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Abstract

When a light illuminates metallic nanoparticles, a strongly en-

hanced electric field appears on the surface due to the excitation

of a surface plasmon. For a metallic nanodimer, the strong en-

hanced field appears at the nanogap, and thus, this system can

act as an optical cavity. However, the quality factor (Q factor)

of such a plasmonic cavity is extremely low (Q ≈ 10) because of

the large plasmon damping. The improvement of the Q factor is

expected to be achieved by utilizing exciton resonance of semi-

conductor nanostructures because the damping rate of an exciton

is much smaller than that of the plasmon.

In this thesis, I theoretically propose and design semiconduc-

tor nanogap as a new high-Q cavity, utilizing the exciton effect.

In general, electromagnetic (EM) simulation methods such as a

finite-difference time-domain (FDTD) method are usually em-

ployed to analyze the performance and determine the optimal

design of various optical devices. However, the established simu-

lation methods cannot be applied to semiconductor having exci-

ton resonance because of the nonlocality of a dielectric function

near the exciton resonance. At first, therefore, I develop a simula-

tion method to calculate the EM field scattered by semiconductor

nanostructure taking account of an exciton confined in arbitrary

geometry.

We consider the nanogap structure constructed by two CuCl

islands, and calculate EM fields using the developed simulation

method. A light field at the nanogap is significantly enhanced

by a factor of ≈ 103. This enhancement factor is about 10 times
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smaller than that of metallic nanogap with the same structure.

However, the semiconductor nanogap exhibits much higher Q fac-

tor (Q ≈ 104) at T = 40◦K than that of a metallic nanogap. The

result indicates that the semiconductor nanogap functions as a

high-performance optical cavity.

In order to demonstrate the performance of the semiconduc-

tor nanogap cavity, a vacuum-Rabi splitting of a two-level system

placed at the nanogap is calculated. The resulting spectral peaks

exhibit clear anti-crossing behavior. The Rabi splitting energy

reaches ≈ 0.5 meV for dipole moment ≈ 10 Debye of the two-

level system, and is much larger than that for the two-level sys-

tem with the same dipole moment embedded in a photonic slab

cavity or micropillar cavity. This result shows that the proposed

semiconductor nanogap cavity acts as an efficient cavity.
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Chapter 1

Introduction

Resonant excitation of a surface plasmon in metallic nanostructures induces

a very intense electromagnetic (EM) field, which is called a hotspot, in a

nanometer-scale region. This interesting optical properties pave the way

to a plasmonics. In the past decade, the plasmonics has been attracted

much attention because of their potential applications, such as the biochem-

ical sensing, surface-enhanced Raman spectroscopy (SERS) [21], the optical

manipulations [31], the application to the antenna operated in the optical

frequencies [20], and other various challenging applications. In particular, a

nanogap constructed by metallic islands generates an extensively strong field

at the gap region due to a so-called gap-mode plasmon, and the field strength

is amplified by a factor of 104 ∼ 106 [32, 14].

The nanogap structures can be considered as a photonic cavity because

of the strong light confinement. However, the relaxation time of plasmon

modes is very fast (10 ∼ 100 fs) due to the electron-electron scattering, and

the fast relaxation time lowers the performance of the photonic cavity. In

general, the efficiency of the photonic cavity is specified by a quality factor

(Q factor), which is defined as the ratio between an energy loss and a stored

energy. The Q factor of the metallic nanogap cavity is limited to ≈ 101 [33]

because of the short relaxation time of the plasmon.

In photonic cavities, a light-matter interaction becomes very strong, and

thus, the interaction occurs at one-photon level. In this situation, light in the

cavity should be treated as photons in the cavity quantum electrodynamics
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(cQED). One of the characteristic features of the cQED is the vacuum-field

Rabi splitting of the two coupled states of material exciton and a cavity-mode

photon (strong-coupling regime). Recently, the Rabi splitting of a quantum

dot (QD) in photonic cavities has been observed [34, 25, 23]. The realiza-

tion of the semiconductor-based Rabi splitting is desired in applications of a

quantum information processing and quantum computation, for example, an

efficient entangled photon generation in the strong-coupling regime is pre-

dicted [3].

The Rabi splitting energy becomes larger for smaller cavity-mode volume

in addition to the larger oscillator strength of a matter. The spectral width

corresponding to the coupled states becomes narrower with increase of the

Q factor. Therefore, the small cavity-mode volume and large Q factor are

necessary for photonic cavities to observe a clear Rabi splitting.

In previous experiments, the photonic crystal cavity [34], the micro-pillar

cavity [25], and the micro-disk cavity [23] are utilized to observe the vacuum

Rabi splitting. For conventional photonic cavities, however, the cavity-mode

volume is restricted to the volume characterized by the light wavelength

(diffraction limit). The cavity-mode volume of metallic nanogap cavities

reaches the cube of subwavelength exceeding the diffraction limit.

Schlather et. al. [29] have reported the observation of a giant Rabi split-

ting of molecular excitons placed at the metallic nanogap cavity. Although

the Rabi splitting is large, each spectral width of the two peaks is very broad

and comparable to the splitting energy because of the large plasmon damping.

However, a clear Rabi splitting is expected to be observed by constructing a

nanogap structure using semiconductor having exciton resonance.

In this thesis, we propose and analyze a new type of the photonic cavity

constructed by semiconductor nanostructures, in which resonant scattering

by exciton causes a hotspot at the nanogap. The spectral width of the con-

fined exciton is much smaller than that of the surface plasmon, and thus, the

cavity Q factor is significantly improved. The semiconductor nanogap cavity

has also small mode volume exceeding the diffraction limit. Consequently,

a clear Rabi splitting of ≈ 0.5 meV is theoretically demonstrated for dipole

moment of ≈ 10 Debye of a two-level system (a QD or molecules) placed at

the nanogap. This splitting energy is much larger than that for the two-level

7



system with the same dipole moment embedded in a photonic slab cavity or

micropillar cavity.

For this purpose of the above-mentioned numerical simulations, I have

developed a simulation method to calculate the EM field scattered by semi-

conductor nanostructure taking account of an exciton confined in arbitrary

geometry. The general EM simulation methods such as a finite-difference

time-domain (FDTD) method are usually employed to analyze the perfor-

mance and determine the optimal design of various optical devices. How-

ever, the established simulation methods cannot be applied to semiconductor

having exciton resonance because of the nonlocality of a dielectric function

near the exciton resonance. The developed method overcomes this difficulty

by added in an additional boundary condition to a finite-element method

(FEM). To avoid spurious solutions and enhance the precision, I have also

developed a hybrid edge-nodal element formulation in the FEM. The de-

veloped method is confirmed to be valid through a comparison with the

scattering cross section of a spherical semiconductor calculated by Mie the-

ory. This method provides well-resolved characteristic polarization patterns

reflecting the size-quantized exciton. The developed method makes it possi-

ble to design the optical functions of semiconductor nanostructures such as

semiconductor nanogap cavity for the first time.

This thesis is organized as follows. In Chap. 2, the general formalism of

the FEM for EM simulations of dielectric material is described. The mathe-

matical background of the FEM is also explained. Although these simulations

are limited to dielectric material and metal, it is quite useful and effective in

the fascinating research fields of plasmonics and metamaterials. In Chap. 3,

I develop a new simulation method to calculate the EM field scattered by

exciton confined in arbitrary geometry. In Chap. 4, I propose a semicon-

ductor nanogap cavity. Toward to the optimal design of the semiconductor

nanogap cavity, the angle dependence of the enhancement factor is studied

for a bow-tie shaped structures. In Chap. 5, I theoretically demonstrate the

vacuum-Rabi splitting of a two-level emitter placed at the gap region of the

semiconductor nanogap cavity. Finally, I conclude the discussion of the main

results of this thesis in Chap. 6.
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Chapter 2

General Formalism of Finite

Element Method

The present chapter overviews the general formalism of the finite element

method (FEM) [17], which is employed to solve the Maxwell equations in

this study. The FEM is known as a technique for solving the boundary-value

problems of partial differential equations defined over the arbitrary shaped

region. The boundary-value problems appear in many physical systems, and

thus the numerical methods to solve those problems are quite useful. The

FEM was originally developed for the problems of structural mechanics. Cur-

rently, the FEM has been applied to a wide range of physical problems, such

as the fluid dynamics, thermodynamics, quantum mechanics and electromag-

netic (EM) problems.

In the former part of this chapter, two major formalisms to treat the

boundary-value problems are introduced: the Galerkin and Ritz methods. In

the latter part, we discuss the computation of the Maxwell’s wave equation,

which governs the EM field in the media, for one-dimensional (1D), two-

dimensional (2D) and three-dimensional(3D) systems.

At first, we consider a typical differential equation:

L̂φ = f , (2.1)

where L̂ is the differential operator, φ is the unknown function to be deter-

mined, and f is the forcing function corresponding to the source term such
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as a charge or current in the EM problems. We shall provide the numerical

method to solve Eq. (2.1). In the numerical computations, the continuous

function φ is approximated by the linear combination of a finite number of

basis functions ui as follows:

φ̃ =
∑

i

ciui , (2.2)

where ci is the unknown Expansion coefficient and φ̃ is the approximated

function called “trial function”. There are two major approaches to deter-

mine the optimal ci: weighted residual method (WRM) and Ritz method.

Although the Ritz method, which is described later, is limited to the positive-

definite Hermitian operator, the Galerkin method can be applied to a general

problem.

2.1 Weighted residual method

2.1.1 Weighted residual

A residual is defined as the error caused by substituting the approximated so-

lution into the differential equation. We define a residual of the trial function

φ̃ as follows:

r = L̂φ̃− f . (2.3)

If the φ̃ is the exact solution of Eq. (2.1), r becomes zero at every positions.

Taking a inner product with a weighting function ωi, we get a weighted

residual Ri:

Ri = (ωi, r) = (ωi, L̂φ̃)− (ωi, f) , (2.4)

where (ωi, r) represents the inner product defined as

(ωi, r) =

∫
dξ ω(ξ)∗r(ξ) . (2.5)
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In the WRM, φ̃ is determined such that the weighted residual becomes zero,

and thus, φ̃ is obtained by imposing

Ri =
∑

j

(ωi, L̂uj)cj − (ωi, f) = 0 . (2.6)

for all ωi. This condition yields simultaneous linear equations:

{Lij}{cj} ={fi} , (2.7)

with

Lij =(ωi, L̂uj) , (2.8)

fi =(ωi, f) . (2.9)

Note that the number of weighting functions should be equal to the number

of the unknown variables cj.

2.1.2 Weighting function

There are some kinds of the weighting functions ωi. Here, we explain four

popular methods: Galerkin method, point matching method, subdomain col-

location method, and least square method

Galerkin method

The Galerkin method is known as the most popular formalism among the

family of WRMs, and this method leads to the same simultaneous linear

equations derived from the Ritz method.

In the Galerkin method, the basis function ui in Eq. (2.2) is used as the

weighting function ωi, and Lij and fi in the simultaneous linear equations

[Eq. (2.7)] are given by

Lij =(ui, L̂uj) , (2.10)
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and

fi =(ui, f) , (2.11)

respectively.

Point matching method

In the point matching method or the point-collocation method, we impose

the trial function to satisfy Eq. (2.1) at specific points:

L̂φ̃(ξi) =f(ξi). (2.12)

This condition is equivalent to select the Dirac’s delta function as the weight-

ing function:

ωi(ξ) =δ(ξ − ξi) . (2.13)

The resulting weighted residual is given by

Ri =
∑

j

L̂φ̃j(ξi)cj − f(ξi) . (2.14)

Subdomain collocation method

In the Subdomain collocation method, we impose the average of the residuals

to be zero in a specified area. We divide an entire domain Ω into a set of

subdomains Ωi:

Ω =Ω1 ∪ Ω2 ∪ · · · ∪ Ωn . (2.15)

The weighting function ωi is defined to be a constant in the subdomain Ωi

and zero elsewhere:

ωi(ξ) =





1 ξ ∈ Ωi

0 ξ 6∈ Ωi

(2.16)
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The resulting weighted residual is given by

Ri =
∑

j

cj

∫

Ωi

L̂uj(ξ)dξ −
∫

Ωi

f(ξ)dξ . (2.17)

Least square method

In the least square method, we consider the square of residual:

I =
1

2

∫ ∥∥∥L̂φ̃− f
∥∥∥

2

(2.18)

=
1

2

∫ ∑

ij

c∗i cj
(
L̂ui, L̂uj

)
−
∑

i

c∗i

(
L̂ui, f

)
−
∑

j

cj

(
L̂f, uj

)
+ |f |2

(2.19)

The best approximated solution φ̃ is obtained form the condition to minimize

I with respect to ci:

∂I

∂c∗i
=

∫ (
L̂ui
)(∑

j

L̂cjuj − f
)

= 0 . (2.20)

Comparing to Eq. (2.4), this condition is equivalent to the WRM with the

weighting function ωi defined by

ωi =L̂ui. (2.21)

2.2 Ritz method

The Ritz method is an approach based on a variational principle. In this

method, one can obtain the optimal approximate solution by searching min-

imum of an appropriate functional leading to a governing equation. For

example, let us consider a functional leading to Eq. (2.1):

F [φ] =
1

2

(
φ, L̂φ

)
− 1

2
(φ, f)− 1

2
(f, φ) . (2.22)
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The stationary condition of the functional provides Eq. (2.1). Taking the

variation of Eq. (2.22), we get

δF = F [φ+ δφ]−F [φ]

=
1

2

(
δφ, L̂φ

)
+

1

2

(
φ, L̂δφ

)
− 1

2
(δφ, f)− 1

2
(f, δφ)

=
1

2

(
δφ, L̂φ− f

)
+

1

2

(
L̂φ− f, δφ

)
, (2.23)

and the stationary condition is given by

δF =
1

2

(
δφ, L̂φ− f

)
+

1

2

(
δφ, L̂φ− f

)∗
= 0 ,

where we have used the definition of the self-adjoint operator L:

(
φ, L̂ψ

)
=
(
φL̂, ψ

)
. (2.24)

Thus, the exact solution of Eq. (2.1) is derived from the stationary condition

of the functional (2.22). Let us consider the second-order variational of F :

δ2F = δF [φ+ δφ]− δF [φ] =
(
δφ, L̂δφ

)
. (2.25)

Because L̂ is a positive definite operator:

(
δφ, L̂δφ

)
≥ 0 , (2.26)

we have

δ2F ≥ 0 . (2.27)

Therefore, the stationary point is the minimum of the functional, and the

minimum condition of F provides the governing equation (2.1).

Similar to the case of WRM, we expand the φ̃ by Eq. (2.2) and substitute

it into Eq. (2.22).

F [ci] =
1

2

∑

ij

c∗i cj
(
ui, L̂uj

)
− 1

2

∑

i

c∗i (ui, f)− 1

2

∑

j

cj(f, uj) . (2.28)
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Taking a partial derivative of c∗i , we have

∂F

∂c∗i
=

1

2

[∑

j

(
ui, L̂uj

)
cj − (f, uj)

]
. (2.29)

Taking ∂F/∂c∗i = 0 for all the ci, we get simultaneous linear equations. Note

that the linear equations have the same form as Eq (2.7) with Eqs. (2.10)

and (2.11) when L̂ is the positive-definite and self-adjoint operator. Namely,

the Ritz method is equivalent to the Galerkin method.

2.3 Basis function

In the previous section, we have introduced formalisms to compute differen-

tial equations: the WRM and Ritz method. In both methods, the appropriate

basis functions are necessary for the discretization in numerical computa-

tions. In this section, we describe several kinds of the basis functions: the

nodal and edge basis.

In general, it is impossible to find analytic basis functions suitable for an

arbitrary geometry. In the FEM, the entire computation domain is subdi-

vided into the set of small subdomains so-called volume elements as shown in

Fig. 2.1. All the volume elements are labeled by a set of integers e = 1, 2, · · · ,
and the nodes of each element are labeled as i = 1, 2, · · · . The ith node in

the eth element is denoted by a local label (e; i). The ith node in the eth vol-

ume element is denoted by a local label (e; i). Any node can be indicated by

multiple local labels because the node belongs to multiple volume elements.

For one-to-one mapping between the nodes and integers, we create a global

label s(e; i) = 1, 2, · · · for all nodes. The triangular element at the interface

belonging to the eth volume element is denoted by fe.

For a 1D model, the elements are usually short line segments. The points

dividing the whole region (line) into the segments denote the nodes. For a

2D model, small triangles are usually adopted as the elements. The three

vertexes of the triangles denote the nodes of the element.. For a 3D model,

small tetrahedrons are usually adopted as the elements. The four vertexes of

the tetrahedrons denote the nodes of the elements.
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(a) One-dimensional problem

(b) two-dimensional problem

(c) three-dimensional problem

Figure 2.1: Basic finite elements. (a) One-dimensional element (line seg-
ment). (b) Two-dimensional element (triangle). (c) Three-dimensional ele-
ment (tetrahedron)
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For 1D case, the computation domain is expressed as a line bounded by

xmin ≤ x ≤ xmax . (2.30)

In the discretization of the line domain, we consider the points dividing the

line into several segments:

xmin = x1 < x2 < · · · < xN = xmax (2.31)

where the dividing points x1, x2, · · · , xN denote the nodes of the element

represented by the global label, and the line segment (xi ≤ x ≤ xi+1) denotes

the i-th elements as shown in Fig. 2.2]

The approximated basis function within a segment is obtained from a

linear interpolation, and the resulting basis function is represented by

φ̃(x) =
xi+1 − x
xi+1 − xi

φi +
x− xi
xi+1 − xi

φi+1, (xi ≤ x < x1+1) , (2.32)

where φi = φ(xi) is given. In the local-label representation, thus, φ(x) in the

whole region is given by

φ̃(x) =
∑

e

∑

i=1,2

φ(e;i)L(e;i)(x) (2.33)

with

L(e;i)(x) =





x(e;i+1)−x
x(e;i+1)−x(e;i) (i = 1, x(e;i) ≤ x < x(e;i+1))

x−x(e;i)
x(e;i+1)−x(e;i) (i = 1, x(e;i) ≤ x < x(e;i+1))

0 (Otherwise)

, (2.34)

where e is the index of an element, i = 1, 2 is the local index of the two ends,

and (e; i) denotes the local label of a node i within element e. The function

L is the interpolation function also known as the expansion or basis function.

As shown in Eq. (2.34), L(e;i)(x) is non-zero linear function defined within

the element e. Because of L(e;i)[x(e;i)] = L(e;i)[x(e;i+1)] = 1 the expansion

coefficient φ(e;i) agrees with the value of φ̃(x) at the node x(e;i). Therefore,

17



(a)

+

+

=

(b)

Exact solution

Basis functions

(c) Approximated solution

Figure 2.2: A schematic illustration of the linear interpolation and the basis.

18



this basis is called a nodal basis.

For the 2D case, triangles with three nodes are usually adopted as the

geometry of the volume elements. The nodal basis function is written as

L(e;i)(x, y) =




a

(e)
i,xx+ a

(e)
i,yy + b

(e)
i [(x, y) ∈ Ω(e)]

0 Otherwise
, (2.35)

where a
(e)
i,x , a

(e)
i,y and b

(e)
i are the linear coefficients determined by the condition:

L(e;i)(xj, yj) =δi,j , (2.36)

where x(e;j) and y(e;j) are the positions of the j-th node of the volume element

e, and δi,j is the Kronecker’s delta. Equation (2.35) is explicitly written as



a

(e)
1,x a

(e)
1,y b

(e)
1

a
(e)
2,x a

(e)
2,y b

(e)
2

a
(e)
3,x a

(e)
3,y b

(e)
3






x

(e)
1 x

(e)
2 x

(e)
3

y
(e)
1 y

(e)
2 y

(e)
3

1 1 1


 =




1 0 0

0 1 0

0 0 1


 . (2.37)

The coefficients a
(e)
i,x , a

(e)
i,y and b

(e)
i are obtained from the inverse of the matrix

composed by x
(e)
i , y

(e)
i , and z

(e)
i .

For the 3D case, tetrahedral structures with four nodes are usually adopted

as the geometry of the volume elements, and the nodal basis are written as

L(e;i)(x, y, z) =




a

(e)
i,xx+ a

(e)
i,yy + a

(e)
i,z z + b

(e)
i [(x, y, z) ∈ Ω(e)]

0 Otherwise
. (2.38)

In a similar manner to the 2D case, the coefficients a
(e)
i,x , a

(e)
i,y , and a

(e)
i,z are

determined by

L(e;i)[x(e;j), y(e;j), z(e;j)] =δi,j . (2.39)

The nodal basis is suitable to calculate scalar fields. In the conventional FEM

formalism, scalar or vector fields are assigned at the nodes of the volume

elements (node elements).

For transverse vector fields, however, a higher accuracy can be obtained
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if the fields are assigned at the edges of the volume elements (edge ele-

ments) [8, 7]. The vector fields are expressed by the edge-element basis

W(e;ij)(r) defined as

W(e;ij)(r) =
1

lij

[
L(e;i)(r)∇L(e;j)(r)− L(e;j)(r)∇L(e;i)(r)

]
, (2.40)

where lij is the length of the edge between nodes (e; i) and (e; j). The trans-

verse vector fields can be approximated by a linear combination of basis

functions as follows:

Ẽ(e;ij) =
∑

e

∑

i 6=j
E(e;ij)W(e;ij) , (2.41)

The expansion coefficients E(e;ij) represent field amplitudes at specific points:

E(e;ij) =t̂(e;ij) ·E[r(e;ij)] , (2.42)

where t̂(e;ij) denotes a unit vector parallel to the edge between nodes (e; i)

and (e; j).

Note that the edge-element basis W(e;ij)(r) automatically satisfies the

divergence-free condition [∇·W(e;ij) = 0] of transverse fields [7]. This feature

is confirmed by taking the divergence of Eq. (2.41) as follows:

∇ ·
[∑

e

∑

i 6=j
E(e;ij)W(e;ij)

]
=∇ ·

[∑

e

∑

i 6=j
E(e;ij)

(
L(e;i)∇L(e;j) − L(e;j)∇L(e;i)

)
]

=
∑

e

∑

i 6=j
E(e;ij)

(
∇L(e;i) · ∇L(e;j) −∇L(e;j) · ∇L(e;i)

)

=0 . (2.43)

Since the transverse character of Ẽ(e;ij) is guaranteed, the edge elements

avoid spurious solutions and provide more accurate transverse fields than

those calculated using nodal elements. The schematic illustrations of the

nodal basis and edge basis are depicted in Fig. 2.3.
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2.4 Application to electromagnetic fields

In the previous section, we have described the general FEM to solve boundary-

value problems. In this section, we focus on the Maxwell’s equations which

govern the electric and magnetic fields in dielectric media.

We consider the time-harmonic Maxwell’s equations:

div E =4πρ , (2.44)

curl E =
iω

c
H , (2.45)

div H =0 , (2.46)

curl H =− iωε

c
E +

4π

c
j , (2.47)

where E and H are the electric and magnetic fields, respectively, ρ is the

macroscopic charge and j is the current density. From Eqs. (2.44) and (2.45)

with j = 0, ρ = 0, we get the Maxwell’s wave equation:

curl curl E − εk2
0E =0 . (2.48)

2.4.1 One-dimensional case

As a typical 1D case, we consider the light reflection by the film layer with

the thickness of L. We take xy plane parallel to the film surface, and an

x-polarized incident light is illuminated to the z direction. The illustration

of this problem is depicted in Fig. 2.4. In this situation, the electric field is

treated as scalar, and Eq. (2.48) is written as

[
∂2

∂z2
+ ε(z)k2

]
Ex(z) =0 , (2.49)

where ε(z) is the relative permittivity at z, k is the wave number in the

background media. Comparing the above equation with Eq. (2.1), we get

L̂ =
∂

∂x2
+ k2 . (2.50)
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(a) Nodal-element basis

(b) Edge-element basis

Figure 2.3: Schematic illustrations of the (a) nodal-element basis L(e;i)(r)
and (b) edge-element basis W(e;ij)(r).

Figure 2.4: Schematic illustrations of the one-dimensional (thin-film) model
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Substituting this L̂ into Eq. (2.22), the weak-form functional can be written

as

F [Ex] =

∫ L

0

dz E∗x

[
∂2

∂2z
+ ε(z)k2

]
Ex

=− 1

2

∫ L

0

dx

∥∥∥∥
∂Ex
∂z

∥∥∥∥
2

− ε(z)k2 ‖Ex‖2 +
1

2

[
E∗x

(
∂Ex
∂z

)]L

0

. (2.51)

The last term of RHS, which is originated from the partial integration, pro-

vides a Neumann type boundary condition.

As shown in Fig. 2.4, the electric field outside of the film is given by

Ex(z) =




I exp(ikz) +R exp(−ikz) z < 0

T exp(ikz) z > L
, (2.52)

where I, R and T are the amplitudes of the incident, reflection and transition

fields, respectively. The Maxwell’s boundary conditions (MBCs) are written

as

Ex(0) = I +R , (2.53)

∂

∂z
Ex(0) = ikI − ikR , (2.54)

Ex(L) = T exp(ikL) , (2.55)

∂

∂z
Ex(L) = ikT exp(ikL) . (2.56)

These conditions lead to the Neumann-type boundary conditions:

∂

∂z
Ex(0) = −ikEx(0) + 2ikI , (2.57)

∂

∂z
Ex(L) = ikEx(L) . (2.58)
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Substituting Eqs. (2.57) and (2.58) into Eq. (2.51), we get

F [Ez] =− 1

2

∫ b

a

dx

∣∣∣∣
∂Ez
∂x

∣∣∣∣
2

− k2‖Ez‖2

+
1

2
Ex(L)∗ikEx(L)− 1

2
Ex(0

∗ (−ikEx(0) + 2ikI) (2.59)

The obtained functional contains the boundary conditions implicitly.

2.4.2 Two-dimensional case

The EM-field scattering from Dielectric media with a column structure is

governed by a 2D Maxwell’s equations. We take xy plane parallel to the col-

umn axis, and an x-polarized incident light is illuminated to the z direction.

In a similar manner to the 1D case, the electric field is treated as scalar and

the Maxwell’s wave equation is written as

∆Ez + ε(x, y)k2Ez =0 (x, y) ∈ Ω (2.60)

where Ω denotes the entire domain. The corresponding operator L̂ is given

by

L̂ =∆ + ε(x, y)k2 , (2.61)

and the weak-form functional is obtained as

F [Ez] =− 1

2

∫∫

Ω

dxdy E∗z (x, y)
(
∆ + ε(x, y)k0

2
)

(x, y)Ez

=− 1

2

∫∫

Ω

dxdy (∇Ez(x, y))∗ (∇Ez(x, y)) + ε(x, y)k2E∗z (x, y)Ez(x, y)

+
1

2

∮

∂Ω

ds Ez
∗(x, y) (n̂ · grad Ez(x, y)) , (2.62)

where ∂Ω denotes the pathway around the Ω.
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2.4.3 Three dimensional case

In the previous section, the electric field for the 1D and 2D cases can be

treated as scalar because the electric field of the incident light is parallel to

the dielectric surface. Here, we consider the general 3D case that electric

fields should be treated as vector fields. The time-harmonic Maxwell’s wave

equation is written as

(
curl curl− k2

)
Ez(x) =0 , (2.63)

and the operator L̂ is given by L̂ = curl curl−ε(r)k2. Thus, the weak-form

functional is obtained as

F [E] =− 1

2

∫∫∫
dx E∗(r)

(
curl curl− ε(r)k2

)
E(r)

=− 1

2

∫∫∫

Ω

dr E∗(r) (curl E(r)∗) · (curl E(r))− ε(r)k2E(r)∗E(r)

+
1

2

∫∫

∂Ω

dr E∗(r) · (n̂× curl E(r)) , (2.64)

where we have used the relation

div a× b =(curl a) · b− a · (curl b) . (2.65)
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Chapter 3

Finite element method

including exciton effect

This chapter gives an overview of an new electromagnetic (EM) simulation

method based on a finite-element method (FEM) for an exciton confined

to a semiconductor nanostructure. The EM field inside the semiconductor

excites two transverse exciton polariton and a single longitudinal exciton at

a given frequency. Established EM simulation methods cannot be applied

directly to semiconductor nanostructures because of this multimode excita-

tion; however, the present method overcomes this difficulty by introducing

an additional boundary condition. To avoid spurious solutions and enhance

the precision, we propose a hybrid edgenodal element formulation in which

edge and nodal elements are employed to represent the transverse and lon-

gitudinal polarizations, respectively. We apply the developed method to the

EM-field scattering and distributions of exciton polarizations of spherical and

hexagonal-disk quantum dots.

3.1 Exciton polariton

3.1.1 Linear response theory

For dielectric media, a dielectric function is represented by a local form ε(r)

while the dielectric function ε(r, r′) has non-locality, i.e., an excitation po-
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sition is apart from a response position for exciton active media. In this

exciton active media, the exciton polarization P (r) is represented by

P (r) =

∫
dr′ χ(r, r′;ω)E(r′) , (3.1)

where χ(r, r′;ω) is the nonlocal susceptibility tensor. Let us derive the ex-

pression of the nonlocal susceptibility. In general, the Hamiltonian of a mat-

ter interacting with external light field is given by

Ĥ =Ĥ0 + Ĥ(ext) , (3.2)

where Ĥ0 denotes the no-perturbing matter Hamiltonian, and Ĥex denotes

the interaction of exciton and external electric field. The Hamiltonian ĤI(t)

in the interaction picture is represented as

ĤI(t) =Ĥ0 + Ĥ(ext)
I (t) , (3.3)

where Ĥ(ext)
I (t) in the interaction picture is given by

Ĥ(ext)
I = exp

(
i
Ĥ0t

~

)
Ĥext exp

(
−iĤ0t

~

)
. (3.4)

In the interaction picture, a matter state |ΨI(t)〉 is represented as

|ΨI(t)〉 = exp

(
i
Ĥ0t

~

)
|Ψ(t)〉 , (3.5)

where |Ψ(t)〉 is a matter state in the Schrödinger picture.

We introduce the density matrix given by

ρ̂(t) = |ΨI(t)〉 〈ΨI(t)| . (3.6)

The dense matrix consists of the non-perturbative term ρ̂0 = |Ψ0〉 〈Ψ0| with

|Ψ0〉 being the ground state of Ĥ0 and perturbative term ρ̂′(t):

ρ̂(t) =ρ̂0 + ρ̂′(t) . (3.7)
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The time evolution of the ρ̂′(t) is governed by the Von Neumann equation:

∂ρ̂′

∂t
=

1

i~
[Ĥ(ext)

I (t), ρ̂(t)] . (3.8)

By integrating over time t, we have

ρ̂′(t) =
1

i~

∫ t

−∞
dt1 [Ĥ(ext)

I (t1), ρ̂0 + ρ̂′(t1)] . (3.9)

Substituting the above equation into ρ̂′(t1) in the RHS, we get

ρ̂′(t) =
1

i~

∫ t

−∞
dt1 [Ĥ(ext)

I (t1), ρ̂0]

+
1

(i~)2

∫ t

−∞
dt1

∫ t1

−∞
dt2[Ĥ(ext)

I (t1), [Ĥ(ext)
I (t2), ρ̂0]]

+
1

(i~)3

∫ t

−∞
dt1

∫ t1

−∞
dt2

∫ t2

−∞
dt3[Ĥ(ext)

I (t1), [Ĥ(ext)
I (t2), [Ĥ(ext)

I (t3), ρ̂0]]]

+ · · · . (3.10)

The first term in the RHS provides a linear response, and the higher-order

terms lead to non-linear effects, such as a second harmonic generation and

four-wave mixing. We neglect the higher-order terms, and thus ρ̂′(t) is ap-

proximated as

ρ̂′(t) ≈ 1

i~

∫ t

−∞
dt1 [Ĥ(ext)

I (t1), ρ̂0] . (3.11)

Expectation values of an operator Ô is given by

〈Ô(t)〉 =Tr
[
ÔI(t) ˆρ(t)

]
. (3.12)
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From Eq. (3.10), this equation can be written as

〈δÔ(t)〉 =Tr
[
ÔI(t)ρ̂(t)]

]
− Tr

[
ÔI(t)ρ̂0

]
(3.13)

=Tr
[
ÔI(t)ρ̂

′(t)
]

(3.14)

=
1

i~

∫ t

−∞
dt1 Tr

{
ÔI(t)[Ĥ(ext)

I (t1), ρ̂0]
}
. (3.15)

Note that the trace is invariant under cyclic permutations:

Tr
{
ÔI(t)[Ĥ(ext)

I (t1), ρ̂0]
}

=Tr
[
ÔI(t)Ĥ(ext)

I (t1)ρ̂0 − ÔI(t)ρ̂0Ĥ(ext)
I (t1)

]

= 〈ÔI(t)[Ĥ(ext)
I (t1)]〉 − 〈ÔI(t)[Ĥ(ext)

I (t1)]〉 . (3.16)

Thus, we get

〈δÔ(t)〉 =

∫ t

−∞
dt1 Tr

{
1

i~
[ÔI(t), Ĥ(ext)

I (t1)]ρ0

}
. (3.17)

3.1.2 Nonlocal susceptibility

By using the above formula, we derive the nonlocal susceptibility in a semi-

conductor originating from dispersive motion of an exciton. The interaction

between exciton and an external electric field E(r) of light is considered as

the perturbative term. The interaction Hamiltonian is written as

Ĥ(ext)(t) =−
∫

dr P̂ (r) ·E(r, t) , (3.18)

with

P̂ (r) =
∑

n

δ(r − rn)rqn . (3.19)

where P̂ is the polarization operator, and qn and rn are the charge and co-

ordinate for the nth particle. For the interaction picture, it can be rewritten

as P̂I(t) = exp(iĤ0t/~)P̂ exp(−iĤ0t/~).
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Substituting Eq. (3.18) into Eq. (3.17), we get

δP (r, t) =

∫ t

−∞
dt′ Tr

(
1

i~

[
P̂I(r, t), Ĥ(ext)

I

]
ρ0

)
(3.20)

=

∫ t

∞
dt′
∫

dr′
〈

1

i~

[
P̂I(r, t), P̂I(r

′, t′)
]〉

. (3.21)

From Eq. (3.21), the susceptibility takes the form

χ(r, r′; t, t′) =

〈
1

i~

[
P̂I(r, t), P̂I(r

′, t′)
]〉

=
1

i~
〈Ψ0| eiĤ0t/~P̂ (r)e−iĤ0t/~

(∑

n

|Ψn〉 〈Ψn|
)
eiĤ0t′/~P̂ (r′)e−iĤ0t′/~ |Ψ0〉

− 1

i~
〈Ψ0| eiĤ0t′/~P̂ (r′)e−iĤ0t′/~

(∑

n

|Ψn〉 〈Ψn|
)
eiĤ0t/~P̂ (r)e−iĤ0t/~ |Ψ0〉

=
1

i~
∑

n

〈Ψ0| P̂ (r) |Ψn〉 〈Ψn| P̂ (r′) |Ψ0〉 ei(En−E0)t/~

− 1

i~
∑

n

〈Ψ0| P̂ (r′) |Ψn〉 〈Ψn| P̂ (r) |Ψ0〉 e−i(En−E0)t/~ ,

(3.22)

where Ψn is the nth excited state with the eigenenergy En. Because of the

causality rule, we should introduce an additional term θ(t − t′), which is

expressed as

θ(t− t′) = lim
γ→0+

− 1

2πi

∫ ∞

−∞
dω′

1

ω′ + iγ
e−iω

′(t−t′) . (3.23)

Multiplying θ(t− t′) by the first term of Eq. (3.28), we have

1

i~
∑

n

〈Ψ0| P̂ (r) (|Ψn〉 〈Ψn|) P̂ (r′) |Ψ0〉 ei(En−E0)t/~θ(t− t′)

= lim
γ→0+

− 1

2π~
∑

n

∫ ∞

−∞

〈Ψ0| P̂ (r) (|Ψn〉 〈Ψn|) P̂ (r′) |Ψ0〉
ω′ + iγ

e−i(ω
′+(En−E0)/~)t dω′

= lim
γ→0+

1

2π

∑

n

∫ ∞

−∞

〈Ψ0| P̂ (r) |Ψn〉 〈Ψn| P̂ (r′) |Ψ0〉
~ω − (En − E0) + i~γ

e−iωt dω . (3.24)
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Therefore, the Fourier component of χ take the form

χ(r, r′;ω) =
∑

n

〈Ψ0| P̂ (r) |Ψn〉 〈Ψn| P̂ (r′) |Ψ0〉
(En − E0)− ~ω − i~γ . (3.25)

3.1.3 Exciton polariton

In the case of the bulk semiconductor, the center-of-mass motion of the exci-

ton is approximately represented by a plain wave [2], and the matrix element

of the polarization operator is given by

〈Ψ0| P̂ (r) |Ψk〉 =
µ√
V

exp(ik · r) , (3.26)

where Ψk denotes the eigenstate with the wave vector k, V is the volume of

the bulk crystal, µ is the intensity of the induced polarization given as µ2 =

εbg∆LT/(4π), ∆LT is the longitudinal–transverse splitting energy, and εbg is

the background dielectric constant. Assuming the valence and conduction

bands are parabolic with an effective mass of M , the excitation eigenenergy

Ek − E0 is approximated to be

Ek − E0 =EG + (~2/2M)k2 , (3.27)

where EG are the excitation energy at a band edge. Substituting Eqs. (3.26)

and (3.27) into Eq. (3.25), The susceptibility tensor of the exciton-active

media can be written as

χ(r, r′;ω) =
∑

k

(
1

4π

εbg∆LT

EG + (~2/2M)k2 − ~ω − i~γ

)
eik·(r−r

′) (3.28)

For the reciprocal space, the above can be rewritten as

χ(k, ω) =
1

4π

εbg∆LT

EG + (~2/2M)k2 − ~ω − i~γ (3.29)
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Figure 3.1: Dispersion curve of the transverse polariton and longitudinal
exciton modes of the bulk CuCl. The parameter is depicted on Table 3.1

Table 3.1: Parameters of the Z3 exciton of CuCl and Γ5(B) exciton of ZnO;
me denotes the free electron mass.

QD εbg M (units of me) EG (eV) ∆LT (meV)
CuCl (Z3) [9] 5.56 2.3 3.2022 5.65

ZnO [Γ5 (B)] [19, 35] 8.86 0.97 3.3856 5.00
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The dielectric function can be written as

ε(k, ω) =εbg + 4πχ(k, ω)

=εbg +
εbg∆LT

EG + (~2/2M)k2 − ~ω − i~γ . (3.30)

The k-dependence of the dielectric function in Eq. (3.30) comes from the

kinetic energy of the exciton, which is responsible for the size quantization

effect in the spectral peaks of semiconductor nanostructures. An interaction

between a light and exciton produces the transverse modes, called the exci-

ton polariton. The dispersion relations of the exciton polaritons in a bulk

semiconductor are obtained from

k2 =
(ω
c

)2

ε(k, ω) . (3.31)

Substituting Eq.(3.30) into Eq.(3.31), this dispersion relation take the form

A(ω)k4 +B(ω)k2 + C(ω) = 0 (3.32)

with

A(ω) =
~2

2M

B(ω) =EG − ~ω
(

1 +
~ω

2Mc2

)
− i~γ

C(ω) =
ω2

c2
(EG − ~ω − i~γ + εbg∆LT) .

Eq. (3.32) has four complex solutions, moreover the two of them kt1, kt2 which

have positive imaginary, are physically meaningful.

In addition to two transverse exciton polaritons, one longitudinal exciton

mode appears whose dispersion is obtained from ε(kl, ω) = 0 with kl being

the wave vector of the longitudinal mode.

P (ω)k2 +Q(ω) = 0 (3.33)
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with

P (ω) =
~2

2M

Q(ω) =EG −∆LT − ~ω − i~γ .

The Eq.(3.33) also has two complex roots. The dispersions of two exciton

polariton modes and a longitudinal exciton mode are shown in Fig. 3.1. In

such media, there are three propagating modes with the different wavenumber

kt1,kt2 and kl at a given frequency.

The electric fields E(t1) and E(t2) accompanied by two transverse modes

are governed by wave equations:

∇×∇× E(t1) − k2
t1

E(t1) = 0 (3.34)

∇×∇× E(t2) − k2
t2

E(t2) = 0 (3.35)

∇2Φ + k2
l Φ = 0 , (3.36)

and the scalar potential Φ providing the longitudinal field E(l) = −∇Φ sat-

isfied the Poisson’s equation.

3.1.4 Additional boundary condition

Let us consider the nanostructure consisting of the semiconducting and the

classical dielectric media. [See Fig. 3.2] At the interface between two media,

the following Maxwell’s boundary conditions (MBC) are satisfied:

E(0) = E(1) (3.37)

n̂×∇× E(0) = n̂×∇× E(1) , (3.38)

where E(1) = E(t1)+E(t2)−∇Φ is the total electric field in the semiconducting

media.

When the material is dielectric or metal, the number of the wave mode is

just one. Therefore, the EM field is uniquely determined by imposing only

the MBCs. For semiconductor, however, there are three wave modes, i.e.,

two transverse exciton polaritons and one longitudinal exciton. Therefore,
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three more boundary conditions are necessary to uniquely determine the EM

fields. Several types of this additional boundary conditions (ABCs) have

been considered [22, 13]. Here, we use the Pekar type ABC where exciton

polarization P(r) vanishes at the interface of the semiconductor. Since the

polarization is given by P = χ(k, ω)E in terms of a susceptibility χ(k, ω),

the Pekar type ABC is expressed as

χ(kt1 , ω)E(t1) + χ(kt2 , ω)E(t2) + χ(kl, ω)(−∇Φ) = 0 (3.39)

with

χ(k, ω) =
1

4π
(ε(k, ω)− 1) . (3.40)

The EM field and polarization field is obtained from the variational problem

of δF = 0 under the constraint of Eq.(3.39).

3.2 One-dimensional case

3.2.1 Finite element analysis

Here, we calculate the transmission and the reflection coefficients of the semi-

conducting quantum well (QW) by using the one-dimensional FEM. The es-

tablished model is depicted in Fig. 3.2, where the z-polarized light incident

upon the QW of the thickness L. When the polarization of the electric field

is parallel to the surface (s-polarized light), only two transverse-polariton

modes are excited and the contributions from the longitudinal mode is neg-

ligible. Thus the governing equation of the polariton modes are expressed

as

∂2E
(t1)
z

∂x2
+ k2

1E
(t1)
z = 0 (3.41)

∂2E
(t2)
z

∂x2
+ k2

1E
(t2)
z = 0 , (3.42)

where E
(t1)
z and E

(t2)
z denote the electric field of the polaritons at the wavenum-

ber kt1 and kt2, respectively. Similar manner to Eq. (2.51), the weak-form
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functional can be written as

F [E(t1)
z ,E(t2)

z ] =− 1

2

∑

α

∫ L

0

(
∂E

(tα)
z

∂x

)∗(
∂E

(tα)
z

∂x

)
− k2

tαE
(tα)∗
z E(tα)

z dx

+
1

2

∑

α

[
E(tα)∗
z

∂E
(tα)
z

∂x

]L

0

. (3.43)

The total electric and polarization field amplitude inside the media are given

as

∑

α

E(tα)
z (x) , (3.44)

and

∑

α

χ(ktα, ω)E(tα)
z (x) . (3.45)

At the two ends (x = 0, L), the MBCs (2.57) and (2.58) are expressed as





∑
αE

(tα)
z (0) = I +R

∂
∂x

∑
αE

(tα)
z (0) = ik0(I −R)

, (3.46)

and





∑
αE

(tα)
z (L) = T

∂
∂x

∑
αE

(tα)
z (L) = ik0T

. (3.47)

Similar manner to Eqs. (2.57)–(2.58), the Eqs. (3.46)- (3.47) can be reduced

to:

∂

∂x

∑

α

E(tα)
z (0) =− ik0

∑

α

E(tα)
z (0) + 2ik0I (3.48)

∂

∂x

∑

α

E(tα)
z (L) =ik0

∑

α

E(tα)
z (L) . (3.49)

Thus our problem is solving δF = 0 under Eqs. (3.49)–(3.49).
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Next, let we consider the discretization by FEM. As shown in the chapter

2, the electric field is approximated to be the linear combination of the basis

function:

Ẽ(tα)
z =

∑

e

∑

i=1,2

E
(tα)
s(e;i)L(e;i)(x) , (3.50)

where e is the index of the element, i is the local index of the node, the

abbreviation s(e; i) stands for the global index of a node corresponding to the

local index (e, i). The E
(tα)
s(e;i) denote the expansion coefficients and L(e;i)(x)

denote the one-dimensional nodal basis defined in Eq. (2.34).

Substituting Eq. (3.50) into Eq. (3.50), we get

F [E
(tα)
z;s(e;i)] =− 1

2

∑

α

∑

e

∑

i,j

K
(e)
ij (ktα)E

(tα)∗
s(e;i)E

(tα)
s(e;j)

+
1

2

∑

α

(
E

(tα)∗
N

∂Ẽ(L)

∂x
− E(tα)∗

0

∂Ẽ(0)

∂x

)
(3.51)

with

K
(e)
ij (ktα) =

∑

α

∫ L

0

(
∂L(e;i)

∂x

)∗(∂L(e;j)

∂x

)
− k2

tαL(e;i)L(e;j) dx (3.52)

According to the Ritz method, the solution is obtained from

∂F

∂E
(tα)∗
n

=0 . (3.53)

From Eq. (3.51), the above derivative can be written as

∂F

∂E
(tα)∗
n

=





−1
2

(
K

(1)
tα;11E0 +K

(1)
tα;12E1

)
− 1

2
∂E(tα)(0)

∂x
n = 1

−1
2

(
K

(N)
tα;11EN−1 +K

(N)
tα;12EN

)
+ 1

2
∂E(tα)(L)

∂x
n = N

−1
2

(
K

(n)
tα;21En−1 + (K

(n−1)
tα;22 +K

(n)
tα;11)En +K

(n)
tα;12En+1

)
otherwise

.

(3.54)

The condition (3.53) leads the system of equations, which is also called as
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the finite element matrix:




K
(1)
t1;11 K

(1)
t1;12 0 · · · 0

K
(1)
t1;12 K

(1)
t1;22 +K

(2)
t1;11 K

(2)
t1;12

0 K
(2)
t1;12 K

(2)
t1;22 +K

(3)
t1;11

...
. . .

0 K
(N)
t1;22







E
(t1)
0

E
(t1)
1

E
(t1)
2
...

E
(t1)
N




=




−∂E(t1)(0)/∂x

0

0
...

∂E(t1)(L)/∂x




(3.55)




K
(1)
t2;11 K

(1)
t2;12 0 · · · 0

K
(1)
t2;12 K

(1)
t2;22 +K

(2)
t2;11 K

(2)
t2;12

0 K
(2)
t2;12 K

(2)
t2;22 +K

(3)
t2;11

...
. . .

0 K
(N)
t2;22







E
(t2)
0

E
(t2)
1

E
(t2)
2
...

E
(t2)
N




=




−∂E(t2)(0)/∂x

0

0
...

∂E(t2)(L)/∂x




,

(3.56)

At the ends n = 0, N , the above equation incorporates a derivative term

∂E(tα)/∂x, which also appears in the MBCs. However, the MBCs (3.46)–

(3.47) are defined for the total electric field E(t1) + E(t2). Therefore, we use

another condition for both ends (n = 0, N):

∑

α

∂F

∂E
(tα)∗
n

=0 . (3.57)

At the left end (n = 0), Eq. (3.57) is expressed as

0 =
∑

α

∂F

∂E
(tα)∗
0

=− 1

2

∑

α

(
K

(1)
tα;11E0 +K

(1)
tα;12E1

)
− 1

2

∑

α

∂E(t1)(0)

∂x

=− 1

2

∑

α

(
K

(1)
tα;11E0 +K

(1)
tα;12E1

)
− 1

2

(
−ik0

∑

α

E(tα)
z (0) + 2ik0I

)
.

(3.58)
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In above, we substitute Eq. (3.46) into the second term.

In similar, at the right end (n = N), we have

0 =− 1

2

(
K

(N)
tα;11EN−1 +K

(N)
tα;12EN

)
+

1

2

(
ik0

∑

α

E(tα)
z (L)

)
. (3.59)

It is obvious that Eqs. (3.58)–(3.59) include the MBCs explicitly. Thus, for

n = 0, N , we use Eqs. (3.58)–(3.59) instead of Eq. (3.53).

At the same time, the ABCs can be written as

χ(kt1, ω)E
(t1)
0 + χ(kt2, ω)E

(t2)
0 =0 (3.60)

χ(kt1, ω)E
(t1)
N + χ(kt2, ω)E

(t2)
N =0 (3.61)

Considering Eq. (3.57) for n = 2 · · ·N − 1, and Eqs. (3.58)–(3.61), we

have 2N linear equations for 2N unknown variables. When the variables

E
(tα)
n are uniquely determined, the transmission and reflection coefficients

can be obtained from the field amplitude at the ends. We have

R =
∣∣E(t1)

z (0) + E(t2)
z (0)− I

∣∣

=
∣∣∣E(t1)

0 + E
(t2)
0 − I

∣∣∣ (3.62)

T =
∣∣E(t1)

z (L) + E(t2)
z (L)

∣∣

=
∣∣∣E(t1)

N + E
(t2)
N

∣∣∣ . (3.63)

3.2.2 Conventional method

In this one-dimensional problem, since the spatial symmetry, there is an an-

alytical solution which is available for comparison with our FEM calculation.

Since the one-dimensional Helmholtz equation (3.41) and (3.42) have the

general solution.

E(t1)
z (x) = A1e

ik1x +B1e
−ik1x (3.64)

E(t2)
z (x) = A2e

ik2x +B2e
−ik2x , (3.65)
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where A1, A2, B1 and B2 are the field amplitudes of the two polariton modes.

The boundary conditions (3.58)–(3.59) and (3.60)–(3.61) yield

A1 +B1 + A2 +B2 = E0 +RE0

ik1(A1 −B1) + ik2(A2 −B2) = ik0(E0 −RE0)

A1e
ik1L +B1e

−ik1L + A2e
ik2L +B2e

−ik2L = TE0e
ik0L

ik1(A1e
ik1L −B1e

−ik1L) + ik2(A2e
ik2L −B2e

−ik2L) = ik0(TE0e
ik0L) ,

and

χ1(A1 +B1) + χ2(A2 +B2) = 0

χ1(A1e
ik1L −B1e

−ik1L) + χ2(A2e
ik2L −B2e

−ik2L) = 0 .

The unknowns variables A1, B1, A2, B2, R, T are uniquely determined by this

system of equations.

3.2.3 Numerical results

To demonstrate, we calculate the transmission and reflection coefficients of

the QD of the thickness L. We employ the physical parameter of the bulk

CuCl, which is written on Table 3.1. The damping constant γ is set to be

100µeV. Fig. 3.3–3.5 show the spectra of the transmitted and reflected lights

of the different thickness L = 10, 15, 20nm. The FEM results shows good

agreement with the analytical solutions. Due to the exciton mode, the char-

acteristic resonant peaks appear in the spectra. By increasing the thickness

L, the position of the peaks are red-shifted by the quantum size effect. Com-

pared to the experiments, the resonance structures of the observed spectra

are well reproduced by our calculations.

3.3 Three-dimensional case

For three-dimensional case, we consider the light scattering problem by the

semiconductor nanostructure of arbitraly geometry.

We consider a situation in which an incident field E(inc) irradiates a semi-
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Figure 3.2: A exciton confined in thin CuCl layer of the thickness L
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Figure 3.3: (a) The transmission coefficient of the CuCl slab with the thick-
ness of L = 5 nm. The exact solution (solid line) and the FEM result (dotted
line).
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Figure 3.4: (a) The transmission coefficient of the CuCl slab with the thick-
ness of L = 10 nm. The exact solution (solid line) and the FEM result
(dotted line).
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Figure 3.5: (a) The transmission coefficient of the CuCl slab with the thick-
ness of L = 20 nm. The exact solution (solid line) and the FEM result
(dotted line).
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conductor nanostructure (region Ω1) surrounded by a dielectric material with

a dielectric constant of ε, as illustrated schematically in Fig. 3.6 (a). The

surface of region Ω1 is denoted by Γ1. In an open-region scattering problem,

the scattered field propagates to infinity, but to restrict the computational

region, we introduce an artificial interface Γ0 within which the EM fields are

numerically calculated by subdividing the region into small volume elements.

The dielectric area between Γ0 and Γ1, denoted by Ω0, and the exterior (far-

field) region, denoted by Ω∞, have dielectric constants of ε, and thus there

is no reflection or refraction at Γ0.

3.3.1 Functionals

Electromagnetic field modes

The total electric field E(1) in region Ω1 is obtained as

E(1) =
2∑

µ=1

E(tµ) −∇Φ, (3.66)

while the electric field in region Ω0, denoted by E(0), consists of the incident

field and the scattered fields from the semiconductor nanostructure. In region

Ω∞, the electric field E(∞) is given by

E(∞) = E(inc) + E(scat)
∞ , (3.67)

where E
(scat)
∞ is the scattered field in region Ω∞. When we assume a spherical

geometry for Γ0, as illustrated in Fig. 3.6, it is convenient to expand E
(scat)
∞

in terms of vector spherical waves as follows:

E(scat)
∞ (r) =

Nc∑

n=1

n∑

m=−n

[
amnMmn(r) + bmnNmn(r)

]
, (3.68)

where the integer Nc is the cut-off angular momentum, amn and bmn are

expansion coefficients, and Nmn and Mmn are vector spherical harmonics

(defined in the Appendix A).

We consider a plane-wave incident field given by E(inc)(r) = I0 exp(ikz)
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Dielectric 

region:

Semiconductor

region:

Far-field 

region:

Figure 3.6: (a) Schematic illustration of a semiconductor nanostructure (re-
gion Ω1) surrounded by a dielectric (regions Ω0 and Ω∞). The interface
between the semiconductor nanostructure and dielectric is denoted by Γ1,
and an artificial spherical surface, denoted by Γ0, is introduced within which
the region is subdivided into small volume elements for the numerical compu-
tation. Various wave modes are also depicted. (b) The dispersion relations of
two transverse exciton polaritons and one longitudinal exciton in bulk CuCl
(the CuCl parameters for the calculation are summarized in Table 3.1).
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with I0 being polarized in the x-direction. The incident field can be expanded

as

E(inc) = I0

Nc∑

n=1

∑

m=±1

[
pmnMmn(r) + qmnNmn(r)

]
, (3.69)

with

p1n = −q1n = in+1 2n+ 1

2n(n+ 1)
, (3.70)

and

p−1n = −q−1n = in+1
(
n+

1

2

)
. (3.71)

The value of Nc will depend on the distance between Γ0 and Γ1. As

evanescent waves with a higher angular momentum decay more rapidly from

Γ1, we can take a smaller Nc for the larger distance between Γ0 and Γ1.

Conversely, the volume of region Ω0 can be reduced by taking a large Nc

value, which reduces computational time and memory storage.

Boundary conditions

At the interface Γ1, the following Maxwell’s boundary conditions (MBCs)

are satisfied:

n̂1 × E(0) = n̂1 × E(1), (3.72)

n̂1 ×∇× E(0) = n̂1 ×∇× E(1) =
2∑

µ=1

n̂1 ×∇× E(tµ), (3.73)

where n̂1 is a unit vector on Γ1 directed outward from Ω1 and normal to

Γ1. When the material is a dielectric or metal, there is only one wave mode,

and so the EM field is uniquely determined by imposing only the MBCs.

For a semiconductor, however, there are three wave modes, i.e., two trans-

verse exciton polaritons and one longitudinal exciton. Therefore, three more

boundary conditions are necessary to determine the EM fields. Several types

of ABCs have been proposed [22, 6, 1, 11, 13, 10], and here, we use the Pekar-

type ABC [22] for which the exciton polarization P(r) vanishes at the surface

of the semiconductor. Since the polarization is given by P = χ(k, ω)E with

χ(k, ω) = (1/4π)[ε(k, ω) − 1] being the susceptibility, the Pekar-type ABC

45



at Γ1 is expressed as

2∑

µ=1

χ(ktµ , ω)E(tµ) + χ(kl, ω)(−∇Φ) = 0. (3.74)

The normal component of the ABC (3.74) is given by

n̂1 · ∇Φ =
2∑

µ=1

χ(ktµ , ω)

χ(kl, ω)
n̂1 · E(tµ), (3.75)

and the tangential component is given by

χ(kl, ω)n̂1 ×∇Φ =
2∑

µ=1

χ(ktµ , ω)n̂1 × E(tµ). (3.76)

At the artificial interface Γ0, the MBCs are given by

n̂0 × E(0) = n̂0 × E(∞), (3.77)

n̂0 ×∇× E(0) = n̂0 ×∇× E(∞)

= k
Nc∑

n=1

n∑

m=−n

[
(I0pmnδm,±1 + amn)n̂0 ×Nmn(r)

+(I0qmnδm,±1 + bmn)n̂0 ×Mmn(r)
]
,(3.78)

where n̂0 is a unit vector on Γ0 directed outward from Ω0 and normal to Γ0.

In Eq. (3.78), we use Eqs. (3.67)–(3.69) and the relations ∇×Nmn = kMmn

and ∇×Mmn = kNmn. Because the dielectric constants in regions Ω0 and

Ω∞ are the same, the following relation should be imposed as a boundary

condition at Γ0:

E(∞) = E(0). (3.79)

Functionals

The electric field E(0) in region Ω0 obeys the following Maxwell’s wave equa-

tion:

∇×∇× E(0) − k2E(0) = 0 , (3.80)
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with k = ε(ω/c)2 and ω being the frequency of E(0). According to the

general variation principle, a weak-form functional leading to Eq. (3.80) can

be obtained as

F0[E(0)] = −1

2

∫∫∫

Ω0

d3r
{

[∇× E(0)∗] · [∇× E(0)]− k2E(0)∗ · E(0)
}

+
1

2

∫∫

∂Ω0

d2r E(0)∗ · [n̂0 ×∇× E(0)] , (3.81)

where ∂Ω0, containing Γ0 and Γ1, represents the surface area surrounding

the region Ω0. The MBC [Eq. (3.78)] can be added to F0 by replacing

[n̂0 ×∇× E(0)] in Eq. (3.81) with the expression in Eq. (3.78).

In region Ω1,the electric-field components E(t1) and E(t2) of the two exci-

ton polaritons are governed by the Maxwell’s wave equation

∇×∇× E(tµ) − k2
tµE

(tµ) = 0, (3.82)

whereas for the longitudinal field E(l) = −∇Φ, the potential Φ satisfies Pois-

son’s equation:

∇2Φ + k2
l Φ = 0. (3.83)

A weak-form functional leading to Eqs. (3.82) and (3.83) is given by

F1[E(t1),E(t2),Φ] = −1

2

2∑

µ=1

∫∫∫

Ω1

d3r
{

[∇× E(tµ)∗] · [∇× E(tµ)]− k2
tµE

(tµ)∗ · E(tµ)
}

+
1

2

2∑

µ=1

∫∫

∂Ω1

d2r E(tµ)∗ · [n̂1 ×∇× E(tµ)]

−1

2

∫∫∫

Ω1

d3r
[

(∇Φ∗) · (∇Φ)− k2
l Φ
∗ · Φ

]

+
1

2

∫∫

∂Ω1

d2r Φ∗ (n̂1 · ∇Φ) , (3.84)

where ∂Ω1 represents the surface area surrounding the region Ω1. The

ABC [Eq. (3.75)] can be added to F1 by substituting Eq. (3.75) into Eq. (3.84).
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3.3.2 Finite element analysis

To numerically calculate the solutions of the boundary-value problem, the

computational region is subdivided into small volume elements. As we choose

a tetrahedral geometry for the volume elements, the interface is subdivided

into triangular elements. All the volume elements are labeled by a set of

integers e = 1, 2, · · · , and the nodes of each volume element are labeled as

i = 1, 2, 3, 4. The ith node in the eth volume element is denoted by a local

label (e; i). Any node can be indicated by multiple local labels because the

node belongs to multiple volume elements. For one-to-one mapping between

the nodes and integers, we create a global label s(e; i) = 1, 2, · · · for all nodes.

The triangular element at the interface belonging to the eth volume element

is denoted by fe.

Basis functions

In the conventional FEM formalism, scalar or vector fields are assigned at the

nodes of the volume elements, referred to as nodal elements. For transverse

vector fields, however, a higher accuracy can be obtained if the fields are

assigned at the edges of the volume elements (edge elements) [8, 7]. Here,

we develop a hybrid method, i.e., the scalar field Φ is represented by nodal

elements and the transverse vector fields E(0), E(t1), and E(t2) are represented

by edge elements.

Scalar fields in the tetrahedral element are expressed by the nodal-element

basis L(e;i)(r) defined as

L(e;i)(r) = ax(e;i)x+ ay(e;i)y + az(e;i)z + b(e;i) , (3.85)

where the coefficients ax(e;i), a
y
(e;i), a

z
(e;i), and b(e;i) are obtained from the con-

dition L(e;i)[r(e;j)] = δij, with r(e;i) being the position of node (e; i).

In contrast, the vector fields are expressed by the edge-element basis

W(e;ij)(r) defined as

W(e;ij)(r) =
1

lij

[
L(e;i)(r)∇L(e;j)(r)− L(e;j)(r)∇L(e;i)(r)

]
, (3.86)
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where lij is the length of the edge between nodes (e; i) and (e; j). Figure

shows the fields of the nodal- and edge-element bases. By using these basis

functions, the EM fields can be approximated by a linear combination of

basis functions as follows:

E(0)(r) =
∑

e∈Ω0

4∑

ij=1

E
(0)
s(e;i)s(e;j)W(e;ij)(r), (3.87)

E(tµ)(r) =
∑

e∈Ω1

4∑

ij=1

E
(tµ)

s(e;i)s(e;j)W(e;ij)(r), (3.88)

Φ(r) =
∑

e∈Ω1

4∑

i=1

Φs(e;i)L(e;i)(r). (3.89)

The expansion coefficients E
(α)
s(e;i)s(e;j) with α = {0, t1, t2} and Φs(e;i) represent

field amplitudes at specific points:

E
(α)
s(e;i)s(e;j) = t̂(e;ij) · E(α)[r(e;ij)], (3.90)

Φs(e;i) = Φ[r(e;i)] , (3.91)

where t̂(e;ij) denotes a unit vector parallel to the edge between nodes (e; i)

and (e; j), and r(e;ij) = [r(e;i) + r(e;j)]/2. Note that the edge-element basis

W(e;ij)(r) automatically satisfies the divergence-free condition [∇·W(e;ij) = 0]

of transverse fields [7], and thus, the transverse character of E(α) is guaran-

teed. This is why edge elements avoid spurious solutions and provide more

accurate transverse fields than those calculated using nodal elements.
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Functionals

The functional F0 in the FEM is obtained by substituting Eq. (3.78) into

Eq. (3.81) and using Eq. (3.87) as follows:

F0 = −1

2

∑

e∈Ω0

4∑

ijkl=1

K
(e)
ijkl(k)E

(0)∗
s(e;i)s(e;j)E

(0)
s(e;k)s(e;l)

+
k

2

∑

e;fe∈Γ0

4∑

ij=1

Nc∑

n=1

n∑

m=−n
E

(0)∗
s(e;i)s(e;j)

×
{

(I0pmnδm,±1 + amn)

∫∫

Γ(fe)

d2r W(e;ij) · [n̂0 ×Nmn(r)]fe

+(I0qmnδm,±1 + bmn)

∫∫

Γ(fe)

d2r W(e;ij) · [n̂0 ×Mmn(r)]fe

}

+
1

2

∑

e;fe∈Γ1

4∑

ij=1

E
(0)∗
s(e;i)s(e;j)

∫∫

Γ(fe)

d2r W(e;ij) · [n̂0 ×∇× E(0)]fe , (3.92)

with

K
(e)
ijkl(k) =

∫∫∫

Ω(e)

d3r
{

[∇×W(e;ij)] · [∇×W(e;kl)]− k2W(e;ij) ·W(e;kl)

}
,

(3.93)

where Ω(e) is the region of the eth volume element, Γ(fe) is the area of the in-

terface fe, and
∑

e;fe∈Γ0(Γ1) denotes the summation over the volume elements

e that have one triangular surface fe belonging to Γ0 (Γ1).

The other functional F1 is obtained by substituting Eq. (3.75) into Eq. (3.84)
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and using Eqs. (3.88) and (3.89) as follows:

F1 = −1

2

2∑

µ=1

∑

e∈Ω1

4∑

ijkl=1

K
(e)
ijkl(ktµ)E

(tµ)∗
s(e;i)s(e;j)E

(tµ)

s(e;k)s(e;l)

+
1

2

2∑

µ=1

∑

e;fe∈Γ1

4∑

ij=1

E
(tµ)∗
s(e;i)s(e;j)

∫∫

Γ(fe)

d2r W(e;ij) · [n̂1 ×∇× E(tµ)]fe

−1

2

∑

e∈Ω1

4∑

ij=1

J
(e)
ij (kl)Φ

∗
s(e;i)Φs(e;j)

+
1

2

2∑

µ=1

∑

e;fe∈Γ1

4∑

ij=1

χ(ktµ , ω)

χ(kl, ω)
Φ∗s(e;i)E

(tµ)

s(e;i)s(e;j)

∫∫

Γ(fe)

d2r L(e;i) [n̂1 ·W(e;ij)]fe ,

(3.94)

with

J
(e)
ij (kl) =

∫∫∫

Ω(e)

d3r
{[
∇L(e;i)

]
·
[
∇L(e;j)

]
− k2

l L(e;i)L(e;j)

}
. (3.95)

The total functional F is then given by

F = F0 + F1. (3.96)

Maxwell’s wave equations can be derived from the stationary condition

δF = 0 with respect to E
(α)
s(e;i)s(e;j) and Φs(e;i). To include the MBC [Eq. (3.73)]

in the derived Maxwell’s wave equations, we find a stationary condition

∑

α={0,t1,t2}

δF
δE

(α)
s(e;i)s(e;j)

= 0. [for s(e; i), s(e; j) ∈ Γ1] (3.97)

In conjunction with Eq. (3.73), the stationary condition eliminates the con-

tributions from the surface-integration terms including [n̂0 × ∇ × E(0)] and

[n̂1 ×∇× E(tµ)] at Γ1, thus including the MBC [Eq. (3.73)].
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The other stationary conditions are given by

δF
δE

(α)
s(e;i)s(e;j)

= 0, [for s(e; i), s(e; j) 6∈ Γ1] (3.98)

δF
δΦs(e;i)

= 0. (3.99)

Under these three stationary conditions, the Maxwell’s wave equations are

represented by linear equations with respect to E
(α)
s(e;i)s(e;j) and Φs(e;i). Because

the procedure to obtain the linear equations is straightforward [16] and the

resulting equations are complicated, the specific linear equations are not

presented in this paper.

Explicit boundary conditions

Unlike the boundary conditions in Sec. 3.3.2, the remaining boundary con-

ditions, Eqs. (3.72), (3.76), and (3.79), are imposed explicitly. Note that

the MBC [Eq. (3.72)] between different dielectrics or between a dielectric

and metal is automatically satisfied for edge elements because the tangential

electric field at the interface expresses common fields that belong to the dif-

ferent regions of the interface. However, this is not the case for the interface

Γ1 between the dielectric and semiconductor because the electric field in a

semiconductor area consists of E(t1), E(t2), and (−∇Φ). Therefore, we set the

three variables E
(t1)
s(e;i)s(e;j), E

(t2)
s(e;i)s(e;j), and E

(0)
s(e;i)s(e;j) at each edge element on

the interface Γ1 and explicitly impose the MBC [Eq. (3.72)]. The discretized

forms of the explicit boundary conditions, Eqs. (3.72) and (3.76), are

E
(t1)
s(e;i)s(e;j) + E

(t2)
s(e;i)s(e:j) −

Φs(e;j) − Φs(e;i)

lij
= E

(0)
s(e;i)s(e;j), [s(e, i), s(e, j) ∈ Γ1]

(3.100)

χ(kt1 , ω)E
(t1)
s(e;i)s(e;j) + χ(kt2 , ω)E

(t2)
s(e;i)s(e;j) − χ(kl, ω)

Φs(e;j) − Φs(e;i)

lij
= 0.

[s(e, i), s(e, j) ∈ Γ1]

(3.101)

The explicit boundary condition in Eq. (3.79) is rewritten by taking the
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inner product of Eq. (3.79) with M∗
uv and integrating over the interface Γ0

as follows:

(I0puvδu,±1 + auv)S
(M)
uv =

∑

e;fe∈Γ0

4∑

ij=1

E
(0)
s(e;i)s(e;j)

∫∫

Γ(fe)

d2rM∗
uv ·W(e;ij),

(3.102)

where S
(M)
uv is defined in the Appendix. In a similar manner, we take the

inner product of Eq. (3.79) with N∗uv and integrate over the interface Γ0:

(I0quvδu,±1+buv)S
(N)
uv =

∑

e;fe∈Γ0

4∑

ij=1

E
(0)
s(e;i)s(e;j)

∫∫

Γ(fe)

d2rN∗uv ·W(e;ij), (3.103)

where S
(N)
uv is defined in the Appendix.

Let us check that the number of variables is equal to the number of

equations. The numbers of equations defined by Eqs. (3.102) and (3.103)

are equal to the numbers of variables amn and bmn, respectively, and the

numbers of equations defined by Eqs. (3.98) and (3.99) are equals to the

numbers of variables E
(α)
s(e;i)s(e;j) [s(e; i), s(e; j) 6∈ Γ1] and Φs(e;i), respectively.

The remaining variables are E
(α)
s(e;i)s(e;j) [s(e; i), s(e; j) ∈ Γ1], and the number

of these variables is 3M , where M is the number of edges on Γ1. The remain-

ing equations are explicit boundary conditions [Eqs. (3.100) and (3.101)] and

the stationary condition [Eq. (3.97)], each of which provides M equations,

and thus there are a total of 3M equations. Therefore, E
(α)
s(e;i)s(e;j) and Φs(n;i)

can be uniquely determined.

Mie theory

To begin, we calculate the scattering cross section of a spherical QD. The

scattering cross section for this geometry has also been calculated using Mie

theory, in which the EM fields inside and outside the sphere are expanded

by vector spherical harmonics and the expansion coefficients are determined

from the MBCs and Pekar-type ABC [26]. The validity of the present FEM

is confirmed by a comparison of the cross section with that calculated by Mie

theory.

For the Mie theory, the electric fields in the spherical particle are ex-
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panded as

E(0)(r) =
∞∑

n=0

n∑

m=−n
amnMmn(k0r, θ, φ) + bmnNmn(k0r, θ, φ) + E(inc)(r) ,

(3.104)

and

E(t1)(r) =
∞∑

n=0

n∑

m=−n
c(t1)
mnM(1)

mn(kt1r, θ, φ) + d(t1)
mnN(1)

mn(kt1r, θ, φ) (3.105)

E(t2)(r) =
∞∑

n=0

n∑

m=−n
c(t2)
mnM(1)

mn(kt2r, θ, φ) + d(t2)
mnN(1)

mn(kt2r, θ, φ) (3.106)

Φ(l)(r) =
∞∑

n=0

n∑

m=−n
emnΨ(1)

mn(klr, θ, φ) , (3.107)

where amn, bmn, c
(t1)
mn , c

(t2)
mn , d

(t1)
mn , d

(t2)
mn , and emn are the unknown coefficients,

and E(inc) is the plane wave. Moreover, N, M, Ψ are the vector spherical

harmonics. Note that we define N(1), M(1), Ψ(1), and ξ(1) which use the

spherical bessel function jn(kr) instead of hn(kr)., and we denote the original

functions in Eq. (2) and (3) as N(0), and M(0), because the spherical hankel

function has a singularity at the origin point (r = 0).

Considering the MBCs at r = R, we have

hn(k0R)amn + I0hn(k0R)pmn = jn(kt1R)c(t1)
mn + jn(kt2R)c(t2)

mn

(3.108)

ξ(0)′
n (k0R)amn + I0ξ

(0)′
n (k0R)pmn = ξ(1)′

n (kt1R)c(t1)
mn + ξ(1)′

n (kt2R)c(t2)
mn

(3.109)

ξ
(0)′
n (k0R)

k0R
bmn + I0

ξ
(0)′
n (k0R)

k0R
qmn =

ξ
(1)′
n (kt1R)

kt1R
d(t1)
mn +

ξ
(1)′
n (kt2R)

kt2R
d(t2)
mn

(3.110)

k0hn(k0R)bmn + k0hn(k0R)I0qmn = kt1jn(kt1R)d(t1)
mn + kt2jn(kt2R)d(t2)

mn .

(3.111)

where pmn and qmn are the expansion coefficients of the plain wave, which
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is defined in the previous section.

In similar manner, the ABCs is also written as

χ(kt1 , ω)jn(kt1R)c(t1)
mn + χ(kt2 , ω)jn(kt2R)c(t2)

mn = 0

(3.112)

χ(kt1 , ω)
ξ

(1)′
n (kt1R)

kt1R
c(t1)
mn + χ(kt2 , ω)

ξ
(1)′
n (kt2R)

kt2R
c(t2)
mn − χ(kl, ω)

jn(klR)

klR
emn = 0

(3.113)

n(n+ 1)χ(kt1 , ω)
jn(kt1R)

kt1R
c(t1)
mn + n(n+ 1)χ(kt1 , ω)

jn(kt2R)

kt2R
c(t2)
mn

−χ(kl, ω)j′n(klR)emn = 0 .

(3.114)

The unknowns are uniquely determined by Eq. (3.108)-(3.114).

3.3.3 Numerical results

We apply the present FEM to light scattering problems in semiconductor

nanostructures. The scattering cross section σs is calculated using the ex-

pansion coefficients amn and bmn of E
(scat)
∞ (r) as follows:

σs =
1

k2

Nc∑

n=1

n∑

m=−n
Nmn(|amn|2 + |bmn|2), (3.115)

where Nmn is defined in the Appendix A.

Spherical QD

We consider a spherical QD of CuCl with a 10-nm diameter. Spherical QDs

can be synthesized in a glass matrix [12], and recently, spherical CuCl QDs

have been fabricated from a bulk sample using laser ablation in superfluid

helium; size selective transportation of the QDs has also been reported [15].

The lowest exciton of CuCl, known as the Z3 exciton, has a simple electronic

structure and a Bohr radius of 0.7 nm. Since the exciton Bohr radius is

sufficiently smaller than the QD diameter, we can use the bulk exciton pa-

rameters. We take the Z3 exciton into account in the following calculations
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Figure 3.7: (a) Volume element mesh for a spherical QD. (b) Scattering cross
section of a spherical QD of CuCl with a 10-nm diameter calculated by the
present FEM (crosses) and by Mie theory (solid line). (c) Vector plots of
the calculated electric field at the resonant photon energy indicated by the
arrow in (b). (d) Vector plots of the calculated exciton polarization at the
resonant photon energy indicated by the arrow in (b).
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using the parameters listed in Table 3.1.

Figure 3.7 (a) shows the volume element mesh in the QD region. A total

of 6609 nodes and 35429 elements were used in the calculation. Figure 3.7

(b) shows the calculated scattering cross sections for an incident plane wave

polarized in the x-direction using the present FEM (crosses) and Mie the-

ory (solid line); the exciton damping energy was set to ~γ = 1 meV. The

FEM results exhibit excellent agreement with those of Mie theory, which

confirms the validity of the present FEM. Figures 3.7 (c) and (d) show the

distributions of the electric field and exciton polarization under the resonant

photon energy of 3.206 eV, respectively. A strong enhanced field appears

around the edge of the QD, as shown in Fig. 3.7 (c). This enhanced-field dis-

tribution appears in metallic nanostructures because of the surface-plasmon

resonant scattering, whereas in semiconductor nanostructures, it originates

from the exciton resonance. The profile of the polarization field in Fig. 3.7

(d) indicates that the excited state is a 1s-like nodeless exciton.

Hexagonal-disk QD

To demonstrate the advantages of the present FEM, we consider a hexagonal-

disk QD. In contrast to the spherical geometry, there are no suitable vector

basis functions. Furthermore, other established numerical techniques can-

not include the exciton effect for nanostructures with an arbitrary geome-

try. However, we show here that the present FEM is capable of calculating

the light scattering from a hexagonal-disk QD of ZnO. The exciton of ZnO

has a large binding energy of 60 meV, and by virtue of this fact, room-

temperature laser emission from excitons in ZnO microcrystallite thin films

has been realized; the hexagonal ZnO QDs were grown by laser molecular

beam epitaxy [30].

Figure 3.8 (a) shows the volume element mesh in the QD region, and in

this case, 12947 nodes and 72169 elements were used. Figure 3.8 (b) shows the

calculated scattering cross section for an incident plane wave propagating in

the z-direction and polarized in the x-direction; the exciton damping energy

was set to ~γ = 1 meV. The electric field distributions at the resonant photon

energies, indicated by the left and right arrows, are mapped in Fig. 3.8 (c) and
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Figure 3.8: (a) Volume element mesh for a hexagonal-disk QD. (b) Scattering
cross section calculated by the present FEM of a hexagonal-disk QD of ZnO
with a length of 30 nm and a height of 10 nm. At the resonant photon energy
of 3.39063 eV indicated by the left arrow in (b), (c) the magnitudes of the
electric fields and the (d) x- and (e) y-components of the exciton polarization
are plotted in the x–y plane of the top surface of the QD. At the resonant
photon energy of 3.39227 eV indicated by the right arrow in (b), (f) the
magnitudes of the electric fields and the (g) x- and (h) y-components of the
exciton polarization are plotted in the same plane.
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Fig. 3.8 (f), respectively. The magnitudes of the field have been normalized to

the magnitude of the incident field. Both scattered fields are enhanced by a

factor of 10 at the edges of the hexagonal-disk QD near the x-axis. Although

these field distributions are similar, the exciton polarization patterns are

quite different, as can be seen in Fig. 3.8 (d) and (g) (x-component) and

Fig. 3.8 (e) and (h) (y-component). These plots indicate that 1s-like and

2p-like excitons are excited at resonant photon energies of 3.39063 eV and

3.39227 eV, respectively. Thus, the present FEM is capable of resolving the

excited modes of the excitons.

3.4 Conclusion

We have developed an FEM-based EM simulation method for semiconductor

nanostructures with arbitrary geometries. The EM field in a semiconductor

propagates as an exciton polariton with a transverse character. At a given fre-

quency, there are at most two exciton-polariton and one longitudinal-exciton

modes in the semiconductor, and thus, an ABC is necessary in addition

to the MBCs for determining the EM fields. To represent the weak-form

functional in terms of variables defined in subdivided volume elements, we

have developed a hybrid edge–node-element method to improve the accu-

racy. The transverse fields and the scalar field providing the longitudinal are

represented by edge and node elements, respectively. We have found the sta-

tionary condition [Eq. (3.97)] from which the MBC [Eq. (3.73)] can be added

to the derived linear equations. EM fields have been obtained by solving the

equations derived from the stationary conditions [Eqs. (3.97)–(3.99)] and the

equations of the explicit boundary conditions [Eqs. (3.100)–(3.103)].

The present method has been confirmed to be valid through a comparison

with the scattering cross section of a spherical semiconductor calculated by

Mie theory. Furthermore, we have applied the present FEM to the calculation

of the electric-field and exciton-polarization distributions of a hexagonal-disk

QD of ZnO. At each resonant photon energy, the characteristic polarization

patterns reflecting the size-quantized exciton are well resolved by the cal-

culations. We expect that the developed FEM will be a powerful tool for

designing and analyzing semiconductor optical devices utilizing exciton res-
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onance.
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Chapter 4

Electric field enhancement at

semiconductor nanogap

The localized surface plasmon resonance (LSPR) of metal provides the an-

tenna effect which aggregates light into nano-scale area (known as hotspot).

The hotspot can be considered as a photonic cavity, various types of the

metallic structures has been investigated. The metallic islands with nanogap

structure are one of the most popular designs of the plasmon cavity. However

its quality factor is limited (Q < 100) by large scattering loss of the plasma

oscillation.

In the previous chapter, we have beem studied the light scattering by

the exciton resonance confined in arbitrary shape. As well as the LSPR, the

strong enhancement of EM field appears around the edge due to the exciton

resonance. In this study, we propose a new nanogap cavity utilizing exci-

ton resonance of semiconductor. The spectral width of the confined exciton

is much smaller than that of the surface plasmon. Therefore, a large im-

provement in the Q factor is expected in the proposed system. This high-Q

factor would enable to achieve the strong-coupling regime more easily. The

computation is performed by the FEM technique proposed in the previous

chapter.
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4.1 Model

First, we consider two CuCl disks forming a nanogap (nanodimer) as shown in

Fig. 4.1(a), where the thickness W = 5 nm, the diameter L = 30 nm, and the

gap width G = 5 nm. Let us consider a z-directed incident beam illuminates

the nanodimer. The incident plain wave is linearly polarized, we assume

two cases of the polarization direction: the x-direction (the electric field is

parallel to the gap) and the y-direction (the electric field is perpendicular

to the gap). The electric field calculations are performed based on FEM

technique proposed in the previous chapter. In this work, we systematically

study the geometry dependence of the enhancement factor and Q factor. We

also consider the ring [Fig. 4.1(b)] and the bow-tie nanogap model [Fig. 4.6].

The result of the calculations are discussed in the following section.

4.2 Results

4.2.1 Field profile

Fig. 4.2.1 plots the electric field distribution on z = 0 plane at the res-

onant condition. (The amplitude of the incident plane wave is set to be

|E(inc)|2 = 1). For the x−polarized incident field, a hotspot with the en-

hanced electric field appears at the gap region. The arrows represent the di-

rection of the polarization induced by the incident field. Due to dipole-dipole

interactions between two nanodisks, the individual excited states hybridize

and form two splitting modes: a bonding and anti-bonding combinations.

The schematic diagram of the hybridization energy is illustrated in Fig. 4.3.

For the x-polarized incident field, the orientation of the induced dipole mo-

ment is parallel to the gap structure. In this case, the bonding state corre-

sponds to the mode in which the dipole moments of two nanodisks oscillate

in phase with each other. Thus, only the bonding state is appeared in the op-

tical spectra (bright mode). On the other hand, due to the optical selection

rules, the anti-bonding state corresponding to the out-of-phase oscillation is

not easily excited by light (dark mode). For the y-polarized incident field,

the orientation of the dipole moments are perpendicular to the gap structure.
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(a)

(b)

Figure 4.1: Schematic illustration of the nanogap structure and parameters
definitions. (a) a dimer of nanodisk and (b) nanoring.
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0

600

1200

Figure 4.2: Intensity profiles of (a) the x-polarized incident and (b) the x-
polarized incident. The color scale gives the strongly enhanced electric field
(hotspot) appears on the gap, and the incident field is amplified by about
103 times stronger at this point.
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Figure 4.3: Hybridization energy diagram of the dimer nanodisk. The dipole-
dipole interaction between the nanodimer results in the two hybrid states,
i.e., the bonding and the anti-bonding combinations.
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In contrast to the previous case, the in-phase and the out-of-phase oscillation

correspond, respectively, to the anti-bonding and the bonding state. Thus,

in this case, only the anti-bonding state becomes the bright mode; it is eas-

ily excited by the input light. Between the x- and the y-polarized incident

directions, the resonant energy shifts about 0.3 meV corresponding to the

bonding and anti-bonding energy.

4.2.2 Field enhancement factor

We estimate the field enhancement factor by averaging of the intensity ‖E‖2

over the 4nm× 4nm square around the hotspot.

1

l2

∫ l
2

− l
2

dx

∫ l
2

− l
2

dy‖E(x, y, z = 0)‖2 (4.1)

The spectrum of the intensity enhancements is plotted in Fig. 4.4(a). As

shown in the figure, the intensity enhancement of the x-polarization incident

is larger than that of y-polarization. At the resonant condition (~ω = 3.2067

eV), the maximum enhancement factor is estimated to be ‖E‖2 ∼ 103.

Next, we estimate the Q factor of the nanogap. The Q factor can be

expressed as the ratio between the resonant frequency and the full-width of

half-maximum (FWHM):

Q =
ωL

2γL

, (4.2)

where ωL and γL are determined by the Lorentizan curve fitting:

L(ω) =A0 +
A

(ω − ωL)2 + γ2
L

. (4.3)

Here, by fitting Eq. (4.3) into the peak at ~ω = 3.2067 eV, the Q factor

reaches about ∼ 12000. Therefore, due to the large Q factor, this new

nanogap can be considered as a photonic cavity.
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Figure 4.4: Spectral intensity enhancement at the hotspot of the dimer nan-
odisk consists of (a) the CuCl and (b) the gold. The red (solid) line denotes
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4.2.3 Spectral properties; semiconductor vs metallic

nanogap

We also calculate the field enhancement factor of a gold- disk nanogap with

the same structure. To describe the gold permittivity, we use a Debye model:

εp(ω) =ε0

[
1− (~ωp)2

(~ω)2 + i(~ω)(~γ)

]
, (4.4)

where ~ωp is the plasma frequency and ~γ is the damping constant. For gold,

we employ the parameter: ~ωp = 8.9 meV and ~γ = 50 meV, which agrees

well with experimental data at T = 40◦K. Fig. 4.4(b) shows the spectrum of

the intensity enhancements of the gold nanogap. Similar to the semiconduc-

tor, there is the larger enhancement factor for the x-polarized incident field.

The maximum enhancement factor reaches to ∼ 104 order at the resonant

condition (~ω = 3.0 eV). It is about 10 times larger than that of the semicon-

ductor. On the other hand, due to the large losses of the plasma oscillation,

the Q factor (≈ 30) is much smaller than that of the semiconductor.

Next, we perform the EM simulation of the dimer of the ring depicted

in Fig. 4.1(b). Fig. 4.5 shows the resonant energy and the maximum en-

hancement as a function of the ring width S. As the ring width decreases,

the resonant energy is blue-shifted due to the quantum confinement effect,

and the enhancement factor is suppressed linearly. This behaviour originates

from that the absorbing cross section of the nanogap is also proportional to

the ring width S. As shown in here, it is obvious that a field at the hotspot

strongly depends on the shape and size of the nanostructure. In particular,

the cross-section area is expected to be the dominant for the enhancement

factor. In the following section, we discuss the dependency of the geometrical

parameters.

4.2.4 Dependencies of the geometrical shape

Next, we investigate a dimer of triangular prism-shaped block which tips

directed each other. This structure, often known as the bow-tie nanogap, is

one of the most popular design in the plasmonics.
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Figure 4.6: Schematic model of the bow-tie structure with the tip angle θ
and the curvature radius κ−1.
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A schematic illustration of the nanogap structure and parameters defi-

nitions are depicted in Fig. 4.6. In the previous section, we show that the

field enhancement is very sensitive to the shape of nanoblocks. Here we in-

vestigate the influence of the curvature radius κ−1 and the tip angle θ. For

convenience, we fix the gap spacing width as (G = 5 nm), the thickness

(h = 10 nm), and the volume (V = 7000nm3). The polarization direction of

the incident light is assumed to be parallel to the gap. We calculate the field

enhancement of the semiconductor (CuCl) and metallic (Au) nanogap with

the same structure. Fig. 4.7(a) shows the spectral intensity enhancement of

the semiconductor one. For the metallic nanogap, only one resonant peak ap-

pears in the spectra and its maximum enhancement factor is suppressed with

increasing the angle θ. On the other hand, for the semiconductor nanogap

(CuCl), there are three peaks corresponding the exciton states. In contrast

to the metallic nanogap, the θ dependence of the intensity enhancement is

not straightforward. For the low θ, the intensity enhancement increase with

θ. Fig. 4.8 shows θ-dependence with the three different curvature.

Fig. 4.9(b) and Fig. 4.10(b) show the maximum enhancement factor as a

function of the curvature radius for the metallic and semiconductor nanogaps,

respectively.

For the plasmonic nanostructure, it is well known that the sharp edge and

the small curvature of the corner are suitable for the strong intensity enhance-

ment. However, for the semiconducting nanostructure, the large curvature

radius and the blunt edge is preferable. This behavior is originating from the

wavefunction of the confined exciton. For the sharp edge, the excitons wave

function can not reach to the tip part. This effect weakens the electric field

at the gap region. In similar manner, the field enhancement decreases with

increase of the curvature radius. extends near the edge for blunt geometry

[See Fig. 4.10]

4.3 Conclusion

In this study, we propose a new nano-gap cavity utilizing exciton resonance

of semiconductor. We considered the semiconductor nano-gap which consists

of a dimer of CuCl nano-blocks. This CuCl nano-gap has a strong hot spot
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with large enhancement factor (≈ 103) at T = 40 K. This enhancement

factor of CuCl is about 10 times smaller than the factors of metallic antennas.

However, the hotspot of the semiconducting antenna exhibits much higher

Q factor (≈ 104) which exceeds the limitation of plasmon resonators. Our

result suggests the semiconducting antenna would function as a new type of

photonic cavity. The calculation method is based on a finite element method

which can take into account exciton resonance. We also systematically study

the geometry dependence of the enhancement factor andQ factor. In contrast

to metallic antenna, blunt edges of semiconducting islands at the gap are

preferable in order to achieve high enhancement factor. This is because of

the fact that exciton wave function extends near the edge for blunt geometry.
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Chapter 5

Vacuum Rabi splitting at

semiconductor nanogap

In the past decade, the observation of the cQED (cavity quantum electro-

dynamics) effects are realized by utilizing quantum dots and microscopic

photonic cavities [34, 25, 23]. These solid-state cQEDs enable a mount of

applications, such as the single quantum dot lasers, the high-gain paramet-

ric amplifications [27], the high-efficiency entangled photon generation [3],

and the various quantum infomation devices [5]. The strength of the light-

matter interaction is characterized by the coupling constant g and the decay

constant γ, and the phenomenon are divided into two regions, i.e., a weak

and a strong coupling regime. In the weak coupling regime (2g � γ/2), the

radiative decay time of material excitation is considerably reduced (Purcell

effect) [24]. In the strong coupling regime (2g � γ/2), the light-matter inter-

action results in the two coupled states exhibiting an anticrossing behaviour

(Rabi splitting) [18]. The minimun energy difference of the splitting, which

corresponds to the coupling constant 2~g, is also denoted as ~ΩR (Rabi split-

ting energy). This value can be written as 2µ
√
~ω/2ε0Vmode, where Vmode is

the cavity mode-volume, and ~ω, µ are the excitation energy and transition

dipole moment of a matter, respectively. Therefore, the Rabi splitting energy

becomes larger for smaller Vmode in addition to the larger µ. The spectral

width corresponding to the coupled states becomes narrower with increase of

the quality (Q) factor. Therefore, the small mode-volume and large Q factor
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are necessary for photonic cavities to observe a clear Rabi splitting.

In the previous experiments, the photonic crystal cavity [34], the micro-

pillar cavity [25], and the micro-disk cavity [23] are utilized to observe the

vacuum Rabi splitting. However, for conventional photonic cavities , the

cavity-mode volume is restricted to the volume characterized by the light

wavelength (diffraction limit). The light confinement becomes a key issue to

realize the cQEDs.

A localized surface plasmon resonance (LSPR) of metallic nanostrucrures

makes possible to reduce the mode-volume beyond this limitation. For ex-

ample, the dimer of the metallic particles with nanogap structure provides

very intense electric field, which is called as a hotspot at the gap region

[32]. The cavity mode-volume of metallic nanogap cavities reaches the cube

of subwavelength exceeding the diffraction limit. By using such plasmonic

nanogap, the weak coupling by the hotspot has been achieved. Akimov et

al. [4] has estimated the Purcell factor of order F = 103. For the strong

coupling, Schlather et al. [29] have reported the observation of a giant Rabi

splitting of molecular excitons placed at the metallic nanogap cavity. Al-

though the giant splitting energy, each spectral width of the two peaks is

very broad and comparable to the splitting energy because of the large plas-

mon decay. Generally, ~ΩR � ~γ/2 should be satisfied to reach for the

strong coupling regime. However, for the plasmonic nanogap, the decay is

not small enough for this criterion. Such a situation is transitional from the

Rabi splitting to the Fano-like behavior [28].

In this work, we propose and analyze a new type of the photonic cavity

constructed by semiconductor nanostructures, in which resonant scattering

by exciton causes a hotspot at the nanogap. The spectral width of the con-

fined exciton is much smaller than that of the surface plasmon, and thus, the

cavity Q factor is significantly improved. The semiconductor nanogap cavity

has also small mode volume exceeding the diffraction limit. We theoretically

demonstrate the vacuum-Rabi splitting of a two-level emitter placed on the

gap region. The classical electromagnetic (EM) method can not treat the

effect of the confined exciton. Therefore, we have developed an new finite

element method (FEM) based simulation method.

In this chapter, We theoretically demonstrate the vacuum-Rabi splitting
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of a two-level emitter placed on the gap region.

5.1 Model

In this work, we consider a nanogap consisting of a dimer of the spherical

semiconductor particle of L = 7 nm radius, these two particles are separated

by G = 8 nm. The schematic picture is illustrated in Fig. 5.1(a). In this

case, we compute the light scattering by the nanogap structure. The incident

light is assumed to be a plane wave, which is linearly polarized with the

electric vector parallel to the gap structure. The electric field calculations

are performed based on a finite element method (FEM) technique which takes

account into the exciton effects. The electric field calculations are performed

based on FEM technique which takes account into the exciton effects. We use

the parameter of CuCl (c.f. Table 3.1). As shown in the previous section,

such semiconductor nanogap structure can be considered as the photonic

cavity.

In addition, we investigate the strong coupling between the cavity mode

and the matter. In this case, we consider a two-level emitter, which represents

a quantum dot (QD) or a cluster of aggregated dye molecules, placed in the

gap region. [See Fig. 5.1(b)] The emitter is assumed to be a spherical particle

of R = 2 nm radius. We use the dielectric function of a Lorentz oscillator

model:

ε(ω) =ε0

(
1− A

(~ω)2 − (~ω0)2 + i(~ω)(~γ0)

)
,

where ω0 and γ0 are the resonant frequency and the non-radiative decay

constant of the oscillator, respectively. The parameter A is defined as

A =
e2

meε0Vemit

f (5.1)

with

f =
2ω0me

~e2
µ2 , (5.2)
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Target

(Molcule or QD)

(a) Empty nanogap cavity

Nanogap cavity

(CuCl spherical particle)

L2=7nmL1=7nm G=8nm

R=2nm

(b) Emitter-cavity coupled system

Figure 5.1: Schematic picture and the parameter definitions of (a) the empty
nanogap cavity and (b) the cavity-emitter coupled system. We assume that
the polarization direction of the incident light is parallel to the gap structure.

77



where e and me are the charge and mass of the electron, respectively, f is the

oscillator strength, and µ is the transitional dipole moment. Vemit denotes the

volume of the emitter, which can be written as 4πR3/3. Fig. 5.2(a) shows

the scattering spectra of the single emitter for the transitional dipole moment

of µ = 8 ∼ 12 D. As increasing the transition dipole moment, the resonant

peak of the single emitter is blue-shifted from the exact resonant frequency

of the Lorentz oscillator ω0 (radiation shift). Therefore, for convenience,

we denoted the peak position by the excitation energy ~ωex, which can be

expressed as

~ωex = ~ω0 + ∆~ωshift . (5.3)

Fig. 5.2(b) shows the radiation shifts as a function of the transitional dipole

moment. In the following section, we calculate the optical spectra of the

cavity-emitter coupled system with varying the parameters of ~ωex and µ.

5.2 Results

The calculated scattering sperctra of the empty nanogap cavity is depicted

in Fig. 5.1(b). A sharp peak appears at ~ωcav = 3.2085eV representing an

eigenstate of the confined exciton. The decay constant, which is obtained

from the full-width at half-maximum (FWHM) of the resonant peak, is esti-

mated to be ~γcav = 227µeV. This value is about two times larger than that

of the bulk exciton ~γCuCl = 100 µeV due to the radiation decay from the

nanogap. The corresponding Q factor is Q ∼ 1.3× 104, which easily exceeds

the limitation of that of the plasmonic cavity (Q < 102).

For the cavity-emitter coupled system, the calculated scattering spectra

is plotted as the solid blue line in Fig. 5.4. The excitation energy of the bared

emitter is fixed to be same as that of the nanogap cavity (~ωex = ~ωcav =

3.2085 eV). The transition dipole moment is assumed to be µ = 10 Debyes,

which is as small as the dye molecules. When the emitter is inserted into the

gap region, the calculated spectra exhibits two peaks separated by 0.6 meV:

the upper and the lower levels (~ω− = 3.2082 eV and ~ω+ = 3.2088 eV).

We assume the excitation energy of the bared emitter is same as the cavity
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resonant energy (~ωex = ~ωex = 3.2085 eV). The transition dipole moment

is set to be µ = 10 D, which is as small as the dye molecules. When the

emitter is inserted into the gap region, the calculated spectra exhibits two

peaks separated by 0.5 meV: the upper and the lower branches. This peak

splitting is a result of the strong coupling in the nanogap cavity.

Fig. 5.5 plots the electric field distribution on z = 0 plane at the resonant

condition. This profile shows a hotspot appears in the gap regions; the

incident light is aggregated into this point and amplified about 103 times

stronger.

Next, we calculate the optical spectra with varying the excitation energy

~ωex. It is obvious that the peak position of the bared emitter is progres-

sively red-shifted with decreasing ~ωex. [See Fig. 5.6(a)] In experiments, the

modification of the excitation energy can be accomplished by controlling the

temperature of the system [34, 25, 23]. The spectra of the cavity-emitter

coupled system is depicted in the Fig. 5.6(b). A significant anti-crossing

behaviour by the vacuum Rabi splitting appears.

As shown in the previous section, the hybridization of individual excited

states result in the bonding and the antibonding states. In this case, the

bonding state, which corresponds to the in-phase oscillation of the dipole

moments, is allowed to be excited (bright mode). An interaction between

the bright mode and the two-level emitter forms the two state: the upper

and lower branches. The schematic diagram of the hybridization energy is il-

lustrated in Fig. 5.7. In this case, the bonding state corresponds to the mode

in which the dipole moments of two particles oscillate in phase with each

other. This state is appeared in the optical spectra (bright mode) and be-

comes the cavity mode ~ωcav. On the other hand, due to the optical selection

rules, the anti-bonding state corresponding to the out-of-phase oscillation is

not easily excited by light (dark mode). The interaction between the bright

mode and the emitter forms the two state: the upper and lower states.

These states are given by the Jaynes-Cummings model, which is written

as

ĤJC =~ωcavâ
†â +

~ωex

2
σ̂z +

~ΩR

2

(
â†σ̂− + âσ̂+

)
,
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where â† and â are the creation and destruction operators for the cavity

mode, and σ̂z, σ̂± are the pseudospin operators for the two-level emitter.

The eigenenergies of the upper and lower levels take the form

~ω± =
(~ωcav + ~ωex)±

√
(~ωcav − ~ωex)2 + (~ΩR)2

2
. (5.4)

By fitting Eq. (5.4) into the calculated peak positions, the Rabi splitting

energy is estimated to be ~ΩR = 580 µeV (for µ = 10 Debyes).

The Rabi splitting energy is determined by fit Eq. (5.4) into the ob-

tained peak positions. Fig. 5.2(a)-(e) shows the dispersion curves for various

transision dipole moment. The horizontal axis is the deference between the

cavity resonant energy and the peak position of the emitter; ~ωcav − ~ωex

(detuning). The plotted points denote the obtained upper and lower peak

positions, and the blue line is the fitting function (5.4).

Fig. 5.2(f) shows the Rabi splitting energy as a function of the transitional

dipole moment. Generally, the Rabi splitting energy can be expressed as

~ΩR =2µ

√
~ωcav

2εVmode

. (5.5)

As shown as the above, the Rabi splitting energy is expected to be pro-

portional to the dipole moment µ. Therefore, the mode volume can be de-

termined by the fitting parameter. The mode volume of this nanogap is

estimated to be Vmode = 1.2 × 10−2 µm3, which is about ten times smaller

than the limitation of the ordinary photonic cavities [34, 25, 23]

It is well known that the LSPR of the metallic nanogap can also produce

a hotspot at the center of the gap region. Recently, a giant Rabi splitting

energy (~ΩR ≈ 200 meV) has beem reported for the molecular excitons in the

metallic nanogap [29]. The corresponding cavity mode-volume is estimated to

be 101 ∼ 102 nm3 order, which is incredibly smaller than that of the ordinarily

photonic cavities. However, the large losses of the plasma oscillation prevents

the observation of the clear Rabi splitting.

In general, ~ΩR � (~γcav−~γex)/2 is should be satisfied. For the metallic

nanogap, the decay constant reaches ~γcav > 100 meV. The ~ΩR is at most

comparable to the decay constant. For a small dipole moment, a fano-like
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dip appears instead of the Rabi splitting.

For the semiconductor nanogap, our results show ~γcav ≈ 200 µeV and

~γex ≈ 100 µeV. Thus, it is obviously that the Rabi splitting appears at

small dipole moment of a few Debyes. [See Fig. 5.2(f)] We believe the semi-

conductor nanogap enables the observation of the clearer peak splitting.

5.3 Conclusion

In this paper, we have proposed a new nanogap structure consisting of a

semiconductor dimer, and computed the vacuum-Rabi splitting of a two-level

system placed at the nanogap. The results show that the splitting energy

reaches ≈ 0.5 meV for dipole moment ≈ 10 Debyes of the two-level system.

The corresponding mode volume 10−2µm3 is much smaller than that of a

photonic slab cavity.

In principle, the small cavity-mode volume and large Q factor are neces-

sary for photonic cavities to observe a clear Rabi splitting. In the previous

experiments, two major types of the photonic cavities have been utilized.

The first type is the nanostructure consisting of the non-resonating semicon-

ductor, (i.e., the conventional photonic cavities such as the photonic crys-

tals). For such structure, the high-Q factor can be achieved, on the other

hand, the mode-volume is restricted by the diffraction limit. The second

type is the nanostructure consisting of the metal (i.e., the plasmonic cav-

ities). The LSPR provides the subwavelength mode-volume, on the other

hand, the Q factor is strongly diminished. The crucial point of this study

is a new photonic cavity consisting of the resonating semicondutor. This

new structure has two remarkable merits: (i) the mode-volume is smaller

than the conventional photonic cavity. (ii) the Q factor is larger than the

plasmonic cavity. The above properties provide a significant advantage for

the ordinary designes, and they are suited for the cQED applications. We

believe the semiconducting nanostructure becomes the powerful tool for the

nanophotonics.
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Figure 5.7: Hybridization energy diagram of the cavity-emitter coupled sys-
tem; The interaction between the emitter and the bright mode of the nanogap
results in the two coupled state separated by ~ΩR
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Figure 5.8: Dispersion curve; the dependence of the peak positions on the
excitation energy of the emitter. The horizontal axis is the energy deference
between the emitter and the cavity mode ~ωex−~ωcav. (a)-(e) The dispersion
curves for various transision dipole moment of µ = 5, 10, 15, 20, and 25 Debye.
The green and red triangles represents the upper- and the lower- branch of
the coupled state. The blue line is the calculated from the Eq. (5.4) (e) The
Rabi splitting energy vs the transition dipole moment.
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Chapter 6

Conclusion

In this thesis, we have developed a new EM simulation method applicable to

the exciton resonance confined in arbitrary shape. Our method is expected

to be powerful tool for structure-based design of the hotspot assisted by the

exciton resonances.

For this application, we have proposed a new semiconductor-based nanogap

structure utilizing exciton resonances. The result of the numerical simulation

shows that this nanogap produces the localized electric field at the hotspot

and acts as the high-Q photonic cavity. The obtained Q factor reaches to the

order of 105 which easily exceeds the limitation of the plasmonic resonators

(Q < 102). As well as the plasmonics, the optical properties of the nanogap

are strongly depend on the geometrical parameters such as its shape, width,

thickness and curvature. For example, in the case of the metal, the hotspot

is localized on the edge of the nanostructure, and its the field intensity is

enhanced by the edge sharpness. In contrast to the metallic nanostructures,

the enhancement factor increases for flatter angle because flatter angle allows

the exciton wavefunction to approach the edges near the nanogap. This is

also the characteristic feature of the exciton induced hotspot.

We also theoretically demonstrated the vacuum-Rabi splitting of a two-

level emitter placed on the gap region. The resulting spectra peaks exhibit, a

clear anti-crossing behavior appears in the dispersion relations. The splitting

energy reaches ≈ 0.5 meV for dipole moment ≈ 10D of the two-level emitter.

The corresponding mode volume ≈ 10−2µm3, which is 10 times smaller than
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that of the ordinary photonic cavity.

The significance of this study is in (i) developing the an electromagnetic

(EM) simulation method based on a finite-element method (FEM) for an

exciton-active media, (ii) reviewing the semiconductor-based nanogap struc-

ture as the microcavity, and (iii) demonstrating the vacuum Rabi splitting at

the semiconductor nanogap. There results suggests that the semiconductor

nanostructure opens a new research field in nano-optics.

In this work, we have accomplished the theoretical calculations of the pro-

posed nanostructures. However, it has not been checked by the experiments

yet. Therefore, Verification experiment is highly desirable.
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J. Bloch. Exciton-Photon Strong-Coupling Regime for a Single Quantum

Dot Embedded in a Microcavity. Physical Review Letters, 95(6):067401,

August 2005.

[24] E. M Purcell. Spontaneous emission probabilities at radio frequencies.

Physical Review, 69:681–681, 1946.
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Appendix

Vector spherical harmonics

In spherical polar coordinate, the scalar solution of the Helmholtz equation

is given as

Ψnm(kr, θ, φ) = hn(kr)P |m|n (cos θ)eimφ (1)

where k is a wave number,hn is the n-th order spherical Hankel function, P
|m|
n

is the Legendre polygonal. Hence, the integer n,m are limited at 0 ≤ |m| ≤ n.

Consider the vector spherical harmonics:

Mmn(kr, θ, φ) =i
m

sin θ
hn(kr)Pm

n (cos θ)eimφθ̂

− hn(kr)
∂Pm

n (cos θ)

∂θ
eimφφ̂ (2)

Nmn(kr, θ, φ) =
n(n+ 1)

kr
hn(kr)Pm

n (cos θ)eimφr̂

+
1

kr
ξ′n(kr)

∂Pm
n (cos θ)

∂θ
eimφθ̂

+ i
1

kr

m

sin θ
ξ′n(kr)Pm

n (cos θ)eimφφ̂ , (3)

where m is a integer limited for −n ≤ m ≤ n. Orthogonality of M and N are
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shown as follows:

∫∫

Γ(r)

dSM ∗
mn ·Mm′n′

=

∫∫ [(
i
m

sin θ
hn(kr)Pm

n (cos θ)eimφ
)∗(

i
m′

sin θ
hn′(kr)Pm′

n′ (cos θ)eim
′φ

)

+

(
−hn(kr)

∂Pm
n (cos θ)

∂θ
eimφ

)∗(
−hn′(kr)

∂Pm′
n′ (cos θ)

∂θ
eim

′φ

)]
r2 sin θdθdφ

=r2h∗n(kr)hn′(kr)

∫∫
dθdφ

(
mm′

sin θ
Pm
n P

m′
n′ + sin θ

∂Pm
n

∂θ

∂Pm′
n′

∂θ

)
ei(m−m

′)θ

=4πr2|hn|2
n(n+ 1)

2n+ 1

(n+m)!

(n−m)!
δnn′δmm′ (4)

∫∫

Γ(r)

dSN ∗mn ·Nm′n′

=

∫∫ [(
n(n+ 1)

kr
hn(kr)Pm

n (cos θ)eimφ
)∗(

n(n+ 1)

kr
hn(kr)Pm

n (cos θ)eimφ
)

+

(
1

kr
ξ′n(kr)

∂Pm
n (cos θ)

∂θ
eimφ

)∗(
1

kr
ξ′n(kr)

∂Pm
n (cos θ)

∂θ
eimφ

)

+

(
i

1

kr

m

sin θ
ξ′n(kr)Pm

n (cos θ)eimφφ̂

)∗(
i

1

kr

m

sin θ
ξ′n(kr)Pm

n (cos θ)eimφφ̂

)]
r2 sin θdθdφ

=r2 ξ
′∗
n ξ
′
n′

(kr)2

∫∫
ei(m−m

′)φ

(
mm′

sin θ
Pm
n P

m′
n′ + sin θ

∂Pm
n

∂θ

∂Pm′
n′

∂θ

)
dθdφ

+ r2n
2(n+ 1)2h∗nhn′

(kr)2

∫∫
ei(m−m

′)φPm
n P

m
n′ sin θ dθdφ

=4πr2

∣∣∣∣
ξ′n
kr

∣∣∣∣
2
n(n+ 1)

2n+ 1

(n+m)!

(n−m)!
δnn′δmm′ + 4πr2|hn|2

n2(n+ 1)2

2n+ 1

(n+m)!

(n−m)!
δnn′δmm′

(5)

where Γ(r) is denoted to the surface integral on the sphere of the radius r.

Similar relation is appear in the surface integral of the cross product of
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M ×N .

∫∫

Γ(r)

dS · (M ∗
mn ×Nm′n′)

=

∫∫
r2 sin θdθdφ

(
i
m

sin θ
hnP

m
n (cos θ)eimφ

)∗(
i

1

kr

m′

sin θ
ξ′n′Pm′

n′ (cos θ)eim
′φ

)

−
(
−hn(kr)

∂Pm
n (cos θ)

∂θ
eimφ

)∗(
1

kr
ξ′n′(kr)

∂Pm′
n′ (cos θ)

∂θ
eim

′φ

)

=r2h
∗
nξ
′
n′

kr

∫∫
ei(m−m

′)φ

(
mm′

sin θ
Pm
n P

m′
n′ + sin θ

∂Pm
n

∂θ

∂Pm′
n′

∂θ

)
dθdφ

=4πr2h
∗
nξ
′
n′

kr

n(n+ 1)

2n+ 1

(n+m)!

(n−m)!
δnn′δmm′ (6)

Therefore, we get

∫∫

Γ(r)

dSM ∗
mn ·Mm′n′ =4πr2|hn(kr)|2N (m,n) (7)

∫∫

Γ(r)

dSN ∗mn ·Nm′n′ =4πr2

(∣∣∣∣
ξ′n(kr)

kr

∣∣∣∣
2

+ n(n+ 1)|hn|2
)
N (m,n) (8)

∫∫

Γ(r)

dSM ∗
mn ×Nm′n′ =4πr2h

∗
nξ
′
n′

kr
N (m,n) (9)

with

N (n,m) =
n(n+ 1)

2n+ 1

(n+m)!

(n−m)!
δnn′δmm′ (10)
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