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Abstract

When a quiescent gas enclosed by a wall is subjected to temperature gradient,
it may become unstable and begin to oscillate spontaneously in spite of the dif-
fusive effects by viscosity and thermal conductivity. This phenomena are called
thermoacoustic ones, in which interconversion between mechanical and thermal en-
ergy is taking place. Recently, much attention has been paid to heat engines using
the phenomenon, in particular, to the heat engines exploiting a gas-filled, looped
tube. Main features of this engine are in emergence of a traveling wave transporting
acoustic energy flux, and yielding higher efficiency than a heat engine exploiting a
standing wave. However, because physical mechanisms occurring in the engine are
not well understood, it is difficult but important not only to identify marginal con-
ditions for the onset of oscillations but also to quantify the phenomena, especially,
in order to construct large-scaled engines.

This thesis deals with the marginal conditions based on the thermo- acoustic-
wave equation and clarifies quantitatively the marginal state of oscillations. This
equation is derived in the linear framework and based on the narrow-tube approxi-
mation that a typical span length is much smaller than a typical axial length. While
Rott’s equation in a frequency domain is well known in thermoacoustics and use-
ful in deriving marginal conditions, the thermoacoustic-wave equation corresponds
to the equation expressed in the space- and time-domain and enables to solve a
transient behavior of an initial disturbance. The equation may be approximated by
the ratio of a thickness of thermoviscous diffusion layer to a span length of a gas
passage.

Before deriving marginal conditions, effects of heat conduction in a wall are
examined on the thermoacoustic-wave equation, though the effects are usually re-
garded as being negligible. It is revealed that the effects have no substantial influence
in the case of thin diffusion layer, whereas they give rise to substantial influence in
the case of thick diffusion layer. However, it is also revealed that the effects in-
troduce no new terms so that their effects may be taken into account by adjusting
the coefficients of the approximate equation for the thick diffusion layer. Using the
approximate equations for thick and thin diffusion layers, attempt is made to derive
analytically marginal conditions for a gas in a looped tube with a stack which con-
sists of many pores axially inserted. For plausible temperature distributions along
the stack and the buffer tube, analytical solutions are obtained and a frequency
equation is derived. Seeking a real solution for a frequency, marginal conditions are
obtained numerically. By using the conditions, marginal states of oscillations are
obtained. Finally the marginal conditions are checked against the ones derived by
solving Rott’s equation numerically. It is shown that the approximate equations
can give the conditions and the marginal state of oscillations adequately. As this
comparison implies, it is concluded that the approximate equations simplify the
complicated Rott’s theory and clarify physical mechanisms involved in the ther-
moacoustic phenomena.
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1 Introduction

It happens that a gas enclosed by a wall with temperature gradient axially begins to
oscillate in spite of diffusive effects by the viscosity and the thermal conductivity of the
gas. Such phenomena are called thermoacoustic ones. The representative example is
Taconis oscillation (Taconis et al. (1949)). This phenomenon occurs when a narrow tube
with one end open is inserted to a dewar and the open end approaches the surface of
liquid helium, the gaseous helium in the tube begins to oscillate spontaneously. This is
merely an example of thermoacoustic phenomena so these may be happen even in the
region other than the low temperature one.

Essence of the phenomena is in the interconversion between the thermal energy and
kinematic one. Because energy of gas oscillations is supplied by ambient heat source,
energy conversion takes place from thermal energy to mechanical one. This is the very
action of a prime mover. On the contrary, when a gas is subjected to forced oscillations,
it happens that a heat flux flows against a temperature gradient along the tube wall. This
is the very action of the heat pump.

Recently application of thermoacoustic phenomena to heat engine has been attempted
(Swift (2002), Garrett (2004)). Especially, thermoacoustic heat engines exploiting a gas-
filled, looped tube have attracted much attention (Yazaki et al. (1998), Backhaus & Swift
(1999), (2000), Yazaki et al. (2002)). Main features are in emergence of a traveling wave
transporting acoustic energy flux, and yielding higher efficiency as a heat engine. Most
of all approaches are experimental ones, by which, however, it is difficult to derive the
marginal conditions of the onset of the gas thoroughly. Therefore it is helpful to derive the
marginal conditions theoretically and the establishment of the theory of thermoacoustics
is required in order to comprehend these phenomena and develop the devices.

Theoretical approach to thermoacoustic phenomena based on fluid dynamics was ini-
tiated by Rott (Rott (1969), (1973)). He derived an equation for a complex pressure
amplitude of the gas under the temperature gradient, which has no limitation of the thick-
ness of diffusion layer to the tube radius. This equation is derived in the linear theory
for a harmonic component under a narrow tube approximation that a typical span length
is much smaller than a typical axial length. Stability analysis of Taconis oscillation was
performed by setting a step temperature distribution to solve the equation analytically in
spite of physical irrelevance of the step. Although observed thermoacoustic phenomena
are nonlinear ones, it is a first step to make a linear stability analysis for an infinitely
small disturbance. The marginal curves are compared with the experimental results later,
and shown to agree quantitatively (Yazaki et al. (1998)). Recently, the boundary-layer
theory is developed in the axial space- and time-domain to this problem by assuming
that the diffusion layer is thinner than the span width, and marginal conditions of the
Taconis oscillations are derived by Sugimoto & Yoshida (2007). It is revealed that the
conditions agree qualitatively with the ones by Rott’s theory. The boundary-layer theory
has also been applied to derive marginal conditions of the Sondhauss tube by Sugimoto
& Takeuchi (2009).

The boundary-layer theory has an advantage in that it may be extended to nonlinear
regime, and it can capture unstable and transient behaviors leading to nonlinear saturation
of oscillations (Sugimoto & Shimizu (2008), Shimizu & Sugimoto (2010), Shimizu et al.
(2012)). Recently, though in linear frame works, a thermoacoustic-wave equation has
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been derived based on the narrow tube approximation [Sugimoto(2010) referred to as
paper I]. This is a one-dimensional wave equation for an excess pressure of the gas in a
two-dimensional channel or a circular tube with temperature gradient and given in the
space- and time-domain, by taking into account the history effect due to diffusion one.

When a single time-harmonic component is considered, the wave equation is reduced
to Rott’s equation. However, because the equation is valid for any temporal behavior than
the harmonic one, it enables to unveil an unstable transient behavior before nonlinearity
sets in. This theory is expected to be extended to nonlinear regime, as in the case of the
boundary-layer theory in which the diffusion layer is thin.

This thesis is organized as follows. The first part deals with effects of heat conduction
in a wall on the thermoacoustic-wave equation. This equation focuses on the gas in one
flow passage and ignores the temperature fluctuation of the wall by assuming that the
heat capacity of the wall is larger than that of gas. However, the actual thermoacoustic
devices exploit a so-called stack consisting of the narrow pores where the wall thickness
is comparable with the span of the flow passage. Then it is expected that the effect of
the thermal conductivity of the solid wall can not be ignored. Therefore, it is necessary
to clarify the effect of thermal conductivity of the wall on the thermoacoustic-wave equa-
tion. Assuming the flow passages are arranged periodically, the temperature variations
in the solid wall are solved simultaneously with the variations in the gas to derive the
thermoacoustic-wave equation. Approximation of the equation is also discussed by the
thickness of diffusion layer to unveil influences of the heat conduction in the wall.

The second part applies the approximate wave equations to derivation of marginal
conditions for the onset of thermoacoustic oscillations of a gas-filled looped tube with
a stack inserted. For the gas in the pore in the stack, the approximate equation for
the thick diffusion layer theory is applied, while for the gas elsewhere, the approximate
theory for the thin diffusion layer theory is employed. Given physically plausible and
mathematically amenable temperature distributions along the loop, analytical solutions
are derived to seek marginal conditions of instability in the gas-filled looped tube.

The last part verifies the marginal conditions obtained in the part 2 against the ones
obtained by solving Rott’s equation, which is assumed to be valid for the gas everywhere
in the looped tube. Because Rott’s equation is difficult to solve analytically for smooth
temperature distributions, it is solved numerically by Runge-Kutta method combined with
a shooting method. It is shown that the marginal conditions obtained by the asymptotic
theories agree with the ones by Rott’s theory.

Usefulness of the asymptotic theories is demonstrated. Although the asymptotic the-
ories cannot cover a whole domain of the thickness of the diffusion layer against a span
length of the flow passage, they are simple and are able to provide insights into mecha-
nisms of thermoacoustic phenomena which cannot be seen in Rott’s theory. In addition,
they allow us to impose an initial-value problem to clarify a transient behavior. The
approaches by the thermoacoustic-wave equation in the space- and time-domain have
advantages over Rott’s theory.
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2 Thermoacoustic-wave equation with effects of heat

conduction in wall

Influences of heat conduction in solid wall on thermoacoustic-wave propagation in gas-
filled channels or tubes subject to temperature gradient axially are examined. Neglecting
the effects, thermoacoustic-wave equation for excess pressure by using the narrow-tube
approximation have been already derived. Effects of heat conduction in wall are regarded
to be negligible because when the heat capacity of the wall is regarded as infinitely large,
no variations in the wall temperature occur irrespective of temperature variations in gas.
This assumption may be relevant usually in the context of classical acoustics.

In recent thermoacoustic devices, however, so-called stacks are exploited (e.g. Swift
(2002)), in which ceramics or polymers are used for wall materials, or a wall thickness
is comparable with a span length of the channels or the tubes. In such a situation, it is
unclear as to whether or not the above assumptions are satisfied fully.

But studies on the effects of heat conduction in wall are not many. Rott Rott (1973)
included the effects of heat conduction. Later Swift (1988) also included them in devel-
oping the linear theory for two-dimensional channels bounded by plates taking account
of finite thickness of them. The effects appear through the square root of product of the
ratio of the heat capacities of the gas to the solid per volume, and the ratio of the thermal
conductivities of the gas to the solid. Because this ratio, denoted by ε, is usually very
small of order, the effects were considered to be negligible.

It is seen in Swift’s theory (1988) in a frequency domain that the effects of heat
conduction in the wall introduce a following factor to Rott’s equation

{1 + ε tanh[H(−iω/κe)
1/2]/ tanh[d(−iω/κs)

1/2]}−1,

where H and d denote, respectively, half the width of the channel and of the solid wall,
and κe and κs denote, respectively, the thermal diffusivities of the gas and of the solid,
ω being a typical angular frequency and i imaginary unit. For a small value of ε, it
appears to be appropriate to expand the factor asymptotically in terms of ε and to take
account of its first-order effects. But because the factor has poles in a complex plane of
the frequency, there arises non-uniformity in the expansion, depending on values of d/H
and κe/κs. This implies a sort of resonance occurs. In this case, effects may not be within
the order ε.

We examine the effects of heat conduction in solid wall on thermoacoustic-wave equa-
tion by considering the stack model placed periodically. And thermoacoustic-wave equa-
tion is approximated based on asymptotic theories. There are two cases that the ratio of
thickness of diffusion layer to the span length of gas passage is thick or thin. Effects on
asymptotic theories are examined. Effects of resonance case and the conditions at which
it occurs are examined.

2.1 Model of problem

To examine effects of heat conduction in wall on thermoacoustic-wave propagation, two
models are considered. One is for propagation in two-dimensional channels between par-
allel plates of thickness 2d stacked in the direction normal to the plates periodically with
distance 2H apart. Taking the y-axis along this direction, the x-axis is taken in parallel

3
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Figure 1: Illustration of two-dimensional channels of width 2H separated by an infinite stack of
solid plates of thickness 2d subjected to non-uniform temperature distribution in the x-direction
where Te, Ts and Tw denote, respectively, the temperatures of gas, solid plate and wall surfaces
in a quiescent state, and the origin of the coordinate axes x and y is chosen in one cell of the
channels.

to the plates along the direction of wave propagation. The origin of the axes is taken at
a midpoint spanwise in one ‘cell’ of the channels in the stack of plates. Figure 1 shows
geometrical configuration of the channels where no variations are assumed in the direction
normal to the sheet of paper.

The other model is for propagation in a periodic array of circular tubes. Two arrange-
ments are conceivable, one being a square array in a plane normal to the axis of the tubes,
and the other a staggered array, as shown in figures 2(a) and 2(b), respectively. In the
square array, circular tubes of radius R and of thickness d are embedded in a solid matrix.
The centres of the tubes are located at four corners of square of side length 2(R + d).
In the staggered array, the centres are located at three corners of triangle of side length
2(R+d). If the material of tubes is the same as the one of the matrix, then a term ‘pores’
may rather be suitable.

In both models, the channels and the tubes extend infinitely not only in the x-direction
but also periodically in a plane normal to the x-axis so that no outer boundaries are
considered. Solid walls are assumed to be rigid with smooth surface. A phenomenon
occurring in one cell of the channels or the tubes is assumed to be identical to those in
the other cells. Because of the spatial periodicity in arrangements, only a unit cell with
the origin of the coordinate axes taken is considered.

2.2 Steady temperature fields

The solid wall is subjected to temperature gradient in the x-direction. In a quiescent state
of the gas where no gravity is assumed, steady temperature fields in the gas and the solid
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Figure 2: Arrangements of the circular tubes in the axial cross-section where (a) and (b) show,
respectively, the square and staggered arrays of the tubes of radius R and of thickness d, which
are embedded in a solid matrix (shaded area), and the origin of the radial coordinate r is chosen
in one cell bounded by the square in (a) and the hexagon in (b).

are sought. Letting the temperature at the wall surface between the gas and the solid
be Tw, axial variation of this is assumed to be gentle enough over a distance comparable
with a span length to satisfy a following condition:

H2

Tw

∣∣∣∣∣∂2Tw∂x2

∣∣∣∣∣≪ H

Tw

∣∣∣∣∣∂Tw∂x
∣∣∣∣∣≪ 1, (2.1)

where Tw is a function of x only for the channels. For the tubes, H is replaced by R but
Tw will depend not only on x but on a circumferential coordinate of the tube. This will
be discussed later. No boundary conditions in the axial direction are considered since the
channels and tubes are assumed to be long enough.

The temperature field in the solid, denoted by Ts, is first sought. Because the heat
flux −ks∇Ts must be divergence-free, where ks is a thermal conductivity of the solid
and is assumed to be a constant independent of the temperature, Ts satisfies the Laplace
equation ∆Ts = 0. As long as the assumption (2.1) is valid, Ts is obtained for the case of
the channels as

Ts = Tw +
1

2

d2Tw
dx2

[
d2 − (y −H − d)2

]
+ · · · , (2.2)

for H < y < H + 2d, where Tw(x) denotes a temperature on the wall surfaces at y = H
and y = H +2d (also at y = −H), which is an unknown function of x, and the symmetry
with respect to y = H + d has been used.

For the gas, the temperature field also satisfies ∇ · (k∇T ) = 0, k being a thermal
conductivity of gas. This conductivity and a shear viscosity µ are assumed to be dependent
on the temperature in the form of a power law given by

k

k0
=
(
T

T0

)β

and
µ

µ0

=
(
T

T0

)β

, (2.3)

where β is a positive constant between 0.5 and 0.7 for air, and the subscript 0 is used to
imply a value of a quantity or a variable attached in a quiescent, reference state. With
(2.3), T 1+β satisfies the Laplace equation ∆T 1+β = 0.
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In the same way as that leading to (2.2), T 1+β may be obtained as

T 1+β = T 1+β
w +

1

2

d2

dx2
(T 1+β

w )
(
H2 − y2

)
+ · · · , (2.4)

where T is equal to Tw at the wall surfaces y = ±H. Since the second term is assumed
to be small, (2.4) is expanded into

T = Tw +
T−β
w

2(1 + β)

d2

dx2
(T 1+β

w )
(
H2 − y2

)
+ · · · . (2.5)

For this distribution, the continuity of heat fluxes through the wall surfaces is required,
i.e. −k∂T/∂y = −ks∂Ts/∂y. Thus it follows that

k0HT0
1 + β

d2

dx2

(
Tw
T0

)1+β

= −ksd
d2Tw
dx2

. (2.6)

Equation (2.6) is readily integrated to yield an equation which determines the temperature
distribution Tw on the wall as

1

1 + β

(
Tw
T0

)1+β

+
ks
k0

d

H

Tw
T0

= c1 + c2x, (2.7)

where c1 and c2 are arbitrary constants to be determined by boundary conditions at both
ends of the channels, though not specified in the present context.

If ksd/k0H ≫ 1, (Tw/T0)
1+β is negligible so that Tw/T0 may be approximately given

by a linear function of x as (k0H/ksd)(c1 + c2x). If ksd/k0H is comparable with unity,
then (2.7) should be solved for Tw/T0, which is given by a nonlinear function of x. Note
that this distribution is monotonic in x.

For the case of tubes or bores, the temperature fields are not so easily obtained. The
temperature field of the solid must satisfy, by symmetry, no heat flux −ks∂Ts/∂n = 0
along each side of the square or hexagonal cell, n denoting the normal coordinate along
the periphery of the cell. While the temperature field is uniform over a cross-section
to the lowest approximation, higher-order corrections similar to (2.2) and (2.4) are no
longer functions of radial coordinate r only, but periodic functions in a circumferential
coordinate. They are difficult to be obtained.

If the boundary conditions are replaced by ∂Ts/∂r = 0 at r = R + d, then the
axisymmetric temperature field is readily obtained as

Ts = Tw +
1

4

d2Tw
dx2

[
R2 − r2 + 2(R + d)2 log

(
r

R

)]
, (2.8)

where Tw(x) stands for a temperature along the wall surface at r = R. This is a situation
in which the circular tubes having thickness d and thermal conductivity ks are embedded
in non-heat-conducting matrix (shaded area in figure 2). Such a model will be treated in
the following for the sake of simplicity. This will be closer to a situation in the staggered
array than that in the square array because the fraction of the shaded area to the total
area of the unit cell is smaller in the former case.

For the gas, the temperature field is obtained as

T = Tw +
T−β
w

4(1 + β)

d2

dx2
(Tw

1+β)
(
R2 − r2

)
. (2.9)
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The continuity of heat fluxes at r = R leads to

1

1 + β

(
Tw
T0

)1+β

+
ks
k0

[(R + d)2 −R2]

R2

Tw
T0

= c1 + c2x, (2.10)

c1 and c2 being arbitrary constants. Although the coefficient in the second term is different
from (2.7), the analysis will be made in parallel.

2.3 Narrow-tube approximation and dimensionless parameters

At first, we explain the narrow-tube approximation. We consider the situation that the gas
is in the tube of which the wall is subject to temperature gradient. There are three length
scales in the problem. One is a typical span length, H, another a typical axial length L in
temperature gradient or a typical axial wavelength of pressure disturbances a0/ω, a0 and
ω being an adiabatic sound speed and a typical angular frequency, and the other a typical

thickness of viscous diffusion layer
√
ν/ω or thermal one

√
κ/ω, respectively, ν being a

kinematic viscosity. Because the Prandtl number Pr (= ν/κ) is of order unity for gases,
the diffusion layer is represented by the viscous one. The three dimensionless parameters
are introduced as follows:

H

L
≡ λ≪ 1,

ωL

a0
≡ 1

χ
≤ O(1) and

√
ν/ω

H
≡ δ = O(1), (2.11)

where χ takes a value larger than unity but it takes unity if temperature gradient is
absent. It should be emphasized here that the term ‘narrow tube’ in this paper means a
case with λ≪ 1 not δ ≫ 1. The latter will be called a case of thick diffusion layer.

When the heat conduction in wall is taken into account, it will be revealed that
introduction of following parameters combined is useful rather than simple ratios:

ks/ρscs
ke/ρecp

=
κs
κe

≡ K,

√
ρecpke
ρscsks

=
√
K
ke
ks

≡ ε and

√
κe
κs

d

H
=

1√
K

d

H
≡ Ge, (2.12)

where the subscripts e and s designate value of quantities for the gas in quiescent state
and the one for the solid, respectively, and these parameters vary along the channels
or tubes, since the quantities with e are dependent on temperature. While necessity of
introduction of K is obvious, ε measures the square root of product of two ratios, one
being the ratio of the heat capacity of gas per volume ρecp to the one of solid ρscs, and
the other the ratio of the thermal conductivity of gas ke to the one of solid ks. Because
both ratios are very small, admittedly, ε is a small parameter. The last parameter Ge
measures geometry of the two-dimensional channels. For the case of the circular tubes,
Ge will be defined later by (2.99).

Here we refer to the value of dimensionless parameters related to thermal properties
of gases and solids used in thermoacoustic heat engines.

The values for the gases are taken from the database of the National Institute of Stan-
dards and Technology (NIST, US Department of Commerce), Thermophysical properties
of pure fluids–NIST12 Version 5.2 (see also Turns (2006)). The values of the pure copper
and the stainless steel (AISI 304) are taken from Incropera & DeWitt (1990). The values
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K ceramics copper polyimide steel
air 3.61 5.234 3.48× 10−3 0.178
argon 3.82 5.532 3.68× 10−3 0.188
helium 0.44 0.631 4.19× 10−4 0.0214
nitrogen 3.67 5.319 3.54× 10−3 0.180

Table 1: Numerical values of K (= κs/κe) for combinations of the gas in the left column and
the solid in the top row at 1 atm and 300K.

ε× 104 ceramics copper polyimide steel
air 2.95 1.505 130 7.46
argon 2.05 1.046 90.2 5.19
helium 6.06 3.090 266 15.3
nitrogen 2.93 1.494 129 7.40

Table 2: Numerical values of ε (=
√
ρecpke/ρscsks) times 104 for combinations of the gas in the

left column and the solid in the top row at 1 atm and 300K.

of the ceramics are taken from Zhou et al. (2004). The values of the polyimide are taken
from the Technical Data Sheet of DuPont Kapton HN.

Tables 1 and 2 show numerical values of K and ε, respectively, calculated for 16
combinations of the gases and the solids. It is seen that K takes values of order unity
except for the case of polyimide and for the combination of the helium with steel. It is
remarked that K for the ceramics is close to the one for the copper. On the other hand,
ε takes a small value of order 10−4 except for the case of polyimide. Even for this case,
ε takes a value of order 10−2. This fact suggests us to use ε as a small parameter and to
expand solutions in terms of it.

2.4 Basic equations and boundary conditions

In a quiescent state, let the pressure in the gas p take a uniform value p0 throughout,
while let the temperature of gas be equal to the one of solid wall, as long as d2Tw/dx

2 is
neglected. According to our notation used so far, the temperature of gas in the quiescent
state is denoted by Te rather than Tw so that T = Te and Ts = Te. The linearized equations
for the gas in the narrow-tube approximation are given in I. In presenting the equations
again here, the integer j is prepared to distinguish between the cases of channels and of
tubes by j = 0 and j = 1, respectively. Although the notation of y and H is often used
even for the case of j = 1, they should be understood to be replaced by r (≥ 0) and R,
respectively. All field variables are written without the subscript j because no confusion
would occur.

The equations for the gas are given by the following equations of continuity, motion
and energy together with equation of state for ideal gas as

∂ρ′

∂t
+

∂

∂x
(ρeu

′) +
1

yj
∂

∂y
(yjρev

′) = 0, (2.13)
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ρe
∂u′

∂t
= −∂p

′

∂x
+
µe

yj
∂

∂y

(
yj
∂u′

∂y

)
, (2.14)

0 = −∂p
′

∂y
, (2.15)

ρecp

(
∂T ′

∂t
+ u′

dTe
dx

)
=
∂p′

∂t
+
ke
yj

∂

∂y

(
yj
∂T ′

∂y

)
, (2.16)

p′

p0
=
ρ′

ρe
+
T ′

Te
, (2.17)

in |x| < ∞ and |y| < H where ρ′, p′, T ′, u′ and v′ denote, respectively, disturbances
in density, pressure, temperature, axial velocity in the x-direction and spanwise velocity
in the y-direction from those in the quiescent state, t being the time −∞ < t, and the
subscript e for the quiescent state implying functions of x determined by Te.

These equations are now supplemented by the equation for the heat conduction in the
solid walls. Because a span length of the wall is assumed to be comparable with that of
the channels or tubes and much shorter than the typical axial length L, the narrow-tube
approximation is also employed. Then the equation is approximated as

ρscs
∂T ′

s

∂t
=
ks
yj

∂

∂y

(
yj
∂T ′

s

∂y

)
, (2.18)

in |x| <∞ and H < y < H + d where T ′
s denotes disturbance in temperature of the solid

wall from Te, and ρs, cs and ks are assumed to be constant.
Boundary conditions on the wall surface(s) require non-slip of the gas as

u′ = v′ = 0 at y = H and y = (−1)j+1H, (2.19)

and the continuity of the temperatures and of the heat fluxes as

T ′ = T ′
s and − ke

∂T ′

∂y
= −ks

∂T ′
s

∂y
at y = H and y = (−1)j+1H. (2.20)

In addition, no heat flux is required as

−ks
∂T ′

s

∂y
= 0 at y = H + d. (2.21)

Noting that p′ is uniform in y from (2.15), and averaging (2.13) to (2.17) over the
cross-section, the system of equations is reduced to a prototype of the thermoacoustic-
wave equation for p′ with a dipole s and a monopole q as

∂2p′

∂t2
− ∂

∂x

(
a2e
∂p′

∂x

)
=

22j−1

H

[
− ∂

∂x

(
a2es

)
+

a2e
cpTe

∂q

∂t

]
, (2.22)

where ae denotes a local adiabatic sound speed defined by
√
γp0/ρe, γ being the ratio of

specific heats, and s and q denote, respectively, shear stress acting on the gas at the wall
surface(s) and heat flux flowing into the gas from the wall as

s = µe
∂u′

∂y

∣∣∣∣∣
y=+H

+ (j − 1)µe
∂u′

∂y

∣∣∣∣∣
y=−H

, (2.23)
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and

q = ke
∂T ′

∂y

∣∣∣∣∣
y=+H

+ (j − 1)ke
∂T ′

∂y

∣∣∣∣∣
y=−H

. (2.24)

Integrating (2.18) over the thickness, on the other hand, it follows that

∂

∂t

(∫ H+d

H
ρscsT

′
s y

jdy

)
= −2j−1Hjq, (2.25)

where (2.21) and (2.24) have been used. Equation (2.22) for p′ is coupled with the
temperature variation in the solid wall through q in (2.25). If the heat capacity of solid
per volume ρscs is very large, then T ′

s does not change against the heat flux q. If the
thermal conductivity ks is very large in comparison with ke, then the second condition of
(2.20) suggests no temperature gradient normal to the wall surface.

2.5 Derivation of equation by Fourier transform

To derive the closed form of the thermoacoustic-wave equation, we proceed to express s
and q in terms of p′. Following the same way as demonstrated in I, the method of Fourier
transform is employed. It is defined by

F{u′} =
1√
2π

∫ ∞

−∞
u′(x, y, t)eiωtdt ≡ û′(x, y, ω), (2.26)

with its inverse transform given by

F−1{û′} =
1√
2π

∫ ∞

−∞
û′(x, y, ω)e−iωtdω = u′(x, y, t). (2.27)

Making use of the result that p′ is uniform over a cross-section, a first step is to express
an axial velocity u′ in terms of p′ by solving (2.14) together with (2.19). Next step is
to express temperature T ′ and T ′

s by solving (2.16) with u′ obtained and simultaneously
(2.18) so as to satisfy the boundary conditions (2.20) and (2.21). With both velocity
and temperature fields available, a final step is to express s and q in terms of p′ and to
substitute them into (2.22). Then a thermoacoustic-wave equation for p′ is derived. This
equation may alternatively be derived without use of (2.22) by solving v′ on substituting
u′ and ρ′ (from (2.17)) into (2.13) and applying the boundary condition (2.19) for v′.

2.5.1 Case of the two-dimensional channels

At the outset, the axial velocity û′ is obtained from (2.14). Even when the effects of heat
conduction in the walls are taken into account, it is unchanged and given by

û′ = − 1

ρe
σ−1∂p̂

′

∂x
f, (2.28)

with σ = −iω where f is defined as

f(x, y) = 1− cosh(y/Hδe)

cosh(1/δe)
, (2.29)
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and δe is defined by

δe(x) =
1

H

(
νe
σ

) 1
2

, (2.30)

with νe(x) = µe/ρe. Here the dependence of f on σ has been suppressed and σ− 1
2 is

defined to take a positive real part for a positive value of ω.
On the other hand, the temperature of gas T̂ ′ must be sought by solving (2.16) simul-

taneously with (2.18) for that of solid wall so that the boundary conditions (2.20) may
be fulfilled. Making use of the smallness of ε, an asymptotic expansion with respect to it
is made and terms proportional to ε2 or higher than it are neglected. It then follows that

T̂ ′ =
1

ρecp
p̂′fP +

1

ρe

dTe
dx

σ−2∂p̂
′

∂x

(
− Pr

1− Pr
f +

1

1− Pr
fP

)
+ εT̂ ′

ε,

(2.31)

with Pr = νe/κe and

fP (x, y) = 1− cosh(y
√
Pr/Hδe)

cosh(
√
Pr/δe)

, (2.32)

where εT̂ ′
ε is a modification due to the thermal coupling with the solid wall, and the

subscript P implies the Prandtl number and thermal origin. In passing, no subscript
implies viscous origin. The lowest terms in (2.31) correspond to the solution without the
coupling and they vanish at y = H where f = fP = 0. The modification is given by

εT̂ ′
ε =

ε

ρecp
p̂′fKP +

ε

ρe

dTe
dx

σ−2∂p̂
′

∂x

(
−

√
Pr

1− Pr
fK +

1

1− Pr
fKP

)
+O(ε2),

(2.33)

where fK and fKP are defined, respectively, by[
fK(x, y)
fKP (x, y)

]
=

[
C
CP

]
cosh(y

√
Pr/Hδe)

cosh(
√
Pr/δe)

, (2.34)

with

C =
tanh(1/δe)

tanh(1/δs)
, (2.35)

CP =
tanh(

√
Pr/δe)

tanh(1/δs)
, (2.36)

and

δs =
1

d

(
κs
σ

)1/2

. (2.37)

Here C stands for the coupling between the viscous diffusion and the thermal one in the
solid wall, while CP stands for the one between the thermal diffusions of the gas and the
solid, and δs is independent of x because κs is assumed to be a constant.

In consistent with (2.31) and (2.33), T ′
s is obtained as

T̂ ′
s =

ε

ρecp
p̂′fSP +

ε

ρe

dTe
dx

σ−2∂p̂
′

∂x

(
−

√
Pr

1− Pr
fS +

1

1− Pr
fSP

)
+O(ε2),

(2.38)
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where fS and fSP are defined, respectively, by[
fS(x, y)
fSP (x, y)

]
=

[
C
CP

]
cosh[(y −H − d)/dδs]

cosh(1/δs)
, (2.39)

in H < y < H + 2d, and εT̂ ′
ε matches with T̂ ′

s at y = H where fK = fS and fKP = fSP .
With û′ and T̂ ′ available, the shear stress on the wall surfaces is obtained as

ŝ = 2
√
νeσ

− 1
2
∂p̂′

∂x
g(x,H), (2.40)

while the heat flux through the wall surfaces is obtained as

σq̂ = −
2cpTe

√
νe

a2e

{
γ − 1√
Pr

σ3/2p̂′gP (x,H)− a2e
Te

dTe
dx

σ−1/2∂p̂
′

∂x

×
[ 1

1− Pr
g(x,H)− 1

(1− Pr)
√
Pr

gP (x,H)
]}

+ εσq̂w, (2.41)

with

σq̂w = −CPσq̂ +O(ε), (2.42)

where g and gP are defined, respectively, as

g(x, y) =
sinh(y/Hδe)

cosh(1/δe)
, (2.43)

gP (x, y) =
sinh(y

√
Pr/Hδe)

cosh(
√
Pr/δe)

. (2.44)

It is found from these relations that the effects of heat conduction in wall on the
gas appear in the temperature field and therefore the heat flux, but not in the velocity
field and the shear stress. If the temperature gradient dTe/dx is absent, the heat flux is
determined only by the thermal diffusivity κe and the pressure p̂′ itself. This is seen in

(2.41) by noting
√
νe/Pr = 1/

√
κe and

√
Pr/δe = (σ/κe)

1/2H. But when the gradient is

present, the viscous diffusivity νe comes into play in the heat flux through g(x,H) together
with the pressure gradient ∂p̂′/∂x. This is because the temperature field is affected by
convection due to the second term on the left-hand side of (2.16). This convection yields
one of the very features of thermoacoustic phenomena.

By the lowest temperature distribution in T̂ ′, i.e. without the thermal coupling, there
flows the lowest heat flux q in (2.41). This gives rise to temperature variation in the walls
through (2.25). Because the heat capacity of solid per volume or its thermal conductivity
is large, T̂ ′

s is much smaller than T̂ ′ by the order of ε. This feeds back to T̂ ′
ε in the gas and

the heat flux εq̂w flows through the wall surface. This heat flux gives rise to temperature
variation in wall of order ε2 and, in turn, to temperature variation in gas and heat flux
of ε2, and this cycle continues. The expansion is truncated at the order of ε, and no
higher-order coupling between the gas and the solid is taken account. Remark that if CP
in (2.42) diverges, then a strong coupling is expected to take place.
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Since ŝ and q̂ are now available, the next step is to make their inverse transforms. To
do this, use is made of the following formula ((2.39) in I):

1√
2π

F−1
{
σ− 1

2 tanh(
√
Pr/δe)

}
= Φ

(
νet

PrH2

)
h(t), (2.45)

h(t) being a unit step function, where Φ is defined by

Φ
(

νet

PrH2

)
=

2
√
νe√

PrH

∞∑
n=1

exp

[
−(2n− 1)2π2

4

νet

PrH2

]
h(t). (2.46)

Because this sum diverges as t→ 0, (2.46) is alternatively written as

Φ =
1√
πt
G
(

νet

PrH2

)
=

1√
πt

[
1 + 2

∞∑
n=1

(−1)n exp

(
−n2PrH

2

νet

)]
. (2.47)

To obtain qw, transforms of σ−1/2CPg(x,H) and σ−1/2CPgP (x,H) must be evaluated.
They are given by the following two inverse transforms, which are set formally as

1√
2π

F−1

{
σ− 1

2
tanh(

√
Pr/δe)

tanh(1/δs)
tanh(1/δe)

}
=MT (t)h(t), (2.48)

1√
2π

F−1

{
σ− 1

2
tanh(

√
Pr/δe)

tanh(1/δs)
tanh(

√
Pr/δe)

}
=MD(t)h(t), (2.49)

where explicit expressions of MT and MD will be given in §5. Here MT represents the
triple coupling among the viscous diffusion, the thermal diffusion of the gas and the one
of the solid, while MD represents the double coupling between the thermal diffusions of
the gas and of the solid.

Using these formulas, the inverse transform of ŝ is expressed in the form of a convolu-
tion integral given by

s = 2
√
νeM

(
∂p′

∂x

)
, (2.50)

where M (ϕ) designates a functional of a function ϕ(x, t), which is defined as a special
case of a following functional MP (ϕ) by setting Pr to be equal to unity formally:

MP [ϕ(x, t)] ≡ 1√
π

∫ t

−∞

G[νe(t− τ)/PrH2]√
t− τ

ϕ(x, τ)dτ. (2.51)

Using the transforms (2.48) and (2.49), new functionals MT (ϕ) and MD(ϕ) are defined,
respectively, as

MI [ϕ(x, t)] ≡
∫ t

−∞
MI(t− τ)ϕ(x, τ)dτ, (2.52)

where the subscript I takes T or D.
With these definitions of the functionals, the inverse transform of σq̂ is expressed as

∂q

∂t
= −

2cpTe
√
νe

a2e

{
γ − 1√
Pr

MP

(
∂2p′

∂t2

)

− a2e
Te

dTe
dx

[
1

1− Pr
M

(
∂p′

∂x

)
− 1

(1− Pr)
√
Pr

MP

(
∂p′

∂x

)]}
+ ε

∂qw
∂t

,

(2.53)
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where qw is set in the form of

∂qw
∂t

=
2cpTeH

a2e
W +O(ε), (2.54)

with

W =

√
νe
H

{
γ − 1√
Pr

MD

(
∂2p′

∂t2

)

− a2e
Te

dTe
dx

[
1

1− Pr
MT

(
∂p′

∂x

)
− 1

(1− Pr)
√
Pr

MD

(
∂p′

∂x

)]}
.

(2.55)

While the subscripts T and D attached to M imply the origin from the heat flux, re-
spectively, due to the triple and double couplings among the three diffusions, P implies
the one from the heat flux without the coupling and M without the subscript implies the
one from the shear stress. Each term in εW has the counterpart on the left-hand side. A
reason of this will be revealed later.

Substituting s and q into (2.22), the thermoacoustic-wave equation for the case of the
two-dimensional channels is obtained up to the first-order terms in ε as

∂2p′

∂t2
− ∂

∂x

(
a2e
∂p′

∂x

)
+

∂

∂x

[
a2e
√
νe

H
M

(
∂p′

∂x

)]
+

√
νe
H

{
γ − 1√
Pr

MP

(
∂2p′

∂t2

)

−a
2
e

Te

dTe
dx

[
1

1− Pr
M

(
∂p′

∂x

)
− 1

(1− Pr)
√
Pr

MP

(
∂p′

∂x

)]}
= εW.

(2.56)

2.5.2 Case of the circular tubes

Analyses in this case can be executed in parallel to the previous case but are a little
complicated. The transformed solutions û′ and T̂ ′ are given by (2.28), (2.31) and (2.33),
respectively, with f , fP , fK and fKP replaced by the following functions:

f(x, r) = 1− I0(r/Rδe)

I0(1/δe)
, (2.57)

fP (x, r) = 1− I0(r
√
Pr/Rδe)

I0(
√
Pr/δe)

= 1− I0(r/Rδκ)

I0(1/δκ)
, (2.58)

[
fK(x, r)
fKP (x, r)

]
=

[
C
CP

]
I0(r/Rδκ)

I0(1/δκ)
, (2.59)

with [
C
CP

]
=

[
I1(1/δe)/I0(1/δe)
I1(1/δκ)/I0(1/δκ)

]
Z(R, 1/δs) (2.60)
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where Ii and Ki below (i = 0, 1) denote the modified Bessel functions of the i-th order,
respectively, and Z(r, z) is a solution of (2.18) transformed with (2.21) and is given by

Z(r, z) =
I1(ζ)K0(rz/R) +K1(ζ)I0(rz/R)

I1(ζ)K1(z)−K1(ζ)I1(z)
, (2.61)

with z = 1/δs, ζ = (1 + η)z and η = d/R. Here δe is defined by (2.30) with H replaced
by R, while δκ is newly introduced to avoid use of the factor

√
Pr in

√
Pr/δe, and δs is

defined differently from (2.37) as

δe =
1

R

(
νe
σ

) 1
2

, δκ =
1

R

(
κe
σ

) 1
2

=
δe√
Pr

and δs =
1

R

(
κs
σ

) 1
2

. (2.62)

For T̂ ′
s, fS1 and fS2 are replaced, respectively, by[

fS(x, r)
fSP (x, r)

]
=

[
C
CP

]
Z(r, 1/δs)

Z(R, 1/δs)
(2.63)

The shear stress and heat flux are given by half of (2.40) and (2.41) with g and gP
replaced, respectively, by

g(x, r) =
I1(r/Rδe)

I0(1/δe)
, (2.64)

gP (x, r) =
I1(r

√
Pr/Rδe)

I0(
√
Pr/δe)

. (2.65)

To make inverse transforms of them, the following relation ((4.13) in I) is used:

1√
2π

F−1

{
σ− 1

2
I1(

√
Pr/δe)

I0(
√
Pr/δe)

}
= Θ

(
νet

PrR2

)
h(t), (2.66)

where Θ is defined as

Θ
(

νet

PrR2

)
=

2
√
νe√

PrR

∞∑
n=1

exp
(
−j2n

νet

PrR2

)
, (2.67)

and jn (n = 1, 2, 3, · · ·) denote roots of J0(jn) = 0 (0 < j1 ≈ 2.40 < j2 ≈ 5.52 < j3 ≈
8.65 · · ·). As this sum diverges as t→ 0, its asymptitic behaviour is already available as

Θ
(

νet

PrR2

)
=

1√
πt

−
√
νe

2
√
PrR

− νe
4PrR2

√
t

π
+ · · · . (2.68)

Using (2.66), the functional NP is introduced as

NP [ϕ(x, t)] ≡
∫ t

−∞
Θ

[
νe(t− τ)

PrR2

]
ϕ(x, τ)dτ, (2.69)

and the functional N (ϕ) denotes NP (ϕ) with Pr = 1 set equal to unity formally.
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After the case of the channels, new functionals are defined by

NI [ϕ(x, t)] ≡
∫ t

−∞
NI(t− τ)ϕ(x, τ)dτ, (2.70)

where I stands for T and D, and NT and ND are defined in terms of the following inverse
transforms, respectively, as

1√
2π

F−1

{
σ− 1

2
I1(1/δe)

I0(1/δe)

I1(1/δκ)

I0(1/δκ)
Z(R, 1/δs)

}
= NT (t)h(t), (2.71)

1√
2π

F−1

{
σ− 1

2
I21 (1/δκ)

I20 (1/δκ)
Z(R, 1/δs)

}
= ND(t)h(t). (2.72)

Here explicit expressions of NT and ND will be given later.
Using these definitions, the shear stress and the heat flux on the wall surface are

expressed by (2.50), (2.53) and (2.54) with the functionals designated by M replaced by
their corresponding ones by N . But remark that the factor 2 in (2.50) and in front of
cpTe

√
νe in (2.53) and (2.54) should be removed. Substituting these into (2.22) for j = 1,

the thermoacoustic-wave equation for the case of the circular tubes is obtained up to the
first-order terms in ε as

∂2p′

∂t2
− ∂

∂x

(
a2e
∂p′

∂x

)
+

∂

∂x

[
2a2e

√
νe

R
N

(
∂p′

∂x

)]
+

2
√
νe
R

{
γ − 1√
Pr

NP

(
∂2p′

∂t2

)

− a2e
Te

dTe
dx

[
1

1− Pr
N

(
∂p′

∂x

)
− 1

(1− Pr)
√
Pr

NP

(
∂p′

∂x

)]}
= εW

(2.73)

with

W =
2
√
νe
R

{
γ − 1√
Pr

ND

(
∂2p′

∂t2

)

− a2e
Te

dTe
dx

[
1

1− Pr
NT

(
∂p′

∂x

)
− 1

(1− Pr)
√
Pr

ND

(
∂p′

∂x

)]}
. (2.74)

2.6 Evaluation of the relaxation functions

The thermoacoustic-wave equations have been derived formally by introducing the func-
tionals MI and NI where the subscript I takes T or D. Since explicit expressions of the
functions involved are left unspecified, they are evaluated in §2.6. The kernel functions
MI in MI and NI in NI where I takes T or D, are called relaxation functions in this
paper. Just as in the case of the inverse transforms of (2.45) and (2.66), they are reduced
to the inverse Laplace transforms along the imaginary axis in the complex σ-plane, which
are easily evaluated by Cauchy’s theorem (see (4.17) in I). Looking for simple poles of
the integrands, it is found that they are located on the negative axis so that the integrals
vanish for t < 0. In all cases, no branch point exists at σ = 0.
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2.6.1 Case of two-dimensional channels

For MT (t), there are simple poles at σ = −(n− 1/2)2π2νe/H
2, σ = −(n− 1/2)2π2κe/H

2

and σ = −(nπ)2κs/d
2, (n = 1, 2, 3, · · ·), which originate from the zeros of cosh(1/δe) = 0,

cosh(
√
Pr/δe) = 0 and sinh(1/δs) = 0, respectively. When they are different from each

other, then the theorem yields

MT (t) =
2
√
νe

H

∞∑
n=1

tan[(n− 1/2)π
√
νe/κe]

tan[(n− 1/2)π
√
νe/κeGe]

exp

[
−(2n− 1)2π2

4

νet

H2

]

+
2
√
κe

H

∞∑
n=1

tan[(n− 1/2)π
√
κe/νe]

tan[(n− 1/2)πGe]
exp

[
−(2n− 1)2π2

4

κet

H2

]

−
2
√
κs
d

∞∑
n=1

tan
(
nπ

Ge

)
tan

( nπ√
νe/κeGe

)
exp

[
−(nπ)2

κst

d2

]
. (2.75)

Here all coefficients of the exponential functions are assumed to be finite, which is a non-
resonant case. It is found that there appears a new relaxation time d2/κs due to the heat
conduction in the solid wall in addition to the viscous and thermal ones of gas H2/νe
and H2/κs, respectively. Note that because d2/κs is written as Ge2PrH2/νe, this time
becomes longer in proportion to Ge2 compared with H2/νe as the wall becomes thicker
and the diffusion in the solid wall lasts longer.

For MD, the poles of second order exist at σ = −(n − 1/2)2π2κe/H
2 so that the

theorem yields

MD(t) =
2
√
κe

H

∞∑
n=1

(2n− 1)π

tan[(n− 1/2)πGe]

κet

H2
exp

[
−(2n− 1)2π2

4

κet

H2

]

+
2
√
κe

H

∞∑
n=1

Ge

sin2[(n− 1/2)πGe]
exp

[
−(2n− 1)2π2

4

κet

H2

]

−
2
√
κs
d

∞∑
n=1

tan2
(nπ
Ge

)
exp

[
−(nπ)2

κst

d2

]
. (2.76)

The poles of second order contribute to algebraic growth κet/H
2, though multiplied by

the decaying exponential function, and give rise to a slower behaviour. For a moderate or
large value of t (> 0), the exponential functions decay rapidly as n increases so that the
sums converge quickly. For a small value of t, however, the convergence becomes so slow
that they tend to diverge as t → 0. Further it may occur that the sums do not converge
if one of the coefficients of the exponential functions happens to diverge. This is called a
resonant case and will be examined in detail in the next section.

To examine their asymptotic behaviours as t→ 0, their Fourier transforms are useful.
Expanding them in δ−1

e , δ−1
k and δ−1

s by using tanhX = 1 + 2
∑∞

n=1(−1)n exp(−2nX) for
|X| ≫ 1, and transforming inversely each exponential function, it then follows that

MT (t) =
1√
πt

[
1− 2 exp

(
−H

2

νet

)
− 2 exp

(
−H

2

κet

)
+ 2 exp

(
− d2

κst

)
+ ...

]
, (2.77)
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Figure 3: Logarithmic plots of the functions MT (t) and MD(t) against t over the interval 10
−3 ≤

t ≤ 10 in (a) and (b), respectively, where the abscissa and ordinate in (a) measure νet/H
2 and

(H/
√
νe)MT (t), while those in (b) measure κet/H

2 and (H/
√
κe)MD(t), but the both factors

νe/H
2 and κe/H

2 are omitted for simplicity. Here the subscripts 1, 2 and 3 of the summation
symbol labelled to the curves designate, respectively, the first, second and third sums in (2.75)
and (2.76), the symbol | · · · | or the minus sign designating the absolute value or the value with
sign reversed, and the broken lines represent the asymptotic expressions (2.77) and (2.78).

and

MD(t) =
1√
πt

[
1− 4 exp

(
−H

2

κet

)
+ 2 exp

(
− d2

κst

)
+ ...

]
, (2.78)

as t→ 0. Thus it is found that MT and MD tend to diverge as (πt)−1/2 as t→ 0 and this
behaviour is the same as that in (2.47).

For air enclosed by the ceramic plates with d/H = 1, Pr = νe/κe = 0.72, K =
κs/κe = 3.61 and Ge = d/H

√
K = 0.526 (see table 2), figures 3(a) and 3(b) show the

logarithmic plots ofMT (t) andMD(t) against t over the range 10
−3 ≤ t ≤ 10, respectively,

where the factor νe/H
2 in the abscissa νet/H

2 and ordinate (H/
√
νe)MT is omitted in

figure 3(a), while the one κe/H
2 is omitted in figure 3(b), for simplicity. The functions

MT and MD consist of three respective sums. The first sum in (2.76) changes sign so
that the absolute value is shown with the label |∑1 | attached to the curve. The arrow
indicates the vanishing point. The last sums (excluding the minus sign in front of the
summation symbol) are negative in MT and positive in MD. The broken curves represent
the asymptotic expressions (2.77) and (2.78) but they are invisible for t < 0.5 because
they almost coincide with MT and MD.

The figures show which sum contributes to each function most. For a small value of
t, the first sums in (2.75) and (2.76) are much smaller than the others, while the second
and third sums cancel with each other to yield the asymptotic expressions 1/

√
πt + · · ·.

For a large value of t, on the other hand, both functions decay rapidly and the first sums
survive over the others.

2.6.2 Case of the circular tubes

The functions NT and ND can be evaluated by the same method. For NT , the simple
poles occur at σ = −j2nνe/R2 and σ = −j2nκe/R2 (n = 1, 2, 3, · · ·) from the zeros of
I0[(σ/νe)

1/2R] and I0[(σ/κe)
1/2R], respectively. Further because Z(R, 1/δs) has poles,
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their contributions should be included. Setting 1/δs = z, it is found that the logarithmic
singularity at z = 0 in Ki (i = 0, 1) cancels out to disappear and a simple pole appears
at z = 0. As z → 0, Z behaves as

Z(R, z) = A
(
1

z
+Bz + · · ·

)
, (2.79)

with

A =
2

[(1 + η)2 − 1]
and B =

1

8
− 3

8
(1 + η)2 +

(1 + η)4 log(1 + η)

2[(1 + η)2 − 1]2
, (2.80)

while as |z| → ∞, Z behaves as

Z(R, z) = 1− 1

2z
+

3

8z2
+ ..., (2.81)

if Re{z} > 0. There exist infinite number of simple poles at z = zn = ±ikn (n = 1, 2, 3, · · ·)
where zn satisfies I1(z)/I1(ζ) = K1(z)/K1(ζ) with ζ = (1 + η)z. From the asymptotic
expressions of the ratios of the two modified Bessel functions for |z| ≫ 1 (e.g. Abramowitz
& Stegun (1972)), kn are approximated to be given by (nπ/η){1+3η2/[8n2π2(1+η)]+· · ·}.

Taking account of the residues, thus, NT is evaluated as

NT (t) =
2
√
νe
R

∞∑
n=1

X(ijn
√
νe/κe)Z(R, ijn

√
νe/κs) exp

(
−j2n

νet

R2

)

+
2
√
κe
R

∞∑
n=1

X(i jn
√
κe/νe)Z(R, ijn

√
κe/κs) exp

(
−j2n

κet

R2

)

+
2
√
κs
R

∞∑
n=1

X(i kn
√
κs/νe)X(i kn

√
κs/κe)Yn exp

(
−k2n

κst

R2

)
,

(2.82)

where X stands for I1(z)/I0(z), and Yn stands for limz→zn(z − zn)Z(R, z), which is eval-
uated as

Yn =
I1(ζn)K0(zn) +K1(ζn)I0(zn)

(1 + η)[I0(ζn)K1(zn) +K0(ζn)I1(z)]−K1(ζn)I0(zn)− I1(ζn)K0(zn)
,

(2.83)

with ζn = (1 + η)zn, zn being ikn (n = 1, 2, 3, · · ·). For evaluation of ND, on the other
hand, there appear poles of second order at σ = −j2nκe/R2 from zeros of I20 [(σ/κe)

1/2R],
which give rise to a slower decay. Taking account of them, ND is expressed as

ND(t) =
2
√
κe
R

∞∑
n=1

i

jn

(
1 + 2j2n

κet

R2

)
Z(R, ijn

√
κe/κs) exp

(
−j2n

κet

R2

)

+
2
√
κe
R

∞∑
n=1

√
κe
κs

d

dz
Z(R, z)

∣∣∣
z=ijn

√
κe/κs

exp
(
−j2n

κet

R2

)

+
2
√
κs
R

∞∑
n=0

X2(i kn
√
κs/κe) Yn exp

(
−k2n

κst

R2

)
. (2.84)
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Because the sums on the right-hand sides of (2.82) and (2.84) diverge as t → 0, their
asymptotic behaviours are examined by expanding the transformed expressions in terms
of δ−1

e , δ−1
κ and δ−1

s . Then it follows that

σ− 1
2
I1(1/δe)

I0(1/δe)

I1(1/δκ)

I0(1/δκ)
Z(R, 1/δs) = σ−1/2 − υ11

2R
σ−1 − υ12

8R2
σ−3/2 + · · · ,

(2.85)

with

υ11 =
√
νe +

√
κe +

√
κs, (2.86)

υ12 = νe + κe − 3κs − 2(
√
νeκe +

√
κeκs +

√
κsνe), (2.87)

and

σ− 1
2
I21 (1/δκ)

I20 (1/δκ)
Z(R, 1/δs) = σ−1/2 − υ21

2R
σ−1 +

υ22
8R2

σ−3/2 + · · · , (2.88)

with υ21 = 2
√
κe +

√
κs and υ22 = 4

√
κeκs + 3κs. The inverse transforms yield the

asymptotic expressions of NT and ND respectively as

NT =
1√
πt

− υ11
2R

− υ12
4R2

√
t

π
+ · · · , (2.89)

ND =
1√
πt

− υ21
2R

+
υ12
4R2

√
t

π
+ · · · , (2.90)

for t→ 0. The leading asymptotic expressions are found to be given commonly by 1/
√
πt.

Figures 4(a) and 4(b) show the logarithmic plots of NT (t) and ND(t) against t over
the range 10−3 ≤ t ≤ 5, respectively, where the factor νe/R

2 in the abscissa νet/R
2 and

ordinate (R/
√
νe)NT is omitted in figure 4(a), while the one κe/R

2 is omitted in figure
4(b), for simplicity. Here concerned is the case with air enclosed in the ceramic tube with
d/R = η = 1 where the values of Pr and K are the same as employed in figure 3.

As NT and ND consist of three respective sums, each sum is designated by the sum-
mation symbol consecutively from the first one. As the sum changes sign, the absolute
value or the value with sign reversed is shown with the labels attached to the curves. The
broken curves represent the asymptotic expressions (2.89) and (2.90). Unlike the case of
MT and MD, three terms are necessary to find agreements with the numerical values.

2.7 Influence on the thin diffusion layer theory

For a thin diffusion layer, i.e. δe ≪ 1, the asymptotic expressions of the relaxation
functions are truncated at the leading terms. But if a value of Ge is very small, as (2.77)
and (2.78) suggest, this condition should be replaced by d2/κst≫ 1, i.e. Ge2PrH2/νet≫
1. Then all functionals for j = 0 are reduced to the derivatives of minus half-order as
(Gel’fand & Shilov (1964))

M (ϕ) ≈ MI(ϕ) ≈
1√
π

∫ t

−∞

ϕ(x, τ)√
t− τ

dτ ≡ ∂−
1
2ϕ

∂t−
1
2

, (2.91)
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Figure 4: Logarithmic plots of the functions NT (t) and ND(t) against t over the interval 10
−3 ≤

t ≤ 5 in (a) and (b), respectively, where the abscissa and ordinate in (a) measure νet/R
2 and

(R/
√
νe)NT (t), while those in (b) measure κet/R

2 and (R/
√
κe)ND(t), but the both factors

νe/R
2 and κe/R

2 are omitted for simplicity. Here the subscripts 1, 2 and 3 of the summation
symbol labelled to the curves designate, respectively, the first, second and third sums in (2.82)
and (2.84), the symbol | · · · | or the minus sign designating the absolute value or the value with
sign reversed, and the broken lines indicate the asymptotic expressions (2.89) and (2.90).

where I takes P , T and D, and so is the case with j = 1 by replacing M by N .
Using (2.91), the thermoacoustic-wave equations are approximated into

∂2p′

∂t2
− ∂

∂x

(
a2e
∂p′

∂x

)

+
2ja2e

√
νe

H

[
C
∂−

1
2

∂t−
1
2

(
∂2p′

∂x2

)
+

(C + CT )

Te

dTe
dx

∂−
1
2

∂t−
1
2

(
∂p′

∂x

)]
= 0, (2.92)

with

C = 1 +
(1− ε)(γ − 1)√

Pr
and CT =

1

2
+
β

2
+

1− ε√
Pr + Pr

. (2.93)

Here since the contributions from the functionals remain small, the leading balance occurs
between the first two terms so that ∂2p′/∂t2 involved in MP in (2.56) and NP in (2.73) has
been replaced by (∂/∂x)(a2e∂p

′/∂x) and the relation (a2e
√
νe)

−1(d/dx)(a2e
√
νe) = (3/2 +

β/2)T−1
e dTe/dx has been used. It is revealed that the effect of the heat conduction in

the wall gives rise to only small corrections of order ε in the coefficients C and CT and
therefore the thin diffusion layer theory is affected little, as expected. In passing, as was
found by Henry and remarked by Rott, it is interesting to find that because C is engaged
in damping in the absence of the temperature gradient, the effects of heat conduction
decreases the values of C (and also CT ) to reduce the damping, though very slightly.

2.8 Influence on the thick diffusion layer theory

Next concerned is approximation for a thick diffusion layer. This corresponds to the case
in which the span length is much smaller than the thickness of diffusion layer, i.e. |δe| ≫ 1.
But if a value of Ge is very large, this condition should be replaced by Ge2PrH2/νet≪ 1.
To derive the approximate equations, it is convenient to work with (2.22) transformed.
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Treating both cases for j = 0 and j = 1 simultaneously, and replacing H with R for
j = 1, ŝ in (2.40) is expanded in terms of 1/δe up to 1/δ4e as

ŝ =
H

22j−1

(
1− 1

3 + 5j

H2σ

νe
+

2

15 + 81j

H4σ2

ν2e
+ · · ·

)
∂p̂′

∂x
, (2.94)

while σq̂ in (2.41) is expanded in a similar fashion as

σq̂ =
cpTeH

22j−1a2e

{
− (γ − 1)

(
1− Pr

3 + 5j

H2σ

νe
+ · · ·

)
σ2p̂′

− a2e
Te

dTe
dx

[
1

3 + 5j
− 2(1 + Pr)

15 + 81j

H2σ

νe
+ · · ·

]
H2σ

νe

∂p̂′

∂x

}
+ εσq̂w. (2.95)

Since q̂w = −CP q̂ in (2.42), CP is expanded similarly so that q̂w is obtained as

εσq̂w =
εcpTeH

23j−1a2eGe

{
(γ − 1)

[
1−

(
2Pr

3 + 5j
−Qj

)
H2σ

νe
+ · · ·

]
σ2p̂′ +

a2e
Te

dTe
dx

×
[

1

3 + 5j
−
(

Pr

(3 + 5j)2
+

2(1 + Pr)

15 + 81j
− Qj

3 + 5j

)
H2σ

νe
+ · · ·

]
H2σ

νe

∂p̂′

∂x

}
,

(2.96)

where Qj are defined as

Q0 =
νed

2

3κsH2
=

1

3
PrGe2, (2.97)

Q1 =
νe
κs

{
1

8
− 3

8
(1 + η)2 +

(1 + η)4 log(1 + η)

2[(1 + η)2 − 1]

}
, (2.98)

and Ge for the case of the circular tubes is defined as

Ge =

√
κe
κs

[(1 + η)2 − 1]

2
=

√
κe
κs

 d
R

+
1

2

(
d

R

)2
 . (2.99)

For η ≪ 1, Q1 ≈ Q0 = Pr(κe/κs)η
2/3.

Before deriving the approximate equations, note that, in (2.22), the first term on the
left-hand side stems from the adiabatic density change in the equation of continuity, while
the second term stems from the pressure gradient in the equation of motion. When the
span length is very narrow, the pressure gradient almost balances with the shear stress
on the wall surfaces. Substituting ŝ in (2.94) into (2.22), in fact, it is seen that the first
term in (2.94) cancels with the term due to the pressure gradient.

On the other hand, the form of heat flux (2.95) (more generally from (2.41)) depends
not only on the pressure but also on the product of the temperature gradient dTe/dx
and the pressure gradient ∂p′/∂x. The magnitude of the latter is of order (χ/|δe|)2 in
comparison with the former and is comparable if χ becomes of order |δe|. Given a pres-
sure gradient, the heat flux changes its sense of flow according to a local value of the
temperature gradient. This is another feature of the thermoacoustic phenomena.
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For a very small span length, the temperature of the gas is almost equal to the local
temperature of the wall so that the temperature variation in the gas is negligible and the
thermal process is regarded as being isothermal locally. Yet the heat flux flows through
the wall surface. Noting the sign of the heat flux (taken positive into the gas), and
cpTe = a2e/(γ − 1), it flows into the solid when the pressure tends to increase temporarily
because q is given by −21−2jH∂p′/∂t to the lowest relation of (2.95).

Substituting (2.95) into (2.22), the first term in (2.95), i.e. the term proportional to
−(γ − 1)σ2p̂′, and the first term on the left-hand side of (2.22) yield γσ2p̂′. The factor γ
implies the isothermal sound speed a2e/γ jointly with the second term due to the pressure
gradient if the shear stress were absent. However, the shear stress does exist to cancel
with the pressure gradient. Thus the lowest relation of (2.22) is reduced to γσ2p̂′ = 0, i.e.
γ∂2p′/∂t2 = 0, not to the wave equation γ∂2p′/∂t2 − (∂/∂x)(a2e∂p

′/∂x) = 0. This means
that the isothermal sound speed ae/

√
γ has no meaning physically.

Keeping these relations in mind, we proceed to seek higher-order terms in (2.22).
Substituting (2.94) and (2.95) with (2.96) into (2.22) transformed, and dividing it by γσ,
we arrive at an equation in the same form as (3.17) in I but with an additional term on
the right-hand side, denoted by εŵj, due to the effects of heat conduction in wall. To
treat both cases with j = 0 and j = 1 simultaneously, α is now replaced by αj given by

αj =
a2eH

2

(3 + 5j)γνe
, (2.100)

while the coefficient 2/5 in (3.17) in I is replaced by (6 + 10j)/(15 + 81j).
Transforming these inversely, the approximate equations for the thick diffusion layer

are obtained as

∂p′

∂t
− ∂

∂x

(
αj
∂p′

∂x

)
+
αj

Te

dTe
dx

∂p′

∂x
− (γ − 1)Pr

αj

a2e

∂2p′

∂t2

+
6 + 10j

15 + 81j

[
∂

∂x

(
αjH

2

νe

∂2p′

∂t∂x

)
− (1 + Pr)

αjH
2

νeTe

dTe
dx

∂2p′

∂t∂x

]
= εwj,

(2.101)

where εwj are given by

εwj =
ε

2jGe

{
γ − 1

γ

∂p′

∂t
+
αj

Te

dTe
dx

∂p′

∂x
− (γ − 1)Pr[2− (3 + 5j)Qj]

αj

a2e

∂2p′

∂t2

−
[

Pr

3 + 5j
+

6 + 10j

15 + 81j
(1 + Pr)−Qj

]
αjH

2

νeTe

dTe
dx

∂2p′

∂t∂x

}
.

(2.102)

Because each term in εwj has a counterpart on the left-hand side of (2.101), and no new
terms in form appear, the effects of heat conduction in wall will not give rise qualitative
changes. But quantitative differences will occur through the coefficients. Their effects
appears through the parameter Ge. As Ge becomes smaller to be comparable with ε,
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they give rise to an appreciable difference from those without their effects. Noting that

ε

2jGe
=


ρecp
ρscs

H

d
for j = 0,

ρecp
ρscs

R2

[(R + d)2 − d2]
for j = 1,

(2.103)

by (2.12) and (2.99), ε/2jGe implies the heat capacity of the wall per unit axial length.
Thus the effects of heat conduction in wall become pronounced admittedly as the thickness
of wall becomes thinner.

2.9 Resonant case and unusual diffusion

2.9.1 Relations in the case without expansion in terms of ε

When the resonance takes place, the expansion in terms of ε becomes invalid and the
temperature distributions should be sought without expansion. Then T̂ ′ in (2.31) is
modified by replacing fP in (2.32) with

fP = 1− 1

A
cosh(y

√
Pr/Hδe)

cosh(
√
Pr/δe)

, (2.104)

where

A = 1 + ε
tanh(

√
Pr/δe)

tanh(1/δs)
= 1 + εCP , (2.105)

while εT̂ ′
ε in (2.33) is modified by replacing fK in (2.34) with

fK =
1

A
tanh(1/δe)

tanh(1/δs)

cosh(y
√
Pr/Hδe)

cosh(
√
Pr/δe)

, (2.106)

and setting fKP to be zero. For T̂s
′
, on the other hand, fS and fSP in (2.39) are replaced

by A−1fS and A−1fSP , respectively. Since the replacements above give exact expressions

to T̂ ′ and T̂s
′
, the symbol O(ε2) in (2.33) and (2.38) is unnecessary.

For the case of the tubes, fP is replaced by

fP = 1− 1

A
I0(r/Rδκ)

I0(1/δκ)
(2.107)

with

A = 1 + ε
I1(1/δκ)

I0(1/δκ)
Z(R, 1/δs) = 1 + εCP , (2.108)

and fK is replaced by

fK =
1

A

[
I1(1/δe)

I0(1/δe)
Z(R, 1/δs)

]
I0(r/Rδκ)

I0(1/δκ)
, (2.109)
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with setting fKP = 0, while fS and fSP in (2.63) are replaced by A−1fS and A−1fSP ,
respectively.

By expanding 1/A as 1− εCP +O(ε2), it is verified that T̂ ′ and T̂ ′
s in §4 are recovered.

Thus each term inW on the right-hand side of (2.56) has the counterpart on the left-hand
side. The replacements by 1/A modify the heat flux in (2.41) through gP , which affect
the thermoacoustic-wave equations. But no changes occur in f and therefore in the shear
stress and g. Noting that gP results from differentiation of fP with respect to y, gP is
multiplied by A−1. In addition, (2.42) is replaced by

σq̂w = −
2cpTe

√
νe

a2e

[
1

1− Pr

a2e
Te

dTe
dx

σ−1/2∂p̂
′

∂x

CP
A
g(x,H)

]
, (2.110)

without the symbol O(ε). For the case of the circular tube, the factor 2 should be deleted.

2.9.2 Modifications of relaxation functions

To derive the thermoacoustic-wave equations, the inverse transform of the heat flux (2.41)
is necessary, and the inverse transform (2.45) is modified by 1/A. Thus the following
transform must be evaluated:

1√
2π

F−1

{
σ−1/2

1 + ε tanh(
√
Pr/δe)/ tanh(1/δs)

tanh(
√
Pr/δe)

}
. (2.111)

It is readily seen that the poles of tanh(
√
Pr/δe) and tanh(1/δs) are no longer poles of

the integrand. Instead new poles appear from zeros of the denominator by competition
between tanh(

√
Pr/δe) and tanh(1/δs).

For the denominator to vanish: tanh(1/δs)+ ε tanh(
√
Pr/δe) = 0, there are two cases,

one being a case in which tanh(
√
Pr/δe) takes a large value of order ε−1, or the other a

case in which tanh(1/δs) takes a small value of order ε. In the former case, simple poles
are located near the ones of tanh(

√
Pr/δe) and are given by −{(2n − 1)2π2/4 − ε(2n −

1)π/ tan[(n − 1/2)πGe] + O(ε2)}κe/H2. The poles are shifted by the order of ε. Noting
that the factor 1/ tan[(n − 1/2)πGe] results from 1/ tanh(1/δs) and assuming this does
not vanish for any positive integer of n, these poles yield the inverse transform as

2
√
κe

H

∞∑
n=1

{
1 + ε

Ge

sin2[(n− 1/2)πGe]
+O(ε2)

}−1

× exp

{
−(2n− 1)2π2

4

κet

H2
− ε

(2n− 1)π

tan[(n− 1/2)πGe]

κet

H2
+O(ε2)

}
.

(2.112)

In the latter case, simple poles are located near the zeros of tanh(1/δs). They are
found to be given by σ = −(nπ)2[1− 2ε tan(nπ/Ge)/nπ+O(ε2)]κs/d

2 and shifted by the
order of ε. Noting that tan(nπ/Ge) results from tanh(

√
Pr/δe) and assuming this does

not diverge for any n, these poles yield

ε
2
√
κs
d

∞∑
n=1

tan2
(
nπ

Ge

)
exp

[
−n2π2κst

d2
+ 2εnπ tan

(
nπ

Ge

)
κst

d2
+O(ε2)

]
. (2.113)
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Thus the inverse transform of (2.111) is given by the sum of (2.112) and (2.113). If
the exponential function in (2.112) is expanded in terms of ε, the leading term of order
ε0 corresponds to (2.46), which yields the functional MP . The first-order terms in ε
correspond to the first and second sums ofMD(t) in (2.76) with sign reversed, respectively,
while (2.113) corresponds to the third sum with sign reversed.

For the heat flux q, there is another contribution from q̂w given in (2.110), though
small of order ε. To evaluate this, the following inverse transform must be executed:

1√
2π

F−1

{
σ−1/2

1 + ε tanh(
√
Pr/δe)/ tanh(1/δs)

tanh(
√
Pr/δe) tanh(1/δe)

tanh(1/δs)

}
. (2.114)

This is reduced to (2.48) to the lowest order in ε. The transform (2.114) can be evalu-
ated in a similar fashion to the one (2.111). In this case, however, there occur poles of
tanh(1/δe) in addition to those in (2.111), and there are contributions from three types of
poles. It is verified that these correspond to the three sums in (2.75) to the lowest order
in ε.

It is found from (2.112) and (2.113) that the coefficients of ε diverge when tan[(n −
1/2)πGe] vanishes or tan(nπ/Ge) diverges for a special value Ge. These are the resonant
cases seen in (2.76). For Ge = 2, for example, they correspond to cases where the zeros of
cosh(

√
Pr/δe) coincide with the ones of sinh(1/δs) and κe/H

2 = 4κs/d
2. Then the simple

poles of the integrand in (2.111) are located at σ = −[(n − 1/2)2π2 ± (2n − 1)π
√
ε/2 +

· · ·]κe/H2, and the integral is evaluated as

2
√
κe

H

∞∑
n=1

exp

[
−(2n− 1)2π2

4

κet

H2

]
cosh

[
(2n− 1)π

√
ε

2

κet

H2

]
+O(ε).

(2.115)

The relaxation becomes slower by the order of
√
ε in the hyperbolic function than the

order of ε in (2.112) and (2.113) in the non-resonant case. At resonance, the diffusion is
unusual in the sense that the effects of heat conduction no longer remains to be of order
ε. This difference manifests significant as the value of ε becomes larger.

Profiles of the relaxation function are displayed in non-resonant cases. Taking the
value of ε to be 0.01, figure 5 depicts logarithmic plots of the function Φ(t)− εMD(t) for
four values of Ge (= 1.5, 2.5, 3.5 and 4.5), where the factor κe/H

2 in the abscissa κet/H
2

and ordinate (H/
√
κe)(Φ− εMD) is omitted. For t less than 5, all behaviours are almost

the same as 1/
√
πt. For t greater than 5, it is seen that as the value of Ge becomes larger,

slower relaxation appear. The curve of Φ(t) without the effects of heat conduction almost
coincides with the curve for Ge = 1.5.

The relaxation function in the resonant case for Ge = 2 is compared with the ones in
non-resonance cases in the vicinity of it. Figure 6 displays the logarithmic plots of the
function determined by (2.115) and Φ(t) − εMD(t) for the values of Ge = 1.95 and 2.05
against t over the interval 0.1 ≤ t ≤ 100 where ε is chosen to be 0.2 and the factor κe/H

2

is omitted from the abscissa and ordinate.
For reference, Φ(t) is drawn in the broken curve. The open and solid dots represent,

respectively, the inverse Laplace transforms of (2.45), and (2.111) for Ge = 2 and ε = 0.2
evaluated numerically by the double exponential formulas (Ooura & Mori (1991)). The
open dots almost lie on the broken curve for Φ(t) but the dots in both cases scatter for
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Figure 5: Logarithmic plots of the relaxation function Φ(t)− εMD(t) in the non-resonant cases
with ε = 0.01 and Ge = 1.5, 2.5, 3.5 and 4.5 against t over the interval 10−3 ≤ t ≤ 102 where
the abscissa and ordinate measure κet/H

2 and (H/
√
κe)(Φ− εMD), respectively, but the factor

κe/H
2 being omitted.

the ordinate below 10−15, which is the limit of accuracy in double precision. Because the
formulas provide very accurate results just as seen from the agreements between the open
dots and the broken curve, it is conjectured that differences between the curve for Ge = 2
and the dots would stem from higher-order terms in (2.115). When (2.111) is evaluated
numerically for Ge = 1.95 and Ge = 2.05, they are close to the solid dots away from the
curves with Ge = 1.95 and 2.05.

2.9.3 Resonance conditions and modified thermoacoustic-wave equations

Resonance conditions are found from the coefficients of the exponential functions in MT

and MD. They are given as follows: tan[(n− 1/2)π
√
PrGe] = tan[(n− 1/2)πGe] = 0 and

cot(nπ/Ge) = cot(nπ/
√
PrGe) = cot[(n−1/2)π

√
Pr] = cot[(n−1/2)π/

√
Pr] = 0 for any

integer n. It is noted that because the value of Ge varies with x, the resonance conditions
are met at somewhere along the channel. For the resonance conditions in the case of the
tubes, they are identified by the relaxation functions NT and ND. The resonance occurs

when jn
√
Pr or jn/

√
Pr hit one of the roots of J0 or when kn

√
κs/νe or kn

√
κs/κe hit one

of those roots. Further jn
√
νe/κs or jn

√
κe/κs hit the poles of Z.

To derive the thermoacoustic-wave equation valid both in non-resonant and resonant
cases, the asymptotic expansion in ε should be abandoned. Then the functionals MP −
εMD and MT in (2.56) and (2.55) are replaced, respectively, by M̃P and M̃T , whose
relaxation functions M̃P and M̃T are to be determined by the inverse transforms of (2.111)
and (2.114), respectively. Then the thermoacoustic-wave equation takes the following
form:

∂2p′

∂t2
− ∂

∂x

(
a2e
∂p′

∂x

)
+

∂

∂x

[
a2e
√
νe

H
M

(
∂p′

∂x

)]
+

√
νe
H

{
γ − 1√
Pr

M̃P

(
∂2p′

∂t2

)
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Figure 6: Differences of the relaxation functions in the vicinity of the resonance at Ge = 2 for
ε = 0.2. Logarithmic plots of the relaxation function determined by (2.115) in the resonant
case and Φ(t) − εMD(t) in the non-resonant cases for Ge = 1.95 and 2.05 against t over the
interval 0.1 ≤ t ≤ 100 where the abscissa and ordinate measure κet/H

2 and (H/
√
κe)(Φ−εMD),

respectively, but the factor κe/H
2 is omitted. The open and solid dots represent, respectively, the

inverse Laplace transforms of (2.45) and (2.111) evaluated numerically by the double exponential
formulas where the former almost lie on the curve Φ(t) in the broken line but both dots scatter
for the ordinate below 10−15.

− a2e
Te

dTe
dx

[
1

1− Pr
M

(
∂p′

∂x

)
− 1

(1− Pr)
√
Pr

M̃P

(
∂p′

∂x

)

− ε

1− Pr
M̃T

(
∂p′

∂x

)]}
= 0. (2.116)

Although explicit expressions of M̃P and M̃T are not given, they are determined by the
zeros of the functions tanh(1/δs)+ε tanh(

√
Pr/δe) and the poles of tanh(1/δe). Equation

(2.116) is the full thermoacoustic-wave equation taking account of the effects of heat
conduction without making an expansion in terms of ε, and therefore it is valid for any
value of Ge. For the case of the circular tubes, similar replacements are necessary in
(2.73) and (2.74). The relaxation functions in ˜NP and ˜NT are simply replaced by the
inverse transforms of (2.71) and (2.72) with the factor 1/A multiplied.

Equation (2.116) has been derived by evaluating the heat flux fully. Using this heat
flux, the mean temperature of the solid wall T̄ ′

s is obtained from (2.25) as

∂2T̄s
′

∂t2
=

ε

Ge

Te
ρea2e

√
νe
H

{
γ − 1√
Pr

M̃P

(
∂2p′

∂t2

)
− a2e
Te

dTe
dx

[
1

1− Pr
M

(
∂p′

∂x

)

− 1

(1− Pr)
√
Pr

M̃P

(
∂p′

∂x

)
− ε

1− Pr
M̃T

(
∂p′

∂x

)]}
. (2.117)

The terms in the curl brackets may be replaced by the first three terms in (2.116) with
sign reversed. The relation (2.117) holds for the case of the circular tubes by replacing
M with N , and H with 2R. Then the mean temperature is defined by integrating 2πrT ′

s
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over the thickness and dividing it by π[(1 + η)2 − 1]R2, whereby the integral of rZ over
the thickness is equal to δ−1

s .

2.10 Conclusion of the heat conduction in wall

We examined the effects of the thermal conduction in the wall on the thermoacoustic
wave equation and its approximated theory. The effects appear through the parameter
ε defined by the square root of the product of two ratios, one being the ratio of the
heat capacities per volume and the other the ratio of the thermal conductivities. This is
not the only parameter for the effects but they are determined by the ratio of thermal
diffusivities and especially the geometry parameter Ge defined by the relative thickness of
the wall. Because the heat capacity per volume and thermal conductivity of the solid wall
are usually greater than the ones of gas, the value of ε is very small so that the effects of
heat condition have been taken into account to the first order of ε. However it has been
unveiled that when the geometry parameter takes special values, the expansion exhibits
nonuniformity, i.e. resonance, and then the effects become enhanced up to the order of√
ε. In comparison with the diffusion of ε in non-resonant case, the effects give rise to

unusual diffusion in a transient behavior and modify the thermoacoustic-wave equations.
In thin diffusion layer theory, the effects of heat conduction appear only through ε,

however in the thick diffusion layer theory, they appear through ε and Ge. The effects of
heat conduction in wall may be neglected as long as the value of ε is small enough. But
it may happen that the effects appear enhanced, depending through Ge on the geometry
of the tubes, and the combination between the gas and the solid. However, in thick and
thin diffusion layer theory, terms obtained by the heat conduction have the same form of
terms as the equation without temperature variation. Therefore we can summarize them
in the coefficients of the main equation.
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3 Marginal conditions for the onset of thermoacous-

tic oscillations in a looped tube

Essence of the phenomena is in the interconversion between the thermal energy and kine-
matic one. Because energy of gas oscillations is supplied by ambient heat source, energy
conversion takes place from thermal energy to mechanical one. This may be regarded
as prime mover . Recently application of thermoacoustic phenomena to heat engine has
attracted much attention and interest from a viewpoint of energy and environmental prob-
lems, especially, heat engines exploiting a gas-filled, looped tube (Swift (2002), Garrett
(2004)). This prime mover with looped tube is characterized by emergence of a travelling
wave, which yields a favourable phasing between pressure and velocity of a gas particle to
enhance efficiency as a heat engine in comparison with that exploiting a standing wave.
For further increase in efficiency and power to put it into practical use, physical processes
occurring especially in narrow pores in the stack must be clarified. At present, however,
even marginal conditions of instability are not well established.

Marginal conditions of instability are shown experimentally by Yazaki et al. (1998),
a first attempt to derive it analytically is made by Penelet et al. (2005) by using the
transmission matrix method by solving a pressure field based on Rott’s equation (Rott
(1969)). Later Ueda & Kato (2008) also solved Rott’s equation by a transmission matrix
method to derive marginal conditions and compared them with their experimental results.
Although all these analyses are based on Rott’s equation, this equation is desperately
difficult to be solved analytically so that they must rely on numerical computations to solve
the differential equation. This foreshadows understanding of mechanisms of instability
and physical processes involved.

Essence of thermoacoustic phenomena lies in thermoviscous diffusion of a gas in contact
with a solid wall. To understand the phenomena as easily as possible, it seems to be
reasonable to consider them by limiting a situation concerned. The diffusion effects will
occur differently depending on a span length of a flow passage, therefore situation may be
classify by the ratio of thickness of diffusion layer to a span length. Rott’s equation covers
all situation in frequency domain. Thermoacoustic-wave equation also covers all situation
classified by thickness of diffusion layer, but this is in the space and time domain. This
equation is reduced to Rott’s equation if a time-harmonic disturbance is considered. The
equation enables to unveil a unstable transient behavior and is expected to be extended
to nonlinear regime. This equation may be approximated by the thickness of diffusion
layer and asymptotic equations may be obtained for thick or thin diffusion layer.

In the case of thin diffusion layer, marginal conditions for the Taconis oscillations and
for the Sondhaus tube are derived Sugimoto & Yoshida (2007) and Sugimoto & Takeuchi
(2009). Nonlinear problem also have been already done. On the other hand, in the case
of thick diffusion layer, applications to the specific problem have not been done yet.

In this section, Marginal conditions of onset of thermoacoustic oscillations in the
looped tube based on asymptotic theories. For the gas outside of the pores, the theory for
thin diffusion layer is applied. Recently Shimizu et al. (2012) applied this theory of thin
diffusion layer even to the gas in the pores to obtain a right branch of marginal curves
up to the minimum temperature ratio. However, since it is obviously inapplicable to a
left branch, this paper employs the theory of thick diffusion layer by expecting to derive
a left branch.
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Figure 7: Illustration of a gas-filled, looped tube of inner radius R and axial length L with a stack
of length LS inserted where the x-axis is taken along the tube’s central axis counterclockwise.
The stack is assumed to consist of many pores of radius RS(≪ R) and to be subjected to a
temperature gradient axially by keeping the left end of the stack (x = 0) at a room temperature
T0 while the right end (x = x1(= LS)) at a temperature T1 higher than T0, and the temperature
relaxes from T1 at x = x1 to T0 at x = x2(= LS +LB ≪ L) over a buffer tube of length LB, the
temperature being at T0 elsewhere in the tube.

3.1 Model of looped tube

Now we apply asymptotic equations derived in §2 to the looped tube and derive the
marginal conditions. Results from the approximate equations for thick and thin diffusion
layer, new form of terms does not appear in equation. Therefore we use approximate
equations taking ε to 0 for simplicity. We consider a model of a gas-filled, looped tube
with a stack inserted as shown in figure 7. For sake of simplicity, the tube has a uniform
cross section of inner radius R except for a section of the stack. The stack is assumed
to consist of many long pores of radius RS(≪ R) and of length LS axially. The stack
wall is subjected to a temperature gradient by keeping the left end of the stack at a room
temperature T0 while the right end at a temperature T1 higher than T0. This temperature
gradient is imposed, in reality, by hot and cold heat exchangers installed close to both
ends of the stack. However, because of the short axial length of the heat exchangers, the
present model does not take them into account but assumes simply the temperature at
both ends of the stack to be held constant. In a section of the tube except for the stack,
the temperature of gas and wall relaxes from the highest one at the hot end of the stack
to resume the room temperature over an axial length of LB. Such a section is called a
buffer tube. Except for the sections of the stack and the buffer tube, the temperature is
assumed to be at the room temperature.

In figure 7, the x-axis is taken along the tube’s central axis counterclockwise and the
origin is set at the cold end of the stack. Let the tube length along the centerline be
L. The hot end of the stack is located at x = x1(= LS), which is the left end of the
buffer tube. The right end of the buffer tube is located at x = x2(= LS + LB ≪ L).
The loop is not necessarily circular but a typical loop radius L/2π is assumed to be much
larger than the inner radius R. Then curvature effects of the x-axis may be negligible in
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thermoviscous effects and also the centrifugal force, which is quadratic in velocity. Hence
following arguments are based on the assumption that the loop may be regarded as a
straight tube locally.

Assuming an ideal gas, the pressure takes a uniform value p0 throughout in a quiescent
state where no gravity is assumed. Then the temperature of gas Te is regarded as being
equal to that of the wall and uniform over the cross section. Thus Te is a function of x
only, and the local density of the gas is denoted by ρe with ρeTe being constant. Even
when the gas is in motion, no account of temporal variations in the wall temperature
is taken. The subscript e implying mechanical equilibrium, i.e. the quiescent state is
attached to designate a quantity of a function of x determined by Te.

3.2 Derivation of frequency equation

We now derive a frequency equation which determines marginal oscillations. Employing
the theories for thick and thin diffusion layer for the gas in the stack and that in the other
sections, respectively, we attempt to seek analytical solutions to the respective equations.
By imposing them on matching conditions at each junction of the sections, the frequency
equation is derived.

To do this, the temperature distribution Te must be specified. As the theory of thick
diffusion layer suggests, it is assumed that Te in the stack is given by (3.13). Note that
since (1−LS/x∞)−2/(1+2β) determines the temperature ratio T1/T0, the stack length varies
slightly with the temperature ratio. When the temperature gradient is absent, its length
shrinks to zero. In the buffer tube, as will be shown later, Te is assumed to decrease from
T1 to T0 in the form of a parabolic function in x given by (3.44) below because analytical
solutions are available in this case. Elsewhere in the tube, Te is assumed to be T0. Figure
8 shows an example of the temperature distribution Te/T0 in the section 0 ≤ x ≤ 0.25L
for the case with T1/T0 = 2, LS = 0.02L, LB = 0.21L and β = 0.5 where the stack and
the buffer tube occupy the sections 0 < x < 0.02L and 0.02L < x < 0.23L, respectively.
The distribution in the stack and the one in the buffer tube are concave upward, though
the latter appears to be linear in this scale.

3.2.1 Relations for the gas in the pores of the stack

Suppose that the thickness of thermoviscous diffusion layer in the pore of the stack is much
thicker than the pore radius. Then the thermoacoustic-wave equation is approximated to
be the diffusion wave equation to the lowest approximation in the ratio of the radius to
the thickness. As long as this equation is used, however, no instability can be expected
and therefore employed is the higher-order equation taking account of the finiteness of
the ratio.

The higher-order equation is given by (2.101) (ε → 0, j = 1) for an excess pressure
p′(x, t) over p0 in the case of the circular tube of radius R, which corresponds to RS in the
present context. For integrity’s sake, the higher-order equation is written in the following
form:

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+
αe

Te

dTe
dx

∂p′

∂x
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Figure 8: Example of the temperature distribution Te/T0 in the section 0 ≤ x ≤ 0.25L for the
case with T1/T0 = 2, LS = 0.02L, LB = 0.21L and β = 0.5 where the stack and the buffer tube
extend in the sections 0 < x < 0.02L and 0.02L < x < 0.23L, respectively. The distribution in
the stack is given by (3.13) with β = 0.5, while that in the buffer tube is given by (3.44) with
λ =

√
2− 1.

+
αe

a2e

∂

∂t

{[
4

3
γ − (γ − 1)Pr

]
∂p′

∂t
− 1

6
(1 + β + Pr)

a2eR
2

νeTe

dTe
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∂p′

∂x

}
= 0,

(3.1)

Remark that αe gives the diffusivity of acoustic waves in the narrow tube and channel,
which should be distinguished from the diffusivity of sound in an unbounded thermovis-
cous fluid (see, e.g. Morfey (2001)). The first line of (3.1) is the lowest equation, to
which the second line gives the higher-order corrections of order R2ω/νe(≡ |δe|−2 ≪ 1).
To the lowest approximation, the gas is in perfect thermal contact with the wall so that
the temperature disturbance vanishes. When (3.1) is assumed, it takes account of the
small temperature disturbance so that the heat flux (given later by (3.116)) is present
through the wall surface. Because the thermal contact is still good in this case, the stack
acts as a regenerator, though the term “stack” is often used when the thermal contact is
imperfect.

Using the lowest equation, the higher-order terms in the curl brackets may be expressed
equivalently in various way as far as the order of |δe|−2 is concerned. Subtracting the lowest
equation multiplied by an arbitrary constant c, in fact, they may be replaced by{[
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γ − (γ − 1)Pr − c

]
∂p′
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∂

∂x

(
αe
∂p′
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∂p′

∂x

}
. (3.2)

If c is chosen to be 4/3γ − (γ − 1)Pr , the coefficient of ∂p′/∂t is made to vanish. If c is
chosen to be −4/3γ(1 + β + Pr)/2 for the coefficients of the last two terms to become
equal, the higher-order equation is written as
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= 0, (3.3)
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with ϖ = [4γ/3(3 + β + Pr) − 2(γ − 1)Pr ]/[4γ/3(1 + β + Pr)], which is positive for
air. The factor in the curl brackets represents another diffusion wave equation with
diffusion time modified by ϖ. This equation describes diffusion propagating down the
temperature gradient, which should be compared with that up the gradient governed
by the lowest equation. Thus it is revealed that the higher-order equation contains two
different diffusion wave mechanisms.

The present analysis makes use of (3.1) for the case of the circular pore of radius RS

with the higher-order terms rewritten as (3.2) by choosing c = 4γ/3 − (γ − 1)Pr in the
following form:

∂p′

∂t
− ∂

∂x

(
αe
∂p′

∂x

)
+
αe

Te

dTe
dx

∂p′

∂x
+
αe

a2e

∂

∂t

{ [
4

3
γ − (γ − 1)Pr

]
∂

∂x

(
αe
∂p′

∂x

)

−
[
4

3
γ(2 + β + Pr)− (γ − 1)Pr

]
αe

Te

dTe
dx

∂p′

∂x

}
= 0, (3.4)

with αe in the pore of radius RS given by

αe =
a2eR

2
S

8γνe
, (3.5)

The shear viscosity and the heat conductivity follow as power law (2.3). If this power
law is assumed, αe is no longer independent of Te. The temperature dependence of the
quantities with the subscript e is given in terms of Te/T0 as follows:

a2e
a20

=
Te
T0
,

νe
ν0

=
(
Te
T0

)1+β

,
αe

α0

=
(
Te
T0

)−β

. (3.6)

For the spatial derivative of these quantities, it is convenient to use the following relations:

1

a2e

da2e
dx

=
1

Te

dTe
dx

,
1

νe

dνe
dx

=
1 + β

Te

dTe
dx

,
1

αe

dαe

dx
= − β

Te

dTe
dx

. (3.7)

To solve (3.4), an Ansatz is introduced as follows:

αe
∂p′

∂x
=
Te
T0
g(t), (3.8)

where g(t) is an arbitrary function of t, which has a physical dimension of an energy flux
density [W/m2]. Letting Te/T0 = θ, p′ is expressed as

p′ =
∫ x

0

θ

αe

dx g(t) + i(t), (3.9)

where i(t) is an arbitrary function of t. Substituting (3.9) into (3.4), it follows that[ ∫ x

0

θ

αe

dx− 1

6
(1 + β + Pr)

R2
S

νe

dθ

dx

]
dg

dt
+

di

dt
= 0. (3.10)

Note that if the higher-order terms are ignored in (3.4), g must be independent of t and
(3.8) becomes irrelevant to the present problem. It is only when the higher-order terms
are taken into account that (3.8) has a significance.
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Differentiating the factor bracketed in (3.10) with respect to x, it follows that

θ1+β − 4

3
γ(1 + β + Pr)

α2
0

a20

d

dx

(
1

θ1+β

dθ

dx

)
= 0, (3.11)

where the last relation in (3.6) has been used. Integrating (3.11), it follows that

θ − 2

3
γ(1 + β + Pr)

α2
0

a20

(
1

θ1+β

dθ

dx

)2

= const., (3.12)

where the const. is arbitrary. Taking this constant to be zero, θ is obtained as

θ ≡ Te
T0

=
(
1− x

x∞

)−2/(1+2β)

, (3.13)

where Te/T0 is assumed to take unity at x = 0, and x∞ is given by

x∞ =
1

1 + 2β

√
1 + β + Pr

24γ

a0R
2
S

ν0
. (3.14)

If the const. in (3.12) is chosen to be unity, θ is obtained analytically for β = 0.5 as

Te
T0

=

(
1− x2

4x2∞

)−1

. (3.15)

In this case, the temperature increases slowly from x = 0 as 1+x2/4x2∞+· · · for x/x∞ ≪ 1
compared with (3.13).

The following analysis assumes Te/T0 in (3.13) by restricting to a range in x/x∞ < 1.
For the atmospheric air at 15◦C, a0 = 340 m/s, γ = 1.4, Pr = 0.72, ν0 = 1.45× 10−5 m2/s
and β = 0.5 so that x∞ takes 3.0 × 106R2

S m−1. Supposing RS = 0.5 mm, x∞ is about
0.75 m. If β is chosen to be 0.5, for example, Te/T0 takes 2 for x/x∞ = 1/2, and 3 for
x/x∞ = 2/3. To compare it with a parabolic distribution, Te/T0 is expanded in power
series of x/x∞ as

Te
T0

= 1 +
2

1 + 2β

(
x

x∞

)
+

[1 + 2(1 + 2β)]

(1 + 2β)2

(
x

x∞

)2

+ · · · . (3.16)

It is found that (3.16) deviates from [1 + (1 + 2β)−1x/x∞]2 by 2(1 + 2β)−1(x/x∞)2.
For the temperature distribution given by (3.13), it follows that

∫ x

0

θ

αe

dx =
(1 + 2β)x∞

α0

[(
1− x

x∞

)−1/(1+2β)

− 1

]
. (3.17)

Using this and (3.13) into (3.10), it is found that i must be chosen to be (1 + 2β)x∞g/α0

plus an arbitrary constant in t. Thus p′ is specified as

p′ =
Γ

a0

(
1− x

x∞

)−1/(1+2β)

g(t) =
Γ

a0

(
Te
T0

)1/2

g(t), (3.18)
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where Γ is defined by

Γ ≡ (1 + 2β)x∞a0
α0

=

√
8γ(1 + β + Pr)

3
. (3.19)

As long as (3.13) is assumed, (3.18) is an exact solution to (3.4). However, this is
insufficient to accommodate boundary conditions and another solution independent of it
is required. Although (3.4) does not permit a solution h(t) uniform in x, h being an
arbitrary function of t, it is possible to construct a solution about it in the form of an
asymptotic series of time derivatives of h as p′ = h(t) + w(x)ḣ + w(2)(x)ḧ + · · ·. Here
the dot designates differentiation with respect to t, and w and w(2) are functions of x to
be determined so as to satisfy (3.4) consistently. The series is suggested by noting that
the operator (αe/a

2
e)∂/∂t in the higher-order term yields R2

Sω/8γνe, ω
−1 being a typical

time scale involved in variations of h like eiωt, and the factor is small because the ratio of

the pore radius to a typical thickness of the viscous diffusion layer
√
νe/ω is smaller than

unity. Substituting the series into (3.4), p′ is evaluated up to the first order in ḣ as

p′ = h(t) + Λ
(
1− x

x∞

)2(1+β)/(1+2β) R2
S

6ν0

dh

dt
+ · · · = h(t) + Λ

R2
S

6νe

dh

dt
+ · · · ,

(3.20)

where Λ is defined by

Λ =
1 + β + Pr

(1 + β)(3 + 2β)
, (3.21)

and higher-order terms than R2
Sω/6νe have been ignored. Summing (3.18) and (3.20), p′

is expressed in terms of two unknown functions g and h in t as

p′ =
Γ

a0

(
Te
T0

)1/2

g + h+ Λ
R2

S

6νe

dh

dt
. (3.22)

As the pressure in (3.22) is evaluated up to the first order of R2
Sω/νe, the axial velocity

u′(r, x, t) in the pore is also taken up to terms of the same order, r being a radial coordinate
in the pore. It is given as

u′ = − 1

4µe

∂p′

∂x
(R2

S − r2) +
1

64ρeν2e

∂2p′

∂t∂x
(R2

S − r2)(3R2
S − r2). (3.23)

The lowest velocity profile is simply that of Poiseuille flow for an incompressible fluid. It
should be remarked, however, that for the instability to occur, as will be shown later, the
higher-order term becomes indispensable and then the velocity profile deviates from that
of Poiseuille flow. The mean velocity averaged over the cross-section of the pore of radius
RS, denoted by u′, is obtained as

u′ ≡ 1

πR2
S

∫ RS

0
2πru′dr = − R2

S

8µe

∂p′

∂x
+

R4
S

48ρeν2e

∂2p′

∂t∂x
. (3.24)

Here and hereafter the overbar is used to imply a mean value over the cross-section of a
flow passage. Thus the mean mass flux density is given by

ρeu′ = − γ

a20

(
g − R2

S

6νe

dg

dt

)
+

2(1 + β)γΛ

Γa0

(
Te
T0

)−1/2 R2
S

6νe

dh

dt
, (3.25)
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where the last term results from the first term in (3.24) and the contribution from the
second term is of higher order. Here this mass flux is per unit area and therefore ‘density’
was added. For brevity’s sake, however, it will be omitted.

Supposing time-harmonic disturbances having an angular frequency ω, we set [p′, u′, g, h] =
Re{[P (x), U(x), G,H ] eiωt}, Re{· · ·} standing for taking the real part of each element in
the vector, and P , U , G and H being complex amplitudes and G and H constants inde-
pendent of x. Then it follows from (3.22) that

P =
Γ

a0

(
Te
T0

)1/2

G+H + iζeΛH, (3.26)

where ζe is a non-dimensional parameter for the ratio squared of the pore radius to a

typical thickness of the viscous diffusion layer
√
νe/ω defined by

ζe =
R2

Sω

6νe
with

ζe
ζ0

=
(
Te
T0

)−(1+β)

, (3.27)

where |ζe| ≪ 1. The mean mass flux is given by (3.25) as

ρeU = − γ

a20
(1− iζe)G+ iζe

2(1 + β)γΛ

Γa0

(
Te
T0

)−1/2

H. (3.28)

3.2.2 Relations for the gas in the buffer tube

In the buffer tube, the temperature decreases with x monotonically, and Ueda & Kato
(2008) modelled this by an exponential function. As is demonstrated by Sugimoto &
Yoshida (2007), on the other hand, (2.92) (ε → 0, j = 1) is solvable analytically when
the temperature distribution is parabolic in x. In view of this, we assume that the tem-
perature distribution in the buffer tube is given by a parabolic function concave upward
and follow their approach to obtain solutions. Description on the method of solutions is
thus kept minimum, and for details, reference should be made to their paper. Since their
analysis does not take account of the temperature dependence of the viscosity and the
heat conductivity, the present analysis is new in the respect of inclusion of β. If β is set
equal to zero, of course, their results will be recovered.

Assuming a time-harmonic disturbance for p′ in the form of Re{P (x)eiωt}, and noting
that the derivative of minus half-order of eiωt is simply given by (iω)−1/2eiωt [≡ (1 −
i)(2ω)−1/2eiωt] for ω > 0, (2.92) is reduced to the following equation:

(1− 2Cδe)a
2
e

d2P

dt2
+ [1− 2(C + CT )δe]

a2e
Te

dTe
dx

dP

dx
+ ω2P = 0, (3.29)

where δe is defined by

δe =
1

R

(
νe
iω

)1/2

with
δe
δ0

=
(
Te
T0

)(1+β)/2

, (3.30)

and |δe| ≪ 1. Following Sugimoto and Yoshida (2007) to introduce new valuables F and
Z and define P as

P =
F

Z
with Z = (1−Kβδe)

ae
a0
, (3.31)
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(3.29) is recast into the following form of equation:

X
d

dx

(
X
dF

dx

)
+MX

d

dx

(
ae
Te

dTe
dx

)
+ Y F = 0, (3.32)

with
X = (1− Cδe)ae, (3.33)

where Kβ, M and Y are chosen to be determined so that (3.32) agrees with (3.29) up to
the first order of δe.

From the coefficient of dP/dx, we have M = −1/2 and

Kβ =
1

1 + β

[
2CT −

(
1 +

β

2

)
C

]
=

1

1 + β
(2CTβ − C), (3.34)

with CTβ defined by

CTβ = CT − β

4
C. (3.35)

The subscript β in Kβ, CTβ and k±β in (3.50) indicates account of the temperature de-
pendence of the viscosity and the heat conductivity. When no dependence is taken into
account, they are reduced to those without β. From the coefficient of P , we have

Y = ω2 + CTβδe

ae d
dx

(
ae
Te

dTe
dx

)
+

(
1 +

β

2

)(
ae
Te

dTe
dx

)2
 , (3.36)

and

Z =

[
1− 2C

1 + β

(
CTβ

C
− 1

2

)
δe

]
ae
a0
. (3.37)

When the pressure amplitude is available, the velocity amplitude U in the main-flow
region is determined. In the outside of the boundary layer called a main-flow region, the
diffusive effects are neglected. Then the equation of motion in the axial direction is given
for the axial velocity u′(x, t) as follows:

ρe
∂u′

∂t
= −∂p

′

∂x
. (3.38)

In the boundary layer, on the other hand, the velocity must vanish on the tube wall so
that the velocity defect results. Taking this defect into consideration, the mean velocity
over the whole cross-section of the tube is expressed as follows (see (8) in Shimizu &
Sugimoto (2010)):

u = u′ −
2
√
νe
R

∂−
1
2u′

∂t−
1
2

. (3.39)

The velocity amplitude U in the main-flow region is

U =
i

ρeω

dP

dx
, (3.40)

where dP/dx is expressed in terms of F and Z as

dP

dx
=

1

XZ

(
X
dF

dx
− X

Z

dZ

dx
F

)
. (3.41)
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Using (3.39) and (3.40), the mean mass flux ρeU is given by

ρeU = ρe(1− 2δe)U = (1− 2δe)
E

XZ
, (3.42)

with the definition of E given by

E ≡ i

ω

(
X
dF

dx
− X

Z

dZ

dx
F

)
. (3.43)

Suppose the temperature distribution in the buffer tube be in the form of parabola as

Te
T0

=
[
1 + λ

(
x2 − x

LB

)]2
, (3.44)

where λ is a positive constant satisfying continuity of temperature at x = x1, i.e. T1/T0 =
(1−LS/x∞)−2/(1+2β) = (1+λ)2. To solve (3.32), we introduce a complex axial coordinate
ξ through Xd/dx = a0d/dξ. Taking the hot end of the stack at x = x1(= LS) to be
located at ξ = 0, ξ is given by

ξ = −LB

λ

{
log

(
η

1 + λ

)
+

b

1 + β

[
η1+β − (1 + λ)1+β

]}
, (3.45)

with η = 1 + λ (x2 − x) /LB and

b = Cδ0 =
C

R

(
ν0
iω

)1/2

, (3.46)

where |b| ≪ 1.
For the parabolic temperature distribution, a solution to (3.32) expressed in terms of

ξ is available by a successive approximation in b. Then F is obtained up to the first order
of b as

F = B+eik
+ξ +B−eik

−ξ

− ibβF
CTβ

C
λ(1 + λ)1+β

(
B+

k+β LB

eik
+ξ +

B−

k−β LB

eik
−ξ

)
e−(1+β)λξ/LB ,

(3.47)

while E is obtained similarly as

E =
a0
ω

[
k−B+eik

+ξ + k+B−eik
−ξ

+ ibβE
CTβ

C
λ(1 + λ)1+β

(
k−B+

k+β LB

eik
+ξ +

k+B−

k−β LB

eik
−ξ

)
e−(1+β)λξ/LB

]
,

(3.48)

where k± are defined as

k±LB =
i

2
λ± ψ, (3.49)
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with ψ = [(ωLB/a0)
2 − λ2/4]1/2, k±β are defined as

k±β LB = k±LB +
i

2
βλ =

i

2
(1 + β)λ± ψ, (3.50)

and βF and βE are defined, respectively, by

βF =
2 + β

1 + β
and βE =

β

1 + β
. (3.51)

Here and hereafter the symbols ± and ∓ are understood to be ordered vertically.

3.2.3 Relations for the gas in the section without the temperature gradient

In the section except for the stack and the buffer tube, the temperature of the gas is
uniform at the room temperature T0. Then (3.29) is simply reduced to

(1− 2Cδ0)a
2
0

d2P

dx2
+ ω2P = 0, (3.52)

and the solution is readily available as

P = D+eik(x−x2) +D−e−ik(x−x2), (3.53)

with the wavenumber k given by

k =
ω

(1− 2Cδ0)1/2a0
=

ω

X0

. (3.54)

No confusion would occur of k in (3.54) with the thermal conductivity.
Using (3.53) in (3.38), the velocity amplitude is given by

U = − 1

ρ0X0

D+eik(x−x2) +
1

ρ0X0

D−e−ik(x−x2), (3.55)

and the mean mass flux averaged over the cross-section of the tube is given by

ρ0U = ρ0(1− 2δ0)U. (3.56)

3.2.4 Matching conditions at the junctions between sections

To determine the unknowns G, H, B± and D± to fix the solution valid throughout the
tube, matching conditions are required at each junction between the sections. Among
them, the conditions at both ends of the stack are delicate. A domain in the vicinity
of the left end of the stack is illustrated in figure 9 in a scale comparable with the pore
radius. Although there should be drawn many pores, the figure is very simplified. In
reality, heat exchangers are placed on both ends of the stack with a small gap apart for
heat to flow to or from external hot or cold reservoirs. But because the heat exchangers
are not taken into account in the present model, they are drawn in broken lines.
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Figure 9: Illustration of a control volume containing the left end of the stack at x = 0 and
virtual heat exchangers, bounded by the walls of the tube, the stack and the heat exchangers
and two planes at x = 0− and x = 0+ taken in matching regions, where the number of the pores
and the heat exchangers is reduced significantly for simplicity and the heat exchangers are very
short axially. Since the heat exchangers are not taken into account in the present model, they
are drawn in broken curves. The subscripts + and − indicate values at x = 0+ and x = 0−,
respectively, the control volume being small in comparison with a volume associated with a
wavelength, and qhex represents symbolically a heat flux from the heat exchangers.

To consider matching conditions, an idea of the method of matched asymptotic ex-
pansions may be applied usefully because complicated end behaviours are expected to be
limited in the vicinity of the end and decayed away from it. This is seen in the experi-
mental results by Berson & Blanc-Benon (2007) and Berson et al. Taking the origin x = 0
at the left end of the stack, take a control volume bounded by the walls of the tube, the
stack, the heat exchangers and two planes at x = 0− and x = 0+ chosen arbitrarily in
so-called matching regions. The virtual heat exchanger is included in this volume.

The theories of thick and thin diffusion layers are assumed to be valid in x≪ 0− and
in 0+ ≪ x, respectively. The left matching region, represented by 0−, is estimated to be
located away from the left end of the heat exchangers by a distance comparable with the
tube radius. This is estimated by an evanescent mode appearing near an obstacle and
decaying in the form of exp(j1x/R) for x < 0, j1 (≈ 3.83) being the smallest root of the
Bessel function of first order J1(j1) = 0. The right matching region, represented by 0+, is
estimated to be located at a position comparable with RS for an inlet flow into the pore.

For this volume, consider the mass, axial momentum and energy fluxes through the
planes. Because the heat exchangers are short axially and located closely to the stack
end, the control volume bounded by the two planes is small enough in comparison with
a volume associated with a wavelength and the gas therein may be treated as being
incompressible. Then it is obvious that the mass flux must be continuous. In the linear
theory, it requires that [ρeu′Ae]

+
− = 0 where [· · ·]+− means difference of a value of [· · ·] at

x = 0+ from the one at x = 0− and Ae denotes the whole cross-sectional area of the flow
passages at x; A at x = 0− and AS at x = 0+. Because ρe is continuous, it is reduced to
[u′Ae]

+
− = 0.

As for the momentum flux, some remarks are necessary. When the gas flows into the
pores or out of them, the flow is constricted or expanded so that vortical motions usually
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occur due to separation of flows. These effects on the pressure are quadratic in the velocity.
In addition, the heat exchangers may also give rise not only to such a quadratic pressure
difference but also to a linear skin friction in a flow of a very low Reynolds number. Thus
the pressure is not required to be continuous, in general. As long as the linear theory is
concerned, however, the pressure may be set to be continuous if the skin friction on the
heat exchangers were ignored because they are short.

Thirdly the energy flux must satisfy a balance of enthalpy and heat fluxes given by
[(ρe + ρ′)(he + h′)u′Ae]

+
− = qhex, he and h′ being, respectively, a specific enthalpy in the

quiescent state and its excess quantity (h not to be confused with h defined in (3.20)) and
qhex being a heat flux from the heat exchangers. Here the axial energy flux transporting
the kinetic energy is discarded in quadratic theory, while the axial flux of stress power
−vσ, v and σ being, respectively, the velocity vector and the viscous stress tensor, and
the excess axial heat flux by conduction are small. The heat flux from the walls of the
tube and the stack is also discarded because the surface area is negligible.

Using he = cpTe and the continuity in mass flux [(ρe + ρ′)u′Ae]
+
− = 0 in full expression,

the balance of the energy flux is reduced to [ρeh′u′Ae]
+
− = qhex. Invoking the thermody-

namic relation, h′ = TeS
′ + p′/ρe, S

′ being an excess specific entropy, the condition is
written as [(p′u′ + ρeTeS ′u′)Ae]

+
− = qhex. Thus the energy flux consists of the acoustic

energy flux (acoustic intensity) p′u′ and the entropy (heat) flux ρeTeS ′u′. On the plane at
x = 0−, S ′ may be negligible because the main-flow region is regarded as being adiabatic
and contributions from the boundary layer remains to be small. On the plane at x = 0+,
on the other hand, S ′ cannot be ignored because the entropy flux is present. Since the
gas in the pore undergoes isothermal change T ′/Te = 0 to the lowest order, it follows that
ρeTeS

′u′ = −p′u′ so that it cancels with the acoustic energy flux. In this consequence,
p′u′A at x = 0− may be set equal to −qhex at x = 0. Thus the matching condition for the
energy flux may be used to evaluate the heat flux qhex. The same arguments are applied
to the junction at x = x1.

Across the junction x = x2, it suffices to impose continuity of the mass flux and the
pressure in the linear theory. Although both conditions may be trivial, the latter may
also be derived from discussions of the energy flux. Because the adiabatic processes are
assumed in the main-flow region, the continuity of energy flux requires that [p′u′Ae]

+
− = 0.

Using the continuity of mass flux, this is reduced to the continuity of pressure. Thus the
matching conditions at x = x2 are the continuity in pressure and mass flux. In addition,
the periodic boundary condition is imposed at x = 0 and x = L because of the toroidal
geometry.

Consider the matching conditions at x = x1. The left end of the buffer tube is located
at ξ = 0 where Z takes the value Z1 given by

Z1 = (1 + λ)
[
1− b

Kβ

C
(1 + λ)1+β

]
. (3.57)

Then the right end at x = x2 is located at ξ = ξ2 given by

ξ2 =
LB

λ

{
log(1 + λ) +

b

1 + β

[
(1 + λ)1+β − 1

]}
, (3.58)

where Z takes the value of Z2 given by

Z2 = Z0 = 1− b
Kβ

C
. (3.59)
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Here and hereafter the subscripts 1 and 2 imply values at x = x1 and x = x2, respectively,
while the subscript 0 implies a value at x = 0 as well as a value defined already at the
room temperature or in a quiescent state.

The continuity in pressure and mass flux across the junction at x = x1 requires,
respectively,

Γ

a0
(1 + λ)G+H + iζ1ΛH =

F

Z

∣∣∣∣∣
x=x1

, (3.60)

and [
− γ

a20
(1− iζ1)G+ iζ1

2(1 + β)γΛ

Γ(1 + λ)a0
H

]
AS = (1− 2δe)

E

XZ

∣∣∣∣∣
x=x1

A, (3.61)

where AS and A denote again the total cross-section area of all pores in the stack and the
cross-sectional area of the tube in the outside of the stack, respectively. The continuity
in pressure and in mass flux across the junction at x = x2 requires, respectively,

F

Z

∣∣∣∣∣
x=x2

= D+ +D−, (3.62)

and

(1− 2δe)
E

XZ

∣∣∣∣∣
x=x2

A =
(1− 2δ0)

X0

(
−D+ +D−

)
A. (3.63)

At the junction x = L, which corresponds to x = 0 by periodicity, the continuity in
pressure and mass flux across this junction requires, respectively,

D+eik(L−x2) +D−e−ik(L−x2) =
Γ

a0
G+H + iζ0ΛH, (3.64)

and

(1− 2δ0)

X0

[
−D+eik(L−x2) +D−e−ik(L−x2)

]
A

=

[
− γ

a20
(1− iζ0)G+ iζ0

2(1 + β)γΛ

Γa0
H

]
AS. (3.65)

The six conditions from (3.60) to (3.65) are used to determine six unknowns G, H, B±

and D±.

3.2.5 Reduction of unknowns for derivation of frequency equation

Using (3.60) and (3.61), we start with removing G and H in (3.64) and (3.65), and then
eliminate D+ and D− to reduce the number of equations to two. Equation (3.61) is
expressed as

γ

a0
GH = − 1

φ

(
1− 2δ1
1− iζ1

)
a0E1

X1Z1

, (3.66)

with

GH = G− iζ1
2(1 + β)Λa0
Γ(1 + λ)

H, (3.67)
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where a term in ζ21 has been ignored and φ denotes the porosity of stack defined by

φ ≡ AS

A
, (3.68)

which is usually smaller than unity. Eliminating G in (3.60) by use of (3.67), H is related
to GH through

[1 + iζ1(3 + 2β)Λ]H =
F1

Z1

− Γ

a0
(1 + λ)GH . (3.69)

Substituting (3.66) for GH on the right-hand side, GH and H have been expressed in
terms of the other unknowns.

Employing these expressions to eliminate G and H in (3.64), it follows that

Z0D
+eik(L−x2) + Z0D

−e−ik(L−x2) =
Z0

Z1

[
eiζ1cF1 + FE1

]
, (3.70)

with Z0/Z1, c (different from that used in (3.2)) and F given, respectively, by

Z0

Z1

=
1

1 + λ

{
1 + b

Kβ

C

[
(1 + λ)1+β − 1

]}
, (3.71)

c = Λ

[
(1 + λ)2(1+β) − 1− 2(1 + β)λ

1 + λ

]
, (3.72)

and

F =
Γλ

φγ

(
1− 2δ1
1− iζ1

)
a0
X1

eiζ1(1+1/λ)c

=
Γλ

φγ(1 + λ)

[
1 + b

(
1− 2

C

)
(1 + λ)1+β + iζ1

]
eiζ1(1+1/λ)c, (3.73)

where F1 and E1 denote, respectively, F (ξ1) and E(ξ1), and their explicit expressions are
given, respectively, by (3.47) and (3.48) as

F1 = f+
1 B

+ + f−
1 B

−, (3.74)

with

f±
1 = 1− ibβF

CTβ

C

λ(1 + λ)1+β

k±β LB

, (3.75)

and

E1 =
a0k

−

ω
e+1 B

+ +
a0k

+

ω
e−1 B

−, (3.76)

with

e±1 = 1 + ibβE
CTβ

C

λ(1 + λ)1+β

k±β LB

. (3.77)

Here note that 1 + iζ1c has been expressed compactly as eiζ1c, but this will be reverted
to the original expression in final results. Similar compact expressions are used for other
quantities.
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Similarly the other equation (3.65) is rewritten as

−Z0D
+eik(L−x2) + Z0D

−e−ik(L−x2) =
Z0

Z1

(iζ1dF1 + GE1) , (3.78)

with

G =

(
1− 2δ1
1− 2δ0

)(
1− iζ0
1− iζ1

)
X0

X1

eiζ1Γ(1+λ)d/φγ

=
1

(1 + λ)

{
1 + b

(
1− 2

C

) [
(1 + λ)1+β − 1

]
+ i
(
ζ1 − ζ0

)}
eiζ1Γ(1+λ)d/φγ,

(3.79)

and

d =
2φ(1 + β)γΛ

Γ

[
(1 + λ)2+2β − 1

1 + λ

]
. (3.80)

Next (3.62) and (3.63) are rewritten, respectively, as

Z0(D
+ +D−) = F (ξ2) ≡ F2, (3.81)

and
Z0(−D+ +D−) = E(ξ2) ≡ E2, (3.82)

where F2 and E2 are given, respectively, by

F2 = f+
2 B

+eik
+ξ2 + f−

2 B
−eik

−ξ2 , (3.83)

with

f±
2 = 1− ibβF

CTβ

C

λe−b[(1+λ)1+β−1]

k±β LB

, (3.84)

and

E2 =
a0k

−

ω
e+2 B

+eik
+ξ2 +

a0k
+

ω
e−2 B

−eik
−ξ2 , (3.85)

with

e±2 = 1 + ibβE
CTβ

C

λe−b[(1+λ)1+β−1]

k±β LB

. (3.86)

Adding and subtracting (3.81) and (3.82), and using (3.70) and (3.78), it follows that

2Z0D
+e+ik(L−x2) = (F2 − E2)e

+ik(L−x2) =
Z0

Z1

[
eiζ1(c−d)F1 + (F − G)E1

]
, (3.87)

and

2Z0D
−e−ik(L−x2) = (F2 + E2)e

−ik(L−x2) =
Z0

Z1

[
eiζ1(c+d)F1 + (F + G)E1

]
. (3.88)

Using (3.81) and (3.82) to express Z0D
+ and Z0D

− in terms of B+ and B−, (3.87) and
(3.88) are written in the matrix form asW

+
+1 W−

+1

W+
−1 W−

−1


B

+

B−

 = 0, (3.89)
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with

W±
j =

(
f±
2 − j

a0k
∓

ω
e±2

)
eik

±ξ2eijk(L−x2)

− Z0

Z1

[
eiζ1(c−jd)f±

1 + (F − jG) a0k
∓

ω
e±1

]
, (3.90)

j being +1 or −1. From the non-trivial condition for B±, the frequency equation is
derived as follows:

(I+eik
+ξ2 − I−eik

−ξ2)[e+ik(L−x2) − e−ik(L−x2)]

+ (J+eik
+ξ2 − J−eik

−ξ2)[e+ik(L−x2) + e−ik(L−x2)] +K = 0, (3.91)

with

I± = −f∓
1 f

±
2 −F a0k

±

ω
f±
2 e

∓
1 − Ge∓1 e±2 − iζ1

(
f∓
1 f

±
2 c−

a0k
∓

ω
f∓
1 e

±
2 d

)
,

(3.92)

J± =
a0k

∓

ω
f∓
1 e

±
2 −Fe∓1 e±2 − G a0k

±

ω
f±
2 e

∓
1 + iζ1

(
a0k

∓

ω
f∓
1 e

±
2 c− f∓

1 f
±
2 d

)
,

(3.93)

K = 2
(
Z0

Z1

)−1
(
a0k

+

ω
f+
2 e

−
2 − a0k

−

ω
f−
2 e

+
2

)
ei(k

++k−)ξ2

+ 2
Z0

Z1

[
G + iζ1(Gc−Fd)

] (a0k+
ω

f+
1 e

−
1 − a0k

−

ω
f−
1 e

+
1

)
, (3.94)

and ζ1 = (1 + λ)−2(1+β)ζ0, where the relation a20k
+k−/ω2 = −1 has been used.

Expanding the products in I±, J± and K up to the first order in ζ0, ζ1 and b, it follows
that

I± = −
[
1− ibβF

(
s∓1 + s±2

)]
− Γλ

φγ(1 + λ)

a0k
±

ω

[
1 + bτ1 + ib

(
βEs

∓
1 − βF s

±
2

)]
− 1

(1 + λ)

[
1 + b

(
τ1 − τ2

)
+ ibβE

(
s∓1 + s±2

)]
−iζ1

[
Γ

φγ

(a0k±
ω

c+ d
)
+ c− a0k

∓

ω
d

]
, (3.95)

J± =
a0k

∓

ω

[
1− ib

(
βF s

∓
1 − βEs

±
2

)]
− Γλ

φγ(1 + λ)

[
1 + bτ1 + ibβE

(
s∓1 + s±2

)]
− 1

(1 + λ)

a0k
±

ω

[
1 + b

(
τ1 − τ2

)
+ ib

(
βEs

∓
1 − βF s

±
2

)]
−iζ1

[
Γ

φγ

(
c+

a0k±
ω

d
)
− a0k

∓

ω
c+ d

]
, (3.96)

K =
4a0
ωLB

ψ

{
(1 + λ)

[
1− b

(
χ1 − χ2

)]
ei(k

++k−)ξ2

+
1

(1 + λ)2

[
1 + b

(
χ1 − χ2 + τ1 − τ2

)]
+

iζ1
(1 + λ)2

(
c+

Γ

φγ
d

)}
, (3.97)
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where use has been made of the following notations:

s±1 =
CTβ

C

λ(1 + λ)1+β

k±β LB

, s±2 =
CTβ

C

λe−b[(1+λ)1+β−1]

k±β LB

, (3.98)

τ1 =
(
1− 2

C

)
(1 + λ)1+β + ib−1ζ1, τ2 = 1− 2

C
+ ib−1ζ0, (3.99)

and

χ1 =
Kβ

C
(1 + λ)1+β, χ2 =

Kβ

C
. (3.100)

Here it is convenient to note the relation:

a0k
+

ω
f+
1 e

−
1 − a0k

−

ω
f−
1 e

+
1 =

2a0
ωLB

ψ. (3.101)

This relation holds up to the order of b and also when the subscript 1 is replaced by 2.
Hence the frequency equation (3.91) is now available from the matching conditions

at three junctions between the sections. If β is set equal to be zero, the result will be
simplified considerably. It is remarked that the frequency equation does not involve the
stack length LS explicitly.

3.3 Marginal conditions

3.3.1 Frequency equation in the limits of thick and thin diffusion layers

Before solving the frequency equation (3.91), we examine a solution in both limits of thick
and thin diffusion layers as ζ0 → 0 (ζ1 → 0) and b → 0. Then the frequency equation
becomes

i
Γλ

φγ(1 + λ)

[(
λ

2
sinϕ− ψ cosϕ

)
sinσ − σB sinϕ cosσ

]

+

[
1 +

1

(1 + λ)

]
σB sinϕ sin σ +

[
1

(1 + λ)

(
λ

2
sinϕ− ψ cosϕ

)

−λ
2
sinϕ− ψ cosϕ

]
cosσ +

√
1 + λ

[
1 +

1

(1 + λ)2

]
ψ = 0, (3.102)

with

σ =
ω(L− LS − LB)

a0
, σB =

ωLB

a0
, ϕ = ψ log

(1 + λ)

λ
. (3.103)

In a special case without the temperature gradient, i.e. λ → 0, (3.102) is reduced
to cos(σ + σB) − 1 = 0 because ϕ = ψ = σB. Thus ωL/a0 is given by 2π, 4π, · · ·,
which correspond, respectively, to cases that the length of the looped tube coincides with
one wavelength, two wavelengths, and so on. These modes of oscillations are called the
one-wave mode, the two-wave mode, and so on.

In a general case with the temperature gradient, it is noticed that (3.102) has a trivial
solution ϕ = ψ = 0. However, this solution σB = λ/2 is not physically acceptable.
Besides this, roots for ω will be complex. If ω takes a real solution, ψ becomes either real
or imaginary, depending on the sign of σ2

B−λ2/4. When ψ takes a real value, the first line
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Figure 10: Marginal conditions for the temperature ratio T1/T0 in the one-wave mode and the
two-wave mode against ζ0(= R2

Sω/6ν0). In (a), the curves are drawn by taking the porosity
proportional to the pore’s cross-sectional area with the total number of the pores fixed, the
curves being broken when the porosity exceeds unity, while in (b), the curves are drawn by
changing the pore radius with the porosity φ fixed at 0.67.

in (3.102) takes an imaginary value, whereas the other takes real values. When ψ takes
an imaginary value, on the contrary, the reverse situation occurs. In fact, it is graphically
confirmed that there are no real solutions for both real and imaginary parts to vanish
simultaneously. If real solutions are to exist, then this is due to the small parameters ζ0
and b.

3.3.2 Solutions to the frequency equation

We now proceed to seek a real solution of ω to (3.91) with (3.95) to (3.97). Plotting values
of the real and imaginary parts of (3.91) over the plane of λ and σ, a domain for a real
solution of σ to exist can be found. By trial and error, one set of solutions for λ and σ
is first sought numerically by Newton’s method for an appropriate combination of λ and
σ, with values of the other parameters fixed. If only the value of RS is changed slightly,
another set of solutions is obtained, and repeating this procedure, curves will be drawn.
In view of the experiments by Ueda & Kato (2008), we take a looped tube of R = 20 mm,
LB = 0.6 m, and L − LS = 2.76 m filled with atmospheric air. For the exponent β, we
take β = 0.5 for mathematical simplicity. However, it turns out that its influence on the
marginal conditions is so small that β may be set to be zero as long as the temperature
ratio T1/T0 is less than 3.

Figure 10 shows the curves for the marginal conditions where the horizontal and
vertical axes denote, respectively, the non-dimensional parameter ζ0 and the temperature
ratio T1/T0. At a fixed value of the horizontal axis, the instability occurs if the temperature
ratio exceeds the curve. The looped tube is expected to have the one-wave, the two-wave
modes and so on, even when the temperature gradient exist. In figure 10, two curves
are drawn for the one-wave and two-wave modes. Because the two-wave mode has about
twice the frequency of the one-wave mode, it is remarked that the values of the radius
and the porosity are different even for the same value of ζ0.

The curves are drawn in the following way. Starting with the case with the pore
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radius RS = 0.1 mm and the porosity φ = 0.67, the real frequency σ and the temperature
ratio T1/T0 are sought. Then there are found two sets of the solution, one set being
σ+σB = 6.30, T1/T0 = 1.63 and ζ0 = 0.086 for LS = 0.011 m, and the other σ+σB = 12.8,
T1/T0 = 1.81 and ζ0 = 0.175 for LS = 0.013 m. The pore radius and the stack length
found are smaller than those in the experiments. At the room temperature 15◦C, in
passing, the frequency ω/2π is 124 Hz for the one-wave mode and 252 Hz for the two-
wave mode. While the former agrees with a0/L (=123 Hz) well, the latter frequency is a
little higher than 2a0/L (=245 Hz). These frequencies do not change significantly with the
pore radius and the temperature ratio. The curves in figure 10(a) are drawn by changing
RS but with the total number of pores fixed implicitly, and choosing φ proportional to
the pore’s cross-sectional area. Because the value of φ is usually smaller than unity, the
solid curves are changed into broken ones in the range of φ > 1.

In figure 10(b), the curves are drawn with the value of φ fixed at 0.67 so that the number
of pores varies along the curve. If the pores are assumed to be distributed uniformly over
the cross-section of the stack, the pores and the wall surrounding them are divided into
many identical ‘cells’ except for those in the vicinity of the periphery of the stack. Further
if the number of cells is large enough, the porosity may be represented by the ratio of the
cross-sectional area of the single pore to that of each cell. In other word, the porosity
may be represented by its local value of the cell. For RS = 0.1 mm and φ = 0.67, one side
of the square cell is calculated to be of length 0.22 mm. This corresponds to 13,800 cells
per square inches, which is larger by one order than 1,600 cells now available in ceramic
stacks. For φ = 0.67 and ζ0 = 0.3 in figure 10(b), for example, RS = 0.19 mm and one
side of the cell is of length 0.41 mm so that there are about 3,900 cells per square inches.
The number of cells changes in proportion to φ/R2

S.
Figure 10(a) shows that as RS and φ(< 1) increases so that the wall becomes thinner,

the temperature ratio decreases. Figure 10(b) shows that the temperature ratio does not
change appreciably for ζ0 < 0.1 even if the pore radius is decreased and the number of
cells is increased as long as the porosity is fixed. From both figures, it is seen that the
temperature ratio for the one-wave and two-wave modes may exchange. The ratio for the
one-wave mode is lower than that of the two-wave mode for a small value of ζ0, but this
relation reverses as ζ0 increases in figure 10(a), though φ > 1. In any case, it is found
that the porosity plays a crucial role in determining the temperature ratio.

3.3.3 Effects of the porosity of the stack

Figure 10 shows the qualitative features of the marginal conditions but it gives no quanti-
tative information generally on the porosity and the number of pores, though the specific
value of the number is meaningless. Combination of the two curves shown in figures 10(a)
and 10(b) for the one-wave mode yields an information as to how the pore radius and
the porosity affect the marginal conditions. This is drawn in figure 11. In figure 11(a),
the leftmost solid curve corresponds to the one in figure 11(a) and five solid (and broken
in part for φ > 1) curves represent the marginal conditions with the number of pores
reduced consecutively to the right by 1/2, 1/3, 1/4 and 1/5 of that for the leftmost solid
curve, while six dotted curves represent the marginal conditions with the value of porosity
φ increased from 0.5 to 1 by step 0.1. Figure 11(b) is simply a blow-up of figure 11(a)
near the minimum temperature ratio. It is found that the more the number of pores, the
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Figure 11: Marginal conditions for the temperature ratio T1/T0 in the one-wave mode against
ζ0(= R2

Sω/6ν0) for various values of the porosity of the stack and of the number of pores in (a),
and (b) is blown up in the vicinity of the minimum temperature ratio in (a). The leftmost solid
curve corresponds to the one in figure 10(a) and five solid (and broken in part for φ > 1) curves
represent the marginal conditions with the number of pores reduced to the right consecutively
by 1/2, 1/3, 1/4 and 1/5 of that for the leftmost solid curve, while six dotted curves represent
the marginal conditions with the value of porosity φ increased from 0.5 to 1 by step 0.1.

lower the temperature ratio needed for instability of the gas. In fact, the instability may
occur for T1/T0 greater than about 1.4 for φ < 1.

To understand a relation between the marginal curves with the total number of pores
fixed and the ones with the porosity fixed, figure 12(a) depicts the marginal surface for
the one-wave mode determined by the frequency equation (3.91) in the three-dimensional
space over the plane (ζ0, T1/T0) by taking φ vertically. The ranges in T1/T0 and φ are
taken unrealistically large and small, respectively. The surface appears to have a horn
rightward as φ tends to decrease (upward). The red curves show several contours on
which φ is fixed at different values. They corresponds to the dotted curves in figure 11.
As the value of φ becomes smaller, the contours become smaller but tend to a closed loop.
The blue curve shows a contour with the total number of pores fixed, i.e. with the value
of φ proportional to R2

S. Figure 12(b) shows the projection of the curves onto the base
plane. The curves in the rectangular domain enclosed by the dotted lines correspond to
the ones shown in figure 10.

For the two-wave mode as well, a similar surface is drawn. As can be seen from figure
10(b), it intersects with the surface for the one-wave mode. It should be remarked that
the intersection does not imply coexistence of the one-wave and two-wave modes, because
both the tube radius and the angular frequency are different even at the same point of ζ0.

3.3.4 Effects of the buffer tube’s length

We examine effects of the buffer tube’s length LB on the marginal conditions with the
length L − LS fixed at 2.76 m. Three cases are chosen with LB = 0.4 m, 0.6 m and 0.8
m, though the case with LB = 0.6 m is the same as was examined. Figures 13(a) and
13(b) depict the marginal conditions for the three values of LB with the porosity of the
stack proportional to the pore’s cross-sectional area and the total number fixed for the
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Figure 12: Three-dimensional illustration of a marginal surface for the one-wave mode deter-
mined by the frequency equation (3.91) over the plane (ζ0, T1/T0) with φ taken vertically in
(a) and its projection onto the base plane in (b). The red curves show contours on which the
value of φ is held constant, while the blue curve shows a contour on which the value of φ is
taken proportional to R2

S . The curves in the rectangular domain enclosed by the dotted line
correspond to the ones shown in figure 10.

one-wave mode and two-wave mode, respectively. The solid curves are changed into the
broken ones when the porosity exceeds unity.

Figures 14(a) and 14(b) depict the marginal conditions for the three values of LB

with the porosity of the stack held at 0.67 for the one-wave mode and two-wave mode,
respectively. It is seen in figures 13(a) and 14(a) for the one-wave mode that the longer
the buffer tube becomes, the lower the marginal temperature ratio becomes. This result
qualitatively agrees with the experimental result by Ueda & Kato (2008). For the two-
wave mode, however, it is seen in figures 13(b) and 14(b) that the results for the one-wave
mode do not hold and the length appears to yield no significant difference.
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Figure 13: Marginal conditions for the temperature ration T1/T0 against ζ0(= R2
Sω/6ν0) in three

cases of the buffer tube’s length 0.4 m, 0.6 m and 0.8 m with L − LS held at 2.76 m, where
(a) and (b) depict, respectively, the conditions for the one-wave and two-wave modes with the
porosity of the stack proportional to the pore’s cross-sectional area and the total number fixed.
The solid curves are changed into the broken curves when the porosity φ exceeds unity.
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Figure 14: Marginal conditions for T1/T0 against ζ0(= R2
Sω/6ν0) in three cases of the buffer

tube’s length 0.4 m, 0.6 m and 0.8 m with L − LS held at 2.76 m, where (a) and (b) depict,
respectively, the conditions for the one-wave and two-wave modes with the porosity φ at 0.67.

3.4 Mode of oscillation

3.4.1 One-wave mode of oscillations

Now that the frequency at the marginal state is available, spatial and temporal variations
of physical quantities are calculated by using the analytical solutions. Firstly we examine
those in the one-wave mode of oscillations. For the marginal state given by ζ0 = 0.3 in
figure 10(b) for φ = 0.67, figures 15(a) and 15(b) depict, respectively, the spatial profiles
of the excess pressure p′ and the mean axial velocity u′ calculated by (3.24) and (3.39)
at every one-eighth of the period 2π/ω. This marginal state occurs at σ + σB = 6.24
and T1/T0 = 1.92 for RS = 0.19 mm, LS = 0.049 m and LB = 0.6 m. The frequency
ω/2π is 122 Hz. In figure 15, the stack and the buffer tube are located in the sections
0 < x/L < 0.0175 and 0.0175 < x/L < 0.23, respectively.
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Figure 15: Spatial and temporal profiles of the excess pressure p′/pmax in (a) and the mean axial
velocity u′/u′0 in (b) with u′0 = p′max/ρ0a0 in the one-wave mode for the case ζ0 = 0.3 at every
one-eighth of the period 2π/ω, where the numbers 1, 2, 3, · · · , 8 attached to the curves represent
the times at 1/8, 2/8, 3/8, · · · , 8/8-th period.

0 0.1 0.2
-0.4

-0.2

0

0.2

0.4

-0.4

-0.2

0

0.2

0.4

x/L

u
'/

u
' 0

ρ
e
u

'A
e/

ρ
0
u

' 0
A

0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

x/L

p
'/
p

' m
ax

(a) (b)

Figure 16: Blow-up of the profiles at 8/8-th period in figure 15 for the excess pressure p′/p′max

in (a) and the mean axial velocity u′/u′0 in (b) with u′0 = p′max/ρ0a0 in the sections of the stack
and the buffer tube for the case ζ0 = 0.3 where the mass flux ρeu′Ae/ρ0u

′
0A is also drawn in the

broken curve.

The numbers 1, 2, 3, · · · , 8 attached to the curves designate respective profiles at the
times 1/8, 2/8, 3/8, · · · , 8/8-th period. For one period, the pressure attains the maximum
at the left end of the stack x/L = 0, though its magnitude is determined up to a scale
factor in the linear theory. Letting the maximum pressure at x = 0 be p′max, the vertical
axis in figure 15(a) measures p′/p′max. Once the typical magnitude has been set to be p′max,
the other quantities are to be determined consistently by it. In figure 15(b), the velocity
u′ is normalized by u′0 given in terms of p′max and a typical acoustic impedance ρ0a0 as
p′max/ρ0a0.

Because the section of the stack is too short for the profiles to be visible in figure 15,
the profiles at the 8/8-th period are blown up in figure 16 including those in the buffer
tube. In figure 16(a), the pressure is continuous across the junction x/L = 0.0175 between
the stack and the buffer tube, but its gradient is discontinuous there. In figure 16(b), the
velocity in the stack is larger than that in the other sections and jumps at both ends of
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Figure 17: Ratio of the amplitude |D−| of the wave propagating in the positive sense of the x-
axis to the amplitude |D+| of the wave in the negative sense against ζ0(= R2

Sω/6ν0), where (a)
and (b) correspond to the marginal conditions for the one-wave mode shown in figures 10(a) and
10(b), respectively, with the porosity of the stack set proportional to the pore’s cross-sectional
area and the number of pores held constant, and with the porosity fixed at 0.67, the solid curve
being broken when the porosity exceeds unity.
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Figure 18: Contour maps of the pressure distribution p′/p′max in the looped tube over the plane
of the space x/L and the time t/(2π/ω) at the marginal states where (a) and (b) represent,
respectively, the cases with ζ0 = 0.02 and ζ0 = 0.12 in figure 17(a).

the stack because of constriction of the cross-sectional area. However, the mass flux is
continuous everywhere as required by the matching conditions. This is seen in the profile
of the mass flux ρeu′Ae/ρ0u

′
0A in the broken curves, where Ae takes AS in the section

of the stack and A in the other sections. The velocity increases with x while the mass
flux decreases gently. At the junction x/L = 0.23 between the buffer tube and the tube
without the temperature gradient, no such discontinuity occurs. In the buffer tube, the
mass flux decreases with x.

Overall the profiles in figure 15 have no definite nodes and antinodes. Such a mode
of oscillations can neither be classified as a standing wave nor a traveling wave purely in
one direction. The fields in the buffer tube and in the section without the temperature
gradient consist of two waves propagating in the positive and negative sense of the x-axis.
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Figures 17(a) and 17(b) depict the ratio |D−|/|D+| for the amplitude |D−| propagating in
the positive sense of the x-axis to |D+| in the negative sense against ζ0, corresponding to
the marginal conditions shown in figures 10(a) and 10(b), respectively. In figure 17(a), the
ratio is drawn with the porosity of the stack set proportional to the pore’s cross-sectional
area and the number of pores held constant, where the solid curve is broken when the
porosity φ exceeds unity.

It is seen that the ratio increases with ζ0 but a peak appears near ζ0 ≈ 0.2 corre-
sponding to the minimum temperature ratio in figure 10(a), though φ > 1. For φ < 1,
the ratio tends to increase with the porosity. In figure 17(b), the ratio is drawn with the
porosity of the stack fixed at 0.67. The ratio tends to increase with ζ0 but very gently.
It is found from these results that the porosity affects not only the temperature ratio at
the marginal state but also the ratio of wave amplitudes propagating in the positive and
negative sense of the x-axis.

To visualize the pressure field continuously over several periods, figure 18 depicts the
contour maps of the pressure distribution at the marginal state specified by ζ0 = 0.02
and 0.12 in figure 18(a), which correspond, respectively, to the case that the traveling
component in the positive sense is excited least and most, respectively. The horizontal
and vertical axes measure, respectively, the axial coordinate x/L and the time t/(2π/ω)
normalized. The pressure level p′/p′max is given in the colour bar. Several streaks are seen
in each figure. In figure 18(a), they are lying almost horizontally and nodes are visible,
whereas in figure 18(b), they are wavy and inclined upward to the right. This suggests
that the field in figure 18(a) is almost a standing wave while the one in figure 18(b) is a
traveling wave.

Consider the pressure field in the section without the temperature gradient. It consists
of the sum of two harmonic waves, i.e. p′ = |D+| cos(kx+ωt+θ+)+|D−| cos(−kx+ωt+θ−),
where θ± are phases of the waves, respectively, and the lossy effects are so small that k
may be set equal to ω/a0 by (3.54). The sum is expressed as

p′ = D(t) cos[kx− Φ(t)], (3.104)

with the amplitude D and the phase Φ given, respectively, by

D =
√
|D+|2 + |D−|2 + 2|D+||D−| cos(2ωt+ θ+ + θ−) , (3.105)

and

tanΦ = − |D+| sin(ωt+ θ+)− |D−| sin(ωt+ θ−)

|D+| cos(ωt+ θ+) + |D−| cos(ωt+ θ−)
. (3.106)

This shows that when two harmonic waves are propagating in both senses, the instan-
taneous profile of p′ is sinusoidal in x but with its amplitude and phase modulated in t.
The phase is propagated at a velocity vph given by

vph ≡ dΦ

dt
= −ω

(
|D+|2 − |D−|2

D2

)
. (3.107)

If |D+| = |D−|, thenD = 2|D+| cos[ωt+(θ++θ−)/2] and the phase remains stationary.
This is the case of a standing wave. If the amplitude of wave propagating in the positive
sense of the x-axis is larger than that in the negative sense, i.e. |D−| > |D+|, then the
phase Φ is propagated in the positive sense with a speed dependent on t. When the
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Figure 19: Spatial and temporal profiles of the excess pressure p′/pmax in (a) and the axial
velocity u′/u′0 in (b) with u′0 = p′max/ρ0a0 in the two-wave mode for the case ζ0 = 0.3 at every
one-eighth of the period 2π/ω, where the numbers 1, 2, 3, · · · , 8 attached to the curves represent
the times at 1/8, 2/8, 3/8, · · · , 8/8-th period.
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Figure 20: Ratio of the amplitude |D−| of the wave propagating in the positive sense of the x-
axis to the amplitude |D+| of the wave in the negative sense against ζ0(= R2

Sω/6ν0), where (a)
and (b) correspond to the marginal conditions for the two-wave mode shown in figures 10(a) and
10(b), respectively, with the porosity of the stack set proportional to the pore’s cross-sectional
area and the number of pores held constant, and with the porosity fixed at 0.67, the solid curve
being broken when the porosity exceeds unity.

amplitude D is large (small), vph is small (large). This explains why the streaks appear
to be inclined and wavy.

3.4.2 Two-wave mode of oscillations

Next we examine the case of the two-wave mode of oscillations. Just as in figure 15, figure
19 depicts spatial and temporal profiles of the excess pressure and the mean axial velocity
at every one-eighth of the time period 2π/ω at ζ0 = 0.3 in figure 10(b) for φ = 0.67. Even
if ζ0 is chosen to be the same as in the one-wave mode, the condition is different from
it. For RS = 0.13 mm, LS = 0.025 m and LB = 0.6 m, this marginal state occurs at
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σ+σB = 12.8 and T1/T0 = 2.04. Then the frequency ω/2π is 251 Hz. Except for that two
peaks and troughs are seen along the tube, no special features are found in the profiles in
comparison with with the case of the one-wave mode. The pressure takes the maximum
at x = 0 Figure 20 depicts the ratio of the amplitude |D−| of the wave propagating in
the positive sense of the x-axis to the amplitude |D+| of the wave in the negative sense
against ζ0(= R2

Sω/6ν0), where (a) and (b) correspond to the marginal conditions in figures
10(a) and 10(b), respectively, with the porosity of the stack set proportional to the pore’s
cross-sectional area and the number of pores held constant, and with the porosity fixed
at 0.67, the solid curve being broken when the porosity exceeds unity. For the two-wave
mode as well, the ratio does not change appreciably.

3.5 Spatial distribution of mean acoustic energy flux

In this section, we examine a mean acoustic energy flux averaged over one period. This
is defined per unit area of the cross-section as follows:

Ĩ ≡ ω

2π

∫ t+2π/ω

t
p′ u′dt =

1

2
Re{PU∗}, (3.108)

where the tilde implies a mean over the period and the asterisk denotes the complex
conjugate. Over the cross-sectional area of all pores in the stack, the total flux is calculated
by multiplying the product of P in (3.26) and U

∗
obtained from (3.28) with φA so that

the flux per unit cross-sectional area of the tube A is given by

− φγ

2ρ0a20

Te
T0

Re

{
(1 + iζe)

[
Γ

a0

(
Te
T0

)1/2

|G|2 +G∗H

]
+ iζeΛG

∗H

+iζe
2(1 + β)Λa0

Γ

[
Γ

a0
GH∗ +

(
Te
T0

)−1/2

|H|2
]}
, (3.109)

up to the first order of ζe, while in the buffer tube, the flux is given by using (3.42) as

1

2
Re

{
1

ρeae

(
1− 2δe
1− Cδe

)
F ∗E

|Z|2

}
. (3.110)

In the section without the temperature gradient, (3.108) is calculated by (3.53) and (3.56)
as

− 1

2ρ0a0

{[
1 +

1√
2

(
1− 2

C

)
|b|
]( ∣∣∣D+

∣∣∣2 e2ki(x−x2) −
∣∣∣D−

∣∣∣2 e−2ki(x−x2)
)

+
√
2
(
1− 2

C

)
|b| Im{D+D−∗e2ikr(x−x2)}

}
, (3.111)

where kr and −ki denote, respectively, real and imaginary parts of k defined by (3.54) to
the first order in b as

k =
ω

a0

(
1 +

1− i√
2
|b|
)
≡ kr − iki, (3.112)

and Im{· · ·} stands for taking the imaginary part of {· · ·}. The first line of (3.111)
represents the decay of mean acoustic energy fluxes transported independently by the
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Figure 21: Spatial distribution of the mean acoustic energy flux Ĩ/p′maxu
′
0 with u′0 = p′max/ρ0a0

per unit tube’s cross-sectional area where (a) and (b) are the cases of the one-wave and two-wave
modes, respectively, with ζ0 = 0.3 in figure 10(b) for φ = 0.67.

waves D+ and D−, while the second line represents the flux due to the weak coupling
between them by the diffusion effects.

Figures 21(a) and 21(b) show the spatial distribution of the mean acoustic energy flux
Ĩ per unit area of the cross-section normalized by pmaxu

′
0 for the one-wave mode and

two-wave mode, respectively, in the case of ζ0 = 0.3 shown in figure 10(b) for φ = 0.67. It
takes a positive value which means that the flux flows in the positive sense of the x-axis
everywhere. It is seen that the flux increases in the stack, whereas it decreases slowly
in the buffer tube and the section without the temperature gradient. The flux at x = L
coincides with the one at x = 0 to the first order of ζ0 and b. The difference is of quadratic
order and almost invisible in figure 21, though there may appear to be a gap especially in
figure 21(b). The decrease by the lossy effects due to the boundary layer is compensated
by the increase in the stack.

While the mean acoustic energy flux is calculated specifically by (3.109) to (3.111),
we consider it from a general viewpoint. It can be shown that

∂

∂t

 ρeu′
2

2
+

p′2

2ρea2e

+
∂

∂x
(p′u′) =

2

R

(
u′s+

p′q

cpρeTe

)
, (3.113)

where s and q denote the shear stress on the gas exerted by the wall and the heat flux
into the gas through it, respectively, and q/cpρeTe has a dimension of velocity. Averaging
(3.113) over one period, it follows that

dĨ

dx
=

2

R

(
ũ′s+

p̃′q

cpρeTe

)
, (3.114)

Equations (3.113) and (3.114) are the general relations derived from the thermoacoustic-
wave equation for a circular tube of radius R.

In the case for thick diffusion layer for the pore of radius RS, s and q are given,
respectively, by

2

RS

s =
∂p′

∂x
− R2

S

8νe

∂2p′

∂t∂x
+

(
R4

S

48ν2e

∂3p′

∂t2∂x

)
. (3.115)
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and

2

RS

q = − ∂p′

∂t
−
(

γ

γ − 1

)
αe

Te

dTe
dx

∂p′

∂x

+
R2

S

νe

∂

∂t

[
Pr

8

∂p′

∂t
+

1

6

(
γ

γ − 1

)
(1 + Pr)

αe

Te

dTe
dx

∂p′

∂x

]
. (3.116)

The expressions (3.115) and (3.116) are obtained by specifying higher-order terms in
(5.26) and (5.27) in I. Although the third term in (3.115) is unnecessary in the present
context, attention is drawn to that (3.4) is derived by taking account of the terms up to
this order. In fact, substitution of (3.115) and (3.116) into (2.37) in I with 1/2H replaced
by 2/RS yields (3.4). In this process, it is found that the second term on the left-hand
side of (2.37) in I cancels with the lowest term due to the shear stress. This is why s must
be specified up to the term of next higher order so as to close (3.4) consistently including
the terms of order R2

Sω/νe.
Using (3.115) and (3.116), (3.114) can be expressed as

dĨ

dx
= − R2

S

8µe

[ ˜(∂p′
∂x

)2
+

1

Te

dTe
dx

˜
p′
∂p′

∂x

]

− R2
S

8µea2e

[
(γ − 1)Pr

˜(∂p′
∂t

)2
+

4

3
γ(1 + Pr)

αe

Te

dTe
dx

˜∂p′
∂t

∂p′

∂x

]
, (3.117)

where the relation 1/cpρeTe = (γ − 1)/ρea
2
e has been used. The contribution from u′s

results only in the first term in the first square brackets, which is always negative so
that the shear stress never contributes to increase in the acoustic energy flux in the
positive sense of the x axis. The other terms are contributed from p′q/cpρeTe. If the
temperature gradient is absent, only the first term in the second brackets remains but
does not contribute to increase because this terms results from the simple heat conduction.
The other terms may take a positive or negative value depending on the magnitude of the
gradient and the mean values of −p′∂p′/∂x and −∂p′/∂t · ∂p′/∂x. When the temperature
gradient is present, the shear stress participates in the heat flux (see (2.46) in I). Since
−∂p′/∂x is proportional to the axial velocity to the lowest relation, the former mean may
be interpreted as the mean power associated with p′u′ through the heat flux, while the
latter may be interpreted as the product of s and q.

In the theory of thin diffusion layer, on the other hand, Ĩ is given by

dĨ

dx
=

2

R
p̃′vb, (3.118)

where vb is given by

vb =
√
νe

C ∂− 1
2

∂t−
1
2

(
∂u′

∂x

)
+
CT

Te

dTe
dx

∂−
1
2u′

∂t−
1
2

 . (3.119)

In the buffer tube, it is found numerically that the temperature gradient does not
contribute to increase the flux. Since two waves coexist there, the temperature gradient
acts favourably for the wave propagating in the negative sense of x to increase its energy
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flux. However, because this wave is weaker than that propagating in the positive sense,
the net energy flux turns out to be decayed.

Using (3.118), a reason why the marginal temperature ratio is reduced for a longer
buffer tube may be explained. For the wave propagating in the positive sense, the temper-
ature gradient acts adversely to decrease the energy flux. Because the gradient becomes
gentler in a longer tube, such a loss in the energy flux may be reduced so that the marginal
temperature ratio becomes lower. In the section without the temperature gradient, it is
found that the mean of p′vb takes a negative value by noting that ∂u′/∂x is replaced by
the lossless relation −(ρea

2
e)

−1∂p′/∂t and using p′vb = Re{PV ∗
b }/2 for a time-harmonic

disturbance, Vb being a complex amplitude of vb.
In the present problem, the decay in the acoustic energy flux results from the loss in

the buffer tube and in the section without the temperature gradient. Because no other
loads are applied, it is exactly balanced by the generation in the stack. If the acoustic
system in the tube is loaded by inserting another stack, for example, the loss will be
increased so that marginal conditions will be modified (Guedra & Penelet (2012)). Even
in such a case, (3.114) is applicable everywhere. While the mean of u′s is always negative,
it happens that the mean of p′q may take a positive value depending on the temperature
gradient. However, q cannot be imposed independently of p′ but related to it via (2.46) in
I. Although mechanisms of instability are not yet given transparently, it has been revealed
that a phase difference between p′ and u′ and that between s and q are responsible for
them in the case of a thick diffusion layer.

3.6 Conclusion of marginal conditions

The stability analysis for the onset of thermoacoustic oscillations in a gas-filled, looped
tube with a stack subject to a temperature gradient and acting as a regenerator has been
developed based on the asymptotic theory of thick diffusion layer for the gas in the stack
and the one of thin diffusion layer for the gas in the other section of the tube, respectively.
Given the plausible and mathematically tractable temperature distributions on the walls
of the stack and the buffer tube, analytical solutions have been obtained by taking account
of the temperature dependence of the shear viscosity and the heat conductivity. The
frequency equation has been derived without recourse to numerical methods to determine
the marginal conditions. The marginal curves obtained numerically for the temperature
ratio appear to correspond to the left branch obtained by the experiments by Yazaki et
al. (1998) and Ueda & Kato (2008). Although the marginal conditions obtained by
them have been given for the temperature ratio in terms of the ratio of the pore radius
to the thickness of diffusion layer in the stack, it has been revealed that they cannot
be determined without specifying the porosity of the stack. Hence the marginal curves
should be extended to a surface woven by the porosity.
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4 Comparison of the results by Rott’s theory and

asymptotic theories

In §3, marginal conditions in looped tube are obtained by asymptotic theories. It is shown
that thick diffusion layer theory gives the left branches of marginal curves and unveiled
the behavior like gas oscillation and energy flux in looped tube. However, availability
of thick diffusion layer theory should be confirmed for the future study for extention to
nonlinear problem. Therefore marginal conditions obtained by analytical solutions based
on asymptotic theories in §3 are compared with those by Rott’s theory which has no
limitation of the thickness of diffusion layer. Because Rott’s equation is difficult to solve
analytically for smooth temperature distributions, it is solved numerically by Runge-Kutta
method combined with a shooting method. We now derive marginal conditions by solving
Rott’s equation numerically to compare with the ones obtained in the preceding section.
For a pore of small radius, i.e. ζ0 is small, the conditions by the analytical solutions are
expected to be in accordance with those based on Rott’s equation. Using Runge-Kutta
method, the boundary-value problem is solved by imposing a spatially periodic condition
for the looped tube. A shooting method is adopted to this end. This method is that,
starting with probable values initially, the complex pressure amplitude and its spatial
derivative are sought combined with a Newton’s method to satisfy the periodic boundary
conditions.

4.1 Rott’s equation and dimensionless parameters

The thermoacoustic-wave equation is capable of describing a spatio-temporal behavior
of any disturbance in p′ in the framework of the linear theory. If p′ is assumed to be
time-harmonic in the form of P (x) exp(iωt), the thermoacoustic-wave equation is reduced
to an ordinary differential equation derived by Rott. Following the notation by Rott,
differential equation for the complex pressure amplitude P in the circular tube is given in
the following form:

d

dx

[
a2e(1− f1)

dP

dx

]
− f2 − f1

1− Pr

a2e
Te

dTe
dx

dP

dx
+ ω2[1 + (γ − 1)f2]P = 0. (4.1)

where f1 and f2 are defined as

f(ηe) =
2I1(ηe)

ηeI0(ηe)
, (4.2)

and

f2 = f1(
√
Prηe), (4.3)

with ηe given by

ηe = δ−1
e = R

(
νe
iω

)−1/2

(4.4)

Before calculation, we change Rott’s equation into non-dimensional one. We introduce
a nondimensional pressure and a coordinate,

P ∗ =
P

P0

, x∗ =
x

L
(4.5)
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and the pressure derivative is set as

dP ∗

dx∗
= Z∗. (4.6)

Using Z∗, Rott’s equation is expressed by two equations

dZ∗

dx∗
= − (1− f1) + df1/dx

∗ − (f2 − f1)/(1− Pr)

1− f1

1

Te

dTe
dx∗

dP ∗

dx∗

− σ2
0

(
Te
T0

)−1 [1 + (γ − 1)f2]

1− f1
P ∗, (4.7)

where σ0 and ζR is dimension-less parameter defined as

σ0 =
ω2L2

a20
, ζR =

1

R

√
ν0L

a0
(4.8)

This system of equations is solved by Runge-Kutta method. Using these parameters,
thickness of diffusion layer to tube radius δe is expressed as

δe =
1

R

(
νe
iω

)1/2

=
1− i√

2

ζR√
σ0

(
Te
T0

)(1+β)/2

(4.9)

In the stack, thickness of diffusion layer to the pore radius δS is expressed as

δS =
1

RS

(
νe
iω

)1/2

= ϕrδe, (4.10)

where ϕr is the ratio of tube radius to pore radius in the stack defined as

R

Rs

= ϕr. (4.11)

4.2 Method of calculating marginal conditions by shooting method

Combinations of parameters which satisfy periodic boundary conditions with real fre-
quency give marginal conditions. We give the initial condition at x = x0 (x0 is located
at the section without temperature gradient). Without any loss of generality, P ∗ may be
set to be unity as

P ∗|x=x0 = 1, (4.12)

while dP ∗/dx is taken arbitrarily. Under these conditions, Rott’s equation is solved toward
x = x0 +L by the 4th order Runge-Kutta method to seek the pressure amplitude and its
derivative. The periodic boundary conditions require

P ∗|x=x0+L = P ∗|x=x0(= 1), (4.13)

and

U∗|x=x0+L = U∗|x=x0 , (4.14)
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where U is the mean velocity averaged over the cross-section defined as

U =
i

ωρe

dP

dx

[
1− 2

I1(ηe)

ηeI0(ηe)

]
(4.15)

At x = x0 + L, matching condition of velocity for periodic boundary is written as

Z∗|x=x0+L = Z∗|x=x0 . (4.16)

At ends of the stack at x = x1 and x = x2 is imposed the continuity of pressure and mass
flux as

ρeAU∗|x=x1 = ρeASU∗
S|x=x1 (4.17)

We seek the combinations of parameters which satisfy periodic boundary conditions
(4.13) and (4.16), but P ∗ is complex. So the conditions to be satisfied are given as

Re{P ∗|x=x0} = Re{P ∗|x=x0+L}

Im{P ∗|x=x0} = Im{P ∗|x=x0+L}

Re{Z∗|x=x0} = Re{Z∗|x=x0+L}

Im{Z∗|x=x0} = Im{Z∗|x=x0+L}. (4.18)

When geometry of looped tube, i.e. length outside of stack, tube radius, pore ra-
dius and porosity, is given, nondimensional parameters to be varied are following four
parameters:

σ0

(
=
ωL

a0

)
, λ

(
=
√
T1/T0 − 1

)

Re{Z∗|x=x0}, Im{Z∗|x=x0} (4.19)

These are non-dimensional frequency with real omega, temperature ratio, and real
and imaginary part of the derivative of pressure at x = 0. We have already known
that the pressure and velocity oscillate in the form neither of a standing wave nor of a
traveling wave purely in the looped tube. So because the derivative of pressure at x = 0
is underspecified, they are variable parameters. Boundary conditions (4.13) and (4.16)
give four variable and four equations F n (n = 1, 2, 3, 4) as followings:

F 1 = Re{P ∗|x=x0+L(σ0, λ,Re{Z∗
0}, Im{Z∗

0})} − Re{P ∗|x=x0} = 0

F 2 = Im{P ∗|x=x0+L(σ0, λ,Re{Z∗
0}, Im{Z∗

0})} − Im{P ∗|x=x0} = 0

F 3 = Re{Z∗|x=x0+L(σ0, λ,Re{Z∗
0}, Im{Z∗

0})} − Re{Z∗|x=x0} = 0

F 4 = Im{Z∗|x=x0+L(σ0, λ,Re{Z∗
0}, Im{Z∗

0})} − Im{Z∗|x=x0} = 0 (4.20)
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We seek the solution of these equations by the Newton method. Rewriting four variables
(4.19) as

(v1, v2, v3, v4) = (σ0, λ,Re{Z∗
0}, Im{Z∗

0}) (4.21)

When the variables are changed slightly to vn+∆vn so as to satisfy the equations F n = 0,
relations are expressed as

F n(v1, v2, v3, v4) +
∂F n

∂v1
∆v1 +

∂F n

∂v2
∆v2 +

∂F n

∂v3
∆v3 +

∂F n

∂v4
∆v4 = 0. (4.22)

From these relations, the system of equations for the four variables is derived as
F 1
1 F

1
2 F

1
3 F

1
4

F 2
1 F

2
2 F

2
3 F

2
4

F 3
1 F

3
2 F

3
3 F

3
4

F 4
1 F

4
2 F

4
3 F

4
4



∆v1
∆v2
∆v3
∆v4

 = −


F 1

F 2

F 3

F 4

 , (4.23)

where F n
i is partial differentiation defined as

F n
i =

∂

∂vi
F n(v1, v2, v3, v4). (4.24)

Here these partial differentiations are evaluated numerically by finite difference as

∂F n

∂v1
≈ F n(v1 +∆v1, v2, v3, v4)− F n(v1, v2, v3, v4)

∆v1
. (4.25)

Solving the system of equation (4.23), ∆vn is derived and the variables are updated
as vji +∆vji → vj+1

i , where vji is the j-th step in the Newton-method. As the calculation
progresses, v approaches the solution. So the partial derivatives by finite difference to
derive vj+1

i are calculated by the values at vji and vj−1
i . When difference between vji and

vj−1
i is small enough, we take parameters at this point as marginal condition.

4.3 Marginal conditions

For the same temperature distribution as assumed in the analytical solution, marginal
conditions are obtained for the same geometry: L−LS = 2.16m, LB = 0.6m, R = 20mm.
At first, we set the pore radius RS as 0.1mm and porosity φ = 0.67. Note again that
given the temperature ratio in the analytical solution, the length of stack is determined
by the pore radius and temperature ratio, so the total length of looped tube is slightly
changed.

We seek the combination of parameters which satisfy the condition that the length of
the looped tube coincides with one wavelength by shooting method and plot the relation
between pore radius, frequency and temperature ratio. As the pore radius is changed
slightly, i.e. ϕr is changed, next marginal condition is obtained. Repeating this process,
full marginal conditions are available and the marginal curves are plotted.

Figure 22(a) and 22(b) compare the marginal curves obtained by the analytical solution
and by numerical method using Rott’s theory. In these figures, curves in red represent
the results by the approximated theory, while curves in black the results by Rott’s theory.
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Figure 22: Marginal conditions for temperature ratio T1/T0 for the one-wave mode against ζ0.
Red curves are results derived by analytical solution based on approximate theory. Black curves
are results by shooting method based on Rott’s theory. In (a), the curves are drawn by taking
the porosity proportional to the pore’s cross-sectional area with the total number of the pores
fixed, the curves being broken when the porosity exceeds unity, while in (b), the curves are
drawn by changing the pore radius with the porosity φ fixed at 0.67.

In (a), the curves are drawn by taking the porosity proportional to the pore’s cross-
sectional area with the total number of the pores fixed, the curves being broken when the
porosity exceeds unity, while in (b), the curves are drawn by changing the pore radius
with the porosity φ fixed at 0.67. As RS is smaller, especially smaller than 0.1, results
from approximate theory coincide well with those by Rott’s theory. It is found that the
approximate thermoacoustic wave equation used in the stack is appropriate for the case
of thin pore radius, though these results have been expected. When the initial frequency
is chosen about twice the one for the one-wave mode, marginal conditions for the two
wave mode are also obtained. For the two-wave mode as well, the good agreements are
obtained for small pore radius.

Figure 23(a) and 23(b) show the graphs for the one-wave mode as to how the pore
radius and the porosity affect the marginal conditions. In figure 23(a), the leftmost red
and black curves correspond to the ones in figure 22(a) and other four red and black
(broken in part for φ > 1) curves represent the marginal conditions with the number of
pores reduced consecutively to the right by 1/2, 1/3, 1/4 and 1/5 of that for the leftmost
curves. In figure 23(b) six red and black curves represent the marginal conditions with the
value of porosity φ increased from 0.5 to 1 by step 0.1. In these figures, the results by the
approximate theory are shown in red and the ones by Rott’s theory are shown in black. In
(a), the results by the approximate theory agree with those by Rott’s theory for small pore
radius, but for large pore radius, the lowest temperature ratio for each curve is different
between the approximate and Rott’s theories. However, the temperature ratio and ζ0 at
the bottom of temperature ratio are larger as the number of pores becomes small. In (b),
the temperature ratio by Rott’s theory is smaller than that by the approximate theory
for the large value of ζ0.
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Figure 23: Marginal conditions for temperature ratio T1/T0 for the one-wave and two-wave
mode against ζ0 . Red curves are results derived by analytical solution based on approximate
theory. Black curves are results by shooting method based on Rott’s theory. In figure 23(a),
the leftmost red and black curves corresponds to the one in figure 22(a) and five red and black
(broken in part for φ > 1) curves represent the marginal conditions with the number of pores
reduced consecutively to the right by 1/2, 1/3, 1/4 and 1/5 of that for the leftmost curves. In
figure 23(b) six red and black curves represent the marginal conditions with the value of porosity
φ increased from 0.5 to 1 by step 0.1.

4.4 Pressure and velocity distribution

Next we compare the results of pressure and velocity distributions with the analytical
solutions. Figure 24 shows the pressure and velocity distributions along the center line
of the looped tube calculated by the shooting method at ζ0 = 0.3 and porosity φ = 0.67
. In this figure, the stack and buffer tube are located in the section 0 ≤ x ≤ 0.015 and
0.015 ≤ x ≤ 0.229. Figure 24(a) shows the pressure distribution where the vertical axis
measures P/P0, where P0 is chosen to be the pressure at x = 0. In figure 24(b), the
velocity U is normalized by U0 given in terms of P0 and a typical acoustic impedance ρ0a0
as P0/ρ0a0.

Because the section of the stack is too short for the profiles to be visible in figure
24, the profiles are blown up in figure 25 including those in the buffer tube. In figure
24(a), the pressure is continuous across the junction x/L = 0.015 between the stack
and the buffer tube, but its gradient is discontinuous there. In figure 24(b), the velocity
in the stack is larger than that in the other sections and jumps at both ends of the
stack because of constriction of the cross-sectional area. But the mass flux is continuous
everywhere as required by the matching conditions. This is seen in the profile of the mass
flux ρeUAe/ρ0U0A in the broken curves, where Ae takes AS in the section of the stack
and A in the other sections. The velocity increases with x while the mass flux decreases
gently. Because temperature ratio has a difference between approximate theory and Rott’s
theory (temperature ratio by Rott’s theory is smaller than that of approximate theory),
the length of the stack for Rott’s theory is smaller than that of approximate theory. So
distributions by approximate theory and Rott’s theory are not plotted at the same time.
However, figures 15 and 24 have the same features as the analytical solutions. Figure 26(a)
and 26(b) show the pressure and velocity distributions for the two-wave mode. Qualitative
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Figure 24: Spatial and temporal profiles of the pressure P/P0 in (a) and the mean axial velocity
U/U0 in (b) with U0 = P0/ρ0a0 in the one-wave mode for the case ζ0 = 0.3.
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Figure 25: Blow-up of figure 23 for the pressure P/P0 in (a) and the mean axial velocity U/U0

in (b) with U0 = P0/ρ0a0 in the sections of the stack and the buffer tube for the case ζ0 = 0.3
where the mass flux ρeUAe/ρ0U0A is also drawn in the broken curve.

difference is not shown between the one-wave and two-wave mode. These have common
feature that the top of the antinode of pressure is located at the cold end of the stack.
This is already shown in analytical solution of approximate theory.

4.5 Marginal conditions for the case of parabolic temperature
distribution

We have shown that the results by the approximate theory agree with that of Rott’s theory
for the case of small ζ0. However, the temperature distribution is determined by the pore
radius of stack and temperature ratio so the total length of looped tube is different for
the different ζ0 on marginal conditions. Therefore effects of the length of the stack on the
marginal conditions should be examined. Now that the marginal conditions are available
numerically for any temperature ratio by the shooting method, the case of a parabolic
temperature distribution in the stack is considered to fix the length of the stack. We set
geometry of looped tube as L = 2.8m, LB = 560mm, R = 20mm, LS = 56mm, and set
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Figure 26: Spatial and temporal profiles of the pressure P/P0 in (a) and the mean axial velocity
U/U0 in (b) with U0 = P0/ρ0a0 in the one-wave mode for the case ζ0 = 0.3.
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Figure 27: Marginal conditions for temperature ratio T1/T0 for the one-wave mode against ζ0.
In (a), the curves are drawn by taking the porosity proportional to the pore’s cross-sectional
area with the total number of the pores fixed, the curves being broken when the porosity exceeds
unity, while in (b), the curves are drawn by changing the pore radius with the porosity φ fixed
at 0.67.

β = 0.5, P r = 0.7, γ = 1.4.
In this case as well, two types of marginal curves are shown. Figure 27(a) and 27(b)

show the curves drawn by taking the porosity proportional to the pore’s cross-sectional
area with the total number of the pores fixed, the curves being broken when the porosity
exceeds unity, and the curves drawn by changing the pore radius with the porosity φ
fixed at 0.67, respectively. The curve with the porosity of the stack proportional to the
pore radius squared has a larger variation of the temperature ratio than the curve with
porosity fixed. This is the same feature as the temperature distribution for the analytical
solution. In (b), however, the temperature ratio of the marginal curve with the porosity
fixed becomes higher as the ζ0 becomes smaller, whereas the temperature ratio by the
analytical solution is almost constant. This difference is explained by the following results.
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Figure 28: Marginal conditions for temperature ratio T1/T0 for the one-wave mode against
ζ0. In (a) the marginal curves with various value of porosity are plotted. Blue, black and
red curves are φ=0.5, 0.7, 0.9, respectively. The other geometry of looped tube is fixed as
L = 2.8m, LS = 56mm, LB = 560mm, R = 20mm. In (b) marginal curves with the various
length of the stack are plotted. Black, blue and red curves correspond to the length of the
stack LS = 56mm,112mm,168mm, respectively. The other geometry of looped tube is fixed as
L = 2.8m, LB = 560mm, R = 20mm, φ = 0.67.

4.6 Effects of the porosity and the length of stack

We now examine the effects of the porosity and the length of the stack on marginal
conditions for the parabolic temperature distribution in the stack. Figure 28(a) shows
the marginal curves with various values of porosity. Blue, black and red curves show the
curves with φ = 0.5, 0.7, 0.9, respectively. Geometry of looped tube is fixed as L = 2.8m,
LB = 560mm, R = 20mm, LS = 56mm. Figure 28(b) shows the marginal curves with
the various lengths of the stack. Black, blue and red curves correspond to the length of
the stack LS = 56mm,112mm,168mm, respectively. The other geometry of looped tube is
fixed as L = 2.8m, LB = 560mm, φ = 0.67. In figure 28 (a), the temperature ratio is larger
as the porosity becomes smaller for the smaller ζ0, while for lager ζ0, the temperature ratio
is smaller as the porosity becomes small. In figure 28(b), the temperature ratio is smaller
as the length of the stack becomes short. Essentially, the marginal curves of the looped
tube have the form like a bowl, and so have the bottom of temperature ratio at a certain
ζ0. In the case of using the temperature distribution of analytical solution, as ζ0 becomes
smaller, i.e. the pore radius of stack becomes smaller, the length of the stack becomes
short through the definition of temperature distribution. In other words, the temperature
gradient increases as the pore radius becomes smaller. Therefore the temperature ratio
of marginal curves for the analytical solution with the porosity of the stack fixed does
not change in the small ζ0 region. But in the case with porosity proportional to the pore
radius, porosity becomes small as ζ0 becomes small, i.e. pore radius becomes small, so
the temperature ratio becomes higher.

71



72



5 Conclusion

At first, we examined the effects of the thermal conduction in the wall on the thermoacoustic-
wave equation and its approximated theory. The effects appear through the parameter
ε and Ge defined by the square root of the product of two ratios, one being the ratio
of the heat capacities per volume and the other the ratio of the thermal conductivities
and defined by the relative thickness of the wall, respectively. Usually, the value of ε is
very small so that the effects of heat condition have been taken into account to the first
order of ε. However it has been unveiled that when the geometry parameter takes special
values, the expansion exhibits nonuniformity, i.e. resonance, and then the effects become
enhanced up to the order of

√
ε. In thin diffusion layer theory, the effects of heat condition

appear only through ε, however in the thick diffusion layer theory, they appear through
ε and Ge. The effects of heat conduction in wall may be neglected as long as the value
of ε is small enough. But it may happen that the effects appear enhanced, depending
through Ge on the geometry of the tubes, and the combination between the gas and the
solid. For the case of thick diffusion layer, the effects of heat conduction do not introduce
new terms in form but modify only the coefficients. This is a useful knowledge in deriving
marginal conditions.

Marginal conditions for the onset of thermoacoustic oscillations in a gas-filled, looped
tube has been developed based on the asymptotic theory of thick diffusion layer for the gas
in the stack and the one of thin diffusion layer for the gas in the other section of the tube,
respectively. For simplicity, ε is assumed to be enough small for the effects of thermal
conductivity in wall to be negligible. The marginal curves obtained numerically for the
temperature ratio appear to correspond to the left branch obtained by the experiments
by Yazaki and Ueda and Kato. It has been revealed that marginal conditions cannot
be determined without specifying the porosity of the stack. Hence the marginal curves
should be extended to a surface woven by the porosity.

Using the marginal conditions available, the mode of oscillations in the tube has also
been clarified not only for the one-wave but also for two-wave modes. It has been revealed
that the wave propagating in the positive sense from the stack’s cold end to the hot end
thought it is greater than that propagating in the opposite sense, so that the acoustic field
as a whole appears to be a travelling wave propagating in the positive sense. In accordance
with this, the mean acoustic energy flux flows in the same sense everywhere. It is only in
the stack that the flux is generated by the action of the thermoviscous diffusion.

The theories of thick and thin diffusion layer are characterized by two small parameters
ζ0 and |b| representing the ratio squared of the pore radius to the thickness of diffusion
layer and the ratio of the thickness to the tube radius, respectively. Although they are
assumed much smaller than unity, the results appear to be applicable even when the
parameters become comparable with unity. In fact, when the present result is considered
together with the result by Shimizu et al, the full marginal curves appear to be covered
almost by those in the limits ζ0 ∼ 1 and |b| ∼ 1 beyond the valid range of the asymptotic
theories. Hence it is concluded that the approximate theories of thick and thin diffusion
layers are relatively simple and useful in understanding and predicting the thermoacoustic
phenomena.

Marginal conditions are derived by Rott’s theory and compared with those of the
analytical solution based on asymptotic theories. For small ζ0, marginal curves agree with
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each other as we expected. It is shown that thick diffusion layer theory give the good
approximation for the small radius. Using parabolic temperature distribution, marginal
curves are calculated in order to examine the effects of the length of stack. It is shown that
temperature ratio is smaller as the length of stack becomes short. Marginal conditions
are affected not only by the pore radius, porosity of the stack but also the length of the
stack.

In the future study, analysis by thermoacoustic-wave equation with heat conduction in
wall should be considered. For example, using asymptotic equations which take account
of influence of heat conduction, effects on marginal conditions of looped tube may be
examined. It seems to be difficult to solve the analytical solution to the equations with
heat conduction but they are expected to be solved by modifying each coefficient. The
factor given by ε and Ge may affect the marginal curves because the value of Ge varies
depending on the geometry of stack.

Because availability of asymptotic theories is confirmed in §4, thick diffusion layer
theory is expected to the nonlinear problem.
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