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A Systematic Method of Tuning a Performance Index in Nonlinear Model Predictive
Control

by FATIMA TAHIR

Model predictive control (MPC) is extensively implemented in industry as an efficient way

to deal with large multivariable constrained control problems. Its core idea is to choose the

control actions by repeatedly solving an optimal control problem in real-time to minimize a

given performance criterion over a certain future horizon, possibly subject to constraints on the

manipulated inputs and outputs, where the future behavior is computed according to a model of

a plant.

Although all real processes are inherently nonlinear, most applications use linear or piece-

wise linear models because it is easy to obtain a linear model based on the process data and

because linear models provide good results when the plant is working in the neighborhood of

the operating point. However, in many industrial applications, there is a strong requirement to

obtain the best achievable performance in the presence of strict and tight constraints and a lin-

ear model is not sufficient to achieve this goal. Therefore, nonlinear MPC is needed for such

problems as it permits the utilization of a nonlinear model for prediction. In nonlinear model

predictive control (NMPC), more constraints have to be satisfied at the same time and process

nonlinearities and constraints are explicitly taken into account in the controller.

Since the performance of NMPC depends on a performance index, systematic and efficient

tuning of the performance index is a very important task from a practical viewpoint. In this

dissertation, we propose a systematic method for the efficient tuning of the performance index

in NMPC. In this tuning approach, first of all, a linear quadratic (LQ) regulator is designed

for the linearized model using the inverse linear quadratic (ILQ) regulator design approach,

which is based on the optimality conditions for the feedback control law obtained in the inverse

regulator problem. After that, the inverse optimality conditions are applied to the designed

ILQ regulator to tune the quadratic weights in the performance index of NMPC. After that, the

NMPC algorithm is applied to the nonlinear model. Since NMPC is a finite-horizon problem,

a terminal cost is added to the performance index of NMPC to make it work similarly to the
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infinite-horizon problem. Input and state constraints are penalized by adding penalty functions

in the integral part of the performance index. The use of the ILQ regulator design method for

the tuning of quadratic weights provides some tuning parameters that give a trade-off between

the speed of the system’s response and the magnitude of the control input. Moreover, this tuning

methodology provides a free parameter that can be utilized to adjust the transient responses in

the controlled output as well as to obtain a balance between the magnitudes of the control inputs.

The effectiveness of this tuning approach is demonstrated by NMPC control of water-levels in a

coupled-three-tank system (CTTS).

The tuning algorithm is extended for NMPC of parameter-dependent nonlinear systems and

two methods are proposed for the selection of parameter-dependent tuning parameter. The ex-

tended tuning algorithm is applied to the speed control of nonlinear mean-value model of spark

ignition (SI) engines. The effectiveness of tuning the parameter-dependent tuning parameter

is elaborated in simulation results. Load torque is considered as a parameter and the effect of

change in its value is suppressed by tuning the parameter-dependent tuning parameter using the

proposed method.

Keywords: tuning of performance index, nonlinear model predictive control, inverse linear

quadratic regulator design method, coupled three-tank system, parameter-dependent nonlinear

systems, speed-control of spark ignition engines
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Chapter 1

Introduction

1.1 Motivation and Literature Survey

Model predictive control (MPC) is extensively implemented in industry as an efficient way to

deal with large multivariable constrained control problems. MPC was originated in the end

of 1970s [1–3] and it has undergone significant development since then. Its core idea is to

choose the control actions by repeatedly solving online an optimal control problem in real-time

to minimize a given performance criterion over a certain future horizon, possibly subject to

constraints on the manipulated inputs and outputs. The forecasting of process behavior and

performance is based on the process model and measurements available at current time. The

advantage of repeated online optimization is to incorporate some feedback mechanism.

The success of MPC in industry is due to the fact that it handles multivariable control

problems, takes account of actuator limitations and constraints imposed on manipulated and

controlled variables, allows operations closer to the constraints, can handle non-minimal phase

and unstable systems, and is the most general way of posing the control problem in the time

domain. Therefore, MPC is suitable for almost any kind of problem.

Although all real processes are inherently nonlinear, most applications use linear or piece-

wise linear models because it is easy to obtain a linear model based on the process data and

because linear models provide good results when the plant is working in the neighborhood of

the operating point [4]. However, in many industrial applications, there is a strong requirement

to obtain the best achievable performance in the presence of strict and tight constraints and a

linear model is not sufficient to achieve this goal. Therefore, nonlinear MPC is needed for such

problems as it permits the utilization of a nonlinear model for prediction. In nonlinear model

predictive control (NMPC), more constraints have to be satisfied at the same time and process

nonlinearities and constraints are explicitly taken into account in the controller. In NMPC, the

1
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development of numerical algorithms for real-time optimization [5–13], the stability of closed-

loop systems [14–27] and robustness analysis [28–37] are active areas of research.

Since the performance of NMPC depends on a performance index, systematic and efficient

tuning of the performance index is a very important task from a practical viewpoint. Although

a lot of work has been carried out for the development of real-time optimization of NMPC,

selection of the appropriate performance index is still an open problem and little research has

been carried out in this area. This is because the unavailability of a precise solution to a nonlinear

optimal control problem makes it difficult to explicitly associate the desired characteristics of

the closed-loop response with the free parameters in the performance index of NMPC.

In Ref. [38], the quadratic weights in the cost function of a linear MPC are tuned so that

the controller behaves similarly to a given “favorite controller”. Tuning is based on controller

matching and the solutions of convex optimization problems. However, this approach cannot

be used for NMPC as the use of a nonlinear model converts the convex quadratic programming

problem to a nonconvex nonlinear program. In another study [39], feedback linearization is

combined with NMPC, and the proposed performance index consists of two tuning parameters

that give a reasonable trade-off between the transient responses of the controlled output and the

control input. This tuning approach is simple and is applicable for nonlinear systems. However,

it depends on the input-output linearization of the given nonlinear system which may require

large magnitude of control inputs.

1.2 Problem Statement, Main Objective and Design Strategy

We propose a systematic method of tuning the quadratic weights in the performance index of

NMPC [40, 41]. In this approach, first of all, we obtain the linear model of a given nonlinear sys-

tem. Then, we design a linear quadratic (LQ) regulator using the inverse linear quadratic (ILQ)

regulator design approach [42], which is based on the optimality conditions for the feedback

control law obtained in the inverse regulator problem. After that, we use the inverse optimality

conditions to tune the quadratic weights. Then, these weights are used in the performance index

of NMPC, and the NMPC algorithm is applied to the nonlinear model. Since NMPC is a finite-

horizon problem, a terminal cost is added to the performance index of NMPC to make it work

similarly to the infinite-horizon problem as reported in Ref. [43]. Input and state constraints

are penalized by adding penalty functions in the integral part of the performance index. The

use of the ILQ regulator design method for the tuning of the quadratic weights provides us with

some parameters that can be used for a trade-off between the magnitude of the control inputs

and the speed of the system’s response. It also provides a parameter that can be used to control

the transient responses in the controlled output and to adjust the magnitude of the control in-

puts. After that, the tuning algorithm is extended for the NMPC control of parameter-dependent
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nonlinear systems and two methods are proposed for the selection of parameter-dependent tun-

ing parameter [44]. The extended tuning algorithm is applied to the speed control of nonlinear

mean-value model of spark ignition (SI) engines. The effectiveness of tuning the parameter-

dependent tuning parameter is elaborated in simulation results. Load torque is considered as a

parameter and the effect of change in its value is suppressed by tuning the parameter-dependent

tuning parameter using the proposed method.

1.3 Thesis Overview

The outline of this thesis is as follows: Chapter 2 gives a brief introduction to NMPC and

the algorithm used to solve NMPC problem. Chapter 3 describes the significant features of

the ILQ regulator design method and the procedure used to design the feedback control law in

this approach. In Chapter 4, inverse optimality conditions are employed to find the quadratic

weights that guarantee the optimality of the control law designed using the ILQ regulator design

method and significance of the tuning algorithm is demonstrated by applying it to a coupled-

three-tank-system (CTTS). In Chapter 5, tuning algorithm is extended for NMPC of parameter-

dependent nonlinear systems and its effectiveness is elaborated by solving the speed control

problem for spark ignition engines so that the effect of constant load disturbances on the closed-

loop response is minimized. Chapter 6 concludes this thesis.

In this thesis, the symbols appearing after a semicolon within the arguments of a function

represent parameters on which the function depends. For example, u(t;x(t)) means the value of

the function u at time t with the parameter x(t).





Chapter 2

Nonlinear Model Predictive Control

2.1 Introduction

In this chapter, we briefly introduce the basics of NMPC. In MPC, a model of the process is

used to predict the future evolution of the process to optimize the control signal. NMPC uses

nonlinear model for prediction. First of all, measurements/estimates of the states of the system

are obtained at time t. Then an optimal input signal is computed by minimizing a given cost

function over a certain prediction horizon in the future using a nonlinear model of the system.

First part of the optimal control input is applied to the system until new measurements/estimates

of the states are available and this process is repeated. The advantage of this continuous online

optimization is to introduce a sense of feedback mechanism. If there were no disturbances

and no modeling errors, and if the optimization problem could be solved for infinite horizons,

then the control input computed at time t = 0 could be applied to the system for all times t ≥
0. However, this is not possible in general due to the fact that presence of disturbances and

model-plant mismatch may make the predicted response significantly different from the true

closed-loop response. Therefore, in order to introduce feedback into the MPC law, control

input is implemented only until the next measurements are available. This provides a degree of

robustness to modeling errors and uncertainties.

2.2 Problem Formulation

Consider a nonlinear system governed by the following nonlinear state equations:

ẋ(t) = f (x(t),u(t)), (2.1)

where x(t) ∈ Rn denotes the state vector, and u(t) ∈ Rm denotes the input vector.

5
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The performance index to be minimized is given by

J = ϕ(x(t +T ))+
∫ t+T

t
L(x(τ),u(τ))dτ, (2.2)

where T is the horizon length and time from current time t to time t +T is termed as prediction

horizon. Since this prediction horizon recedes into the future, MPC is also known as receding

horizon control (RHC).

Equality constraints are given in the following form:

C(x(t),u(t)) = 0, (2.3)

where C is an mc-dimensional vector-valued function. If there are inequality constraints on the

inputs and/or state variables, they can be incorporated using two different approaches. In the first

approach, they are converted into the equality constraints by adding some dummy inputs. After

that, penalty functions for the dummy inputs are added to the performance index. In the second

approach, appropriate barrier functions are introduced in the performance index to incorporate

the inequality constraints.

At each time t, this optimal control problem, specified by the nonlinear model, performance

index and constraints, is solved to find the sequence of the optimal control input uoptimal(τ;x(t))

for the interval t ≤ τ ≤ t +T , and then only the initial value of the control input is applied to the

system at each time t, i.e.,

u(t) = uoptimal(t;x(t)). (2.4)

Since the actual state x(t) is taken as initial state to minimize the cost function given by Eq. (2.2),

MPC is a feedback law of the state x(t).

Therefore, NMPC involves solving an optimal control problem at each time t for a finite

horizon using a nonlinear model of the system so that the given performance index is minimized

and all the constraints are satisfied, and then applying only the initial value of the optimal control

input to the system.

2.3 Continuation/GMRES Algorithm

In this work, a fast numerical algorithm C/GMRES method [9] is used to update control input

in real time. In this algorithm, the continuation method [45] is combined with the generalized

minimum residual (GMRES) method [46] which is a Krylov subspace method. First of all,

horizon is divided into N steps and open-loop optimal control problem is discretized on the τ-

axis using forward difference approximation, resulting in a nonlinear algebraic equation for the
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discretized sequence of control input as follows:

x∗i+1(t) = x∗i (t)+ f (x∗i (t),u
∗
i (t))∆τ(t), (2.5)

x∗0(t) = x(t), (2.6)

C(x∗i (t),u
∗
i (t)) = 0, (2.7)

J = ϕ(x∗N(t))+
N−1

∑
i=0

L(x∗i (t),u
∗
i (t))∆τ, (2.8)

where

∆τ := T/N. (2.9)

Taking the current state as the initial state of the discretized problem, the control input sequence

{u∗i (t)}
N−1
i=0 is optimized at each time t and only the initial value of this sequence is applied to

the system, i.e., the actual control input is given by

u(t) = u∗0(t). (2.10)

The control input that minimizes the performance index given by Eq. (2.8) is computed so

that Pontryagin’s minimum pricinciple (PMP) is satisfied, i.e., Hamiltonian is minimized [77].

Let H denote the Hamiltonian defined by

H (x,λ ,u,µ) := L(x,u)+λ
T f (x,u)+µ

TC(x,u), (2.11)

where λ denotes the n-dimensional costate vector, and µ denotes the mc-dimensional Lagrange

multiplier vector associated with the equality constraints. The first-order necessary conditions

for the sequence of the control input {u∗i (t)}
N−1
i=0 , Lagrange multiplier {µ∗i (t)}

N−1
i=0 and costate

{λ ∗i (t)}
N−1
i=0 are obtained by the calculus of variation as

∂H

∂u
(x∗i (t),λ

∗
i+1(t),u

∗
i (t),µ

∗
i (t)) = 0, (2.12)

λ
∗
i (t) = λ

∗
i+1(t)+

∂H

∂u

T

(x∗i (t),λ
∗
i+1(t),u

∗
i (t),µ

∗
i (t))∆τ, (2.13)

λ
∗
N(t) =

∂ϕ

∂x

T

(x∗N(t)). (2.14)

The sequences of the optimal control input {u∗i (t)}
N−1
i=0 and the Lagrange multiplier {µ∗i (t)}

N−1
i=0

must satisfy Eqs. (2.5)–(2.6) and (2.12)–(2.14). Let U(t) be a vector of the control inputs and

Lagrange multipliers defined by

U(t) := [u∗0
T (t),µ∗0

T (t),u∗1
T (t),µ∗1

T (t), ...,u∗N−1
T (t),µ∗N−1

T (t)] ∈ RmucN , (2.15)
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where

muc := m+mc. (2.16)

For a given U(t) and x(t), {x∗i (t)}
N
i=0 is calculated recursively using Eqs. (2.5) and (2.6),

and after that, the sequence of the Lagrange multipliers {λ ∗i (t)}
N
i=0 is also calculated recursively

from i = N to i = 0, using Eqs. (2.13) and (2.14). Since x∗i (t) and λ ∗i (t) are determined by x(t)

and U(t) through Eqs. (2.5), (2.6), (2.13) and (2.14), Eqs. (2.7) and (2.12) can be regarded as

one equation defined by

F (U(t),x(t), t) :=



∂H
∂u

T
(x∗0(t),λ

∗
1 (t),u

∗
0(t),µ

∗
0 (t))

C(x∗0(t),u
∗
0(t))

...
∂H
∂u

T
(x∗N−1(t),λ

∗
N(t),u

∗
N−1(t),µ

∗
N−1(t))

C(x∗N−1(t),u
∗
N−1(t))


= 0. (2.17)

The optimal vector U(t) is obtained by solving Eq. (2.17) in real time. However, solving

Eq. (2.17) involves recursive calculation of {x∗i (t)}
N
i=0 and {λ ∗i (t)}

N
i=0 at each sampling time, i.e.,

nonlinear equations are to be solved at each sampling time which is computationally demanding.

Instead of solving F (U,x, t) = 0 itself at each sampling time with an iterative method

such as Newton’s method, C/GMRES algorithm involves obtaining a differential equation for

updating the control sequence through the use of continuation method [45]. That is, the time-

derivative of the control input sequence is obtained according to the corresponding time-derivative

of the state, and it can be integrated to determine the control input in real time without using it-

erative optimization methods. We find the time-derivative of U(t) such that F (U(t),x(t), t) = 0

is satisfied. By choosing U(0) so that

F (U(0),x(0),0) = 0, (2.18)

the time-derivative of U, i.e., U̇ is determined so that

Ḟ (U,x, t) = AsF (U,x, t), (2.19)

where As is a stable matrix introduced to stabilize F = 0. Using the chain rule of differentiation,

Eq. (2.19) yields the following linear equation for U̇ :

∂F

∂U
U̇ = AsF −

∂F

∂x
ẋ− ∂F

∂ t
. (2.20)
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Then if ∂F
∂U is nonsingular, a differential equation is obtained for U(t) as follows:

U̇ =

(
∂F

∂U

)−1(
AsF −

∂F

∂x
ẋ− ∂F

∂ t

)
. (2.21)

To find the solution U(t) without iterative optimization methods, Eq. (2.21) can be integrated

in real time. However, this differential equation still involves high computational cost because

of Jacobians ∂F
∂U , ∂F

∂x and ∂F
∂ t and a large linear equation associated with ( ∂F

∂U )−1. Moreover,

from the definition of F in Eq. (2.17), the Jacobian ∂F
∂U is dense because x∗i (t) and λ ∗i (t) are

functions of U(t). Therefore, in order to reduce the computational cost in the Jacobians and

the linear equation, forward difference approximation is used for the products of Jacobians and

vectors, and the GMRES method [46] is used to solve the linear equation. For more details on

C/GMRES algorithm, Ref. [9] can be seen.





Chapter 3

Inverse Linear Quadratic Regulator
Design Method

3.1 Significant Features and Applications of Inverse Linear Quadratic
Regulator Design Method

The ILQ regulator design method is used to design LQ regulators for linear systems from the

viewpoint of the inverse regulator problem. Unlike the conventional LQ regulator design tech-

niques, it does not depend on the selection of quadratic weights. Rather, it focuses on the

properties of the regulator to be designed, that are more important from a practical viewpoint.

Although there is no need to specify a performance index to design an LQ regulator using the

ILQ regulator design approach, it gives a feedback control law that is optimal for some quadratic

performance index. This method is based on the optimality conditions for a feedback control

law as obtained in the inverse problem of LQ regulators, and it has two steps. In the first step, an

optimal feedback control law is parameterized using the necessary conditions for optimality. In

the second step, the sufficient conditions for optimality are used to determine these parameters

so that the optimality of the feedback control law is ensured. It is a simple method from the

computational viewpoint as there is no need to solve the Ricatti equation. The most appealing

feature of this method is that it provides some tuning parameters in the designed regulator that

give the trade-off between the magnitude of the control inputs and the speed of the resulting

closed-loop system. Ref. [42] can be seen for more details.

A generalization of the ILQ regulator design method is shown in [47, 48] to extend it for

the design of optimal servo systems. In Ref. [49], the use of the ILQ method for the design of

optimal servo systems is extended to a class of non-minimum phase multi-input multi-output

(MIMO) systems. Design of optimal servo systems is further extended to achieve quadratic

11
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stability for linear systems with structured uncertainty in [50, 51]. This approach is applied for

robust control of a multivariable magnetic levitation system in [52–54]. In Ref. [55], a new

optimality condition is developed for the generalization of the ILQ regulator design method to

attain an interesting decoupling property with desired output response. As an extension of the

ILQ servo system presented in Ref. [51], design of the model reference ILQ (MR-ILQ) servo

system is proposed in [56, 57] to attain tracking robustness by use of a very simple structure.

Ref. [58] presents an application of MR-ILQ design method to temperature control of wafer

in semiconductor manufacturing systems, as one of its significant application in the industry

process. Many other extensions of the ILQ method for design of optimal servo system and its

application to important industrial systems can be seen in [59–71].

3.2 Review of Linear Quadratic Regulator and its Inverse Prob-
lems

Since the ILQ regulator design method is based on the optimality conditions for feedback control

law as obtained in the inverse regulator problem, a brief review of LQ regulator and its inverse

problem is presented in this section.

Consider the conventional LQ regulator problem represented by the following state equa-

tions and cost function:

ẋ(t) = Ax(t)+Bu(t), (3.1)

J =
∫

∞

0
(xT (t)Qx(t)+uT (t)Ru(t))dt, (3.2)

where x(t) ∈ Rn denotes the state vector, and u(t) ∈ Rm denotes the input vector. A, B, Q and

R are real matrices of appropriate dimensions. A and B are the system matrices representing the

linear model, n > m, and (A,B) is controllable. Q is a symmetric nonnegative definite matrix

and R is a symmetric positive definite matrix. In a conventional LQ regulator design problem,

the design objective is to find an optimal control law u(t) which minimizes a quadratic cost for

given Q and R. As is well known, the optimal control is given by the following linear feedback

control law:

u(t) =−Kx(t), (3.3)

where K is the feedback gain matrix and is expressed as follows:

K = R−1BT P. (3.4)
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Here P is the unique positive definite solution of the algebraic Ricatti equation

AT P+PA−PBR−1BT P+Q = 0. (3.5)

The feedback gain matrix K is said to be “stable” if all the eigenvalues of closed-loop system

matrix have negative real parts, i.e.,

Reλi(A−BK)< 0, i = 1,2, ...,n. (3.6)

The inverse problem of LQ regulators was first addressed by R. E. Kalman [72]. In the

inverse problem of LQ regulator, a state feedback gain matrix K is available and we need to

find necessary and sufficient conditions on A, B and K such that K is “optimal” in the sense that

control input u(t) given by Eq. (3.3) minimizes the cost function J for some quadratic weights

Q≥ 0 and R > 0.

3.2.1 Optimality of Feedback Gain Matrix

Lemma 3.1 The feedback gain matrix K is both optimal and stable if and only if there exist

P > 0 and R > 0 satisfying the following two conditions [42]:

PH +HT P > 0, (3.7)

BT P = RK, (3.8)

where

H :=
BK
2
−A. (3.9)

For the proof of Lemma 3.1, [42, 73] can be seen.

Lemma 3.2 For any real n× n matrix H, the matrix inequality given by Eq. (3.7) has a pos-

itive definite diagonal solution P if H satisfies any of the following conditions:

(a) H is copositive, i.e.,

H +HT > 0, (3.10)

(b) H is diagonal dominant, i.e.,

hii >
n

∑
j=1
|hi j|− |hii|, 1≤ i≤ n (3.11)

or

hii >
n

∑
i=1
|hi j|− |h j j|, 1≤ j ≤ n. (3.12)
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Here hi j represents the element corresponding to ith row and jth column. Equation (3.11) rep-

resents the case when H is row diagonal dominant and Eq. (3.12) represents the case when H

is column diagonal dominant. It is easy to see that condition (a) ensures the inequality given by

Eq. (3.7) for P = I. For the second part of Lemma 3.2, refer to [74].

Lemma 3.3 There exists P ≥ 0 and R > 0 satisfying Eq. (3.8) if and only if the following

conditions hold.

(I) KB has m linearly independent real left-eigenvectors.

(II) KB has m real non-negative eigenvalues.

(III) rank(KB) = rank(K).

Refer to [75] for more details.

3.3 Design Procedure of the ILQ Method

To design the ILQ regulator for the linear system given by Eq. (3.2), we proceed as follows:

3.3.1 Partitioning of System Matrices

In this step, the system matrices, A and B, of the linear model are partitioned as follows:

A =

[
A11 A12

A21 A22

]
, (3.13)

B =

[
0

B2

]
, det(B2) 6= 0, (3.14)

where A11, A12, A21 and A22 are (n−m)× (n−m), m× (n−m), (n−m)×m and m×m ma-

trices, respectively, and B2 is a nonsingular matrix of dimensions m×m. If A and B cannot be

partitioned in this way, we need to apply a similarity transformation to transform them into this

form. For example, we can apply a similarity transformation M such that

MB =

[
0

Im

]
. (3.15)

This similarity transformation M is not unique [76] and there may be many possible candidates

for it.
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3.3.2 Parameterization of Feedback Gain Matrix

The necessary conditions for optimality [42, 75] are used for the parameterization of the state

feedback gain matrix as follows:

K = B−1
2 V−1

ΣV [F1 Im], (3.16)

where V and Σ are m×m real nonsingular matrices. Matrix Σ is the main tuning matrix. It is a

diagonal matrix with positive diagonal entries, i.e.,

Σ = diag{σi}> 0. (3.17)

Σ may also be expressed as follows

Σ = σΓ, (3.18)

where

σ > 0, (3.19)

and

Γ = diag{γi}> 0. (3.20)

F1 is an m× (n−m) matrix that is dependent on the partial pole placement. Although V and F1

are also free parameters, Σ is the main tuning parameter. If Σ is expressed in the form given by

Eq. (3.18), scalar positive number σ is the main tuning parameter.

3.3.3 Determination of the Parameters

This step involves the determination of the matrices V , Σ, F1 and the lower bounds of {σi} , i =
1,2, ...,m or σ so that the matrix H = BK/2−A is either copositive or diagonal dominant, which

is a sufficient condition for the optimality of the state feedback gain matrix K [42]. The compu-

tation of F1 is dependent on n−m stable poles si, which must be distinct from the eigenvalues of

the matrix A11. The matrix Σ is the main tuning parameter responsible for the trade-off between

the speed of the resulting closed-loop response and the magnitude of the control input. It is

computed in such a way that the sufficient condition for the optimality of the state feedback gain

matrix K is satisfied. There is a lower bound for σ , and any σ greater than this lower bound

will satisfy the sufficient condition for optimality. The matrix V can be chosen arbitrarily. For

simplicity, we can choose it to be an identity matrix of order m.





Chapter 4

Tuning of Performance Index in
Nonlinear Model Predictive Control

4.1 Tuning of Performance Index using Inverse Optimality Condi-
tions

Although the feedback control law designed using the ILQ method does not depend on the

selection of quadratic weights, since it is designed using the necessary and sufficient conditions

for optimality, it is optimal for some quadratic cost. This means that we may use these optimality

conditions in the reverse direction to determine the quadratic weights for which this feedback

control law is optimal. This approach is used to tune the quadratic weights in the performance

index of NMPC. This tuning method provides us with tuning parameters σi, i= 1,2, ...,m, which

can be used to adjust the magnitude of the control inputs and the speed of the response of the

resultant system.

First of all, we obtain the linearized model of the given nonlinear model. Then we design

an LQ regulator for the linearized model using the ILQ regulator design method. Then inverse

optimality conditions are used to tune the quadratic weights in the performance index of NMPC.

Finally the NMPC algorithm is applied to the nonlinear model given by Eq. (2.1).

To obtain the linear model, the nonlinear model given by Eq. (2.1) is linearized at an equi-

librium point (x∗,u∗). The obtained linearized model can be expressed as follows:

δ̇x(t) = Aδx(t)+Bδu(t), (4.1)

17
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where

f (x∗,u∗) = 0, (4.2)

δx(t) = x(t)− x∗, (4.3)

δu(t) = u(t)−u∗, (4.4)

A =

(
∂ f
∂x

)∣∣∣∣
x=x∗,u=u∗

, (4.5)

B =

(
∂ f
∂u

)∣∣∣∣
x=x∗,u=u∗

. (4.6)

The performance index in Eq. (2.2) is given by

ϕ(x(t +T )) =
1
2
(x(t +T )− x∗)T P(σ)(x(t +T )− x∗), (4.7)

L(x(t),u(t)) =
1
2
(x(t)− x∗)T Q(σ)(x(t)− x∗)+

1
2
(u(t)−u∗)T R(σ)(u(t)−u∗)+

piec(x(t),u(t)), (4.8)

where P(σ), Q(σ) and R(σ) are the quadratic weights to be tuned by applying the optimality

conditions to the designed ILQ regulator. From now on, even if argument (σ) is not used

explicitly, it is understood that quadratic weights depend on the main tuning parameter σ . x∗ and

u∗ are the desired references for the state and input variables, respectively, and piec(x(t),u(t)) is

the penalty function, which is introduced in the performance index to incorporate the inequality

constraints on the states and inputs. The terminal penalty function ϕ(x(t +T )) is the infinite-

horizon cost for the interval t+T < τ ≤∞ because of the fact that for the given quadratic weights

Q and R, the matrix P is the positive-definite solution to the algebraic Ricatti equation given by

Eq. (3.5), and because the following holds for an LQ regulator problem [72, 78],

1
2

∫
∞

0
(xT (τ)Qx(τ)+uT (τ)Ru(τ))dτ =

1
2

xT (0)Px(0). (4.9)

Therefore, the infinite-horizon cost function is given by

1
2

∫
∞

t+T
(xT (τ)Qx(τ)+uT (τ)Ru(τ))dτ =

1
2

xT (t +T )Px(t +T ). (4.10)

The feedback gain matrix K is optimal if and only if there exist P > 0 and R > 0 satisfying

the two conditions given by Eqs. (3.7) and (3.8) in Lemma 3.1 of Chapter 3. Since the feedback

gain matrix K was parameterized using the necessary conditions for optimality and these param-

eters were determined using the sufficient conditions for optimality, if the feedback gain matrix
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K is optimal, we can use Eqs. (3.7) and (3.8) to find matrices P, Q and R that confirm its optimal-

ity and satisfy the Ricatti equation given by Eq. (3.5). Thus, using inverse optimality conditions

[75], we can tune the quadratic weight matrices P, Q and R as shown in Sections 4.1.1 – 4.1.3.

Then, the response of NMPC is similar to that of the LQ regulator designed for the linearized

model given by Eq. (4.1) by the ILQ regulator design method, at least in the neighborhood of

the equilibrium point (x∗,u∗).

4.1.1 Determination of the Matrix R

The matrix R can be determined using the following expression:

R =V T DV, (4.11)

where D is a positive definite matrix satisfying

ΣD = DΣ. (4.12)

4.1.2 Determination of the Matrix P

The matrix P can be determined using the following expression:

P = (V K)T DΣ
−1(V K)+Y, (4.13)

where Y is a positive semidefinite matrix satisfying

Y B = 0. (4.14)

Owing to the particular structure of matrix B, Y can also be written as

Y = block-diag(Y1,0), Y1 ≥ 0. (4.15)

We need to tune matrices D and Y1 in such a way that matrix P > 0 is diagonal. There may be

many possible candidates for D and Y1. The main role of these matrices is to make P diagonal

and to adjust the magnitude of the quadratic weights P, Q and R. These matrices have no effect

on the closed-loop response because the feedback gain matrix K is independent of these matrices

as shown in Eq. (3.16).
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4.1.3 Computation of the Matrix Q

After determining the matrix P, we can compute the matrix Q using the following expression:

Q = PH +HT P. (4.16)

For a copositive or diagonal dominant matrix H and a positive definite diagonal matrix P, the

matrix Q given by Eq. (4.16) is guaranteed to be positive definite. That is, Eq. (3.7) holds.

Although the quadratic weights in the performance index of NMPC have been determined

by applying the inverse optimality conditions on the feedback gain matrix K designed using

the ILQ regulator design method which uses the linearized model, these weights are then tuned

through numerical simulations for nonlinear model in NMPC which takes into account all the

constraints on states and inputs. Therefore, the use of linearized model for computing the

quadratic weights does not deteriorate the performance of NMPC.

4.1.4 Outline of the Tuning Procedure

The procedure for tuning the quadratic weights can be outlined as follows:

(i) First, linearize the nonlinear model at an equilibrium point.

(ii) Partition the linearized model as shown in Eqs. (3.14) and (3.14).

(iii) Choose n−m stable poles distinct from the eigenvalues of A11.

(iv) Determine the parameter F1 using the algorithm given in [42]. Choose any arbitrary non-

singular matrix V of order m and positive diagonal matrix Γ of order m. Determine the

lower bound σlb of σ using the sufficient conditions for optimality [42]. Choose any σ

greater than the lower bound.

(v) Compute the feedback gain matrix using Eq. (3.16).

(vi) Determine the quadratic weights R, P and Q using Eqs. (4.11), (4.13) and (4.16), respec-

tively.

(vii) Use these quadratic weights in the performance index of NMPC given by Eqs. (2.2), (4.7)

and (4.8). Penalty functions can be introduced in the performance index to incorporate the

inequality constraints on the states and inputs.

(viii) Solve the NMPC problem for the nonlinear model given by Eq. (2.1) and check the plots

of the closed-loop response and the control inputs.
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(ix) If the response is too slow, increase the value of σ and go back to step (v) and continue.

(x) If the magnitudes of the control inputs are too high, decrease the value of σ and go back

to step (v) and proceed.

(xi) If the response satisfies the desired criteria, terminate the algorithm.

Since the matrix A−BK is a Hurwitx matrix, i.e., all the eigenvalues of the matrix A−
BK lie in the left half plane, using Lyapunov’s indirect method [79], we can conclude that the

reference state x∗ in the closed-loop nonlinear system is locally asymptotically stable.

4.2 Numerical Example

4.2.1 Coupled Three-Tank System

Consider a coupled three-tank system (CTTS) consisting of one reservoir; three tanks, Tank-1,

Tank-2 and Tank-3; three pumps, P1, P2 and P3; seven ON/OFF valves, V1, V2, V3, V4, V5,

V6 and V7; seven level sensors and five flow meters [80, 81]. A sketch of the system is shown

in Fig. 4.1. The drain valves of Tank-1 and Tank-2 are kept closed whereas all the other valves

are kept open. For these simulations, we have kept pump P2 closed to demonstrate the case of

m < n. The inputs to the system are the voltages applied to pumps P1 and P3, and outputs of the

system are the levels of water in each tank.

4.2.1.1 Mathematical Model

Let h1, h2 and h3 denote the level of water in Tank-1, Tank-2 and Tank-3 respectively. u1 is

the voltage applied to the pump P1 and u2 is the voltage applied to the pump P2. To model

the system, it is assumed that there are no thermal losses, thermal delays, pump delays in the

system, and hydraulic and friction losses are negligible. Using Bernoulli’s law and principle of

conservation of fundamental quantities (mass and energy), the nonlinear model of CTTS can be

described as follows:

aT 1ḣ1 = −v3a
√

2g(H11 +h1)− v4a
√

2g(H12 +h1)+ v2k1u1, (4.17)

aT 2ḣ2 = −v5a
√

2g(H21 +h2)− v6a
√

2g(H22 +h2)

+v4a
√

2g(H12 +h1)+ k3u2, (4.18)

aT 3ḣ3 = −v7a
√

2g(H31 +h3)+ v6a
√

2g(H22 +h2)− k3u2. (4.19)

Table 4.1 shows the description and values of the CTTS parameters appearing in Eqs. (4.17) –

(4.19).
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FIGURE 4.1: Sketch of CTTS [81].

Using values given in Table 4.1, simplified state-space representation of the CTTS is:

ẋ1 = −0.0845
√

30.48+ x1 +0.011u1, (4.20)

ẋ2 = 0.0845(
√

30.48+ x1−
√

30.48+ x2)+0.011u2, (4.21)

ẋ3 = 0.0845(
√

30.48+ x2−
√

30.48+ x3)−0.011u2, (4.22)

where x1, x2 and x3 are the state variables representing the water levels in Tank-1, Tank-2 and

Tank-3, and u1 and u2 are the input variables representing the voltages applied to pumps P1 and

P3, respectively.

4.2.1.2 Constraints

The height of each tank is 25 cm; thus, the water level in each tank cannot exceed this value.

Also, all the input and state variables must be positive. These are the constraints on the states

and inputs and can be represented in the following mathematical form:

0≤ xi ≤ 25, i = 1,2,3, (4.23)

u j ≥ 0, j = 1,2. (4.24)
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TABLE 4.1: Values of the CTTS Parameters

Parameters Desciption Value with Units
aT 1 cross-section area of Tank-1 126.6769cm2

aT 2 cross-section area of Tank-2 126.6769cm2

aT 3 cross-section area of Tank-3 126.6769cm2

a cross-section area of pipe 0.2419cm2

g acceleration due to gravity 980cm/s2

v2 value of valve V2 1
v3 value of valve V3 0
v4 value of valve V4 1
v5 value of valve V5 0
v6 value of valve V6 1
v7 value of valve V7 1
k1 gain constant of pump P1 1.3887
k3 gain constant of pump P3 1.3887

H11 height of pipe through valve V3 135cm
H12 height of pipe through valve V4 30.48cm
H21 height of pipe through valve V5 82.55cm
H22 height of pipe through valve V6 30.48cm
H31 height of pipe through valve V7 30.48cm

4.2.1.3 Control Objective

Let x∗ and u∗ be the desired references for the state and input variables. The control objective is

to achieve the required reference levels and inputs such that all the state and input constraints,

given by Eqs. (4.23) and (4.24), are satisfied.

4.2.2 Performance Index and its Tuning

The performance index in Eq. (2.2) is given by Eqs. (4.7) and (4.8). The tuning of the quadratic

weights P, Q and R is carried out as explained in Section 4.1.

The penalty function piec(x(t),u(t)) is tuned using the barrier function method for the in-

equality constraints on the states and inputs and is given by

piec(x(t),u(t)) = −px1l loge(x1(t))− px2l loge(x2(t))

−px3l loge(x3(t))− px1u loge(25− x1(t))

−px2u loge(25− x2(t))

−px3u loge(25− x3(t))

−pu1 logeu1(t)− pu2 logeu2(t). (4.25)

For this optimal control problem, suitable values of px1l , px2l , px3l , px1u , px2u , px3u , pu1 and pu2

are found by trial and error to be 0.29, 0.29, 0.29, 0.29, 0.29, 0.29, 0.06 and 0.06, respectively.
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Choosing an appropriate value of the horizon length T is also a very important task from

a practical viewpoint. A large horizon length ensures the stability of the closed-loop system,

whereas a short horizon length results in reduced computational time [82, 83]. Thus, the horizon

length should be chosen to obtain a good compromise between the stability of the closed-loop

system and the computational cost. For this example, the horizon length is fixed at fifty sec-

onds, which is much smaller than the time constant of the linearized system, thus reducing the

computational time. It was observed that if the horizon length is increased beyond this value, it

increases the computational time without significantly improving the performance of NMPC.

4.2.3 Simulation Results

The NMPC problem is solved using a fast numerical algorithm called C/GMRES [9]. Simu-

lations are performed using the automatic code generator AutoGenU [84], which generates an

executable C-file. The purpose of these simulations is to show the effectiveness of the proposed

tuning method and the effect of main tuning parameter σ and other tuning parameters on the

closed-loop response and control inputs. Although the quadratic weights in the performance in-

dex of NMPC are determined using the ILQ method to design the LQ regulator for a linearized

model of the CTTS that does not take into account any constraints on states and inputs, these

quadratic weights give satisfactory results even for the nonlinear model given by Eqs. (4.20) -

(4.22). The desired references for the state and input variables are as follows:

x∗ = [ 6.9541 20.7813 6.9536 ]T , (4.26)

u∗ = [ 47 8 ]T . (4.27)

For this control problem, the lower bound of σ is 0.005026, which is determined so that

the sufficient conditions of optimality are satisfied for the ILQ feedback gain matrix K. For all

the simulations, Γ is kept constant at a value chosen to make the lower bound of σ as low as

possible. For this control problem, its value is

Γ =

[
1 0

0 2

]
. (4.28)

For simplicity, V is chosen to be an identity matrix of order 2.

4.2.3.1 Effect of Change in Main Tuning Parameter σ on Closed-loop Response and Con-
trol Inputs

First we study the effects of chang in the main tuning parameter σ on the speed of the closed-

loop system’s response and the magnitude of the control inputs. Figure 4.2 shows plots of the
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FIGURE 4.2: Effect of change in tuning parameter σ on closed-loop response

state variables, and Fig. 4.3 shows the plots of the control inputs for different values of σ .

The system’s response becomes faster with increase in the value of σ as shown in Fig. 4.2.
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FIGURE 4.3: Effect of chane in tuning parameter σ on control inputs

However, at the same time, the magnitudes of the control inputs increase as shown in Fig. 4.3.

Therefore, the tuning parameter σ gives a trade-off between the speed of the resulting closed-

loop response and the magnitude of the control inputs. Although a fast response is desirable,

too large input magnitudes are not desirable from a practical viewpoint. Therefore, σ should

be chosen to achieve a good compromise between the speed of the system’s response and the

magnitudes of the control inputs.
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4.2.3.2 Effect of Change in D

It is observed that, for a fixed value of σ and other parameters, a change in the matrix D does

not have a significant effect on the closed-loop response. It can also be seen from Eq. (3.16) that

the feedback gain matrix K does not depend on D. Only the quadratic weights are dependent on

D as shown in Eqs. (4.11), (4.13) and (4.16). Thus, the main function of the matrix D is to give

the quadratic weights the desired form and also to control their magnitudes.

4.2.3.3 Effect of Change in V on Closed-loop Response and Control Inputs

Simulations are also performed to study the effect of change in the parameter V on the closed-

loop response and the control inputs. It is observed that this parameter affects the transient

response as well as the magnitudes of the control inputs as shown in Fig. 4.4 and Fig. 4.5.
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FIGURE 4.4: Effect of change in V on closed-loop response
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FIGURE 4.5: Effect of change in V on control inputs

Simulations are performed for different matrices V while keeping all other parameters con-

stant. The tuning parameter σ is equal to 0.05 for these simulations. Here, plots are shown for

V =Vi, i = 1,2,3, where

V1 =

[
1 0

0 1

]
, (4.29)

V2 =

[
2 0

0 3

]
, (4.30)

and

V3 =

[
1 −3

√
3

3
√

3

]
. (4.31)

As long as the matrix V is diagonal, irrespective of its diagonal entries, the closed-loop

response is the same for different V . The same is observed for the plots of the control inputs.

This is because a diagonal V commutes with a diagonal Σ, meaning that it does not affect the

feedback gain matrix K because of the product term V−1ΣV in Eq. (3.16). However, if V is not

diagonal, the effect becomes significant and visible and affects the transient response as shown

in Fig. 4.4. The nondiagonal matrix V3 also causes an increase in the magnitude of the control
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input u1 and a decrease in the magnitude of the control input u2 as shown in Fig. 4.5. This

means that the off-diagonal entries in V affect the closed-loop response and the magnitude of

the control inputs. To study the effect of each off-diagonal entry, simulations are performed by

adding one off-diagonal element to V1 = I, while keeping the other off-diagonal element equal

to zero. For this control problem, V is a nonsingular 2×2 real matrix, which we denote as

V =

[
v11 v12

v21 v22

]
. (4.32)
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FIGURE 4.6: Effect of change in the off-diagonal entry v12 on closed-loop response
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For these simulations, v11 and v22 are kept constant and equal to 1.

Case 1: Effect of Change in v12 while keeping v21 = 0

First of all, the effect of adding a nonzero v12 is observed by keeping v21 equal to 0. Fig-

ure 4.6 shows the effect of v12 on the closed-loop response. Increasing the value of v12 causes an

increase in the undershoot in the plot of state x1, whereas it does not have a significant effect on

states x2 and x3. The effect of v12 on the control inputs is shown in Fig. 4.7. Increasing the value

of v12 results in a decrease in the magnitude of u1 at the start and then a larger overshoot before

converging to the desired reference point. If the value of the off-diagonal element v12 is too large

compared with the diagonal entries, it results in a violation of the constraint on input u1. Thus,

we should either avoid choosing too large values of v12 or use stricter criteria to penalize the

constraint on input u1. For this control problem, the off-diagonal entry v12 of matrix V can be
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FIGURE 4.7: Effect of change in the off-diagonal entry v12 on control inputs
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used to change the response of state x1 and magnitude of control input u1, as shown in Fig. 4.6

and Fig. 4.7, respectively.

Case 2: Effect of Change in v21 while keeping v12 = 0
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FIGURE 4.8: Effect of change in the off-diagonal entry v21 on closed-loop response
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The next step is to study the effect of adding a nonzero v21 and keeping v12 equal to 0.

Figure 4.8 shows the effect of v21 on the states, whereas Fig. 4.9 shows its effect on the control

inputs. As is clear from Fig. 4.8, v21 does not have a significant effect on state x1; however it

does affect states x2 and x3. Increasing the value of v21 causes an increase in the height of the

overshoot in the plot of state x2 and a large undershoot in the plot of state x3. The parameter

v21 has no effect on control input u1; however, it causes an increase in the magnitude of control

input u2 as shown in Fig. 4.9.

The simulation results shown in Fig. 4.6, Fig. 4.7, Fig. 4.8 and Fig. 4.9 demonstrate the

effect of change in off-diagonal entries of matrix V on state variables and control inputs. The

off-diagonal entries of matrix V can be used to change the response of some particular state and

magnitude of some particular control input while not affecting the response of all other states

and magnitude of all other control inputs.
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FIGURE 4.9: Effect of change in the off-diagonal entry v21 on control inputs
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4.2.3.4 Effect of Change in Horizon Length on Closed-loop Response and Control Inputs

For the previous simulation results, horizon length T is kept equal to fifty seconds. Simulations

are also performed to study the effect of change in horizon length on the closed-loop response

and control inputs. For these simulations, σ is kept equal to 0.01. It is observed that for this

system, there is no significant effect of change in horizon length on the state variables as shown

in Fig. 4.10. However, change in horizon length does affect the magnitudes of control inputs.

For small horizon lengths, there is no significant effect on control inputs. However, increase
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FIGURE 4.10: Effect of change in horizon length on closed-loop response
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in the horizon length after some certain value has a little effect on the initial magnitudes of the

control input. For the coupled three tank system, increase in horizon length after some certain

value causes a decrease in the initial magnitudes of the control inputs as shown in Fig. 4.11.

Since change in horizon length affects only the initial magnitudes of the control inputs and after

that magnitudes are almost same for all horizon lengths, Fig. 4.10 and Fig. 4.11 show only the

initial part of the trajectories of closed-loop response and control inputs, respectively.



Chapter 4. Tuning of Performance Index in Nonlinear Model Predictive Control 35

4.2.3.5 Special Case of Desired Reference Level for State Lying at the Boundary of the
Constraint

Now we consider a special case in which the state x2 reaches the maximum allowable value.

To demonstrate this case, different equilibrium point has been used. For these simulations, the
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FIGURE 4.12: State x2 achieving maximum allowable value
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desired reference level for state and input variables are as follows:

x∗ = [ 6.9541 25 6.9541 ]T , (4.33)

u∗ = [ 47 10.2179 ]T . (4.34)

All other parameters are same as for the simulation results shown in Fig. 4.2 and Fig. 4.3.

Figure 4.12 shows the response of the closed loop system and Fig. 4.13 shows the control inputs.

It is clear from Fig. 4.12 that proposed tuning method is efficient to achieve the desired reference

for a state even if the constraint for that state variable is active.
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FIGURE 4.13: Control inputs for the case x2 reaching maximum

The above simulation results show that we have two very important tuning parameters. One

is the parameter σ , that gives a trade-off between the speed of the closed-loop response and the

magnitude of the control inputs. The other is the matrix V , whose off-diagonal entries can be
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tuned appropriately to obtain the desired transient response and to adjust the magnitude of the

control inputs.

4.3 Summary

In this chapter, we proposed the use of the ILQ regulator design method for tuning the quadratic

weights in the performance index of NMPC. This tuning approach is very effective in the sense

that the speed of the closed-loop system’s response and the magnitude of the control inputs can

be adjusted by changing a single tuning parameter σ . This method also provides some other

free parameters. Some of these parameters affect the closed-loop response and others are used

only to obtain appropriate values for the quadratic weights. Although the quadratic weights in

the performance index of NMPC have been computed using the ILQ regulator design method

which uses the linearized model, these weights are then used in NMPC algorithm which uses the

nonlinear model and takes into account all the constraints on states and inputs. Therefore, the use

of the linearized model for computing the quadratic weights does not cause any cost degradation

in NMPC, and the error between the linearized model and nonlinear model does not deteriorate

the performance of NMPC. Quadratic weights computed using linearized model work well for

nonlinear model as shown in simulation results. This is because of the fact that these weights are

tuned through numerical simulations for nonlinear model in NMPC. This approach is effective

even if reference point of some state is exactly at the boundary of the constraint on that state.





Chapter 5

Extension of Tuning Method for
Parameter-Dependent Systems and its
Application to Speed Control of Spark
Ignition Engine

5.1 Problem Formulation and Design Objective

The problem of systematic tuning of the performance index becomes more challenging if the

dynamics of the process under consideration are not fixed; rather they are dependent on some pa-

rameters. In this chapter, we extend our tuning approach for NMPC of the parameter-dependent

systems. Often, the dynamics of the systems are dependent on some parameters that are known

but their values can vary. We describe how to select the main tuning parameter in our tuning

approach in Chapter 4 to suppress the effect of parameters on the closed-loop response.

First of all, we redefine NMPC problem for parameter-dependent nonlinear systems. Con-

sider a nonlinear system governed by the following nonlinear state equations:

ẋ(t) = f (x(t),u(t), p), (5.1)

where x(t) and u(t) denote the n-dimensional state and m-dimensional input vectors, respec-

tively, and p denotes the known parameter that is constant over the horizon. However, it is not

fixed; i.e., it may change from one constant value to another constant value. The performance

index to be minimized is given by

J = ϕ(x(t +T ), p)+
∫ t+T

t
L(x(τ),u(τ), p)dτ, (5.2)

39
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where T is the horizon length and time from current time t to time t+T is termed as prediction

horizon. The terminal penalty function ϕ(x(t +T ), p) is given by

ϕ(x(t +T ), p) =
1
2
(x(t +T )− x∗(p))T P(σ)(x(t +T )− x∗(p)), (5.3)

and the integral part of the performance index is given by,

L(x(t),u(t), p) =
1
2
(x(t)− x∗(p))T Q(σ)(x(t)− x∗(p))+

1
2
(u(t)−u∗(p))T R(σ)(u(t)−u∗(p))

+piec(x(t),u(t), p). (5.4)

x∗(p) and u∗(p) are the desired references for the state and input variables, respectively. Equal-

ity constraints are given by Eq. (2.3) and inequality constraints are handled as explained in

Section 2.2.

5.2 Computation of Parameter-Dependent Main Tuning Parame-
ter

In the absence of the parameter p, any σ > σlb can be picked up to tune the quadratic weights

in NMPC to achieve a reasonable trade-off between speed of the closed-loop system’s response

and magnitude of the control input. Since nonlinear dynamics given by Eq. (5.1) depend on

parameter p, system matrices of the linearized model are also dependent on p. This means for

a fixed tuning parameter σ > σlb, if the value of the parameter p changes, closed-loop response

will also change, which is not desirable from a practical viewpoint. In order to suppress the

effect of change in p on closed-loop response, we need to choose σ as a function of p such that

closed-loop response is almost insensitive to variation in p.

To obtain the linear model, the nonlinear model given by Eq. (5.1) is linearized at an equi-

librium point (x∗(p),u∗(p)). Then, the linearized model can be expressed as follows:

δ̇x(t) = A(p)δx(t, p)+B(p)δu(t, p), (5.5)

where A(p) and/or B(p) depend on the parameter p and,

f (x∗(p),u∗(p), p) = 0, (5.6)

δx(t, p) = x(t)− x∗(p), (5.7)

δu(t, p) = u(t)−u∗(p), (5.8)

A(p) =
∂ f
∂x

(x∗(p),u∗(p), p), (5.9)



Chapter 5. Extension of Tuning Method for Parameter-Dependent Systems and its Application
to Speed Control of Spark Ignition Engine 41

B(p) =
∂ f
∂u

(x∗(p),u∗(p), p). (5.10)

Since nonlinear dynamics given by Eq. (5.1) depend on the parameter p, it is obvious that

linearized model is also dependent on it. For the sake of simplicity, we often omit explicit

mention of it.

Let F(σ , p) denote the closed-loop system matrix given by

F(σ , p) := A(p)−B(p)K(σ), (5.11)

where K is the feedback gain matrix given by Eq. (3.16). F can also be expressed as

F(σ , p) = A(p)−σB(p)K̂M(p), (5.12)

where

K̂ :=V−1
ΓV [F1 Im], (5.13)

and M(p) is a similarity transformation such that

M(p)B(p) =

[
0

Im

]
. (5.14)

Let A0 and B0 denote the system matrices for the case when p = p0 and F0 denote the

closed-loop system matrix for some σ = σ0 > σlb and p = p0. Then, F0 is given by

F0 := F(σ0, p0) = A0−σ0B0K̂M0, (5.15)

where M0 is a similarity transformation such that

M0B0 =

[
0

Im

]
. (5.16)

Next we propose two methods to compute the value of σ so that the effect of change in parameter

p on closed-loop response is negligible [44].

5.2.1 Method 1

Choose σ = σ∗(p) in such a way that trace of the closed-loop system matrix for the linearized

system remains constant, i.e.

tr(F(σ∗(p), p)) = tr(F0), (5.17)
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where tr denotes trace. Using properties of trace of a matrix [85] and Eq. (5.12),

tr(F(σ∗(p), p)) = tr(A(p))−σ
∗(p)tr(B(p)K̂M(p)). (5.18)

Using Eqs. (5.17) and (5.18), we get

σ
∗(p) =

tr(A(p))− tr(F0)

tr(B(p)K̂M(p))
, (5.19)

As trace of a square matrix is defined to be the sum of its diagonal entries and it is equal to the

eigenvalues of that matrix, keeping the sum of eigenvalues of F constant may preserve some

properties of closed-loop response depending on which parts of system matrices are affected by

p. If the parameter p does not appear in the diagonal entries of F , this means trace of F will

remain constant irrespective of the change in the value of p. In that case, Eq. (5.19) will give

the same value of σ∗(p) for all values of p.

5.2.2 Method 2

Now we propose a more strict criterion for the selection of σ in order to minimize the effect of

change in p on closed-loop response.

Based on the value of p, choose σ = σ∗(p) such that Frobenius norm of F −F0 is mini-

mized, i.e.,

σ
∗(p) = argminσ‖F(σ , p)−F0‖F . (5.20)

Let

A1(p) := A(p)−F0, (5.21)

and

B1(p) := B(p)K̂M(p). (5.22)

Then,

‖F(σ , p)−F0‖2
F = ‖A1(p)−σB1(p)‖2

F

= tr
(
(A1−σB1)

T (A1−σB1)
)
. (5.23)
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Using the fundamental properties of trace of matrices, Eq. (5.23) can be written as follows:

‖A1−σB1‖2
F = tr(A1

T A1)−2σ tr(A1
T B1)

+ σ
2tr(B1

T B1). (5.24)

Since Eq. (5.24) is quadratic in σ and the coefficient of σ2 is always positive, its stationary point

will be a global minimum. In order to find the value of σ which minimizes ‖F(σ , p)−F0‖2
F ,

we need to solve the following equation:

d(‖F(σ , p)−F0‖2
F)

dσ
= 0. (5.25)

This implies that

−2tr(A1
T B1)+2σ tr(B1

T B1) = 0. (5.26)

Solving this equation for σ , we get;

σ
∗(p) =

tr(A1(p)T B1(p))

tr(B1(p)T B1(p))
, (5.27)

where A1 and B1 are given by Eqs. (5.21) and (5.22), respectively. The effectiveness of choosing

σ∗(p) using Eq. (5.27) is shown in simulation results.

5.3 Outline of Tuning Algorithm for Parameter-Dependent Systems

In this section, we briefly describe the procedure of tuning the quadratic weights for NMPC of

parameter-dependent systems.

(i) First, linearize the nonlinear model at an equilibrium point as described in Eqs. (5.5) –

(5.10).

(ii) Partition the linearized model as shown in Eqs. (3.14) and (3.14).

(iii) Choose n−m stable poles distinct from the eigenvalues of A11.

(iv) Determine the parameter F1 using the algorithm given in Ref. [42]. Choose any arbitrary

nonsingular matrix V of order m and positive diagonal matrix Γ of order m. Determine the

lower bound σlb of σ using the sufficient conditions for optimality [42].

(v) Choose any σ0 greater than the lower bound σlb.

(vi) Compute F0 using Eq. (5.15).
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(vii) Compute σ∗(p) using Eq. (5.19) or Eq. (5.27).

(viii) Compute the feedback gain matrix using Eq. (3.16).

(ix) Determine the quadratic weights R, P and Q using Eqs. (4.11), (4.13) and (4.16), respec-

tively.

(x) Use these quadratic weights in the performance index of NMPC given by Eqs. (5.2).

(xi) Solve the NMPC problem for the nonlinear model given by Eq. (2.1) and check the plots

of the closed-loop response and the control inputs.

(xii) Terminate the algorithm.

5.4 Speed Control of Spark Ignition Engine

In this section, we apply our tuning approach for NMPC of parameter-dependent systems to

the speed control of SI engines, which is a very important problem from a practical viewpoint.

SI engine is a complicated nonlinear dynamical system and a lot of work has been done for its

speed control problem. However, it is still an active area of research due to increasingly stringent

regulatory and customer demands. A better speed control strategy can improve fuel economy

and comfort. Researchers have investigated engine speed control problem using classical linear

control techniques as well as advanced nonlinear control techniques [86, 87]. These techniques

include PID control [88], fuzzy logic control [89], adaptive fuzzy logic control, H∞ control

[90, 91] and sliding mode control [92].

5.4.1 Mean-value Model of Spark Ignition Engine

SI engine is a complicated nonlinear dynamical system and its modeling is a difficult task due

to its time varying dynamic characteristics. A good model is based on the physical phenomenon

and make use of fundamental laws of thermodynamics, fluid mechanics and rotational dynamics.

In the last three decades, the mean-value model (MVM) of SI engine has attained significance

importance in automotive industry and a lot of research has been done to improve the mean-

value modeling [93–95]. An MVM is a continuous control oriented model, i.e., the input-output

behavior of the system is modeled with reasonable precision but low computational complexity,

and the discrete cycles of the engine are neglected [94].

The sketch of a typical engine system is shown in Fig. 5.1. The fresh air enters the intake

manifold through the throttle. Let ṁth(g/s) denote the air mass flow rate entering the input

manifold through the throttle. Let ṁcyl(g/s) denote the air mass flow rate entering the cylinder.
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The air mass flow rate ṁth passing through the throttle depends on the throttle valve opening

φ(deg) and input manifold pressure pm(bar). The air in the intake manifold is charged into the

cylinder during the intake stroke and the fuel is injected into the cylinder directly in the case of

direct injection engines. After that, the air-fuel mixture is compressed in the compression stroke

and ignited for combustion. The torque is generated during the combustion phase, mainly in the

expansion stroke, which acts on the crankshaft rotational motion. The burnt gas is exhausted

into the exhaust manifold.

Exhaust ValveIntake Valve

Intake Manifold

Air

Piston

Crankshaft

Spark

Fuel Injector

Throttle

Exhaust Manifold

Connection Rod

ωe 

pm 

Tm

FIGURE 5.1: The sketch of a spark ignition engine system

Engine model for speed control usually includes dynamics of crankshaft rotation and air

intake.

5.4.1.1 Crankshaft Rotational Dynamics

Let ωe(rad/s) and τl(Nm) denote the engine speed and load torque, respectively. Using New-

ton’s second law of rotational motion, the dynamics of crankshaft rotational motion can be

described as follows [94, 95]

Jeω̇e = a1 pm−a2−drωe− τl, (5.28)

where where Je(kg.m2) is the crank inertia moment, a1 and a2 are the constants that are depen-

dent on physical parameters of engine, and dr is the rotational friction constant.
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5.4.1.2 Air Intake Dynamics

The intake manifold can be considered as a constant volume container. Using law of conserva-

tion of mass and energy, and ideal gas law, air intake dynamics can be described as follows [94]:

ṗm =
RTm

Vm

(
ṁth− ṁcyl

)
, (5.29)

where R(J/(Kg.K)) is the universal gas constant, and Tm(K) and Vm(m3) denote the input man-

ifold temperature and volume, respectively. Since the air mass flow rate passing through the

throttle can be measured, it can be considered as a control input. Let us denote it by ut , i.e.,

ut = ṁth. (5.30)

For a four-stroke engine, the air mass flow rate leaving the manifold is represented as follows

[94]

ṁcyl =
ρaηVd

4π pa
pmωe, (5.31)

where ρa(kg/m3), η , Vd(m3) and pa(bar) denote the density of the air at the engine’s intake,

volumetric efficiency of the engine,engine displaced volume and atmospheric pressure, respec-

tively. Substituting Eqs. (5.30) and (5.31) into Eq. (5.29), we get;

ṗm = a3ut −a4 pmωe, (5.32)

where

a3 =
RTm

Vm
, (5.33)

and

a4 =
RTmρaηVd

4π paVm
. (5.34)

Equations (5.28) and (5.32) represent a simple mean-value model of an SI engine describ-

ing its key dynamical behavior. For more details on the engine model, [94] can be seen. To

perform simulations, data is obtained for a 3.5L SI engine with six cylinders [96]. Maximum

value of the manifold pressure pm can be equal to the atmospheric pressure, i.e., one bar. Min-

imum value of the manifold pressure pm is equal to 0.2 bar. Table 5.1 shows the values of the

engine parameters for engine speed from 1000 rpm to 2000 rpm. For this speed range, minimum

value of ut is 9.64 grams per second and maximum value of ut is 96.7 grams per second.

Let

Te = a1 pm−a2− τl, (5.35)
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TABLE 5.1: Values of the Engine Parameters

Parameters Values
Je 0.5923
dr 0.1219
a1 280.8404
a2 43.2809
a3 0.1352
a4 0.2064

where Te(Nm) is the engine torque. The load torque serves as parameter p in the mean-value

model of SI Engine, i.e.,

p = τl. (5.36)

We assume that load torque τl is zero or attains some constant value which can be changed.

Therefore, we have

Ṫe = a1 ṗm. (5.37)

Using Eqs. (5.35) and (5.37), mean-value model can be rewritten as follows:

ω̇e =
Te

Je
− dr

Je
ωe, (5.38)

Ṫe = a1a3ut −a4ωeTe−a4ωeτl−a2a4ωe. (5.39)

State-space representation of the above mean-value model is:

ẋ1 = −dr

Je
x1 +

1
Je

x2, (5.40)

ẋ2 = −a4(a2 + τl)x1−a4x1x2 +a1a3ut , (5.41)

where x1 and x2 are the state variables representing the engine speed in radians per second and

engine torque in Newtons meters, respectively. ut is the input variable representing the air mass

flow rate through throttle.

5.4.2 Constraints and Control Objective

For this control problem, constraints on the state and input variables can be represented in the

mathematical form as follows:

100π/3≤ x1(rad/s)≤ 200π/3, (5.42)

12.8871≤ x2(Nm)≤ 237.5591, (5.43)

9.64≤ ut(g/s)≤ 96.7. (5.44)
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The desired references for the state and input variables are as follows:

x∗ = [ 157.08 19.148 ]T , (5.45)

u∗ = 53.3. (5.46)

The control objective is to achieve the desired engine speed ωd such that all the state and

input constraints, given by Eqs. (5.42) – (5.44) are satisfied.

5.4.3 Cost Function and its Tuning

To tune the quadratic weights in the performance index of NMPC for the speed control of SI

Engine, its state-space model given by Eqs. (5.40) and (5.41) is linearized at the desired refer-

ence levels for state and input variables. Then LQ regulator is designed using the ILQ regulator

design approach. After that, quadratic weights are determined as explained in Chapter 4. Finally

these quadratic weights are used in the performance index of NMPC, and NMPC algorithm is

applied to the nonlinear state-space model of SI engine. The system matrices of the linearized

model are given as follows:

A =

[
−dr

Je

1
Je

−a4(a2 + τl + x∗2) −a4x∗1

]
, (5.47)

B =

[
0

a1a3

]
, (5.48)

where

x∗1 = ωd , (5.49)

and x∗2 is the reference value for engine torque which can be described as

x∗2 = drωd . (5.50)

In the absence of load torque disturbance, state-space model given by Eqs. (5.40) and (5.41)

is fixed. Therefore, performance index can be tuned by following the algorithm given in Sec-

tion 4.1. If load torque is also present, and its value changes from one constant level to another

constant level, reference level for control input will increase and closed-loop response will also

be affected. In order to suppress the effect of change in parameter p = τl , we need to tune the

main tuning parameter σ using Eq. (5.19) or Eq. (5.27). Since B does not depend on the parame-

ter τl , therefore M-transformation is constant and does not change with change in τl . Since trace

of a square matrix is equal to sum of elements in its main diagonal, trace of matrix A is fixed for

all values of τl as can be seen in Eq. (5.47). This means σ∗(p) computed using Eq. (5.19) will
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be the same for all values of τl . Simulations results show the comparison of two methods for

computing σ∗(p).

5.4.4 Simulation Results

The NMPC problem is solved using C/GMRES algorithm [9]. Simulations are performed us-

ing the automatic code generator AutoGenU [84], which generates an executable C-file. The

quadratic weights in the performance index of NMPC are determined by applying the inverse

optimality conditions on the ILQ requlator designed for the linearized model of SI Engine.

However, these quadratic weights give satisfactory results even for the nonlinear model given

by Eqs. (5.40) and (5.41). For this control problem, the lower bound of σ is σlb = 0.9621×10−5,

which is determined using the ILQ method.

5.4.4.1 Effect of Change in Main Tuning Parameter σ on Closed-loop Response and Con-
trol Inputs

First of all, it is assumed that τl is equal to 0 and simulations are performed to study the effect of

change in main tuning parameter σ on closed-loop response and control input. Figure 5.2 shows

the effects of change in the main tuning parameter σ on speed of the closed-loop system’s

response and magnitude of the control input [97]. Plot of engine speed is shown in revolutions

per minute (rpm), as it is most commonly used unit for engine speed. For these simulations,

desired engine speed is 157.08 radians per second, i.e., 1500 revolutions per minute. Dotted line

in each plot shows the desired reference level for that state/input variable. System’s response

becomes faster with increase in the value of σ , that is a good thing from a practical viewpoint.

However, at the same time, the magnitude of the control input increases as shown in Fig. 5.2.

Therefore, the tuning parameter σ gives a trade-off between the speed of the resulting closed-

loop response and the magnitude of the control input. Although a fast response is desirable,

too large input magnitudes are not desirable from a practical viewpoint. Therefore, σ should

be chosen to achieve a good compromise between the speed of the system’s response and the

magnitude of the control input.

For these simulations, we need not to introduce any dummy inputs to incorporate the in-

equality constraints given by Eqs. (5.42) – (5.44) as the plots of all the state and input variables

remain within permissible bounds, i.e., constraints on state and input variables are satisfied.
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FIGURE 5.2: Effect of tuning parameter σ on closed-loop response and control input

5.4.4.2 Effect of Change in the Parameter p = τl on Closed-loop Response and Control
Inputs

Next the effect of change in the value of parameter τl on closed-loop response is studied. For all

these simulations, the value of σ is kept equal to 0.01. Figure 5.3 shows the effect of change in

τl on transient response of the state variables. These simulation results correspond to the use of

Method 1 for computation of σ∗(p). Since trace of matrix A(p) does not depend on p, therefore

Method 1 is not so efficient in this case and the effect of change in τl on closed-loop response is
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FIGURE 5.3: Effect of load-torque on closed-loop response and control input

not negligible. Transient response of the state variables is affected by change in the value of τl

and the required reference level for control input also increases with increase in τl .

Method 1 for computation of σ∗(p) is based on keeping the trace of the closed-loop system

matrix fixed. Since trace of the closed-loop system matrix is equal to the sum of its eigenvalues,

keeping the trace fixed may preserve some properties of the closed-loop response and may help

to suppress the effect of change in the parameter p on the closed-loop response. Since trace of a

matrix is equal to the sum of its diagonal entries, Method 1 can be used effectively only for the

systems in which parameter p appears in the diagonal entries of the closed-loop system matrix.
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5.4.4.3 Suppression of Effect of Change in the Parameter p = τl on Closed-loop Response
and Control Inputs
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FIGURE 5.4: σ∗(p) suppressing the effect of load-torque

Finally, simulations are performed to show the effectiveness of selecting σ∗(p) using

Eq. (5.27) and results are shown in Fig. 5.4. For these simulations,

σ0 := 0.01 >> σlb = 0.9621×10−5. (5.51)
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For the case of parameter-dependent σ , σ0 can be denoted as follows:

σ0 = σ
∗(p0), p0 = 0. (5.52)

For this problem, p0 = 0. As is clear from Fig. 5.4, now the effect of change in τl on closed-

loop response is negligible. This shows that the proposed method for tuning σ for parameter-

dependent systems works well. Moreover, initial values of control input have also reduced.

Since change in the value of the load torque τl , that is considered as the parameter p, causes

change in the dynamics of the system, therefore σlb(p), the lower bound of σ for each p will be

different. Although the computation of σlb(p) is done offline and it does not require so much

time, we have selected σlb the same for all values of p, i.e.,

σlb = σlb(p0) = 0.9621×10−5. (5.53)

This is due to the fact that for this problem, increase in the value of the parameter p causes a

decrease in the value of σlb(p) as shown in Fig. 5.5(a), i.e.,

σlb(p0)> σlb(p), (5.54)
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for all p > p0 as shown in Fig. 5.5(b). Therefore, for this control problem, σlb(p0) can be

considered as the lower bound of σ for all the values of p. Figure 5.5(c) shows the values of

σ∗(p) for different values of p and Fig. 5.5(d) shows that σ∗(p)> σlb(p). σlb(p) can be made

smaller by increasing the value of Γ.

5.4.4.4 Effect of Change in Horizon Length on Closed-loop Response and Control Input

For the above simulation results, horizon length T is kept equal to 0.01 second. Simulations

are also performed to study the effect of change in horizon length on the closed-loop response
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and control inputs. For these simulations, σ is kept equal to 0.01. It is observed that for this

system, there is no significant effect of change in horizon length on the state variables as shown

in Fig. 5.6. However, change in horizon length does affect the magnitudes of control inputs. For

small horizon lengths, there is no significant effect on control inputs. However, increase in the

horizon length after some certain value has a little effect on the initial magnitudes of the control

input. For the speed control of nonlinear mean-value model of SI engine, increase in horizon

length after some certain value causes an increase in the initial magnitudes of the control input as

shown in Fig. 5.6. More the horizon length, more quickly control input rises to a large magnitude

and then it decreases. Since change in horizon length affects only the initial magnitudes of the

control inputs and after that magnitudes are almost same for all horizon lengths, Fig. 5.6 shows

only the initial part of the trajectories of closed-loop response and control inputs.

5.5 Summary

In this chapter, the quadratic performance index of NMPC is tuned by using the ILQ method.

This approach is very effective and the speed of closed-loop system response and magnitude

of the control input can be adjusted using a single tuning parameter σ . The tuning algorithm

is extended to NMPC control of parameter-dependent systems and two methods are proposed

to tune parameter-dependent main tuning parameter σ = σ∗(p). Method 1 is based on keeping

the trace of closed-loop system matrix fixed and Method 2 computes σ∗(p) so that Frobenius

norm of F−F0 is minimized. This tuning approach is applied to control the speed of SI engine

which is one of very important practical problems in automotive industry. A nonlinear MVM is

used for this purpose. Simulation results shows that Method 2 is more effective and if σ∗(p) is

computed using Method 2, the effect of change in load torque on the transient response becomes

negligible.





Chapter 6

Conclusions

In this thesis, we proposed the use of the ILQ regulator design method for tuning the quadratic

weights in the performance index of NMPC. This approach is very effective and the speed of

the closed-loop system response and the magnitude of the control inputs can be adjusted using

a single tuning parameter σ . This method also provides some other free parameters. Some of

these parameters affect the closed-loop response and others are used only to obtain appropriate

values for the quadratic weights.

Although the quadratic weights in the performance index of NMPC have been computed

using the ILQ regulator design method which uses the linearized model, these weights are then

used in NMPC algorithm which uses the nolinear model and takes into account all the con-

straints on states and inputs. Therefore, the use of the linearized model for computing the

quadratic weights does not cause any cost degradation in NMPC, and the error between the lin-

earized model and nonlinear model does not deteriorate the performance of NMPC. Quadratic

weights computed using linarzied model work well for nonlinear model as shown in simulation

results. This is because of the fact that these weights are tuned through numerical simulations

for nonlinear model in NMPC. This approach is effective even if reference point of some state

is exactly at the boundary of the constraint on that state. Effectiveness of the tuning algorithm is

elaborated by applying it to NMPC control of water levels in a nonlinear CTTS.

After that, tuning algorithm is extended for NMPC of parameter-dependent systems. Two

methods are proposed to tune σ = σ∗(p) for the case of parameter-dependent system. Method

1 is based on keeping the trace of closed-loop system matrix fixed and Method 2 computes

σ∗(p) so that Frobenius norm of F−F0 is minimized. The extended tuning algorithm is applied

to the speed control of nonlinear mean-value model of spark ignition (SI) engines which is a

very important practical problem. The effectiveness of tuning the parameter-dependent tuning

parameter is elaborated in simulation results. Load torque is considered as a parameter and the

effect of change in its value is suppressed by tuning the parameter-dependent tuning parameter

57
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using the proposed method. Simulation results shows that Method 2 is more effective and if

σ∗(p) is computed using Method 2, the effect of change in load torque on the transient response

becomes negligible.

The tuning algorithm proposed in this thesis provides a systematic way of tuning the

quadratic weights in NMPC. The speed of the closed-loop response and magnitude of the con-

trol inputs can be adjusted by changing a single tuning parameter σ which is a scalar positive

number. The tuning algorithm is extended for NMPC of parameter dependent systems. The

parameter is considered to be known and constant over the horizon. However, it is not fixed, i.e.,

it may change from one constant value to another constant value.

There are some mild assumptions for the systems for which this tuning algorithm can be

used. One assumption is that n > m, where n is the number of state variables and m is the num-

ber of input variables. Another assumption is that (A,B) of the linearized model is controllable.

In future, the tuning algorithm can be further extended to suppress the effect of time-dependent

parameters. Algorithm may also be extended for NMPC control of models with structured un-

certainties.
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