem by the solver so-called 

BONIMN in GAMS. The optimal solutions for the manufacturer and suppliers are 

shown in Table 5.1 and Table 5.2, respectively.  

Table 5.1: Optimal solution for the manufacturer. 

Total profit 6029.123 

Revenue 8714.552 

Production cost 1770 

Material cost 783.429 

Transaction cost 132 

 

The total computation time to derive the supply chain optimisation problem is 0.843  

sec. The relative gap is almost zero. A near-optimal solution is derived by the proposed 

method. The solution for the manufacturer is shown in Table 5.2. The optimal solution  

Supplier 

Manufacturer 

Components 

Product 

Supplier Supplier Supplier 
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Table 5.2 Optimal solution for suppliers. 

suppl.1 comp.1 comp.2 comp.3 comp.4 comp.5 

1ip  0 0 0 0 0 

1id  0 0 0 0 0 

1iprof  -     

suppl.2      

2ip  0 0 0 0 0 

2id  0 0 0 0 0 

2iprof  -     

suppl.3      

3ip  2.495 2.404 2.433 2.393 2.393 

3id  49 49 64 81 81 

3iQ  8.080 9.900 9.238 12.723 12.723 

3iprof  201.326     

suppl.4      

4ip  0 0 0 0 0 

4id  0 0 0 0 0 

4iprof  -     

for suppliers is shown in Table 5.2. In Table 5.2, ijprof  is a function defined by 

2

)( ijij

ij

ijijij

ijijijijij

QA

Q

dLS
dhdpprof 


 . The computational results in Table 5.2 

indicate that supplier 3 is selected by the manufacturer. We set transaction costs for each 

supplier are 135, 130, 132 and 124. 

The quantity discount schedule is represented by Eq. (5.13). The parameter setting for 

quantity discount is as follows: the inventory holding costs are 314131211  AAAA ,

535251444342413433323124232221 ,2,3,2 AAAAAAAAAAAAAAA 

354  A and the setup costs are ,414131211  SSSS ,424232221  SSSS



93 

 

 
 

5. OPTIMAL QUANTITY DISCOUNT 

 

 

,434333231  SSSS 544434241  SSSS , 254535251  SSSS . The labor 

costs for all suppliers are 3 . From the parameter setting for the quantity discount 

schedule, we know that the inventory holding and the setup cost are the same for four 

suppliers. However, the labour cost for supplier 3 is cheaper than other suppliers. By 

substituting those parameters into Eq. (5.13), the selling price of components from 

supplier 3 is the cheapest for the same amount quantity of components among four 

suppliers. The computational results also show that the supplier 3 is selected. From the 

numerical experiments, the effectiveness of the proposed approach can be confirmed by 

results with a very small duality gap. It also demonstrates that a Stackelberg game 

equilibrium can be computed effectively by considering the supplier selection, 

production and inventory under demand uncertainty. 

5.6.3 The impact of parameters  

In this section, the computational experiments are conducted to illustrate the 

characteristics of the proposed model. The model is analysed as a Stackelberg game that 

the manufacturer is considered as a leader. Thus, we focus on decisions to observe that 

how the decisions influence manufacturing planning in the game theoretic model. One 

manufacturer with two types of finished products and two types of purchased 

components is considered in the experiment. In order to analyse the impact of 

parameters, we conducted the comparative experiments to illustrate that how each cost 

influences production and profits in the game theoretic model. The parameters are listed 

in Table 5.3.  

Five tests are conducted to analyse the impact of unit sale revenue kr , opportunity 

loss cost ka , inventory cost kb , deviation of random demand k  and mean of random 
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Table 5.3: Parameters for case study. 

Parameter product 1 product 2   

production cost 50 60   

required resource 100 100   

 supplier 1 supplier2 supplier3 supplier4 

management cost 135 130 132 124 

resource capacity 500 500 500 500 

 

demand kẑ , respectively. Five parameters including unit revenue, opportunity loss cost, 

inventory cost, deviation of random demand, and the mean value of random demand are 

analysed separately for each test. For each test, only one parameter is changed while 

other parameters are fixed. Four cases for each parameter are conducted. For example, 

in test 1, revenue 𝑟𝑘  is changed once for each case. Then, we observe how the 

production of two types of product and profit change. The results are presented in Table 

5.4.  

From Table 5.4, we observe that the profit increases once the sale revenue is 

increased. However, the production of products stays the same in test 1. Test 2 and test 3 

are conducted to illustrate the impact of uncertain demand on manufacturing planning 

decisions while the manufacturer may encounter shortfall or overproduction. From test 

2, it implises that if the manufacturer increases the opportunity loss cost of one kind of 

products, and the profit is not always increased. The increase of inventory cost could not 

ensure that the profit always increases in test 3 as well. The influence of uncertainty is 

analysed in test 4 and test 5. Test 4 shows that with the decrease of deviation of demand, 

the profit increases. However, we observe that the profits do not always decline if the 
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Table 5.4: Comparative experiments. 

test 1 effects of unit revenue 

 case 1  case 2  case 3  case 4  

 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 

kr  300 300 300 320 300 380 400 400 

production 15 17 15 17 15 17 15 17 

profit 5382.628  5694.639  6468.715  8385.117  

test 2 effects of opportunity loss cost 

 case 1  case 2  case 3  case 4  

 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 

ka  135 163 135 180 135 190 160 163 

production 15 17 15 17 15 17 15 17 

profit 5382.628  5393.588  5262.093  5097.739  

test 3 effects of inventory cost 

 case 1  case 2  case 3  case 4  

 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 

kb  20 25 20 35 20 50 25 25 

production 15 17 15 17 15 17 15 17 

profit 5382.628  5366.134  5476.392  5199.183  

test 4 effects of deviation of demand 

 case 1  case 2  case 3  case 4  

 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 

k  13 13 12 12 13 10 10 10 

production 15 17 15 17 15 17 15 17 

profit 5382.628  5848.756  6165.796  6299.796  

test 5 effects of mean of demand 

 case 1  case 2  case 3  case 4  

mean value pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 pro.1 pro.2 

kẑ  15 15 15 13 13 13 10 10 

production 15 17 15 17 13 19 10 22 

profit 5382.628  5376.519  5348.992  5922.500  
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mean value of demand is decreased in test 5.  

In this chapter, the impact of key parameters has been analysed. From the results, it is 

concluded that the manufacturer should design manufacturing planning in order to 

increase profits according to different strategies of contract decisions. 

5.7 Summary 

A game theoretic model with one manufacturer and multiple suppliers is proposed. The 

Stackelberg game theoretic model between one manufacturer and suppliers under 

demand uncertainty has been introduced. An optimal quantity discount schedule can be 

derived from a Stackelberg equilibrium. The supplier’s optimal response functions can 

be represented by the incremental discount policy in this chapter. Therefore, quantity 

discounts have been embedded into the manufacturer’s function with the consideration 

of the supplier’s selection. The numerical example has demonstrated the efficiency of 

the proposed method.  

The proposed model is considered as single period manufacturing planning that aims 

at high customisation and short life cycle product industries. However, it is also 

interesting to extend this work to consider multi-period planning in order to implement 

in other industries.  Practically, due to the limitation of information sharing, it is 

difficult to implement full cooperation with channel partners. Thus, the competition 

among partners can be considered in the model. 
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Chapter 6 

A Game Theoretic Approach to Two-echelon 

Supply Chains with Asymmetric Quality 

Information 

6.1 Introduction 

The growth of globalisation has accelerated the competition on price and quality for 

multinational enterprises. In order to reduce production costs, global sourcing to 

countries such as China or India becomes crucial business strategies. In order to win in 

the global business, the competition is shifting from price to quality in many industries 

to achieve high customer satisfaction [27]. Thus, supply chain planning problems about 

price and quality are needed to be optimised in order to help the decision making for 

multinational enterprises. This chapter is motivated by improving global supply chain 

planning where quality and price are considered simultaneously. The manufacturer takes 

a leading role in the global supply chain to determine the optimal outsourcing suppliers 

in order to reduce costs and enhance the competition.  

The coordination and cooperation of supply chain planning are key issues for the 

global business. As an example of supply chain coordination, Motorola decided to 

spend $60 million in Singapore to centralise and streamline global supply chain 
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operations with its suppliers and customers [56]. A game theoretic approach is an 

effective method to improve the coordination/cooperation of supply chain planning. 

Traditionally, the overall channel performance including vertical or horizontal 

integration is optimised for all channel members. From a practical point of view, a 

noncooperative game theoretic approach is effective to coordinate supply chain 

planning in the global business environment due to different business strategies for each 

channel member. In this chapter, a global supply chain planning problem about price 

and quality is introduced by applying noncooperative game to coordinate a 

manufacturer and suppliers. 

This chapter adopts a Stackelberg game where the manufacturer is the leader and 

suppliers are the followers. The “manufactuer-Stackelberg” game is widely used in 

supply chain literatures. In the Stackelberg game, players make decisions sequentially 

where the leader dominates the game. The manufacturer determines an annual 

production level and the selection of outsourcing suppliers as the leader. The selected 

suppliers as followers take the manufacturer’s optimal decisions as the input parameters 

to make decisions.    

In the past, researchers focus on noncooperative games considering price and quality. 

In the games, it is assumed that the complete information can be observed for supply 

chain planning problems. However, there is a difficulty for each player in observing the 

complete information in the global supply chain. Thus, it is more practical to assume 

that the information is asymmetric due to different business strategies in global supply 

chain planning. Therefore, a two-echelon supply chain with uncertain demands is 

investigated where the quality information between the manufacturer and suppliers is 

asymmetric.  
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The objective of this chapter is to provide a game theoretic model including one 

manufacturer and its suppliers with uncertain demands where the quality information is 

asymmetric. The problem is modelled as a Stackelberg game where the manufacturer is 

a leader. Due to the asymmetric information, the quality is unknown by the 

manufacturer. Therefore, two scenarios (average case and worst case) are investigated 

for the manufacturer to estimate the uncertain quality information.  

The rest of this chapter is organised as follows. Related literatures are reviewed in 

Section 6.2. The problem description and modelling are described in Section 6.3. The 

solution approach is provided in Section 6.4. Numerical examples are shown in Section 

6.5. Finally, the chapter is summarised in Section 6.6. 

6.2 Literature Review 

Supply chain management is regarded as an important strategy to be competitive in 

global business environment. Thus, it has received much attention with regard to broad 

activities such as production planning, scheduling and so on [70, 71, 84].  

The coordination methods of supply chain planning have been extensively studied in 

different manners in the past years. Game theory, as a well-known approach, is widely 

used to achieve the coordination. Yu et al. [100] improved members’ profits of supply 

chain systems between a manufacturer and its retailers incorporating the inventory 

policy by studying Stackelberg game problems where advertising, pricing and inventory 

replenishments are all involved. Esmaeili et al. [25] proposed the seller-buyer 

coordination model by noncooperative and cooperative game theory where the unit 

marketing expenditure and the unit price charged by the buyer influence the demand of 

products. The coordination of a supply chain consisting of a manufacturer and a retailer 
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with the return policy was proposed by Xiao et al. [93]. Yang et al. [95] presented an 

assembly supply chain system consisting of one retailer and two suppliers with forecast 

updating. However, quality issues are not involved in those works.    

Quality issues have been studied intensively in supply chain planning. Product 

quality in multi-layer supply chain was investigated to consider the impact on 

production systems by Sana [79]. Due to varying quality levels and prices of products 

from supplier, the manufacturing faces financial risks resulting from unexpected 

fluctuation of demand. Thus, the risk consideration is involved in the formulation [67 - 

68]. They introduced supernetworks in which supply-side and demand-side risk are 

included. A game theoretic approach is provided to optimise global supply chain 

planning concerning quality issues with uncertain demands [97]. However, the 

incomplete quality information is not studied in their studies. From more practical 

perspective, it is important to assume the asymmetry in the information due to different 

business strategies for each entity in the global supply chain planning.  

Esmaeili et al. [25] introduced a seller-buyer supply chain model with an asymmetric 

information structure. They assumed that only buyer knows demand function and is 

aware of seller’s setup cost and purchasing cost. Lei et al. [55] investigated the impact 

of asymmetric information on disruption management when disruptions of demand and 

costs are private information. Most of works related to the asymmetric information in 

game theoretic models assume that demand information is asymmetric. There are rarely 

researches considering the asymmetry in the quality information in game theoretic 

models.  

Tse and Tan [86] studied the unclear information of quality risk and visibility in a 

multi-tier supply chain. They considered the situation of the asymmetric information 
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between manufacturer and supplier. However, they focused on the manufacturer’s 

decision making to manage risk and visibility for supply chain planning. The 

coordination between manufacturers and suppliers is not investigated. 

In this chapter, a game theoretic model including the asymmetric quality information 

is introduced to coordinate the manufacturer and its suppliers in order to improve 

quality in global supply chain planning. Quantity discounts are applied to resolve 

decision making on order quantity, price and production simultaneously for supply 

chain planning [98]. Afterwards, a game theoretic approach is studied for supply chain 

planning under demand uncertainty where the quality information is asymmetric which 

is modelled as a nonlinear programming problem [99]. The main contribution of this 

chapter is that a game theoretic model under demand uncertainty is propsed where the 

asymmetry in the quality information is considered. An equilibrium of the proposed 

game theoretic model is obtained by analysing two scenarios (average case and worst 

case) in order to estimate the uncertain quality information.   

6.3 Problem Description 

6.3.1 Supply chain model 

One manufacturer which produces finished products ),..,1( Kkk  are considered. 

Components ),..,1( Iii   is provided by suppliers ),..,1( Jjj  . The supply chain 

model in this chapter is shown in Fig. 6.1. In order to satisfy uncertain demands, the 

manufacturer purchases components from suppliers to assemble finished products. The 

manufacturer determines an optimal annual production level and the estimated defective 

components under demand uncertainty. Suppliers offer components to the manufacturer 
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Figure 6.1: Supply chain model. 

The asymmetric quality information is considered between one manufacturer and 

suppliers. Quality of components and quantity of components are determined by 

suppliers.  

There are following assumptions in the model: 

1. The quality of components is determined by suppliers. While suppliers offer 

components, the manufacturer receives defective components due to poor quality. 

Moreover, the manufacturer cannot observe the full information. However, the 

information of the average amount and variance of the number of defective components 

is known by the manufacturer. 

2. If the manufacturer receives defective components, the compensation cost will be 

paid by suppliers.  

3. For the manufacturer, the production capacity should be considered. The demand of 
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Quantity 

Decision variables: 

 Production 
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Decision variables: 
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finished products obeys a normal distribution where the density function is given.  

The problem is analysed by a Stackelberg game where the incomplete quality 

information is incorporated. In a Stackelberg game, players have the inequal power to 

make decisions in order to represent a realistic leader-follower relationship. The 

decisions are made sequentially in order to obtain equilibrium. In this chapter, the 

manufacturer acts as a leader whose decisions are solved by considering all possible 

reactions of followers (suppliers)’ decisions. The game sequence is as follows: 

1. The manufacturer determines production planning and estimation of defective 

components. 

2. The supplier decides quantity of components and quality.  

6.3.2 Quality modelling 

In this chapter, the quality of components is evaluated by reliability ijx  of component. 

The supplier j  pays higher cost for producing one component i  if reliability ijx  of 

component i  is increased. Let define that poor quality components have low reliability. 

Thus, it is assumed that production cost ijh  for one unit component i  for the supplier 

depends on reliability ijx  and quantity ijd  of component i  for the supplier. The 

number of defective components is affected by reliability ijx . If reliability ijx  is 

increased, the number of defective components decreases. The production cost is 

expressed by cost function ijh , such as ijijijijijij xCdBAh  . ijA is the fixed 

production cost for one unit component i  paid by supplier j . ijB  is the production 
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cost responsiveness associated with the quantity of component i  for supplier j . It 

indicates that if order quantity ijd  is increased, production cost per one unit component 

increases. The increase of order quantity of components for the supplier causes increase 

of production. Thus, the supplier must pay more production cost such as machinery 

wearout costs or labor costs. ijC  is the production cost responsiveness of reliability ijx  

of component i  for supplier j . It indicates that higher reliability drives the increase 

of production cost. The number of defective component i  is normally distributed 

where ij  is the mean value of the number of defective components which is constant 

known by both of the manufacturer and suppliers. However, the standard deviation of 

the number of defective components ij  is the decision variable for suppliers which is 

unknown for the manufacturer. With the increase of the standard deviation ij , the 

reliability of components will decrease. Therefore, there is the assumption that 

reliability 2

2
ij

exij




 . For instance, if the supplier decides that the deviation of defective 

components is equal to 2, the reliability of components is approximately 0.136. With the 

increase of the deviation ij , the reliability of components becomes better as shown in 

Fig. 6.2. 

 

Figure 6.2: Reliability and deviation. 

0

0.5

1

1.5

0 0.5 1 1.5 2 2.5 3

𝑥𝑖𝑗 

𝛿𝑖𝑗
2  



105 

 

 
 

6. A GAME THEORETIC APPROACH 

 

 

6.3.3 Formulation 

Indices 

i : component for assembling finished products  

j : supplier  

k : product  

Decision variables 

Manufacturer:  

ky : production quantity of finished products k  during the planning horizon 

ijP : estimated quantity of defective component i  for supplier j  

ijv : binary variable which takes 1 if the manufacturer buys component i  from 

supplier j  

jw : binary variable to determine the selection of suppliers j  for actual purchase 

which takes 1 if supplier j  is contracted, and 0 otherwise. 

Supplier: 

ijd : order quantity of component i  for supplier j  

ij : standard deviation of the realised quantity of defective component i  for supplier 

j  

Parameters 

Manufacturer: 

ijU : upper bound of estimation of the worst case for component i  for supplier j  

kr : wholesale price of finished product k  
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ke : unit production cost for product k offering to retailer  

ka : opportunity loss cost for understocking of one unit of product k  

kb : inventory holding cost for overstocking of one unit of product k  

jc : capacity of supplier j  

)( kzf : probability density function obeyed by the demand of the product k  

ijn : internal resource of component i  for supplier j  

ij : penalty cost for extra defective component i  for supplier j  

ij : cost of extra required component i  purchased from supplier j   

ikg : number of units of component i  required to produce one unit of product k  

kt : resource required by the manufacturer to produce one unit of product k  

Q : production capacity of the manufacturer 

ijR : random variable of the realised quantity of defective component i  for supplier 

j  obeys a normal distribution where is ij  is the mean value and ij  is the 

standard deviation of the number of defective component i  for supplier j  

kz : random variable of demand for product k  from the customers obeying by a 

normal distribution  

Supplier: 

ijh : cost of production for one unit component i  for supplier j  

ijq : selling price of component i  for supplier j  

ij : compensation cost of defective component i  paid to the manufacturer by 
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supplier j  

ijx : reliability of component i  for supplier j  

ijA : fixed production cost for one unit component i  for supplier j  

ijB : production cost responsiveness to order quantity of component i  for supplier j  

ijC : production cost responsiveness to risk degree of component i  for supplier j  

 

Due to the asymmetric quality information, the manufacturer cannot observe full 

information of defective components during the negotiation process. Therefore, two 

scenarios (average case and worst case) are investigated for the manufacturer to 

estimate the number of defective components. For the average case, two situations are 

considered by the manufacturer. The number of defective components is estimated by 

minimising the total expected penalty cost. For the worst case, a chance constraint is 

applied.  

6.3.4 The average case model 

Let ijP  denote the estimated quantity of defective components and ijR  be a random 

variable of realised quantity of defective components. It is assumed that the 

manufacturer knows partial quality information of components. Therefore, the realised 

quantity of defective component ijR  obeys a normal distribution ),( 2

ijij   which is 

known by the manufacturer. 

The manufacturer’s objective function of Eq. (6.1) for the average case is the 

maximisation of the total profit. The first term is the expected sales revenue of finished 
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products where the inventory/opportunity loss cost occurs. The second term is the 

production cost. The third term is the purchasing cost of components from the selected 

suppliers. The fifth term is penalty costs of defective components the manufacturer pays. 

The costs arise when the estimated quantity of defective components is less than the 

realised quantity, and then the manufacturer has to order extra components from the 

outsourcing suppliers. The other situation is the manufacturer pays the penalty costs 

when the estimated quantity is more than the realised quantity. The last term is the 

compensation cost received from the selected supplier due to the amount of defective 

components. The formulation is as follows:  

)]},,0[max()],0[max({
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jivw ijj  ,, .                                                    (6.5)                                                                           

Constraint (6.2) represents the production capacity for finished products. Constraint 

(6.3) indicates that the amount of non-defective components ijij Pd   is required in 

order to assemble finished products. Constraint (6.4) is the limited resource constraint 

for the selected suppliers. It is assumed that there is resource capacity for each supplier 

to offer components. Constraint (6.5) is the supplier selection constraint. When the 

manufacturer purchases component i  from supplier j  such that 1ijv , the supplier 

j  must be selected 1jw .  

The supplier j ’s problem is formulated including the sales revenue, the cost of 

components and the penalty cost for defective components as follows: 

 


I

i
ijijijijijijijij RPEPREhqd

1

)]}},0([max)],0([max{)({max  ,          (6.6)                           

  s.t. ijijijijijij xCdBAh  ,                                           (6.7)                                                                                                                                                                                                         

  2

2
ij

exij




 ,                                                     (6.8)                                                                            

where Eq. (6.7) represents production cost which depends on the quantity of 

components and the quality of components. Eq. (6.8) is the reliability function with 

respect to the standard deviation of amount of defective components.  

6.3.5 The worst case model 

The worst case is also considered such that the manufacturer makes pessimistic 

decisions according to its business strategies. Due to different business strategies, the 

definition of the worst case varies. In this chapter, it is assumed that the worst case is 
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that the actual quantity of defective components ijR  is much larger than the estimated 

number of defective components ijP . In other words, ijij PR  . From the practical 

perspective, the manufacturers always surffer more loss once they have to purchase 

extra components. The manufacturer determines an upper bound of this situation in 

order to design optimal production planning. Therefore, a chance constraint is utilised to 

estimate uncertainty of defective components. The chance constraint is to give the upper 

bound when the production cannot be completely achieved. The additional constraint 

for the manufacturer is given to estimate worst case which is expressed by 

ijijij UPR  ]Pr[ ,                                                  (6.9)                                                                                      

where ijU  is a upper bound on the probability Pr  which is decided by decision 

makers. The chance-constraint is given to estimate the probability of worse situations 

that the realised quantity of defective components is greater than estimation, and the 

probability is bounded by ijU .   

In order to facilitate the calculation of chance-constraint, the equation is reformulated 

into a form introduced by Petkov and Maranas [76]. The chance constraint is 

equivalently written as 

ijij UY  1)( ,                                                   (6.10)                        

where the left-hand side )( ijY is a normal cumulative distribution function obeyed by 

),( 2

ijij  . The cumulative normal distribution is recast into the standardized normal 

form. 
ij

ijij

ij

P
Y




  where ij  is the mean value of ijR  and 

2

ij  is the standard 
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deviation of ijR . 

Thus, 
ijijijijij PUY    )1(1  which is equivalent to  

0)1(1 

ijijijij PU  .                                         (6.11)                                                          

The formulation for the worst case is considered by embedding the chance 

constraint of Eq. (6.11) into the function of the average case. 

6.4 Solution Approach 

The manufacturer and suppliers are analysed by a Stackelberg game where the 

manufacturer is a leader and suppliers are followers. The optimal response functions 

should be derived firstly. Then, the manufacturer’s decision is solved by substituting the 

optimal response functions as input parameters. Thus, the supplier’s model becomes a 

constraint for the manufacturer’s model when we solve the Stackelberg game. The 

model becomes a bilevel programming problem. The supplier j ’s objective function is 

rewritten as: 

)]}},0([max)],0([max{)({ 2
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(6.12)                                              

 

Proposition 1 For any given 0ijd  and 0ij , the supplier j ’ s objective function is 

given by 
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with 
ij

ijij

ij

P
Y




 , )( ijYF is a cumulative distribution function, and )( ijYf is a 

probability density function.  

Proof  We utilise a standardised normal distribution form to simplify the stochastic 

model which is introduced in Chapter 4. Thus, we obtain  

  ]))(1()([)],[min( ijijijijijijij YYFYfRPE   ,                        (6.14)                                                                                                                

]))(1()([)],0[max( ijijijijijij YYFYfPRE   ,                       (6.15)                                                                         

)]()([)],0[max( ijijijijijij YfYYFRPE   .                             (6.16) 

Thus, the resulting formulation by substituting Eq. (61.4), Eq. (6.15) and Eq. (6.16) 

into Eq. (6.12) is 
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                                                                     □ 

By using Proposition 1, Eq. (6.12) is reformulated as  
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Proposition 2 Let 
*

ijd  and 
*

ij  be Stackelberg equilibrium of the game, then supplier 

j ’s optimal response functions are given by 
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where 
*

ij

ijij

ij

P
Y




 . 

Proof  The equilibrium of a Stackelberg game is usually solved by a backward 

induction procedure. The supplier’s optimal response functions should be derived first. 

Then, the manufacturer’s decision is solved by substituting supplier’s response 

functions as the input parameters.  

   By taking the first partial derivative of Eq. (6.18) with respect to ij  , we have  
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By solving the equation 0
1






ij

L


, we obtain a critical point of the equation as an 

increasing and concave function subject to ij . Because the following condition is 

satisfied: 
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Thus, we obtain the optimal solution 
*

ij  by solving 0
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By taking the partial first derivative of 
1L  with respect to ijd  and setting the result 

to zero as follows: 
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This equation is obtained from  
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We obtain the optimal solution 
*

ijd  by solving Eq. (6.23). 

                                                                     □                                                        

By applying Proposition 2, Eq. (6.22) and Eq. (6.23) are the optimal response 

functions in the Stackelberg game. The manufacturer is treated as a leader, then the 

Stackelberg game is solved by substituting Eq. (6.22) and Eq. (6.23) in the 

manufacturer`s model. The Stackelberg game theoreic model is written as follows: 
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(6.25) 

s.t. (6.2) - (6.5), (6.19), (6.20).  

The final model is is formulated as a mixed integer nonlinear programming problem 

which is NP-hard. The normalization technique introduced in Chapter 4 is used to 

reformulate the problem. The final formulation is expressed as follows: 
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where  
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s.t. (6.2) - (6.5), (6.19), (6.20).    

By using error functions, the problem can be solved by GAMS (Basic Open-source 

Nonlinear Mixed Integer programming). The algorithm of solution approach is given as: 

Step 0: Initialise parameters of the model. 

Step1: Derive the supplier’s optimal response functions by Eq. (6.19) and Eq. (6.20). 

Step 2: Solve the manufacturer` total profit problem Eq. (6.26) with constraints to 

obtain optimal decisions. 

Step 3: Solve the selected suppliers’ problem by substituting the manufacturer’s optimal 

solutions. 

6.5 Computational Examples 

6.5.1 Case study 

In this section, the proposed approach is applied to an illustrative case study. We 

investigate an electronic device global supply chain depicted in Fig. 6.3. The numerical 

example is conducted to demonstrate the features of the proposed model. Three 

outsourcing suppliers )3( J  which offer five electronic parts )5( I  are considered 

in Fig. 6.3. The manufacturer assembles two types of electronic devices )2( K  to sell 
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to the market. The demand of the finished products from customers is assumed to obey 

a normal distribution with the mean value of 19 for each product and the standard 

deviation of 18 for each product, respectively. One type of components is required in 

order to assemble a finished product. The mean value of the quantity of defective 

components is 3. The resource capacity for each supplier is 250. The price of 

components is set from 100 to 150. When the manufacturer purchases the extra 

components, the unit purchasing cost is 5. The unit compensation cost paid by the 

supplier is 4. Other parameters are presented in Table 6.1. 

Figure 6.3: Electronic device global supply chain model. 

Table 6.1: Parameters setting. 

 Product1 Product 2 

Unit sales price 2000 2000 

Unit product cost 80 100 

Capacity 80 80 

Opportunity loss cost 150 120 

Inventory holding cost 20 30 

 Parts Products 

Manufacturer 

Supplier1 

Supplier 2 

 

 

 
Supplier 3 
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6.5.2 Analysis of equilibrium 

A PC with Intel(R) CoreTM i7-3770 3.4 GHz processor and 8GB memory is used for 

the computation. The program is encoded by GAMS and solved by BOMININ (Basic 

Open-source Nonlinear Mixed Integer programming). Since the profit monotonically 

increases with the decrease of ijU , the discussion of selection of parameter ijU  is 

neglected. The upper bound of the worst case ijU  is set to 0.6. A near-optimal solution 

is derived by the proposed method. The absolute gap and the relative gap are almost 

zero. The optimal solutions for the manufacturer for the average case and the worst case 

are shown in Table 6.2. 

Table 6.2: Optimal solutions for the manufacturer. 

Average case  Product 1 Product 2    

Production  44.5 18.0    

  Component1 Component 2 Component3 Component4 Component5 

Estimation Sup1 

Sup2 

Sup3 

0 

4.000 

3.000 

0 

4.404 

3.000 

0 

4.000 

3.000 

0 

4.404 

3.000 

0 

4.404 

3.000 

Quantity of 

component 

Sup1 

Sup2 

Sup3 

0 

75.000 

66.667 

0 

75.041 

66.667 

0 

75.000 

66.667 

0 

75.041 

66.667 

0 

75.041 

66.667 

Profit  81256.741     

Worst case  Product 1 Product 2    

Production  44.5 18.0    

  Component1 Component2 Component3 Component4 Component5 

Estimation Sup1 

Sup2 

Sup3 

3.342 

4.464 

3.414 

3.349 

4.464 

3.407 

3.349 

4.464 

3.407 

3.342 

4.464 

3.414 

3.349 

4.464 

3.407 

Quantity of 

components 

Sup1 

Sup2 

Sup3 

75.053 

75.056 

66.745 

75.056 

75.056 

66.741 

75.056 

75.056 

66.741 

5.053 

75.056 

66.745 

75.056 

75.056 

66.741 



118 

 

 
 

6. A GAME THEORETIC APPROACH 

 

 
Profit  81220.765     

 

In Table 6.2, we observe that supplier 2 and supplier 3 are selected for the average case. 

However, all suppliers are selected for the worst case. The total profit increases for the 

average case compared with the profit for the worst case, although the production of 

finished products stays the same. In order to avoid the huge loss, the manufacturer 

estimates that the quantity of defective components for the worst case is more than the 

quantity for the average case. Thus, the required quantity of components also climbs up 

for the worst case. From the results, we conclude that the strategy for the manufacturer 

to avoid the huge loss in the worst case is to increase the estimated quantity of defective 

components properly. 

6.5.3 Sensitivity analysis 

In order to illustrate the features of the model, key parameters are analysed. We conduct 

three cases to analyse the impact of the parameter ijB which is the production cost 

responsiveness to demand and the parameter ijC  which is the production cost 

responsiveness to quality for two scenarios (average case and worst case). The 

experiments for comparison are executed to show how each parameter affects the order 

quantity of components, estimation and the profit, respectively. The results are 

presented in Table 6.3. 

In Table 6.3, it is noticed that the decrease of ijC  drives the decrease of profits for 

both of the average case and the worst case. At the same time, the manufacturer has to 

order more components from suppliers. Comparing Case 2 with Case 1, we notice that 
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if ijB  decreases, the estimatiated quantity of defective components does not change. 

However, the profits decrease. The suppliers try to cut down the production cost by 

decreasing the quality of components in order to increase the total profits. However, the 

manufacturer expects the high quality of components in order to reduce the penalty 

costs. Thus, meaningful parameters for game theoretic models should be reasonably set. 

From the computational results, we conclude that it is necessary to optimise demand 

and quality simultaneously for decision makers in order to obtain the maximum profits. 

 

Table 6.3: Production cost related to parameters. 

  Case 1 Case 2 Case3 

Average case  A=10 

B=0.6 

C=10 

A=10 

B=0.5 

C=10 

A=10 

B=0.6 

C=8 

Profit  80485.908 72056.741 79610.908 

Quantity of components Supplier1 

Supplier2 

Supplier3 

75.000 

212.500 

66.667 

90.000 

255.000 

80.000 

76.667 

217.500 

68.333 

Estimation Supplier1 

Supplier2 

Supplier3 

3.000 

9.000 

3.000 

3.000 

9.000 

3.000 

3.000 

9.000 

3.000 

Worst case     

Profit  80453.272 69924.358 79578.960 

Quantity of components Supplier1 

Supplier2 

Supplier3 

75.056 

212.668 

66.726 

90.053 

255.172 

80.060 

76.718 

217.664 

68.391 

Estimation Supplier1 

Supplier2 

Supplier3 

3.342 

10.225 

3.363 

3.312 

9.972 

3.331 

3.338 

10.044 

3.358 

 

In this chapter, the demand of finished products is assumed to be uncertain. In order 
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to demonstrate the impact of demand uncertainty on profits for the average case and the 

worst case, the experiments for comparison are conducted by analysing the deviation of 

demand of finished products. The results are given in Table 6.4. 

The results show that the profits for both of the average case and the worst case 

always increase if the deviation is decreased. It indicates that if the demand from the 

market becomes stable, the manufacturer could obtain more profits. In this chapter, we 

only conduct very small size problems to illustrate the feature of the model. For further 

investigations, it is also important to investigate large scale size problems and develop 

an efficient solution approach in order to solve practical problems for real-world 

applications. 

Table 6.4: Sensitivity analysis of demand deviation. 

Case 1 Deviation 

Product 1= 14    Product 2= 13 

Average case (profit) 79610.908 

Worst case (profit) 79578.960 

Case 2 Deviation 

Product 1= 13    Product 2= 12 

Average case (profit) 80870.258 

Worst case (profit) 80838.310 

Case 3 Deviation 

Product 1= 10    Product 2= 10 

Average case (profit) 83425.765 

Worst case (profit) 83393.817 
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6.6 Summary 

In this chapter, a two echelon supply chain consisting of one manufacturer and its 

suppliers with uncertain demands is introduced where the quality information is 

asymmetric. The problem is analysed as a Stackelberg game where the manufacturer is 

a leader and suppliers are followers. The primary interest of this chapter is to investigate 

the estimation technique while quality information is asymmetric. Due to asymmetric 

information, the quality information of components purchased is unknown to the 

manufacturer. Thus, the manufacturer encounters uncertain amount of defective 

components after ordering. In order to estimate the number of defective components, 

two scenarios (average case and worst case) are introduced. This is is a general 

framework to consider estimation approaches in a game theoretic model. In future, it is 

interesting to investigate more complex scenarios. 
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Chapter 7  

Conclusion and Remarks 

 

In this thesis, game theoretic approaches are addressed to coordinate a manufacturer and 

multiple suppliers in global supply chain planning. A Stackelkberg game is applied to 

analyse the problem where the manufacturer is a leader and the suppliers are followers. 

The outline of the thesis is summarised as follows. 

In Chapter 3, the manufacturer’s decision problem with quantity discounts under 

demand uncertainty is addressed. The supply chain planning problem with uncertain 

demands is formulated as a mixed integer nonlinear programming problem (MINLP) 

with integral terms which is NP-hard. An outer approximation algorithm with a heuristic 

is proposed to solve the problem. By setting the duality gap is less than 1% and the 

update time of upper bounds cannot exceed 10, the computational results are obtained 

by the proposed method. The results show that the computational time increases 

significantly as the size of problems increases. The computational experiments are also 

conducted to investigate OA-SQP, OA-Heuristic and Zhang and Ma’s method. It takes 

87.4 seconds to solve the problem by OA-SQP, and 87.4 seconds and 1.5 seconds to 

solve the problem by OA-SQP and OA-Heuristic, respectively. However, the duality 

gap of OA-Heuristic is 8.91% which is the worst.  
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In Chapter 4, a reformulation of the supply chain planning problem is introduced. 

Both of incremental discount and all units discount models under demand uncertainty 

are presented. In order to reduce the computational complexity, the models are 

reformulated by a normalisation technique. The stochastic model is reformulated as an 

equivalent deterministric form. The computational results are obtained to compare the 

direct integral formation and the reformulation of the model. For small size instances, 

the computational time of both of the direct integral formulation and the reformulation 

of the model cases are no more than 40 seconds. However, the computational time of 

reformulation cases are significantly reduced compared with of the direct integral 

formulation cases for large size instances.  

In Chapter 5, a game theoretic model with quantity discounts under demand 

uncertainty is introduced. A Stackelberg game is applied to coordinate a manufacturer 

and multiple suppliers in supply chain planning. The manufacturer is assumed to be a 

leader and the suppliers are followers. By deriving suppliers’ optimal response functions, 

the optimal discount schedules are obtained. The total computational time to derive the 

problem is 0.842 seconds. It demonstrates a near-optimal solution is obtained by the 

proposed method. 

In Chapter 6, the asymmetric quality information in a game theoretic model is 

addressed. The supply chain system consists of one manufacturer and its suppliers who 

are involved in purchasing and production with uncertain demands. Due to asymmetric 

information, the manufacturer cannot observe the complete information of the quality of 

components. Thus, we investigate two scenarios (average case and worst case) for the 

manufacturer to estimate the quality of components. A near-optimal solution is obtained 

by the proposed method. The sensitivity analysis shows as if the demand from the 



125 

 

 
 

7. CONCLUSION AND REMARKS 

 

 

market becomes stable, the manufacturer obtains more profits for both of the average 

case and the worst case.  

The latter half of this thesis focuses on Stackelberg game theoretic approaches to 

coordinate one manufacturer and suppliers in global supply chain planning. In future, it 

is also interesting to consider Nash games for different applications of other industries 

in supply chain planning. A two echelon supply chain is treated as a realistic supply 

chain model in this thesis. However, it is necessary to extend the problem to consider 

three echelon supply chains in order to achieve the coordination of global supply chain 

planning. Moreover, a general estimation approach is proposed to solve the asymmetric 

quality information problem in a game theoretic model. More sophisticated estimations 

are required in order to apply to solve practical problems.      
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