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Abstract

We consider the maximization problem of expected terminal utility. The underlying market
model is a regime-switching diffusion model in which the regime is determined by an unobservable
factor process forming a finite-state Markov process. The main novelty is due to the fact that
prices are observed and the portfolio is rebalanced only at random times corresponding to a
Cox process in which intensity is further driven by the unobserved Markovian factor process.
This leads to a more realistic modeling for several practical situations, as in markets with
liquidity restrictions; on the other hand, it considerably complicates the problem to such a
degree that traditional methodologies cannot be directly applied. Furthermore, we provide a
numerical scheme for these problems to numerically compute the value functions.
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Introduction

In this thesis, we study a classical portfolio optimization problem, namely, the maximization of
expected utility from terminal wealth. We assume that the dynamics of the prices at which one
makes as investment, are of the usual diffusion type but have the following two peculiarities:

e the coefficients in the dynamics depend on an unobservable finite-state Markovian factor
process 6, (regime-switching model);

e the prices S} of the risky assets, or equivalently, their log-values are observed only at doubly

stochastic random times 79, 71, - - -, for which the associated counting process forms a Cox
process (e.g. [3], [10]) with an intensity n(6;) that depends on the same unobservable factor
process 6;.

Such models are relevant in financial applications for various reasons: regime-switching models,
which are also relevant in various other applied areas, have been extensively employed in the fi-
nancial literature, because they account for various stylized facts such as volatility clustering. On
the other hand, random discrete time observations are more realistic in comparison to diffusion-
type models since, especially on small time scales, prices do not vary continuously but rather
change. These prices are observed only at random times in reaction to trading or the arrival of
significant new information, and it is reasonable to assume that the intensity of price changes
depends on the same factors that specify the regime for price evolution (e.g. [7], [4]).This setting
leads to a stochastic control problem with incomplete information and observations given by
Cox process.

A classical approach to incomplete observation control problems is to first transform the
problem into a so-called separated problem, where the unobservable part of the state is replaced
by its conditional distribution. First, this requires solving the associated filtering problem, which
already is non-standard and has been recently solved in [4] (also refer to [5]). Our major contri-
bution here is to the control part of the separated problem that is approached in a non-classical
manner. In particular, we shall restrict the rebalancing of investment strategies to only random
times 7, when prices change. Although slightly less general from a theoretical perspective, re-
stricting trading to discrete, and particularly, random times is fairly realistic in finance, where
in practice one cannot continuously rebalance a portfolio: think of the case with transaction
costs or liquidity restrictions (for the latter context refer to [8], [9], [13], [16], [17], [18], where
the authors consider illiquid markets, partly in addition to regime switching models as in this
paper, but under complete information).

The thesis is organized as follows. In Chapter 1, we provide a precise definition of the market
model, formulate the investor’s strategy, and recall the filtering results of [4]. In Chapter 2, we



consider the expected log-utility maximization
sup E{log Vr}, (0.0.1)

where V7 is the total wealth of an investor at terminal time T'. In Chapter 3, we consider expected
power-utility maximization. Equivalently, we consider the risk-sensitive portfolio optimization,

1
sup;log E{VI}, (0.0.2)

where p < 0. In Chapter 4, we provide a numerical scheme for these problems to numerically
compute the value functions.



Chapter 1

Preliminary

1.1 The market model and preliminary notations

Let 6; be the hidden finite state Markovian factor process. With () denoting its transition
intensity matrix (QQ—matrix) its dynamics are given by

A0y = Q*0,dt + dM,, 0 = €, (1.1.1)

where M; is a jump-martingale on a given filtered probability space
(Q, F,F, P). If N is the number of possible values of ;, we may without loss of generality
take as its state space the set E = {ey,...,en}, where e; is a unit vector for each i =1,..., N
(see [6]).
The evolution of ; may also be characterized by the process m; given by the state probability
vector that takes values in the set
N
Sy={reRV|) nr'=1,0<7"<1,i=12,... N} (1.1.2)
i=1
namely the set of all probability measures on E and we have 7§ = P(£ = ¢;). Denoting by M(E)
the set of all finite nonnegative measures on E, it follows that Sy € M(E). In our study it will
be convenient to consider on M(E) the Hilbert metric dg(m, 7) defined (see [1] [11] [12]) by

dp(m,7) :=1log(  sup m(4) sup M) (1.1.3)

7(A)>0,ACE T(A) m(A)>0,ACE m(A)
Notice that, while dg is only a pseudo-metric on M(E), it is a metric on Sy ([1]).

In our market we consider m risky assets, for which the price processes S* = (S})i>0,i =
1,...,m are supposed to satisfy

S} = Si{r'(61)dt + > o'(0,)dB7}, (1.1.4)
J

for given coefficients r¢(#) and a§(0) and with B/ (j = 1,--- ,m) independent (F;, P)—Wiener
processes. Letting X} = log S¢, by Itd’s formula we have,in vector notation,

Xi = Xo + /Otr(Gs) - d(aa*(&s))ds—i—/ota(es)st, (1.1.5)

6



where by d(co*(6)) we denote the column vector (1 (00 )H(0), ..., (00*)™™(0)). As usual there
is also a locally non-risky asset (bond) with price S satisfying

dsp = roSYdt (1.1.6)
where ro stands for the short rate of interest. We shall also make use of discounted asset prices,

namely ‘
’l

Si= SO’ with X} :=log S} (1.1.7)
for which, by It6’s formula
dS} = SH{(r'(6:) — ro)dt + Y o(6,)dB]}, (1.1.8)
J
dX] = {r'(0;) —ro — d(o0™(6;)) }dt + Y _ o(0;)dB]. (1.1.9)
j=1

As already mentioned, the asset prices and thus also their logarithms are observed only at
random times 79, 71, 72, . ... The observations are thus given by the sequence (7%, X7, Jken that
forms a multivariate marked point process with counting measure

p(dt,dr) = Lire<oo}Oin,, 5, 3 (B 0)dbdz. (1.1.10)
k

The corresponding counting process Ay = fo me (dt, dx) is supposed to be a Cox process with
intensity n(6;), i.e. Ay — fo s)ds is an (F;, P)— martingale. We consider two sub-filtrations
related to (g, er,)keN namely

Gy = FoVo{u((0,s] x B) : s <t,B € B(R™)},
) ] (1.1.11)
gk‘ _]:0\/0-{7—07 T07T17XT177—2aX7'27"'7TkaXTk}-

where, again for simplicity, Gy stands forg, . In our development below we shall often make use
of the following notations. For the conditional (on F?) mean and variance of X; — X, we set

mi(t) = [} [r(6s) —rol — d(oo*(0s))]ds,

t (1.1.12)
at) = 5 00" (0s)ds

and, for z € R™, we set
Pl 4(2) ~ N(zimi(t), 07(t)) (1.1.13)

namely the joint conditional (on F?%) m-dimensional normal density function with mean vector

m?(t) and covariance matrix o (¢). In the symbol ~ stands for ”distributed according to”.



1.2 Investment strategies, portfolios,objective

As mentioned in the Introduction, since observations take place at random time points 7, we
shall consider investment strategies that are rebalanced only at those same time points 7.

Let N be the number of assets of type i held in the portfolio at time t, N} =", Liryriin) (t)Nj.
The wealth process is defined by

m
V=Y N/Sj.
i=0
Consider then the investment ratios o
N¢ St
‘/t 9

and set, for simplicity of notation, h};, = hik. The set of admissible investment ratios is given by

hi =

Hyoo={(hY, ..., R b + R+ ...+ ™ <1,0<h'i=1,2,...,m}, (1.2.1)

i.e. no shortselling is allowed and notice that H,, is b(_)unded_and closed. Put h = (ht,---  h™).
Analogously to [14] define next a function v : R™ x H,, — H,, by

; ht exp(z?) ,
v'(z,h) = — , 1=1,,...,m. (1.2.2)
1+ 3 hiexp(s) — 1)
i=1
Noticing that IV, is constant on |1y, 7k4+1), for i = 1,...,m, and t € [1, Tk41) let
yio— NSt Nis]

= el S e T

t o NiSi o NiSE
_ NSy Si/Sy,  __ WSYSh _ mSH/SPSi/Sy

o NLSL ST/SL T YL hiSi/SL T XL hiSY /S9Si/SE, 123

B hi, exp(X}— X1, ) B hi, exp(X{—X1 ) b

hg+§ h exp(Xi—X1, ) 1+§1 hi (exp(Xi X2 )—1)
= (X — Xy, hp).
The set of admissible strategies A is defined by
A= {h}22 0l € Hp, Gi measurable for all k > 0}. (1.2.4)
Furthermore, for n > 0, we let
A" = {h € Alhpti = hq,,,— forall i > 1}. (1.2.5)
Notice that, by the definition of A", for all k> 1, h € A™ we have

hiz—i—k = I

Tn4+k—

Nt S Nt St

n+k Tn+k n+k—1 Tn+k

= m - - = - -
i % m 7 7
ico ik St im0 Vagk St




<~ Nn+k = Nn+k—1-
Therefore, for k> 1

Nn+l<: = Nna
and
AcAtc. A" Cc AL C A (1.2.6)
Remark 1.2.1. Notice that, for a given finite sequence of investment ratios hg, hy,--- , hy such

that hy is an Gy—measurable, H,,—valued random variable for k < n, there exists ORI
such that h,in) = hg, k = 0,--- ,n. Indeed, if Ny is constant on [r,,T), then for hy we have
hy = v(Xy — Xy hn), ¥t > 7. Therefore, by setting hén) = hgy, £ =0,--- ,n, and hg:ik =
h k=1,2,---, since the vector process Sy and the vector function (-, hy) are continuous,
we see that '™, = h k=1,2,---.

n+k = TntkT

Tn+k7

Finally, considering only self-financing portfolios, for their value process we have the dynam-
ics
vy . .
v = [ro + hi{r(0:) — rol}]dt + hio(6;)dBy. (1.2.7)

1.3 Filtering

As mentioned in the Introduction, the standard approach to stochastic control problems under
incomplete information is to first transform them into a so-called separated problem, where the
unobservable part of the state is replaced by its conditional (filter) distribution. This implies
that we first have to study this conditional distribution and its (Markovian) dynamics, i.e. we
have to study the associated filtering problem.

The filtering problem for our specific case, where the observations are given by a Cox process
with intensity expressed as a function of the unobserved state, has been studied in [4] (see also
[5]). In this section. we therefore summarize the main results from [4] in view of their use in our
control problem in this paper. Recalling the definition of p?(z) in (1.1.13) and putting

¢ (i, 1) = n(6;) exp(— /Ttn(HS)ds), (1.3.1)
for a given function f(6) we let k
Unlfit,2) = EIF0), oz — X0)¢ (e, Dlo{0n, } V Gl (132)
Glfit)i= [ nlfitia)de = E[F6)6" (010 (0} v G (1.33)
m(f) = E[f(6¢)G:] (1.3.4)

with ensuing obvious meanings of 7, (¢ (f;t,z)) and mr, (Yr(f;t)) where we consider 1, (f;, )
and ¢y (f;t) as functions of 0;,. The process m(f) is called the filter process for f(6;).

We have the following lemma (see Lemma 4.1 in [4]), where by P(G) we denote the predictable
o -algebra on Q x [0, 00) with respect to G and set P(G) = P(G) ® B(R™).



Lemma 1.3.1. The compensator of the random measure pu(dt,dz) in (1.1.10) with respect to
P(G) is given by the following nonnegative random measure

T, (wkgla t, 37))
S (D (1, 8))ds

v(dt,dr) =Y 1 () dtdz. (1.3.5)
k

The main filtering result is the following (see Theorem 4.1 in [4]).

Theorem 1.3.1. For any bounded function f(0), the differential of the filter m(f) is given by

dﬂt(f) = Wt(Lf)dt
7w, (Y (fit,x (136)
I ok L) (2GS — mo- ()] (1 — v)(dt, o),
where L is the generator of the Markov process 0y (namely L = Q).

Corollary 1.3.1. We have

T (Vi (S5 £, 7))
7er+l(f) ﬂ_Tk (w (1't z ) (137)
Tk k(L0 t—Tk+1,$=X‘rk+1
Recall that in our setting ; is an N-state Markov chain with state space E = {e1,...,en},

where e; is a unit vector for each ¢ = 1,..., N. One may then write f(6;) = Zfil flei)le, (6y).
Fori=1,...,N let 7 = m(1,(6:)) and

rilt,2) = Blesp( | —n(0)ds)(2)100 = e5.0, = e, (1.38)

pji(t) = P(0: = el = ¢;) (1.3.9)
and, noticing that m; € Sy, define the function M : [0,00) x R™ x Sy — Sy by

i X n(ed)rji(ta)pyi(t)w
Mi(ta,m) = S i (1.3.10)
M(t,x, 7)== (M (t, ), M*(t,z, @), ..., MM (t,z,7)). (1.3.11)
For ACFE
N .
M(t,z,m)(A) =Y M'(t,2,m)1{eay (1.3.12)
i=1

The following corollary will be useful

Corollary 1.3.2. For the generic i-th state one has

7 _ ) %
7T7'k+1 =M (Tk"rl - TkaXTk+1

— X0, 7)) (1.3.13)

and the process {7y, ﬂTk,XTk}gozl 18 a Markov process with respect to Gy..

10



Proof. The representation (1.3.13) and the fact that {Tk,’]TTk,XTk} is a Gp—adapted discrete
stochastic processes on [0,00) X Sy x R™ follow immediately from Corollary 1.3.1 and the
preceding definitions. For the Markov property we calculate

P(Tk+1<tX1 < T1yeeey X <a:m\gk)

Tk+1
= E[P(tp41 <t XTk+1 < X1y, X"’k+1 < T |Gk \/]—"9)|Qk]
= kaP X3, <miy L, X < an|Gr V FO)n(0s) exp(— [7 n(6,)du)ds|Gy)

= ka [oo Pros(z — X )n(0s) exp(— f n(6y)du)dsdz|Gy)
= f:k S i Z n(ei)rji(s — 2 — X )pji(s — )l dsdz,

and for any bounded measurable function g on [0,00) x Sy x R™ it then follows that

E[g(Tha1, Trprs Xriy 1) 1Gk]
= EBlg(Ths1, M (Tt — T Xy — Xops Tr)s Xt ) |G
= E[E[Q(TkH, M(Try1 — Th, X}kﬂ - er,ﬂrk)aer+1)|g(k) v ]'-Hﬂgk]
= B[ Elg(t, M(t — 74, X; — Xr,77,), Xe)n(0:) exp(— [, n(05)ds)|Gr v FO|dt|Gy]

= ka meg t,M(t—Tk,l‘—Xq—k,’/TTk),l') Zij n(ei)rji(t—m,x—X}k)pﬂ(t Tk)ﬂde.TUdt

where the last equation depends only on {7, wTk,)N(Tk} thus implying the Markov property. [J

11



Chapter 2
Log-utility maximization

In this chapter we consider expected log-utility maximization

sup Eflog Vp|my = 0,7, = 7). (2.0.1)
heA

In Section 2.1 we introduce an operator that is important for the control results. The control
part is then studied in section 2.2-2.5 with the main result stated in Theorem 2.5.1. Section 2.6
contains technical proofs.

2.1 A contraction operator

In this section we define a contraction operator (see Definition 2.1.1 below) that will be relevant
for deriving the results on the value function. In view of its definition and in order to derive its
properties, we need first to introduce some additional notions.

We start by defining an operator on M(E) as follows
K'(t,x)m =Y nle)rji(t, x)pji(t)m, (2.1.1)
J
K(t,x)m = (K'Yt z)m, K2(t, )7, ..., KN (t,2)7). (2.1.2)
For t € [0,00), z € R™, K'(t,x) is a positive linear operator on M(FE). For A C E set

N
K(t,2)m(A) = K'(t,2)ml ey (2.1.3)
i=1
By the definition of M'(t,z,7) and K'(t,x)m, setting x(t,z,7) := >, K'(t,z)m, for t €
[0,00), x € R™, m € M(FE) we have

1

ml@(t,:p)ﬁ . (2.1.4)

Mi(t,z,m) =

12



By the definition of the Hilbert metric dg(-,-), for ¢t € [0,00), x € R™, 7,7 € M(F) we then

have

dg(M(t,z,n), M(t,z,7)) = log(sup %gzggﬁ; sup %Eiiggﬁg)

LK (t,z)m(A) = K (t,2)7(A)

r(t,x,m) r(t,x, )

= log(sup ==

rk(t,x,T)

K(t,x)m(A K(t,x)7(A
= log(sup KEt,ngrEAg sup KEMC;?TEA%)

= dg(K(t,x)m, K(t,z)T).

Kk(t,x,m)

KtorA) " T K@i oym(A)

(2.1.5)

Applying [1], Lemma 3.4 in [11] and Theorem 1.1 in [12] , for the positive linear operator K on

M(E) it then follows that

dp (M (¢, 2, 7), M(t,2,7)) = d (K (t, 2)7, K(t,2)7) < dg(r,7)

for t € [0,00), z € R™, m,7 € Sy. By Lemma 3.4 in [11] , for Vm, 7 € Sy we also have

2
— Ay < ——dp(m, 7
|7 7T||Tv_logg m(m, ),

where || - ||7v is the total variation on Sy.

We finally introduce a metric on [0,00) x Sy x H,, by

|t =8+ du(m,7) + > |h' =]
i=1

for (t, m, h),(t, @, h) € [0,00) x Sy x H,, and considering the state space
¥ :=[0,00) x Sn,

let Cy(X) be the set of bounded continuous functions g : ¥ — R with norm
gl := max [ g(=) |

Definition 2.1.1. Let the operator J : Cyp(X) — Cy(X) be given as follows

Jg(r,m)
= fTT Jom 9(t, M(t — 7, 2,7)) sz n(e;)rji(t —7,2)pji(t — )l dzdt
= Elg(ri, 7)) 1r <rylro = 7,707y = 7,

where M is defined in (1.3.11)-(1.5.12).

First we have

(2.1.6)

(2.1.7)

(2.1.8)

(2.1.9)

(2.1.10)

(2.1.11)

Lemma 2.1.1. J is a contraction operator on Cy(X) with contraction constant c := 1—e™ "1 < 1,

where i := maxn(f) = max; n(e;).

13



Proof. For Vg € Cy(%)
| Jg(t,m) | = | Elg(ri, 7)1 <rylro = t, 7 = 7] |
gl P(m1 <Tlmo =1t)
= gl Bl — exp(— f, n
< gl —eXp(—n(T—t)))

IN

and so
179l < cllgl (2.1.12)

with ¢ as specified in the statement. ]

Let Cp1ip(X) be the set of bounded and Lipschitz continuous functions g : ¥ — R and set
for g c Cb,lip(z)
NXg) = Algll + [9ip (2.1.13)

where,
‘g(Ta 7T) — g(7_-a ﬁ-)|

[91ip == sup — . (2.1.14)
* 7,7€[0,T] m,7€Sn |7 — 7| +du(n,7)
Note that Cp (%) is a Banach space with the norm N*(g), for each A > 0.
Take a sufficiently large constant A such that
2 1
d = (c+max(ﬂ,@)x) <1 (2.1.15)

Proposition 2.1.1. The operator J in Definition 2.1.1 is a contraction operator
I Coiip(X) = Coiip(X)
with contraction constant c.

Proof. Let us first prove that Jg(t, ) is Lipschitz continuous with respect to t. By assumption,
for all g € Cp15p(X),

lg(m,7) — g(7, ™) < [gluiplT — 7, (2.1.16)
lg(1, ) — g(7,7)| < [glipdn (7, 7). (2.1.17)
We change variables from ¢ to ¢ + 7,
T—1
g(r,m) = / / gt +7,M(t, z,m)) Z n(ei)rji(t, 2)p;i(t)m’ dzdt. (2.1.18)
0 m —
ij

We then have
[Jg(r,m) — Jg(7,m)|
= 7T Jam gt + 7, M(t,2,m)) Sy nleq)rja(t, 2)pji(t)md dzdt|
H fy 7 Jgmdo(t+ 7, M2, 2,m) = gt + 7, M(t, 2,7))}

i nled)rji(t, 2)pji(t)midzdt| (2.1.19)
< allgllr =71+ (gl =TSy T S Yoy mlea)rsilt, 2)pji(t)n) dzdt]
= gl = 7|+ [9lup|T = TP (1 < T|ro = 7,707, = )
< (nllgll + clglup)lT — 7.

14



Next, let us prove that Jg(t,7) is Lipschitz continuous with respect to .
[ Jg(r,m) = Jg(7,7)]
< 1y T Jan kgt Mt 2,m)) — gt M(t 2, 7))} 2255 nled)rsilt, 2)pja(t)wd dzdt|
+ ]f T Jgm g(t, M (¢, 2 V7)) D24 n(e;)rji(t, 2)p;i(t) (7l — 77)dzdt|
| o " Jamlglipde (M (t, z, ), M(t, z, 7)) > i n(e;)rji(t, 2)p;i(t)ml dzdt|
+ HgH@dH(TI',?T)P(Tl <T|ro=r1)

< (rzsllgll + clglip)da (m, 7).

IN

Therefore,

Jg(r,7m) — Jg(7,7

gl — sup | Jg( 7) g( 7)!

7,7€[0,T] m,7€SN |7 — 7|+ du(m,7)
|Jg(T,7T)—Jg(’]_',?T)’—F’Jg(7_',7T)—Jg(’7_',7_T)|

< sup - -

7,7€[0,T] m,7€Sn |T - 7—‘ +du (7T> 7T)
_ s (llgll + clglip) 1T = 7| + (g9l + clglip)dr (7, 7)
o 7,7€[0,T] m,7ESN |T _7_-| +dH(7T>7_T)

< max(n ,logg)HgH + c[gluip-

Finally, we obtain

N*Jg) A Jgll + [T gluip
cAllgll + max (@, 25) 9]l + clgluip
Mgl + clglup

d N (g).

IN A

IN

2.2 Preliminary results in view of the optimal strategy

Recall from (1.2.7) that the value process of a self financing portfolio satisfies

dvi
7: = [ro + hi{r(6:) — rol}]dt + hio(0:)dB;.

We have by It6’s formula
log Vr =logvy + [ hio(6,)dB;
+ [ ro + hp{r(8,) — rol} — Shioa*(8,)hy)dt.

Put 1
f(,h) :=ro+h*{r(@) —rol} — ih*aa*(Q)h

15
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and notice that this function f(-) is bounded under our assumptions. The expected log-utility
of terminal wealth then becomes

T
Ellog Vr|mg = 0,75, = 7| = logvg + E[/ f(Os, he)dt|To = 0,707, = 7] (2.2.4)
0

and, we want to consider the problem of maximization of expected terminal log-utility, namely

sup Ellog Vr|mg = 0, 7, = 7. (2.2.5)
heA

Definition 2.2.1. Let C(r,, h) be defined by
C’(T,Tr,h) = E[fTT/\Tl f(Os, hs)ds|To = 7,707, = 7]
= ST o X Fen A )it — 7 2)psilt — ) dadt, (2.26)
]

where y(x,h) = [y (', h),--- 4™ (™, h)].

Lemma 2.2.1.

(i) For the function defined by (2.2.3), we have the following equation

T
E’[/ f(ls, hs)ds|mo =t, 7, = 7] = E[Z C(Thy Trs i) L <y T0 = t, 700y = 7). (2.2.7)
t k
(i) C is a bounded and continuous function on [0,T] x Sy X Hy,.

For the proof see Section 2.6

Corollary 2.2.1.

(i) There exists a Borel function h(r,m) such that SUPpefr, C(r,m, h) = C(r, 7, h(r,T)).
(i) The function
C(t,m) :== sup C(t,m, h). (2.2.8)

is Lipschitz continuous with respect to t,m in the metric introduced in (2.1.8).

Proof. H,, is compact and C A(T, 7, h) is a bounded continuous function on [0, T] x Sy x H,,; there
exists then a Borel function h(7,7) such that (2.2.8) holds. Furthermore, C'(¢, 7, h) is uniformly
Lipschitz continuous with respect to t, .

O
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2.3 Value function and first properties

We start with the following basic definition

Definition 2.3.1. For given initial data (1o = t, 7, = ™), where we now start at a generic time

t, consider the following value function for h € A

W(t,m, h.) = j; (0s, hs)ds|Tg = t, mry = 7]

= [ O(Tk,ﬂrk,hk)1{7k<T}\To =t, T =7,

and define
W(t,m) = supW(t,m, h.)
heA

T
= sup E[ f(bs, hs)ds|mo = t, mry = 7]
heA

= supE ZC Tk?77TTk7hk)1{Tk<T}|TO t, Trg = 7T],

hed 1
Wn(t,m) = sup W(t,m, h.)
heA™

T
= sup E[| f(0s,hs)ds|To =t, 1y = 7]

heA™
00
= Sup E[ C(Tka M7 hk)1{7k<T}|7—0 =1, Ty = 7T]7
heA™ 1,

where A™ was defined in (1.2.5).

Lemma 2.3.1. For all n >0 and h € A", we have the following equation

W(t,m h.) = Z Tk,ﬂ'q—k,hk 1{7'k<T}
k=0

+ f f sy7Y X XTn,h ))d31{rn<T}‘7—0 =1, s :’R'].

For the proof see Section 2.6.

Corollary 2.3.1. Forn >0, t € [0,T], m € Sy we have the following equation

W"(t,m) = sup EZ (Ths T P ) Lo <1}
heAr =5

+ f f X XTmh ))d51{7n<T}|7—0 =t, = 77]-
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2.4 An auxiliary value function

Recall the function C(¢,7) defined in Corollary 2.2.1 as well as the operator J from Definition
2.1.1. By Proposition 2.1.1 we have that .J is a contraction operator on the Banach space Cj ;)
with its norm N*(-). Therefore, lim,, o Yoreod kO exists and so we introduce the

Definition 2.4.1. Define the auziliary value function W (t, ) as
o0
Wi=> JtC
k=0

The following lemma then holds

Lemma 2.4.1. We have W € Chip and it satisfies

W(t,m) = C(t,m) + JW(t,7). (2.4.1)

Proof. Due always to the fact that (see Proposition 2.1.1) J is a contraction operator on the
Banach space Cp 1, with its norm N A(), in addition to the existence of lim, oo Soreo kC we
also have

(I-J0)'c=>_ Jkc,
k=0
from which the result follows. OJ

In view of deriving a recursion related to W (¢, ) (value iteration), we start with the

Definition 2.4.2. Define, for h € H,,,

T
WOt 7 h) = E[/ F(O0,4(Xs — Ko, R))ds|ro = £, 7ry = 7], (2.4.2)
t
Furthermore, let
WO(t,7) := max WO(t,n,h), (2.4.3)
heH,
and, forn >1 - -
Wn(t,m) = C(t,m)+JW" (¢t )
nd _ 2.4.4
= > JFC(t,m) + J"WO(t, ). (2.44)
k=0

Remark 2.4.1. The function WO(t,7,h) in (2.4.2) is bounded and continuous with respect to
t,m, h. This follows by an analogous proof as in Lemma 2.2.1(ii).

We first state and prove the following lemma (later we need a relation from the proof)

Lemma 2.4.2.

18



(i) We have the equation
n—1

Wn(t,m) = B> C(7h, )l mpcry + Wo(Tn, T )L rucry o =, 7y = 7). (24.5)
k=0

(ii) For any e >0, we set ne := (log(1 — ') +loge —log NX(W?' — W)/ logc, where ¢ is the
contraction constant defined in (2.1.15). For all n > n.,

NAW - W) < e. (2.4.6)
Proof. We prove (i). For n > 1
{1 <T} D {m < T} (2.4.7)
Therefore,
1{Tn—1<T}1{Tn<T} = 1{Tn<T}' (2.4.8)

For all g € C([0,T] x Sy) and n > 0, we have
E[g(Tn, 71'7'n)1{7'n<T}‘7_0 =t = 77]

2.4.9
= E[Eg(Tn 7o) {my <1} |Gnat] L (r s <1y |70 = t, 70ry = 7). (2.4.9)

because 14, <y E[lr, «11|Gn-1] = E[l{7,<1}|Gn-1]. Then, since (see (2.1.11))
E[g(Tn77T7—7L)1{Tn<T}’gn_1]

= fTZ—l Jom 9, M(t — Tp—1, 2,77, ) Z n(e;)rji(t — Tne1, 2)pji(t — Tp1)ml _ dzdt
ij

= Jg(Tn*177TTn71)7

(2.4.10)
we have (see always (2.1.11))
E[Q<Tna 7r7'n)1{7'n<T}‘T0 =1, = 7T] = E[Jg(Tn—la WTnfl)]‘{Tn—1<T}’TO =1, = 7T]
= J"g(t,m).
(2.4.11)
We thus obtain
n—1
Wn(t,m) = JEC(t,m) + JWO(t, )
kzo (2.4.12)
= E[EZ;(l) C(Tk77r7'k)1{Tk<T} + WO(Tn77rTn)]‘{Tn<T}‘TO =t, T = 7.
Next, we prove (i7). For any n,
NAW —W?") = N lim W™ —W") = lim NYW"™* - W)
k—o0 k—o0
k—1 00
A n+i+1 n+i A n+1 n
= khféoZN (Wt =) < NY T - W) z; (2.4.13)
< N)\ n N/\ 770 ]
< NANW ; 1 S NA W W)
O



Lemma 2.4.3. For all n > 0, we have the equality
W™ (t,7) = W"(t, 7). (2.4.14)

Proof. By Corollary 2.3.1, for all n > 0

i
L

Wn(t,m) = sup E[Y  C(Th Try, hi)L{n <1y

heAn (2.4.15)

o

0
+ fTi f(Hs,'y(f(s — XTn, hn))dslyr, <ry|70 = t, 700y = 7).

Since H,, is compact and W%(7, 7, h) is a bounded continuous function on [0,T] x Sy x Hy,,
there exists a Borel function w(7, 7) such that sup,c g WO(r, 7, h) = WO(r, 7, w(r, 7)) . Further-

more, by Corollary 2.2.1(i) there exists a Borel function h(r,7) such that SUDpef,, C(r,m h) =
C’(T, m, iL(T, 7)) holds. For n > 0, we define the strategy

hy = iL(Tk,ﬂ'Tk), 0<k<n-1

Ry, := w(Tn, s, ), k=n (2.4.16)

hy =X, — X7, hn), k> n.

By definition of {Bk}keN, we have {Bk}keN € A". Using Lemma 2.4.2(i) and Lemma 2.3.1, for
n>0,te[0,T],T €SN

n—1
Wn(t, ) = Tk,ﬂ'Tk, hk l{Tk<T}

(2.4.17)
X XTn’ h ))dS]'{Tn<T}‘T0 = t) Try = 7T]

?EOM

7T).

Using again Lemma 2.3.1, (2.4.2) and Lemma 2.4.2(i), for all n > 0,h € A", t € [0,T],7 € Sy

n—1
W(t,m, h.) Z (T, Try, s hke) i<y
k=0
+ f f(0s,v(Xs — Xy, b )dsler cry|T0 = t, 7 = 7]
n—1
Z (Ths Try» ) Li<ry + wo (Tns 7y B )1{Tn<T}’7_0 =t, T, = 7]
k=0
n—1 B
< E[ C(Tk, 7I'7'16)1{771€<T} + Wo(Tm 7'['7'71)1{7-n<T}|7—0 =1,Tr = 77]
k=0
= W"(t, ).
(2.4.18)
Therefore, we have
W"(t,7) = sup W(t,m, h.) < W"(t,7), (2.4.19)

heA™
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and so we obtain for all n >0 B
W"(t,m) = W"(t,m). (2.4.20)

Lemma 2.4.4. For n > 0, we have the estimate

Wh(t,m) < Wt m) < W(t,m) < W(t, m). (2.4.21)

For the proof see Section 2.6.
Lemma 2.4.5. The following estimate holds
W(t,m) < W(t, ) (2.4.22)
fort €0, T],¥m € Sn.

For the proof see Section 2.6.

2.5 Main result

Based on the previous sections we obtain now the main result of this section

Theorem 2.5.1.

(i) Approzimation theorem :
For any € > 0,n > n,, B
NAW —W") < e, (2.5.1)

where n. is the constant defined in Lemma 2.4.2(ii) and, modulo the additive term logvg,the
function W = W (t, ) is the optimal value function (see (2.2.4), (2.3.1), (2.8.2)), N* is
the norm introduced in (2.1.13), and W™ are computed recursively according to (2.4.3) and

(2.4.4).
(i) Dynamic programming principle : for any n >0

W t7 = E é ) T.;h/ ]' T
(t,m) hseu}l)n [kz_o (Tk> Try, Pk ) L <y (2.5.2)

+W(Tn+17 7TTn+1)1{Tn+1<T}’TO = t) Trg = ﬂ-]‘

(11i) Optimal value and optimal strategy for the Log Utility Mazimization Problem : for the
uttlity maximization under the initial conditions Vo = vo, 70 = 0,17, = ™ we have

T
sup Ellog Vr|mg = 0,7, = 7] = log vp + sup E[/ f(O, he)dt|To = 0,707, = 7]
heA heA 0

= logvg + C(0,7) + 3521 E[C(7h, Trys hie) 17 <1y 70 = 0, 70y = 7],

(2.5.3)

with hy, defined in Corollary 2.2.1, namely SUDpeq,, C’(T,W, h) = C’(T,ﬂ', B(T, 7)) and hy, =

~

(7, 77,) and ' ‘
hi = ’yz(Xt — er, hk), Tk <t< Tk+1 (2.5.4)



Proof. Let us first prove (7). By Lemma 2.4.4 and Lemma 2.4.5,

W(t,m) = Wi(t, ). (2.5.5)
Therefore, applying Lemma 2.4.2(ii) one obtains

NAW —W") < e. (2.5.6)
Next, let us prove (i7). By (2.5.5), Lemma 2.4.1, (2.4.11) and by Corollary 2.2.1

W(t,m) = W(tr) =Y JC+ Wt
k=0

n
= E[Z C(Tkv 7"-7'19)1{7';€<T} + W(TnJrla 7rTn+l)]‘{Tn+1<T}|TO =1,y = 77]
k=0

= Ssup E ZC Tkvﬂ'mvhk)l{Tk<T} + W(Tn-‘rlv7TTn+1)1{Tn+1<T}’T0 =1,Tr = ﬂ-]

heA™ k=0
(2.5.7)

Finally, (7i7) is an immediate consequence of (2.2.4), Lemma 2.2.1 and Lemma 2.4.3 and its
proof. O

2.6 Proof of Lemma

Proof of Lemma 2.2.1.
Proof of statement (i). It follows from the two lemmas shown below.

Lemma 2.6.1. We have the following representation,

E[f(0r,v( Xt — Xry, hi)) i<y 13 |Gk]
ZlTk,TkH] :

E[f(0r, he)|Gi] = (2.6.1)
]C>O E[l{tSTk+1}|gk‘]
Proof. 1t suffices to prove that for any G;—adapted process Z;
[f(ata V(Xt - X7k7hk))1{t<7'k }‘gk}
[ [ (Gt,ht ’gt Zt ].7_ T Slas Zt] (262)
,;0 e Ell{i<ry,1}19%]
First notice that any G;,—adapted process Z; has the representation (see [3])
= Y 1O Z0(1) + Zoolirg ool (1), (2.6.3)

k>0

with the process Zi(t) being G, ® B(R,)-measurable. Furthermore, under our assumptions, for
all ¢t > 0, lim,, i<ty =0 and thus

- Z 1]Tk,Tk+1}(t)Zk(t)‘ (2.6.4)

k>0
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Note, finally, that E[l{;, <<z, }|Gk] = L7 00) () E[L1<r,,,}1Gk]]. We then have

E[E[f(00,h)|G)Z) = Elf(0r,h0) Y Ly () Z0(D)]
k>0
= Y E[E[f(0r, he)ljt<ry, 3 |Gk]Lir, <ty Ze(t)]
k>0
E[f(0r, he)11i<r,, 1G]
= E Slos Ell, ; t) 2y ()| G
3 A S Bl 020010
E[f (0, he)l<r,,,}|9k]
= E[Z 1 Tk,Tk+1] E[l { — ‘kgl} Zt]a
k>0 {t§7k+1} k‘}
and thus we obtain (2.6.2) since
et,ht ZlTkuTk+1) 9t7 ( XTkahk))
k=0
which follows from (1.2.3). O

Lemma 2.6.2. We have the following equation

j; (05, hs)ds|Tg = t, 7y = 7] = E[Z C(Th, Tr hi)lir.<1y|T0 = t, 707y = 7] (2.6.5)
k>0

with C(t,m, h) defined by (2.2.6) in Definition 2.2.1.
Proof. For simplicity, in the following formula we shall use the notation
E'" [ = E[ |10 =t, 7, = 7]

Using (2.6.1) we have similarly as above

E[f(957’7(XS - XTk? hk))1{5<7' }|gk]
Em/ E[f(0s,hs)|Gs]ds E“r/ 1.+ s kil ds
)lgJas] = [ | ;} i) (5) Bl 160 )
= Etﬂ Z/ 1]7% (95,’7()25 —X.,-k,hk))l{s<7_k+l}|gk]ds]
k>0
= Etﬂ Z/ 1]Tk, _ka n(eu)duf(esaV(XS - XTk’ hk))|gk]d5]
k>0
_ t,m 7f7—s n(6u)du 9 X _X h 0 d
= Eb Z 1]Tk, [Ele F (s, 7(Xs = Xy 1)) |Gk V 0{07, 3]G ] ds]
k>0
) (2.6.6)
Since (6, X;) is a time homogeneous Markov process,
Ble” M0 1 (0, 7(X = Ko b)) |G V o {87, 26

t ~ -
= E[e_ fo n(@u)duf(eh V(Xt -, h))’eo = 97 XO = ‘T]‘t:s—Tkﬁ:Ok,x:XTk,h:hk
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We now have, recalling the definition of (¢, 2) in (1.3.8),

Ele™ Jo %) £(6,, (X, — x,h))|6o = 0, Xo = a]
= Ele oS E[f(6,,v(X, — 2, h))|F v {Xo = 2}]|60 = 6, Xo = 2]
= EleJon)d) [ (6, 7(z, 1)) ph o (2)dz|60 = 6, Xo = x]
- E[me Z1{9t:ei,90=ej}f(ei)7(zah))
1j

(2.6.8)
Ele Jon®)ds g (2)]0, = e;, 00 = e;]dz[6p = 6, Xo = 4]
= E[f]Rm Z 1{9t=e¢,90=ej}f(€i7 ( ))T]Z(t Z)dZ\HO =0 XO = 1‘]
ij
= Jam 2 f(ei (2, 1))rji(t, 2)pji(t) L {g=e;y d2-
ij
We finally have
T T
Et’”[/ f(0s,hs)ds] = Et’”[/ E[f(0s, hs)|Gs]ds]
t 7r = J2 n(0u)du % %
= B Z/ 1]’7'k, [ Tk f(es"V(Xs - XTk7 hk))|gk \ U{em}”gk]ds]
k>0
= Eb| Zl{Tk<T}/ / Zf ei, V(2 hi))rji(s — T, 2)pji(s — i), dzds]
k>0
= Et’”[zC(Tk,ﬂ'm,hk)l{Tk<T}].
k>0
(2.6.9)
O
Proof of statement (ii) of Lemma 2.2.1.
We start by proving that C (t,m, h) is Lipschitz continuouswith respect to t.
é(t7 T, h) = ftT me Z f(eia 7($7 h))?“ji(s —t, Qf)pji(s - t)ﬂ’jdxds
o , (2.6.10)
= fo me Z f(eia ’Y(:’Ua h))rji(sv I‘)pji(s)ﬂjdﬂfds.
Z?J
Thus
C(t,m,h) = CEm )| = | fr fam Zf ei, (@, h))rji(s, 2)pji(s)n! dwds|
(2.6.11)
< £l =1,
where || f[| := sup.cp neg,, [If(e,h)||. Next, let us prove that C(¢,,h) is Lipschitz continuous
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with respect to 7 (in the metric introduced in (2.1.8)).

Ct,mh) = Ct 7 R)| = | f) " fam 32 Flesy(, h)rsi(s, 2)pji(s) (79 — 7 )dads|

IN

LT |7 — 7| = | FIT S0 |m(es) — 7(es)] (2.6.12)
< AT =7 llrv < | FIT agda (7, 7),

A

where we have used (2.1.7).

Next, let us prove that C(¢,m, h) is continuous with respect to h (always in the metric
introduced in (2.1.8)). The function f(e;, h) is bounded and continuous with respect to h for all
i. Furthermore, v(x, h) is continuous with respect to h for all z € R™. Applying the dominated
convergence theorem, for h, C H,,, stJl_)rglo hn =h e H,

n—oo

lim C(t, 7, hy) = fOT_t Jpm > li_>m f(es, Y(x, hn))rji(s, )pji(s)m? dads
i»j nree
- fOT_t me Zf(ei,'y(:c, h))rji(s,az)pﬁ(s)wjdxds (2.6.13)
17]
= C(t,m,h).

C (t, 7, h) is thus continuous with respect to each of the variables ¢, 7, h. However, continuity in
t,m is independent of the other variable. Hence, C'(t, 7, h) is a continuous function on [0, 7] x
S N X Hm

Proof of Lemma 2.3.1

Fix n > 0. Recall the definition of hﬁl given in section 2.2. Since S; is continuous and V; satisfies
the self-financing condition, we obtain

i _NaaSL NiLSL NS
L X

n~mTn

Using (1.2.3), (1.2.5), for all k > 1,h € A"t € [Tp4k, T, one furthermore has

hi = Vi()?t - XTn-o-ka thrk) - 7i<Xt - XTn’ h‘”)

Therefore, using lemma 2.2.1 (i) for h € A"

T/\Tk+1
W(t,,h.) Z/ Y( Xy = Xr, hie))dslyr, <1y

T/\Tk+1 ~ ~
+ Z/ f(HSa’V(XS - XTk’ hk))d51{Tk<T}|TO =1, Ty = 7T]

k=n""k
n—1
Z Tkaﬂ'myhk 1{7-k<T} + / f(0s,y (X XTn7h ))d31{7' <T}|TO =t, Tr = 7).
k=0

(2.6.14)
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Proof of Lemma 2.4.4
By the definition of A", for n > 0, A" C A"*! C A, hence,

sup W(t,m,h.) < sup W(t,m h.) <sup W(t,x, h.).

heAn he Ant1 heA
By the definition of W™ (¢, 7) and W (¢, )
Wn(t,m) < W't m) < W(t, 7).
Using Lemma 2.4.3, for n,m >0
Wn(t, ) < W (¢, m) < W(t, 7).

Letting m — oo

Wn(t,m) < W(t,nm) < W(t, ).

Proof of Lemma 2.4.5
For h € A, W (t,m, h) defined by (2.3.1) satisfies

n—1
W(t,m,h.) = E| O(Tk,ﬂTk,hk)l{Tk<T}’To =t,mr = 7
k=0 .
E[Z O(Tka T hk)1{7k<T}‘7—0 =1, M, = 7]
k=n
n—l

|
M

]g:

+ E[W(Tnﬂﬂ-’f’nﬂ h‘)l{Tn<T}|7—0 = t77T7'0 = 7'(']

< Wt m) + B[ f(0s,7(Xs — Xr,, ha))ds i, cry |0 = t,77, = 7|

+ EW (7, Try s B ) 1ir <1y |70 = t, 7y = 7]
< Wt,m) + 2| fITP(1n < Tlro = 1)

Tk>7TTk>hk 1{771€<T}+/ f( s»'Y(X XTmh ))d51{'rn<T}

— f f sy Y X XT",]I ))dsl{Tn<T}’T0:t,7T7—0:7T]

(2.6.15)

(2.6.16)

(2.6.17)

(2.6.18)

(2.6.19)

because of the representation of W"(t, ) in Corollary 2.3.1 (equation (2.3.5)) and Lemma 2.4.3.

Thus, by letting n — oo, we obtain
W(t, 7, h.) < W(t,m)

forall he A.
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Chapter 3

Power-utility maximization

Our problem of maximization of expected terminal power utility consists in determining

1
sup — log E[VT“|TO =0, mo = 7]
heA M
© (3.0.1)

VK
= logvg + supheAilogE[v—?\m =0, mo =7,

for p < 0 as well as an optimal maximizing strategy heA

Notice that, in order to study the optimization problem (3.0.1), it suffices to analyze the

criterion function "

1 V.
W(t,m, h.) == —log E[%h’o =t, mo =7l (3.0.2)
[ &
The optimal value function will then be defined as

W (t,m) := sup W(t,,h.). (3.0.3)
heA

In section 3.1 consists mainly in estimation results and in establishing continuity properties,
while section 3.2 and 3.3 contain results that will be used to obtain an approximation, of the
type of “value iteration”, of the optimal value function and a Dynamic Programming principle
that is specific to the given problem setting. These results serve also the purpose of obtaining a
methodology to determine an optimal strategy. Section 3.5 contains auxiliary technical results.

In the sequel we shall for simplicity use mostly the shorthand notation

Etﬂr['] = E[ |7—0 =t, T = 71']
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and also use the following notations

(
m = maxogigm maxlngN m; (6]‘),

0 = Maxp<;<m maxj<j<n Ui(ej),

I(t) == E[|1 — exp(u| Xt — Xo|)I],

C = E[I{TIST}],
n := minn(f) = min; n(e;),
n = maxn(f) = max; n(e;).

3.1 Basic estimates

We start from the following representation of the criterion function.

Lemma 3.1.1. For t € [0,T],7 € Sy
W(t, 7, h)

= i log Etﬂr[eXp(:U’ Z D(hkflv XT/\Tk - XTk—l)l{‘rk,1<T})]7

k=1

where,
m

D(h,x) := log(z R exp(z?)).

=0
m .
Proof. Since Z ht =1,
i=0
D(h,0) =log() _h') =0
=0

for h € H,,. For k >0, T € [13, Thy1]

Vi V. Vo5 ) =
Tk i=0 Tk =0 k Tk L —|
= (O hjexp(X5 — XL ))¥
=0

= exp(uD(hi, X1 — X»,)).

For k>1, T <7y
VJI;L/\T]C+1 o L;
|75 N %3

T ATy

=1,
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(3.0.4)
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(3.1.2)

(3.1.3)
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(3.1.5)



and

exp(uD (hg, XTar ., — X1An,)) = exp(uD(hy, X7 — X71)) = 1. (3.1.6)
Therefore, we obtain
0o K
BV Vi) = B g
kel ' TATR—1
= EYlexp(u Y D(hie—1, X7, — Xrpr,_,))] (3.1.7)
k=1

= Etm[exp(ﬂzD(hk—lﬂ XT/\Tk - XTk—l)l{Tk,1<T})]'
k=1

O]

The representation of W (¢, 7, h.) in Lemma 3.1.1 leads us to define a function that will play
a crucial role in the sequel, namely

Definition 3.1.1. Let the function WO(t, 7, h) be defined as

_ 1
WO(t, 7, h) := p log E¥™[exp(uD(h, X7 — X}))]. (3.1.8)

For the function WY(¢,7,h) in the above Definition 3.1.1 we now obtain estimation and
continuity results as stated in the following proposition.

Proposition 3.1.1. Fort € [0,T], h € H,,, we have the estimate:

72 7)2
exp((um + 5-) (T = 1)) < E"lexp(uD (h, X — X,))] < exp((um + (’“‘2) )T —1), (3.1.9)

from which it immediately follows that

(m + “;_2)(T— t) <WO(t, 7, h) < (m + 522)(T — ). (3.1.10)

Furthermore, WO(t,, h) is a continuous function on [0, T| xSy X Hy, and the following estimates
hold:

5)2
| exp(uiV (L7, ) — exp(u (1,7, h))| < expl(um + 757 - O)pgdu(m, 7). (3.L11)

~\2
|exp(uWO(t, 7, h)) —exp(uW°(t, 7, h))| < exp((um + ('LL;))(T —tHIl(t—1t) fort <t, (3.1.12)

where dy was defined in (1.1.3).
Proof. See Section 3.5. O

We shall now introduce basic quantities that we shall use systematically throughout. The
first one concerns useful function spaces, namely
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Definition 3.1.2. By G we denote the function space

72 G

G:={geC0,T] x Sx) | (m+ %)(T ) < g(t,m) < (i + %)(T —#)). (3.1.13)

Furthermore, we let Gy C G be the subspace

5)2
G = {g € G ||exp(pg(t,m)) — exp(ug(t, 7)) < lozgdH(m 7) exp((pm + (M2))(T - t))}
(3.1.14)
and Go C G be the subspace of functions g € G satisfying, for t < t,
5)2
[ exp(ug(t 7)) — exp(ug(F. )| < k(t — D) exp((um + L0y~ ), (3.1.15)

where k(t) is some nonnegative function on R such that k(0) = 0 and continuous at 0.

The second one concerns a crucial auxiliary quantity that will play a major role in the proofs
to follow, namely

Definition 3.1.3. For each g € G let € : [0,T] x Sy x Hy, — R be the function defined by

~

1
E(t,m hsg) = m log E"™ [exp(uD (h, Xoar, — Xi¢) + plir <ry9(T1,77))]- (3.1.16)

We can now state and prove the following estimation result

Proposition 3.1.2. For each g € G, we have the three estimates (c is as in (3.0.4))

(i)
cexp((um + “55)(T = 1)) < B lexp(uD(h, Xn, = X2) + g(71,7) )L <1y
< cexp((um + L2 (T — 1)),
(3.1.17)
(i)
(1 —c)exp((pm + M(g)g (T —1)) < Et’w[(:Xp (,uD(h, X7 — Xt)) 1{71>T}] (3.1.18)
< (1 —¢) exp((pm + 2N (T — 1))
and
(i)
52 R 52
(m+5-)(T — ) < (t,m hig) < R+ (T - 1), (3.1.19)
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Furthermore, for all g € G, the function exp(ué(t,w,h;g)) 18 continuous with respect to h and
for each g € G; we have

|exp(u(t, 7, h; g) — exp(pé(t, 7, h; 9))]

) o (3.1.20)
< ge3du(m, @) exp((pm + 55 )(T — 1)) (1 + o),
while for each g € Go we have
| exp(pé(t,m, hi g) — exp(ué(E,m, b 9))]
5 _ 3.1.21
< exp((um + 7Y (T — 0)(28(en0D 1) 4 1(t — £) + ekt - ). (3121
Proof. See Section 3.5. O

3.2 Basic approximation results

This section is intended to prepare for one of the two main results in Theorem 3.4.1 below, namely
the approximation of the optimal value function, which involves a kind of “value iteration”. We
start by giving two definitions.

Definition 3.2.1. Defining the operator J,, on C([0,T] x Sn) by

Jug(t,m) := sup £t m hig) (3.2.1)
h€Hm
let, for g € G,
JBg(t,ﬂ) = g(t, ) (3.2.2)
and, forn > 1,
Jug(t,m) = Ju(Jg_lg(t,W)). (3.2.3)
Definition 3.2.2. Put
_ - 1
WO(t,7) := sup WO(t,m,h) = sup — log E[etPhXT=X0)] (3.2.4)
h€Hpm heHy, M
and let (“value iteration”) B )
W"(t,m) = JLLWO(t,W). (3.2.5)

Then, we have the following proposition as a direct consequence of Proposition 3.1.1.

Proposition 3.2.1. For WO(t, ) defined above we have that WO(t,7) € G1 N Gy by setting
k(t) =1(t).

Proof. By (3.1.10) in Proposition 3.1.1 we see that W°(¢,7) € G and, by (3.1.11) and (3.1.12)
in Proposition 3.1.1 we also see that it belongs to G; N Ga with k(t) = I(t). O

We have now

31



Lemma 3.2.1. For g € G NGy one has that J,g(t,m) is continuous with respect to t,m and
Jug €G.

Proof. For a,b >~ >0,|la—b| <e,e >0, one has

loga — logb = log(a/b) = log(1 + (a — b)/b) < ¢/v
logb —loga =log(b/a) =log(1+ (b —a)/a) < e€/v (3.2.6)
= |loga —logb| < €/7,

where we have used the inequality log(1 4+ z) < z for = > 0. We set a = exp(ué(t, 7, h; g)),
b = exp(ué(t, 7, h; g)) and use Proposition 3.1.2(iii), setting v = exp({um + #}(T —t)). From
(3.1.20) in Proposition 3.1.2 it then follows that

|E(t, 7, b g) — E(t, 7, hs g))|
< hiesadi (m 7) exp((u(m — m) + L= (T — ) (1 + ) (3.2.7)
< bdgda () exp((u(m — m) + PN TY (1 4 6),

On the other hand, by analogous reasoning, from (3.1.21) in Proposition 3.1.2 it follows that
A ~ —1)(5)2
€(t,m,hig) — £, hig)] < by exp((u(m — m) + HE= 200 (7 — 1))
(2 (g) (e2t=D — 1) 4 I(t — ) + ck(t — )

] (3.2.8)
p(m — m) + Le=0@7 )

|~

<

—~~
—

] ©XP

=]

x (2 (%) (ent=1 — 1) 4 1(t — 1) + ck(t — 1)),

namely & (t,m, h;g) is continuous with respect to (¢, 7), uniformly with respect to h, and hence
Jug(t,m) is continuous. Further, because of Proposition 3.1.2 (iii) we see that J,g € G.
O

Corollary 3.2.1. Under the assumptions of Lemma 3.2.1, J);g € G for n > 0. Furthermore,
there exists a Borel function h\™ (t,m) such that
sup é(t,w,h;J;} ) = E(t, 7, A (¢, 7);Jug), n=>0. (3.2.9)
heH,
Proof. Similar arguments to the proof of Lemma 3.2.1 apply to see that Jjg € G. Moreover,

since H,, is compact and & (t,AT[',h; g) is a bounded continuous function on [0, T | x Sy x Hp,
there exists a Borel function h(9) (¢, ) such that supyeg, §(t,m, hyg) = £(t,, hO)(t, 7); g). By
the same reasoning we have (3.2.9) for general n > 1.

]

In what follows we denote by ||g|| the norm of a function g € C([0,T] x Sy), namely

lgll == sup  [g(t, m)]. (3.2.10)
(t,m)€[0,T)xSNn
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Lemma 3.2.2. For each g € G and n > 1, we have the following estimate
175 g(t, ) — Tig(t, @)

< frexp({u(m —m) + HEHEIT — exp(ulug (t,m) — g(t, )]

where, recall (3.0.4), ¢ € (0,1).

Proof. Let us first prove that, for n > 1,

(no

lexp{uJi T g(t,m)} — exp{uJiig(t,m)}| < relrmt

To prove it for n = 1, using Proposition 3.1.2 (i), we see that

| exp(pé(t, 7, h; Jug)) — exp(ué(t, 7, b g))]

< Et,7r [e,uD(h,Xq—1 —X4) |e“‘]#9(7—1 ,7r.,-1) o e,ug(n ,7r7—1) ’1{7_1 ST}]
= Etvﬂ' [e/’LD(hrle _Xt)"’_NJMQ(Tl Ty ) | 1— eu(g(Tl sTTy )_Jug(Tl sy )) | 1{7_1 ST}}
< |1 — et ug=gll| gtom [enD(h,Xey = Xo)+pdug(Ta,mry ) L <y
(u5)?
< Ceum(T—t)JrT(T—t)‘l — eMllTug—dll|
Then, we have
|erTig(tm) _ eudugtm)| = |hsupy E(tmhidug) _ gusupy §(tmhig)|

|inf), eHétmhiTug) _ inf, epé(tmhig)|

IN

Suph ’e”é(tvﬂvh;Jug) J— e:u'g(t7ﬂ-7h§g)|

cotm(T—t)+ 22 (T —t) 11 — erllTug—9ll],

IN

_\2
FNT=0|1 _ enllTug=gll|,

(3.2.11)

(3.2.12)

(3.2.13)

Assuming that (3.2.12) holds for n — 1, we will prove it for n. Using again Proposition 3.1.2 (i)

|euJL‘+lg(t,7T) — ehIRI(T)| = |ehsuPh (tmhidlig) _ ppsupy, é(t,mh;Jﬁ_lg)|
= |inf, erEEmhiT9) _ing, ené(tmhidi T )
< supy, [eHEEmhiTg) _ euétmhidi )|

n n—1
S supy, Etvﬂ'[e.u‘D(h»X‘rl —Xt) ’eMJM g(n 77'(7'1) — e/‘Ju 9(7—177"7’1) ’1{T1§T}]

(15)*
< supy, Etvﬂ—[eﬂD(thrl —Xt)cn—le(,um+ “‘27

5 2
EEENT=0|1 _ enllJug=ll|,

< cnelwm+

)(T771)1{71<T}|1 — el Tug=gll|]

(3.2.14)

Thus, (3.2.12) has been proved. Now we can complete the proof. Indeed, by using (3.2.6), we

have . ) .
[T gt m) = Jhg(t,m)l = pplud i gt m) — pd g (t, ™)

~2
< ﬁe—um(T—t)—%(T—t) e a(tm) _ endiig(tm)|
- |p

2_ 52
< %eu(m_m)(T_t).;_%(T—t)’l _ eHHJALg—g”’
= T

)a?

2
S cn eﬂ(m_m)T+ [ —2/1'

11 — erllTug—dll|
|l
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and hence obtain the present lemma by taking supremum with respect to (¢, ).
O

Corollary 3.2.2. For g € G1 NGy we have that {J]}g(t,m)} is a Cauchy sequence in G and,
therefore, 3 li_)In Jig(t,m) €G.

Furthermore, for each g1, g2 € G, we have the estimates:
HJ,Mgl - Jpg2”
_ —1)52
g exp({u(m — m) + “USTNT) L — exp(ulgr — g2))| (3.2.16)

IN

—1)52
< cexp({p(m — m) + 2U=DT1T) gy — g

Proof. By Corollary 3.2.1, {J}g(t,m)} C G. Further, by using Lemma 3.2.2, we can see that
{Jg(t,m)} is a Cauchy sequence in G. The proof of (3.2.16) is similar to that of Lemma 3.2.2. [

Proposition 3.2.2. We have that {W"(t,m)} given by (3.2.5) is a Cauchy sequence in G and
therefore 3 li_>m Wn™(t,m) €G.

Proof. Thanks to Proposition 3.2.1, W°(t, 7) belongs to G; NGa with k(t) = I(t) and we see that
{W™(t,m)} is a Cauchy sequence in G by Corollary 3.2.2. O

3.3 Limiting results

In this section we perform some passages to the limit, which will complete our preliminary
analysis in view of the main result in the next section. We start by defining some relevant
quantities.

Definition 3.3.1. We set
W(t,n) = lim W"(t,7), (3.3.1)

n—o0

which is justified by the previous Proposition 3.2.2,

W(t,m) := sup W(t,,h.), (3.3.2)
heA
and
W"(t,m) := sup W(t,m, h.), (3.3.3)
heAn

where W (t, 7, h.) is the criterion function defined in (3.0.2).

The next lemma particularizes the representation result of Lemma 3.1.1.
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Lemma 3.3.1. For all n >0 and h € A", we have the following equation
W(t,m h.) = 1 log Eb™ exp( ZD hi—1, X1TAr,, — er_l)l{rk,1<T}
k=1

+ puD(hy, X7 — XTn)]'{Tn<T}>]
(3.3.4)

= 1 lOg Et 7T exp( ZD hk 17XT/\7'k - XTk—l)]'{Tk71<T}

+ ,UWO(Tn7 T s hn)l{TnST}>]

Proof. By Lemma 3.1.1 and the definition of W°(¢, 7, h) it suffices to prove the following equation
forall n >0, k>n+1, he A" For 7, < T < 711

k—1
exp(u Y D(hi, Xr,y, — Xz,) + pD(hy, Xo — X))
= exp(uD(hn, X7 — X4,)).
It can be seen as follows.
k—1
exp(i Y D(hi, Xry, — Xr,) + pD(hye, Xr — Xo,))
k=1 m -Sj B m. S% k=1 m N]S ) m Nés%
- J 2Tl \p J T\ Tit I3
- T ner S - TIS ke S %
i=n j=0 Ti 7=0 Tk i=n j=0 v 7=0 (3.3.6)
k— m i oj k—1 m i o
Nl Sﬂ N} S? Vi, N7.S?
- H( M) (Zﬂ)u: H(iﬂ)u(z LT yp
. . VT' . VTk . VT' . ‘/Tk
i=n j=0 B 7=0 i=n B 7=0
N
= (BT - (T = exp(uD(ha, Xr — X)),
V., V.,
where we have used (3.1.4), the definition of A™ and the self financing property of the investment
strategy. O
Corollary 3.3.1. We have the following equation
Wn(t7 7T) = sup — log E" 7r eXp( Z D hk’ 1, XT/\’Tk - Xkal)]‘{Tk_1<T}
heAn M el (3.3.7)
+ MWO(TH7 Ty s hn)l{rngT})]a
form >0, tel0,T], m € Sn.
Proposition 3.3.1. For each n > 0, we have
W"(t,7) = W"(t, ). (3.3.8)
Furthermore,
W(t,7) = W(t,m). (3.3.9)
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Proof. See Section 3.5. O

The next proposition is in the spirit of a Dynamic Programming principle, namely
Proposition 3.3.2. We have W = J,W. Namely, W (t, ) satisfies the following equation

W(t,m)

1
= sup ; log BV [exp(uD(h, X7ar — Xi) + ,uW(Tl,ﬂ'Tl)l{ﬁST})].
heH,

(3.3.10)

Proof. We have, by using (3.2.16),

”W - J/AWH < HW - JuWnH + HJuWn - JMWH
W =W 4+ Gy [ W — W],

IN

where C = cexp({u(m—m)—i—“(“%)#}T). Hence, by sending n to co, we see that |[W —J,W|| =
0. O

3.4 Main Theorem

From the preliminary analysis in previous Section we obtain now the main result in this chapter,
namely an approximation result and a Dynamic Programming-type principle for the power-
utility maximization problem.

Theorem 3.4.1.

(i) Approximation theorem
W™ computed according to (3.2.5) in Definition 3.2.2 are approximations to the solution
of the original problem in the sense that, for any € > 0,n > n,

W — W™ < e, (3.4.1)

where,

— — —1)52
_ log(1 — ¢)|u| +log e — log |1 — exp(ul| Ty W — JSW)| — {u(m —m) + 50747

€ -

log c
(i) Dynamic programming principle:
forn >0
W (t, )
1 n
_ - t,m _
- hseu,/li)n/ﬁ logE [exp(M;D(hk‘—bXT/\Tk Xkal)l{Tk_1<T} (342)

+uW (o, 7o ) 7<)
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(11i) Optimal value and optimal strategy for the Power Utility Mazimization Problem
For the utility mazximization under initial condition Vi = vg, 70 = 0,19 = 7™ we have

sup — log EO™[VE] = logvg

heA H
00 (3.4.3)
+; log E*™ [exp(u > D(hp—r1, Xrar, — Xo o) ir 1<),
k=1
where the optimal strategy in the k -th period, namely }Alk, s given by
iLk = iL(Tk,ﬂTk) (3.4.4)

with h(r, ) defined by

1
sup — log Et’“[exp(uD(h, Xrar — Xt) + pW (1, 7T7—1)1{T1ST})]
heH,y, M (3.4.5)

= Llog B [exp(uD(h(t, 7), Xrnr, — Xi) + pW (71,707, ) Lz <1y)]-
Proof. First, we prove (7). For any n
W —W"|| = | lim W™ —W"|| = lim |[W"* —Ww"|
k—ro00 k—ro0

k—1 k—1
< lim § :||Wn+i+1 _ V_Vn—HH — lim 2 :HJ[LL—H—&-IWO _ JZLL+Z'W0||
k—oo — k—oo =0

< L = exp(ul| JEWO — WO exp({p(m — m) + HEDTYT) S it (3.4.6)
=0

A

= (411 = exp(ul O — SO exp({u(m — m) + KU T Zc

c” — 1
= = (L = JIWO ) exp({p(m — m) + HUET),
where we have used Lemma 3.2.2.

Next, we prove (ii). Proceeding analogously to the proof of Lemma 3.5.5, for n,m € N, we
take a sequence of functions h™*(t, ), k = 0,1,...,n such that

sup £(t,m,hy JPPMRIWO) = £(t,m, R () TR IIO)
heH™

and set B B

hZ’k =" (e, m), k=0,1,...,n
and 3 3

W =y (X, - ™),k >n4 1.

Tn7 n

Then, h(") = {hn k} € A". Therefore, similarly to the proof of Lemma 3.5.5, it follows that

Wn+m = % log Et’”[exp{ﬂ ZZ:l D(};‘Mk_l (Tk*17 7T7'k_1)7 XT/\Tk - er_l)l{fk,lgT}

U (3.4.7)
—{—/,LJZZLW (Tns T‘-Tn)]‘{TnST} H-
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Since J/TWO < W, we have

Wwntm < i log Et’ﬂ[exp{/ﬁ 2221 D(ilmk_l (Tk—b 7er,1)7 XT/\Tk - er,l)l{rk_lgT}

+uW (70, T7,) 1 {7, <1} }]

< suppean +log BV exp{u iy D(hi-1, Xrar, — Xrp ) in_, <7} (345)
+uW (o, Tr )7, <7y 1
Therefore, we obtain
W(t,m) < suppean % log E*™[exp{p Y j_y D(hp—1, Xrpr, — Xy ) 1re <1} (3.4.9)
AW (Tn, T ) ro <y Hs
by letting m — co. On the other hand, for each h € A" it follows that
wrtm () > i log BV lexp{p Y j—y D(hk—1, Xrpr, — Xo ) (r <1} (3.4.10)
+uJ WO (T, 7, ) L <1y -
Then, by letting m — oo, we have
W(t,m) > Llog B [exp{u Y j_y D(hi-1, XTAn, — Xn ) l(r,_ <1} 3411)
+uW (T, 7, ) Lz, <7y -
Hence,
W(t,m) > supyean  log BXTlexp{uYp_y D(hi—1, Xran, — Xn ) gr,_ <1y (3.412)

and thus we obtain (7).

Part (i77) is an immediate consequence of the previous results in particular of the proof of
point (i7) of this same theorem. O

3.5 Proof of Lemma

Proof of Proposition 3.1.1.
The proof is contained in the following two lemmas.

Lemma 3.5.1. Fort € [0,7T], h € H,,, we have the estimate (3.1.9).

Proof. Since z* is convex, Jensen’s inequality applies and we obtain

Et’“[(; Wexp(Xp - X)) < E[z_j B exp(u(Xh — X)), (3.5.1)
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For each ¢ and ¢ € [0, 77,

Thus, we have

B lexp(u(X) = X)) = E'lexp(u f, mi(0,)ds + b [T o

’L

< exp((um + YSLN(T — 1)),

and
E"exp(u(X§ — X7))] = exp(uro(T — t)) < exp((um +

(po)?
2
Therefore, from (3.5.1) it follows that

m 5)2
E”(Zifexp - x)"] < S W esp((um+ L@ )

=0 =0

— exp((um + 122 (T — 1)),

To obtain the lower estimate, applying Jensen’s inequality yields

(B Zhl exp(Xih — X)) < BV (Z hi exp(Xi — XZ)> !
=0
Since z# is a decreasing function, we have

(i B [exp(Xp — X))

=0

vV
—
Nk

=

@

”

=

El

4

Q
e
N
|
=
N
=

NT —1)).

(3.5.2)

(3.5.3)

(3.5.4)

(3.5.5)

(3.5.6)

<§; hiEt’”[exp(/tT m;(0s)ds + ;/tT J?(Gs)ds)]>#

(3.5.7)
0

Lemma 3.5.2. WO(¢, 7, h) in Definition 3.1.1 (see (3.1.8)) is a continuous function on [0, T] x

SN % Hy, and the estimates (3.1.11), (3.1.12) hold.

Proof. Let us first prove the continuity of WO(¢,, h) with respect to m. Owing to (2.1.7) and
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recalling pj;(t) that was defined in (1.3.9), we have

| exp(uWO(t, 7, h)) — exp(uWO(t, 7, h))]
= |me (h exp(ro(T —t)) —I—Zh’exp

x ZEPOT ()60 = €;,0r—¢ = €]p;i(T — t) (7 | — 77)dyds|

= IZexprO(t,ej,h))(wf'—v‘rﬂd! (3.5.8)
J

< exp((um Zw—wu

< exp((pm + Y2EN(T — 1))||77 — 7 |y

< exp((pm + U5)(T — 1)) 25du (7, 7).

Next, we show the continuity of WP(¢, 7, h) with respect to t. First notice that, due to the time
homogeneity of the process (X, 6;),

exp(uWO(t,m,h)) = E"[exp(uD(h, X7 — X}))] (3.59)
= E%[exp(uD(h, X7— — Xo))]- -
Notice furthermore that
holds because
IVoD(h,z)| < 1. (3.5.11)

Therefore,
| exp(uW°(t,m, b)) — exp(uW°(t, 7, h))|
= |E%[exp(uD(h, X7 — Xo)) — exp(uD(h, Xp_ — X0))]|
= |E°[exp(uD(h, Xr— ~ Xo)) (1~ exp(u(D(h, Xp_; — Xo) ~ D(h, X7, — X0)) )
< B fexp(uD(h, Xy — Xo)[1 — exp(u|Xp_ — Xp_])]
= E"[exp(uD(h, X7 — X0))E[|1 — exp(p|X1—7 — X4 |) || X74]]
= E%[exp(uD(h, X7 — Xo))JI(t — 1)

exp((um + Y5 (T — )it — ).

IN

(3.5.12)
Finally, we prove the continuity with respect to h. By the definition of D(h,x) and Jensen’s
inequality,

exp(uD(h,x)) = (Z R exp(z'))* < Z exp(px?) Zexp (3.5.13)
=0 1=0 =0
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Therefore, for m > 1
exp(uD(h, X1 — X)) < Y exp(u(X} — X})). (3.5.14)
=0

Since Xp—X; = {Xt—X}}iz1,m is, conditionally on F?. Gaussian with mean {ftT mi(0s)ds}i=1,...m

and covariance {ftT(aa*)ij(Hs)ds}m:lw’m we have

B exp(pu(Xs — X}))] < oo. (3.5.15)
Then, applying the dominated convergence theorem, for h; C H,,, s.t. lim hj=he H,
j—o0
lim WOt,m,hy) = Llog B[ lim exp(uD(hy, X1 — X,))]
= Llog B'"[exp(uD(h, X1 — X,))] (3.5.16)

= WOt,m,h).

Proof of Proposition 3.1.2.
Again, the proof is contained in the following two lemmas.

Lemma 3.5.3. For each g € G, we have the three estimates (3.1.17),(3.1.18) and (5.1.19).
Proof. Let us first set

I = E""[exp (uD(h, X7 — X4) + pg(T, ml)) Lir <1yl

and
I = B4 exp (uD(h, Xp — Xt)) oy

Recall also that n(6;) is the intensity of the Cox process describing the observations and that the
dynamics of the filter process m; was given in Corollary 1.3.1 in terms of the function M (¢, z, 7).

(7) (estimate (3.1.17)). Since g € G, from the definition of pgT(z) in (1.1.13) and from (3.5.2)
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we obtain

L= Et»“[ftTmemoexp(ro(s—t>>+Zhiexpw))“exp(ug(s,M(s—t,m)))

i=1
X pts(2)n(Bs) exp(— [} n(B)du)dsdz]

> BT (ho exp(rofs — 1)) + Z hi exp(zi>)”p§,5<z>dz

% exp((m + 15 )(T = 5))n(0s) exp(— [ n(0,)du)ds]
> BT (R explro(s — 1) + S b / exp(s)pl(2)2)"

=1

x exp((um + “T)(T — 5))n(0s) exp(— ft w)du)ds]
> Et’”[ftT exp((um + MTQ)( t))

x exp((um + ,u )(T — 5))n(0s) exp(— ft ) du)ds]
= exp((pm + “(J (T — t))Et’F[l{nST}]’

by using Jensen’s inequality. On the other hand, we obtain

L€ BYLLT fon (R0 explrols — ) + S b exp()) ol (2)dz
=1

x exp((pm + @)(T — 8))n(0s) exp(— [ n(0y,)du)ds]

< Etﬂf[ff(h“exp(mo(s—t))+Zhi [ elusiol )iz)

m

x exp((pm + Y22 (T = 5))n(0) exp(— [ n(0,)du)ds]
< BV exp((pm + “95)(s — 1))

X exp((pm + @)(T — 8))n(0s) exp(— [ n(0y)du)ds]
= oxp((pm + Y22 (T - 1)) BV [uﬁg}],

again by using Jensen’s inequality and (3.5.2).
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(73) (estimate (3.1.18)). By using Jensen’s inequality, we have

Iy = E"[[p (h0exp(ro(T —1t))

- 7 7 0 > _ Sn w)ds
+;h exp(2h)) ol (2)dz /T n(0,) exp! /t (0)du)ds]

> B0 exp(ro(T — 1)
Y exp( ezz Oon ex—snuus
Zh | enGia@az) [ o exp= [ a0, (3519
5_2 o0 S
> g Zh’exp (7 + <2))(T—t)}“/T n(@s)exp(—/t (0 dut)ds]
> Et’“[exp((m—{—() ) 7 n(0s) exp(— [ n(0y)du)ds]

5)? -
= exp((pm + M2 (T — 1) B mwm,

from (3.5.2), since the function z* is decreasing. On the other hand, by using Jensen’s inequality,
we have

Iy = B[ [pm(h%exp(ro(T —t))

mi i“ezzoon ex—sn u)ds
# Do exp(=) o (2 JARALCY ARCATS

t

< EYT [0 exp(pro(T — t))
th | eptuita)d [ n@)esn(= [ n(ogdnds
T t (3.5.20)
j p ot 2
_ t,m ? . LA ;
— [Zh exp(y /t mi0)ds + 5 [ a¥0.)as)
x [ n(0s) exp(— ft ) du) ds]
< Etﬂ[exp((um + W25 (T — 1)) [ n(6s) exp(— [ n(8)du)ds]
= oxp((um + UG5)(T — 1) " ’W[1{71>T}]7
because of (3.5.2).
(7i7) (estimate (3.1.19)). Since
- 1
E(tym hyg) = " log(I1 + I2). (3.5.21)
The estimate (3.1.19) follows from (¢) and (7). O

Lemma 3.5.4. For all g € G, the function exp(,ué(t,ﬂ,h;g))is continuous with respect to h.
Furthermore, for each g € Gy the relation (3.1.20) holds and for each g € Gy the relation
(8.1.21) holds.
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Proof. Let us first prove the continuity of exp(,ué(t, 7, h;g)). From (3.5.13), we have for m > 1
m . .
exp(uD(h, Xrpry — Xi) + pg(r1, 7)) < Y exp(p(Xip, — XP) + pg(mi,7r,)). (3.5.22)
i=0
Similarly to (3.5.15), we have for each i
B [exp((Xipr, — Xi) + pg(mi, mr))] < oo, (3.5.23)

Applying the dominated convergence theorem, for h,, C H,,, s.t. lim h, = h € H,,

oo
?}gr&exp(ué(t,ﬂ,hnég))

= B[ lim exp(uD(hn, Xpr, = Xe) + pg (1, mr) Ly <1y) (3.5.24)

= exp(ué(t,m h;g)).

We next prove that, for g € Gy, the relation (3.1.20) holds. For this purpose, recalling Corollary
1.3.1, we rewrite

exp(ué(t,m, h; g))
= Eb™[exp (uD(h, Xram — Xt) + pg(m, M(m —t, X7, — Xtvﬂ'))l{néT})]

= ZEt,ej [eXp(MD(hyXT/\Tl _ Xt) (3.5.25)
J

+ Hg(Tla M(Tl —t, X5 — Xt’ﬂ))l{ﬁST})]ﬂj'

Then, recalling the Definition 3.1.16 of £(-), from (3.1.19) in Proposition 3.1.2 and (2.1.7) it
follows that

| exp(pé(t, 7, h; g)) — exp(ué(t, 7, b g))]
= | B [exp(uD(h, X, — X1)
;

+ pg(m, M(m — ¢, X, — Xt’ﬂ-))l{nST})](Trj - ﬁj)

+ Z E" [exp(uD(h, X, — Xt)){eXp(ﬂ9<Tl7 M(r =t X — X, 7T)>>
: (3.5.26)

— exp(g(ri, M(71 = t, Xr, = X0, 7)) Mz

exp((um + L22)(T — ) 25 du (7, 7)

IA

+ B exp(uD(h, X1 = X0))|exp(ug(ri, M(r1 — t, Xy, = Xo,7)))

— exp(ug(ﬁ,M(n —t, X5 — Xtﬁ))) |1{T1ST})]‘
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Furthermore, by the definition the definition of G; (see (3.1.14) in Definition 3.1.2), using
also(3.1.9)

’eXp<Mg(T17 M(Tl - taXTl - Xt,ﬂ')))

= exp(pg(r, M(n1 = t, X, = X0,7)))|

s 2
< exp((pum + YN (T — 7)) (3.5.27)
X pozgdu (M(ry — t, Xz, — Xy, 7), M(11 — t, Xy, — X3,7))
5)2
< éd]{(ﬂ,’ﬁ) exp((pum + %)(T —71)).
Therefore, we obtain
| exp(ué(t, m, hi g)) — exp(pé(t, 7, h; g))|

(3.5.28)

< Zadp(m, @) exp((um + LEN(T — £)(1+ ¢).

Finally, to prove that for g € Ga the relation (3.1.21) holds, we rewrite, using the time
homogeneity of (X3, 0:),
exp(pé(t, . h; g))
= E"[exp(uD(h, X7 — X)) ry sy + exp(uD(h, Xoy — Xi) + pg(r1, 7)) L <1y
= E"[exp(uD(h, X7—t — X0))1{r,>1—1}

+ exp(uD(h, XT1 - XO) + Mg(Tl +1, 7rT1))1{'r1§T—t}]'
(3.5.29)

Therefore, recalling that t < t,

| exp(é(t, 7, b g)) — exp(pé(E,m, bs g))|

|EY lexp(puD (h, X7—t — X)) {1r>7—ty — Limsr—3 3]

+|E%[ exp(uD(h, X7, — Xo) + pg(11 + t,77,)) {1 <r—13 — Lir<r—i3 1l

+EO [{exp(uD(h, X7t — Xo) — exp(uD(h, Xp_f — X0))}r, s -5

+EO[ exp(uD(h, X7, — Xo)){exp(pg(r + t,77,)) — exp(ug(ry + &, 7)) M <r—g|
J1+ Jo+ J3+ Jy.

IN

(3.5.30)
Now we have
Ji < exp((um + YN T — ) PO (T —t <7 < T — 1)
= exp((pm + 55N (T — 1) BV [ n(0:) exp( [y —n(B)du)ds]
()2 . (3.5.31)
< exp((pm + F5-)(T =) [p -, nexp(—ns)ds
< exp((um + UFE)(T 1)) (5) (200 — 1)
We also have, using (3.1.19),
. -
< explm+ VFEN = 0) () (200 - ), (35.2)
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Further, since |D(h,x) — D(h,y)| < |x — y| holds from (3.5.10), we obtain

J3 < E%T[|exp(uD(h, Xr—¢ — Xo)) — exp(uD(h, Xp_; — Xo))|]
— B [exp(uD(h, X7, — X))
x |1 —exp(u(D(h, Xp_; — Xo) — D(h, X7 — Xo)))|l| (3.5.33)
E%Tlexp(uD(h, X1—t — Xo0))[1 — exp(u|Xr_; — Xr—4|)|]
= B9 [exp(uD(h, Xp i — Xo))E[|1 — exp(ulXr_s — Xp(])||Xr_]].

IN

(

(

Since (X¢,0;) is a time homogeneous process, we have
B[l — exp(pu|X7_§ — Xr—t])[| X7—4]

= Bl[1—exp(ul 1, 7(0,) = d(o0*(05))ds + [1—, 0(0,)dBy)|| Xr-]
= Ex,_ (11— exp(u| [7 - 7(6s) — d(co*(8s))ds + [1 o(65)dB])]]

¢ - (3.5.34)
t—1 « t—1
= EXTftHl — exp(pl fo 7(0s) — d(oo™(0s))ds + fo o(0s)dBs|)|]
= Exp_ |1 — exp(u|X;—7 — Xo|)]
= l(t - i)v
where [ is the function defined in (3.0.4). Hence,we obtain
J3 < E%lexp(uD(h, X7y — Xo))]l(t — 1)
(3.5.35)

< exp((pum + YN (T — )it — D).
Since g € Gs, we have
Ji < E%[exp(uD(h, X, — Xo))
exp((um + UZE) (T — t — 7))k(t — )1, <7 (3.5.36)
< cexp((um + P25 (T — 1)) k(t ),

by using (3.1.19) in Proposition 3.1.2. Putting all the estimates together, we finally obtain

| exp(pé(t,m, hi g)) — exp(u(t, m, b; g))]

< exp((um + U551 — 0)(2 (2) (€D = 1) + Ut — ©) + eh(t ~ ).

n

(3.5.37)

O]

Proof of Proposition 3.3.1.

The equality(3.3.8) is shown in Lemma 3.5.5 below. This lemma is followed by Lemma 3.5.6
that is preliminary to Lemma 3.5.7, from which then (3.3.9) follows.

Lemma 3.5.5. For each n >0, the equality (3.3.8) holds.
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Proof. By definition we have B

Wot, ) = WOk, n). (3.5.38)
Moreover, WY(t, ) € G N Ga because of Proposition 3.2.1. Therefore, in Corollary 3.2.1, we set
g(t,m) = WO(t, ) and obtain a Borel function A" (t, 7) satisfying (3.2.9) for n > 0. Then,
Tn _ n1i/0 _ £ .on—1y1/0y _ &£ 7(n—1 . n—1y7/0
W (t77r)_‘],uW (tvﬂ)_hselg) §(t,7r,h,Ju W )_g(t)ﬂ-ah( )(t,ﬂ'),J# W )

We also have a Borel function h(t, ) such that

WO(t, ) = sup WO(t, 7, h) = WO(t, m, h(t, 7).
h

We define a strategy h(™ € A" as follows.

Bg%) = ROV R (o), k=0,...,n—1,
Bgn) — h(rn, ), (3.5.39)
ELN) = ’Y(Xﬂc - Xﬂm _gln))7 k >n+ L

First, to show that W, (t,7) < W,,(t, ), we rewrite W™ as follows,

W™ (t, )

= sup {(t,m hy JIWO)
h€H,

= {(t,m, AV D (¢, ), JiIWO)
— ilog Et[exp(uD (™D (¢, 1), Xppr — Xi) + W7, T ) L <1y)] (3.5.40)
= Llog E' [exp(uD (M"Y (t,7), X1 — X)), 57

+exp(uD (A" (t, ), Xry — Xo) + pW" (11, 700)) 1y <1y

— ilog Et,ﬂ[euD(E(nfl)(t77r)7XT—Xt)1{Tl>T} + eMD(M"’l)(t,w),XTl—Xt)

-ETHTT [SMD(E(%Q) (T01), X2 Ay =Xy )W 2 (2107 ) L INr<my):

Noting that
Et,ﬂ' [eMD(il(nil) (tvﬂ-)vXTl _Xt)

ETTr [euD(/Aﬁ"’” (71,100, X7 g =Xy )T W= (2, )Ly <13 L <1)]
1>

_ Et,ﬂ' [euD(iL(n_l) (t,TK‘),X-,—l *Xt)ETlﬂ'rTl [eﬂD(iL(n_Q) (7—1:7"7’1 )»XTfXTl ) 1{7’2>T}] 1{7_1 ST}} (3541)
+Et,7r {euD(ﬁm’l) (t,m), X7 —Xt)

BT [e“D(ﬁw&)(“ 1) Xy =X JHuW " =2 (2,77, V< l{n <yl
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we have

W (t, )

_ 1 log Etﬂr [e:u‘D(iL(n_l)(t’ﬂ-):XT/\Tl 7Xt)+luD(iL(n_2) (Tl’ﬂ—‘f‘l)7XT/\7'27XT]_)1{7‘1§T}+uWn_2(7-277r7‘2)1{7‘2§T}]
m

= % log Et,ﬂ’ [exp(,u ZZ:I D(ﬁ(’ﬂ) (Tk—17 Tr‘l’k:—l)? )(T/\T]C - XTk_l)]-{kalgT}
+:LLWO (Tnv Trn B(n) (Tm TrTn))]‘{Tn<T})]’

(3.5.42)
inductively. By Corollary 3.3.1 we then have
Wn(t, )
= Llog BV [exp(u Yp_y D(hn(Th1,7n 1) XTam, — X ) lir,_ <1}
+NW0 (Trs Tr P (Tns Tr,,)) 1{Tn<T})]
(3.5.43)

IN

1 n
sup — log Et’ﬂ [eXp <N Z D(hkfh XT/\Tk - XTk_1)1{Tk71 <T}
heAn W k=1

WO (1, 7 i) ng})]
= W"(t, ).

Next, we shall prove the converse inequality. By applying Lemma 3.3.1, we have for h € A"

W(t,m, h.)

= Llog E"[exp(pn Y D(hi—1, Xrnr, — Xro Vi _y<y + WO (T, Ty hin) iz <1y)]

k=1
n _
< ilogEt’ﬂ[eXP(MZD(hk—laXT/\Tk =X ) ey + MWO(Tn,WTn)l{TngT})]
k=1
n—1
= i log Et”r[exp(,u Z D(hg—1, X7, — XTk—l)]‘{Tk71<T})
k=1
x exp(uD(hy—1, XTAm, — Xry 1) + WO (70, 70 )17, <)) L,y <1}
n—1
+ eXP(,M Z D(hk—la XT/\‘rk - XTkﬂ)1{Tk71<T})1{Tn71>T}]
k=1
n—1
= % IOg Et’”[exp(,u Z D(hkfla XTk - XTk—l)l{Tk—1<T})
k=1

x BT =0Tt [exp(uD (hp—1, XTpAm, — X7y_y) + MWO(TTH ﬂ'Tn)l{TnST})]l{anﬁT}
n—1

+ exp(u Z D(hk—lv XT/\Tk - XTk—l)1{Tk,1<T})1{Tn,1>T}]'
k=1
(3.5.44)
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By the definition of £ and Wlwe have

ETn_lJrTn_l [eXp(/,LD(hn_l, XT/\Tn - XTnfl) + /’LWO(TT“ 7.‘-7—71)]‘{TTLS’T}”
= eXp(Mé(Tn*b M1 hnfl; WO)) (3545)
> exp(p sup (1,7, 1, h; W) = exp(uW ! (701,77, ,))-
he€H,

Therefore, for h € A", we have inductively

W(t,m, h.)
n—1
< Llog B [exp(u Y D(hi—1, Xrpm, — X ) ir_y <1y + W (70, 77, ) 1 <1y)]
k=1
< i log EbT [eXP(ND(ha XT/\Tl - XO) + MWn_l(Tb 7TT1)1{7'1§T})]
< Wn(t,m).
(3.5.46)
O
Lemma 3.5.6. For all h € A, we have
nh—)ngoﬁlogEtﬂF eXp( ZD hk‘ 17XT/\Tk - Xkal)]‘{Tk_1<T}
k=1
0 (3.5.47)
+ uW (Tnvﬂ-Tnv hn)l{’rnﬁT})]
= W(t,m, h.).
Proof.
Bt exp< ZD hy_ 17XT/\7-k — XTk—l)l{Tk71§T}
+ MWO(TH77TTn7hn)1{TnST}>]
= Blexp(u ZD P, Xoy = Xog )+ WO (1, 7, ) ) L)) (3.5.48)

+ Etﬂ' eXp( ZD hk 1,XT/\7—k _XTk*l)l{Tk—IST})1{T7L>T}]
k=1

= Il(n) + IQ(TL)
We shall first give an estimate for I;(n). From (3.1.9) in Proposition 3.1.1 it follows that for

h e H,,
(no)?
2

exp(uW(t, 7, b)) < exp((pm + (T —1)). (3.5.49)
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Therefore, we have

n F 2

1) < 5o (1Y Dlhicr, X — Xoy )+ P20 @ )10 ]
k=1

1

< EtTlexp (u D(hp—1, Xr, — XThl)ET”*l’“Tnfl [exp (MD(hn,l,XTn — X, )

3
|

b
Il

(3.5.50)

— =

(n5)?

+ plm + )T = 7)1 emy 1, <))

=

i
L

(uo)”

< CEt’”[eXp(u D(hp—1, X7, — XT;H) exp((pm + =

T = 7n—1)) s, <13

B
Il
—

by using Proposition 3.1.2(i) because clearly exp((um + @)(T — 1)) € G. Thus, we obtain
inductively

Li(n )<cE“rexp< ZD hi—1, X7, _XTk—l))

X ETn—Q:TrTn_Q [eXp (MD(hn_Q, X’Tn—l - XTn—Q)

)2
+(pm + B2 (T - Tn—l)) Lor i< {r o<}

(3.5.51)
<02Et”exp( Z (hi—1, X7, — Xrp 1))
=2
% exp((um + “EENT = o) ) 1pr, yery]]
< exp((um + “22) (T — 1)),
and therefore we see that
lim I1(n) =0.
n—oo
On the other hand, since 1y, ~7 = Z?:_ol Liri<r<r; 1}, We have
Ir(n) = E"" eXP( ZD h—1, XTpAm, — er_l)l{Tk,KT})l{sz}]
k=1
n
= B[00 exp (1> D1, Xrnn, = Xo iy <1y ) Lsyerzry )]
k=1 (3.5.52)
n—1 j+1
= Et’ﬂ—[z exp (/’L Z D(hk—lu XT/\Tk - XTk_1)1{7k71<T}
§=0 k=1

+u ZZ:]‘—&-Z D(hj—1, X1pm, — XTk71)1{Tk_1<T}> 1{Tj<T§’Tj+1}]'
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Noting that {7, < T} N{T < 7j11} =0 for all k> j+ 1, we have

exp(u Z D(hg—1, XTpr, = XTk—l)l{Tk71<T}>1{Tj<T§Tj+1}

k=j+2
[e.¢]
(3.5.53)
= exp(u Z D(hg—1, Xrnm, — XTk—1)1{7k71<T}>1{Tj<T§Tj+1}
k=j+2
1{T1<T§Tj+1}
and that
n
lim Io(n) = lim E7exp (Mk 1 D(hi1, Xt = X )i, _yer) ) LmoT)]
n—1 00
= lim Efﬁ“[;) exp (nkZD(hkl, X1 pm, — XTk,l)l{Tk_KT}) L <T<r;i1}]
j= =1
oo o
= B[y exp (“ > Dy, Xrar, — Xmﬂ{m_la}) Lry<rsn; )]
=0 k=1
o0
= Etﬂr[exp(u D(hj—1, X17rr, — XTk71)1{Tk_1<T}>]-
k=1
(3.5.54)

Therefore, we obtain

lim B [exp (Y Dlhn1, Xrnn, — Xo iy + WO (50,70 ha) s <7y )

n—00
k=1

= li_)rn Ii(n) + Ix(n) = exp(uW (t, 7, h.)),
(3.5.55)
having used Lemma 3.1.1. This completes the proof. O

Lemma 3.5.7. The equality (3.3.9) holds.

Proof. By the definition of A", the inclusions A" C A"+ C A hold for n > 0 and we have

sup W(t,m, h.) < sup W(t,m h.) <sup W(t, 7, h.). (3.5.56)
heA™ heAn+1 heA

From the definition of W"(t,7) and W (¢, n) it follows that

Wn(t,m) < Wt m) < W(t, m). (3.5.57)
Therefore, from Lemma 3.5.5 we have

Wn(t,m) < Wt m) < W(t, 7). (3.5.58)
Thus, from Proposition 3.2.2 and (3.3.1), we obtain

W(t,n) < W(t, ). (3.5.59)
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On the other hand, for h € A

Wn(t,7) = W"(t, )

n
> i log Et’”[exp (M Z D(hk—la XT/\‘rk - XTk—l)]‘{Tk71<T}
k=1

+ MWO(TH, T s hn)l{TnST}N'

Letting n — oo and applying Lemma 3.5.5,

W(t,m) > W(t,m h.)

and hence, we obtain

W(t,m) =W(t,m).
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Chapter 4

Numerical analysis

In this chapter, we construct a numerical scheme for the log-utility value function. In Section
4.1, we construct an approximation filter and a value function. In Section 4.2, we compute the
value function and confirm convergence of the value iteration numerically.

4.1 Numerical scheme

4.1.1 Numerical approximation for filter

We construct a uniform discretization grid tg = 0 < t; < ts <,...,<t, =T, :=t —t;_1 on
[0,T] and approximate the transition probability

qi;0 i £ j
POy, =eilby, , =¢5) = { 13— Z';ék qikd 0 i? (4.1.1)

We define (discrete)occupation time as
l
L) =Y 10, (4.1.2)
k=1

1() := (L), I (D), . .., In(D) (4.1.3)

and approximate the following integral

t; N
l/m@@zzm@mm. (4.1.4)
0 i=1
N
O(l) :={(o01,09,...,0N) € ZN,ZOZ' =1,0<0; <l for all i}. (4.1.5)
i=1
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We approximate the filter
> nledrjilty, @)pji(t)w?
J
= 3, Eln(ei) g, —e,y exp(fy' —n(6s)ds)pf 1, (2)[00 = e;]m;

Z n(e;) exp( Z n(ek)ok(S)p&tl(z; Z m(eg)ogd, Z

%

1<i,j<N,0€0(l) 1<k<N 1<k<N 1<k<N

X

P60y, = e, I(l) = 0|y, = ej)Trj.

4.1.2 Numerical approximation for value function
We approximate the control space
Hp, ~ H?, = {hy,ha,..., hy, hi € Hy, for all i}

Wo(t;, m) = sup Wo(ti,m, h) ~ max Wy(t;,, hj)

heHm ]€H7VL
C(ti,m) = sup C(ti,m, h) =~ max C(t;, , hj).
hEHm jEH

o(ex)ord)

(4.1.6)

(4.1.7)

(4.1.8)

(4.1.9)

We approximate the value function and operator J by a Monte Carlo simulation. X,f/, (7, 0), (4, 1)

are the j-th sample paths starting at 6y = ¢
WOt h) = ELf f(05,7(Xs — Xy, h))ds|ro = t, mpy = 7]
= [10g(2¢:0 NESE) o = t, 7ry = 7]
= Ly Bllog(Xy NiSp)lmo =1, 6, = el
MZ =1 2= 110g(zl o NG exp(X7(5,1) — X§)n'

C(t,ﬁ, h) = E[fT/\Tl f(937 h )d8|7—0 ty Ty = W]

%

= Ellog(32% NiSippr )0 = t, 77, = 7]
= 2L, Bllog(Eig NiSiar I = .07 = eilm
31 e iy log (X7 N exp(X5, .y (5. 1) = Xp)m!
JW(r,m) = BEW"(r1, 7)1l <ry|t0 = 7,700 = 7]
= SN EW™r, 7o)l <ry |0 = T, 07 = el

~ ﬁ Z]]\il Elj\il Wn(Tl(jv l)7M(Tl(J7l) - 7_0>X7'1(j,l)(j7l) - X0)7

Wt (7, m) = C(t, 7) + JW" (7, 7).
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4.2 Numerical results

4.2.1 List of parameter settings

N =2 (two-state Markov chain)

m = 1 (one risky asset and bank account)

n(er) = 1,n(e2) = 2(intensity for observation time)
o(e1) = 0.5,0(e2) = 0.3(volatility of risky asset)
r(e1) = 0.08,7(e2) = 0.06(return of risky asset)

ro = 0.02(interest rate)

g1 = g22 = 1,q12 = g21 = —1(Q-matrix)

4.2.2 Numerical results

In figures 4.1-4.2, we compute Wy (t, 7, h) and C(¢, 7, h), respectively. These functions are concave
with respect to control variable h. Therefore,we compute a unique optimal strategy.

In figure 4.3,we compute the value function and confirm that it is a monotonically increasing
function with respect to iteration number and converges.These numerical results are consistent
with Lemma 2.4.4 and Theorem 2.5.1.

Figure 4.1: Wy(t, m, h)
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Figure 4.2: C(t, 7, h)
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Figure 4.3: Convergence Y _j_, J*C
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