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Preface

The performance of semiconductor devices primarily relies on carrier transport
properties in the short channels. New device structures (e.g. high-k/metal gate MOS-
FETs and FinFETs) and new channel materials (e.g. Ge and IlI-V compound semicon-
ductors) are needed to achieve high performance and low power CMOS devices (refer
to [1]). For this reason, the numerical simulation of quantum hydrodynamics in semi-
conductors is a major concern to understand the quantum effects and hot carrier effects
in scaled devices. The quantum hydrodynamic(QHD) model is derived from a mo-
ment expansion of the Wigner-Boltzmann equation adding a collision term by Gardner
in [2]. The quantum energy transport(QET) and quantum drift diffusion(QDD) models
are further derived by a diffusion approximation of the QHD models. These models
consist of a hierarchy of the quantum hydrodynamic models (refer to [3]).

This thesis addresses a quantum energy transport model for carrier transport sim-
ulations in scaled semiconductor devices. In classical models, Blgtekjer [4] derived
a hydrodynamic(HD) model by taking three moments of Boltzmann transport equa-
tion(BTE) with the Fourier law closure. As shown in [5, 6], the energy transport(ET)
model is a parabolic-elliptic system, which is derived by a diffusion approximation of
the HD model. For classical hydrodynamic simulations, the difficulties associated with
the Fourier law closure has been intensively discussed in [5,7-9]. To overcome this
problem, an ET model based on four moments equations of BTE has been proposed
by Lee and Tang [7]. However, the difficulties associated with the Fourier law closure
remain in QET models. In previous works, the QET models are derived from three mo-
ments equations of Wigner-Boltzmann equation with the Fourier law closure. A full
QET model has been derived by Degond [10] from the collisional Wigner-Boltzmann
equations using the entropy minimization principle. Numerical simulations using this
model, however, have not been performed (refer to [11]). Simplified QET models have

been proposed as the energy transport extension of the QDD model and numerically



investigated by Jin et al. [12] and Chen and Liu [13]. In [13], the carrier temperature in
the current density is further approximated by the lattice temperature to bring the QET
model into a self-adjoint form. A four moments QET model has been newly developed
by Sho and Odanaka [14]. Numerical methods for the stationary four moments QET
system are further presented in [14]. The numerical stability is achieved by develop-
ing high accurate schemes and an iterative solution method in terms of a new set of
variables. In analogy to the classical ET models (refer to [15, 16]), an extension of
Scharfetter-Gummel schemes is developed. For the numerical stability of the solution
method, Sho and Odanaka [14] further develop an iterative solution method by intro-
ducing an under relaxation method.

This thesis is organized as follows. Chapter 1 discusses the Wigner-Boltzmann
equation for the modeling of semiconductor transport. The QHD, QET, and QDD
models are introduced as a hierarchy of carrier transport models in semiconductors.
In Chapter 2, we derive a 4 moments QET model from four-moments equations de-
rived from the collisional Wigner-Boltzmann equation. Chapter 3 presents the space
discretization of the 4 moments QET model. The discretization of the QET system is
performed by a new set of unknown variables. We can rewrite the current continuity
equation and energy balance equation in the same self-adjoint form, considering the
conservation of the current density and the total energy flow. This approach allows
us to construct the numerical flux of the finite volume method. Chapter 4 addresses
an iterative solution method of the 4 moments QET model. The convergence analy-
sis of the numerical method is performed with numerical experiments. In Chapter 5,
transport properties in new device structures and new channel materials are evaluated
using the 4 moments QET model. A number of authors have focused on numerical
and theoretical studies of carrier transport in MOSFETSs on high mobility substrates
and Silicon (refer to [17-23]). The numerical results using the QET model are ob-
tained for bulk and double gate Silicon, Germanium, Injs3Gag47As n-MOSFET with
high-k/metal gate (refer to [24,25]). Chapter 6 summarizes and concludes this thesis.
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Chapter 1
A hierarchy of transport models

In scaled semiconductor devices, the carrier transport properties primarily depend on
the quantum effects and hot carrier effects. For the modeling of such carrier transport
in semiconductors, the quantum hydrodynamic(QHD) models have been derived from
a Chapman-Enskog expansion of the Wigner-Boltzmann equation adding a collision
term (cf. [2,26]). Using a diffusion approximation, the quantum energy transport(QET)
and quantum drift diffusion(QDD) models are further derived. In Chapter 1, we discuss
the Wigner-Boltzmann equation for the modeling of semiconductor transport. The
QHD, QET, and QDD models are introduced as a hierarchy of carrier transport models

in semiconductors.

1.1 Wigner-Boltzmann equation

The Wigner-Boltzmann equation is derived from the Wigner-Wyle transformation of
Schrédinger equation. We start with a single-state Schrodinger equation on R?, d=1,2,

or 3,

2
ihéwi(x, ) = —h—Vzwi(x, N+ V(x, Hi(x, 1), (1.1.1)
0; 2m

where y; are wave functions, V(x, ) is the potential energy, 7 and m are the Planck’s
constant and effective mass. When an ensemble of wave functions y; is given, we

define the density matrix p by

plx,xX) = ) diow; (x)a, (1.1.2)



where ¢ is the complex conjugate of ¢, and the a; are the occupation probability for
the state i.

If the wave function ; satisfy the Schrodinger equation, the density matrix satisfies
the so called Heisenberg equation. The Schrédinger equation for the wave function

1s written as

R,
lhE = —%Vxl// + Vl!/ (113)

The complex conjugate of ¢ satisfy the following equation:

2
‘9(;/; = —h—v%,// + Vit (1.1.4)

The straightforward calculation yields that the y* satisfy

0 0 0
T

h
(——2 V2 + VO = Y(—=—=V20" + V(X W)
m 2m

K2 . h
(—Z—Vi + VW = (—=— V2, + V(X )y
m 2m

h2
_%(Ax — Ay + (V(x) = VX )y (1.1.5)

Given an ensemble of wave function ¥;, we obtain the Heisenberg equation for the
density matrix from (1.1.2) and (1.1.5):

dp . oy
h— = ih L
ot : Za’ ot

h2
D i3 (B = Al + (V) = VOO)r)

h2 / / 4
= 5B = Ar)p(x x) + (V(x) = V(x)p(x, x). (1.1.6)
The Winger function is now introduced as the Fourier transform of the rotated density
matrix
_ 1 / 1 / _ipr’ ’
Su(rp) = ) p(r+§r,r—§r)e wdr, (1.1.7)

where p is the molecular momentum. Then the density matrix is written as
1 ’ 1 / ’ ' ’
p(r+ Er,r—ir): Jw(r,pHe 7 dp. (1.1.8)

2



Carrying out the same transformation in the Heisenberg equation yields an equation

similar to the classical Boltzmann equation

0
5nmm+£%mmm—ﬂwm=a (1.1.9)
t m

The operator 6 in the integral representation is given by

_ i(p—p" )’

=i 1 r r ’ ’ 3.0
Q[V]fw=%Wff(V(r+ E)—V(r—z))fw(r,p)e dp'dr’. (1.1.10)

If the potential energy V in (1.1.9) has a Taylor series expansion, the Winger-

Boltzmann equation is further written as

(o)

hZa(_l)a

Faar iV Ve =0 (LLID
a=1 .

0 p

POWATACS) + __‘7r w _"7r' \Y w

S p) + 2V, o
This means that the quantum picture reduces to the classical description in the limit
h— 0,

OIV1fy > V.V -V, f (1.1.12)

The Wigner-Boltzmann equation reduces to the classical collisionless Boltzmann equa-
tion. By adding a collision term to (1.1.9), the Wigner-Boltzmann equation is of the

form

of,
e Dy, f- AV = O, (1.1.13)
m

where Q(f,,) is the collision term.

Fig.1.1 shows a hierarchy of carrier transport models. In analogy to the classical
hydrodynamic model, the QHD model is derived form a Chapman-Enskog expansion
of the Wigner-Boltzmann equation. QET and QDD models are further derived by using
a diffusion approximation of QHD model. The QDD model reduces to the classical
drift diffusion(DD) model by the limit # — O.



Classical models Quantum models

microscopic - -
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h - 0 . . .
Drift diffusion model Quantum drift diffusion model

Figure 1.1: A hierarchy of transport models.

1.2 Quantum hydrodynamic model

A QHD model is derived by Gardner [2] from a Chapman-Enskog expansion of the
Wigner-Boltzmann equation adding a collision term. Average values of observables A

are given in the Wigner formalism by

(A) = fA(p)fw(r, p)dp. (1.2.1)

Integrating a function A(p) with respect to p against the Wigner-Boltzmann equation,
we obtain

(59

hZa/(_ 1)a+l

2+1 _
2. m(v,v -V,A) =0. (1.2.2)

0

ZiAy + VL E Ay + Y, V(V,A) +

ot m
Conventionally, the moment expansion of the Wigner-Boltzmann equation involves
integrating powers of A = 1, p, p?>/2m against f,,(x, p) in (1.2.2) to obtain conservation
laws for particle number, momentum, and energy as follows:

an | 13p)
ot m Ox;

=0, (1.2.3)



{(pj) O ,pipj ov

2 N 1.2.4
ot +6xi< m ) nﬁxj’ ( )
o p? o0 pip? 1 oV

5<%> + (’)_)ci<ﬁ> = _E@i)a_x," (1.2.5)

where n is the particle density. We introduce the thermal velocity p’/m, representing
the difference between own velocity u and the macroscopic fluid velocity v. Then, the

macroscopic fluid velocity v is related to the molecular momentum p and a random

part p’ by
p=mv+p. (1.2.6)

The momentum density IT;, the stress tensor P;;, and the energy density W are defined

as follow:
I; = (p;), (1.2.7)
pip’;
P = —(—1), (1.2.8)
m
2
w= (2, (1.2.9)
2m

Using the Wigner distribution function and expanding p according to (1.2.6), we have

I; = mnvy, (1.2.10)
"y (mv; + p)(mv; + p’) pip;
<@> = | L ) = mvw (1) + (—2) = vIl; - Py, (1.2.11)
m m m
D (mv; + p))(mv;+p’) 1 2
w o= PPy _ Ty~ o 4 (2 (1.2.12)
m 2m 2 2m
’7 .2 2 2
pip; pi(mv + p")(mv + p’) pir v; v
_— = = + — /+— {/.: i 'Pi'a
( 2m) ( o ) <2m2> 2<p,> m<p,pj> qi — v;Pi
(1.2.13)
where the heat flux term ¢ is defined as
pip”
gi =< 2’m2 ). (1.2.14)
From (1.2.12) and (1.2.13), we obtain
2 7\ 172 ) 2
piP (mv; + p))p pp P
L = +vi(=—)y =W —-v,P;; +q;. (1215
<2m> ( o ) <2m2> V<2m> v viPij+qi. ( )



In previous works (cf. [2, 26]), the heat flux term ¢ is further approximated by the

Fourier law
qi = —k(T)VT, (1.2.16)
where the thermal conductivity «(7'), based on the Wiedemann-Franz law, is given as
kK(T) = (g - c)(g)zq,unT, (1.2.17)

where c is a fitting parameter. u and T are the carrier mobility and temperature, re-
spectively. Substituting the expressions (1.2.7), (1.2.11), (1.2.12), and (1.2.13) into the
moment equations (1.2.3)-(1.2.5) respectively, we obtain the QHD model without the

collision term:

Gn 1 (91_[, .

P =0,i=1,2,3, (1.2.18)
or; o ov

— + —WIl, - P;}) = —n—, 1.2.19
v + Bxi(v j D) n(?xj ( )
ow 0 IT1; 0V

E + a__)Q(ViW - VjPij + C[l) = _Ea_xl (1.2.20)

Similar expression is obtained for holes. (1.2.18), (1.2.19), and (1.2.20) represent
conservation of electron number, momentum , and energy, respectively. The quantum
correction to the stress tensor P;; was proposed by Ancona and lafrate [26], and the
quantum correction to the energy density W = nw was first derived by Wigner [27],

which are given by

2 2
Pij = —nan(Sij + ﬁnaxiax]- lOgn + 0(h4), (1221)
1 3 /N
W= 5mnv2 + znan = a2 logn + O(1%), (1.2.22)

k

where k is the Boltzmann constant.

Substituting (1.2.21) and (1.2.22) to (1.2.18)-(1.2.20), the QHD model for electrons
is derived as a hyperbolic-elliptic system. In one dimension, we obtain the quantum
hydrodynamic conservation laws for electron number, momentum, and energy, coupled

with the Poisson equation.

Mm%y =o. (1.2.23)
X



0 0 5 s oV mny

E(mnv) + a(mnv + knT, — ﬁn@ logn) = —na — 7, (1.2.24)

ow 0 5 1 n 0? 0 oT

— + —(n(=kT, + -m* - — —1 — —(k(T,)—=

ot - 6x(vn(2 - va 8m dx? ogn)) 6x(K( ) 0x )
ov -

YV _W=Wo (1.2.25)
Ox Ty

For the collision term, the electron scattering is modeled by the relaxation time approx-
imation with momentum and energy relaxation times 7, and 7,,. The QHD model has
been introduced as a quantum corrected version of the classical hydrodynamic model

with O(#?) corrections to the stress tensor and energy density.

1.3 Quantum energy transport model

The QET model is a parabolic-elliptic system, which can be derived by a diffusion
approximation of the QHD model (refer to [3]). From (1.2.23)-(1.2.25), we get

on 0
— ==, 1.3.1
ot Ox ( )
0 T, 0 Ju 0 o n & ov
-y, ® =) —u—(knT,) + y—(——n—1 = un— — J,,
o q Gx( ® n) ’“‘ax( ") 'uax(12mn(9x2 ogn) = pn dx
(1.3.2)
ow 0 1 oV W-W,
—+—nS)=-J,— - , 1.3.3
ot 8x(n ) q Ox Tw ( )
15 1 i o7,
S = ——(ZkT, + =mv* — — = logn)J, — k(T,)—=, 1.3.4
" q(2 2™ T 8mox ogn) “ )ax ( )
where J, = —gnv is current density and g is the positive electrostatic charge. The
carrier mobility is defined as
-
pu=Lr, (13.5)
m
The potential energy is given by
V = —qo, (1.3.6)
where ¢ is the electric potential. When the convective term in (1.3.2)
0 I
2@ (1.3.7)
q O0x n



is neglected, a parabolic equation system is obtained. Furthermore, it is assumed that
the kinetic energy is neglected against the thermal energy, and the time derivatives
vanish. We get a stationary 3 moments QET model for electrons coupled with the

Poisson equation as follows:

eAp =qn—p-0C), (1.3.8)
o

—7,=0, 1.3.9
. ( )

0 oy o n 0
J, = pka(nTn) - q,una _“ax(ﬁ p logn), (1.3.10)

—(nS) = -J,—~= — Znk== 1.3.11

6x(n ) ox 2 Ty ( )
15 n 9’ oT,

= ——(=kT, - 1 T,)— 1.3.12

ns q(zk Cl-wmrw ogn)J, — k(T}) PR (1.3.12)

where T is the lattice temperature. In the 3 moments QET model, the heat flux is
approximated by Fourier’s law. Similar expression is obtained for holes. As pointed
out in [5] and [7], classical 3 moments ET simulations result in the overestimated
spreading of carriers. This effect has been related to errors introduced by the closure
of the equation system. In fact, the heat flux density is assumed to be proportional to
the gradient of a scalar temperature. Fourier law closure cannot include the fact that the
heat flux may not be zero even in a homogeneous system. In addition, the Wiedemann-
Franz law is actually an approximation for the diffusive component of heat flux. The
convective component of heat flux must be included to obtain physical results when the
current flow is not negligible. To overcome difficulties associated with the Fourier law,
the fourth moment of the Boltzmann transport equation has been taken into account for
the classical energy transport(ET) model. A classical 4 moments ET model is proposed
by Lee and Tang [7].

1.4 Quantum drift diffusion model

A QDD model, which is also called the density-gradient model in (cf. [26]), is derived
from a diffusion approximation to the QHD model. Assuming the electron temperature
is equal to the lattice temperature 7,, = T, in the QET model, the QDD model is

obtained as follows:

eAp = g(n—p - C), (1.4.1)



0

a_xjn =0, (1.4.2)
9 d o m o
= pkTp—n — q/m—(p - u—(

PP o om 0 — log n). (1.4.3)

As mentioned in Chapter 2, the quantum correction in (1.4.3) can be rewritten as

o w9

b
g 1.4.4
ox 12m' ox I (144)

logn) = gn Ep
where the quantum potential is defined as

/N B o
6mgq +n 0x*

It is suggested that the fourth-order equation (1.4.3) is split into two second-order

Yn = (1.4.5)

equations (cf. [28,29]) by introducing the generalized chemical potential under Boltz-

mann statics (cf. [30]),

kT n
Gn = @ — —=10g(=) + Y, (1.4.6)
q n;

where 7; is the intrinsic carrier density. In this view, the current continuity for electrons

is split into the second-order equation in terms of the variable p, = n,
2b,V?py = Yupn = 0 (1.4.7)

and the continuity equation in terms of the generalized chemical potential

0
—¢n) = (1.4.8)

~(gun—

(1.4.6) is rewritten as (1.4.7) in terms of p,, which requires the positivity of solution

P, from the mathematical point of view. Then, the QDD model can be rewritten as

follows:
eAgo =qn—-—p-0), (1.4.9)
0
—(czlm(9 ¢n) =0, (1.4.10)
26,V = Ynpn = 0. (1.4.11)



Chapter 2

4 Moments quantum energy

transport model

In analogy to the classical hydrodynamic(HD) models (cf. [5]), the QET models are ob-
tained by using a diffusion approximation in the quantum hydrodynamic(QHD) equa-
tions. The QHD model has been derived from the collisional Wigner-Boltzmann equa-
tions, assuming the Fourier law closure by Gardner [2]. For classical hydrodynamic
simulations, the closure relation based on the four-moments of the Boltzmann equation
has been discussed (cf. [7-9]), and the four-moments ET models are developed for sim-
ulations of thin body MOSFETs in [5,31]. In Chapter 2, we derive the 4 moments QET
model from four moments equations derived from the collisional Wigner-Boltzmann

equation.

2.1 Derivation of 4 moments quantum energy trans-

port model

The four moments equations have the same form as the classical hydrodynamic equa-
tions (cf. [7]),

on+V-mv) = nC,, (2.1.1)

0(mp) +V - (nU) —nFg = nC,, (2.1.2)
o(mw)+V-nS)—nv-Fg = nC,, (2.1.3)
V-mR)—nwl+U)-Fg = nC, (2.1.4)

10



where n, p, and w are the electron density, momentum, and kinetic energy, respectively.
v, U, S and R are the velocity, second moment tensor, energy flow, and fourth moment
tensor, respectively. I is the identity tensor. Fr = —gE, where E is the electric field. C,,,
C,, C., and C), are the electron generation rate, the production of crystal momentum,
the energy production, and the production of the energy flux, respectively. (2.1.1),
(2.1.2), (2.1.3), and (2.1.4) represent conservation of particles, momentum, energy,
and energy flux, respectively. By assuming parabolic bands, we give the following

closure relations for p and U as

p = mv, (2.1.5)
Uij=mvy; — —, (2.1.6)
n
where m is an effective mass. i = 1,2,3 and j = 1,2, 3. For the collision terms, we

employ a macroscopic relaxation time approximation to drive a QET model as follows:

C, =0, 2.1.7)
c,=-L, (2.1.8)
Tp
c.=-2-2 (2.1.9)
Te

where 7, and 7. are the momentum and energy relaxation times, respectively.
Substituting (2.1.5) and (1.2.21) into (2.1.2), we obtain the moment equations for

conservation of electron number and momentum

on 0
—+ —(nv) = 2.1.1
Frid axi(nvl) 0, (2.1.10)
0 K2 0 oV mny;
— D+ — v+ knT, — — 1 =-n—-— .
Py (mnv;) + o, (mnvv; + kn I 2mn Pxx, ogn) n o, .
(2.1.11)
We further get the following relation:
0 0? 0 1 &
— 1 =2n———1n. 2.1.12
(9x,-n8x,-c')xj oen n@xj \n dx? " ( )
In fact, the left side of (2.1.12) reads
O P L O P Lonon,
0x; 0x;0x; £ T Ox; Ox;0x; nox; 0x;
T WY VS W
 Ox0xi0x;  n* dx;” Ox; ndx>dx; noxdx;dx;

(2.1.13)

11



By the direct calculation, the right side of (2.1.12) is written as follows:

a1 & 0 1 1 *n 1
2n———+Vn = 2n——(——= (—))
0x; \n dx? Ox; \/_ 2\VndZ  dnn Ox;
0 10n 1 0On
= 2n NG T I —))
X; 2n6x 4n? " Ox;
P Lnnin 1Paon 1 P on
B Ox0x;0x; n? 0x;" 0x; nox;Ox; noxox; ox;

(2.1.14)

From (2.1.13) and (2.1.14), we get the identity (2.1.12). With the relation (2.1.12), the

quantum correction term in (2.1.11) is written as

n 0 0? WPno 1 0 0
— - 1 = (—— = —qgn——~"=yYy, 2.1.15
12m 0x,~n8x,-6x ; ogn 6m ﬁxi( \Vn (9)6? 2 " (9x,-y ( )

where the term

/= G
= — —— 2.1.16
s 6mq \n 9x> ( )
is the quantum potential. Then, the conservation of momentum is given by
0 0 0 oV mny;
a(mnvi) + 8—xj(mnv,-vj + knT,) — qna—xiy,, = _”0_x,- - . 2.1.17)
We can define the current density J; = —gnv; and the positive electrostatic charge g.
Using a diffusion approximation in (2.1.17), we obtain
0 0 0 ov
—Ji = kpyy—(nT,) + qnuy—y, = pun— — J;, 2.1.18
¥y M o (nT,) + gnu axiy Hnlt o ( )
where u, = £2 is the electron mobility. The potential energy is given by
V = —qe. (2.1.19)

From (2.1.10), (2.1.18) and (2.1.19), we obtain the current continuity equation as fol-

lows:
I .
—divd, =0, (2.1.20)
q
kT,
Jn = Qﬂn(V(n7) = nV(p + Ya))- (2.1.21)

12



In the same way, we obtain the current continuity equation for holes as follows:
1.
—divJ, =0, (2.1.22)
q
kT,
Jp = qup(V(p7) +pV(e =), (2.1.23)

where p , T, and u, are the hole density, hole temperature and hole mobility, respec-

tively. v, is the quantum potential which is written as

=t LE @124
n_———2 . 1.
6mgq \/ﬁaxj

The energy balance equation is derived from (2.1.3) and (2.1.4) (cf. [7]). The colli-

sion term in (2.1.2) is rewritten as

c,=-L. (2.1.25)
Hn
As in (2.1.25), the collision term in (2.1.4) is modeled as

S
Cpe=-L, (2.1.26)
M
where p; is the energy flow mobility. Neglecting the time derivative term in (2.1.2),
we get
nFg=V-nU)+nL, (2.1.27)

n

Substituting (2.1.27) into (2.1.4), the expression of energy flux S is given as

s=Pwr+v) v+ ;‘_;((WI +U)-V-(nU) -V - (nR)). (2.1.28)

n

Assuming a heated Maxwellian distribution, the fourth moment tensor R is specified

by the classical form as

5
R= 51<2T,31. (2.1.29)

Using closure (2.1.29), an expression for the energy flux density S, = nS is obtained
as

Sy =2 Wi+nU) v+ B+ 0)- V- (U) -V - (gnsz,fI)). (2.1.30)

Hn q

13



The second term of (2.1.30) is the diffusive contributions to the energy flux density
which includes the classical form of R. In this work, we develop a QET model, ne-
glecting quantum corrections in the diffusive contributions to the energy flux density.
Substituting (2.1.6) and (1.2.22) into (2.1.30), the quantum corrections to the energy
density W and stress tensor P;; are included in the drift contributions to the energy
flux density S, and neglected in the diffusive contributions. As a result, we obtain a

quantum corrected expression for the energy flux density as

ps SkT, R o
R Y Al logn — logn)J,
/Jn(z q 24mq ogT 12mq(9x,-6xj Ogn)
sk
—ii(_)zq,unnTnVTn' (2.1.31)
ns q

From (2.1.3), we get the energy balance equation as

3 T,-T
VS, ==ty Vg Shn L

(2.1.32)

Assuming that the velocity v is slowly varying in the device region, the following term

in (2.1.32) is approximated as

7‘126( 821 )_h2 6( i )4 hzav( 21 )
2m o i axax; 22" = Tom o "awax, 2" Tom ox Moo, 08"
0
~ —Jy—Vn (2.1.33)
ﬁxj
In the same way, we obtain the energy balance equation for holes as follows:
3 T,-T
VS, =, Ve - Sk 3 (2.1.34)
_ug 5kT, w? Ky 5 ko
=z—=L- Alogp —yp)p — —5(=)"qupT,VT),.
P ,up 2 q 24mq p/vp ,Up2 q p p p
(2.1.35)

2.2 4 Moments quantum energy transport model

Coupling with the Poisson equation, the 4 moments QET model consists of the follow-

ing system of equations:

eAp =qgn—p—-0C), 2.2.1)
1
gdian =0, (2.2.2)

14



1
~divJ, =0, (2.2.3)
q

an n
ARCATOEE S Le-e. (2.2.4)
kT, Pp
pr ) (pqup) - 7ppup = _(90 - Qpp)’ (2.2.5)
3 1T,-T
V-S,=-J,-Vo—kn L (2.2.6)
2 Te
3. T, TL
V-S,=J,-Vo——kn 2.2.7)
2 Te
kT,
Jn = qun(V(nY) —nV (@ +va), (2.2.8)
kT,
Jp = q,up(V(p—) + pV(e —vp)), (2.2.9)
HMs San hz /.155 k 2
S,=—-—(= - Al +y ), — —=(— NnT,VT,,
un(2 g 2dmg’ 08" Vn) ﬂnz(q) g
(2.2.10)
us SkT, h us S k
S, = - T,VT,.
P Hp 2 g 24mgq P Mp2 HpPLr¥ Ly
(2.2.11)
where v, = “"”T”_“"”), v, = W, U, = k; v, and u, = kT Z—Vp. @ 1s the electrostatic

potential. ¢, and ¢, are the chemical potential of electrons and holes, respectively. p,
and p,, are the the root-density of electrons and holes. €, C and T, are the permittivity of
semiconductor, the ionized impurity density and the lattice temperature, respectively.
The value of effective mass is given by a single parameter m, = 0.26m; in the silicon
devices, where my is the mass of a stationary electron. Then, the quantum parameters
for electrons and holes become

n? n?
p =

(2.2.12)

n:

12gm,’ 12gm,’
For a temperature dependent mobility model, we apply the simplified Hinsch’s mobil-

ity model in [32],

() _ (142 3 pok

. S (T, ~To) ™, (2.2.13)

where p( and v, are the low-field mobility and saturation velocity, respectively.

From (2.1.16) and (2.2.12), the quantum potential equation is derived as
2b,V?0, — Ynpn = 0. (2.2.14)

15



In our model, (2.2.14) is replaced by (2.2.4) with respect to the variable u,, by employ-

ing an exponential transformation of variable proposed by Odanaka [33]

pu = Vit = VR exp(Ev,). (2.2.15)

If the variable u, is uniformly bounded, the electron density is maintained to be pos-
itive. The same expression can be obtained for holes. As mentioned below, this ap-
proach provides a numerical advantage for developing the iterative solution method of
the QET model as well as the QDD model.

The system (2.2.1)-(2.2.11) are solved in a bounded domain Q. The boundary 9<Q2 of
the domain Q splits into two disjoint parts I'p and I'y. The contacts of semiconductor
devices are modeled by the boundary conditions on I'p, which fulfill charge neutral-
ity and thermal equilibrium. We further assume that no quantum effects occur at the

contacts. Here, the boundary conditions are given as follows:

©= @b+ Qappi» N =Np, P = Pp, U, = Up, U, =up, T, =T, =T onlp,
(2.2.16)

Vo.-v=VJ,-v=VJ,-v=Vu, - v=Vu,-v=VS,.v=VS,-v=00nTy,
(2.2.17)

where ¢, and ¢,,,; are a built-in potential and an applied bias voltage, respectively. v
denotes the unit outward vector along 0Q. up = %% on the contacts. In MOSFET

structures, u,, = u at the silicon dioxide interface, where u is a small positive constant.
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Chapter 3

Discretization of 4 moments quantum

energy transport model

Chapter 3 will discuss space discretization of a 4 moments QET model. The dis-
cretization is performed by a new set of unknown variables (¢, u,, n, p, T,). For space
discretization, the conservation of the current density and the total energy flow is a key
issue as discussed in [34,35] for the classical ET models. It is shown in the QET model
that the current continuity equation and energy balance equation can be written in the
same self-adjoint form. This result allow us to construct the numerical flux of the finite
volume method. In order to construct high accuracy nonlinear schemes, an extension

of Scharfetter-Gummel type schemes are further developed.

3.1 Current continuity and energy balance equations

For the current density, we have

kT, kT,
) = L (=YY (i + 7). 3.1.1)

J, = qu,(V
q#((nq A

As pointed out in [34, 35], for discretization of classical ET models, the total energy
flow H = S, +¢J,, which consists of both the thermal energy flow S, and the electrical
flow ¢J,, is used to solve the energy balance equation. J, and S, can be written in the
same form as shown in [31,36]. In the QET model, the total energy flow can be

rewritten as
H = §,+¢J,
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2

s h
= S+ o+ B (=—Alogn +y)), (3.12)
Hn 27mg
—~ S us kT, 5 i
5, = 2K, Stk T (3.1.3)
2un g 2un q
(2.2.6) is replaced by
—~ s h? 3 T1,-T
V-S,=-J,-V(p+ 'u—(y,, + Alogn)) — —kn L. (3.1.4)
My 24mgq 2 Te
Substituting (2.2.8) into (3.1.3), for the energy flow, we have
- 5wy kT,_ kT, kT, kT, _kT,
Sy = —Z—qua n
2 pt q
5 kT, , .
= —= 3.1.5
5 IH: T ) (3.1.5)

When the variable ¢ is defined as & = nkTT” = nn in the current density J, and & =

n(kTT”)2 = n1” in the energy flow §n, J, and §n can be written in the same form,

V-F=V-(CV )), (3.1.6)

kT

where F is the flux. The constant C is defined as C = qu,, in J, and C = —%qus in
S By projecting (3.1.6) onto a grid line and using the variable g = fx x %V(go +Yn), a

one-dimensional self-adjoint form is obtained as

d d d .
F = —(Cef—(e79). (3.1.7)

3.2 Discretization

Space discretization of the four-moments QET model is performed by a new set of
unknown variables (¢, u,, n, p, T,,). For space discretization, the simulation region is
divided into computational cells €;; centered at (x;,y;). The set of locations x;,1 and
Yji1 are the positions of the interfaces bounding the computational cell. The cell sizes
are given by a; = Xipl = X1 anda? = Vil =YL, i=1---N+landj=1---N,+1,
where N, and N, are the numbers of division at horizontal and vertical directions. In a
Cartesian grid, each computational cell is rectangular, and variables ¢, u,, n, p, T, are

defined at cell centers and the flux is defined at cell interfaces.

18



3.2.1 Poisson equation

Because of the strong nonlinearity of the Poisson equation, (2.2.1) is linearized

using a Newton method as follows:
n" m 2 m m
Agmt - L Pyt —o-L 3.2.1
€ . (Tm Tg)so g™ —p" - C) ? (Tm Tm)so . (20

where m is the iteration number. The electric flux F, which is defined at interfaces

bounding the computational cell, is written as
F = €Vo. (3.2.2)

The Poisson equation is rewritten as

2

V.-F- ;(? + T—)gp g(x,y), (3.2.3)

p
where the function g(x, y) is the right-hand side of (3.2.1). Integrating (3.2.3) over the

computational cells €;; yields

L”V-FdS—f ?(T—+T—p)gpdS —fg.g(x,y)dS (3.2.4)

ij ij

Using Green’s theorem, we obtain a discrete form of fQ V- FdS as
1y

Vi1 1
f V. FdS sz(Fi+%—F,._é)dy+f (Fj - Fy))dx
Qi v X,

1] i—1 _1
2 =2

= @(Fi —F ) +a(Fj —F; ). (3.2.5)

Then, we obtain a discrete form of the Poisson equation:

X X j pl
&(Fopy ~ Fi )+ aX(F ) — Fy 1) — @ aﬁ( Tf T;)‘p,} =adg;  (3.2.6)
nij
In order to find F; 1 integrating the electric flux F over the interval [x;, x;11]. Assum-

ing that F is constant in the interval, we get the flux F,, 1 by
2

Pi+1,j — Pi,j

Fii=e¢ o (3.2.7)
where &7 | = x;, — x;. Similarly, F' i1 F; 1 and F j-1 are obtained as
Foy = e% (3.2.8)
Fii = % (3.2.9)
j+1
Fry = e%h—;””. (3.2.10)
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Substituting (3.2.7)-(3.2.10) into (3.2.6), the discrete form of the Poisson equation is

derived as
7 (690i+1,j — P 6901',;' - 901'—1,]‘) 4 a?(E(pi’ij_ $ij 6901',]' - ;Pi,jfl)
/ i hi hj+1 hf'
2
x vq4  Nij | Dij Xy
kT, T e ess G210

3.2.2 Quantum potential equations

Space discretization of (2.2.4) is performed following a previous work [33] to achieve
a high-accuracy nonlinear scheme. Assuming that the flux is given by F = p,Vu,, we

integrate (2.2.4) over the computational cells Q;;. As a result, we have

kT, ’
f b,V - FdS — f OutndS = f P —pndS.  (3.2.12)

The flux is defined at interfaces and then we obtain a discrete form as

, kT,
bnai‘(FH% —Fi_%)+bna;c(Fj+% —Fj_%)— p j”ni_/‘ fupndS

Q;j

1
=—5(¢,~j—¢n,.,)f padS. (3.2.13)

In order to find F,, 1 integrating the electric flux F over the interval [x;, x;.1]. Assum-

ing that F' is constant in the interval, we get the flux F; i by

Fy = e~ (3.2.14)
i+ T Ty L
Li p—ndx
The accuracy of the numerical flux depends on the explicit integration fx f”l pidx in

(3.2.14). In order to construct a higher accuracy nonlinear scheme, an explicit integra-
. "Xi+1 1 . . . . . . .
tion fx ,- p—ndx is obtained by the piecewise linear approximation of ¢ and 7, on the

interval [x;, x;,1]. Then we have
it h* 1e_“"i+1,j
f e dx = ——4——— (3.2.15)

where B(x) = = is the Bernoulli function. Substituting (3.2.15) into (3.2.14) results

e*—1

in the numerical flux introduced by Odanaka in [33]:

1
h* eunHl’jB(”nm.j = U ) (U, ;= U, )- (3.2.16)

i+1

Fivip=
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Similarly, F; 1 and F._1 are obtained as

-3 J+z J=2

U,

Fiy = e By, ; — Uy )Wy — U, ), (3.2.17)
1 Ll P

F,, 1= A e By, .y — Un, J(Un, = Un ;) (3.2.18)
j+1
L

Fi = ﬁe "o B(Uy, ;= Uy ;o U ; = U ;) )- (3.2.19)
j

At silicon dioxide interface, the explicit integration is obtained by the piecewise con-

stant approximation.

it _ a;r (ul’li,' + uO)
f e dx = L exp(—— ")), (3.2.20)
x,- 2 2
Then, the nonlinear scheme is derived as
2 (u n,j uo)
Fi+% = ;exp( N(uo — iy, ;) (3.2.21)

i
An average of p, in each computational cell is obtained by integrating the piecewise

linear representation of u, on the interval [x;_i/2, X;+1,2] and [y;-1,2,y;+1,2]. Then we

have
Xi+1/2 hx hx :
f p"dx = ( Uy, l.—un“ U n Uy, )euni'j’ (3222)
- QB(Hiti iy ity iy
)il /2 K hy
f Pndy = ( Uy, -Jl T Uy, J+11 Un; )ei. (3.2.23)
X1 QB(H iyt iy

After some calculation we have the following approximation:

Aij:f pndS f 2f pndxdy
Q.,

1]

I\J\

hil, h I
= eunlj X( u —u, u —u u —u u —u
4 B( i 1/ "t/)B( i, j— 1 "'J) B( ”l+l/ "'J)B( i, j—-1 ”11)
+ u —uhj{hi-'—lu —Uu, + u —uhj:—lh;u —u )
B( "ifl,j2 i,j )B( "1,j+12 "f,/') B( ”i+lé i j )B( "1,./'+12 "i»j)
(3.2.24)

Substituting (3.2.16)-(3.2.19), (3.2.24) into (3.2.13) leads to a high-accuracy nonlinear

scheme developed in [33]

y y
Cl . a.
o j s
h* b et B(Mnl.%j - u”i,j)(uni+1,j - u"w) hxb e” ’”B(unid B u”iflsj)(u”i’f B u”"*l’j)
i+1
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x a

J
J b eun”H B(un,ﬁl un,',j)(un,-_jﬂ - unw) b e”n ]B(ul/ uni,j_l)(uni,j - un,-_j_l)

hy hy

j+l
1
Wit Nij = =5 (@i = Pu )i, (3.2.25)

This scheme results in a consistent generalization of the Scharfetter-Gummel expres-
sion to the Sturm-Liouville type equation. In the same way, the Scharfetter-Gummel

type scheme to the quantum potential equation for holes is obtained.

3.2.3 Current continuity equations

Assuming that the flux is given by F = CefV(e™¥)nn, we integrate (3.1.7) over the

computational cells €;;. Using Green’s theorem, we obtain a discrete form as

ij

In analogy to the quantum potential equation, the approximation of F,;/,; is obtained
by integrating the electric flux F over the interval [x;, x;;1]. Then we have
CWis1,j— Vi)

F. .= A
fx”l e8dx
i

i+3

(3.2.27)

where = e4nn. In order to construct a higher accuracy nonlinear scheme, an explicit
integration fx )_C”l e 8dx 1s obtained by the piecewise linear approximation of ¢ and T,

on the interval [x;, x;41] (cf. [15,16]). Then we have

C
F”% o< h* o (BAAL iy j = B(=Aj, )i j), (3.2.28)
i+1"7i+1
where B(-) is the Bernoulli function. The variables 6, ,, AY | are calculated as follows:
X Ni+1,
67, = log( 7; ) i = 1)), (3.2.29)

A;:-l - HH-]((SOH-],] ‘)Dl,]) + (’yn,'.,.],_,' - ’y}’l,')_,') - (r]i+],j - r]i,j))' (32‘30)

Similarly, F;_1, F;,1 and F,_, are obtained as
2 2

1
2

F,_1 = (B(A)n; j — B(=A))n;_y ), (3.2.31)
: Hthjcﬂ ’ ’
F..= ¢ BN’ B(-N’ 3.2.32
= 7 ————(B( j+1)ni,j+l - B(- j+1)nz’,j)a (3.2.32)
J+1 j+1
Fj_% = Gyhy (B(A’)n,] — B(-A’ )n,, 1). (3.2.33)
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As a result, the consistent generalization of the Scharfetter-Gummel type scheme to

current continuity equation is derived as

ay/l }'
o I (B(A Dniej — B(=Aj ni j) — GXh" (B(Ax)n,] B(=AN)n;_1 )
= il (B, i jur = B(=A" )y j) — (B(A’)n — BA)nij) =
1777 j+17776] ij i,j—
9j+1h)j}+1 " I Hyh)

(3.2.34)

In the same way, the Scharfetter-Gummel type scheme to the current continuity equa-

tion for holes is obtained.

3.2.4 Energy balance equations

Assuming that the flux is given by F = CesV(e™®)nn?, we integrate (3.1.4) over the

computational cells €;;. Using Green’s theorem, we obtain a discrete form as

X )3 n
a (Fz+f i—%) +4a; (Fj+% - j_l) +a;a Ekn‘r_

2

s h V3. T
- f T, Ve + By, + Alogn))dS + a'd’ kn—. (3.2.35)
Q s 24mgq J

2

ij
Here, quantum corrections are included in the carrier heating term. Since the energy
flow density and the current density can be written in the same form (3.1.7), the nu-
merical flux Fi,;, is derived as

F i+% 0° h*

i+177i+1

(B(A;C+1)ni+l,jni+l,j - B(_A;:.[)ni,jni,j)’ (3.2.36)

where variables 6 and AT are

X 771 1
0., = log( - J)/(771+1] Nij)s (3.2.37)

A;:-l - 0[+]((‘pl+l,] ‘)Dl,j) + (Fyn,'.,.]t,' - ,yn,"j) - (771'+1,j - r]i,j))' (3'2'38)

Similarly, F; 1, F.,1 and F',_1 are obtained as
=377 J*3 J=2

Fiy= gxth(B(Ax)”unu B(=A)n;_y jmi-1,j)s (3.2.39)

F/+% = Py h) (B(A]+1)nl JH i1 — B(—A§+1)ni,j77i,j), (3.2.40)
]+1 j+1

Fyy= G‘Yh’ (B(Ay)”lﬂ?tj B(=A)n; j-117; j-1)- (3.2.41)
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To conserve the total energy flow H = S, + ¢J, (3.1.2), discretization of the carrier
heating term is another key issue. From Gauss’s theorem, the first term on the right
hand side of (3.2.35) can be calculated as

5 by,
Ay = f —J,,-V((p+’li(yn+5Alogn))dx
Q,'j /’ln

S bl’l
| U+ By, + Z2AT0gn))) - vdx. (3.2.42)
(991‘]' /’ln 2

The electron density under the Boltzmann statics is expressed as

+ — ¥n
n=n exp(w) = 1 exp(2u,), (3.2.43)

where n; is the intrinsic density. Then, the discretization for Alogn = 2Au,, in (3.2.42)

is obtained by a standard five-point approximation:

Al ! . —_ —

u. = —Yu.’._'_l _u.’._] —u.+l’. _u._l’.

! a;{hi'ﬂ v ih}v Y a;ch;:l o afhf o
y y X X
a)‘hy ]’ly a‘h* h* Lyt ce
JUUjH1j P

The discrete form of the carrier heating term in (3.2.35) yields

Aij = f

X Hs h h
—a; (Jnj+%(‘10j+% + ,u_,,(y"H% + bnA l/tn)) - Jn

V(e + B2y, + byAt!)dx
Hn

Q

1oy + 2 O, + budud)

2

D=

:‘]}( '+l (’ i 21 (] n.1 n “I’l)) Jll. 1 (7 l.—*z1 () n. 1 kVZAh }’l)))'
"2 /*t}’l "2 =2 /’ll’l =2
(3.2.45)

Then the consistent generalization of the Scharfetter-Gummel type scheme to the en-
ergy balance equation is derived as
y C X X C X
aj(gx [ (B(AG, D, nisr,j — B(=Aj, D jmi ) — W(B(Ai i 1.

i+1"%i+1 i+l

=B(=A))n;_; mi-1) + a;( (B(A§+1)ni,j+1ni,j+l - B(_A)])‘H)ni,jni,j)

C
9§+1h)]}‘+1
C .y 3q . v 3q
_%(B(Ai)ni,jni,j = B(=A)n jimij-1)) + a; aiz_‘rnni,jni,j =N+ Clﬂ}-Tni,ﬂ]o-

(3.2.46)

In the same way, the Scharfetter-Gummel type scheme to the energy balance equation

for holes is obtained.
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Chapter 4

Iterative solution method of 4
moments quantum energy transport

model

Chapter 4 will discuss an iterative solution method of 4 moments QET model. The
iterative solution method is achieved by a new set of variables. We develop an iterative
solution method by introducing an under relaxation method. The convergence behavior
of electrostatic potential, quantum potential, electron density, and electron temperature

are shown with numerical experiments.

4.1 Iterative solution method

We develop an iterative solution method of the QET model by constructing a Gummel

map [37] with a new set of unknown variables (¢, u,, n, p, T,) as follows:

(P1) Let ™, n™, p™, T," are given, solve the nonlinear Poisson equation with respect

m+1

to the electrostatic potential ¢, where m is the number of iteration.

2 m 2 m

P q P

Am+l_q_ + m+1: m _ m_C__ + 2 m. 411
€Ay k(T,;ﬂ Tp)so q(n” —p ) k(T,;ﬂ Tp)so (4.1.1)

(P2) Let ™!, o™, o™, T™ are given, solve the potential u™*!.
bV - (Vi) — el = = g, 4.12)

2 n
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m+1

Then, using u),

the quantum potential is further calculated as

m+1 m_ m+1

Yl = 2t 4 o — g™ (4.1.3)

(P3) Let ¢!, y*!, T™ are given, solve the electron density n"*!.

1
~divJ, = 0, (4.1.4)
q

Ju = qu.esV(e n™ ™). (4.1.5)

We set the generalized chemical potential by

m+1
QOZHI — _r]m log + 90m+1 + ')/Zl+1~ (416)
n.

1

(P4) Let ¢! is given, solve the hole density p™*!.
1
—divJ, =0, 4.1.7)
q
—-g m+l kTP
J, = qu,esV(etp 7). (4.1.8)

(P5) Let ¢™*!, 1 n™t1 T™ are given, solve the electron temperature 7",

. 3 nm+1Tm+l
V.S, + ck—"
2 Te

; 3 m+lT
— _Jn . V(()0m+1 + /’l_(,ynm+l + bnAuZH-I)) + 5kn L
Hn

4.1.9)

€

An iterative solution method, which consists of the inner and outer iteration loops, is
developed, as shown in Fig.4.1. The algorithm using the variable u, in (2.2.4) ensures
the positivity of the root-density of electrons without introducing damping parameters
(cf. [33]). In fact, it is a critical issue to solve for the root-density p, the quantum

potential equation
—2b,V0, + Vppn = 0. (4.1.10)

In this case, the iterative solution method requires an additional iteration loop to main-
tain positive solutions for the root- density of electrons in the inner iteration loop as
pointed out by de Falco et al. [38,39]. Hence, in the inner iteration loop, (4.1.10) is

replaced by (2.2.4) to ensure the positivity of the root density of electrons. Moreover,
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we can enhance the robustness of the iterative solution method by introducing an under

relaxation method with a parameter @, 0 < @ < 1, in the outer iteration loop:

Outer loop

Tm+1 =Tm 4 a,(T;n+l _ Tm)

Solve Poisson equation, continuity
equations, and quantum potential

equations at fixed temperature.

Convergence

Criterion 1

yes

no

<

Solve energy balance equations.

™= (72T,

no

>

yes

Convergence

Criterion 2

Bias up

4.1.11)

Inner loop

Figure 4.1: An iterative solution method with a relaxation algorithm.

4.2 Numerical experiments

We can construct a numerical method for the QET model in terms of the variables (¢,

u,, n, p, T,), using the space discretization and the iterative solution method mentioned
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above. The convergence analysis of the numerical method is performed with numeri-
cal experiment on a two dimensional Bulk n-MOSFET. The outer error estimates are
plotted in Figs.4.2, 4.3, 4.4, and 4.5. The relative error for electron temperature and

electron density are estimated as

| m _ pm-1
njj nij
IT|| = max JTm —, 4.2.1)
L] | nij
-1
by — i
|ln|| = max 4.2.2)
ij ||

For the electrostatic potential and quantum potential, the norm is defined by the maxi-

mum differences between outer iterations:

Il = max e - o, (4.2.3)

llul| = max i — ulfi ). (4.2.4)
Figs.4.2 and 4.3 show the relative error of electron temperature and electron density
vs. number of Gummel iterations, respectively. The error estimates of electrostatic
potential and quantum potential are shown in Figs.4.4 and 4.5. The error estimates
are calculated at the bias condition V, = 0.8V and V; = 0.0 — 0.2. It is found that
the error rapidly decreases as the number of Gummel iterations increases. In Fig.4.2,
the convergence behavior of electron temperature between three different relaxation
parameters @ = 0.2,0.5,0.8 are compared. It is clear that the numerical stability is

obtained by the relaxation method.
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Figure 4.2: Relative error of electron temperature vs. number of Gummel iterations at

different relaxation parameters.
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Figure 4.3: Relative error of electron density vs. number of Gummel iterations.
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Chapter 5

Simulation results for MOSFET

structures

New channel materials such as Ge and III-V semiconductors are needed to achieve
high performance and low power CMOS devices (cf. [17]). In Chapter 5, transport
properties in Si, Ge and Inj53Gag47As n-MOSFETs are evaluated using a 4 moments
QET model. The simulation results for bulk and double gate Si, Ge, Ings3Gag47As
n-MOSFETs with high-k/metal gate are examined. The QET model reveals carrier

transport properties including quantum confinement and hot carrier effects.

5.1 Simulation condition

The transport properties of Si, Ge, and Inj 53Gag 47As are obtained for 35nm n-MOSFETs.
Selected material parameters are listed in Table 5.1. The saturation velocities are se-
lected an average value in the inversion layer. Figs. 5.1 and 5.2 show two-dimensional
cross sections of 35nm bulk and double gate MOSFETs, respectively. Both devices
have effective oxide thickness(EOT)=0.7nm and the S/D doping of 4.0 x 10'* cm™.
The channel doping is 1.0 x 10'8 in the bulk n-MOSFET and 1.0 x 10! in the double
gate n-MOSFET. The dielectric permittivity considered here is 22, and the value is
known as "HfO,”. For metal gates, the work functions of 4.36 eV for Si, 4.14 eV for
Ge, and 4.51 eV for Inj53Gag47As devices are adopted. The energy relaxation time 7.
of 0.1 x 1072 s and a ratio u,/u, of 0.8 are chosen. For the n-MOSFETSs simulation,
we assume hole temperature 7,=T7.

The QET model includes a two-dimensional calculation of the electrostatic poten-
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tial in the region with boundary A-G-L-F, and a two-dimensional calculation of the
variables u,, u,, n, p, and T, in the silicon region with boundary A-B-E-F. The mixed
boundary conditions for the QET system are assigned as follows:

For the electrostatic potential ¢ and chemical potentials ¢, and ¢,

© = Qappl + Pb, (5.1.1)
$n = PLp = Pappls (512)

at source and drain regions, and back gate, where ¢,,,,,; is the applied bias voltage, and
¢ 1s the built-in potential, respectively. The gate region is also treated as a Dirichlet
boundary condition with an approximated work function of the material. At the sides
A-B, H-1, J-K, E-F, we have the homogeneous Neumann condition

dp _ dpu _ 0%y

= = = 1.
ov ov ov (5.1.3)

For the variables u,, n, p, and T,, we have the following Dirichlet conditions:

n

3 (qpp)/(2kT,) at sides B—C, D —E, and A —F,
ug at the silicon — oxide interface C — D,
~ { —(qes)/(2KkT ) at sides B—C, D—E, and A — F,

Uy at the silicon — oxide interface C — D,

(C+ JC?+4n?)/2 atsidesB —Cand D —E,
n=

n?/p at the back gate,
n?/n atsides B—CandD - E,

p =
(=C + /C? +4n?)/2 at the back gate,

T,=TratsidesB—-C, D—E, and A - F, (5.1.4)

where u, is the small positive constant. The carrier densities are assumed to fulfill
charge neutrality and thermal equilibrium at the contacts. We further assume that no
quantum effects occur at the contacts. At the sides A-B and E-F, the homogeneous

Neumann conditions read:

ou, _ o, _on _op _ 0T, _ |

o  dv v v v ’ (.15
at the side C-D,
on op 9T,
oo o 1.0
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The mixed boundary conditions are similarly assigned to the double gate n-MOSFET.

Table 5.1: Selected Semiconductor Material Parameters

semiconductor Si Ge Ing s3Gag47As
Uerp(cm? [V s) 400 [19] 1040 [19] 4000 [22]
Eg(eV) 1.12 [20] 0.66 [20] 0.73 [20]
er(€) 11.7 [20] 16.0 [20] 14.0 [20]
mesr(mo) 0.26 [42] 0.12 [42] 0.048 [20]

ni(cm™3) 1.08 x 1019 [42] | 1.64 x 103 [42] | 9.0 x 10! [23]

Vsar(cm/s) 1.0 x 107 [21] 0.7 x 107 [21] | 0.75 x 107 [21]

35nm EOT=0.7nm
G H |—————J K L
source gate drain

C ) D E
10nm [Z N-type H )nm \—‘

Channel doping 1e18

P-type
A F

Figure 5.1: Two-dimensional cross section of a 35 nm bulk MOSFET.
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35nm EOT=0.7nm

- /
source gate drain
_J
N-type Channel doping P-type
1e17
()
source gate drain

Figure 5.2: Two-dimensional cross section of a 35 nm double gate MOSFET.

5.2 Bulk Si n-MOSFET

In Fig.5.3 (a) and (b), we compare the electron density distributions calculated by
QDD, QET and classical ET models. The device was biased with Vg=0.8V and
Vd=0.8V. The simulated density distributions are plotted at different positions of the
channel. Fig.5.3 (a) shows the electron density distributions perpendicular to the in-
terface at the source end of the channel. The electron density distributions calculated
from the QET and QDD models are almost identical in the inversion layers. Carrier
heating due to the short channel effects results in the spread of electrons towards the
bulk in simulations using the QET and ET models. As a result, the profiles between
two models are almost identical at the bulk. The electron density distributions perpen-
dicular to the interface at the drain end of the channel are shown in Fig.5.3 (b). The
results clearly indicate that the quantum confinement effect is reduced by the enhanced
diffusion towards the bulk due to the high electron temperature near the drain. The
QET model allows simulations of quantum confinement transport with hot-carrier ef-
fects in MOSFETs.
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Figure 5.3: Electron density distributions perpendicular to the interface for a 35nm Si
n-MOSFET, (a) at the source end of the channel, (b) at the drain end of the channel.
V,=0.8V, V;=0.8V.
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Fig. 5.4 (a), (b), and (c) shows lateral profiles of electron temperature calculated
by the QET and ET models in weak inversion and strong inversion regions, and the
medium inversion region between the two. The simulations are done at the same drain
voltage of 0.8V. As shown in Fig. 5.4 (a), the results in the weak inversion region are
almost identical between two models. In Fig. 5.4 (b), we show the results calculated
by the QET model at Vg=0.8V and the ET model at Vg=0.8V and Vg=0.6V. Fig.
5.4 (c) compares the results in the strong inversion region. At the same gate voltage,
the QET model exhibits sharper distributions of electron temperature at the lateral di-
rection, when compared to those calculated by the ET model. These differences are
caused by the threshold voltage shift due to the quantum confinement in the channel.
In Fig. 5.5, we present the x-component of the current density. The results show that
the magnitude of the current density calculated by the QET model at Vg=0.8V corre-
sponds to that calculated by the ET model at Vg=0.6V in the medium inversion region.
Therefore, the shape of electron temperature distributions is close to that obtained by
the ET model at Vg=0.6V, as shown in Fig. 5.4 (b). We can see from Fig. 5.4 (c)
a larger discrepancy of temperature distributions in the strong inversion region due to
the strong quantum confinement.

Fig.5.6 shows lateral profiles of electron temperature calculated by the QET, QCET,
and ET models at the same gate voltage of 1.2V, respectively The simulations are done
at the same drain voltage of 0.8V. The quantum corrected ET(QCET) model is a sim-
plified QET model based on Chen’s model [13] with a temperature dependent mobility
model (2.2.13). In the QCET model, the quantum correction to the energy density is
neglected, and the carrier temperature in the current density is approximated by the
lattice temperature. As shown in Fig.5.6, the QET model exhibits a sharper tempera-
ture distribution of electron temperature at the lateral direction, when compared to that
calculated by the classical ET model due to the threshold voltage shift. The electron

temperature calculated by the QCET model is further increased.

36



ELECTRON TEMPERATURE (K)

ELECTRON TEMPERATURE (K)

2000

1800

1600

1400

1200

1000

800

600

400

200

1800

1600

1400

1200

1000

800

600

400

200

0.02

004 006 008 0.
LATERAL POSITION (um)

(a)

0.12

0.02

004 006 008 0.
LATERAL POSITION (um)

(b)

37

0.12

0.14



1800

QET \‘/g=1 2V
ET Vg=1.2V -
1600 ) ETVg=0.8V -oxe

1400
1200
1000
800 r

600

ELECTRON TEMPERATURE (K)

400 |

200 1 1 1 1 1 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14

LATERAL POSITION (um)
()
Figure 5.4: Lateral profiles of electron temperature distributions calculated by
QET(solid line) and ET(dotted line) models at the same drain bias of V,;=0.8V. (a)
QET model at 0.3V, ET model at V,=0.3V and V,=0.2V. (b) QET model at V,=0.8V,
ET model at V,=0.8V and V,=0.5V. (¢c) QET model at 1.2V, ET model at V,=1.2V and
V,=0.6V.
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Figure 5.5: x-Component of current densities perpendicular to the interface for a 35nm
MOSFET. QET model at Vg=0.8V, ET model at Vg=0.8V and Vg=0.5V
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Figure 5.6: Lateral profiles of electron temperature distributions calculated by QET,
ET, and QCET models at the same drain bias of V;,=0.8V and the same gate bias of
V,=1.2V.

5.3 Geand Ill()_53Ga()_47AS n-MOSFETSs

Fig. 5.7 (a) and (b) shows comparisons of average inversion layer depths versus ef-
fective normal field for Si, Ge, and Ings3Gag47As n-MOSFETSs. The average inversion

layer depth derived in [40] is given as

s
[

Ziny = Zs
f ninvdz
b

, (5.3.1)

where gz, is the bulk (the neutral region under the depletion region) and z; is the surface.

Effective normal field was defined by Sabnis and Clemens [41], which is given by

1
Eerp = E(|Qd| +1lQiD), (5.3.2)
Qu=—9q S(P - C)dz, (5.3.3)
Qi =—q fZA ndz, (5.3.4)

where 7 = 1/2 when the carrier is electrons, and 7 = 1/3 when the carrier is holes.

Fig. 5.7 (a) shows the comparison of the classical and quantum mechanical av-
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erage inversion layer depth for Si, Ge, and Ings53Gag47As n-MOSFETs. In all de-
vices, the classical value is less than 1.3 nm, and the difference among three de-
vices is small. Because of the low effective mass and high permittivity of Ge and
Ings53Gag47As, the quantum mechanical value of the Ge n-MOSFET is larger than
that of the Si n-MOSFET by 0.8nm-1.0nm. The value is spread to 1.5nm-1.6nm in
Ing 53Gag 47As n-MOSFET. This effectively reduces the charge control by the gate in Ge
and Ings3Gag47As n-MOSFETs. Fig. 5.7 (b) shows average inversion layer depth for
two impurity concentrations 1.0 x 10'® cm™ and 1.0 x 10! cm™. Although average
inversion layer depths have impurity concentration dependence, differences between
Si and Ge n-MOSFETs are about 0.8nm-1.0nm for each impurity concentration.

Fig. 5.8 (a) and (b) shows the electron density distributions perpendicular to the
interface at the source end and drain end of the channel. The results are calculated
by QET and QDD models for Si, Ge, and Ings3Gag47As n-MOSFETs. The devices
were biased with V,=0.8V and V,;=0.8V. Similar to the profiles for Si n-MOSFET,
the electron density distributions calculated by the QET and QDD models for Ge and
Ing 53Gag 47As n-MOSFETSs are almost identical at the source end of the channel. The
quantum confinement effect is reduced by the enhanced diffusion towards the bulk due
to the high electron temperature near the drain. Because of the difference of average
inversion layer depth, the quantum confinement effect is further reduced in Ge and
Ing 53Gagp 47As n-MOSFETs.
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Figure 5.7: Average inversion layer depth as a function of gate effective normal field
for Si and Ge n-MOSFETs. (a) The results are calculated by the QET and ET models.
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Figure 5.8: Electron density distributions perpendicular to the interface for a 35nm Si,
Ge, and Ings53Gag47As n-MOSFETS, (a) at the source end of the channel, (b) at the
drain end of the channel. V,=0.8V, V,;=0.8V.

Fig. 5.9 (a), (b), and (c) shows the electron density distributions at the drain
and source ends of the channel for a 35nm Si, Ge, and Injs53Gag4;As double gate
n-MOSFETs. The devices were biased with V,=0.8V and V;=0.8V. Fig. 5.9 (a) shows
the results of Si double gate n-MOSFET. The silicon layer thickness is 6nm. It is seen
that the device exhibits two channels at the source end of the channel and a single chan-
nel at the drain end of the channel due to high electron temperature near the drain. Fig.
5.9 (b) and (c) shows the results of Ge and Ing53Gag47As double gate n-MOSFETs.
Because of the effective degradation of the charge control by the gate, the devices ex-
hibits two channels at the source end of the channel and a single channel at the drain
end of the channel at the Ge layer thickness of 8nm and Injs3Gag 47As layer thickness

of 10nm.

42



ELECTRON DENSITY (cm™)

ELECTRON DENSITY (cm™)

1e+021 . : . _ |
Drain end ——

Source end ----x----
1e+020 ]

1e+019

1e+018

1e+017 |

1e+016 1

1e+015 L . . . .

DEPTH (um)

(a)

1e+021 , , . |

T T
Drain end ——
Source end ----x---

1e+020 1

1e+019

16+018

1e+017

1e+016

1e+015 - . , , . . |

DEPTH (um)

(b)

43



1e+021

T T T
Drain end ——
Source end ----x----

_ 1e+020 ¢ 1
@
IS
o
> 1e+019
=
n
zZ
W 1e+018 ]
- ,
2
= 1e+017
O
w
—
w
1e+016 1
1e+015 Il Il Il Il Il Il Il Il Il
0 1 2 3 4 5 6 7 8 9 10
DEPTH (um)
(©)

Figure 5.9: Electron density distributions at the drain and source ends of the channel
for a 35nm double gate n-MOSFETs. (a) The results of Si. (b) The results of Ge. (c)
The results of Ing 53Gag47As. V,=0.8V, V,;=0.8V.
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Chapter 6
Conclusion

A quantum energy transport(QET) model is obtained by a diffusion approximation in
the quantum hydrodynamic equations. We have developed a 4 moments QET model
from four moments equations derived from the collisional Wigner-Boltzmann equation
to overcome the difficulties associated with the Fourier law closure. The quantum
corrections to the energy density and stress tensor are included in the drift contributions

to the energy flux density and neglected in the diffusive contributions.

Space discretization of the 4 moments QET model has been performed by a new
set of unknown variables. Considering the conservation of the current density and the
total energy flow, we construct the same self-adjoint form of the current density J,
and energy flux density S,, which results in the numerical flux of the finite volume
method. Numerical schemes result in a consistent generalization of the Scharfetter-
Gummel type scheme to the QET equations. An under relaxation method enhances the

robustness of the iterative solution method of the QET system.

Transport properties in Si, Ge and Ing 53Gag 47As n-MOSFETS are evaluated using
the 4 moments QET model. The simulation results for bulk and double gate Si, Ge,
Ing53Gag47As n-MOSFET with high-k/metal gate are obtained. The 4-moments QET
model allows simulations of quantum confinement transport with hot-carrier effects in
Si, Ge, and Ing 53Gag 47As n-MOSFETSs. The simulation results reveal the difference of
electron temperature distributions between the QET and classical ET models due to the
quantum confinement effects. The charge control by the gate is effectively reduced in

the Ge and Ing 53Gag 47As n-MOSFETSs due to low effective mass and high permittivity.
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The quantum confinement effect is further reduced by high electron temperature near
the drain. Double gate n-MOSFETSs exhibit two channels at the source end of the
channel and a single channel at the drain end of the channel, at the different body
thicknesses among Si, Ge, Ing 53Gag 47As n-MOSFETs.

46



Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

M. BohrJ The evolution of scaling from the homogeneous era to the heteroge-
neous eral] Proc. IEDM (2011)0 pp. 1-6.

C. L. Gardner, The quantum hydrodynamic model for semiconductor devices,
SIAM J. Appl. Math., vol. 24 (1994), pp. 409-427.

A. Jiingel, Transport equations for semiconductors, Lect. Notes Phys. 773,
Springer (2009).

K. Blgtekjer, Transport equations for electrons in two-valley semiconductors,
IEEE Trans. Electron Devices, vol. ED-17 (1970), pp. 38-47.

T. Grasser, T-W Tang, H. Kosina, and S. Selberherr, A review of hydrodynamic
and energy-transport models for semiconductor device simulation, IEEE Pro-
ceedings, vol. 91 (2003), pp. 251-274.

J. W. Jerome, Analysis of charge transport: a mathematical study of semiconduc-

tor devices, Springer-Verlag (1996).

S-C Lee and T-W Tang, Transport coeflicients for a silicon hydrodynamic model
extracted from inhomogeneous monte-carlo calculations, Solid-State Elec., vol.
35 (1992), pp. 561-569.

A. Bringer and G. Schon, Extended moment equations for electron transport in
semiconducting submicron structures, J. Appl. Phys., vol. 64 (1988), pp. 2447-
2455.

R. Thoma, A. Emunds, B. Meinerzhagen, H.J.Peifer, and W.L.Engl, Hydro-
dynamic equations for semiconductors with nonparabolic band structure, IEEE
Trans. Electron Devices, vol. 38 (1991), pp. 1343-1353.

47



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

P. Degond, F. Méhats, and C. Ringhofer, Quantum energy transport and drift
diffusion models, J. Stat. Phys., vol. 118 (2005), pp. 625-667.

G. Allaire, A. Arnold, P. Degond, and T. Y. Hou, Quantum transport, Springer
(2008), pp. 144-152.

S. Jin, Y-J Park, and H-S Min, Simulation of quantum effects in the nano-scale
simiconductor device, J. Semi.Tech. and Sci., vol. 4 (2004), pp. 32-38.

R-C Chen and J-L Liu, An accelerated monotone iterative method for the
quantum-corrected energy transport model, J. Comp. Phys., vol. 204 (2005), pp.
131-156.

S. Sho and S. Odanaka, A quantum energy transport model for semiconductor
device simulation, J. Comp. Phys., 235 (2013), pp. 486-496.

T-W Tang, Extension of the Scharfetter-Gummel algorithm to the energy balance
equation, IEEE Trans. Electron Devices, vol. ED-31 (1984), pp. 1912-1914.

M. Rudan and F. Odeh, Multi-dimensional discretization scheme for the hydro-
dynamic model of semiconductor devices, COMPEL, vol. 5 (1986), no. 3, pp.
149-183.

S. Takagi et al., MOS interface and channel engineering for high-mobility Ge/Il
I-V CMOS, Proc. IEDM (2012), pp. 23.1.1-23.1.4.

A. Rahman et al., Assessment of Ge n-MOSFETSs by quantum simulation, Proc.
IEDM (2003), pp. 471-474.

M. V. Fischetti and T. P. O " Regan, Theoretical study of some physical aspects of
electronic transport in nMOSFETsS at the 10-nm gate-length, IEEE Trans. Elec-
tron Devices, vol. 54 (2007), pp. 2116-2136.

S. E. Laux, A simulation study of the switching times of 22- and 17-nm gate-
length SOI nFETs on high mobility substrates and Si, IEEE Trans. Electron De-
vices, vol. 54 (2007), pp. 2304-2320.

R. Quey et al., A temperature dependent model for the saturation velocity in

semiconductor materials, Mater. Sci. Semi. Processing, vol. 3 (2000), pp. 149-
155.

48



[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

T. P. O’ Regan et al., Calculation of the electron mobility in IlI-V inversion layers
with high-k dielectrics, J. Appl. Phys., vol. 108 (2010), pp. 103705-1-103705-11.

C. Carmody et al., Ion-implanted In0.53Ga0.47As for ultrafast optoelectronic
applications, Appl. Phys. Letters, vol. 82 (2003), pp. 3913-3915.

S. Sho, S. Odanaka, and A. Hiroki, Analysis of carrier transport in Si and Ge
MOSFETs including quantum confinement and hot carrier effects, Proc. IWCE
(2013), pp. 160-161.

S. Sho and S. Odanaka, Advanced MOSFET simulations using a quantum energy
transport model, Proc. Society for Silicon Device Material (2013), pp. 32-37. (in

Japanese)

M. G. Ancona, and G. J. Iafrate, Quantum correction to the equation of state of

an electron gas in a semiconductor, Phys. Rev. B 39 (1989), pp. 9536-9540.

E. Wigner, On the quantum correction for thermodynamic equailibrium, Phys.
Rev. 40 (1932), pp. 749-759.

C. S. Rafferty, B. Biegel, Z. Yu, M. G. Ancona, J. Bude, and R. W. Dutton,
Multi-dimensional quantum effect simulation using a density-gradient model and

script-level programming techniques, Proc. SISPAD (1998), pp. 137-140.

A. Jiingel and R. Pinnau, A positivity-preserving numerical scheme for a nonlin-
ear fourth order parabolic system, STAM J. Numer. Anal. (2001), pp. 385-406.

M. G. Ancona and H. F. Tiersten, Macroscopic physics of the silicon inversion
layer, Phys. Rev. B, 35 (1987), pp. 7959-7965.

M. Gritsch, H. Kosina, T. Grasser, and S. Selberherr, Revision of the standard hy-
drodynamic transport model for SOI simulation, IEEE Trans. Electron Devices,
vol. 49 (2002), pp. 1814-1820.

W. Hinsch and M. Miura-Mattausch, The hot- electron problem in small semi-
conductor devices, J. Appl. Phys., vol. 60 (1986), pp. 650-656.

49



[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S. Odanaka, Multidimensional discretization of the stationary quantum drift-
diffusion model for ultrasmall MOSFET structures, IEEE Trans. CAD of ICAS,
vol. 23 (2004), pp. 837-842.

A. Forghieri, R. Guerrieri, P. Ciampolini, A. Gnudi, M. Rudan, and G. Baccarani,
A new discretization strategy of the semiconductor equations comprising momen-
tum and energy balance, IEEE Trans. CAD, vol. 7 (1988), pp. 231-242.

D. Chen, E-C Kan, U. Ravaioli, C-W, Shu, and R-W Dutton, An improved en-
ergy transport model including nonparabolicity and non-Maxwellian distribution
effects, IEEE Electron Device Letter, vol. 13 (1992), pp. 26-28.

B. Meinerzhangen and W-L Engl, The influence of the thermal equilibrium ap-
proximation on the accuracy of classical two-dimensional numerical modeling of
silicon submicrometer MOS transistors, IEEE Trans. Electron Devices, vol. 35
(1988), pp. 689-697.

H. K. Gummel, A self-consistent iterative scheme for one-dimensional steady
state transistor calculations, IEEE Trans. Electron Devices, 11 (1964), pp. 455-
465.

C. de Falco, E. Gatti, A. L. Lacaita, and R. Sacco, Quantum-corrected drift-
diffusion models for transport in semiconductor devices, J. Comp. Phys. vol. 204
(2005), pp. 533-561.

C. de Falco, J. W. Jerome, and R. Sacco, Quantum-corrected drift-diffusion mod-
els: Solution fixed point map and finite element approximation, J. Comp. Phys.,
vol. 228 (2009), pp. 1770-1789.

Y. Ohkura, Quantum effects in Si n-MOS inversion layer at high substrate con-
centration, Solid-State Elec., vol. 33 (1990), pp. 1581-1585.

A. G. Sabnis and J. T. Clemens. Characterization of the electron mobility in the
inverted (100) Si surface, [EDM (1979), pp. 18-21.

B. L. Anderson and R. L. Anderson, Fundamentals of semiconductor devices,
McGraw-Hill (2005).

50



