

Title	A Systematic Method of Tuning a Performance Index in Nonlinear Model Predictive Control
Author(s)	Tahir, Fatima
Citation	大阪大学, 2014, 博士論文
Version Type	VoR
URL	https://doi.org/10.18910/34521
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Abstract of Thesis

Name (FATIMA TAHIR)	
Title	A Systematic Method of Tuning a Performance Index in Nonlinear Model Predictive Control (非線形モデル予測制御における評価関数調整の体系的方法)
<p>Abstract of Thesis</p> <p>Model predictive control (MPC) is extensively implemented in industry as an efficient way to deal with large multivariable constrained control problems. Its core idea is to choose the control actions by repeatedly solving an optimal control problem in real-time to minimize a given performance criterion over a certain future horizon, possibly subject to constraints on the manipulated inputs and outputs, where the future behavior is computed according to a model of a plant. Although all real processes are inherently nonlinear, most applications use linear or piecewise linear models because it is easy to obtain a linear model based on the process data and because linear models provide good results when the plant is working in the neighborhood of the operating point. However, in many industrial applications, there is a strong requirement to obtain the best achievable performance in the presence of strict and tight constraints and a linear model is not sufficient to achieve this goal. Therefore, nonlinear MPC is needed for such problems as it permits the utilization of a nonlinear model for prediction. In nonlinear model predictive control (NMPC), more constraints have to be satisfied at the same time and process nonlinearities and constraints are explicitly taken into account in the controller.</p> <p>Since the performance of NMPC is dependent on a performance index, systematic and efficient tuning of the performance index is a very important task from a practical viewpoint. In this dissertation, we propose a systematic method for the efficient tuning of the performance index in NMPC. In this tuning approach, first of all, a linear quadratic (LQ) regulator is designed for the linearized model using the inverse linear quadratic (ILQ) regulator design approach, which is based on the optimality conditions for the feedback control law obtained in the inverse regulator problem. After that, the inverse optimality conditions are applied to the designed ILQ regulator to tune the quadratic weights in the performance index of NMPC. After that, the NMPC algorithm is applied to the nonlinear model. Since NMPC is a finite-horizon problem, a terminal cost is added to the performance index of NMPC to make it work similarly to the infinite-horizon problem. Input and state constraints are penalized by adding penalty functions in the integral part of the performance index. The use of the ILQ regulator design method for the tuning of quadratic weights provides some tuning parameters that give a trade-off between the speed of the system's response and the magnitude of the control input. Moreover, this tuning methodology provides a free parameter that can be utilized to adjust the transient responses in the controlled output as well as to obtain a balance between the magnitudes of the control inputs. The effectiveness of this tuning approach is demonstrated by NMPC control of water-levels in a coupled-three-tank system (CTTS).</p> <p>The tuning algorithm is extended for NMPC of parameter-dependent nonlinear systems and two methods are proposed for the selection of parameter-dependent tuning parameter. The extended tuning algorithm is applied to the speed control of nonlinear mean-value model of spark ignition (SI) engines. The effectiveness of tuning the parameter-dependent tuning parameter is elaborated in simulation results. Load torque is considered as a parameter and the effect of change in its value is suppressed by tuning the parameter-dependent tuning parameter using the proposed method.</p>	

論文審査の結果の要旨及び担当者

氏 名 (Fatima Tahir)		
	(職)	氏 名
論文審査担当者	主査	教授
	副査	教授
	副査	教授
	副査	京都大学教授
		飯國 洋二
		潮 俊光
		乾口 雅弘
		大塚 敏之

論文審査の結果の要旨

モデル予測制御は、各時刻で有限時間未来までの応答を最適化して制御入力を決定する制御手法であり、拘束条件を含む多変数システムの制御に産業界で広く用いられている。計算機と数値解法の進歩により、近年では非線形システムに対するモデル予測制御（非線形モデル予測制御）の適用範囲も拡がりつつある。一方で、モデル予測制御の応答は最適化問題の評価関数に依存し、モデル予測制御の実装においては評価関数の調整がしばしば大きな労力を要する。それに対し、本論文は、非線形モデル予測制御に対する体系的な評価関数調整法を提案し、数値シミュレーションによって有効性を示している。

まず、論文の前半では、逆最適性に基づく最適レギュレータの設計法であるILQ (Inverse Linear Quadratic) 設計法に着目し、ILQ設計法によって調整された無限評価区間の最適レギュレータから、それと等価なモデル予測制御に対する有限評価区間の評価関数が求められることを示している。これによって、ILQ設計法と同様、モデル予測制御でも、システムの次元によらずわずか一つのパラメータによって、出力の応答の速さと入力の大きさとのトレードオフが可能となる。非線形システムの場合は、平衡点近傍での線形化モデルを用いて評価関数を決定するが、パラメータの調整自体は非線形システムのシミュレーションを通じて十分に見通し良く行うことが可能となっている。

つぎに、論文の後半では、定数パラメータを含む非線形システムを対象として、定数パラメータの値に応じてモデル予測制御の評価関数を変化させる方法を提案している。このような問題は、目標出力や定常外乱のステップ状変化に対して適切に対処する制御系を実現するために実用上重要である。本論文では、異なる定数パラメータの値に対してできるだけ閉ループ応答が変わらないように評価関数を修正する陽な公式を導出している。数値例としてガソリンエンジンの回転数制御を取り上げ、非線形モデル予測制御の評価関数を提案手法に基づいて変化させることによって、異なる負荷トルクに対しても閉ループ応答がほとんど変化しないことを示している。

以上のように、本論文は、実用上重要であるにも関わらず今まで体系的な方法のなかった非線形モデル予測制御の評価関数調整に対して、新規性と実用性の高い手法を確立しており、制御工学の発展に寄与するところが大きい。したがって、博士（工学）の学位論文として価値のあるものと認める。