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Abstract

We consider the maximization problem of expected terminal utility. The underlying market
model is a regime-switching diffusion model in which the regime is determined by an unobservable
factor process forming a finite-state Markov process. The main novelty is due to the fact that
prices are observed and the portfolio is rebalanced only at random times corresponding to a
Cox process in which intensity is further driven by the unobserved Markovian factor process.
This leads to a more realistic modeling for several practical situations, as in markets with
liquidity restrictions; on the other hand, it considerably complicates the problem to such a
degree that traditional methodologies cannot be directly applied. Furthermore, we provide a
numerical scheme for these problems to numerically compute the value functions.
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Introduction

In this thesis, we study a classical portfolio optimization problem, namely, the maximization of
expected utility from terminal wealth. We assume that the dynamics of the prices at which one
makes as investment, are of the usual diffusion type but have the following two peculiarities:

• the coefficients in the dynamics depend on an unobservable finite-state Markovian factor
process θt (regime-switching model);

• the prices Sit of the risky assets, or equivalently, their log-values are observed only at doubly
stochastic random times τ0, τ1, · · · , for which the associated counting process forms a Cox
process (e.g. [3], [10]) with an intensity n(θt) that depends on the same unobservable factor
process θt.

Such models are relevant in financial applications for various reasons: regime-switching models,
which are also relevant in various other applied areas, have been extensively employed in the fi-
nancial literature, because they account for various stylized facts such as volatility clustering. On
the other hand, random discrete time observations are more realistic in comparison to diffusion-
type models since, especially on small time scales, prices do not vary continuously but rather
change. These prices are observed only at random times in reaction to trading or the arrival of
significant new information, and it is reasonable to assume that the intensity of price changes
depends on the same factors that specify the regime for price evolution (e.g. [7], [4]).This setting
leads to a stochastic control problem with incomplete information and observations given by
Cox process.

A classical approach to incomplete observation control problems is to first transform the
problem into a so-called separated problem, where the unobservable part of the state is replaced
by its conditional distribution. First, this requires solving the associated filtering problem, which
already is non-standard and has been recently solved in [4] (also refer to [5]). Our major contri-
bution here is to the control part of the separated problem that is approached in a non-classical
manner. In particular, we shall restrict the rebalancing of investment strategies to only random
times τk when prices change. Although slightly less general from a theoretical perspective, re-
stricting trading to discrete, and particularly, random times is fairly realistic in finance, where
in practice one cannot continuously rebalance a portfolio: think of the case with transaction
costs or liquidity restrictions (for the latter context refer to [8], [9], [13], [16], [17], [18], where
the authors consider illiquid markets, partly in addition to regime switching models as in this
paper, but under complete information).

The thesis is organized as follows. In Chapter 1, we provide a precise definition of the market
model, formulate the investor’s strategy, and recall the filtering results of [4]. In Chapter 2, we
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consider the expected log-utility maximization

supE{log VT }, (0.0.1)

where VT is the total wealth of an investor at terminal time T . In Chapter 3, we consider expected
power-utility maximization. Equivalently, we consider the risk-sensitive portfolio optimization,

sup
1

µ
logE{V µ

T }, (0.0.2)

where µ < 0. In Chapter 4, we provide a numerical scheme for these problems to numerically
compute the value functions.
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Chapter 1

Preliminary

1.1 The market model and preliminary notations

Let θt be the hidden finite state Markovian factor process. With Q denoting its transition
intensity matrix (Q−matrix) its dynamics are given by

dθt = Q∗θtdt+ dMt, θ0 = ξ, (1.1.1)

where Mt is a jump-martingale on a given filtered probability space
(Ω,F ,Ft, P ). If N is the number of possible values of θt, we may without loss of generality
take as its state space the set E = {e1, . . . , eN}, where ei is a unit vector for each i = 1, . . . , N
(see [6]).

The evolution of θt may also be characterized by the process πt given by the state probability
vector that takes values in the set

SN := {π ∈ RN |
N∑
i=1

πi = 1, 0 ≤ πi ≤ 1, i = 1, 2, . . . , N} (1.1.2)

namely the set of all probability measures on E and we have πi0 = P (ξ = ei). Denoting by M(E)
the set of all finite nonnegative measures on E, it follows that SN ⊂ M(E). In our study it will
be convenient to consider on M(E) the Hilbert metric dH(π, π̄) defined (see [1] [11] [12]) by

dH(π, π̄) := log( sup
π̄(A)>0,A⊂E

π(A)

π̄(A)
sup

π(A)>0,A⊂E

π̄(A)

π(A)
). (1.1.3)

Notice that, while dH is only a pseudo-metric on M(E), it is a metric on SN ([1]).

In our market we consider m risky assets, for which the price processes Si = (Sit)t≥0, i =
1, . . . ,m are supposed to satisfy

dSit = Sit{ri(θt)dt+
∑
j

σij(θt)dB
j
t }, (1.1.4)

for given coefficients ri(θ) and σij(θ) and with Bj
t (j = 1, · · · ,m) independent (Ft, P )−Wiener

processes. Letting Xi
t = logSit , by Itô’s formula we have,in vector notation,

Xt = X0 +

∫ t

0
r(θs)− d(σσ∗(θs))ds+

∫ t

0
σ(θs)dBs, (1.1.5)
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where by d(σσ∗(θ)) we denote the column vector (12(σσ
∗)11(θ), . . . , 12(σσ

∗)mm(θ)). As usual there
is also a locally non-risky asset (bond) with price S0

t satisfying

dS0
t = r0S

0
t dt (1.1.6)

where r0 stands for the short rate of interest. We shall also make use of discounted asset prices,
namely

S̃it :=
Sit
S0
t

, with X̃i
t := log S̃it (1.1.7)

for which, by Itô’s formula

dS̃it = S̃it{(ri(θt)− r0)dt+
∑
j

σij(θt)dB
j
t }, (1.1.8)

dX̃i
t = {ri(θt)− r0 − d(σσ∗(θt))

i}dt+
m∑
j=1

σij(θt)dB
j
t . (1.1.9)

As already mentioned, the asset prices and thus also their logarithms are observed only at
random times τ0, τ1, τ2, . . .. The observations are thus given by the sequence (τk, X̃τk)k∈N that
forms a multivariate marked point process with counting measure

µ(dt, dx) =
∑
k

1{τk<∞}δ{τk,X̃τk
}(t, x)dtdx. (1.1.10)

The corresponding counting process Λt :=
∫ t
0

∫
Rm µ(dt, dx) is supposed to be a Cox process with

intensity n(θt), i.e. Λt −
∫ t
0 n(θs)ds is an (Ft, P )− martingale. We consider two sub-filtrations

related to (τk, X̃τk)k∈N namely

Gt := F0 ∨ σ{µ((0, s]×B) : s ≤ t, B ∈ B(Rm)},

Gk := F0 ∨ σ{τ0, X̃τ0 , τ1, X̃τ1 , τ2, X̃τ2 , . . . , τk, X̃τk}.
(1.1.11)

where, again for simplicity, Gk stands forGτk . In our development below we shall often make use
of the following notations. For the conditional (on Fθ) mean and variance of X̃t − X̃τk we set

mθ
k(t) =

∫ t
τk
[r(θs)− r01− d(σσ∗(θs))]ds,

σθk(t) =
∫ t
τk
σσ∗(θs)ds

(1.1.12)

and, for z ∈ Rm, we set
ρθτk,t(z) ∼ N(z;mθ

k(t), σ
θ
k(t)) (1.1.13)

namely the joint conditional (on Fθ) m-dimensional normal density function with mean vector
mθ
k(t) and covariance matrix σθk(t). In the symbol ∼ stands for ”distributed according to”.
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1.2 Investment strategies, portfolios,objective

As mentioned in the Introduction, since observations take place at random time points τk, we
shall consider investment strategies that are rebalanced only at those same time points τk.

LetN i
t be the number of assets of type i held in the portfolio at time t, N i

t =
∑

k 1[τk,τk+1)(t)N
i
k.

The wealth process is defined by

Vt :=

m∑
i=0

N i
tS

i
t .

Consider then the investment ratios

hit :=
N i
tS

i
t

Vt
,

and set, for simplicity of notation, hik := hiτk . The set of admissible investment ratios is given by

H̄m := {(h1, . . . , hm);h1 + h2 + . . .+ hm ≤ 1, 0 ≤ hi, i = 1, 2, . . . ,m}, (1.2.1)

i.e. no shortselling is allowed and notice that H̄m is bounded and closed. Put h = (h1, · · · , hm).
Analogously to [14] define next a function γ : Rm × H̄m → H̄m by

γi(z, h) :=
hi exp(zi)

1 +
m∑
i=1

hi(exp(zi)− 1)

, i = 1, , . . . ,m. (1.2.2)

Noticing that Nt is constant on [τk, τk+1), for i = 1, . . . ,m, and t ∈ [τk, τk+1) let

hit =
N i

tS
i
t∑m

i=0N
i
tS

i
t
=

N i
kS

i
t∑m

i=0N
i
kS

i
t

=
N i

kS
i
τk
Si
t/S

i
τk∑m

i=0N
i
kS

i
τk
Si
t/S

i
τk

=
hikS

i
t/S

i
τk∑m

i=0 h
i
kS

i
t/S

i
τk

=
hikS

0
τk
/S0

t S
i
t/S

i
τk∑m

i=0 h
i
kS

0
τk
/S0

t S
i
t/S

i
τk

=
hik exp(X̃i

t−X̃i
τk

)

h0k+
m∑
i=1

hik exp(X̃i
t−X̃i

τk
)
=

hik exp(X̃i
t−X̃i

τk
)

1+
m∑
i=1

hik(exp(X̃
i
t−X̃i

τk
)−1)

= γi(X̃t − X̃τk , hk).

(1.2.3)

The set of admissible strategies A is defined by

A := {{hk}∞k=0|hk ∈ H̄m, Gk measurable for all k ≥ 0}. (1.2.4)

Furthermore, for n > 0, we let

An := {h ∈ A|hn+i = hτn+i− for all i ≥ 1}. (1.2.5)

Notice that, by the definition of An, for all k ≥ 1, h ∈ An we have

hin+k = hiτn+k−

⇔
N i
n+kS

i
τn+k∑m

i=0N
i
n+kS

i
τn+k

=
N i
n+k−1S

i
τn+k∑m

i=0N
i
n+kS

i
τn+k
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⇔ Nn+k = Nn+k−1.

Therefore, for k ≥ 1
Nn+k = Nn,

and
A0 ⊂ A1 ⊂ · · ·An ⊂ An+1 · · · ⊂ A. (1.2.6)

Remark 1.2.1. Notice that, for a given finite sequence of investment ratios h0, h1, · · · , hn such
that hk is an Gk−measurable, H̄m−valued random variable for k ≤ n, there exists h(n) ∈ An

such that h
(n)
k = hk, k = 0, · · · , n. Indeed, if Nt is constant on [τn, T ), then for ht we have

ht = γ(X̃t − X̃τn , hn), ∀t ≥ τn. Therefore, by setting h
(n)
ℓ = hℓ, ℓ = 0, · · · , n, and h

(n)
n+k =

hτn+k
, k = 1, 2, · · · , since the vector process St and the vector function γ(·, hn) are continuous,

we see that h
(n)
n+k = hτn+k−, k = 1, 2, · · · .

Finally, considering only self-financing portfolios, for their value process we have the dynam-
ics

dVt
Vt

= [r0 + h∗t {r(θt)− r01}]dt+ h∗tσ(θt)dBt. (1.2.7)

1.3 Filtering

As mentioned in the Introduction, the standard approach to stochastic control problems under
incomplete information is to first transform them into a so-called separated problem, where the
unobservable part of the state is replaced by its conditional (filter) distribution. This implies
that we first have to study this conditional distribution and its (Markovian) dynamics, i.e. we
have to study the associated filtering problem.

The filtering problem for our specific case, where the observations are given by a Cox process
with intensity expressed as a function of the unobserved state, has been studied in [4] (see also
[5]). In this section. we therefore summarize the main results from [4] in view of their use in our
control problem in this paper. Recalling the definition of ρθ(z) in (1.1.13) and putting

ϕθ(τk, t) = n(θt) exp(−
∫ t

τk

n(θs)ds), (1.3.1)

for a given function f(θ) we let

ψk(f ; t, x) := E[f(θt)ρ
θ
τk,t

(x− X̃k)ϕ
θ(τk, t)|σ{θτk} ∨ Gk] (1.3.2)

ψ̄k(f ; t) :=

∫
ψk(f ; t, x)dx = E[f(θt)ϕ

θ(τk, t)|σ{θτk} ∨ Gk] (1.3.3)

πt(f) = E[f(θt)|Gt] (1.3.4)

with ensuing obvious meanings of πτk(ψk(f ; t, x)) and πτk(ψ̄k(f ; t)) where we consider ψk(f ; t, x)
and ψ̄k(f ; t) as functions of θτk . The process πt(f) is called the filter process for f(θt).

We have the following lemma (see Lemma 4.1 in [4]), where by P(G) we denote the predictable
σ -algebra on Ω× [0,∞) with respect to G and set P̃(G) = P(G)⊗ B(Rm).
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Lemma 1.3.1. The compensator of the random measure µ(dt, dx) in (1.1.10) with respect to
P̃(G) is given by the following nonnegative random measure

ν(dt, dx) =
∑
k

1(τk,τk+1](t)
πτk(ψk(1, t, x))∫∞
t πτk(ψ̄k(1, s))ds

dtdx. (1.3.5)

The main filtering result is the following (see Theorem 4.1 in [4]).

Theorem 1.3.1. For any bounded function f(θ), the differential of the filter πt(f) is given by

dπt(f) = πt(Lf)dt

+
∫ ∑

k 1(τk,τk+1](t)[
πτk (ψk(f ;t,x))

πτk (ψk(1;t,x))
− πt−(f)](µ− ν)(dt, dx),

(1.3.6)

where L is the generator of the Markov process θt(namely L = Q).

Corollary 1.3.1. We have

πτk+1
(f) =

πτk(ψk(f ; t, x))

πτk(ψk(1; t, x))

∣∣∣∣
t=τk+1,x=X̃τk+1

. (1.3.7)

Recall that in our setting θt is an N -state Markov chain with state space E = {e1, . . . , eN},
where ei is a unit vector for each i = 1, . . . , N . One may then write f(θt) =

∑N
i=1 f(ei)1ei(θt).

For i = 1, . . . , N let πit = πt(1ei(θt)) and

rji(t, z) := E[exp(

∫ t

0
−n(θs)ds)ρθ0,t(z)|θ0 = ej , θt = ei], (1.3.8)

pji(t) := P (θt = ei|θ0 = ej) (1.3.9)

and, noticing that πt ∈ SN , define the function M : [0,∞)× Rm × SN → SN by

M i(t, x, π) :=
∑

j n(ei)rji(t,x)pji(t)π
j∑

ij n(ei)rji(t,x)pji(t)π
j , (1.3.10)

M(t, x, π) := (M1(t, x, π),M2(t, x, π), . . . ,MN (t, x, π)). (1.3.11)

For A ⊂ E

M(t, x, π)(A) :=

N∑
i=1

M i(t, x, π)1{ei∈A}. (1.3.12)

The following corollary will be useful

Corollary 1.3.2. For the generic i-th state one has

πiτk+1
=M i(τk+1 − τk, X̃τk+1

− X̃τk , πτk) (1.3.13)

and the process {τk, πτk , X̃τk}∞k=1 is a Markov process with respect to Gk.
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Proof. The representation (1.3.13) and the fact that {τk, πτk , X̃τk} is a Gk−adapted discrete
stochastic processes on [0,∞) × SN × Rm follow immediately from Corollary 1.3.1 and the
preceding definitions. For the Markov property we calculate

P (τk+1 < t, X̃1
τk+1

< x1, . . . , X̃
m
τk+1

< xm|Gk)

= E[P (τk+1 < t, X̃1
τk+1

< x1, . . . , X̃
m
τk+1

< xm|Gk ∨ Fθ)|Gk]

= E[
∫ t
τk
P (X̃1

τk+1
< x1, . . . , X̃

m
τk+1

< xm|Gk ∨ Fθ)n(θs) exp(−
∫ s
τk
n(θu)du)ds|Gk]

= E[
∫ t
τk

∫ x1
−∞ . . .

∫ xm
−∞ ρτk,s(z − X̃τk)n(θs) exp(−

∫ s
τk
n(θu)du)dsdz|Gk]

=
∫ t
τk

∫ x1
−∞ . . .

∫ xm
−∞

∑
ij
n(ei)rji(s− τk, z − X̃τk)pji(s− τk)π

j
τkdsdz,

and for any bounded measurable function g on [0,∞)× SN × Rm it then follows that

E[g(τk+1, πτk+1
, X̃τk+1

)|Gk]

= E[g(τk+1,M(τk+1 − τk, X̃τk+1
− X̃τk , πτk), X̃τk+1

)|Gk]

= E[E[g(τk+1,M(τk+1 − τk, X̃τk+1
− X̃τk , πτk), X̃τk+1

)|G(k) ∨ Fθ]|Gk]

= E[
∫∞
τk
E[g(t,M(t− τk, X̃t − X̃τk , πτk), X̃t)n(θt) exp(−

∫ t
τk
n(θs)ds)|Gk ∨ Fθ]dt|Gk]

=
∫∞
τk

∫
Rm g(t,M(t− τk, x− X̃τk , πτk), x)

∑
ij n(ei)rji(t− τk, x− X̃τk)pji(t− τk)π

j
τkdxdt,

where the last equation depends only on {τk, πτk , X̃τk} thus implying the Markov property.
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Chapter 2

Log-utility maximization

In this chapter we consider expected log-utility maximization

sup
h∈A

E[log VT |τ0 = 0, πτ0 = π]. (2.0.1)

In Section 2.1 we introduce an operator that is important for the control results. The control
part is then studied in section 2.2-2.5 with the main result stated in Theorem 2.5.1. Section 2.6
contains technical proofs.

2.1 A contraction operator

In this section we define a contraction operator (see Definition 2.1.1 below) that will be relevant
for deriving the results on the value function. In view of its definition and in order to derive its
properties, we need first to introduce some additional notions.

We start by defining an operator on M(E) as follows

Ki(t, x)π :=
∑
j

n(ei)rji(t, x)pji(t)π
j , (2.1.1)

K(t, x)π := (K1(t, x)π,K2(t, x)π, . . . ,KN (t, x)π). (2.1.2)

For t ∈ [0,∞), x ∈ Rm, Ki(t, x) is a positive linear operator on M(E). For A ⊂ E set

K(t, x)π(A) :=
N∑
i=1

Ki(t, x)π1{ei∈A}. (2.1.3)

By the definition of M i(t, x, π) and Ki(t, x)π, setting κ(t, x, π) :=
∑

iK
i(t, x)π, for t ∈

[0,∞), x ∈ Rm, π ∈ M(E) we have

M i(t, x, π) =
1

κ(t, x, π)
Ki(t, x)π . (2.1.4)
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By the definition of the Hilbert metric dH(·, ·), for t ∈ [0,∞), x ∈ Rm, π, π̄ ∈ M(E) we then
have

dH(M(t, x, π),M(t, x, π̄)) = log(sup M(t,x,π)(A)
M(t,x,π̄)(A) sup

M(t,x,π̄)(A)
M(t,x,π)(A))

= log(sup
1

κ(t,x,π)
K(t,x)π(A)

1
κ(t,x,π̄)

K(t,x)π̄(A)
sup

1
κ(t,x,π̄)

K(t,x)π̄(A)
1

κ(t,x,π)
K(t,x)π(A)

)

= log(sup K(t,x)π(A)
K(t,x)π̄(A) sup

K(t,x)π̄(A)
K(t,x)π(A))

= dH(K(t, x)π,K(t, x)π̄).

(2.1.5)

Applying [1], Lemma 3.4 in [11] and Theorem 1.1 in [12] , for the positive linear operator K on
M(E) it then follows that

dH(M(t, x, π),M(t, x, π̄)) = dH(K(t, x)π,K(t, x)π̄) ≤ dH(π, π̄) (2.1.6)

for t ∈ [0,∞), x ∈ Rm, π, π̄ ∈ SN . By Lemma 3.4 in [11] , for ∀π, π̄ ∈ SN we also have

∥π − π̄∥TV ≤ 2

log 3
dH(π, π̄), (2.1.7)

where ∥ · ∥TV is the total variation on SN .
We finally introduce a metric on [0,∞)× SN × H̄m by

|t− t̄|+ dH(π, π̄) +

m∑
i=1

|hi − h̄i| (2.1.8)

for (t, π, h), (t̄, π̄, h̄) ∈ [0,∞)× SN × H̄m and considering the state space

Σ := [0,∞)× SN , (2.1.9)

let Cb(Σ) be the set of bounded continuous functions g : Σ → R with norm

∥g∥ := max
x∈Σ

| g(x) | . (2.1.10)

Definition 2.1.1. Let the operator J : Cb(Σ) → Cb(Σ) be given as follows

Jg(τ, π)

:=
∫ T
τ

∫
Rm g(t,M(t− τ, z, π))

∑
ij n(ei)rji(t− τ, z)pji(t− τ)πjdzdt

= E[g(τ1, πτ1)1{τ1<T}|τ0 = τ, πτ0 = π],

(2.1.11)

where M is defined in (1.3.11)-(1.3.12).

First we have

Lemma 2.1.1. J is a contraction operator on Cb(Σ) with contraction constant c := 1−e−n̄T < 1,
where n̄ := maxn(θ) = maxi n(ei).
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Proof. For ∀g ∈ Cb(Σ)

| Jg(t, π) | = | E[g(τ1, π1)1{τ1<T}|τ0 = t, πτ0 = π] |

≤ ∥g∥P (τ1 < T |τ0 = t)

= ∥g∥E[(1− exp(−
∫ T
t n(θt)dt))]

≤ ∥g∥(1− exp(−n̄(T − t)))

and so
∥Jg∥ ≤ c∥g∥ (2.1.12)

with c as specified in the statement.

Let Cb,lip(Σ) be the set of bounded and Lipschitz continuous functions g : Σ → R and set
for g ∈ Cb,lip(Σ)

Nλ(g) := λ∥g∥+ [g]lip (2.1.13)

where,

[g]lip := sup
τ,τ̄∈[0,T ] π,π̄∈SN

|g(τ, π)− g(τ̄ , π̄)|
|τ − τ̄ |+ dH(π, π̄)

. (2.1.14)

Note that Cb,lip(Σ) is a Banach space with the norm Nλ(g), for each λ > 0.
Take a sufficiently large constant λ such that

c′ := (c+max(n̄,
2

log 3
)
1

λ
) < 1. (2.1.15)

Proposition 2.1.1. The operator J in Definition 2.1.1 is a contraction operator

J : Cb,lip(Σ) → Cb,lip(Σ)

with contraction constant c′.

Proof. Let us first prove that Jg(t, π) is Lipschitz continuous with respect to t. By assumption,
for all g ∈ Cb,lip(Σ),

|g(τ, π)− g(τ̄ , π)| ≤ [g]lip|τ − τ̄ |, (2.1.16)

|g(τ, π)− g(τ, π̄)| ≤ [g]lipdH(π, π̄). (2.1.17)

We change variables from t to t+ τ ,

Jg(τ, π) =

∫ T−τ

0

∫
Rm

g(t+ τ,M(t, z, π))
∑
ij

n(ei)rji(t, z)pji(t)π
jdzdt. (2.1.18)

We then have

|Jg(τ, π)− Jg(τ̄ , π)|

= |
∫ T−τ
T−τ̄

∫
Rm g(t+ τ,M(t, z, π))

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

+|
∫ T−τ
0

∫
Rm{g(t+ τ,M(t, z, π))− g(t+ τ̄ ,M(t, z, π))}

·
∑

ij n(ei)rji(t, z)pji(t)π
jdzdt|

≤ n̄∥g∥|τ − τ̄ |+ [g]lip|τ − τ̄ | |
∫ T−τ
0

∫
Rm

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

= n̄∥g∥|τ − τ̄ |+ [g]lip|τ − τ̄ |P (τ1 < T |τ0 = τ, πτ0 = π)

≤ (n̄∥g∥+ c[g]lip)|τ − τ̄ |.

(2.1.19)
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Next, let us prove that Jg(t, π) is Lipschitz continuous with respect to π.

|Jg(τ, π)− Jg(τ, π̄)|

≤ |
∫ T−τ
0

∫
Rm{g(t,M(t, z, π))− g(t,M(t, z, π̄))}

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

+ |
∫ T−τ
0

∫
Rm g(t,M(t, z, π̄))

∑
ij n(ei)rji(t, z)pji(t)(π

j − π̄j)dzdt|

≤ |
∫ T−τ
0

∫
Rm [g]lipdH(M(t, z, π),M(t, z, π̄))

∑
ij n(ei)rji(t, z)pji(t)π

jdzdt|

+ ∥g∥ 2
log 3dH(π, π̄)P (τ1 < T |τ0 = τ)

≤ ( 2
log 3∥g∥+ c[g]lip)dH(π, π̄).

(2.1.20)

Therefore,

[Jg]lip = sup
τ,τ̄∈[0,T ] π,π̄∈SN

|Jg(τ, π)− Jg(τ̄ , π̄)|
|τ − τ̄ |+ dH(π, π̄)

≤ sup
τ,τ̄∈[0,T ] π,π̄∈SN

|Jg(τ, π)− Jg(τ̄ , π)|+ |Jg(τ̄ , π)− Jg(τ̄ , π̄)|
|τ − τ̄ |+ dH(π, π̄)

≤ sup
τ,τ̄∈[0,T ] π,π̄∈SN

(n̄∥g∥+ c[g]lip)|τ − τ̄ |+ ( 2
log 3∥g∥+ c[g]lip)dH(π, π̄)

|τ − τ̄ |+ dH(π, π̄)

≤ max(n̄, 2
log 3)∥g∥+ c[g]lip.

(2.1.21)

Finally, we obtain
Nλ(Jg) = λ∥Jg∥+ [Jg]lip

≤ cλ∥g∥+max(n̄, 2
log 3)∥g∥+ c[g]lip

≤ c′λ∥g∥+ c[g]lip

≤ c′Nλ(g).

(2.1.22)

2.2 Preliminary results in view of the optimal strategy

Recall from (1.2.7) that the value process of a self financing portfolio satisfies

dVt
Vt

= [r0 + h∗t {r(θt)− r01}]dt+ h∗tσ(θt)dBt. (2.2.1)

We have by Itô’s formula

log VT = log v0 +
∫ T
0 h∗tσ(θt)dBt

+
∫ T
0 [r0 + h∗t {r(θt)− r01} − 1

2h
∗
tσσ

∗(θt)ht]dt.
(2.2.2)

Put

f(θ, h) := r0 + h∗{r(θ)− r01} −
1

2
h∗σσ∗(θ)h (2.2.3)
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and notice that this function f(·) is bounded under our assumptions. The expected log-utility
of terminal wealth then becomes

E[log VT |τ0 = 0, πτ0 = π] = log v0 + E[

∫ T

0
f(θt, ht)dt|τ0 = 0, πτ0 = π] (2.2.4)

and, we want to consider the problem of maximization of expected terminal log-utility, namely

sup
h∈A

E[log VT |τ0 = 0, πτ0 = π]. (2.2.5)

Definition 2.2.1. Let Ĉ(τ, π, h) be defined by

Ĉ(τ, π, h) := E[
∫ T∧τ1
τ f(θs, hs)ds|τ0 = τ, πτ0 = π]

=
∫ T
τ

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(t− τ, x)pji(t− τ)πjdxdt,

(2.2.6)

where γ(x, h) = [γ1(x1, h), · · · , γm(xm, h)].

Lemma 2.2.1.

(i) For the function defined by (2.2.3), we have the following equation

E[

∫ T

t
f(θs, hs)ds|τ0 = t, πτ0 = π] = E[

∑
k

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π]. (2.2.7)

(ii) Ĉ is a bounded and continuous function on [0, T ]× SN × H̄m.

For the proof see Section 2.6

Corollary 2.2.1.

(i) There exists a Borel function ĥ(τ, π) such that suph∈H̄m
Ĉ(τ, π, h) = Ĉ(τ, π, ĥ(τ, π)).

(ii) The function
C(t, π) := sup

h∈H̄m

Ĉ(t, π, h). (2.2.8)

is Lipschitz continuous with respect to t, π in the metric introduced in (2.1.8).

Proof. H̄m is compact and Ĉ(τ, π, h) is a bounded continuous function on [0, T ]×SN×H̄m; there
exists then a Borel function ĥ(τ, π) such that (2.2.8) holds. Furthermore, Ĉ(t, π, h) is uniformly
Lipschitz continuous with respect to t, π.
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2.3 Value function and first properties

We start with the following basic definition

Definition 2.3.1. For given initial data (τ0 = t, πτ0 = π), where we now start at a generic time
t, consider the following value function for h ∈ A

W (t, π, h.) := E[
∫ T
t f(θs, hs)ds|τ0 = t, πτ0 = π]

= E[
∞∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π],
(2.3.1)

and define
W (t, π) := sup

h∈A
W (t, π, h.)

= sup
h∈A

E[

∫ T

t
f(θs, hs)ds|τ0 = t, πτ0 = π]

= sup
h∈A

E[
∞∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π],

(2.3.2)

Wn(t, π) := sup
h∈An

W (t, π, h.)

= sup
h∈An

E[

∫ T

t
f(θs, hs)ds|τ0 = t, πτ0 = π]

= sup
h∈An

E[

∞∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π],

(2.3.3)

where An was defined in (1.2.5).

Lemma 2.3.1. For all n ≥ 0 and h ∈ An, we have the following equation

W (t, π, h.) = E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(2.3.4)

For the proof see Section 2.6.

Corollary 2.3.1. For n ≥ 0, t ∈ [0, T ], π ∈ SN we have the following equation

Wn(t, π) = sup
h∈An

E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(2.3.5)
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2.4 An auxiliary value function

Recall the function C(t, π) defined in Corollary 2.2.1 as well as the operator J from Definition
2.1.1. By Proposition 2.1.1 we have that J is a contraction operator on the Banach space Cb,lip
with its norm Nλ(·). Therefore, limn→∞

∑n
k=0 J

kC exists and so we introduce the

Definition 2.4.1. Define the auxiliary value function W̄ (t, π) as

W̄ :=

∞∑
k=0

JkC

The following lemma then holds

Lemma 2.4.1. We have W̄ ∈ Cb,lip and it satisfies

W̄ (t, π) = C(t, π) + JW̄ (t, π). (2.4.1)

Proof. Due always to the fact that (see Proposition 2.1.1) J is a contraction operator on the
Banach space Cb,lip with its norm Nλ(·), in addition to the existence of limn→∞

∑n
k=0 J

kC we
also have

(I − J)−1C =

∞∑
k=0

JkC,

from which the result follows.

In view of deriving a recursion related to W̄ (t, π) (value iteration), we start with the

Definition 2.4.2. Define, for h ∈ H̄m,

W̄ 0(t, π, h) := E[

∫ T

t
f(θs, γ(X̃s − X̃t, h))ds|τ0 = t, πτ0 = π]. (2.4.2)

Furthermore, let
W̄ 0(t, π) := max

h∈H̄m

W̄ 0(t, π, h), (2.4.3)

and, for n ≥ 1
W̄n(t, π) := C(t, π) + JW̄n−1(t, π)

=
n−1∑
k=0

JkC(t, π) + JnW̄ 0(t, π).
(2.4.4)

Remark 2.4.1. The function W̄ 0(t, π, h) in (2.4.2) is bounded and continuous with respect to
t, π, h. This follows by an analogous proof as in Lemma 2.2.1(ii).

We first state and prove the following lemma (later we need a relation from the proof)

Lemma 2.4.2.
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(i) We have the equation

W̄n(t, π) = E[
n−1∑
k=0

C(τk, πτk)1{τk<T} + W̄ 0(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π]. (2.4.5)

(ii) For any ϵ > 0, we set nϵ := (log(1− c′) + log ε− logNλ(W̄ 1 − W̄ 0))/ log c′, where c′ is the
contraction constant defined in (2.1.15). For all n > nϵ,

Nλ(W̄ − W̄n) < ϵ. (2.4.6)

Proof. We prove (i). For n ≥ 1

{τn−1 < T} ⊃ {τn < T}. (2.4.7)

Therefore,
1{τn−1<T}1{τn<T} = 1{τn<T}. (2.4.8)

For all g ∈ Cb([0, T ]× SN ) and n ≥ 0, we have

E[g(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π]

= E[E[g(τn, πτn)1{τn<T}|Gn−1]1{τn−1<T}|τ0 = t, πτ0 = π].
(2.4.9)

because 1{τn−1<T}E[1{τn<T}|Gn−1] = E[1{τn<T}|Gn−1]. Then, since (see (2.1.11))

E[g(τn, πτn)1{τn<T}|Gn−1]

=
∫ T
τn−1

∫
Rm g(t,M(t− τn−1, z, πτn−1))

∑
ij

n(ei)rji(t− τn−1, z)pji(t− τn−1)π
j
τn−1

dzdt

= Jg(τn−1, πτn−1),
(2.4.10)

we have (see always (2.1.11))

E[g(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π] = E[Jg(τn−1, πτn−1)1{τn−1<T}|τ0 = t, πτ0 = π]

= Jng(t, π).
(2.4.11)

We thus obtain

W̄n(t, π) =

n−1∑
k=0

JkC(t, π) + JnW̄ 0(t, π)

= E[
∑n−1

k=0 C(τk, πτk)1{τk<T} + W̄ 0(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π].

(2.4.12)

Next, we prove (ii). For any n,

Nλ(W̄ − W̄n) = Nλ( lim
k→∞

W̄n+k − W̄n) = lim
k→∞

Nλ(W̄n+k − W̄n)

≤ lim
k→∞

k−1∑
i=0

Nλ(W̄n+i+1 − W̄n+i) ≤ Nλ(W̄n+1 − W̄n)
∞∑
i=0

(c′)i

≤ Nλ(W̄ 1 − W̄ 0)(c′)n
∞∑
i=0

(c′)i =
(c′)n

1− c′
Nλ(W̄ 1 − W̄ 0).

(2.4.13)
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Lemma 2.4.3. For all n ≥ 0, we have the equality

Wn(t, π) = W̄n(t, π). (2.4.14)

Proof. By Corollary 2.3.1, for all n ≥ 0

Wn(t, π) = sup
h∈An

E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(2.4.15)

Since H̄m is compact and W̄ 0(τ, π, h) is a bounded continuous function on [0, T ] × SN × H̄m,
there exists a Borel function w(τ, π) such that suph∈H̄m

W̄ 0(τ, π, h) = W̄ 0(τ, π, w(τ, π)) . Further-

more, by Corollary 2.2.1(i) there exists a Borel function ĥ(τ, π) such that suph∈H̄m
Ĉ(τ, π, h) =

Ĉ(τ, π, ĥ(τ, π)) holds. For n ≥ 0, we define the strategy

h̃k := ĥ(τk, πτk), 0 ≤ k ≤ n− 1

h̃k := w(τn, πτn), k = n

h̃k := γ(X̃τk − X̃τn , h̃n), k > n.

(2.4.16)

By definition of {h̃k}k∈N, we have {h̃k}k∈N ∈ An. Using Lemma 2.4.2(i) and Lemma 2.3.1, for
n ≥ 0, t ∈ [0, T ], π ∈ SN

W̄n(t, π) = E[

n−1∑
k=0

Ĉ(τk, πτk , h̃k)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , h̃n))ds1{τn<T}|τ0 = t, πτ0 = π]

≤ Wn(t, π).

(2.4.17)

Using again Lemma 2.3.1, (2.4.2) and Lemma 2.4.2(i), for all n ≥ 0, h ∈ An, t ∈ [0, T ], π ∈ SN

W (t, π, h.) = E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π]

= E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} + W̄ 0(τn, πτn , hn)1{τn<T}|τ0 = t, πτ0 = π]

≤ E[

n−1∑
k=0

C(τk, πτk)1{τk<T} + W̄ 0(τn, πτn)1{τn<T}|τ0 = t, πτ0 = π]

= W̄n(t, π).
(2.4.18)

Therefore, we have
Wn(t, π) = sup

h∈An
W (t, π, h.) ≤ W̄n(t, π), (2.4.19)
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and so we obtain for all n ≥ 0
Wn(t, π) = W̄n(t, π). (2.4.20)

Lemma 2.4.4. For n ≥ 0, we have the estimate

W̄n(t, π) ≤ W̄n+1(t, π) ≤ W̄ (t, π) ≤W (t, π). (2.4.21)

For the proof see Section 2.6.

Lemma 2.4.5. The following estimate holds

W (t, π) ≤ W̄ (t, π) (2.4.22)

for t ∈ [0, T ], ∀π ∈ SN .

For the proof see Section 2.6.

2.5 Main result

Based on the previous sections we obtain now the main result of this section

Theorem 2.5.1.

(i) Approximation theorem :
For any ϵ > 0, n > nϵ,

Nλ(W − W̄n) < ϵ, (2.5.1)

where nϵ is the constant defined in Lemma 2.4.2(ii) and, modulo the additive term log v0,the
function W = W (t, π) is the optimal value function (see (2.2.4), (2.3.1), (2.3.2)), Nλ is
the norm introduced in (2.1.13), and W̄n are computed recursively according to (2.4.3) and
(2.4.4).

(ii) Dynamic programming principle : for any n > 0

W (t, π) = sup
h∈An

E[
n∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}

+W (τn+1, πτn+1)1{τn+1<T}|τ0 = t, πτ0 = π].

(2.5.2)

.

(iii) Optimal value and optimal strategy for the Log Utility Maximization Problem : for the
utility maximization under the initial conditions V0 = v0, τ0 = 0, πτ0 = π we have

sup
h∈A

E[log VT |τ0 = 0, πτ0 = π] = log v0 + sup
h∈A

E[

∫ T

0
f(θt, ht)dt|τ0 = 0, πτ0 = π]

= log v0 + C(0, π) +
∑∞

k=1E[Ĉ(τk, πτk , ĥk)1{τk<T}|τ0 = 0, πτ0 = π],

(2.5.3)

with ĥk defined in Corollary 2.2.1, namely suph∈H̄m
Ĉ(τ, π, h) = Ĉ(τ, π, ĥ(τ, π)) and ĥk =

ĥ(τk, πτk) and
ĥit = γi(X̃t − X̃τk , ĥk), τk ≤ t < τk+1 (2.5.4)
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Proof. Let us first prove (i). By Lemma 2.4.4 and Lemma 2.4.5,

W (t, π) = W̄ (t, π). (2.5.5)

Therefore, applying Lemma 2.4.2(ii) one obtains

Nλ(W − W̄n) < ϵ. (2.5.6)

Next, let us prove (ii). By (2.5.5), Lemma 2.4.1, (2.4.11) and by Corollary 2.2.1

W (t, π) = W̄ (t, π) =

n∑
k=0

JkC + Jn+1W (t, π)

= E[
n∑
k=0

C(τk, πτk)1{τk<T} +W (τn+1, πτn+1)1{τn+1<T}|τ0 = t, πτ0 = π]

= sup
h∈An

E[
n∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} +W (τn+1, πτn+1)1{τn+1<T}|τ0 = t, πτ0 = π].

(2.5.7)

Finally, (iii) is an immediate consequence of (2.2.4), Lemma 2.2.1 and Lemma 2.4.3 and its
proof.

2.6 Proof of Lemma

Proof of Lemma 2.2.1.

Proof of statement (i). It follows from the two lemmas shown below.

Lemma 2.6.1. We have the following representation,

E[f(θt, ht)|Gt] =
∑
k≥0

1]τk,τk+1](t)
E[f(θt, γ(X̃t − X̃τk , hk))1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
. (2.6.1)

Proof. It suffices to prove that for any Gt−adapted process Zt

E[E[f(θt, ht)|Gt]Zt] = E[
∑
k≥0

1]τk,τk+1](t)
E[f(θt, γ(X̃t − X̃τk , hk))1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
Zt]. (2.6.2)

First notice that any Gt−adapted process Zt has the representation (see [3])

Zt =
∑
k≥0

1]τk,τk+1](t)Zk(t) + Z∞1]τ∞,∞[(t), (2.6.3)

with the process Zk(t) being Gk ⊗B(R+)-measurable. Furthermore, under our assumptions, for
all t > 0, limn→∞ 1{τn<t} = 0 and thus

Zt =
∑
k≥0

1]τk,τk+1](t)Zk(t). (2.6.4)
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Note, finally, that E[1{τk<t≤τk+1}|Gk] = 1]τk,∞)(t)E[1{t≤τk+1}|Gk]]. We then have

E[E[f(θt, ht)|Gt]Zt] = E[f(θt, ht)
∑
k≥0

1]τk,τk+1](t)Zk(t)]

=
∑
k≥0

E[E[f(θt, ht)1{t≤τk+1}|Gk]1{τk<t}Zk(t)]

=
∑
k≥0

E[
E[f(θt, ht)1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
E[1]τk,τk+1](t)Zk(t)|Gk]]

= E[
∑
k≥0

1]τk,τk+1](t)
E[f(θt, ht)1{t≤τk+1}|Gk]

E[1{t≤τk+1}|Gk]
Zt],

and thus we obtain (2.6.2) since

f(θt, ht) =

∞∑
k=0

1[τk,τk+1)(t)f(θt, γ(X̃t − X̃τk , hk)),

which follows from (1.2.3).

Lemma 2.6.2. We have the following equation

E[
∫ T
t f(θs, hs)ds|τ0 = t, πτ0 = π] = E[

∑
k≥0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π] (2.6.5)

with Ĉ(t, π, h) defined by (2.2.6) in Definition 2.2.1.

Proof. For simplicity, in the following formula we shall use the notation

Et,π[·] ≡ E[· |τ0 = t, πτ0 = π]

Using (2.6.1) we have similarly as above

Et,π[

∫ T

t
E[f(θs, hs)|Gs]ds] = Et,π[

∫ T

t

∑
k≥0

1]τk,τk+1](s)
E[f(θs, γ(X̃s − X̃τk , hk))1{s<τk+1}|Gk]

E[1{s≤τk+1}|Gk]
ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[f(θs, γ(X̃s − X̃τk , hk))1{s<τk+1}|Gk]ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[e

−
∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk]ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[E[e

−
∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk ∨ σ{θτk}]|Gk]ds]

(2.6.6)
Since (θt, X̃t) is a time homogeneous Markov process,

E[e
−

∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk ∨ σ{θτk}]

= E[e−
∫ t
0 n(θu)duf(θt, γ(X̃t − x, h))|θ0 = θ, X̃0 = x]|t=s−τk,θ=θk,x=X̃τk

,h=hk

(2.6.7)
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We now have, recalling the definition of rji(t, z) in (1.3.8),

E[e−
∫ t
0 n(θs)ds)f(θt, γ(X̃t − x, h))|θ0 = θ, X̃0 = x]

= E[e−
∫ t
0 n(θs)ds)E[f(θt, γ(X̃t − x, h))|Fθ

t ∨ {X̃0 = x}]|θ0 = θ, X̃0 = x]

= E[e−
∫ t
0 n(θs)ds)

∫
Rm f(θt, γ(z, h))ρ

θ
0,t(z)dz|θ0 = θ, X̃0 = x]

= E[
∫
Rm

∑
ij

1{θt=ei,θ0=ej}f(ei, γ(z, h))

×E[e−
∫ t
0 n(θs)dsρθ0,t(z)|θt = ei, θ0 = ej ]dz|θ0 = θ, X̃0 = x]

= E[
∫
Rm

∑
ij

1{θt=ei,θ0=ej}f(ei, γ(z, h))rji(t, z)dz|θ0 = θ, X̃0 = x]

=
∫
Rm

∑
ij
f(ei, γ(z, h))rji(t, z)pji(t)1{θ=ej}dz.

(2.6.8)

We finally have

Et,π[

∫ T

t
f(θs, hs)ds] = Et,π[

∫ T

t
E[f(θs, hs)|Gs]ds]

= Et,π[
∑
k≥0

∫ T

t
1]τk,∞)(s)E[E[e

−
∫ s
τk
n(θu)duf(θs, γ(X̃s − X̃τk , hk))|Gk ∨ σ{θτk}]|Gk]ds]

= Et,π[
∑
k≥0

1{τk<T}

∫ T

τk

∫
Rm

∑
ij

f(ei, γ(z, hk))rji(s− τk, z)pji(s− τk)π
j
τk
dzds]

= Et,π[
∑
k≥0

Ĉ(τk, πτk , hk)1{τk<T}].

(2.6.9)

Proof of statement (ii) of Lemma 2.2.1.

We start by proving that Ĉ(t, π, h) is Lipschitz continuouswith respect to t.

Ĉ(t, π, h) =
∫ T
t

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s− t, x)pji(s− t)πjdxds

=
∫ T−t
0

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)π

jdxds.
(2.6.10)

Thus

|Ĉ(t, π, h)− Ĉ(t̄, π, h)| = |
∫ T−t
T−t̄

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)π

jdxds|

≤ ∥f∥|t− t̄|,
(2.6.11)

where ∥f∥ := supe∈E,h∈H̄m
∥f(e, h)∥. Next, let us prove that C(t, π, h) is Lipschitz continuous
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with respect to π (in the metric introduced in (2.1.8)).

|Ĉ(t, π, h)− Ĉ(t, π̄, h)| = |
∫ T−t
0

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)(π

j − π̄j)dxds|

≤ ∥f∥T |π − π̄| = ∥f∥T
∑N

i=1 |π(ei)− π̄(ei)|

≤ ∥f∥T∥π − π̄∥TV ≤ ∥f∥T 2
log 3dH(π, π̄),

(2.6.12)

where we have used (2.1.7).

Next, let us prove that C(t, π, h) is continuous with respect to h (always in the metric
introduced in (2.1.8)). The function f(ei, h) is bounded and continuous with respect to h for all
i. Furthermore, γ(x, h) is continuous with respect to h for all x ∈ Rm. Applying the dominated
convergence theorem, for hn ⊂ H̄m, s.t. lim

n→∞
hn = h ∈ H̄m

lim
n→∞

Ĉ(t, π, hn) =
∫ T−t
0

∫
Rm

∑
i,j

lim
n→∞

f(ei, γ(x, hn))rji(s, x)pji(s)π
jdxds

=
∫ T−t
0

∫
Rm

∑
i,j
f(ei, γ(x, h))rji(s, x)pji(s)π

jdxds

= Ĉ(t, π, h).

(2.6.13)

Ĉ(t, π, h) is thus continuous with respect to each of the variables t, π, h. However, continuity in
t, π is independent of the other variable. Hence, Ĉ(t, π, h) is a continuous function on [0, T ] ×
SN × H̄m.

Proof of Lemma 2.3.1

Fix n ≥ 0. Recall the definition of hin given in section 2.2. Since St is continuous and Vt satisfies
the self-financing condition, we obtain

hiτn− =
N i
n−1S

i
τn−

Vτn−
=
N i
n−1S

i
τn

Vτn
=

N i
n−1S

i
τn∑m

i=0N
i
nS

i
τn

.

Using (1.2.3), (1.2.5), for all k ≥ 1, h ∈ An, t ∈ [τn+k, T ], one furthermore has

hit = γi(X̃t − X̃τn+k
, hn+k) = γi(X̃t − X̃τn , hn).

Therefore, using lemma 2.2.1 (i) for h ∈ An

W (t, π, h.) = E[

n−1∑
k=0

∫ T∧τk+1

τk

f(θs, γ(X̃s − X̃τk , hk))ds1{τk<T}

+

∞∑
k=n

∫ T∧τk+1

τk

f(θs, γ(X̃s − X̃τk , hk))ds1{τk<T}|τ0 = t, πτ0 = π]

= E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} +

∫ T

τn

f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π].

(2.6.14)
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Proof of Lemma 2.4.4

By the definition of An, for n ≥ 0,An ⊂ An+1 ⊂ A, hence,

sup
h∈An

W (t, π, h.) ≤ sup
h∈An+1

W (t, π, h.) ≤ sup
h∈A

W (t, π, h.). (2.6.15)

By the definition of Wn(t, π) and W (t, π)

Wn(t, π) ≤Wn+1(t, π) ≤W (t, π). (2.6.16)

Using Lemma 2.4.3, for n,m ≥ 0

W̄n(t, π) ≤ W̄n+m(t, π) ≤W (t, π). (2.6.17)

Letting m→ ∞
W̄n(t, π) ≤ W̄ (t, π) ≤W (t, π). (2.6.18)

Proof of Lemma 2.4.5

For h ∈ A, W (t, π, h) defined by (2.3.1) satisfies

W (t, π, h.) = E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π]

+ E[

∞∑
k=n

Ĉ(τk, πτk , hk)1{τk<T}|τ0 = t, πτ0 = π]

= E[

n−1∑
k=0

Ĉ(τk, πτk , hk)1{τk<T} +

∫ T

τn

f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}

−
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π]

+ E[W (τn, πτn , h.)1{τn<T}|τ0 = t, πτ0 = π].

≤ Wn(t, π) + |E[
∫ T
τn
f(θs, γ(X̃s − X̃τn , hn))ds1{τn<T}|τ0 = t, πτ0 = π]|

+ E[W (τn, πτn , h.)1{τn<T}|τ0 = t, πτ0 = π]

≤ W̄n(t, π) + 2∥f∥TP (τn < T |τ0 = t).

(2.6.19)

because of the representation of Wn(t, π) in Corollary 2.3.1 (equation (2.3.5)) and Lemma 2.4.3.
Thus, by letting n→ ∞, we obtain

W (t, π, h.) ≤ W̄ (t, π) (2.6.20)

for all h ∈ A .
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Chapter 3

Power-utility maximization

Our problem of maximization of expected terminal power utility consists in determining

sup
h∈A

1

µ
logE[V µ

T |τ0 = 0, π0 = π]

= log v0 + suph∈A
1
µ logE[

V µ
T

V µ
0
|τ0 = 0, π0 = π],

(3.0.1)

for µ < 0 as well as an optimal maximizing strategy ĥ ∈ A.
Notice that, in order to study the optimization problem (3.0.1), it suffices to analyze the

criterion function

W (t, π, h.) :=
1

µ
logE[

V µ
T

V µ
t

|τ0 = t, π0 = π]. (3.0.2)

The optimal value function will then be defined as

W (t, π) := sup
h∈A

W (t, π, h.). (3.0.3)

In section 3.1 consists mainly in estimation results and in establishing continuity properties,
while section 3.2 and 3.3 contain results that will be used to obtain an approximation, of the
type of “value iteration”, of the optimal value function and a Dynamic Programming principle
that is specific to the given problem setting. These results serve also the purpose of obtaining a
methodology to determine an optimal strategy. Section 3.5 contains auxiliary technical results.

In the sequel we shall for simplicity use mostly the shorthand notation

Et,π[·] ≡ E[· |τ0 = t, πτ0 = π]
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and also use the following notations

m̄ := max0≤i≤mmax1≤j≤N mi(ej),

m := min0≤i≤mmin1≤j≤N mi(ej) ∧ 0 implying that m ≤ 0,

σ̄ := max0≤i≤mmax1≤j≤N σi(ej),

l(t) := E[|1− exp(µ|Xt −X0|)|],

c := E[1{τ1≤T}],

n := minn(θ) = mini n(ei),

n̄ := maxn(θ) = maxi n(ei).

(3.0.4)

3.1 Basic estimates

We start from the following representation of the criterion function.

Lemma 3.1.1. For t ∈ [0, T ], π ∈ SN
W (t, π, h.)

= 1
µ logE

t,π[exp(µ
∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})],

(3.1.1)

where,

D(h, x) := log(
m∑
i=0

hi exp(xi)). (3.1.2)

Proof. Since

m∑
i=0

hi = 1,

D(h, 0) = log(
m∑
i=0

hi) = 0 (3.1.3)

for h ∈ H̄m. For k ≥ 0, T ∈ [τk, τk+1]

V µ
T

V µ
τk

= (

m∑
i=0

N i
TS

i
T

Vτk
)µ = (

m∑
i=0

N i
kS

i
τk

Vk

SiT
Siτk

)µ = (

m∑
i=0

hik
SiT
Siτk

)µ

= (

m∑
i=0

hik exp(X
i
T −Xi

τk
))µ

= exp(µD(hk, XT −Xτk)).

(3.1.4)

For k ≥ 1, T < τk
V µ
T∧τk+1

V µ
T∧τk

=
V µ
T

V µ
T

= 1, (3.1.5)
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and
exp(µD(hk, XT∧τk+1

−XT∧τk)) = exp(µD(hk, XT −XT )) = 1. (3.1.6)

Therefore, we obtain

Et,π[(VT /Vt)
µ] = Et,π[

∞∏
k=1

V µ
T∧τk

V µ
T∧τk−1

]

= Et,π[exp(µ

∞∑
k=1

D(hk−1, XT∧τk −XT∧τk−1
))]

= Et,π[exp(µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})].

(3.1.7)

The representation of W (t, π, h.) in Lemma 3.1.1 leads us to define a function that will play
a crucial role in the sequel, namely

Definition 3.1.1. Let the function W̄ 0(t, π, h) be defined as

W̄ 0(t, π, h) :=
1

µ
logEt,π[exp(µD(h,XT −Xt))]. (3.1.8)

For the function W̄ 0(t, π, h) in the above Definition 3.1.1 we now obtain estimation and
continuity results as stated in the following proposition.

Proposition 3.1.1. For t ∈ [0, T ], h ∈ H̄m, we have the estimate:

exp((µm̄+
µσ̄2

2
)(T − t)) ≤ Et,π[exp(µD(h,XT −Xt))] ≤ exp((µm+

(µσ̄)2

2
)(T − t)), (3.1.9)

from which it immediately follows that

(m+
µσ̄2

2
)(T − t) ≤ W̄ 0(t, π, h) ≤ (m̄+

σ̄2

2
)(T − t). (3.1.10)

Furthermore, W̄ 0(t, π, h) is a continuous function on [0, T ]×SN×H̄m and the following estimates
hold:

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t, π̄, h))| ≤ exp((µm+
(µσ̄)2

2
)(T − t))

2

log 3
dH(π, π̄), (3.1.11)

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t̄, π, h))| ≤ exp((µm+
(µσ̄)2

2
)(T − t))l(t− t̄) for t̄ < t, (3.1.12)

where dH was defined in (1.1.3).

Proof. See Section 3.5.

We shall now introduce basic quantities that we shall use systematically throughout. The
first one concerns useful function spaces, namely
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Definition 3.1.2. By G we denote the function space

G := {g ∈ C([0, T ]× SN ) | (m+
µσ̄2

2
)(T − t) ≤ g(t, π) ≤ (m̄+

σ̄2

2
)(T − t))}. (3.1.13)

Furthermore, we let G1 ⊂ G be the subspace

G1 :=

{
g ∈ G | | exp(µg(t, π))− exp(µg(t, π̄))| ≤ 2

log 3
dH(π, π̄) exp((µm+

(µσ̄)2

2
)(T − t))

}
(3.1.14)

and G2 ⊂ G be the subspace of functions g ∈ G satisfying, for t̄ < t,

| exp(µg(t, π))− exp(µg(t̄, π))| ≤ k(t− t̄) exp((µm+
(µσ̄)2

2
)(T − t)), (3.1.15)

where k(t) is some nonnegative function on R such that k(0) = 0 and continuous at 0.

The second one concerns a crucial auxiliary quantity that will play a major role in the proofs
to follow, namely

Definition 3.1.3. For each g ∈ G let ξ̂ : [0, T ]× SN × H̄m → R be the function defined by

ξ̂(t, π, h; g) :=
1

µ
logEt,π[exp(µD(h,XT∧τ1 −Xt) + µ1{τ1<T}g(τ1, πτ1))]. (3.1.16)

We can now state and prove the following estimation result

Proposition 3.1.2. For each g ∈ G, we have the three estimates (c is as in (3.0.4))

(i)

c exp((µm̄+ µ(σ̄)2

2 )(T − t)) ≤ Et,π[exp
(
µD(h,Xτ1 −Xt) + µg(τ1, πτ1)

)
1{τ1≤T}]

≤ c exp((µm+ (µσ̄)2

2 )(T − t)),
(3.1.17)

(ii)

(1− c) exp((µm̄+ µ(σ̄)2

2 )(T − t)) ≤ Et,π[exp
(
µD(h,XT −Xt)

)
1{τ1>T}]

≤ (1− c) exp((µm+ (µσ̄)2

2 )(T − t))

(3.1.18)

and

(iii)

(m+
µσ̄2

2
)(T − t) ≤ ξ̂(t, π, h; g) ≤ (m̄+

σ̄2

2
)(T − t). (3.1.19)
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Furthermore, for all g ∈ G, the function exp(µξ̂(t, π, h; g)) is continuous with respect to h and
for each g ∈ G1 we have

| exp(µξ̂(t, π, h; g)− exp(µξ̂(t, π̄, h; g))|

≤ 2
log 3dH(π, π̄) exp((µm+ (µσ̄)2

2 )(T − t))(1 + c),
(3.1.20)

while for each g ∈ G2 we have

| exp(µξ̂(t, π, h; g)− exp(µξ̂(t̄, π, h; g))|

≤ exp((µm+ (µσ̄)2

2 )(T − t))(2 n̄n(e
n(t−t̄) − 1) + l(t− t̄) + ck(t− t̄)).

(3.1.21)

Proof. See Section 3.5.

3.2 Basic approximation results

This section is intended to prepare for one of the two main results in Theorem 3.4.1 below, namely
the approximation of the optimal value function, which involves a kind of “value iteration”. We
start by giving two definitions.

Definition 3.2.1. Defining the operator Jµ on C([0, T ]× SN ) by

Jµg(t, π) := sup
h∈H̄m

ξ̂(t, π, h; g) (3.2.1)

let, for g ∈ G,
J0
µg(t, π) := g(t, π) (3.2.2)

and, for n ≥ 1,
Jnµ g(t, π) := Jµ(J

n−1
µ g(t, π)). (3.2.3)

Definition 3.2.2. Put

W̄ 0(t, π) := sup
h∈H̄m

W̄ 0(t, π, h) = sup
h∈H̄m

1

µ
logE[eµD(h,XT−Xt)], (3.2.4)

and let (“value iteration”)
W̄n(t, π) := Jnµ W̄

0(t, π). (3.2.5)

Then, we have the following proposition as a direct consequence of Proposition 3.1.1.

Proposition 3.2.1. For W̄ 0(t, π) defined above we have that W̄ 0(t, π) ∈ G1 ∩ G2 by setting
k(t) = l(t).

Proof. By (3.1.10) in Proposition 3.1.1 we see that W̄ 0(t, π) ∈ G and, by (3.1.11) and (3.1.12)
in Proposition 3.1.1 we also see that it belongs to G1 ∩ G2 with k(t) = l(t).

We have now
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Lemma 3.2.1. For g ∈ G1 ∩ G2 one has that Jµg(t, π) is continuous with respect to t, π and
Jµg ∈ G.

Proof. For a, b ≥ γ > 0, |a− b| < ε, ε > 0, one has

log a− log b = log(a/b) = log(1 + (a− b)/b) ≤ ϵ/γ
log b− log a = log(b/a) = log(1 + (b− a)/a) ≤ ϵ/γ
⇒ | log a− log b| ≤ ϵ/γ,

(3.2.6)

where we have used the inequality log(1 + x) ≤ x for x ≥ 0. We set a = exp(µξ̂(t, π, h; g)),

b = exp(µξ̂(t, π̄, h; g)) and use Proposition 3.1.2(iii), setting γ = exp({µm̄+ µσ̄2

2 }(T − t)). From
(3.1.20) in Proposition 3.1.2 it then follows that

|ξ̂(t, π, h; g)− ξ̂(t, π̄, h; g)|

≤ 1
|µ|

2
log 3dH(π, π̄) exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )(T − t))(1 + c)

≤ 1
|µ|

2
log 3dH(π, π̄) exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )T )(1 + c).

(3.2.7)

On the other hand, by analogous reasoning, from (3.1.21) in Proposition 3.1.2 it follows that

|ξ̂(t, π, h; g)− ξ̂(t̄, π, h; g)| ≤ 1
|µ| exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )(T − t))

×(2
(
n̄
n

)
(en(t−t̄) − 1) + l(t− t̄) + ck(t− t̄))

≤ 1
|µ| exp((µ(m− m̄) + µ(µ−1)(σ̄)2

2 )T )

×(2
(
n̄
n

)
(en(t−t̄) − 1) + l(t− t̄) + ck(t− t̄)),

(3.2.8)

namely ξ̂(t, π, h; g) is continuous with respect to (t, π), uniformly with respect to h, and hence
Jµg(t, π) is continuous. Further, because of Proposition 3.1.2 (iii) we see that Jµg ∈ G.

Corollary 3.2.1. Under the assumptions of Lemma 3.2.1, Jnµ g ∈ G for n ≥ 0. Furthermore,

there exists a Borel function ĥ(n)(t, π) such that

sup
h∈H̄m

ξ̂(t, π, h; Jnµ g) = ξ̂(t, π, ĥ(n)(t, π); Jnµ g), n ≥ 0. (3.2.9)

Proof. Similar arguments to the proof of Lemma 3.2.1 apply to see that Jnµ g ∈ G. Moreover,

since H̄m is compact and ξ̂(t, π, h; g) is a bounded continuous function on [0, T ] × SN × H̄m,
there exists a Borel function ĥ(0)(t, π) such that suph∈H̄m

ξ̂(t, π, h; g) = ξ̂(t, π, ĥ(0)(t, π); g). By
the same reasoning we have (3.2.9) for general n ≥ 1.

In what follows we denote by ∥g∥ the norm of a function g ∈ C([0, T ]× SN ), namely

∥g∥ := sup
(t,π)∈[0,T ]×SN

|g(t, π)|. (3.2.10)
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Lemma 3.2.2. For each g ∈ G and n ≥ 1, we have the following estimate

∥Jn+1
µ g(t, π)− Jnµ g(t, π)∥

≤ cn

|µ| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )|1− exp(µ∥Jµg(t, π)− g(t, π)∥)|
(3.2.11)

where, recall (3.0.4), c ∈ (0, 1).

Proof. Let us first prove that, for n ≥ 1,

| exp{µJn+1
µ g(t, π)} − exp{µJnµ g(t, π)}| ≤ cne(µm+

(µσ̄)2

2
)(T−t)|1− eµ∥Jµg−g∥|. (3.2.12)

To prove it for n = 1, using Proposition 3.1.2 (i), we see that

| exp(µξ̂(t, π, h; Jµg))− exp(µξ̂(t, π, h; g))|

≤ Et,π[eµD(h,Xτ1−Xt)|eµJµg(τ1,πτ1 ) − eµg(τ1,πτ1)|1{τ1≤T}]

= Et,π[eµD(h,Xτ1−Xt)+µJµg(τ1,πτ1 )|1− eµ(g(τ1,πτ1 )−Jµg(τ1,πτ1 ))|1{τ1≤T}]

≤ |1− eµ∥Jµg−g∥|Et,π[eµD(h,Xτ1−Xt)+µJµg(τ1,πτ1 )1{τ1≤T}]

≤ ceµm(T−t)+ (µσ̄)2

2
(T−t)|1− eµ∥Jµg−g∥|.

(3.2.13)

Then, we have

|eµJ2
µg(t,π) − eµJµg(t,π)| = |eµ suph ξ̂(t,π,h;Jµg) − eµ suph ξ̂(t,π,h;g)|

= | infh eµξ̂(t,π,h;Jµg) − infh e
µξ̂(t,π,h;g)|

≤ suph |eµξ̂(t,π,h;Jµg) − eµξ̂(t,π,h;g)|

≤ ceµm(T−t)+ (µσ̄2)
2

(T−t)|1− eµ∥Jµg−g∥|.

Assuming that (3.2.12) holds for n− 1, we will prove it for n. Using again Proposition 3.1.2 (i)

|eµJ
n+1
µ g(t,π) − eµJ

n
µ g(t,π)| = |eµ suph ξ̂(t,π,h;J

n
µ g) − eµ suph ξ̂(t,π,h;J

n−1
µ g)|

= | infh eµξ̂(t,π,h;J
n
µ g) − infh e

µξ̂(t,π,h;Jn−1
µ g)|

≤ suph |eµξ̂(t,π,h;J
n
µ g) − eµξ̂(t,π,h;J

n−1
µ g)|

≤ suphE
t,π[eµD(h,Xτ1−Xt)|eµJn

µ g(τ1,πτ1 ) − eµJ
n−1
µ g(τ1,πτ1)|1{τ1≤T}]

≤ suphE
t,π[eµD(h,Xτ1−Xt)cn−1e(µm+

(µσ̄)2

2
)(T−τ1)1{τ1≤T}|1− eµ∥Jµg−g∥|]

≤ cne(µm+
(µσ̄)2

2
)(T−t)|1− eµ∥Jµg−g∥|.

(3.2.14)

Thus, (3.2.12) has been proved. Now we can complete the proof. Indeed, by using (3.2.6), we
have

|Jn+1
µ g(t, π)− Jnµ g(t, π)| = 1

|µ| |µJ
n+1
µ g(t, π)− µJnµ g(t, π)|

≤ 1
|µ|e

−µm̄(T−t)−µσ̄2

2
(T−t)|eµJ

n+1
µ g(t,π) − eµJ

n
µ g(t,π)|

≤ cn

|µ|e
µ(m−m̄)(T−t)+ (µ2−µ)σ̄2

2
(T−t)|1− eµ∥Jµg−g∥|

≤ cn

|µ|e
µ(m−m̄)T+

(µ2−µ)σ̄2

2
T |1− eµ∥Jµg−g∥|

(3.2.15)

33



and hence obtain the present lemma by taking supremum with respect to (t, π).

Corollary 3.2.2. For g ∈ G1 ∩ G2 we have that {Jnµ g(t, π)} is a Cauchy sequence in G and,
therefore, ∃ lim

n→∞
Jnµ g(t, π) ∈ G.

Furthermore, for each g1, g2 ∈ G, we have the estimates:

∥Jµg1 − Jµg2∥

≤ c
|µ| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )|1− exp(µ∥g1 − g2∥)|

≤ c exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )∥g1 − g2∥.

(3.2.16)

Proof. By Corollary 3.2.1, {Jnµ g(t, π)} ⊂ G. Further, by using Lemma 3.2.2, we can see that
{Jnµ g(t, π)} is a Cauchy sequence in G. The proof of (3.2.16) is similar to that of Lemma 3.2.2.

Proposition 3.2.2. We have that {W̄n(t, π)} given by (3.2.5) is a Cauchy sequence in G and
therefore ∃ lim

n→∞
W̄n(t, π) ∈ G.

Proof. Thanks to Proposition 3.2.1, W̄ 0(t, π) belongs to G1∩G2 with k(t) = l(t) and we see that
{W̄n(t, π)} is a Cauchy sequence in G by Corollary 3.2.2.

3.3 Limiting results

In this section we perform some passages to the limit, which will complete our preliminary
analysis in view of the main result in the next section. We start by defining some relevant
quantities.

Definition 3.3.1. We set
W̄ (t, π) := lim

n→∞
W̄n(t, π), (3.3.1)

which is justified by the previous Proposition 3.2.2,

W (t, π) := sup
h∈A

W (t, π, h.), (3.3.2)

and
Wn(t, π) := sup

h∈An
W (t, π, h.), (3.3.3)

where W (t, π, h.) is the criterion function defined in (3.0.2).

The next lemma particularizes the representation result of Lemma 3.1.1.
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Lemma 3.3.1. For all n ≥ 0 and h ∈ An, we have the following equation

W (t, π, h.) = 1
µ logE

t,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µD(hn, XT −Xτn)1{τn<T}

)
]

= 1
µ logE

t,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW̄ 0(τn, πτn , hn)1{τn≤T}

)
].

(3.3.4)

Proof. By Lemma 3.1.1 and the definition of W̄ 0(t, π, h) it suffices to prove the following equation
for all n > 0, k ≥ n+ 1, h ∈ An. For τk < T ≤ τk+1

exp(µ
k−1∑
i=n

D(hi, Xτi+1 −Xτi) + µD(hk, XT −Xτk))

= exp(µD(hn, XT −Xτn)).

(3.3.5)

It can be seen as follows.

exp(µ
k−1∑
i=n

D(hi, Xτi+1 −Xτi) + µD(hk, XT −Xτk))

=
k−1∏
i=n

(
m∑
j=0

hji
Sjτi+1

Sjτi
)µ(

m∑
j=0

hjk
SjT
Sjτk

)µ =
k−1∏
i=n

(
m∑
j=0

N j
i S

j
τi+1

Vτi
)µ(

m∑
j=0

N j
kS

j
T

Vτk
)µ

=
k−1∏
i=n

(
m∑
j=0

N j
i+1S

j
τi+1

Vτi
)µ(

m∑
j=0

N j
kS

j
T

Vτk
)µ =

k−1∏
i=n

(
Vτi+1

Vτi
)µ(

m∑
j=0

N j
TS

j
T

Vτk
)µ

= (
NTST
Vτn

)µ = (
VT
Vτn

)µ = exp(µD(hn, XT −Xτn)),

(3.3.6)

where we have used (3.1.4), the definition of An and the self financing property of the investment
strategy.

Corollary 3.3.1. We have the following equation

Wn(t, π) = sup
h∈An

1

µ
logEt,π[exp

(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW̄ 0(τn, πτn , hn)1{τn≤T}

)
],

(3.3.7)

for n ≥ 0, t ∈ [0, T ], π ∈ SN .

Proposition 3.3.1. For each n ≥ 0, we have

W̄n(t, π) =Wn(t, π). (3.3.8)

Furthermore,
W̄ (t, π) =W (t, π). (3.3.9)
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Proof. See Section 3.5.

The next proposition is in the spirit of a Dynamic Programming principle, namely

Proposition 3.3.2. We have W = JµW . Namely, W (t, π) satisfies the following equation

W (t, π)

= sup
h∈H̄m

1

µ
logEt,π[exp(µD(h,XT∧τ1 −Xt) + µW (τ1, πτ1)1{τ1≤T})].

(3.3.10)

Proof. We have, by using (3.2.16),

∥W − JµW∥ ≤ ∥W − JµW̄
n∥+ ∥JµW̄n − JµW∥

≤ ∥W − W̄n+1∥+ C1∥W̄n −W∥,

where C1 = c exp({µ(m−m̄)+ µ(µ−1)σ̄2

2 }T ). Hence, by sending n to∞, we see that ∥W−JµW∥ =
0.

3.4 Main Theorem

From the preliminary analysis in previous Section we obtain now the main result in this chapter,
namely an approximation result and a Dynamic Programming-type principle for the power-
utility maximization problem.

Theorem 3.4.1.

(i) Approximation theorem
W̄n computed according to (3.2.5) in Definition 3.2.2 are approximations to the solution
of the original problem in the sense that, for any ϵ > 0, n > nϵ,

∥W − W̄n∥ < ϵ, (3.4.1)

where,

nϵ :=
log(1− c)|µ|+ log ϵ− log |1− exp(µ∥J1

µW̄
0 − J0

µW̄
0∥)| − {µ(m− m̄) + µ(µ−1)σ̄2

2 }T
log c

.

(ii) Dynamic programming principle:
for n ≥ 0

W (t, π)

= sup
h∈An

1

µ
logEt,π[exp(µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+µW (τn, πτn)1{τn≤T})].

(3.4.2)
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(iii) Optimal value and optimal strategy for the Power Utility Maximization Problem
For the utility maximization under initial condition V0 = v0, τ0 = 0, π0 = π we have

sup
h∈A

1

µ
logE0,π[V µ

T ] = log v0

+ 1
µ logE

0,π[exp(µ

∞∑
k=1

D(ĥk−1, XT∧τk −Xτk−1
)1{τk−1<T})],

(3.4.3)

where the optimal strategy in the k -th period, namely ĥk, is given by

ĥk = ĥ(τk, πτk) (3.4.4)

with ĥ(τ, π) defined by

sup
h∈H̄m

1

µ
logEt,π[exp(µD(h,XT∧τ1 −Xt) + µW (τ1, πτ1)1{τ1≤T})]

= 1
µ logE

t,π[exp(µD(ĥ(t, π), XT∧τ1 −Xt) + µW (τ1, πτ1)1{τ1≤T})].

(3.4.5)

Proof. First, we prove (i). For any n

∥W̄ − W̄n∥ = ∥ lim
k→∞

W̄n+k − W̄n∥ = lim
k→∞

∥W̄n+k − W̄n∥

≤ lim
k→∞

k−1∑
i=0

∥W̄n+i+1 − W̄n+i∥ = lim
k→∞

k−1∑
i=0

∥Jn+i+1
µ W̄ 0 − Jn+iµ W̄ 0∥

≤ 1
|µ| |1− exp(µ∥J1

µW̄
0 − J0

µW̄
0∥)| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )
∞∑
i=0

ci+n

= 1
|µ| |1− exp(µ∥J1

µW̄
0 − J0

µW̄
0∥)| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T )cn
∞∑
i=0

ci

= cn

(1−c)|µ| |1− exp(µ∥J1
µW̄

0 − J0
µW̄

0∥)| exp({µ(m− m̄) + µ(µ−1)σ̄2

2 }T ),

(3.4.6)

where we have used Lemma 3.2.2.

Next, we prove (ii). Proceeding analogously to the proof of Lemma 3.5.5, for n,m ∈ N, we
take a sequence of functions h̃n,k(t, π), k = 0, 1, . . . , n such that

sup
h∈Hm

ξ̂(t, π, h; Jn+m−k−1
µ W̄ 0) = ξ̂(t, π, h̃n,k(t, π); Jn+m−k−1

µ W̄ 0)

and set
h̃n,kk := h̃n,k(τk, πτk), k = 0, 1, . . . , n

and
h̃n,kk = γ(X̃τk − X̃τn , h̃

n,n
n ), k ≥ n+ 1.

Then, h̃(n) = {h̃n,kk }k ∈ An. Therefore, similarly to the proof of Lemma 3.5.5, it follows that

W̄n+m = 1
µ logE

t,π[exp{µ
∑n

k=1D(h̃n,k−1(τk−1, πτk−1
), XT∧τk −Xτk−1

)1{τk−1≤T}

+µJmµ W̄
0(τn, πτn)1{τn≤T}}].

(3.4.7)
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Since Jmµ W̄
0 ≤W , we have

W̄n+m ≤ 1
µ logE

t,π[exp{µ
∑n

k=1D(h̃n,k−1(τk−1, πτk−1
), XT∧τk −Xτk−1

)1{τk−1≤T}

+µW (τn, πτn)1{τn≤T}}]

≤ suph∈An
1
µ logE

t,π[exp{µ
∑n

k=1D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

+µW (τn, πτn)1{τn≤T}}].

(3.4.8)

Therefore, we obtain

W (t, π) ≤ suph∈An
1
µ logE

t,π[exp{µ
∑n

k=1D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

+µW (τn, πτn)1{τn≤T}}],
(3.4.9)

by letting m→ ∞. On the other hand, for each h ∈ An, it follows that

W̄n+m(t, π) ≥ 1
µ logE

t,π[exp{µ
∑n

k=1D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

+µJmµ W̄
0(τn, πτn)1{τn≤T}}].

(3.4.10)

Then, by letting m→ ∞, we have

W (t, π) ≥ 1
µ logE

t,π[exp{µ
∑n

k=1D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

+µW (τn, πτn)1{τn≤T}}].
(3.4.11)

Hence,

W (t, π) ≥ suph∈An
1
µ logE

t,π[exp{µ
∑n

k=1D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

+µW (τn, πτn)1{τn≤T}}]
(3.4.12)

and thus we obtain (ii).

Part (iii) is an immediate consequence of the previous results in particular of the proof of
point (ii) of this same theorem.

3.5 Proof of Lemma

Proof of Proposition 3.1.1.

The proof is contained in the following two lemmas.

Lemma 3.5.1. For t ∈ [0, T ], h ∈ H̄m, we have the estimate (3.1.9).

Proof. Since xµ is convex, Jensen’s inequality applies and we obtain

Et,π[
( m∑
i=0

hi exp(Xi
T −Xi

t)
)µ

] ≤ Et,π[

m∑
i=0

hi exp(µ(Xi
T −Xi

t))]. (3.5.1)
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For each i and t ∈ [0, T ],

m(T − t) ≤
∫ T
t mi(θs)ds ≤ m̄(T − t),∫ T

t σ2i (θs)ds ≤ σ̄2(T − t).
(3.5.2)

Thus, we have

Et,π[exp(µ(Xi
T −Xi

t))] = Et,π[exp(µ
∫ T
t mi(θs)ds+

µ2

2

∫ T
t σ2i (θs)ds)]

≤ exp((µm+ (µσ̄)2

2 )(T − t)),
(3.5.3)

and

Et,π[exp(µ(X0
T −X0

t ))] = exp(µr0(T − t)) ≤ exp((µm+
(µσ̄)2

2
)(T − t)). (3.5.4)

Therefore, from (3.5.1) it follows that

Et,π[
( m∑
i=0

hi exp(Xi
T −Xi

t)
)µ

] ≤
m∑
i=0

hi exp((µm+
(µσ̄)2

2
)(T − t))

= exp((µm+ (µσ̄)2

2 )(T − t)).

(3.5.5)

To obtain the lower estimate, applying Jensen’s inequality yields

(Et,π[

m∑
i=0

hi exp(Xi
T −Xi

t)])
µ ≤ Et,π[

( m∑
i=0

hi exp(Xi
T −Xi

t)
)µ

]. (3.5.6)

Since xµ is a decreasing function, we have( m∑
i=0

hiEt,π[exp(Xi
T −Xi

t)]
)µ

=
( m∑
i=0

hiEt,π[exp(

∫ T

t
mi(θs)ds+

1

2

∫ T

t
σ2i (θs)ds)]

)µ
≥

( m∑
i=0

hi exp((m̄+
(σ̄)2

2
)(T − t))

)µ
= exp((µm̄+ µ(σ̄)2

2 )(T − t)).
(3.5.7)

Lemma 3.5.2. W̄ 0(t, π, h) in Definition 3.1.1 (see (3.1.8)) is a continuous function on [0, T ]×
SN × H̄m and the estimates (3.1.11), (3.1.12) hold.

Proof. Let us first prove the continuity of W̄ 0(t, π, h) with respect to π. Owing to (2.1.7) and
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recalling pji(t) that was defined in (1.3.9), we have

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t, π̄, h))|

= |
∫
Rm(h

0 exp(r0(T − t)) +

m∑
i=1

hi exp(yi))µ

×
∑
ij

E[ρθ0,T−t(y)|θ0 = ej , θT−t = ei]pji(T − t)(πj − π̄j)dyds|

= |
∑
j

exp(µW̄ 0(t, ej , h))(π
j − π̄j)|

≤ exp((µm+ (µσ̄)2

2 )(T − t))
∑
j

|πj − π̄j |

≤ exp((µm+ (µσ̄)2

2 )(T − t))∥πj − π̄j∥TV

≤ exp((µm+ (µσ̄)2

2 )(T − t)) 2
log 3dH(π, π̄).

(3.5.8)

Next, we show the continuity of W̄ 0(t, π, h) with respect to t. First notice that, due to the time
homogeneity of the process (Xt, θt),

exp(µW̄ 0(t, π, h)) = Et,π[exp(µD(h,XT −Xt))]

= E0,π[exp(µD(h,XT−t −X0))].
(3.5.9)

Notice furthermore that
|D(h, x)−D(h, y)| ≤ |x− y| (3.5.10)

holds because
|∇xD(h, x)| ≤ 1. (3.5.11)

Therefore,

| exp(µW̄ 0(t, π, h))− exp(µW̄ 0(t̄, π, h))|

= |E0,π[exp(µD(h,XT−t −X0))− exp(µD(h,XT−t̄ −X0))]|

= |E0,π[exp(µD(h,XT−t −X0))
(
1− exp

(
µ(D(h,XT−t̄ −X0)−D(h,XT−t −X0))

))
]

≤ E0,π[exp(µD(h,XT−t −X0))|1− exp(µ|XT−t̄ −XT−t|)|]

= E0,π[exp(µD(h,XT−t −X0))E[|1− exp(µ|XT−t̄ −XT−t|)||XT−t]]

= E0,π[exp(µD(h,XT−t −X0))]l(t− t̄)

≤ exp((µm+ (µσ̄)2

2 )(T − t))l(t− t̄).
(3.5.12)

Finally, we prove the continuity with respect to h. By the definition of D(h, x) and Jensen’s
inequality,

exp(µD(h, x)) = (

m∑
i=0

hi exp(xi))µ ≤
m∑
i=0

hi exp(µxi) ≤
m∑
i=0

exp(µxi). (3.5.13)

40



Therefore, for m ≥ 1

exp(µD(h,XT −Xt)) ≤
m∑
i=0

exp(µ(Xi
T −Xi

t)). (3.5.14)

SinceXT−Xt = {Xi
T−Xi

t}i=1,...,m is, conditionally on Fθ,Gaussian with mean {
∫ T
t mi(θs)ds}i=1,...,m

and covariance {
∫ T
t (σσ∗)ij(θs)ds}i,j=1,...,m we have

Et,π[exp(µ(Xi
T −Xi

t))] <∞. (3.5.15)

Then, applying the dominated convergence theorem, for hj ⊂ H̄m, s.t. lim
j→∞

hj = h ∈ H̄m

lim
j→∞

W̄ 0(t, π, hj) = 1
µ logE

t,π[ lim
j→∞

exp(µD(hj , XT −Xt))]

= 1
µ logE

t,π[exp(µD(h,XT −Xt))]

= W̄ 0(t, π, h).

(3.5.16)

Proof of Proposition 3.1.2.

Again, the proof is contained in the following two lemmas.

Lemma 3.5.3. For each g ∈ G, we have the three estimates (3.1.17),(3.1.18) and (3.1.19).

Proof. Let us first set

I1 = Et,π[exp
(
µD(h,Xτ1 −Xt) + µg(τ1, πτ1)

)
1{τ1≤T}]

and
I2 = Et,π[exp

(
µD(h,XT −Xt)

)
1{τ1>T}].

Recall also that n(θt) is the intensity of the Cox process describing the observations and that the
dynamics of the filter process πt was given in Corollary 1.3.1 in terms of the function M(t, x, π).

(i) (estimate (3.1.17)). Since g ∈ G, from the definition of ρθt,T (z) in (1.1.13) and from (3.5.2)
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we obtain

I1 = Et,π[
∫ T
t

∫
Rm(h

0 exp(r0(s− t)) +
m∑
i=1

hi exp(zi))µ exp
(
µg(s,M(s− t, z, π))

)
× ρθt,s(z)n(θs) exp(−

∫ s
t n(θu)du)dsdz]

≥ Et,π[
∫ T
t

∫
Rm

(
h0 exp(r0(s− t)) +

m∑
i=1

hi exp(zi)
)µ
ρθt,s(z)dz

× exp((µm̄+ µσ̄2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≥ Et,π[
∫ T
t (h0 exp(r0(s− t)) +

m∑
i=1

hi
∫
Rm

exp(zi)ρθt,s(z)dz)
µ

× exp((µm̄+ µσ̄2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≥ Et,π[
∫ T
t exp((µm̄+ µσ̄2

2 )(s− t))

× exp((µm̄+ µσ̄2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

= exp((µm̄+ µ(σ̄)2

2 )(T − t))Et,π[1{τ1≤T}],

(3.5.17)

by using Jensen’s inequality. On the other hand, we obtain

I1 ≤ Et,π[
∫ T
t

∫
Rm(h

0 exp(r0(s− t)) +
m∑
i=1

hi exp(zi))µρθt,s(z)dz

× exp((µm+ (µσ̄)2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≤ Et,π[
∫ T
t

(
h0 exp(µr0(s− t)) +

m∑
i=1

hi
∫
Rm

exp(µzi)ρθt,s(z)dz
)

× exp((µm+ (µσ̄)2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

≤ Et,π[
∫ T
t exp((µm+ (µσ̄)2

2 )(s− t))

× exp((µm+ (µσ̄)2

2 )(T − s))n(θs) exp(−
∫ s
t n(θu)du)ds]

= exp((µm+ (µσ̄)2

2 )(T − t))Et,π[1{τ1≤T}],

(3.5.18)

again by using Jensen’s inequality and (3.5.2).
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(ii) (estimate (3.1.18)). By using Jensen’s inequality, we have

I2 = Et,π[
∫
Rm

(h0 exp(r0(T − t))

+
m∑
i=1

hi exp(zi))µρθt,T (z)dz

∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≥ Et,π[(h0 exp(r0(T − t))

+

m∑
i=1

hi
∫
Rm

exp(zi)ρθt,T (z)dz)
µ

∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≥ Et,π[{
m∑
i=0

hi exp((m̄+
(σ̄)2

2
)(T − t)}µ

∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≥ Et,π[exp((m̄+ (σ̄)2

2 )(T − t))µ
∫∞
T n(θs) exp(−

∫ s
t n(θu)du)ds]

= exp((µm̄+ µ(σ̄)2

2 )(T − t))Et,π[1{τ1>T}],

(3.5.19)

from (3.5.2), since the function xµ is decreasing. On the other hand, by using Jensen’s inequality,
we have

I2 = Et,π[
∫
Rm(h

0 exp(r0(T − t))

+

m∑
i=1

hi exp(zi))µρθt,T (z)dz

∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

≤ Et,π[h0 exp(µr0(T − t))

+

m∑
i=1

hi
∫
Rm

exp(µzi)ρθt,T (z)dz

∫ ∞

T
n(θs) exp(−

∫ s

t
n(θu)du)ds]

= Et,π[

m∑
i=0

hi exp(µ

∫ T

t
mi(θs)ds+

µ2

2

∫ T

t
σ2i (θs)ds)

×
∫∞
T n(θs) exp(−

∫ s
t n(θu)du)ds]

≤ Et,π[exp((µm+ (µσ̄)2

2 )(T − t))
∫∞
T n(θs) exp(−

∫ s
t n(θu)du)ds]

= exp((µm+ (µσ̄)2

2 )(T − t))Et,π[1{τ1>T}],

(3.5.20)

because of (3.5.2).

(iii) (estimate (3.1.19)). Since

ξ̂(t, π, h; g) =
1

µ
log(I1 + I2). (3.5.21)

The estimate (3.1.19) follows from (i) and (ii).

Lemma 3.5.4. For all g ∈ G, the function exp(µξ̂(t, π, h; g))is continuous with respect to h.
Furthermore, for each g ∈ G1 the relation (3.1.20) holds and for each g ∈ G2 the relation
(3.1.21) holds.
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Proof. Let us first prove the continuity of exp(µξ̂(t, π, h; g)). From (3.5.13), we have for m ≥ 1

exp(µD(h,XT∧τ1 −Xt) + µg(τ1, πτ1)) ≤
m∑
i=0

exp(µ(Xi
T∧τ1 −Xi

t) + µg(τ1, πττ1 )). (3.5.22)

Similarly to (3.5.15), we have for each i

Et,π[exp(µ(Xi
T∧τ1 −Xi

t) + µg(τ1, πτ1))] <∞. (3.5.23)

Applying the dominated convergence theorem, for hn ⊂ H̄m, s.t. lim
n→∞

hn = h ∈ H̄m

lim
n→∞

exp(µξ̂(t, π, hn; g))

= Et,π[ lim
n→∞

exp(µD(hn, XT∧τ1 −Xt) + µg(τ1, πτ1)1{τ1≤T})]

= exp(µξ̂(t, π, h; g)).

(3.5.24)

We next prove that, for g ∈ G1, the relation (3.1.20) holds. For this purpose, recalling Corollary
1.3.1, we rewrite

exp(µξ̂(t, π, h; g))

= Et,π[exp
(
µD(h,XT∧τ1 −Xt) + µg(τ1,M(τ1 − t,Xτ1 −Xt, π))1{τ1≤T}

)
]

=
∑
j

Et,ej [exp
(
µD(h,XT∧τ1 −Xt)

+ µg(τ1,M(τ1 − t,Xτ1 −Xt, π))1{τ1≤T}

)
]πj .

(3.5.25)

Then, recalling the Definition 3.1.16 of ξ̂(·), from (3.1.19) in Proposition 3.1.2 and (2.1.7) it
follows that

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t, π̄, h; g))|

= |
∑
j

Et,ej [exp
(
µD(h,XT∧τ1 −Xt)

+ µg(τ1,M(τ1 − t,Xτ1 −Xt, π))1{τ1≤T}
)
](πj − π̄j)

+
∑
j

Et,ej [exp(µD(h,Xτ1 −Xt)){exp
(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π))

)
− exp

(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π̄))

)
}1{τ1≤T})]π̄j |

≤ exp((µm+ (µσ̄)2

2 )(T − t)) 2
log 3dH(π, π̄)

+ Et,π̄[exp(µD(h,X1 −Xt))| exp
(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π))

)
− exp

(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π̄))

)
|1{τ1≤T})].

(3.5.26)
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Furthermore, by the definition the definition of G1 (see (3.1.14) in Definition 3.1.2), using
also(3.1.9)

| exp
(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π))

)
− exp

(
µg(τ1,M(τ1 − t,Xτ1 −Xt, π̄))

)
|

≤ exp((µm+ (µσ̄)2

2 )(T − τ1))

× 2
log 3dH(M(τ1 − t,Xτ1 −Xt, π),M(τ1 − t,Xτ1 −Xt, π̄))

≤ 2
log 3dH(π, π̄) exp((µm+ (µσ̄)2

2 )(T − τ1)).

(3.5.27)

Therefore, we obtain

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t, π̄, h; g))|

≤ 2
log 3dH(π, π̄) exp((µm+ (µσ̄)2

2 )(T − t))(1 + c).
(3.5.28)

Finally, to prove that for g ∈ G2 the relation (3.1.21) holds, we rewrite, using the time
homogeneity of (Xt, θt),

exp(µξ̂(t, π, h; g))

= Et,π[exp(µD(h,XT −Xt))1{τ1>T} + exp(µD(h,Xτ1 −Xt) + µg(τ1, πτ1))1{τ1≤T}]

= Et,π[exp(µD(h,XT−t −X0))1{τ1>T−t}

+ exp(µD(h,Xτ1 −X0) + µg(τ1 + t, πτ1))1{τ1≤T−t}].
(3.5.29)

Therefore, recalling that t̄ < t,

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t̄, π, h; g))|

≤ |E0,π[exp(µD(h,XT−t −X0)){1{τ1>T−t} − 1{τ1>T−t̄}}]|

+|E0,π[ exp(µD(h,Xτ1 −X0) + µg(τ1 + t, πτ1)) {1{τ1≤T−t} − 1{τ1≤T−t̄}}]|

+|E0,π[{exp(µD(h,XT−t −X0)− exp(µD(h,XT−t̄ −X0))}1{τ1>T−t̄}]|

+|E0,π[ exp(µD(h,Xτ1 −X0)){exp(µg(τ1 + t, πτ1))− exp(µg(τ1 + t̄, πτ1)}1{τ1≤T−t̄}]|

≡ J1 + J2 + J3 + J4.
(3.5.30)

Now we have

J1 ≤ exp((µm+ (µσ̄)2

2 )(T − t))P 0,π(T − t < τ1 < T − t̄)

= exp((µm+ (µσ̄)2

2 )(T − t))Et,π[
∫ T−t̄
T−t n(θs) exp(

∫ s
0 −n(θu)du)ds]

≤ exp((µm+ (µσ̄)2

2 )(T − t))
∫ T−t̄
T−t n̄ exp(−ns)ds

≤ exp((µm+ (µσ̄)2

2 )(T − t))
(
n̄
n

)
(en(t−t̄) − 1).

(3.5.31)

We also have, using (3.1.19),

J2 ≤ exp((µm+
(µσ̄)2

2
)(T − t))

(
n̄

n

)
(en(t−t̄) − 1). (3.5.32)
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Further, since |D(h, x)−D(h, y)| ≤ |x− y| holds from (3.5.10), we obtain

J3 ≤ E0,π[| exp(µD(h,XT−t −X0))− exp(µD(h,XT−t̄ −X0))|]

= E0,π[exp(µD(h,XT−t −X0))

× |1− exp
(
µ(D(h,XT−t̄ −X0)−D(h,XT−t −X0))

)
|]|

≤ E0,π[exp(µD(h,XT−t −X0))|1− exp(µ|XT−t̄ −XT−t|)|]

= E0,π[exp(µD(h,XT−t −X0))E[|1− exp(µ|XT−t̄ −XT−t|)||XT−t]].

(3.5.33)

Since (Xt, θt) is a time homogeneous process, we have

E[|1− exp(µ|XT−t̄ −XT−t|)||XT−t]

= E[|1− exp(µ|
∫ T−t̄
T−t r(θs)− d(σσ∗(θs))ds+

∫ T−t̄
T−t σ(θs)dBs)||XT−t]

= EXT−t
[|1− exp(µ|

∫ T−t̄
T−t r(θs)− d(σσ∗(θs))ds+

∫ T−t̄
T−t σ(θs)dBs|)|]

= EXT−t
[|1− exp(µ|

∫ t−t̄
0 r(θs)− d(σσ∗(θs))ds+

∫ t−t̄
0 σ(θs)dBs|)|]

= EXT−t
[|1− exp(µ|Xt−t̄ −X0|)]

= l(t− t̄),

(3.5.34)

where l is the function defined in (3.0.4). Hence,we obtain

J3 ≤ E0,π[exp(µD(h,XT−t −X0))]l(t− t̄)

≤ exp((µm+ (µσ̄)2

2 )(T − t))l(t− t̄).
(3.5.35)

Since g ∈ G2, we have

J4 ≤ E0,π[exp(µD(h,Xτ1 −X0))

exp((µm+ (µσ̄)2

2 )(T − t− τ1))k(t− t̄))1{τ1≤T−t̄}]

≤ c exp((µm+ (µσ̄)2

2 )(T − t))k(t− t̄),

(3.5.36)

by using (3.1.19) in Proposition 3.1.2. Putting all the estimates together, we finally obtain

| exp(µξ̂(t, π, h; g))− exp(µξ̂(t̄, π, h; g))|

≤ exp((µm+ (µσ̄)2

2 )(T − t))(2
(
n̄
n

)
(en(t−t̄) − 1) + l(t− t̄) + ck(t− t̄)).

(3.5.37)

Proof of Proposition 3.3.1.

The equality(3.3.8) is shown in Lemma 3.5.5 below. This lemma is followed by Lemma 3.5.6
that is preliminary to Lemma 3.5.7, from which then (3.3.9) follows.

Lemma 3.5.5. For each n ≥ 0, the equality (3.3.8) holds.
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Proof. By definition we have
W̄ 0(t, π) = W 0(t, π). (3.5.38)

Moreover, W̄ 0(t, π) ∈ G1 ∩ G2 because of Proposition 3.2.1. Therefore, in Corollary 3.2.1, we set
g(t, π) = W̄ 0(t, π) and obtain a Borel function ĥ(n)(t, π) satisfying (3.2.9) for n ≥ 0. Then,

W̄n(t, π) = Jnµ W̄
0(t, π) = sup

h∈Hm

ξ̂(t, π, h; Jn−1
µ W̄ 0) = ξ̂(t, π, ĥ(n−1)(t, π); Jn−1

µ W̄ 0).

We also have a Borel function h̄(t, π) such that

W̄ 0(t, π) = sup
h
W̄ 0(t, π, h) = W̄ 0(t, π, h̄(t, π)).

We define a strategy h̄(n) ∈ An as follows.

h̄
(n)
k = ĥ(n−1−k)(τk, πτk), k = 0, . . . , n− 1,

h̄
(n)
n = h̄(τn, πτn),

h̄
(n)
k = γ(X̃τk − X̃τn , h̄

(n)
n ), k ≥ n+ 1.

(3.5.39)

First, to show that W̄n(t, π) ≤Wn(t, π), we rewrite W̄n as follows,

W̄n(t, π)

= sup
h∈H̄m

ξ̂(t, π, h; Jn−1
µ W̄ 0)

= ξ̂(t, π, ĥ(n−1)(t, π); Jn−1
µ W̄ 0)

= 1
µ logE

t,π[exp(µD(ĥ(n−1)(t, π), XT∧τ1 −Xt) + µW̄n−1(τ1, πτ1)1{τ1≤T})]

= 1
µ logE

t,π[exp(µD(ĥ(n−1)(t, π), XT −Xt))1{τ1>T}

+exp(µD(ĥ(n−1)(t, π), Xτ1 −Xt) + µW̄n−1(τ1, πτ1))1{τ1≤T}]

= 1
µ logE

t,π[eµD(ĥ(n−1)(t,π),XT−Xt)1{τ1>T} + eµD(ĥ(n−1)(t,π),Xτ1−Xt)

·Eτ1,πτ1 [eµD(ĥ(n−2)(τ1,π1),XT∧τ2
−Xτ1 )+µW̄

n−2(τ2,πτ2 )1{τ2≤T} ]1{τ1≤T}].

(3.5.40)

Noting that

Et,π[eµD(ĥ(n−1)(t,π),Xτ1−Xt)

·Eτ1,πτ1 [eµD(ĥ(n−2)(τ1,π1),XT∧τ2
−Xτ1 )+µW̄

n−2(τ2,πτ2)1{τ2≤T} ]1{τ1≤T}]

= Et,π[eµD(ĥ(n−1)(t,π),Xτ1−Xt)Eτ1,πτ1 [eµD(ĥ(n−2)(τ1,πτ1 ),XT−Xτ1 )1{τ2>T}]1{τ1≤T}]

+Et,π[eµD(ĥ(n−1)(t,π),Xτ1−Xt)

·Eτ1,πτ1 [eµD(ĥ(n−2)(τ1,πτ1 ),Xτ2−Xτ1 )+µW̄
n−2(τ2,πτ2 )1{τ2≤T}]1{τ1≤T}],

(3.5.41)
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we have

W̄n(t, π)

= 1
µ logE

t,π[eµD(ĥ(n−1)(t,π),XT∧τ1
−Xt)+µD(ĥ(n−2)(τ1,πτ1 ),XT∧τ2

−Xτ1 )1{τ1≤T}+µW̄
n−2(τ2,πτ2 )1{τ2≤T} ]

= 1
µ logE

t,π[exp(µ
∑n

k=1D(h̄(n)(τk−1, πτk−1
), XT∧τk −Xτk−1

)1{τk−1≤T}

+µW̄ 0(τn, πτn , h̄
(n)(τn, πτn))1{τn<T})],

(3.5.42)
inductively. By Corollary 3.3.1 we then have

W̄n(t, π)

= 1
µ logE

t,π[exp(µ
∑n

k=1D(h̄n(τk−1, πτk−1
), XT∧τk −Xτk−1

)1{τk−1<T}

+µW̄ 0(τn, πτn , h̄n(τn, πτn))1{τn<T})]

≤ sup
h∈An

1

µ
logEt,π[exp

(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+µW̄ 0(τn, πτn , hn)1{τn≤T}

)
]

= Wn(t, π).

(3.5.43)

Next, we shall prove the converse inequality. By applying Lemma 3.3.1, we have for h ∈ An

W (t, π, h.)

= 1
µ logE

t,π[exp(µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW̄ 0(τn, πτn , hn)1{τn≤T})]

≤ 1
µ logE

t,π[exp(µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW̄ 0(τn, πτn)1{τn≤T})]

= 1
µ logE

t,π[exp(µ

n−1∑
k=1

D(hk−1, Xτk −Xτk−1
)1{τk−1<T})

× exp(µD(hn−1, XT∧τn −Xτn−1) + µW̄ 0(τn, πτn)1{τn≤T})1{τn−1≤T}

+ exp(µ

n−1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})1{τn−1>T}]

= 1
µ logE

t,π[exp(µ

n−1∑
k=1

D(hk−1, Xτk −Xτk−1
)1{τk−1<T})

×Eτn−1,πτn−1 [exp(µD(hn−1, XT∧τn −Xτn−1) + µW̄ 0(τn, πτn)1{τn≤T})]1{τn−1≤T}

+ exp(µ

n−1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T})1{τn−1>T}].

(3.5.44)
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By the definition of ξ̂ and W̄ 1we have

Eτn−1,πτn−1 [exp(µD(hn−1, XT∧τn −Xτn−1) + µW̄ 0(τn, πτn)1{τn≤T})]

= exp(µξ̂(τn−1, πτn−1 , hn−1; W̄
0))

≥ exp(µ sup
h∈H̄m

ξ̂(τn−1, πτn−1 , h; W̄
0)) = exp(µW̄ 1(τn−1, πτn−1)).

(3.5.45)

Therefore, for h ∈ An, we have inductively

W (t, π, h.)

≤ 1
µ logE

t,π[exp(µ

n−1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW̄ 1(τn, πτn)1{τn≤T})]

≤ 1
µ logE

t,π[exp(µD(h,XT∧τ1 −X0) + µW̄n−1(τ1, πτ1)1{τ1≤T})]

≤ W̄n(t, π).
(3.5.46)

Lemma 3.5.6. For all h ∈ A, we have

lim
n→∞

1

µ
logEt,π[exp

(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW 0(τn, πτn , hn)1{τn≤T}

)
]

= W (t, π, h.).

(3.5.47)

Proof.

Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

+ µW 0(τn, πτn , hn)1{τn≤T}

)
]

= Et,π[exp
(
µ

n∑
k=1

D(hk−1, Xτk −Xτk−1
) + µW 0(τn, πτn , hn)

)
1{τn≤T}]

+ Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1≤T}

)
1{τn>T}]

=: I1(n) + I2(n).

(3.5.48)

We shall first give an estimate for I1(n). From (3.1.9) in Proposition 3.1.1 it follows that for
h ∈ H̄m

exp(µW 0(t, π, h)) ≤ exp((µm+
(µσ̄)2

2
)(T − t)). (3.5.49)
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Therefore, we have

I1(n) ≤ Et,π[exp
(
µ

n∑
k=1

D(hk−1, Xτk −Xτk−1
) + µ(m+

(µσ̄)2

2
)(T − τn)

)
1{τn≤T}]

≤ Et,π[exp
(
µ
n−1∑
k=1

D(hk−1, Xτk −Xτk−1

)
Eτn−1,πτn−1 [exp

(
µD(hn−1, Xτn −Xτn−1)

+ µ(m+ (µσ̄)2

2 )(T − τn)
)
1{τn<T}]1{τn−1≤T}]

≤ cEt,π[exp
(
µ

n−1∑
k=1

D(hk−1, Xτk −Xτk−1

)
exp((µm+

(µσ̄)2

2
)(T − τn−1))1{τn−1≤T}],

(3.5.50)

by using Proposition 3.1.2(i) because clearly exp((µm + (µσ̄)2

2 )(T − t)) ∈ G. Thus, we obtain
inductively

I1(n) ≤ cEt,π[exp
(
µ
n−2∑
k=1

D(hk−1, Xτk −Xτk−1
)
)

× Eτn−2,πτn−2 [exp
(
µD(hn−2, Xτn−1 −Xτn−2)

+(µm+ (µσ̄)2

2 )(T − τn−1)
)
1{τn−1<T}]1{τn−2≤T}]

≤ c2Et,π[exp
(
µ
n−2∑
k=1

D(hk−1, Xτk −Xτk−1
)
)

× exp
(
(µm+ (µσ̄)2

2 )(T − τn−2)
)
1{τn−2≤T}]]

≤ cn exp((µm+ (µσ̄)2

2 )(T − t)),

(3.5.51)

and therefore we see that
lim
n→∞

I1(n) = 0.

On the other hand, since 1{τn>T} =
∑n−1

j=0 1{τj<T≤τj+1}, we have

I2(n) = Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τn≥T}]

= Et,π[
∑n−1

j=0 exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}]

= Et,π[
n−1∑
j=0

exp
(
µ

j+1∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+µ
∑n

k=j+2D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}].

(3.5.52)
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Noting that {τk < T} ∩ {T ≤ τj+1} = ∅ for all k ≥ j + 1, we have

exp
(
µ

n∑
k=j+2

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}

= exp
(
µ

∞∑
k=j+2

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}

= 1{τj<T≤τj+1}

(3.5.53)

and that

lim
n→∞

I2(n) = lim
n→∞

Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τn≥T}]

= lim
n→∞

Et,π[

n−1∑
j=0

exp
(
µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}]

= Et,π[

∞∑
j=0

exp
(
µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
1{τj<T≤τj+1}]

= Et,π[exp
(
µ

∞∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

)
].

(3.5.54)
Therefore, we obtain

lim
n→∞

Et,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T} + µW 0(τn, πτn , hn)1{τn≤T}

)
]

= lim
n→∞

I1(n) + I2(n) = exp(µW (t, π, h.)),

(3.5.55)
having used Lemma 3.1.1. This completes the proof.

Lemma 3.5.7. The equality (3.3.9) holds.

Proof. By the definition of An, the inclusions An ⊂ An+1 ⊂ A hold for n ≥ 0 and we have

sup
h∈An

W (t, π, h.) ≤ sup
h∈An+1

W (t, π, h.) ≤ sup
h∈A

W (t, π, h.). (3.5.56)

From the definition of Wn(t, π) and W (t, π) it follows that

Wn(t, π) ≤Wn+1(t, π) ≤W (t, π). (3.5.57)

Therefore, from Lemma 3.5.5 we have

W̄n(t, π) ≤ W̄n+1(t, π) ≤W (t, π). (3.5.58)

Thus, from Proposition 3.2.2 and (3.3.1), we obtain

W̄ (t, π) ≤W (t, π). (3.5.59)
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On the other hand, for h ∈ A

W̄n(t, π) =Wn(t, π)

≥ 1
µ logE

t,π[exp
(
µ

n∑
k=1

D(hk−1, XT∧τk −Xτk−1
)1{τk−1<T}

+ µW 0(τn, πτn , hn)1{τn≤T}

)
].

(3.5.60)

Letting n→ ∞ and applying Lemma 3.5.5,

W̄ (t, π) ≥W (t, π, h.) (3.5.61)

and hence, we obtain
W̄ (t, π) =W (t, π). (3.5.62)
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Chapter 4

Numerical analysis

In this chapter, we construct a numerical scheme for the log-utility value function. In Section
4.1, we construct an approximation filter and a value function. In Section 4.2, we compute the
value function and confirm convergence of the value iteration numerically.

4.1 Numerical scheme

4.1.1 Numerical approximation for filter

We construct a uniform discretization grid t0 = 0 < t1 < t2 <, . . . , < tn = T ,.δ := tl − tl−1 on
[0, T ] and approximate the transition probability

P (θtl = ei|θtl−1
= ej) =

{
qijδ i ̸= j
1−

∑
i ̸=k qikδ i = j.

(4.1.1)

We define (discrete)occupation time as

Ii(l) =
l∑

k=1

1{θtk=ei} (4.1.2)

I(l) := (I1(l), I2(l), . . . , IN (l)) (4.1.3)

and approximate the following integral∫ tl

0
n(θs)ds ≈

N∑
i=1

n(ei)Ii(l)δ. (4.1.4)

O(l) := {(o1, o2, . . . , oN ) ∈ ZN ,
N∑
i=1

oi = l, 0 ≤ oi ≤ l for all i}. (4.1.5)
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We approximate the filter∑
j

n(ei)rji(tl, x)pji(tl)π
j

=
∑

j E[n(ei)1{θtl=ei} exp(
∫ tl
0 −n(θs)ds)ρθ0,tl(z)|θ0 = ej ]πj

≈
∑

1≤i,j≤N,o∈O(l)

n(ei) exp(
∑

1≤k≤N
n(ek)okδ)ρ

θ
0,tl

(z;
∑

1≤k≤N
m(ek)okδ,

∑
1≤k≤N

σ(ek)okδ)

× P (θtl = ei, I(l) = o|θt0 = ej)π
j .

(4.1.6)

4.1.2 Numerical approximation for value function

We approximate the control space

H̄m ≈ H̄p
m := {h1, h2, . . . , hp, hi ∈ H̄m for all i} (4.1.7)

W̄0(ti, π) = sup
h∈H̄m

W̄0(ti, π, h) ≈ max
j∈Hp

m

W̄0(ti, π, hj) (4.1.8)

C(ti, π) = sup
h∈H̄m

Ĉ(ti, π, h) ≈ max
j∈Hp

m

Ĉ(ti, π, hj). (4.1.9)

We approximate the value function and operator J by a Monte Carlo simulation. Xi
k(j, l), τk(j, l)

are the j-th sample paths starting at θ0 = el

W̄ 0(t, π, h) = E[
∫ T
t f(θs, γ(X̃s − X̃t, h))ds|τ0 = t, πτ0 = π]

= E[log(
∑m

i=0N
i
0S

i
T )|τ0 = t, πτ0 = π]

=
∑N

l=1E[log(
∑m

i=0N
i
0S

i
T )|τ0 = t, θτ0 = el]π

l

≈ 1
M

∑M
j=1

∑N
l=1 log(

∑m
i=0N

i
0 exp(X

i
T (j, l)−Xi

0)π
l

(4.1.10)

Ĉ(t, π, h) = E[
∫ T∧τ1
τ f(θs, hs)ds|τ0 = t, πτ0 = π]

= E[log(
∑m

i=0N
i
0S

i
T∧τ1)|τ0 = t, πτ0 = π]

=
∑N

l=1E[log(
∑m

i=0N
i
0S

i
T∧τ1)|τ0 = t, θτ0 = el]πl

≈ 1
M

∑M
j=1

∑N
l=1 log(

∑m
i=0N

i
0 exp(X

i
T∧τ1(j,l)(j, l)−Xi

0)π
l

(4.1.11)

JW̄n(τ, π) = E[W̄n(τ1, πτ1)1{τ1<T}|τ0 = τ, πτ0 = π]

=
∑N

l=1E[W̄n(τ1, πτ1)1{τ1<T}|τ0 = τ, θτ0 = el]πl

≈ 1
M

∑M
j=1

∑N
l=1 W̄

n(τ1(j, l),M(τ1(j, l)− τ0, Xτ1(j,l)(j, l)−X0), π)1{τ1(j,l)<T}π
l

(4.1.12)

W̄n+1(τ, π) = Ĉ(t, π) + JW̄n(τ, π). (4.1.13)
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4.2 Numerical results

4.2.1 List of parameter settings

N = 2 (two-state Markov chain)
m = 1 (one risky asset and bank account)
n(e1) = 1, n(e2) = 2(intensity for observation time)
σ(e1) = 0.5, σ(e2) = 0.3(volatility of risky asset)
r(e1) = 0.08, r(e2) = 0.06(return of risky asset)
r0 = 0.02(interest rate)
q11 = q22 = 1, q12 = q21 = −1(Q-matrix)

4.2.2 Numerical results

In figures 4.1-4.2, we computeW0(t, π, h) and C(t, π, h), respectively. These functions are concave
with respect to control variable h. Therefore,we compute a unique optimal strategy.
In figure 4.3,we compute the value function and confirm that it is a monotonically increasing
function with respect to iteration number and converges.These numerical results are consistent
with Lemma 2.4.4 and Theorem 2.5.1.

Figure 4.1: W0(t, π, h)
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Figure 4.2: C(t, π, h)

Figure 4.3: Convergence
∑n

k=0 J
kC
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