|

) <

The University of Osaka
Institutional Knowledge Archive

. On the poset of pre-projective tilting modules
Title
over path algebras

Author(s) |I0iE, E—

Citation |KFRKZ, 2014, HEHmX

Version Type|VoR

URL https://doi.org/10.18910/34557

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



On the poset of pre-projective tilting modules over path
algebras

Ryoichi Kase






Contents

1 Introduction

2 Preliminary

2.1 Path algebras and quiver representations . . . . . . .. .. ... L.
2.2 Almost split sequences and Auslander-Reiten quivers . . . . . . . ... .. ..
2.3 Auslander-Reiten theory for path algebras . . . . . . .. ... ... ... ...

3 Tilting modules

3.1 Definition and properties. . . . . . . . . ..
3.1.1 Definition and examples . . . . . . . . ..o
3.1.2 Tilted algebras . . . . . . . . .. ...

3.2 Mutations and partial orders . . . . . . .. ... Lo

4 The number of arrows in tilting quivers

4.1 Theorem of Ladkani . . . . . . . . .. . ... .. .. ...
4.2 The number of arrows . . . . . . . ...
421 case A . . . .
4.2.2 case D . . .. e e
423 case Eg, E7, Eg . . . . . . . . .
5 Poset-structure of 7,(Q)
5.1 Elementary properties of Tp(Q) . . . . . . . . ... oo
5.2 Criterion for Ext-vanishing . . . . . .. .. .. .. . o oL,
53 Thecase of [(Q) <1 . . . . .






Chapter 1

Introduction

Tilting theory first appeared in an article by Brenner and Butler [3]. In that article the notion
of a tilting module for finite dimensional algebras was introduced. Tilting theory now appears
in many areas of mathematics, for example algebraic geometry, theory of algebraic groups
and algebraic topology. Let T be a tilting module for a finite dimensional algebra A (see 3.1.1
below for the definition) and let B = End4(7"). Then Happel showed that the two bounded
derived categories DP(A) and DP(B) are equivalent as triangulated category [8]. Therefore,
classifying tilting modules is an important problem.

Theory of tilting-mutation introduced by Riedtmann and Schofield is an approach to this
problem. They introduced a tilting quiver whose vertices are (isomorphism classes of) basic
tilting modules and arrows correspond to mutations. Happel and Unger defined a partial
order on the set of basic tilting modules and showed that the tilting quiver coincides with the
Hasse quiver of this poset. This poset is now studied by many authors.

Notations

Let @ be a finite connected quiver without loops or oriented cycles. We denote by Qg (resp. Q1)
the set of vertices (resp. arrows) of (). For any arrow a € Q1 we denote by s(«) its starting
point and denote by t(«) its target point (i.e. o is an arrow from s(a) to t(a)). We call a
vertex € Qo a source (resp. sink) if there is an arrow starting at x (resp. ending at x) and
there is no arrow ending at x (resp. starting at x). Let kQ be the path algebra of @ over
an algebraically closed field k. Denote by mod-k(@) the category of finite dimensional right
kQ-modules and by ind-k(Q the full subcategory of indecomposable modules. For any module
M € mod-kQ we denote by |M | the number of pairwise non isomorphic indecomposable direct
summands of M. Let P(i) be the indecomposable projective module in mod-kQ associated
with vertex ¢ € Q.

It is well-known that a path algebra kQ) is representation-finite if and only if the underlying
graph of @ is a Dynkin-graph. As a result, the poset of tilting modules over k@ shows a
completely different behavior in the following two cases:

e () is a Dynkin quiver,
e () is a non Dynkin quiver.
We ask different questions in each of the cases and we have obtained two new results.

In chapter 3 we mainly consider Dynkin quivers. If @ is a Dynkin quiver then 7(Q) is
a finite poset. Moreover any tilting module is pre-projective (Definition 2.3.1). Therefore we
have the following natural questions:
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Question 1.0.1. (1) How many vertices in ?(Q) are there?
(2) How many arrows in 7(@) are there?

Note that the underlying graph of ?(Q) may be embedded into the exchange graph, or
the cluster complex, of the corresponding cluster algebra of finite type:the tilting modules of
kQ correspond to positive clusters (cf.[4] and [17]). The number of positive clusters when the
orientation is alternating is given by the following table [6, prop. 3.9]:

type Ap D, Eg Er Eg
#T(Qo | 27 (*) | 240Dy [ 418 | 2431 | 17342

However the number of edges of this sub-diagram of positive clusters is not known in the
cluster tilting theory. Note also that if we consider the similar problem for the exchange
graph, it is not interesting, because the number of edges is § x {the number of clusters}, and
the number of vertices is given in [6, Proposition 3.8].

The first main result of this thesis is the following [K1].

Theorem 1.0.2. (1) #?(Q)l is independent of the orientation.
(2) #7(@)1 is given by the following table.

type A, D, Eg Er Eg
#7 Q)1 | ") | Bn—4)(*"2) | 1140 | 8008 | 66976

Moreover, the above numbers may be expressed in a uniform way as the following formula:

g (1 — h11> x {the number of positive clusters} - - - (x),
where h is the Coxeter number. In this thesis we provide case by case proof for each type,
however (x) suggests that it should be possible to provide a uniform proof.

If Q is a non-Dynkin quiver, k() is a representation-infinite algebra. In this case, to de-
termine rigid modules is nearly impossible. However the pre-projective component of the
Auslander-Reiten quiver of mod-k(Q is completely determined. For example, there is a bijec-
tion between the set of (isomorphism classes of) indecomposable pre-projective modules over
kQ and ZZO X Qo.

In chapter 4 we consider the set 7,(Q) of basic pre-projective tilting modules and study
its combinatorial structure in the case when @) is a non-Dynkin quiver. For the purpose we
have to answer to the following problem:

Question 1.0.3. When does the ExtllcQ—group between two indecomposable pre-projective mod-
ules vanish?

We introduce a function lg : Qo X Qo — Z>¢ and, by using this function, we give an
answer to this question for any quiver satisfying the following condition (C):

()] d(a) :=#{a € Q1] s(a) =aor t(a) =a} >2, Va e Qo.

By applying this result we show the following [K2]:



Theorem 1.0.4. If Q satisfies the condition (C), then for any T € T, there exists (1;)icq, €
Zgg such that T' ~ @,cq, 7o P(i).
Moreover, the map @, cq, 7" P(i) = (ri)ieq, nduces a poset inclusion,

(T(Q), <) — (2%, <P),

where (r;) <°P (s;) Wy >s for any i € Q.

The above result says that if ) satisfies the condition (C), then study of the poset 7,(Q)
comes down to combinatorics on Z90. As an application of these results we determine the
structure of Hasse-quiver ?p(Q) of T,(Q), for any quiver () which satisfies the following:

(i) @ has a unique source,
(ii) @ satisfies the condition (C),

(i) UQ) := max{ig(z,y) | 2.y € Qo) < 1.

References

[K1] R. Kase, The number of arrows in the quiver of tilting modules over a path algebra of
Dynkin type, Tsukuba J. Math. 37 (2013), no. 1, 153-177

[K2] R. Kase, Pre-projective parts of tilting quivers over certain path algebras, Comm. Alge-
bra, to appear.






Chapter 2

Preliminary

In this chapter we recall some fundamentals needed in this thesis. In section 1 we collect some
important properties of finite dimensional path algebras. In section 2 we recall definitions
of Auslander-Reiten translation, almost split sequences and Auslander-Reiten quivers. In
section 3 we review Auslander-Reiten theory for path algebras.

2.1 Path algebras and quiver representations

Let @ be a finite quiver. We denote by @y the set of vertices of () and ()1 the set of arrows
of Q. For any path w : o 2 21 B3 - % 1, we set s(w) = zo and t(w) = x,. We regard
T € Qo as a path with length 0.

Definition 2.1.1. For any finite quiver @), define a k-algebra k(@) as follows:
e The set of paths in ) forms a basis of kQ).

e For any two paths w : 29 = 21 3 -+ % 2, and w 20 gyl ﬁ - By the product is
defined by

0 if z, # yo,

We call kQ the path algebra of Q over k.

" {xogxla—2>~~-a4mr:yogy1%--~&ys if x, = yo

Theorem 2.1.2. ([1],[2]) Let A be an indecomposable finite dimensional algebra. Then there
exists a finite connected quiver QQ and two-sided ideal I of kQ such that A is Morita equivalent
to kQ/I.

Remark 2.1.3. A path algebra kQ is finite dimensional if and only if @ is a finite acyclic
quiver.

From now on we assume that () is a finite connected acyclic quiver.

Theorem 2.1.4. ([1], [2]) Let A= kQ be a path algebra. Then global dimension of A is not
more than 1. In other words, Exty =0 for any ¢ > 1.

Definition 2.1.5. We define a k-category rep @ as follows:
(Objects) A pair

(Vo f)=((Va | 2 € Qo), (fa : Vi) = Vi) | @ € Q1),

9
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where V,, are finite dimensional k-vector spaces and f,, are k-linear maps.

(MOI“phiSHlS) Let (Vva f) = ((‘/I)Q?EQ(N (fa)aGQl) and (W,g) = ((Wx)mGQoa (ga)ate) be objects
in rep . Then a morphism ¢ : (V, f) — (W, g) is a collection (¢ : Vo — W3)zeq, of k-linear
maps such that, for any o € @1, the following diagram commutes:

fa
Vi) Vi)
¢s(a) ¢t(0¢) Vae@
Ja
Wi(a) Wi

Then we call rep ) the category of finite dimensional representations of @) over k.

For a k@Q-module M, we apply an idempotent x € Qg to M and obtain Mx, which we
denote by M,.

Theorem 2.1.6. ([1], [2]) There exists category equivalence
F : mod-kQ —> rep Q,
which sends M to ((Mz)zeq,, (Ma : Moy > m— ma € Mt(a))a€Q1)-

Proposition 2.1.7. ([1], [2]) There are bijections between the following four sets.
The set of vertices Qqy of Q.

e The set of isomorphism classes of simple modules in mod-kQ.

e The set of isomorphism classes of projective modules in ind-kQ).

e The set of isomorphism classes of injective modules in ind-kQ).

Remark 2.1.8. Let A := kQ and P(x) := zA. Then Qo > x — P(z) € mod-kQ induces a

bijection between )y and the set of isomorphism classes of projective modules in ind-kQ.
Definition 2.1.9. Let M € mod-k@Q. We set
dim M = ((dim M), )zeq, == (dim My )zeqq,
and call it the dimension vector of M.
Then the following facts are well-known.

Theorem 2.1.10. (Gabriel) Let Q be a finite connected acyclic quiver. Then kQ has fi-
nite representation type if and only if Q is a simply-laced Dynkin quiver. In this case
dim : mod-k@Q — Zgg mnduces a bijection between ind-kQ and the set of positive roots in
the corresponding root system.

Example 2.1.11. Let Q@ =1 — 2 — 3. Denote by «; the simple root of type A3 associated
with vertex ¢ € Q. Then the set of positive roots is as follows:

Do = {1, x, 3,01 + a2, 0 + 3,00 + a2 + az}.

On the other hand, we have

kb k—50,0k5k kSkSk

. k—=-0—-0,0-k—0,0-20—k
ind-kQ = )

and the correspondence via dim is clear.
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2.2 Almost split sequences and Auslander-Reiten quivers

Definition 2.2.1. (1) An epimorphism h : P — M is called a projective cover of M € mod-A
if P is a projective module in mod-A and for any A-homomorphism g : N — P the surjectivity
of h o g implies the surjectivity of g.

(2) An exact sequence P; i> Py % M — 0 is called a minimal projective presentation of

M € mod-A if P, i) Ker g and Py 9 M are projective covers.

Let M € mod-A and consider a minimal projective presentation

PP Mmoo

Then we put 7M := Ker D(f*) where D(—) := Homy(—, k) and (—)* := Homu(—, A). We
call TM the Auslander-Reiten translation of M. Using minimal injective resolution we may
define 77N, for N € mod-A.

Proposition 2.2.2. ([1], [2]) Let X € ind-A. Then the following assertions hold.
(1) 7X # 0 if and only if X is non-projective. In this case X ~ 717X,
(2) 771X # 0 if and only if X is non-injective. In this case X ~ 77 1X.

Let f € Homu(Y,Z). We call f a right almost split morphism if (a) it is not a split
epimorphism and (b) any morphism M — Z which is not a split epimorphism factors through
f. Dually we define a left almost split morphism.

Definition-Proposition 2.2.3. ([1], [2]) We call an exact sequence

0 X%y Lz 0%

an almost split sequence if (x) satisfies following equivalent conditions.
(a) f is right almost split and g is left almost split.

(b) X is indecomposable and f is right almost split.

(¢) Z is indecomposable and g is left almost split.

(d) X ~7Z and f is right almost split.

(e) Z

e)
Theorem 2.2.4. ([1], [2]) If X is an indecomposable non-injective module, then there is a
unique (up to isomorphism) almost split sequence

~ 771X and g is left almost split.

0O—-X—-Y—>Z7Z-—0.

Dually if Z is an indecomposable non-projective module, then there is a unique (up to isomorphism)
almost split sequence
0—-X—=Y =20

Definition-Theorem 2.2.5. ([1], [2]) We can define a quiver I'(A) as follows:
e The set of vertices I'(A4)g is the isomorphism classes of indecomposables.
e Consider an almost split sequence

07X —>F—X—0.

Then we draw m arrows from 7X to Y and m arrows from Y to X if £ has m indecomposable
direct summands which are isomorphic to Y.
Then we call I'(A) the Auslander-Reiten quiver of A.
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Example 2.2.6. Let Q =1 — 2 — 3. Then

P(1) = k—k—k
P(2) = 0—>k—k
. _J P(3) = 00—k
md-kQ =0 “1p9) = kS k o0
7 P(3) = 0—=k—0
772P(3) = k—=0—=0

and we have almost split sequences
0— P(3) = P(2) = 71P(3) - 0,

0= P(2)—»P1l)®r 'P3) = r1P(2) =0,
07 'P@3) =7 tP(2) - 172P(3) = 0.

Therefore the Auslander-Reiten quiver of mod-£Q is given by the following:

2.3 Auslander-Reiten theory for path algebras

Definition 2.3.1. We call a module M € mod-A a pre-projective module if "M = 0 for
some 1 € Z>(.

Note that M € mod-A is pre-projective if and only if any indecomposable direct summand
X of M is isomorphic to 77" P for some indecomposable projective module P and r € Zx>o.

Proposition 2.3.2. ([1], [2]) Let A= kQ. Then the following assertions hold.
(1) Q is a Dynkin quiver if and only if any indecomposable module X over A is pre-projective.
(2) If Q is a non-Dynkin quiver, then

(x,r) — 7 "P(x)

induces a bijection between Qo X Z>o and the set of (isomorphism classes of) indecomposable
pre-projective modules.

Now we collect basic properties of the Auslander-Reiten translation for path algebras.



2.3. AUSLANDER-REITEN THEORY FOR PATH ALGEBRAS 13

Proposition 2.3.3. ([1], [2], [7]) Let A = kQ be a path algebra and M,N € ind-A. Then
the following assertions hold.
(1) If M and N are non-injective modules, then

Hom (M, N) ~ Homy (7 M, 77IN).
(2) (Auslander-Reiten duality) There is a functorial isomorphism,
DHomy (M, N) ~ Ext (N, 7M).
(3) For any indecomposable non-projective module X and an almost split sequence
07X > F— X —0,

we have

1 X~M

dim Hom(M, 7X) — dim Hom(M, E) + dim Hom(M, X) = { 0 otherwise

Theorem 2.3.4. ([1], [2]) Let Q be a finite connected non-Dynkin quiver, a € Qo and
r € Z>o. Then we have an almost split sequence

0—7"Pla)» € v 'Pie)® € 7 P(s(8) =1 "'Pla) = 0.
:s(a)=a B:t(8)=a
Example 2.3.5. We consider the following quiver
Q:1—=2

Then the pre-projective component of the Auslander-Reiten quiver I'(kQ) of mod-k(Q is given
by the following;:

VAY AN

Let d(X,Y) := dim Exth(X,Y). Then, from Proposmon 2.3.3 and Theorem 2.3.4, we
have the following.

Corollary 2.3.6. Let Q be a finite connected non-Dynkin quiver and let Y = 7= 5P(y) be an
indecomposable pre-projective module over kQ. Then we have

d(r~"P(x),Y) :{ 2 Hna ¥ lsy)
and if (r,x) = (s,y), then d(t7"P(z),Y) is equal to

—d(r T P(@),Y) + Y drTP(H@),Y) + Y d(r T P(s(a)),Y)

as(a)=z at(a)=z

where (r,xz) = (s,y) means either (1) r > s or (2) r = s and there is a path from x to y hold.






Chapter 3

Tilting modules

Throughout this thesis we consider tilting modules over path algebras and their poset-
structure. Therefore, in section 1 we first recall the definition of tilting modules over path
algebras. Second we define a tilted algebra of type Q. It is well known that its module
category has connection with the module category of the path algebra k(Q). In section 2 we
recall the definition and basic properties of the poset of tilting modules.

3.1 Definition and properties

3.1.1 Definition and examples

In this subsection we will recall the definition of tilting modules and basic results for tilting
modules.

Definition 3.1.1. Let A = kQ be a path algebra.
(1) A module M € mod-A is a partial tilting module if Extl (M, M) = 0.
(2) A partial tilting module 7" € mod-A is a tilting module if there is an exact sequence

0—=As—>To—>T1—0
with T; € add T (i = 0, 1).

Lemma 3.1.2. (Bongartz). For any partial tilting module M € mod-kQ, there exists a
module C € mod-kQ such that M & C' is a tilting module.

It is well known that if 7' € mod-kQ is a tilting module, then |T'| = #Qq. In particular
we have the following:

Corollary 3.1.3. A module T € mod-kQ is a tilting module if and only if
(1) Extyo(T,T) = 0,
(2) IT| = #Qo.

We denote by 7(Q) the set of (isomorphism classes of) basic tilting modules in mod-£Q.
Recall that a module is basic if any two distinct direct summands are non-isomorphic.

15
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3.1.2 Tilted algebras

Definition 3.1.4. Let A = kQ. We call an algebra B a tilted algebra of type @ if there is a
tilting module T" € mod-A such that B = End4(7T).

Let T € mod-A is a tilting module and B = End4 (7). Then T is a (B, A)-bimodule, so
that D(T') is a (A, B)-bimodule. We consider (full) subcategories

F =F(T):={M € mod-A | Homu(T, M) = 0},
T =T(T):={M € mod-A | Ext}(T, M) = 0}

of mod-A. We also consider (full) subcategories

X =X(T):={U € mod-B | Homp(U,D(T)) = 0},
Y =Y(T):={U € mod-B | Ext(U, D(T)) = 0}

of mod-B. The following is the celebrated Brenner and Butler’s tilting theorem.

Theorem 3.1.5. ([2] [3]) The following assertions hold.
(1) BT is a tilting module, and a map a — (t — ta) induces a k-algebra isomorphism

A2 Endp(T)°.
(2) Homy (7', —) induces category equivalence
Homa(T,—) : T — .
(3) Exto(T, —) induces category equivalence

Exta(T,—): F = X.

mod-A (T) T(T)

Ext (T, —) Hom (T, —)

Mg/;x
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Remark 3.1.6. (i) (1), (2), (3) of above Theorem hold for an arbitrary finite dimensional alge-
bra A.

(ii) (F,T) is a torsion pair of mod-A and (Y, X) is a split torsion-pair of mod-B [2].

Definition 3.1.7. Let A = kQ. We call an algebra B a concealed algebra of type @ if there
is a pre-projective tilting module 7" such that B = End (7).

Theorem 3.1.8. [2, Chapter VIII, Theorem 4.5.] Assume that Q) is a non-Dynkin quiver and
A =kQ. Let T € mod-A be a pre-projective tilting module and define B := End z(T).

(a) T(T') contains all but finitely many non-isomorphic indecomposable A-modules, and any
indecomposable A-module not in T (T) is pre-projective.

(b) The connecting component Cr determined by T (see [2] for the definition) is the unique
pre-injective component Q(B) of I'(B). Moreover, Q(B) contains all indecomposable module
in X(T) and no projective modules belong to Q(B).

(¢) The images under the functor Hom (T, —) of the regular components from R(A) form a
family R(B) of regular components of T'(B).

(d) The images under the functor Homa (T, —) of modules in P(A) NT(T) form the unique
pre-projective component P(B) of I'(B). Moreover P(B) contains no injective modules.

(e) We have I'(B) = P(B) UR(B) U Q(B).

Q(A)
s
Z-ra
|
Homy (T, —) 5o oo Exth (T, -)

3.2 Mutations and partial orders

In this section we recall the definition of an important partial order on 7(Q) and study
combinatorial properties of the poset 7(Q) (cf.[10],[11],[12],[13]).

Definition-Proposition 3.2.1. [11,Lemma 2.1]. Let 7,7 € T(Q). Then the following
relation < defines a partial order on 7(Q).

T>T € Extho(T, T') = 0.
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Definition 3.2.2. The tilting quiver ?(Q) is defined as follows:
7@ = T(Q),

T T n TQHT=M®X,T ~M&Y for some X,Y € ind-kQ, M € mod-kQ and
there is a non split exact sequence

O—>X—>M’—>Y—>O,

with M € add M.

In this situation we call 7" a right mutation of T at X and call T a left mutation of T at
Y.

Lemma 3.2.3. [10, Proof of Theorem 2.1]. Let T, T € T(Q) withT < T . Then there exists
T" € T(Q) such that T <T" and there is an arrow T — T in ?(Q)

Theorem 3.2.4. [10, Theorem 2.1]. The tilting quiver ?(Q) coincides with the Hasse-quiver
of (T(Q), <).

Remark 3.2.5. In this paper we define the Hasse-quiver ? of a poset (P, <) as follows:

(1) By := P,
(2)x—>yinﬁifaf>yandthereisnozEPsuchthatx>z>y.

Proposition 3.2.6. [10, Corollary 2.2]. If ?(Q) has a finite connected component C, then
(Q) =C. In particular, if Q is a Dynkin-quiver, then T (Q) is connected.

For T' € T(Q), we set

s(T) = #{T eTWQ)|T—T in T(Q)}
o(T) = #{T €T(A)|T —Tin T(Q)}

and define §(T") := s(T') + e(T).
Proposition 3.2.7. [12, Proposition 3.2]. We have

§(T) =n—#{a € Qo | (dmT)q = 1},
where n = #Qg.

Let M E? a basic partial tilting module and k(M) := {T' € T(Q) | M € add T'}. Then we
denote by lk (M) the full sub-quiver of ?(Q) having 1k(M) as the set of vertices (see [13]).

_>
Proposition 3.2.8. [13, Theorem 4.1] If M is faithful, then k(M) is connected.
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Example 3.2.9. (1) Let @ =1 — 2 — 3. Then ?(Q) is given by the following:

k—k—k
0—k—k
0—-0—k%
k—k—k
0—k—k
0—-%k—0
k—k—k
k—=0—0
0—-0—k%
k—k—k
k—k—0
0—-%k—0
k—k—k
k—k—0
k—0—0
2) We consider the following quiver:
(2) gq
Q:1—=2
Then ? () has two connected components
p
kE— k?
00—k .
k— k2 kS — k4
k2 — k3 |y
k3 — k4 k3 — k2
K2 s B and K s B
k3 — k4 k3 — k2
k* — k5 k2 — k3
) k—20
k2 >k







Chapter 4

The number of arrows in tilting
quivers

If @ is a Dynkin quiver, then kQ is representation-finite. In particular, ?(Q) is a finite
quiver. Therefore there arise two natural questions:
e How many vertices in ?(Q) are there?
e How many arrows in 7 (Q)) are there?
The number of vertices #?(Q)o is already known ([6]). So, in this chapter, we give the

number of arrows #7 (Q)1.
In the following we regard kQ-modules as objects of rep Q.

4.1 Theorem of Ladkani

In this section, we review [16]. Let  be a source of @) and Q' = 0,Q be a quiver obtained by
reversing all arrows starting at z. We define

T@)" :={T eT(Q)|5(x) € add T},
where S(x) € mod-kQ is the simple module associated with z. Similarly we define
T@Q) :={T € T(Q) | §'(x) € add T'},
where S’ (x) € mod-kQ'" is the simple module associated with z.

Definition 4.1.1. Let (X, <x),(Y,<y) be posets and f : X — Y an order-preserving func-
tion. Then we define the partial-orders gi, §’i of X UY as follows.

a<xb if a,b € X,
a<lbe={ a<yb ifabey,
fla) <y b ifae X andbeY.

a<xb ifa,b € X,

a<lbe={ a<yb ifabey,
a<y f(b) ifaeY and be X.

21
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For any M € mod-k(Q \ {z}), we define F(M) € mod-kQ as follows:

| M, if a # x,
F(M)a = { GesyM, fa=uz
M, if a # z,
F(M = rojection
(M) { @y My TS My if 0= .

Similarly we define F' (M) € mod-kQ" as follows:

/ | M, if a # =z,
F(M)a_{ BysaMy fa=z

, M, it b4,
F (M — S
( )a~>b { Ma injection @y_mMy i b=

Theorem 4.1.2. ([16]) (1) T+ F(T) @ S(z) induces a poset isomorphism
e TR\ {x}) ~ T(Q)".
Similarly T' — F'(T) @ S (z) induces a poset isomorphism
T(Q\ {z}) = T(Q)".
(2) There is an order-preserving map f: T(Q)\ T(Q)* — T(Q)* such that
T(Q) ~ (TQ\T@Q"UT@Q)", <L).

Similarly there is an order-preserving map f = T(Q)\ T(Q)* — T(Q')* such that

/

T(@) ~ (T@N\T@)MuT(@). <)),
(3) There exists an isomorphism of posets
pe s T\ T(Q)T = TN\ T(@)*

such that the following diagram commutes.

VANVAN

T(@Q\A{z})
Corollary 4.1.3. ([16)) #T(Q) = #7(Q").
Remark 4.1.4. In [16] the partial order on 7 (Q) is defined by

T>T Ext}ﬂQ(T{, T) =0 (opposite to our definition).
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4.2 The number of arrows

In this section we determine the number of arrows in ?(Q) for a Dynkin quiver @). Let

Cen (M) := {N emod-A|M SISO N for some M € add M},
Cogen (M) := {N €mod-A|N MO A1 for some M € add M},

Lemma 4.2.1. ([5, Proposition 1.3]) Let A = kQ be a path algebra, T = M &Y € T(Q) with
Y €ind-A. If Y € Gen (M), then there exists a unique(up to isomorphism) indecomposable
module X which is not isomorphic to Y such that M & X € T(Q) and there ezists an exact
sequence

0 —X—FE—Y —0

with E € add M.

Dually, if Y € Cogen (M) then there exists a unique (up to isomorphism) indecomposable
module X which is not isomorphic to'Y such that M @Y € T(Q) and there exists an exact
sequence

0 —Y —F—X—0

with E € add M.

Lemma 4.2.2. Let x € Qo and T = M & S(z) € T(Q). If x is a sink, then S(x) is in
Cogen (M). Dually, If z is a source, S(x) is in Gen (M).

Proof. For any T € T(Q \ {z}), we define F(T) € mod-kQ as follows,

T, if a # x,
F(T), =14 ®y—.T, if a =2z and z is a sink,
®z—yTy if @ =x and x is a source.

Tosb if a,b# x,

F(T)esp =1 Ty injection @ +if a =y with y — z and if b = z and x is a sink,

Y —aty
projection

S,y Ty — Iy if b=y with £ — y and if a = z and z is a source.

Then, by Proposition 4.1.2, T'+—— F(T') @ S(x) induces a bijection

TQ\ {z}) = T(Q)"
Now if z is a sink then
S(z) € Cogen (M) <= M, # 0,

and if x is a source then
S(z) € Gen (M) <= M, # 0.

Therefore, the assertion follows from the fact that if 7' € T(Q) then (dimT), > 1, for all
a € Q. ]
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Lemma 4.2.3. If x is a sink then

{a e T@Qn | s(a) € TQ), ta) € T(Q)\ T(Q)"} <5 T(Q)".
If x is a source then
{a e T(Q)1 | Ha) € T(Q),s(a) € TQ)\ T(Q)"} <5 T(Q)".

!

Here, for T3 T, s(a) =T and t(a) =T .

Proof. Suppose  is a sink, and let T € 7(Q)*. Then there exists a unique " € T(Q)\ T(Q)"

such that T —» T’ in 7(Q) (by Lemma 4.2.1, 4.2.2).
O

Corollary 4.2.4.
#T Q1 = #T (02Q):

In particular, if Q is a Dynkin quiver then #?(Q)l depends only on the underlying graph of
Q.

Proof. By Theorem 4.1.2 and Lemma 4.2.3 we get,

HT Q1 = #TQ\{z)h + #T (TQ\T(Q)")1 + #T(Q)
HT (02Q)1.

4.2.1 case A
In this subsection we consider the quiver,
By Gabriel’s Theorem, ind-kQ = {L(i,j) | 0 <1i < j < n} where

kE (i<a<y)
0 otherwise

1 (i<a,b<j)
0 otherwise.

L(i,f)a = { and L(i, )ay — {

Then we have ( W )
.. Li+1,5+1 j<mn),
TL(2,5) = }
(0:9) { 0 (j =n),
where 7 is the Auslander-Reiten translation.

Definition 4.2.5. A pair of intervals ([i, j],[i’,j']) is said to be compatible if

/

i, 41N [ 51=0o0r [i,5] C[i',j]or[i',5]Cij].
Applying Auslander-Reiten duality
D Extyo (M, N) = Homyg(N, 7M),

we have the following:
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Lemma 4.2.6. We have

!

Extiq(L(i. ), L(i,j)) = 0= Extyq(L(i',j ), L(i, 5))
if and only if ([i,§],[i',5']) is compatible.

Proof. Tt is obvious that Hom(L(4, ), L(i',j)) # 0 if and only if i’ < i < j < j. Therefore
the assertion follows from this fact and the AR-duality. O

Lemma 4.2.7. For any T € T(Q), we have §(T) =n — 1.

Proof. Let T € T((Q). Then the projective-injective module L(0,n) is a direct summand of
T. From this fact, we get 6(T) < n.

Denote by X the set of indecomposable direct summands of 7" not isomorphic to L(0,n)
and define

0 max{i | L(0,7) € X} if L(0,7) € X for some 1,
10 otherwise.

Then, by Lemma 4.2.6, we get
Exto (T, L(a + 1,n)) = 0 = Extyo(L(a + 1,n),T).
By Ext = 0 condition, we can see that L(a 4+ 1,n) is a direct summand of T'. In particular,
(dimT); =1l<=i=a+1.
The assertion follows from this fact and Proposition 3.2.7. O

Now it is easy to find the number of arrows in ?(Q), because it is equal to

% S ).

TeT(Q)

Namely, we obtain the result of Theorem 1.0.2 for type A,.

Corollary 4.2.8. #?(Qh = 2(7;;11) (2n) = (2::21).

n

4.2.2 case D
Through this subsection, we consider the quiver

1 2 n—40 n'
Q:Qn: O—>0O—> ¢ o o —>O\

O n~
Then we have

ind-kQ = {L(a,b) | 0 < a < b<n—1}U{L*(a,n) |0 < a <n—1}U{M(a,b) |0 < a <b<n—1}
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k if a<i<b,
L(a,b); - {0 otherwise,
(a,0)imj = {O otherwise,
. _ [k ifa<i<n—lori=nt,
L(a,n); - {O otherwise,
1 ifa<i<n—1lori=n—14j=n%*
I B 7.7 ?
L(a, n)l—>] - {0 otherwise,
ko ifa<i<bori=n*
M(a,b); = K ifb<i<n-—1,
0  otherwise,
( 1 if a <i<b,
(1) ifi=b,
(1,0) ifi=n—1j=n"
M(a,b)is; = (0,1) ifi=n—-1,7=n",
1 0 . .
<0 1) ifb<i<n-—1,
0 otherwise.
Then we have
TL(a,b) = {M0a+1 ifb=n-—1,
L (a+1,n) ifa<n-—1,
TL*(a,n) = {0 ifa=n-1
- Lt(a+1,n) ifa<n-—1,
L (a,n) = {0 ifa=n-1
B M(a+1,b0+1) ifb<n—1,
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Lemma 4.2.9.

(1) Ext}(L(a, b) L(a',b)) =0 =Extho(L(a,b),L(a,b))

= ([a,b],[a’,b]) : compatible.

(2) Ext}(L(a, b) £(a',n)) = 0= Extpo(L*(d',n), L(a,b))
«— ([a,b],[a’,n]) : compatible.

(3) Ext}o(L(a, ) M(a',b)) =0=Extjo(M(a',b), L(a,b))
[

— ([a,b],[a ,n]), (Ja,b], b, n]) : compatible.

’

(4) Extio(M(a,b), L*(d',n)) = 0 = Extio(L*(d',n), M(a,b))
<:>a§a <b.

(5)Ext(L*(a,n), L*(a’,n)) = 0 = Extj, (L (d',n), L*(a,n)) for all a,a’.

(6) Extpo (Lt (a,n), L™ (a',n)) = 0 = Extjo (L™ (a',n), Lt (a,n))
—a=a.

(7) Ext}o(M(a,b), M(a',b')) = 0 = Extfo(M(a',b), M(a,b))
— [a,b] C [d',b] or [a',b] C [a,b].

Proof. (1) and (2) follow from the case A and (5),(6) are obvious. We prove (3).
(case b < @) Tt is obvious that

Extj(L(a,b),M(a',b)) = 0 = Extho(M(a’,b), L(a,b)).
(case a < a' < b < b) In this case we claim that
Hom(M(a',b'), 7L(a,b)) # 0
In fact 0 # f = (f;); € Hom(M(a',b'), 7L(a,b)) where
fz:{ 1 ifa/<_z'§b+1,
0 otherwise.
(case a <a <b <b<n—1)In this case we claim that
Hom(M (a',b'), 7L(a, b)) # 0
In fact 0 # f = (f;); € Hom(M (a',b'), 7L(a, b)) where
{ 1 ifd <i<V¥,
fi=1< (0,1) ifb <i<b,
0  otherwise.
(case a < a' <b <b=mn—1) In this case we also claim that

Hom(M (a',b'), 7L(a, b)) # 0.

27
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In fact 0 # f = (f;); € Hom(M (a', "), 7L(a,n — 1)) where

( ) ifad <i<V,
fi=

1
1
1 ifb/<i§n—10ri:ni
0 otherwise.

)

(case a <a<b< b <n— 1) In this case we claim that
Hom(M (a',b'), 7L(a,b)) = 0 = Hom(L(a,b), 7M(a ,b)).

Let f = (fi)i € Hom(M(a',b),7L(a,b)). Ifi <a+1lorb+1<i<n—1ori=n* then
(dim7L(a,b)); = 0 and this implies f; = 0. Note that

fa+2 = fa+3 == fb+1-
Now the commutative square for fo41, fo+2 shows fa12 = 0. So
Hom(M (a',b'), 7L(a, b)) = 0.

Similarly
Hom(L(a,b), 7M(da',b')) = 0.

(case a’ < a <b<b =n—1) From the argument similar to the case (¢’ <a <b<b <n—1)
we can get
Hom(M(a ,n —1),7L(a,b)) = 0.

Since M(a',n — 1) is projective, we have
Hom(L(a,b),7M(d',b)) = 0.
(case a <a<b <b<n-— 1) In this case we claim that
Hom(M (a',b'), 7L(a, b)) # 0.
In fact 0 # f = (f;); € Hom(M (a',b'), 7L(a,b)) where

fio (1,-1) ifb <i<b+41,
e 0 otherwise.

(case a’ <a<b <b=n—1)In this case we also claim that
Hom(M (a',b'), 7L(a, b)) # 0.
In fact 0 # f = (f;); € Hom(M (a',b'), 7L(a,n — 1)) where

1 ifd <i<a+1ori=n?,

<i> ifa+1<i<b,

10 el
(0 1) ifb <i<n-—1,

0 otherwise.

fi=
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(case b’ < a) From the argument similar to the case d <a<b<ld, we get
Hom(M(a',b'), 7L(a,b)) = 0 = Hom(L(a,b), 7M(a ,b)).
So we have proved (3). We can prove (4),(7) similarly. O

Lemma 4.2.10. Let T € T(Q).

(1) L(0,n — 1) | T implies L*(0,n) | T.

(2) If LT(0,n) | T (resp. L=(0,n) | T') and all indecomposable direct summands of T are
insincere, then £=(0,n) | T (resp. LT(0,n) | T).

Proof. (1) : Suppose L(0,n — 1) | T. Then
Extjo (T, L(0,n — 1)) = 0 = Extyo(L(0,n — 1),T)
and there exists an injection
TLF(0,n) — TL(0,n — 1).

Hence we have
Extjo(L*(0,n), T) ~ Hom(T, 7L*(0,n)) = 0.

Since L*(0,n) is injective, we also get
Extjo(T, L*(0,n)) = 0.
Thus we obtain L*(0,n) | T.
(2): Suppose LT (0,n) | T and that all indecomposable direct summands of T are insincere.

Since (dimT'),,— # 0 from the fact that T is a tilting module, there exists some indecomposable
direct summand N s.t.

(dimN),,- # 0.
If N = M(a,b) then Ext},(M(a,b), LT(0,n)) = 0 = Extyo(LT(0,n), M(a,b)) so a = 0 and
N is sincere. This is a contradiction. So N = L™ (a,n) and a =0 by L*(0,n) | T. O

Lemma 4.2.11. For all T € T(Q) there exists some indecomposable direct summand N of
T such that
(dimN); > 1, for all i <n — 1.

Thus, N = L(0,n — 1), LT(0,n) or M(0,b), for some b.

Proof. For an indecomposable direct summand N of T such that (dim/N); = 1, define
a(N) S sup{i |1 <i<n—1,(dimN); > 1}.

Suppose that sup a(N) = a < n — 1, then L(0,a) | T. Therefore indecomposable direct
summands of T" are of the following form

L(a',b) forb <aora+1<d,
Lt(a',n) fora+1<d,
M(d',b) fora+1<d.

Thus we have (dimT"),+1 = 0. This is a contradiction. O
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Lemma 4.2.12. We have
#{i|1<i<n-1, (dimT); =1} < 1.
In particular, 6(T) > n — 2.
Proof. Let i #n™ s.t. (dimT); = 1. Then we claim that
L(0,i—1)|T.
By Lemma 4.2.11 there exists a unique indecomposable direct summand N of T s.t.
(dimN); > 1 for all j <n—1.

Hence, by Lemma 4.2.10, N = M(0,b) for some j < b < n— 1 and any indecomposable direct
summand of T other than N is one of the following,

L(a,b) forb<i—1lori<a,
L*(a,n) fori< a,
M(a,b) fori<a.

It implies
Extjo (T, L(0,i — 1)) = 0 = Exty(L(0,i — 1),T),

so that
L(0,i—1)|T.

O

Corollary 4.2.13. Let T € T(Q). Then 6(T) > n — 1. The equality holds if and only if
L*(0,n) | T and other indecomposable direct summands of T have the form L(a,b) (0 < a <
b<n-—1). In particular, we have

#reT@ o =n-n = (0T = L (0 TY),

n—1 n—1 n—2

Proof. Suppose that all indecomposable direct summands of 7T are insincere. Then, by
Lemma 4.2.10 and Lemma 4.2.11, L*(0,n) and L~ (0,n) are both direct summands of T
So (dimT); = 1 if and only if i = n*. We have §(T) > n — 1. If the equality holds then
indecomposable direct summands of T not isomorphic to L*(0,n) are of the form L(a,b).

Next we suppose there is a sincere indecomposable direct summand N of T'. If §(T') = n—2
then, by Lemma 4.2.12, there is a unique i <n — 1 s.t.

(dim7); = (dimT),+ = 1.

So all indecomposable direct summands of 7" not isomorphic to N are of the form L(a,b) (b < i
or i < a). As their direct sum may be viewed as a rigid module in type A;_1 X A,,_;_1, we get

#{L(a,b) | L(ad) [T} < (i—1)+(n—1—i)=n~—2,

which is a contradiction. Next we consider the case 6(T) =n — 1.
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(@) : (dimT); = (dimT),+ = 1, for a unique (< n — 1). Then indecomposable direct
summands of T other than N are of the following form:

L(a,b) forb<iori<a,
L~ (a,n) fori< a.

We get by the same argument that
#{Leind-kQ| L|T, L#N}<(i—1)+(n—14)=n-1,

which is a contradiction.
(b) : (dimT'); = (dimT),- = 1, for a unique i(< n — 1). Then, similar to (a), we reach a
contradiction.
(¢) : (dimT),,+ = 1. Then indecomposable direct summands of 7" not isomorphic to N are
of the form L(a,b). Thus
#{L(a,b) | L(a,b) | T} <n-—1.

It is a contradiction. Therefore we have 6(T') > n and 6(T') = n — 1 does not occur in this
case.

Thus we have proved that if §(7) = n—1 then L*(0,n) | T and the other indecomposable
direct summands of 7" have the form L(a,b). The converse implication is clear. O

Now we define subsets Ty, 71, T2 of T(Q) by

To = {TeTQ)|T)=n+1},
Ti = {TeT(Q|sT)=n),
T = {TeT(@Q)|5(T)=n—1}.

Lemma 4.2.14. Fiz 1 <¢ <n — 1, then there is a bijection
(T €T | (dimT), = 1} &5
T(o—o0— - ='0") x {T € T(Quoin1) | (dimT); =1, 6(T) = n—i +1}.

Proof. Let T' € Ty such that (dim7"); = 1, for a unique (< n — 1). By Lemma 4.2.10 and
Lemma 4.2.11 there exists a unique j = j(T)(> i) s.t. M(0,7) | T. Now let

X(T)={L(a,b) | L(a,b) | T, b<i}
and
Y(T) ={N €ind-kQ [ N [T} \{X(T)U{M(0,j)}}.
We define the maps .
o7 X(T) — ind-k(o =0 — - —>'0)

and
Yr o Y(T) — ind-kQp—it1,

(@T(N))a = (N)a (1 <a< i),
(Y1 (N))a = (N)ario1 (let (n —i+1)F +i—1=n%).
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Then
T ( P er@). P w@)@M(o,j(T)Hl))
2€X(T) yeY (T)

induces a bijection between
{T €71 | (dim?), = 1}

and .
Tlo—o0— =) x {TeT(Q) | (dmT), =1, §(T) =n—i+1}.

Let us define the following subsets of 7T7:

o all indecomposable direct summands of T are insincere
Ax o {T €T and (dim7),+ =1 } ’
By = {T €T1|(dimT),+ = 1, there exists some j s.t. M (0,7) | T},
B:I:(j) = {TEB:E | M(Ov.]) |T})
C = {TeTi|dT)=mn, (dmT); = 1},
CGj) = {TecC| M(0,j)|T}.

Theorem 4.2.15. (1) : Ay = 0.
(2): Bo(j) <5 {T € T(o— -+ =0) |min{j’ | L(;',n—1) | T'} = j}. In particular,

Br & T(o— - )\ {T' € T(o— - —8) [ L(0,n — 1) | T'},
1 2n 1/2(n—1)
#Bi_n+1<n>_n< n—1 >

(3):C(J) 5 {T" € T(Quor) |5 =4(T) + 1}
where

and we have

F(T") =sup{b | Lt (b,n —1) or L™ (b,n — 1) or M(a,b) | T for some a}.

In particular,

C <5 T(Quo),

#C:3n—4<2(n—1)>'

and we have

2n n—1

Proof. (1) Suppose that there exists some T' € A, . Then, by Lemma 4.2.11, we have L*(0,n) |
T. Now there exists some indecomposable direct summand N of T not isomorphic to L~ (0, n)
s.t. (dimN),,- = 1.

If N = M(a,b) or L™(a,n) then a = 0. This is a contradiction because L*(0,n) | T.
Therefore Ay = () and similarly we have A_ = ().

(2) Define

0:{L(a,b) |0<a<b<n—1}U{L (a,n) |0<a<n—1} — ind-k(o — 0 — --- —0)
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and
¢ :ind-k(o = 0 — -+ =0) — {L(a,b) | 0<a<b<n—-1}U{L (a,n) |0 <a<n-—1}

by

L, if0<a<n-—1,
L, if0<a<n-—1,
W(L))a = { L, ifa=n",

0 ifa=nT,
respectively. Then @ oy =1 =1 o . Define
Z(T):={N €ind-kQ | N | T,N % M(0,7)}
and / /
Y(T):={N €ind-kQ | N | T }.

Then it is easy to see that the maps induce a bijection
By(j) & AT € T(o = -+ —=6) [min{j | L(j'\n— 1) | T} = 5}

by
T— P ol

LeZ(T)
and its inverse
T - ( P w<L’>> @ M(0, 5).
L'ey(T")
In fact, if T € B4 (j) then all indecomposable direct summands of 7" not isomorphic to M (0, j)

are either
L(a,b) (a>jorb<j)or L (a,n) (a<j),

which implies L(j,n — 1), L= (j,n) | T. It follows
min{j’ | L(j,n=1) | B L)} =]
LeZ(T)

Conversely, if
T e{T" € T(e— - —=0) |min{j [ L(j,n—1)| T’} = j}

then (@ cy vy $(L)) @ M(0,5) € By (j).
(3) Define
¢ :{N € ind-kQ, | (dimN); = 0} — ind-kQp_1

and
Y ind-kQp—1 — {N € ind-kQ,, | (dimN); = 0}

by the obvious way. Then g o1 =1 = 1 o p. Define

Z(T) = {N €ind-kQ | N | T,N % M(0,4)}
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and
Y(T'):={N €ind-kQ | N | T'}.

Then they induce a bijection

C) S AT € T(Quar) |4 =4 (T) +1}

T— P @)

NeZ(T)

The inverse map is

T/b—>( P ¢(N/)> @ M(0,j + 1).

N'ey(T")
In fact, if T € C(j) then

Z(T) C {L(a,b) |1 <a<b<j}U{LE(b,n)|1<b<jIU{M(a,b)|1<a<b<j}.

It implies M(1,5) | T and j’ (@NeZ(T) @(N)) = j — 1. Conversely, if j = j(T") + 1 then

(dim oy v v), { 2

It implies

Corollary 4.2.16.

4T = 3(2(:__21)).

Proof. First we claim that
Z”: 1 20— 1)\ /2(n—14)\ 1 [2n
ifn+1—i)\ i-1 n—i ) n+1\n)

This follows from the fact that

T(o— - =0)=| (T e€T(o——0) min{i | L(i',n) | T, i >0}=i}.
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Thus, by Lemma 4.2.14 and Theorem 4.2.15, #7; is equal to
(L () _1(2n—1) ”Zi n— i) 2 — 1)\ [2(n — )
n+1\n n\ n—1 — zn—z—i—l 1—1 n—1
B 1 (20 1(2(n-1) il 2(i — 1)\ (2(n — )
N n+1l\n n\ n—1 Zzlzn—z—i—l 1—1 n—1

+71§§§i(2§i__11)) (2(:_—;))

Now let

in = i % (2?—_11)) <2(:4J—r11—_;)>

wo- (B

=1

and

Then the coefficient of X"t in f'(X) is equal to

2
Qan—Q( ”)
n

On the other hand, using the claim above, the coefficient of X"*2 in f(X) is equal to

> e () (O a5 ()

i=1

1 2+ 1) 2 (2
n+2\ n+1 n+1\n/’

Therefore we have
0y — 2(n+1) 2 (2n\ 4 2n
=\ +1 n+1\n/) \n-1/)

2(n — 1))‘

n—2

We conclude that
#71 *an 1= 3<

35
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Corollary 4.2.17. We have

n+1 n—2

#%:3m_n<mn_n)

Proof. Recall that the number of tilting modules is given in the table from the introduction,
#71 is given in Corollary 4.2.16 and #73 is given in Corollary 4.2.13. Hence

g () A4 0)

:aﬁ—n<un—n>

n+1 n—2

O
We have reached the first main result of this thesis for type Dy1.
Theorem 4.2.18. 2 D
n —
#7(Qn = G- (7)),
n—2
Proof. In fact, #?(Q)l is equal to
1 (n—=1/2(n-1) 2(n—1) 2(n—1)
- —1
2{n—1< n—2 >+3n< noo )3 =DLU
2(n—1)
= —1 .
(3n )< g )
O

4.2.3 case Fg, E7, Eg

By using AR-sequences, it is possible to calculate the dimension vector of any indecomposable
modules and the dimension of the space of the morphism between any two indecomposable
modules. Thus, by using AR-duality and Proposition 3.2.7, we can calculate the number
of arrows in the tilting quiver. I have written a computer program in C++ and results for
Eg, E7, By are as in the list in the first main theorem.



Chapter 5

Poset-structure of 7,(Q)

This chapter contains the second main result of this thesis. In section 1 we give basic prop-
erties of the poset of pre-projective tilting modules. In section 2 we give an criterion for
Ext}{Q—vanishing for pre-projective modules over k@ under the condition (C) from the intro-
duction. This criterion plays an important role in this chapter. In section 3 we determine the
structure of ?p(Q) in the case of I(Q) := max{lg(z,y) | z,y € Qo} < 1.

From now on we use the following notations:

e 7,(Q) :={T € T(Q) | T is pre-projective}.

. i(@) :the full sub-quiver of ?(Q) with ?p(Q)o = Tp(Q).

o (M) 1= IK(M) 1 T, (Q). .

o 1k, (M) :the full sub-quiver of ?p(Q) with 1k, (M) = Lk, (M).

5.1 Elementary properties of 7,(Q)

Lemma 5.1.1. Let T € T,(Q) and T < T' € T(Q). Then T € Ty(Q). In particular ?p(Q)
%

(resp. 1k, (M)) is the Hasse-quiver of (Tp, <) (resp. (Ikp(M), <)).

Proof. Let X be an indecomposable direct summand of 7". If X is not pre-projective, then

EX‘L}CQ (T7"P, X) ~ ExtiQ (P,7"X) = 0 for any projective module P. Therefore Ext,ng(T, X) =

0. Since Ext,lcQ (X,T) =0, we obtain X € add T'. Therefore we get a contradiction.

O
We set To(>T) :={T € T,(Q) | T' > T}.
Lemma 5.1.2. We have #7T,(>T) < oo for any T € T,(Q).
Proof. Let T € Ty(Q). By Auslander-Reiten duality, we have
Extro(X,T) =0« 7X € F(T).
Therefore Theorem 3.1.8 implies that 7,(> T') < oc.
O

Proposition 5.1.3. Let T,T € To(Q). If T > T, then there is a path from T to T in
Q).

Proof. This follows from Lemma 3.2.3 and Lemma 5.1.2. O

37
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5.2 Criterion for Ext-vanishing

For any vertex = € Qo, we set s(z) :={a € Q1 | s(a) =z}, t(z) :={f € Q1 | t(B) = =} and
d(z) := #s(z) + #t(z). Now we consider the following condition:

(C) d(a) :=#{a € Q1] s(a) =aor t(a) =a} >2, Vae Q.

Lemma 5.2.1. Assume Q satisfies the condition (C). If there is an arrow v : x — y in Q.
Then

dim Ethng(T_TP(y),X) < dim Ext}gQ(T_TP(a:),X) < dim Ext,va(T_r_IP(y),X)
for any r > 0 and X € ind-kQ.

Proof. If X is not a pre-projective module, then the assertion is obvious. Therefore we
assume X is a pre-projective module. In this case, by Proposition 2.3.3, we can assume that
X := P(a) for some vertex a € Q.

Without loss of generality, we can assume Qo = {0,1,--- ,n — 1} and for any i < j, there
is no arrows ¢ — j. For any vertex i € Qo, we set P(i +rn) := 7 "P(i) and

do(i 4+ rn) ;= dim Ext,lcQ(P(i +rn), P(a)).
With this notation the inequality to be proved is
do(y+1n) < dg(x+rn) <d,(y+ (r+ 1)n).

We prove the assertion by induction on y + rn.
(r =0) In this case d,(y) = do(z) = 0.
(n <y+rn<a+mn)In this case d,(y + rn) = 0 and

do(y + Z do( +(r+1)n Z do(s(B) +1n) > do(x + rn).

a€s(y) Bet(y)

(y +rn > a + n) In this case we obtain

do(x+1rn) = —dy(z+(r—1

The last inequality follows from the induction hypothesis. Similarly we obtain
do(y + (r+ 1)n) > do(z + rn).
O

Let Q be a quiver obtained from @) by adding new edges —a : y — x for any a : x — y.
For a path w: zg 3 21 B -~ B 2, in Q, we put ¢ (w) := #{t | v € Q1 € Q1}. Then we

define R
min{c™(w) | w : path from i to j in Q} if i #j

lo(i,j) = { 0 if i = j.
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Proposition 5.2.2. If Q satisfies the condition (C), then
Extro(r7"P(i), 7 °P(j)) =0 & r < s +1g(j,9)

Proof. (=) Let w : j = x9 = 21 — --- % 2, = i be a path which attains I;; := lg(j, ).
1(7,1) = 1g(j,i) = ¢ (w) and let {ky < ko < --- < kyjn} = {k | ax € Q1}. If there exists
r > 1(j,1) such that EXt}CQ(T_TP(i), P(j)) =0, then Lemma 5.2.1 implies

0= d‘(a:t +rn) > dj(zy,,,, +rn) > dj(2g,; -1+ (= 1)n)
> 2 dj(@g + (r =1, )+1) ) = dj(k, -1 +(7"—l(]»2))n)
> d;(j +( —1(G,i)n)) = dj(j + (r l(J, i) =1)n)) = --- = d;(j +n) >0.
Therefore we get a contradiction.
We now suppose that EXt}CQ(T—rP(’L'), 77°P(j)) = 0 with r > s +{(j,4). Then, by Propo-
sition 2.3.3, we reduce this situation to the above case and reach a contradiction.
(<) We put

A(j) = {(i,r) |+ <17, 1), Extrg(r7"P(i), P(7)) # 0}.

If A(j) # 0, then we take r := min{r | (i,7) € A(j) for some i}. Let i € Qo such that
(i,7) € A(j) and (i, r) ¢ A(j) for any i <« i in Q. Since

0 <d; z—i—rn_Zd )+rn) Zd + (r—1)n),

aes(i) BEL(i)
one of the following holds.
(1) dj(t(c) +rn) # 0 for some « € s(7),
(2) dj(s(B) + (r — 1)n) # 0 for some S € t(i).
Note that r < (4,7) < (j,t(a)) for any o € s(i) and r — 1 < I(4,7) — 1 < I(j,s(B)) for any
B € t(i). Therefore we obtain d;(t(a) +rn) = 0 = d;(s(8) + (r — 1)n) for any a € s(i) and
B € t(i). We get a contradiction. In particular A(j) = (.
Suppose that there exists i € Qo and r, s € Z>( such that r < s+ 1(j,4) and

Ext,ﬁQ(T*TP(i),T*SP(j)) £ 0.
If r < s, then
Extiq (17" P(i), 7 *P(j)) = Exto(P(i), 7~ "7 P(j)) = 0.

If r > s, then Proposition 2.3.3 implies (i, — s) € A(j). Therefore we get a contradiction.
O

Lemma 5.2.3. Let T = @zeQ T ”P( ) and T' = Dico, T*T;P(i) be basic pre-projective

tzltmg modules. If T — T in ? , then there exists i € Qo such that 7"; =r;+1 and

r] =rj, for any j # 1.

Proof. By the definition of the tilting quiver there exists i € ()¢ such that r; < r; and rj = r;

for any j # 4. Assume that r; = r; + t. Then Proposition 5.2.2 shows
T —l(i,j) <r<r+t< Tj—l-l(j,i), Vi # 1.

Thus we obtain 7" := 7"~ 1P(i) @ (B, 777 P(j)) € Tp(Q). Since T' > T' > T, we get
T =T" O
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For any quiver @) satisfying the condition (C), put
L(Q) = {(ridieqo € 225 | rj < 1+ lqli. §)} € Z.

Then as an immediate corollary of Proposition 5.2.2, and Lemma 5.2.3, we have the fol-
lowing.

Corollary 5.2.4. Assume Q satisfies the conditions (C). Then

n—1

(ri)ieqo = €D " P(i)

1=0

induces an isomorphism of posets
(L(Q), =7) = (Tr(Q), <)

where (75)icQ, > (r;)ier ! r; < r; for any i € Q.
In particular ?p(Q) is a full sub-quiver of Hasse-quiver of (Z90, <°P).

Proposition 5.2.5. Let i € Qo and T(i) :== @
minimal element of 1k, (P(i)).

€Qo G P(§). Then T(i) is the unique

Proof. Let j,j € Qo. By the definition of lg, we get

lo(i,7) <lo(iyj) +ig(5', J)-

Therefore we obtain T'(7) € lk,(P(7)).
Let T := @cq, 7 7 P(j) € Ikp(P(i)). Then rj < r; +1(i,j) = (4, j). Therefore Corol-
lary 5.2.4 shows T' > T'(1). O

Theorem 5.2.6. Assume that QQ has the unique source s € Qg and satisfies the condition
(C). Then the following assertions hold.
(1) Tp(Q) is the disjoint union of Ik, (77" P(s)) for all r > 0.
(2) 77" gives a quiver isomorphism
Ik (P(s) ~ Ik (7" P(s)).

(3) #lp(P(s)) < 2"
(4) L/et T € lky(77"P(s)) and T' € Tky(77" P(s)). If there is an arrow T — T, then
0<r —r<i1

Proof. Without loss of generality, we can assume Qo = {0,1,--- ,n — 1} and for any i < j,
there is no arrows ¢ — j. We note that s =n — 1.

(1) This follows from Proposition 5.2.2.

(2) It is obvious that 77" induces an injection

Kp(P(s)) = Ty (r " P(s)
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as a quiver. Therefore it is sufficient to show
7"k (P(s)) = k(77" P(s))

is surjective.
Let T' € Ik, (77" P(s)). By Corollary 5.2.4, there exists (1;)cq,\ (s} sSuch that

T~( P v "PGE)er "P(s)
i€Qo\{s}
Since I(i,s) = 0 for any i € @, Proposition 5.2.2 shows r; > r for any i € Qg. Therefore
T'T € lkp(P(s)).
(3) For any i € Qo put t(i) := max{j € Qo | j — i}. Let T" = P, 7 " P(i). Then
T € lky(P(s)) only if

rs = 0,72 € {0,1},--- ;7 € {re(), ey + 1}, 570 € {re(0)s Te(0) + 1}

Therefore we obtain #Qy < 2"~ 1.

(4) Let T = @jeq, 7 " P(i) € lkp(r7"P(s)) and T = P, 7 " P(i) € lkp(r~ I P(s)).

Namely 7" P(s) € add T and 7~ "+) P(s) € add T". Thus the claim follows from Lemma 5.2.3.
O

Example 5.2.7. We give three examples. Recall that for any two elements (r;), (r;) of Z"
(n > 1), (r;) >°P (r;) means r; < r; for any i.
(1) Consider the following quiver

n—2 2
Let
Ly = {(0,0,0---0,0,0),(1,0,0---0,0,0),(1,1,0---0,0,0),--- ,(1,1,1---1,0,0)}
L, ={1,0,0---0,1,0),(1,1,0---0,1,0),(1,1,1---0,1,0),--- ,(1,1,1---1,1,0)}
Ly ={(2,1,0---0,1,0),(2,1,1---0,1,0),--- ,(2,1,1---1,1,0)}
Ls={(2,2,1,0---0,1,0),---,(2,2,1---1,1,0)}
Ln73:{(27252'”2717170)}
and

b-th elment of L, 0<a<n-3,1<b<n—-1-—a
T(a,b)=<¢ T(b—n+an—->b)+(1,---1) 0<a<n—-3, n—1—-a<b<n-1

T(z,b) + (2r,2r,--- ,2r) a=z+n-2)r( 0<z<n—-2),1<b<n-1.
Then we get

(ILa, <) ~ (Iky(P(n — 1)), <)

and

(L(Q), <) = ({T(a,b) | a € Z>0,1 <b<n—1},<P)~(Z>o x {1,--- ,n—1},<P).
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In particular ?p(Q) = ZZOZH. If n =4, then ?D(Q) is given as follows:

o —

I, (P(s)
/

\

o)

o)

kp (771 P(s))

"
N
X
—
S
=

o
o

™,
L
N
P
—

(2) Consider the following quiver
s ° 1
Q= o/
\ on—1
It is easy to check that
({0, 13771, <) = (Ikp(P(s)), <)

%
Therefore the underlying graph of 1k, (P(s)) is isomorphic to (n — 1)-dimensional cube. In
the case n =4, T ,(Q) is given as follows:
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(3) Let @ be the following quiver:
0O —>1 —/]/%2

Note that @ does not satisfy the condition (C). Let

a, = dim Exth( —1=np(0), P(i))
b, = dim Exth( “1=np(1),P(i)) Yn>0
c, = dim Exth( —1=np(2), P(i))

Then we obtain the following equations:

a;l-‘rl = bn+1 - a )

bzn 11 = ap+ 20n 11— 0y

Cpi1 = 20 — ¢,

Therefore we get 4 . ' ‘
nt2 = 200t an — by
= 20}1 —ay
= 4b;,, 20 —al
= 4b bn+1 - biL
= 3b — b
Note that the above equations show b — bl > b — b > > b — bi > 0 for

any ¢ = 0,1,2. Since an+2 = bn+2 Upy1 = bn+2 - bn+1 + aj, and Cn+2 = bn-H ﬁ+1 =
Q(bnﬂ bi) + ci,, we obtain Ay o > al, and cn+2 > ¢!, Now it is easy to check that,

EXt}CQ(T_TP(Z'),T_SP(j)) =0 r<s+lig(ji)or(i=7=0,r=s+2).

Therefore ?p(Q) is given by the following:
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5.3 The case of [(Q) <1

In this section we consider the quiver ?p(Q) for those @ that satisfy the following conditions:
(i) @ has a unique source,

(i) @ satisfies the condition (C),

(it} 1(Q) = max{lg(z.y) | 2,y € Qo} < 1.

In this case we can completely determine poset-structure of 7,(Q).

Denote by Q the set of finite connected acyclic quivers. For any quiver ) € Q define a
new quiver Q° by adding arrows which directly connects sources and sinks. Namely for each
pair (z,y) of a source z and a sink y we add an arrow x — y. Then we define subsets A, 3, .A°
of 9 as follows:

A {Q € 9| Q has the unique source},
B {Q € A | @ has the unique sink},

A° = {Q° | Q € A}

Note that
e () has a unique source

A°=10Q € Q| o ( satisfies the condition (C)
e Q) =1

Definition 5.3.1. We define maps ﬁ O XQ =09, ¢: A x A = A° ¢ A° — B and
VU A° x A° — B x B as follows:

(QUQY = QolQy,
(1) (Qﬁ@l = Q1HQ/1H{?J_>5U/
2) 6(Q,Q) == (QTQ').

(3) Y(Q) := ﬁgp( Pg), where Py is the indecomposable projective module associated with the

unique source.
’

(4 ¥(Q,Q) = (¥(Q),¥(Q)).

Proposition 5.3.2. The following diagram is commutative.

Yy € Qo : there is no arrow starting at y
&' € Q : there is no arrow ending at z’

v

A° x A° BxB

¢ il

AO
(8

Proof. Let Q(1),Q(2) € A°, s(k) a unique source of Q(k) (k =1,2) and
T= @ 7 "2 P(x).
z€4(Q(1),Q(2))o

Then Corollary 5.2.4 shows T' € ¥(¢(Q(1),Q(2)))o if and only if one of the following holds:

(1) (r2)zc(2), € L(Q(2)) with ry2) =0 and r, = 0 for any y € Q(1)o,
(ii) (ry)yeo(1), € L(Q(1)) with 741y =0 and r, = 1 for any = € Q(2)o.
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Now it is easy to check that

Let a € Qg. Then we write
Q~ Q\{a}

if @ € Q1 satisfies either (1) or (2) below:
(1) s(«) is not a source or t(«) is not a sink, and there exists a path w # a from s(«) to t(a).
(2) s() is a source, t(«) is a sink, and there are at least two arrows from s(«) to t(«) and
another path from s(a) to t(«).

Let S := {Q € A° | there is no quiver Q" such that Q ~» Q'}. It is easy to check that if

Qv QeS8 Qv »Q €S,

then Q = Q" and in this case put m(Q) := Q' = Q". Now we define an equivalence relation

~ on A° as follows:
1 def

Q~Q S Q) =n(Q)
Remark 5.3.3. Tt is easy to check that if Q@ ~ @', then
IQ(i.5) =gy (i.5), Vi.j € Qo= Q.

Lemma 5.3.4. Let Q,Q € A°. If Q ~ @', then ¥(Q) = ¥(Q). In particular we obtain a
map

Y/~ A% J — B.
Proof. This follows from Corollary 5.2.4 and Remark 5.3.3. O

Lemma 5.3.5. Let Q(1),Q(2),Q (1),Q'(2) € A°. IfQ(i) ~ Q' (i) (i = 1,2), then ¢(Q(1), Q(2)) ~

’

#(Q'(1),Q(2)). In particular we get a map
Gfm t A% o X A [ = A
Proof. Let Q,Q’,Q" € A° with Q ~ Q" = Q \ {a}. By the definition we get
$(Q.Q") = ¢(Q.Q")\ {a}.
Since one can check that « satisfies (1) in ¢(Q,Q"),we have
$(Q,Q") ~ 3(Q,Q").

We repeat this procedure and obtain

"

$(Q,Q") ~ o(n(Q),Q").

Similarly we have that

1"

9(Q: Q") ~ d(Qm(Q"):
Therefore we obtain ¢(Q, Q") ~ ¢(7(Q), 7(Q")). O
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Let C™ be the Hasse-quiver of ({0,1}",<°P) and @ € A° with Qy = {s,1,2,---n — 1}
where s is the unique source of (). Then a map

n—1
o (@7 P>) = (r(0));
i=1

induces a full embedding 1(Q) — C™ ! of quivers. Therefore we can identify 1(Q) as a
full sub-quiver of C"~!. For any T € Cg_l denote by T; the i-th entry of T. We note that

(O"" 70)7(1""1) Gdj(Q)

Proposition 5.3.6. Let Q € A°. Then ¥(Q ﬁK 2) for some quivers K(1), K(2) €
B if and only if there exists (Q(1),Q(2)) € .AO X .Ao such that v(Q(i)) = K(i) (i = 1,2) and

$(Q(2),Q(1)) ~ Q.

Proof. First assume that there is (Q(1), Q(2)) € A° x A° such that ¢(Q(2),Q(1)) ~ Q. Then
define ¥(Q(i)) =: K(i) (i = 1,2). Then Proposition 5.3.2, Lemma 5.3.4 and Lemma 5.3.5
imply

H(Q) = K(IK(Q)

Next assume that ¢ (Q ﬁK for some quivers K (1), K(2) € B. By the above
Lemma 5.3.5, we can assume that Q € S Let 7 be a minimum element of K; and T a
maximum element of K. Lemma 5.2.3 implies that there is a unique vertex i € Qg such
that T; = 0 and TZ-, = 1. Note that 7" < T or T" > T for any T" € ¢(Q). We note also
that 7" > T or T" < T' for any T" € (Q). Since T < T(i) < T we have T = T(i). If
T(j) <T =T(i) then I(i,7) <I(j,5) = 0. If T'(j) > T(i) then I(j,7) < I(i,7) = 0. Therefore
for any j < n — 1 there is either a path from ¢ to j or a path from j to ¢. Thus we obtain
that Q = (Ql(2)ﬁQ/(1))o, where Q' (1) € A (resp. Q' (2) € A) is the full sub-quiver of Q with
Q(Wo={j|j#i1(i) =0} (resp. Q' (2)o = {j | 1(i,j) = 0}) (here we use the fact Q € S).
Let Q(7) = Q'(i)°, then (@' ()TTQ'(1)° ~ #(Q(2), Q(1)).

Now it is sufficient to show that ¢(Q(i)) = K(i). Consider an injective map

_ " ) jeQ(
v:p(Q(1)) = K(1) given by «(T); := { Oj ithervx(fis)(g.
We show that ¢ is surjective.
Let T” € K(1). Then T” < TN + lQ(j/ Jj) = TJ/; + lQ(l)(j/,j) for any 7,5 € Q(1)o. Since

T" > T(i) we have T < T( )j = lg(i,j) = 0 for any j € Q(2)o. Therefore we obtain

T" € u(¥(Q(1))). In partlcular we get ¥(Q(1)) = K(1). Similarly we obtain ¢(Q(2)) = K (2).
O

Definition 5.3.7. Let T, T’ be vertices of C™.
(1) We set T'V T = (Inln{Tz,Tzl})z
(2) We set TAT = (max{T;, T, });.

We consider the following properties for a full sub-quiver K of C™.
(1) ( )7 (17 ) € Ko.
(ii), for ary T >°P T in K, there is a path from T to T" in K.
(iii), TVT , TAT € Kq for any T, T € Ky
We put
Ly, :={K € B| K satisfies (i),, (ii),,, (iii),, } and £ := IIC,.
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Remark 5.3.8. Note that (C", V, A) is a finite distributive lattice. Let L be a finite distributive
lattice with a maximum element x and a minimum element y. Then there is a unique positive
integer n such that there exists a lattice-embedding

v: L —C"

which satisfies «(z) = (0,0,---0) and ¢(y) = (1,1,---1). Thus the following are equivalent:
(1) L is a finite distributive lattice.
(2) L is isomorphic to some element of L.

Lemma 5.3.9. For any K € L,,, we define a relation <g on {1,2,--- ,n— 1} as follows:
ing(%:e;TZ-ZijoranyTEK.
Proof. Tt is sufficient to show that
i<k j<Ki=1i=].

Assume T; = Tj for any T' € K. Now there is a path (0,---,0) =T7° - T! —» ... - T" =
(1,--+,1) in K. Therefore there exists a positive integer a such that T/ 1 = qu_l = 0 and
T =T} = 1. In particular we obtain ¢ = j. O

Definition 5.3.10. We define a map ¢~ : L — § as follows:

U (K) = ({3 HQ (K)),
where Q' (K) is the Hasse-quiver of ({1,2,---,n — 1}, <g).
Lemma 5.3.11. If Q € A°, then ¥(Q) € L.

Proof. Let K = 1(Q) with @ € A° and n := #Qy. Then we have already seen that K is a
full sub-quiver of C"~! and (0,---,0),(1,---,1) € Ko. Therefore K satisfies the condition
(i)n—1. Note that K also satisfies the condition (ii),—1 (Lemma 5.1.3).

Therefore we prove that K satisfies the condition (iii),,—1. By Corollary 5.2.4, it is suffi-
cient to show that

(TVT); <(TVT);+1o(,3) and (T AT ); < (T AT); +1g(5,4) (¥, j),

for any vertices T,T" of K. Let T,T" € Ko and i,j € Qo. If min{T},T,} = 0 or lg(j,3) = 1,
then min{T}, T} } Smin{Tj,T]{} +1g(j,i). Assume that min{T};,7;} = 1 and lg(j,7) = 0. In
this case 1 = T; < Tj and 1 = Ti, < Tj/ Therefore we obtain T; = TJ, = 1. In particular
min{Ti,TiI} gmin{Tj,TJ/} +1g(j, 1) for any i,j € Q. Thus we get TVT € Ky. Similarly we
obtain T AT € K. O

Lemma 5.3.12. We obtain Q ~ ¥~ (¢(Q)) for any Q € A°. In particular the map
V) A% Jw = B

18 injective.
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Proof. 1t is sufficient to show that if @ € S then Q = ¥~ (¥(Q)). Let s #¢ — j in Q. Then
T; < Ty +10(:1) =Tj

for any T' € 9(Q). If j <y (@) i <y(Q) U, then we have

.l ./

1(G,0) =T <T()y =0and 1(j,j) = T(j); <T(j); = 0.
Therefore we obtain that there exists a path

in Q. Since Q € S, we get a contradiction. In particular i — j in Q' ((Q)).
On the other hand if i — j in Q' (1)(Q)) then

lo(i,9) =T(j): <T(5); =0.
Therefore there is a path
t1—=j ==
in Q. Since
T, < Ty +1(G) =Ty <T; +1(.5) =T
for any T € ¥(Q), we have
JSu@J <@t

In particular we obtain j = j/.
Hence we obtain Q \ {s} = Q' (¥(Q)). We conclude that

Q= ({&TQ Q) = v~ (¥(Q)).

Lemma 5.3.13. Let K € B. Then the following are equivalent.

(1) K =9¢(Q) for some Q € A°.
(2) K e L.

Proof. ((1) = (2)) It follows from Lemma 5.3.11.

((2) = (1)) Let K € L,,. It is sufficient to show Ko = ¢ (¢~ (K))o.

First let T' € Ko and i,j € ¥~ (K)o \ {s}. If 1(j,7) := ly—(x)(j,4) = 0 then j <k i. Thus
we obtain T; < Tj. If I(j,4) = 1 then T; < Tj +1(j,4). Hence we obtain

Ti < Tj + ly-(x)(5,9)  (Vi, ).
This implies that
T € ¢y~ (K)o
Next suppose that (¢~ (K))o \ Ko # 0. Note that ¢(¢p~ (K)) € L,,. Then the conditions
(i), and (ii),, give that
{T e (W~ (K)o \ Ko | T — T for some T € Ko} # 0.

Let T be a minimal element of {T" € 1)(¢p~(K))o\Ko | T — T for some T € Ko} and T' € K
with 7" — T. Then the conditions (i), and (ii), imply that there exists T" € Ky such that



5.3. THE CASE OF L(Q) < 1 49

T — T". Now there exists i,jsuch that 0 =T, <T; =1, Ti/ = T]/ =0and 0= TZ-“ < T;l =1.
Note that Lemma 5.3.12 implies <g=<y,-(k))- In fact if we let @ := )~ (K), then

PSp@d S @) =0
& lg(i,7) =0
& i<k J.
Since T; > Tj, we have
L 2y (K) J S U 2K ]

In particular there exists S € Kg such that S; > ;. Let T" := TAT". Then the minimality
of T gives T" € K. Since

min{max{7T,, Se},To} a #1,J,
(T'AS)VT")y = 1 a=i,
0 a=j,

we obtain that T = (T" A S) VT" € K. Therefore we get a contradiction.

Corollary 5.3.14. 1 induces a bijection between S and L.
Now Theorem 5.2.6 gives the following result.

Theorem 5.3.15. (1) For any Q € A°, there exists K € L such that ? ~IK.
(2) For any K € L, there exists Q € A° such that ? ~ K.

Theorem 5.3.15 says that a poset which is obtained from infinitely many copies of a finite
distributive lattice may be realized as the pre-projective tilting Hasse quiver of ) € A° and
vice verse.

Finally we give an equivalent condition for two quivers in A° to have the same pre-
projective tilting Hasse quiver.

Corollary 5.3.16. Let Q(1),Q(2) € A°. Then the following are equivalent.

(1) TH(Q(1) = T(Q(2).
(2) There exists t1,ts € Zo and Q € A° such that,

Q1) ~ (QUQT ---TLQ)® and Q2 Qﬁ@ﬁ Q).

t1 t2

Proof. ((2) = (1)) This follows from Proposition 5.3.6, Lemma 5.3.4 and Lemma 5.3.5.
((1) = (2)) Let
B(Q()) = SY(H)TLS2G) T - - TLS™ (4) (SH(i) € B)
be a decomposition with r; being maximal (i = 1,2) and r := ged(ry, 72).
Consider a homomorphism f : Z — Z/rZ & Z/r2Z where f(t) = (¢ mod ri,t mod r3).
Let 1 <a <rj;and 1 <b<ry Then the condition (1) implies

a=bmod r = (amod r;,bmod ) € Im f = 5%1) = S°(2).
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Therefore we get S* (1) = S¥(2) = S¥(1) and S (2) = S%(1) = S*(2)(z < r). In
particular we get,

P(Q() = SU s T8, ¥(Q@) =SUs - 18,

1 to

where § = SWl)ﬁS%l)ﬁ---ﬁS"(l) and t; = % (i = 1,2). By Proposition 5.3.6, there
exists a quiver @ satisfying ¥(Q) = S. Then Lemma 5.3.12 shows @) satisfies the condition (2).
O
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