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Chapter 1

Introduction

Tilting theory first appeared in an article by Brenner and Butler [3]. In that article the notion
of a tilting module for finite dimensional algebras was introduced. Tilting theory now appears
in many areas of mathematics, for example algebraic geometry, theory of algebraic groups
and algebraic topology. Let T be a tilting module for a finite dimensional algebra A (see 3.1.1
below for the definition) and let B = EndA(T ). Then Happel showed that the two bounded
derived categories Db(A) and Db(B) are equivalent as triangulated category [8]. Therefore,
classifying tilting modules is an important problem.

Theory of tilting-mutation introduced by Riedtmann and Schofield is an approach to this
problem. They introduced a tilting quiver whose vertices are (isomorphism classes of) basic
tilting modules and arrows correspond to mutations. Happel and Unger defined a partial
order on the set of basic tilting modules and showed that the tilting quiver coincides with the
Hasse quiver of this poset. This poset is now studied by many authors.

Notations

LetQ be a finite connected quiver without loops or oriented cycles. We denote byQ0 (resp. Q1)
the set of vertices (resp. arrows) of Q. For any arrow α ∈ Q1 we denote by s(α) its starting
point and denote by t(α) its target point (i.e. α is an arrow from s(α) to t(α)). We call a
vertex x ∈ Q0 a source (resp. sink) if there is an arrow starting at x (resp. ending at x) and
there is no arrow ending at x (resp. starting at x). Let kQ be the path algebra of Q over
an algebraically closed field k. Denote by mod-kQ the category of finite dimensional right
kQ-modules and by ind-kQ the full subcategory of indecomposable modules. For any module
M ∈ mod-kQ we denote by |M | the number of pairwise non isomorphic indecomposable direct
summands of M . Let P (i) be the indecomposable projective module in mod-kQ associated
with vertex i ∈ Q0.

It is well-known that a path algebra kQ is representation-finite if and only if the underlying
graph of Q is a Dynkin-graph. As a result, the poset of tilting modules over kQ shows a
completely different behavior in the following two cases:
• Q is a Dynkin quiver,
• Q is a non Dynkin quiver.
We ask different questions in each of the cases and we have obtained two new results.

In chapter 3 we mainly consider Dynkin quivers. If Q is a Dynkin quiver then T (Q) is
a finite poset. Moreover any tilting module is pre-projective (Definition 2.3.1). Therefore we
have the following natural questions:
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6 CHAPTER 1. INTRODUCTION

Question 1.0.1. (1) How many vertices in
−→T (Q) are there?

(2) How many arrows in
−→T (Q) are there?

Note that the underlying graph of
−→
T (Q) may be embedded into the exchange graph, or

the cluster complex, of the corresponding cluster algebra of finite type:the tilting modules of
kQ correspond to positive clusters (cf.[4] and [17]). The number of positive clusters when the
orientation is alternating is given by the following table [6, prop. 3.9]:

type An Dn E6 E7 E8

#
−→
T (Q)0

1
n+1

(
2n
n

)
3n−4
2n

(
2(n−1)
n−1

)
418 2431 17342

However the number of edges of this sub-diagram of positive clusters is not known in the
cluster tilting theory. Note also that if we consider the similar problem for the exchange
graph, it is not interesting, because the number of edges is n

2 ×{the number of clusters}, and
the number of vertices is given in [6, Proposition 3.8].

The first main result of this thesis is the following [K1].

Theorem 1.0.2. (1) #
−→T (Q)1 is independent of the orientation.

(2) #
−→
T (Q)1 is given by the following table.

type An Dn E6 E7 E8

#
−→T (Q)1

(
2n−1
n+1

)
(3n− 4)

(
2(n−2)
n−3

)
1140 8008 66976

Moreover, the above numbers may be expressed in a uniform way as the following formula:

n

2

(
1− 1

h− 1

)
× {the number of positive clusters} · · · (∗),

where h is the Coxeter number. In this thesis we provide case by case proof for each type,
however (∗) suggests that it should be possible to provide a uniform proof.

If Q is a non-Dynkin quiver, kQ is a representation-infinite algebra. In this case, to de-
termine rigid modules is nearly impossible. However the pre-projective component of the
Auslander-Reiten quiver of mod-kQ is completely determined. For example, there is a bijec-
tion between the set of (isomorphism classes of) indecomposable pre-projective modules over
kQ and Z≥0 ×Q0.

In chapter 4 we consider the set Tp(Q) of basic pre-projective tilting modules and study
its combinatorial structure in the case when Q is a non-Dynkin quiver. For the purpose we
have to answer to the following problem:

Question 1.0.3. When does the Ext1kQ-group between two indecomposable pre-projective mod-
ules vanish?

We introduce a function lQ : Q0 × Q0 → Z≥0 and, by using this function, we give an
answer to this question for any quiver satisfying the following condition (C):

(C) δ(a) := #{α ∈ Q1 | s(α) = a or t(α) = a} ≥ 2, ∀a ∈ Q0.

By applying this result we show the following [K2]:
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Theorem 1.0.4. If Q satisfies the condition (C), then for any T ∈ Tp there exists (ri)i∈Q0 ∈
ZQ0

≥0 such that T ≃
⊕

i∈Q0
τ−riQ P (i).

Moreover, the map
⊕

i∈Q0
τ−riP (i) 7→ (ri)i∈Q0 induces a poset inclusion,

(Tp(Q),≤)→ (ZQ0 ,≤op),

where (ri) ≤op (si)
def⇔ ri ≥ si for any i ∈ Q0.

The above result says that if Q satisfies the condition (C), then study of the poset Tp(Q)
comes down to combinatorics on ZQ0 . As an application of these results we determine the

structure of Hasse-quiver
−→
Tp(Q) of Tp(Q), for any quiver Q which satisfies the following:

(i) Q has a unique source,
(ii) Q satisfies the condition (C),
(iii) l(Q) := max{lQ(x, y) | x, y ∈ Q0} ≤ 1.

References

[K1] R. Kase, The number of arrows in the quiver of tilting modules over a path algebra of
Dynkin type, Tsukuba J. Math. 37 (2013), no. 1, 153-177

[K2] R. Kase, Pre-projective parts of tilting quivers over certain path algebras, Comm. Alge-
bra, to appear.





Chapter 2

Preliminary

In this chapter we recall some fundamentals needed in this thesis. In section 1 we collect some
important properties of finite dimensional path algebras. In section 2 we recall definitions
of Auslander-Reiten translation, almost split sequences and Auslander-Reiten quivers. In
section 3 we review Auslander-Reiten theory for path algebras.

2.1 Path algebras and quiver representations

Let Q be a finite quiver. We denote by Q0 the set of vertices of Q and Q1 the set of arrows
of Q. For any path w : x0

α1→ x1
α2→ · · · αr→ xr, we set s(w) = x0 and t(w) = xr. We regard

x ∈ Q0 as a path with length 0.

Definition 2.1.1. For any finite quiver Q, define a k-algebra kQ as follows:
• The set of paths in Q forms a basis of kQ.

• For any two paths w : x0
α1→ x1

α2→ · · · αr→ xr and w
′
: y0

β1→ y1
β2→ · · · αs→ ys, the product is

defined by

w · w′
:=

{
x0

α1→ x1
α2→ · · · αr→ xr = y0

β1→ y1
β2→ · · · βs→ ys if xr = y0

0 if xr ̸= y0,

We call kQ the path algebra of Q over k.

Theorem 2.1.2. ([1] , [2]) Let A be an indecomposable finite dimensional algebra. Then there
exists a finite connected quiver Q and two-sided ideal I of kQ such that A is Morita equivalent
to kQ/I.

Remark 2.1.3. A path algebra kQ is finite dimensional if and only if Q is a finite acyclic
quiver.

From now on we assume that Q is a finite connected acyclic quiver.

Theorem 2.1.4. ([1], [2]) Let A = kQ be a path algebra. Then global dimension of A is not
more than 1. In other words, ExtiA = 0 for any i > 1.

Definition 2.1.5. We define a k-category rep Q as follows:
(Objects) A pair

(V, f) = ((Vx | x ∈ Q0), (fα : Vs(α) → Vt(α) | α ∈ Q1),

9



10 CHAPTER 2. PRELIMINARY

where Vx are finite dimensional k-vector spaces and fα are k-linear maps.
(Morphisms) Let (V, f) = ((Vx)x∈Q0 , (fα)α∈Q1) and (W, g) = ((Wx)x∈Q0 , (gα)α∈Q1) be objects
in rep Q. Then a morphism ϕ : (V, f)→ (W, g) is a collection (ϕx : Vx →Wx)x∈Q0 of k-linear
maps such that, for any α ∈ Q1, the following diagram commutes:

Vs(α) Vt(α)

Ws(α) Wt(α)

ϕs(α) ϕt(α)

fα

gα

∀ α ∈ Q1

Then we call rep Q the category of finite dimensional representations of Q over k.

For a kQ-module M , we apply an idempotent x ∈ Q0 to M and obtain Mx, which we
denote by Mx.

Theorem 2.1.6. ([1], [2]) There exists category equivalence

F : mod-kQ
≃−→ rep Q,

which sends M to ((Mx)x∈Q0 , (Mα :Ms(α) ∋ m 7→ mα ∈Mt(α))α∈Q1).

Proposition 2.1.7. ([1], [2]) There are bijections between the following four sets.
• The set of vertices Q0 of Q.
• The set of isomorphism classes of simple modules in mod-kQ.
• The set of isomorphism classes of projective modules in ind-kQ.
• The set of isomorphism classes of injective modules in ind-kQ.

Remark 2.1.8. Let A := kQ and P (x) := xA. Then Q0 ∋ x 7→ P (x) ∈ mod-kQ induces a
bijection between Q0 and the set of isomorphism classes of projective modules in ind-kQ.

Definition 2.1.9. Let M ∈ mod-kQ. We set

dimM = ((dimM)x)x∈Q0 := (dimMx)x∈Q0 ,

and call it the dimension vector of M .

Then the following facts are well-known.

Theorem 2.1.10. (Gabriel) Let Q be a finite connected acyclic quiver. Then kQ has fi-
nite representation type if and only if Q is a simply-laced Dynkin quiver. In this case
dim : mod-kQ → ZQ0

≥0 induces a bijection between ind-kQ and the set of positive roots in
the corresponding root system.

Example 2.1.11. Let Q = 1→ 2→ 3. Denote by αi the simple root of type A3 associated
with vertex i ∈ Q0. Then the set of positive roots is as follows:

Φ>0 = {α1, α2, α3, α1 + α2, α2 + α3, α1 + α2 + α3}.

On the other hand, we have

ind-kQ =

{
k → 0→ 0, 0→ k → 0, 0→ 0→ k

k
1→ k → 0, 0→ k

1→ k, k
1→ k

1→ k

}
,

and the correspondence via dim is clear.
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2.2 Almost split sequences and Auslander-Reiten quivers

Definition 2.2.1. (1) An epimorphism h : P →M is called a projective cover ofM ∈ mod-A
if P is a projective module in mod-A and for any A-homomorphism g : N → P the surjectivity
of h ◦ g implies the surjectivity of g.

(2) An exact sequence P1
f→ P0

g→ M → 0 is called a minimal projective presentation of

M ∈ mod-A if P1
f→ Ker g and P0

g→M are projective covers.

Let M ∈ mod-A and consider a minimal projective presentation

P1
f→ P0 →M → 0.

Then we put τM := KerD(f∗) where D(−) := Homk(−, k) and (−)∗ := HomA(−, A). We
call τM the Auslander-Reiten translation of M . Using minimal injective resolution we may
define τ−1N , for N ∈ mod-A.

Proposition 2.2.2. ([1], [2]) Let X ∈ ind-A. Then the following assertions hold.
(1) τX ̸= 0 if and only if X is non-projective. In this case X ≃ τ−1τX.
(2) τ−1X ̸= 0 if and only if X is non-injective. In this case X ≃ ττ−1X.

Let f ∈ HomA(Y,Z). We call f a right almost split morphism if (a) it is not a split
epimorphism and (b) any morphismM → Z which is not a split epimorphism factors through
f . Dually we define a left almost split morphism.

Definition-Proposition 2.2.3. ([1], [2]) We call an exact sequence

0→ X
g→ Y

f→ Z → 0 · · · (∗)

an almost split sequence if (∗) satisfies following equivalent conditions.
(a) f is right almost split and g is left almost split.
(b) X is indecomposable and f is right almost split.
(c) Z is indecomposable and g is left almost split.
(d) X ≃ τZ and f is right almost split.
(e) Z ≃ τ−1X and g is left almost split.

Theorem 2.2.4. ([1], [2]) If X is an indecomposable non-injective module, then there is a
unique (up to isomorphism) almost split sequence

0→ X → Y → Z → 0.

Dually if Z is an indecomposable non-projective module, then there is a unique (up to isomorphism)
almost split sequence

0→ X → Y → Z → 0.

Definition-Theorem 2.2.5. ([1], [2]) We can define a quiver Γ(A) as follows:
• The set of vertices Γ(A)0 is the isomorphism classes of indecomposables.
• Consider an almost split sequence

0→ τX → E → X → 0.

Then we draw m arrows from τX to Y and m arrows from Y to X if E has m indecomposable
direct summands which are isomorphic to Y .

Then we call Γ(A) the Auslander-Reiten quiver of A.
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Example 2.2.6. Let Q = 1→ 2→ 3. Then

ind-kQ =



P (1) = k → k → k
P (2) = 0→ k → k
P (3) = 0→ 0→ k
τ−1P (2) = k → k → 0
τ−1P (3) = 0→ k → 0
τ−2P (3) = k → 0→ 0


and we have almost split sequences

0→ P (3)→ P (2)→ τ−1P (3)→ 0,

0→ P (2)→ P (1)⊕ τ−1P (3)→ τ−1P (2)→ 0,

0→ τ−1P (3)→ τ−1P (2)→ τ−2P (3)→ 0.

Therefore the Auslander-Reiten quiver of mod-kQ is given by the following:

P (2)

P (3)

P (1)

τ−1P (2)

τ−1P (3) τ−2P (3)

2.3 Auslander-Reiten theory for path algebras

Definition 2.3.1. We call a module M ∈ mod-A a pre-projective module if τ rM = 0 for
some r ∈ Z≥0.

Note thatM ∈ mod-A is pre-projective if and only if any indecomposable direct summand
X of M is isomorphic to τ−rP for some indecomposable projective module P and r ∈ Z≥0.

Proposition 2.3.2. ([1], [2]) Let A = kQ. Then the following assertions hold.
(1) Q is a Dynkin quiver if and only if any indecomposable module X over A is pre-projective.
(2) If Q is a non-Dynkin quiver, then

(x, r) 7→ τ−rP (x)

induces a bijection between Q0 ×Z≥0 and the set of (isomorphism classes of) indecomposable
pre-projective modules.

Now we collect basic properties of the Auslander-Reiten translation for path algebras.
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Proposition 2.3.3. ([1], [2], [7]) Let A = kQ be a path algebra and M,N ∈ ind-A. Then
the following assertions hold.
(1) If M and N are non-injective modules, then

HomA(M,N) ≃ HomA(τ
−1M, τ−1N).

(2) (Auslander-Reiten duality) There is a functorial isomorphism,

DHomA(M,N) ≃ Ext1A(N, τM).

(3) For any indecomposable non-projective module X and an almost split sequence

0→ τX → E → X → 0,

we have

dimHom(M, τX)− dimHom(M,E) + dimHom(M,X) =

{
1 X ≃M
0 otherwise.

Theorem 2.3.4. ([1], [2]) Let Q be a finite connected non-Dynkin quiver, a ∈ Q0 and
r ∈ Z≥0. Then we have an almost split sequence

0→ τ−rP (a)→
⊕

α:s(α)=a

τ−r−1P (t(α))⊕
⊕

β:t(β)=a

τ−rP (s(β))→ τ−r−1P (a)→ 0.

Example 2.3.5. We consider the following quiver

1 2Q :

Then the pre-projective component of the Auslander-Reiten quiver Γ(kQ) of mod-kQ is given
by the following:

P (2)

P (1)

τ−1P (2)

τ−1P (1)

τ−2P (2)

Let d(X,Y ) := dim Ext1kQ(X,Y ). Then, from Proposition 2.3.3 and Theorem 2.3.4, we
have the following.

Corollary 2.3.6. Let Q be a finite connected non-Dynkin quiver and let Y = τ−sP (y) be an
indecomposable pre-projective module over kQ. Then we have

d(τ−rP (x), Y ) =

{
0 if (r, x) ̸⪰ (s, y)
1 if (r, x) = (s, y)

and if (r, x) ≻ (s, y), then d(τ−rP (x), Y ) is equal to

−d(τ−r+1P (x), Y ) +
∑

α:s(α)=x

d(τ−rP (t(α)), Y ) +
∑

α:t(α)=x

d(τ−r+1P (s(α)), Y )

where (r, x) ⪰ (s, y) means either (1) r > s or (2) r = s and there is a path from x to y hold.





Chapter 3

Tilting modules

Throughout this thesis we consider tilting modules over path algebras and their poset-
structure. Therefore, in section 1 we first recall the definition of tilting modules over path
algebras. Second we define a tilted algebra of type Q. It is well known that its module
category has connection with the module category of the path algebra kQ. In section 2 we
recall the definition and basic properties of the poset of tilting modules.

3.1 Definition and properties

3.1.1 Definition and examples

In this subsection we will recall the definition of tilting modules and basic results for tilting
modules.

Definition 3.1.1. Let A = kQ be a path algebra.
(1) A module M ∈ mod-A is a partial tilting module if Ext1A(M,M) = 0.
(2) A partial tilting module T ∈ mod-A is a tilting module if there is an exact sequence

0→ AA → T0 → T1 → 0

with Ti ∈ add T (i = 0, 1).

Lemma 3.1.2. (Bongartz). For any partial tilting module M ∈ mod-kQ, there exists a
module C ∈ mod-kQ such that M ⊕ C is a tilting module.

It is well known that if T ∈ mod-kQ is a tilting module, then |T | = #Q0. In particular
we have the following:

Corollary 3.1.3. A module T ∈ mod-kQ is a tilting module if and only if
(1) Ext1kQ(T, T ) = 0,
(2) |T | = #Q0.

We denote by T (Q) the set of (isomorphism classes of) basic tilting modules in mod-kQ.
Recall that a module is basic if any two distinct direct summands are non-isomorphic.

15
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3.1.2 Tilted algebras

Definition 3.1.4. Let A = kQ. We call an algebra B a tilted algebra of type Q if there is a
tilting module T ∈ mod-A such that B ∼= EndA(T ).

Let T ∈ mod-A is a tilting module and B = EndA(T ). Then T is a (B,A)-bimodule, so
that D(T ) is a (A,B)-bimodule. We consider (full) subcategories

F = F(T ) := {M ∈ mod-A | HomA(T,M) = 0},
T = T (T ) := {M ∈ mod-A | Ext1A(T,M) = 0}

of mod-A. We also consider (full) subcategories

X = X (T ) := {U ∈ mod-B | HomB(U,D(T )) = 0},
Y = Y(T ) := {U ∈ mod-B | ExtB(U,D(T )) = 0}

of mod-B. The following is the celebrated Brenner and Butler’s tilting theorem.

Theorem 3.1.5. ([2] [3]) The following assertions hold.
(1) BT is a tilting module, and a map a 7→ (t 7→ ta) induces a k-algebra isomorphism

A ∼= EndB(T )
op.

(2) HomA(T,−) induces category equivalence

HomA(T,−) : T
≃−→ Y.

(3) ExtA(T,−) induces category equivalence

ExtA(T,−) : F
≃−→ X .

mod-A

mod-B

F(T ) T (T )

Y(T ) X (T )

ExtA(T,−) HomA(T,−)
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Remark 3.1.6. (i) (1), (2), (3) of above Theorem hold for an arbitrary finite dimensional alge-
bra A.

(ii) (F , T ) is a torsion pair of mod-A and (Y,X ) is a split torsion-pair of mod-B [2].

Definition 3.1.7. Let A = kQ. We call an algebra B a concealed algebra of type Q if there
is a pre-projective tilting module T such that B ∼= EndA(T ).

Theorem 3.1.8. [2,Chapter VIII, Theorem 4.5.] Assume that Q is a non-Dynkin quiver and
A = kQ. Let T ∈ mod-A be a pre-projective tilting module and define B := EndA(T ).
(a) T (T ) contains all but finitely many non-isomorphic indecomposable A-modules, and any
indecomposable A-module not in T (T ) is pre-projective.
(b) The connecting component CT determined by T (see [2] for the definition) is the unique
pre-injective component Q(B) of Γ(B). Moreover, Q(B) contains all indecomposable module
in X (T ) and no projective modules belong to Q(B).
(c) The images under the functor HomA(T,−) of the regular components from R(A) form a
family R(B) of regular components of Γ(B).
(d) The images under the functor HomA(T,−) of modules in P(A) ∩ T (T ) form the unique
pre-projective component P(B) of Γ(B). Moreover P(B) contains no injective modules.
(e) We have Γ(B) = P(B) ⊔R(B) ⊔Q(B).

P(A) R(A) Q(A)

= F(T )

= T (T )

P(B) R(B) Q(B) = CT

= X (T )

= Y(T )

Ext1A(T,−)
HomA(T,−)

Σ ≃ Qop

Γ(A)

Γ(B)

3.2 Mutations and partial orders

In this section we recall the definition of an important partial order on T (Q) and study
combinatorial properties of the poset T (Q) (cf.[10],[11],[12],[13]).

Definition-Proposition 3.2.1. [11,Lemma 2.1]. Let T, T
′ ∈ T (Q). Then the following

relation ≤ defines a partial order on T (Q).

T ≥ T ′ def⇔ Ext1kQ(T, T
′
) = 0.
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Definition 3.2.2. The tilting quiver
−→T (Q) is defined as follows:

• −→T (Q)0 := T (Q),

• T → T
′
in
−→T (Q) if T ≃M ⊕X , T

′ ≃M ⊕ Y for some X,Y ∈ ind-kQ, M ∈ mod-kQ and
there is a non split exact sequence

0→ X →M
′ → Y → 0,

with M
′ ∈ addM .

In this situation we call T
′
a right mutation of T at X and call T a left mutation of T

′
at

Y .

Lemma 3.2.3. [10,Proof of Theorem 2.1]. Let T, T
′ ∈ T (Q) with T < T

′
. Then there exists

T
′′ ∈ T (Q) such that T ≤ T ′′

and there is an arrow T
′ → T

′′
in
−→
T (Q).

Theorem 3.2.4. [10,Theorem 2.1]. The tilting quiver
−→
T (Q) coincides with the Hasse-quiver

of (T (Q),≤).

Remark 3.2.5. In this paper we define the Hasse-quiver
−→
P of a poset (P,≤) as follows:

(1)
−→
P 0 := P ,

(2) x→ y in
−→
P if x > y and there is no z ∈ P such that x > z > y.

Proposition 3.2.6. [10,Corollary 2.2]. If
−→
T (Q) has a finite connected component C, then

−→
T (Q) = C. In particular, if Q is a Dynkin-quiver, then

−→
T (Q) is connected.

For T ∈ T (Q), we set

s(T ) := #{T ′ ∈ T (Q) | T → T
′
in
−→T (Q)}

e(T ) := #{T ′ ∈ T (A) | T ′ → T in
−→
T (Q)}

and define δ(T ) := s(T ) + e(T ).

Proposition 3.2.7. [12,Proposition 3.2]. We have

δ(T ) = n−#{a ∈ Q0 | (dimT )a = 1},

where n = #Q0.

LetM be a basic partial tilting module and lk(M) := {T ∈ T (Q) |M ∈ add T}. Then we

denote by
−→
lk(M) the full sub-quiver of

−→T (Q) having lk(M) as the set of vertices (see [13]).

Proposition 3.2.8. [13, Theorem 4.1] If M is faithful, then
−→
lk(M) is connected.
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Example 3.2.9. (1) Let Q = 1→ 2→ 3. Then
−→T (Q) is given by the following:

k → k → k

0→ k → k

0→ 0→ k

k → k → k

0→ k → k

0→ k → 0

k → k → k

k → k → 0

0→ k → 0

k → k → k

k → 0→ 0

0→ 0→ k

k → k → k

k → k → 0

k → 0→ 0

(2) We consider the following quiver:

1 2Q :

Then
−→
T (Q) has two connected components

k → k2

0→ k

k → k2

k2 → k3

k3 → k4

k2 → k3

k3 → k4

k4 → k5

k5 → k4

k4 → k3

k3 → k2

k4 → k3

k3 → k2

k2 → k3

k → 0

k2 → k

and





Chapter 4

The number of arrows in tilting
quivers

If Q is a Dynkin quiver, then kQ is representation-finite. In particular,
−→T (Q) is a finite

quiver. Therefore there arise two natural questions:

• How many vertices in
−→
T (Q) are there?

• How many arrows in
−→
T (Q) are there?

The number of vertices #
−→T (Q)0 is already known ([6]). So, in this chapter, we give the

number of arrows #
−→T (Q)1.

In the following we regard kQ-modules as objects of rep Q.

4.1 Theorem of Ladkani

In this section, we review [16]. Let x be a source of Q and Q
′
= σxQ be a quiver obtained by

reversing all arrows starting at x. We define

T (Q)x := {T ∈ T (Q) | S(x) ∈ add T},

where S(x) ∈ mod-kQ is the simple module associated with x. Similarly we define

T (Q′
)x := {T ′ ∈ T (Q′

) | S′
(x) ∈ add T

′},

where S
′
(x) ∈ mod-kQ

′
is the simple module associated with x.

Definition 4.1.1. Let (X,≤X),(Y,≤Y ) be posets and f : X → Y an order-preserving func-

tion. Then we define the partial-orders ≤f+, ≤
f
− of X ⊔ Y as follows.

a ≤f+ b⇐⇒


a ≤X b if a, b ∈ X,
a ≤Y b if a, b ∈ Y,
f(a) ≤Y b if a ∈ X and b ∈ Y.

a ≤f− b⇐⇒


a ≤X b if a, b ∈ X,
a ≤Y b if a, b ∈ Y,
a ≤Y f(b) if a ∈ Y and b ∈ X.

21
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For any M ∈ mod-k(Q \ {x}), we define F (M) ∈ mod-kQ as follows:

F (M)a =

{
Ma if a ̸= x,
⊕x→yMy if a = x

F (M)a→b =

{
Ma→b if a ̸= x,

⊕x→yMy
projection−→ Mb if a = x.

Similarly we define F
′
(M) ∈ mod-kQ

′
as follows:

F
′
(M)a =

{
Ma if a ̸= x,
⊕y→xMy if a = x

F
′
(M)a→b =

{
Ma→b if b ̸= x,

Ma
injection−→ ⊕y→xMy if b = x.

Theorem 4.1.2. ([16]) (1) T 7→ F (T )⊕ S(x) induces a poset isomorphism

ιx : T (Q \ {x}) ≃ T (Q)x.

Similarly T
′ 7→ F

′
(T )⊕ S′

(x) induces a poset isomorphism

ι
′
x : T (Q \ {x}) ≃ T (Q′

)x.

(2) There is an order-preserving map f : T (Q) \ T (Q)x → T (Q)x such that

T (Q) ≃ ((T (Q) \ T (Q)x) ⊔ T (Q)x,≤f−).

Similarly there is an order-preserving map f
′
: T (Q′

) \ T (Q′
)x → T (Q′

)x such that

T (Q′
) ≃ ((T (Q′

) \ T (Q′
)x) ⊔ T (Q′

)x,≤f
′

+ ).

(3) There exists an isomorphism of posets

ρx : T (Q) \ T (Q)x → T (Q′
) \ T (Q′

)x

such that the following diagram commutes.

T (Q) \ T (Q)x T (Q′
) \ T (Q′

)x
ρx

f

T (Q)x T (Q \ {x})
ιx
∼

∼

T (Q′
)x∼

ι
′
x

f
′

Corollary 4.1.3. ([16]) #T (Q) = #T (Q′
).

Remark 4.1.4. In [16] the partial order on T (Q) is defined by

T ≥ T ′ ⇐⇒ Ext1kQ(T
′
, T ) = 0 (opposite to our definition).
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4.2 The number of arrows

In this section we determine the number of arrows in
−→T (Q) for a Dynkin quiver Q. Let

Gen (M) := {N ∈ mod-A |M ′ surjection→ N for some M
′ ∈ addM},

Cogen (M) := {N ∈ mod-A | N injection→ M
′
for some M

′ ∈ addM}.

Lemma 4.2.1. ([5,Proposition 1.3]) Let A = kQ be a path algebra, T =M ⊕Y ∈ T (Q) with
Y ∈ ind-A. If Y ∈ Gen (M), then there exists a unique(up to isomorphism) indecomposable
module X which is not isomorphic to Y such that M ⊕X ∈ T (Q) and there exists an exact
sequence

0 −→ X −→ E −→ Y −→ 0

with E ∈ addM .

Dually, if Y ∈ Cogen (M) then there exists a unique (up to isomorphism) indecomposable
module X which is not isomorphic to Y such that M ⊕ Y ∈ T (Q) and there exists an exact
sequence

0 −→ Y −→ E −→ X −→ 0

with E ∈ addM .

Lemma 4.2.2. Let x ∈ Q0 and T = M ⊕ S(x) ∈ T (Q). If x is a sink, then S(x) is in
Cogen (M). Dually, If x is a source, S(x) is in Gen (M).

Proof. For any T ∈ T (Q \ {x}), we define F (T ) ∈ mod-kQ as follows,

F (T )a =


Ta if a ̸= x,
⊕y→xTy if a = x and x is a sink,
⊕x→yTy if a = x and x is a source.

F (T )a→b =


Ta→b if a, b ̸= x,

Ty
injection−→ ⊕y′→xTy′ if a = y with y → x and if b = x and x is a sink,

⊕x→y′Ty′
projection−→ Ty if b = y with x→ y and if a = x and x is a source.

Then, by Proposition 4.1.2, T 7−→ F (T )⊕ S(x) induces a bijection

T (Q \ {x}) 1:1←→ T (Q)x.

Now if x is a sink then

S(x) ∈ Cogen (M)⇐⇒Mx ̸= 0,

and if x is a source then

S(x) ∈ Gen (M)⇐⇒Mx ̸= 0.

Therefore, the assertion follows from the fact that if T ∈ T (Q) then (dimT )a ≥ 1, for all
a ∈ Q0.
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Lemma 4.2.3. If x is a sink then

{α ∈ −→T (Q)1 | s(α) ∈ T (Q)x, t(α) ∈ T (Q) \ T (Q)x} 1:1←→ T (Q)x.

If x is a source then

{α ∈
−→
T (Q)1 | t(α) ∈ T (Q)x, s(α) ∈ T (Q) \ T (Q)x} 1:1←→ T (Q)x.

Here, for T
α→ T

′
, s(α) = T and t(α) = T

′
.

Proof. Suppose x is a sink, and let T ∈ T (Q)x. Then there exists a unique T
′ ∈ T (Q)\T (Q)x

such that T −→ T
′
in
−→
T (Q) (by Lemma 4.2.1, 4.2.2).

Corollary 4.2.4.

#
−→T (Q)1 = #

−→T (σxQ)1.

In particular, if Q is a Dynkin quiver then #
−→T (Q)1 depends only on the underlying graph of

Q.

Proof. By Theorem 4.1.2 and Lemma 4.2.3 we get,

#
−→T (Q)1 = #

−→T (Q \ {x})1 +#
−→T (T (Q) \ T (Q)x)1 +#T (Q)x

= #
−→
T (σxQ)1.

4.2.1 case A

In this subsection we consider the quiver,

Q =
1◦→2◦→ · · · →n◦ .

By Gabriel’s Theorem, ind-kQ = {L(i, j) | 0 ≤ i < j ≤ n} where

L(i, j)a =

{
k (i < a ≤ j)
0 otherwise

and L(i, j)a→b =

{
1 (i < a, b ≤ j)
0 otherwise.

Then we have

τL(i, j) =

{
L(i+ 1, j + 1) (j < n),
0 (j = n),

where τ is the Auslander-Reiten translation.

Definition 4.2.5. A pair of intervals ([i, j], [i
′
, j

′
]) is said to be compatible if

[i, j] ∩ [i
′
, j

′
] = ∅ or [i, j] ⊂ [i

′
, j

′
] or [i

′
, j

′
] ⊂ [i, j].

Applying Auslander-Reiten duality

DExt1kQ(M,N) ∼= HomkQ(N, τM),

we have the following:
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Lemma 4.2.6. We have

Ext1kQ(L(i, j), L(i
′
, j

′
)) = 0 = Ext1kQ(L(i

′
, j

′
), L(i, j))

if and only if ([i, j], [i
′
, j

′
]) is compatible.

Proof. It is obvious that Hom(L(i, j), L(i
′
, j

′
)) ̸= 0 if and only if i

′ ≤ i ≤ j
′ ≤ j. Therefore

the assertion follows from this fact and the AR-duality.

Lemma 4.2.7. For any T ∈ T (Q), we have δ(T ) = n− 1.

Proof. Let T ∈ T (Q). Then the projective-injective module L(0, n) is a direct summand of
T . From this fact, we get δ(T ) < n.

Denote by X the set of indecomposable direct summands of T not isomorphic to L(0, n)
and define

a :=

{
max{i | L(0, i) ∈ X} if L(0, i) ∈ X for some i,
0 otherwise.

Then, by Lemma 4.2.6, we get

Ext1kQ(T,L(a+ 1, n)) = 0 = Ext1kQ(L(a+ 1, n), T ).

By Ext = 0 condition, we can see that L(a+ 1, n) is a direct summand of T . In particular,

(dimT )i = 1⇐⇒ i = a+ 1.

The assertion follows from this fact and Proposition 3.2.7.

Now it is easy to find the number of arrows in
−→
T (Q), because it is equal to

1

2

∑
T∈T (Q)

δ(T ).

Namely, we obtain the result of Theorem 1.0.2 for type An.

Corollary 4.2.8. #
−→
T (Q)1 =

n−1
2(n+1)

(
2n
n

)
=
(
2n−1
n−2

)
.

4.2.2 case D

Through this subsection, we consider the quiver

1 2 n− 1 n+

n−
Q = Qn =

Then we have

ind-kQ = {L(a, b) | 0 ≤ a < b ≤ n−1}∪{L±(a, n) | 0 ≤ a ≤ n−1}∪{M(a, b) | 0 ≤ a < b ≤ n−1}
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where

L(a, b)i =

{
k if a < i ≤ b,
0 otherwise,

L(a, b)i→j =

{
1 if a < i < b,
0 otherwise,

L(a, n)±i =

{
k if a < i ≤ n− 1 or i = n±,
0 otherwise,

L(a, n)±i→j =

{
1 if a < i < n− 1 or i = n− 1, j = n±,
0 otherwise,

M(a, b)i =


k if a < i ≤ b or i = n±,
k2 if b < i ≤ n− 1,
0 otherwise,

M(a, b)i→j =



1 if a < i < b,(
1
1

)
if i = b,

(1, 0) if i = n− 1, j = n+,

(0, 1) if i = n− 1, j = n−,(
1 0
0 1

)
if b < i < n− 1,

0 otherwise.

Then we have

τL(a, b) =

{
L(a+ 1, b+ 1) if b < n− 1,
M(0, a+ 1) if b = n− 1,

τL+(a, n) =

{
L−(a+ 1, n) if a < n− 1,
0 if a = n− 1,

τL−(a, n) =

{
L+(a+ 1, n) if a < n− 1,
0 if a = n− 1,

τM(a, b) =

{
M(a+ 1, b+ 1) if b < n− 1,
0 if b = n− 1.
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Lemma 4.2.9.

(1) Ext1kQ(L(a, b), L(a
′
, b

′
)) = 0 = Ext1kQ(L(a

′
, b

′
), L(a, b))

⇐⇒ ([a, b], [a
′
, b

′
]) : compatible.

(2) Ext1kQ(L(a, b), L
±(a

′
, n)) = 0 = Ext1kQ(L

±(a
′
, n), L(a, b))

⇐⇒ ([a, b], [a
′
, n]) : compatible.

(3) Ext1kQ(L(a, b),M(a
′
, b

′
)) = 0 = Ext1kQ(M(a

′
, b

′
), L(a, b))

⇐⇒ ([a, b], [a
′
, n]), ([a, b], [b

′
, n]) : compatible.

(4) Ext1kQ(M(a, b), L±(a
′
, n)) = 0 = Ext1kQ(L

±(a
′
, n),M(a, b))

⇐⇒ a ≤ a′ ≤ b.

(5)Ext(L±(a, n), L±(a
′
, n)) = 0 = Ext1kQ(L

±(a
′
, n), L±(a, n)) for all a, a

′
.

(6) Ext1kQ(L
+(a, n), L−(a

′
, n)) = 0 = Ext1kQ(L

−(a
′
, n), L+(a, n))

⇐⇒ a = a
′
.

(7) Ext1kQ(M(a, b),M(a
′
, b

′
)) = 0 = Ext1kQ(M(a

′
, b

′
),M(a, b))

⇐⇒ [a, b] ⊂ [a
′
, b

′
] or [a

′
, b

′
] ⊂ [a, b].

Proof. (1) and (2) follow from the case A and (5),(6) are obvious. We prove (3).
(case b < a

′
) It is obvious that

Ext1kQ(L(a, b),M(a
′
, b

′
)) = 0 = Ext1kQ(M(a

′
, b

′
), L(a, b)).

(case a < a
′ ≤ b < b

′
) In this case we claim that

Hom(M(a
′
, b

′
), τL(a, b)) ̸= 0.

In fact 0 ̸= f = (fi)i ∈ Hom(M(a
′
, b

′
), τL(a, b)) where

fi =

{
1 if a

′
< i ≤ b+ 1,

0 otherwise.

(case a < a
′
< b

′ ≤ b < n− 1) In this case we claim that

Hom(M(a
′
, b

′
), τL(a, b)) ̸= 0.

In fact 0 ̸= f = (fi)i ∈ Hom(M(a
′
, b

′
), τL(a, b)) where

fi =


1 if a

′
< i ≤ b′ ,

(0, 1) if b
′
< i ≤ b,

0 otherwise.

(case a < a
′
< b

′ ≤ b = n− 1) In this case we also claim that

Hom(M(a
′
, b

′
), τL(a, b)) ̸= 0.
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In fact 0 ̸= f = (fi)i ∈ Hom(M(a
′
, b

′
), τL(a, n− 1)) where

fi =


(

1
1

)
if a

′
< i ≤ b′ ,

1 if b
′
< i ≤ n− 1 or i = n±,

0 otherwise.

(case a
′ ≤ a < b < b

′
< n− 1) In this case we claim that

Hom(M(a
′
, b

′
), τL(a, b)) = 0 = Hom(L(a, b), τM(a

′
, b

′
)).

Let f = (fi)i ∈ Hom(M(a
′
, b

′
), τL(a, b)). If i ≤ a + 1 or b + 1 < i ≤ n − 1 or i = n± then

(dimτL(a, b))i = 0 and this implies fi = 0. Note that

fa+2 = fa+3 = · · · = fb+1.

Now the commutative square for fa+1, fa+2 shows fa+2 = 0. So

Hom(M(a
′
, b

′
), τL(a, b)) = 0.

Similarly
Hom(L(a, b), τM(a

′
, b

′
)) = 0.

(case a
′ ≤ a < b < b

′
= n−1) From the argument similar to the case (a

′ ≤ a < b < b
′
< n−1)

we can get
Hom(M(a

′
, n− 1), τL(a, b)) = 0.

Since M(a
′
, n− 1) is projective, we have

Hom(L(a, b), τM(a
′
, b

′
)) = 0.

(case a
′ ≤ a < b

′ ≤ b < n− 1) In this case we claim that

Hom(M(a
′
, b

′
), τL(a, b)) ̸= 0.

In fact 0 ̸= f = (fi)i ∈ Hom(M(a
′
, b

′
), τL(a, b)) where

fi =

{
(1,−1) if b

′
< i ≤ b+ 1,

0 otherwise.

(case a
′ ≤ a < b

′ ≤ b = n− 1) In this case we also claim that

Hom(M(a
′
, b

′
), τL(a, b)) ̸= 0.

In fact 0 ̸= f = (fi)i ∈ Hom(M(a
′
, b

′
), τL(a, n− 1)) where

fi =



1 if a
′
< i ≤ a+ 1 or i = n±,(

1
1

)
if a+ 1 < i ≤ b′ ,

(
1 0
0 1

)
if b

′
< i ≤ n− 1,

0 otherwise.
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(case b
′ ≤ a) From the argument similar to the case a

′ ≤ a < b < b
′
, we get

Hom(M(a
′
, b

′
), τL(a, b)) = 0 = Hom(L(a, b), τM(a

′
, b

′
)).

So we have proved (3). We can prove (4),(7) similarly.

Lemma 4.2.10. Let T ∈ T (Q).
(1) L(0, n− 1) | T implies L±(0, n) | T .
(2) If L+(0, n) | T (resp. L−(0, n) | T ) and all indecomposable direct summands of T are

insincere, then  L−(0, n) | T (resp. L+(0, n) | T ).

Proof. (1) : Suppose L(0, n− 1) | T . Then

Ext1kQ(T, L(0, n− 1)) = 0 = Ext1kQ(L(0, n− 1), T )

and there exists an injection

τL±(0, n) −→ τL(0, n− 1).

Hence we have
Ext1kQ(L

±(0, n), T ) ≃ Hom(T, τL±(0, n)) = 0.

Since L±(0, n) is injective, we also get

Ext1kQ(T, L
±(0, n)) = 0.

Thus we obtain L±(0, n) | T .

(2): Suppose L+(0, n) | T and that all indecomposable direct summands of T are insincere.
Since (dimT )n− ̸= 0 from the fact that T is a tilting module, there exists some indecomposable
direct summand N s.t.

(dimN)n− ̸= 0.

If N = M(a, b) then Ext1kQ(M(a, b), L+(0, n)) = 0 = Ext1kQ(L
+(0, n),M(a, b)) so a = 0 and

N is sincere. This is a contradiction. So N = L−(a, n) and a = 0 by L+(0, n) | T .

Lemma 4.2.11. For all T ∈ T (Q) there exists some indecomposable direct summand N of
T such that

(dimN)i ≥ 1, for all i ≤ n− 1.

Thus, N = L(0, n− 1), L±(0, n) or M(0, b), for some b.

Proof. For an indecomposable direct summand N of T such that (dimN)1 = 1, define

a(N)
def
= sup{i | 1 ≤ i ≤ n− 1, (dimN)i ≥ 1}.

Suppose that sup a(N) = a < n − 1, then L(0, a) | T . Therefore indecomposable direct
summands of T are of the following form

L(a
′
, b

′
) for b

′ ≤ a or a+ 1 ≤ a′
,

L+(a
′
, n) for a+ 1 ≤ a′

,

M(a
′
, b

′
) for a+ 1 ≤ a′

.

Thus we have (dimT )a+1 = 0. This is a contradiction.



30 CHAPTER 4. THE NUMBER OF ARROWS IN TILTING QUIVERS

Lemma 4.2.12. We have

#{i | 1 ≤ i ≤ n− 1, (dimT )i = 1} ≤ 1.

In particular, δ(T ) ≥ n− 2.

Proof. Let i ̸= n± s.t. (dimT )i = 1. Then we claim that

L(0, i− 1) | T.

By Lemma 4.2.11 there exists a unique indecomposable direct summand N of T s.t.

(dimN)j ≥ 1 for all j ≤ n− 1.

Hence, by Lemma 4.2.10, N =M(0, b) for some j ≤ b ≤ n−1 and any indecomposable direct
summand of T other than N is one of the following,

L(a, b) for b ≤ i− 1 or i ≤ a,
L±(a, n) for i ≤ a,
M(a, b) for i ≤ a.

It implies

Ext1kQ(T, L(0, i− 1)) = 0 = Ext1kQ(L(0, i− 1), T ),

so that

L(0, i− 1) | T.

Corollary 4.2.13. Let T ∈ T (Q). Then δ(T ) ≥ n − 1. The equality holds if and only if
L±(0, n) | T and other indecomposable direct summands of T have the form L(a, b) (0 ≤ a <
b ≤ n− 1). In particular, we have

#{T ∈ T (Q) | δ(T ) = n− 1} = 1

n

(
2(n− 1)

n− 1

)
=

1

n− 1

(
2(n− 1)

n− 2

)
.

Proof. Suppose that all indecomposable direct summands of T are insincere. Then, by
Lemma 4.2.10 and Lemma 4.2.11, L+(0, n) and L−(0, n) are both direct summands of T .
So (dimT )i = 1 if and only if i = n±. We have δ(T ) ≥ n − 1. If the equality holds then
indecomposable direct summands of T not isomorphic to L±(0, n) are of the form L(a, b).

Next we suppose there is a sincere indecomposable direct summand N of T . If δ(T ) = n−2
then, by Lemma 4.2.12, there is a unique i ≤ n− 1 s.t.

(dimT )i = (dimT )n± = 1.

So all indecomposable direct summands of T not isomorphic to N are of the form L(a, b) (b < i
or i ≤ a). As their direct sum may be viewed as a rigid module in type Ai−1×An−i−1, we get

#{L(a, b) | L(a, b) | T} ≤ (i− 1) + (n− 1− i) = n− 2,

which is a contradiction. Next we consider the case δ(T ) = n− 1.
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(a) : (dimT )i = (dimT )n+ = 1, for a unique i(≤ n − 1). Then indecomposable direct
summands of T other than N are of the following form:

L(a, b) for b < i or i ≤ a,
L−(a, n) for i ≤ a.

We get by the same argument that

#{L ∈ ind-kQ | L | T, L ̸= N} ≤ (i− 1) + (n− i) = n− 1,

which is a contradiction.

(b) : (dimT )i = (dimT )n− = 1, for a unique i(≤ n − 1). Then, similar to (a), we reach a
contradiction.

(c) : (dimT )n± = 1. Then indecomposable direct summands of T not isomorphic to N are
of the form L(a, b). Thus

#{L(a, b) | L(a, b) | T} ≤ n− 1.

It is a contradiction. Therefore we have δ(T ) ≥ n and δ(T ) = n − 1 does not occur in this
case.

Thus we have proved that if δ(T ) = n−1 then L±(0, n) | T and the other indecomposable
direct summands of T have the form L(a, b). The converse implication is clear.

Now we define subsets T0, T1, T2 of T (Q) by

T0 := {T ∈ T (Q) | δ(T ) = n+ 1},
T1 := {T ∈ T (Q) | δ(T ) = n},
T2 := {T ∈ T (Q) | δ(T ) = n− 1}.

Lemma 4.2.14. Fix 1 ≤ i ≤ n− 1, then there is a bijection

{T ∈ T1 | (dimT )i = 1} 1:1←→
T (◦ → ◦ → · · · →i−1◦ )× {T ∈ T (Qn−i+1) | (dimT )1 = 1, δ(T ) = n− i+ 1}.

Proof. Let T ∈ T1 such that (dimT )i = 1, for a unique i(≤ n − 1). By Lemma 4.2.10 and
Lemma 4.2.11 there exists a unique j = j(T )(≥ i) s.t. M(0, j) | T. Now let

X(T ) = {L(a, b) | L(a, b) | T, b < i}

and

Y (T ) = {N ∈ ind-kQ | N | T} \ {X(T ) ∪ {M(0, j)}} .

We define the maps

φT : X(T ) −→ ind-k(◦ → ◦ → · · · →i−1◦ )

and

ψT : Y (T ) −→ ind-kQn−i+1,

by

(φT (N))a = (N)a (1 ≤ a < i),

(ψT (N))a = (N)a+i−1 (let (n− i+ 1)± + i− 1 = n±).
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Then

T 7−→

 ⊕
x∈X(T )

φT (x),
⊕

y∈Y (T )

ψT (y)
⊕

M(0, j(T )− i+ 1)


induces a bijection between

{T ∈ T1 | (dimT )i = 1}

and
T (◦ → ◦ → · · · →i−1◦ )× {T ∈ T (Q) | (dimT )1 = 1, δ(T ) = n− i+ 1}.

Let us define the following subsets of T1:

A± :=

{
T ∈ T1 |

all indecomposable direct summands of T are insincere
and (dimT )n± = 1

}
,

B± := {T ∈ T1 | (dimT )n± = 1, there exists some j s.t. M(0, j) | T},
B±(j) := {T ∈ B± | M(0, j) | T},
C := {T ∈ T1 | δ(T ) = n, (dimT )1 = 1},
C(j) := {T ∈ C | M(0, j) | T}.

Theorem 4.2.15. (1) : A± = ∅.
(2) : B±(j)

1:1←→ {T ′ ∈ T (◦ → · · · →n◦) | min{j′ | L(j′ , n− 1) | T ′} = j}. In particular,

B±
1:1←→ T (◦ → · · · →n◦) \ {T ′ ∈ T (◦ → · · · →n◦) | L(0, n− 1) | T ′},

and we have

#B± =
1

n+ 1

(
2n

n

)
− 1

n

(
2(n− 1)

n− 1

)
.

(3) : C(j) 1:1←→ {T ′ ∈ T (Qn−1) | j = j
′
(T

′
) + 1}

where

j
′
(T

′
) = sup{b | L+(b, n− 1) or L−(b, n− 1) or M(a, b) | T for some a}.

In particular,

C 1:1←→ T (Qn−1),

and we have

#C = 3n− 4

2n

(
2(n− 1)

n− 1

)
.

Proof. (1) Suppose that there exists some T ∈ A+. Then, by Lemma 4.2.11, we have L±(0, n) |
T. Now there exists some indecomposable direct summand N of T not isomorphic to L−(0, n)
s.t. (dimN)n− = 1.

If N = M(a, b) or L−(a, n) then a = 0. This is a contradiction because L±(0, n) | T .
Therefore A+ = ∅ and similarly we have A− = ∅.

(2) Define

φ : {L(a, b) | 0 ≤ a < b ≤ n− 1} ∪ {L−(a, n) | 0 ≤ a ≤ n− 1} −→ ind-k(◦ → ◦ → · · · →n◦)
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and

ψ : ind-k(◦ → ◦ → · · · →n◦) −→ {L(a, b) | 0 ≤ a < b ≤ n− 1} ∪ {L−(a, n) | 0 ≤ a ≤ n− 1}

by

(φ(L))a =

{
La if 0 ≤ a ≤ n− 1,
Ln− if a = n,

(ψ(L
′
))a =


L

′
a if 0 ≤ a ≤ n− 1,

L
′
n if a = n−,

0 if a = n+,

respectively. Then φ ◦ ψ = 1 = ψ ◦ φ. Define

Z(T ) := {N ∈ ind-kQ | N | T,N ̸≃M(0, j)}

and
Y (T

′
) := {N ∈ ind-kQ | N | T ′}.

Then it is easy to see that the maps induce a bijection

B+(j)
1:1←→ {T ′ ∈ T (◦ → · · · →n◦) | min{j′ | L(j′ , n− 1) | T ′} = j}

by

T 7→
⊕

L∈Z(T )

φ(L)

and its inverse

T
′ 7→

 ⊕
L
′∈Y (T

′
)

ψ(L
′
)

⊕M(0, j).

In fact, if T ∈ B+(j) then all indecomposable direct summands of T not isomorphic toM(0, j)
are either

L(a, b) (a ≥ j or b < j) or L−(a, n) (a ≤ j),

which implies L(j, n− 1), L−(j, n) | T . It follows

min{j′ | L(j′ , n− 1) |
⊕

L∈Z(T )

φ(L)} = j.

Conversely, if

T
′ ∈ {T ′ ∈ T (◦ → · · · →n◦) | min{j′ | L(j′ , n− 1) | T ′} = j}

then
(⊕

L
′∈Y (T

′
) ψ(L

′
)
)
⊕M(0, j) ∈ B+(j).

(3) Define
φ : {N ∈ ind-kQn | (dimN)1 = 0} −→ ind-kQn−1

and
ψ : ind-kQn−1 −→ {N ∈ ind-kQn | (dimN)1 = 0}

by the obvious way. Then φ ◦ ψ = 1 = ψ ◦ φ. Define

Z(T ) := {N ∈ ind-kQ | N | T,N ̸≃M(0, j)}
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and

Y (T
′
) := {N ∈ ind-kQ | N | T ′}.

Then they induce a bijection

C(j) 1:1←→ {T ′ ∈ T (Qn−1) | j = j
′
(T

′
) + 1}

by

T 7−→
⊕

N∈Z(T )

φ(N).

The inverse map is

T
′ 7−→

 ⊕
N ′∈Y (T ′ )

ψ(N
′
)

⊕M(0, j + 1).

In fact, if T ∈ C(j) then

Z(T ) ⊂ {L(a, b) | 1 ≤ a < b < j} ∪ {L±(b, n) | 1 ≤ b ≤ j} ∪ {M(a, b) | 1 ≤ a < b ≤ j}.

It implies M(1, j) | T and j
′
(⊕

N∈Z(T ) φ(N)
)
= j − 1. Conversely, if j = j

′
(T

′
) + 1 then

(
dim⊕N ′∈Y (T ′ ) ψ(N

′
)
)
a

{
≥ 1 (a ≥ 2)
= 0 (a = 1).

It implies  ⊕
N

′∈Y (T
′
)

ψ(N
′
)

⊕M(0, j) ∈ C(j).

Corollary 4.2.16.

#T1 = 3

(
2(n− 1)

n− 2

)
.

Proof. First we claim that

n∑
i=1

1

i(n+ 1− i)

(
2(i− 1)

i− 1

)(
2(n− i)
n− i

)
=

1

n+ 1

(
2n

n

)
.

This follows from the fact that

T (◦ → · · · →n◦) =
⊔
{T ∈ T (◦ → · · · →n◦) | min{i′ | L(i′ , n) | T, i′ > 0} = i}.
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Thus, by Lemma 4.2.14 and Theorem 4.2.15, #T1 is equal to

2

(
1

n+ 1

(
2n

n

)
− 1

n

(
2(n− 1)

n− 1

))
+

n−1∑
i=1

3(n− i)− 1

2i(n− i+ 1)

(
2(i− 1)

i− 1

)(
2(n− i)
n− i

)

=2

{(
1

n+ 1

(
2n

n

)
− 1

n

(
2(n− 1)

n− 1

))
−
n−1∑
i=1

1

i(n− i+ 1)

(
2(i− 1)

i− 1

)(
2(n− i)
n− i

)}

+

n−1∑
i=1

3

2i

(
2(i− 1)

i− 1

)(
2(n− i)
n− i

)

=
3

2

n−1∑
i=1

1

i

(
2(i− 1)

i− 1

)(
2(n− i)
n− i

)
.

Now let

an =
n∑
i=1

1

i

(
2(i− 1)

i− 1

)(
2(n+ 1− i)
n+ 1− i

)
and

f(X) =

(
n∑
i=1

1

i

(
2(i− 1)

i− 1

)
Xi

)2

.

Then the coefficient of Xn+1 in f
′
(X) is equal to

2an − 2

(
2n

n

)
.

On the other hand, using the claim above, the coefficient of Xn+2 in f(X) is equal to

n+1∑
i=1

1

i(n− i+ 2)

(
2(i− 1)

i− 1

)(
2(n− i+ 1)

n− i+ 1

)
− 2

n+ 1

(
2n

n

)

=
1

n+ 2

(
2(n+ 1)

n+ 1

)
− 2

n+ 1

(
2n

n

)
.

Therefore we have

2an =

(
2(n+ 1)

n+ 1

)
− 2

n+ 1

(
2n

n

)
= 4

(
2n

n− 1

)
.

We conclude that

#T1 =
3

2
an−1 = 3

(
2(n− 1)

n− 2

)
.
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Corollary 4.2.17. We have

#T0 =
3(n− 1)

n+ 1

(
2(n− 1)

n− 2

)
.

Proof. Recall that the number of tilting modules is given in the table from the introduction,
#T1 is given in Corollary 4.2.16 and #T2 is given in Corollary 4.2.13. Hence

#T0 =
3n− 1

2(n+ 1)

(
2n

n

)
− 3

(
2(n− 1)

n− 2

)
− 1

n

(
2(n− 1)

n− 1

)

=
3(n− 1)

n+ 1

(
2(n− 1)

n− 2

)
.

We have reached the first main result of this thesis for type Dn+1.

Theorem 4.2.18.

#
−→
T (Q)1 = (3n− 1)

(
2(n− 1)

n− 2

)
.

Proof. In fact, #
−→
T (Q)1 is equal to

1

2

{
n− 1

n− 1

(
2(n− 1)

n− 2

)
+ 3n

(
2(n− 1)

n− 2

)
+ 3(n− 1)

(
2(n− 1)

n− 2

)}

=(3n− 1)

(
2(n− 1)

n− 2

)
.

4.2.3 case E6, E7, E8

By using AR-sequences, it is possible to calculate the dimension vector of any indecomposable
modules and the dimension of the space of the morphism between any two indecomposable
modules. Thus, by using AR-duality and Proposition 3.2.7, we can calculate the number
of arrows in the tilting quiver. I have written a computer program in C++ and results for
E6, E7, E8 are as in the list in the first main theorem.



Chapter 5

Poset-structure of Tp(Q)

This chapter contains the second main result of this thesis. In section 1 we give basic prop-
erties of the poset of pre-projective tilting modules. In section 2 we give an criterion for
Ext1kQ-vanishing for pre-projective modules over kQ under the condition (C) from the intro-
duction. This criterion plays an important role in this chapter. In section 3 we determine the

structure of
−→
Tp(Q) in the case of l(Q) := max{lQ(x, y) | x, y ∈ Q0} ≤ 1.

From now on we use the following notations:
• Tp(Q) := {T ∈ T (Q) | T is pre-projective}.
•
−→
Tp(Q) :the full sub-quiver of

−→
T (Q) with

−→
Tp(Q)0 := Tp(Q).

• lkp(M) := lk(M) ∩ Tp(Q).

•
−→
lkp(M) :the full sub-quiver of

−→
Tp(Q) with

−→
lkp(M)0 := lkp(M).

5.1 Elementary properties of Tp(Q)

Lemma 5.1.1. Let T ∈ Tp(Q) and T ≤ T ′ ∈ T (Q). Then T
′ ∈ Tp(Q). In particular

−→
T p(Q)

(resp.
−→
lkp(M)) is the Hasse-quiver of (Tp,≤) (resp. (lkp(M),≤)).

Proof. Let X be an indecomposable direct summand of T
′
. If X is not pre-projective, then

Ext1kQ(τ
−rP,X) ≃ Ext1kQ(P, τ

rX) = 0 for any projective module P . Therefore Ext1kQ(T,X) =

0. Since Ext1kQ(X,T ) = 0, we obtain X ∈ add T . Therefore we get a contradiction.

We set Tp(≥ T ) := {T
′ ∈ Tp(Q) | T ′ ≥ T}.

Lemma 5.1.2. We have #Tp(≥ T ) <∞ for any T ∈ Tp(Q).

Proof. Let T ∈ Tp(Q). By Auslander-Reiten duality, we have

Ext1kQ(X,T ) = 0⇔ τX ∈ F(T ).

Therefore Theorem 3.1.8 implies that Tp(≥ T ) <∞.

Proposition 5.1.3. Let T, T
′ ∈ Tp(Q). If T > T

′
, then there is a path from T to T

′
in

−→Tp(Q).

Proof. This follows from Lemma 3.2.3 and Lemma 5.1.2.

37
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5.2 Criterion for Ext-vanishing

For any vertex x ∈ Q0, we set s(x) := {α ∈ Q1 | s(α) = x}, t(x) := {β ∈ Q1 | t(β) = x} and
δ(x) := #s(x) + #t(x). Now we consider the following condition:

(C) δ(a) := #{α ∈ Q1 | s(α) = a or t(α) = a} ≥ 2, ∀a ∈ Q0.

Lemma 5.2.1. Assume Q satisfies the condition (C). If there is an arrow γ : x → y in Q.
Then

dim Ext1kQ(τ
−rP (y), X) ≤ dim Ext1kQ(τ

−rP (x), X) ≤ dim Ext1kQ(τ
−r−1P (y), X)

for any r ≥ 0 and X ∈ ind-kQ.

Proof. If X is not a pre-projective module, then the assertion is obvious. Therefore we
assume X is a pre-projective module. In this case, by Proposition 2.3.3, we can assume that
X := P (a) for some vertex a ∈ Q.

Without loss of generality, we can assume Q0 = {0, 1, · · · , n− 1} and for any i < j, there
is no arrows i→ j. For any vertex i ∈ Q0, we set P (i+ rn) := τ−rP (i) and

da(i+ rn) := dim Ext1kQ(P (i+ rn), P (a)).

With this notation the inequality to be proved is

da(y + rn) ≤ da(x+ rn) ≤ da(y + (r + 1)n).

We prove the assertion by induction on y + rn.
(r = 0) In this case da(y) = da(x) = 0.
(n ≤ y + rn < a+ n) In this case da(y + rn) = 0 and

da(y + (r + 1)n) =
∑
α∈s(y)

da(t(α) + (r + 1)n) +
∑
β∈t(y)

da(s(β) + rn) ≥ da(x+ rn).

(y + rn ≥ a+ n) In this case we obtain

da(x+ rn) = −da(x+ (r − 1)n) +
∑

α∈s(x) da(t(α) + rn)

+
∑

β∈t(x) da(s(β) + (r − 1)n)

= da(y + rn)− da(x+ (r − 1)n) +
∑

α∈s(x)\{γ} da(t(α) + rn)

+
∑

β∈t(x) da(s(β) + (r − 1)n)

≥ da(y + rn)

The last inequality follows from the induction hypothesis. Similarly we obtain

da(y + (r + 1)n) ≥ da(x+ rn).

Let Q̃ be a quiver obtained from Q by adding new edges −α : y → x for any α : x → y.
For a path w : x0

α1→ x1
α2→ · · · αr→ xr in Q̃, we put c+(w) := #{t | αt ∈ Q1 ⊂ Q̃1}. Then we

define

lQ(i, j) :=

{
min{c+(w) | w : path from i to j in Q̃} if i ̸= j
0 if i = j.
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Proposition 5.2.2. If Q satisfies the condition (C), then

Ext1kQ(τ
−rP (i), τ−sP (j)) = 0⇔ r ≤ s+ lQ(j, i)

Proof. (⇒) Let w : j = x0
α1→ x1 → · · ·

αt→ xt = i be a path which attains lj,i := lQ(j, i).
l(j, i) := lQ(j, i) = c+(w) and let {k1 < k2 < · · · < kl(j,i)} = {k | αk ∈ Q1}. If there exists

r > l(j, i) such that Ext1kQ(τ
−rP (i), P (j)) = 0, then Lemma 5.2.1 implies

0 = dj(xt + rn) ≥ dj(xkl(j,i) + rn) ≥ dj(xkl(j,i)−1 + (r − 1)n)

≥ · · · ≥ dj(xk1 + (r − l(j, i) + 1)n) ≥ dj(xk1−1 + (r − l(j, i))n)
≥ dj(j + (r − l(j, i))n)) ≥ dj(j + (r − l(j, i)− 1)n)) ≥ · · · ≥ dj(j + n) > 0.

Therefore we get a contradiction.
We now suppose that Ext1kQ(τ

−rP (i), τ−sP (j)) = 0 with r > s+ l(j, i). Then, by Propo-
sition 2.3.3, we reduce this situation to the above case and reach a contradiction.

(⇐) We put

A(j) := {(i, r) | r ≤ l(j, i), Ext1kQ(τ−rP (i), P (j)) ̸= 0}.

If A(j) ̸= ∅, then we take r := min{r | (i, r) ∈ A(j) for some i}. Let i ∈ Q0 such that
(i, r) ∈ A(j) and (i

′
, r) /∈ A(j) for any i′ ← i in Q. Since

0 < dj(i+ rn) ≤
∑
α∈s(i)

dj(t(α) + rn) +
∑
β∈t(i)

dj(s(β) + (r − 1)n),

one of the following holds.
(1) dj(t(α) + rn) ̸= 0 for some α ∈ s(i),
(2) dj(s(β) + (r − 1)n) ̸= 0 for some β ∈ t(i).
Note that r ≤ l(j, i) ≤ l(j, t(α)) for any α ∈ s(i) and r − 1 ≤ l(j, i) − 1 ≤ l(j, s(β)) for any
β ∈ t(i). Therefore we obtain dj(t(α) + rn) = 0 = dj(s(β) + (r − 1)n) for any α ∈ s(i) and
β ∈ t(i). We get a contradiction. In particular A(j) = ∅.

Suppose that there exists i ∈ Q0 and r, s ∈ Z≥0 such that r ≤ s+ l(j, i) and

Ext1kQ(τ
−rP (i), τ−sP (j)) ̸= 0.

If r < s, then

Ext1kQ(τ
−rP (i), τ−sP (j)) ≃ Ext1kQ(P (i), τ

−(s−r)P (j)) = 0.

If r ≥ s, then Proposition 2.3.3 implies (i, r − s) ∈ A(j). Therefore we get a contradiction.

Lemma 5.2.3. Let T =
⊕

i∈Q0
τ−riP (i) and T

′
=
⊕

i∈Q0
τ−r

′
iP (i) be basic pre-projective

tilting modules. If T → T
′

in
−→
T p(Q), then there exists i ∈ Q0 such that r

′
i = ri + 1 and

r
′
j = rj , for any j ̸= i.

Proof. By the definition of the tilting quiver there exists i ∈ Q0 such that ri < r
′
i and rj = r

′
j

for any j ̸= i. Assume that r
′
i = ri + t. Then Proposition 5.2.2 shows

rj − l(i, j) ≤ ri < ri + t ≤ rj + l(j, i), ∀j ̸= i.

Thus we obtain T
′′
:= τ−ri−1P (i) ⊕ (

⊕
j ̸=i τ

−rjP (j)) ∈ Tp(Q). Since T > T
′′ ≥ T

′
, we get

T
′
= T

′′
.
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For any quiver Q satisfying the condition (C), put

L(Q) := {(ri)i∈Q0 ∈ ZQ0

≥0 | rj ≤ ri + lQ(i, j)} ⊂ ZQ0 .

Then as an immediate corollary of Proposition 5.2.2, and Lemma 5.2.3, we have the fol-
lowing.

Corollary 5.2.4. Assume Q satisfies the conditions (C). Then

(ri)i∈Q0 7→
n−1⊕
i=0

τ−riP (i)

induces an isomorphism of posets

(L(Q),≤op) ≃ (Tp(Q),≤)

where (ri)i∈Q0 ≥op (r
′
i)i∈Q0

def⇔ ri ≤ r
′
i for any i ∈ Q0.

In particular
−→
Tp(Q) is a full sub-quiver of Hasse-quiver of (ZQ0 ,≤op).

Proposition 5.2.5. Let i ∈ Q0 and T (i) :=
⊕

j∈Q0
τ−l(i,j)P (j). Then T (i) is the unique

minimal element of lkp(P (i)).

Proof. Let j, j
′ ∈ Q0. By the definition of lQ, we get

lQ(i, j) ≤ lQ(i, j
′
) + lQ(j

′
, j).

Therefore we obtain T (i) ∈ lkp(P (i)).

Let T :=
⊕

j∈Q0
τ−rjP (j) ∈ lkp(P (i)). Then rj ≤ ri + l(i, j) = l(i, j). Therefore Corol-

lary 5.2.4 shows T ≥ T (i).

Theorem 5.2.6. Assume that Q has the unique source s ∈ Q0 and satisfies the condition
(C). Then the following assertions hold.
(1) Tp(Q) is the disjoint union of lkp(τ

−rP (s)) for all r ≥ 0.
(2) τ−r gives a quiver isomorphism

τ−r :
−→
lkp(P (s)) ≃

−→
lkp(τ

−rP (s)).

(3) #lkp(P (s)) ≤ 2n−1.

(4) Let T ∈ lkp(τ
−rP (s)) and T

′ ∈ lkp(τ
−r′P (s)). If there is an arrow T → T

′
, then

0 ≤ r′ − r ≤ 1

Proof. Without loss of generality, we can assume Q0 = {0, 1, · · · , n − 1} and for any i < j,
there is no arrows i→ j. We note that s = n− 1.

(1) This follows from Proposition 5.2.2.

(2) It is obvious that τ−r induces an injection

−→
lkp(P (s))→

−→
lkp(τ

−rP (s))
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as a quiver. Therefore it is sufficient to show

τ−r : lkp(P (s))→ lkp(τ
−rP (s))

is surjective.
Let T ∈ lkp(τ

−rP (s)). By Corollary 5.2.4, there exists (ri)∈Q0\{s} such that

T ≃ (
⊕

i∈Q0\{s}

τ−riP (i))⊕ τ−rP (s).

Since l(i, s) = 0 for any i ∈ Q0, Proposition 5.2.2 shows ri ≥ r for any i ∈ Q0. Therefore
τ rT ∈ lkp(P (s)).
(3) For any i ∈ Q0 put t(i) := max{j ∈ Q0 | j → i}. Let T =

⊕
i∈Q0

τ−riP (i). Then
T ∈ lkp(P (s)) only if

rs = 0, rn−2 ∈ {0, 1}, · · · , ri ∈ {rt(i), rt(i) + 1}, · · · , r0 ∈ {rt(0), rt(0) + 1}.

Therefore we obtain #Q0 ≤ 2n−1.

(4) Let T =
⊕

i∈Q0
τ−riP (i) ∈ lkp(τ

−rP (s)) and T
′
=
⊕

i∈Q0
τ−r

′
iP (i) ∈ lkp(τ

−(r+t)P (s)).

Namely τ−rP (s) ∈ add T and τ−(r+t)P (s) ∈ add T
′
. Thus the claim follows from Lemma 5.2.3.

Example 5.2.7. We give three examples. Recall that for any two elements (ri), (r
′
i) of Zn

(n ≥ 1), (ri) ≥op (r
′
i) means ri ≤ r

′
i for any i.

(1) Consider the following quiver

Q =
1

2n− 2

n− 1

s

Let
L0 = {(0, 0, 0 · · · 0, 0, 0), (1, 0, 0 · · · 0, 0, 0), (1, 1, 0 · · · 0, 0, 0), · · · , (1, 1, 1 · · · 1, 0, 0)}
L1 = {(1, 0, 0 · · · 0, 1, 0), (1, 1, 0 · · · 0, 1, 0), (1, 1, 1 · · · 0, 1, 0), · · · , (1, 1, 1 · · · 1, 1, 0)}
L2 = {(2, 1, 0 · · · 0, 1, 0), (2, 1, 1 · · · 0, 1, 0), · · · , (2, 1, 1 · · · 1, 1, 0)}
L3 = {(2, 2, 1, 0 · · · 0, 1, 0), · · · , (2, 2, 1 · · · 1, 1, 0)}

...
Ln−3 = {(2, 2, 2 · · · 2, 1, 1, 0)}

and

T (a, b) =


b-th elment of La 0 ≤ a ≤ n− 3, 1 ≤ b ≤ n− 1− a
T (b− n+ a, n− b) + (1, · · · 1) 0 ≤ a ≤ n− 3, n− 1− a < b ≤ n− 1
T (x, b) + (2r, 2r, · · · , 2r) a = x+ (n− 2)r (0 ≤ x < n− 2), 1 ≤ b ≤ n− 1.

Then we get
(⨿La,≤op) ≃ (lkp(P (n− 1)),≤)

and

(L(Q),≤op) = ({T (a, b) | a ∈ Z≥0, 1 ≤ b ≤ n− 1},≤op) ≃ (Z≥0 × {1, · · · , n− 1},≤op).



42 CHAPTER 5. POSET-STRUCTURE OF TP(Q)

In particular
−→T p(Q) = Z≥0

−→
An−1. If n = 4, then

−→T p(Q) is given as follows:

−→
lkp(P (s))

−→
lkp(τ

−1P (s))

(2) Consider the following quiver

Q =

1

n− 1

s

It is easy to check that

({0, 1}n−1,≤op) ≃ (lkp(P (s)),≤)

Therefore the underlying graph of
−→
lkp(P (s)) is isomorphic to (n − 1)-dimensional cube. In

the case n = 4,
−→T p(Q) is given as follows:

−→
lkp(P (s))

−→
lkp(τ

−1P (s))
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(3) Let Q be the following quiver:

0 1 2

Note that Q does not satisfy the condition (C). Let
ain := dim Ext1kQ(τ

−1−nP (0), P (i))

bin := dim Ext1kQ(τ
−1−nP (1), P (i))

cin := dim Ext1kQ(τ
−1−nP (2), P (i))

∀n ≥ 0.

Then we obtain the following equations:
ain+1 = bin+1 − ain
bin+1 = ain + 2cin+1 − bin
cin+1 = 2bin − cin.

Therefore we get
bin+2 = 2cin+2 + ain+1 − bin+1

= 2cin+2 − ain
= 4bin+1 − 2cin+1 − ain
= 4bin+1 − bin+1 − bin
= 3bin+1 − bin.

Note that the above equations show bin+1 − bin ≥ bin − bin−1 ≥ · · · ≥ bi1 − bi0 > 0 for
any i = 0, 1, 2. Since ain+2 = bin+2 − ain+1 = bin+2 − bin+1 + ain and cin+2 = bin+1 − cin+1 =
2(bin+1 − bin) + cin, we obtain ain+2 > ain and cin+2 > cin. Now it is easy to check that,

Ext1kQ(τ
−rP (i), τ−sP (j)) = 0⇔ r ≤ s+ lQ(j, i) or (i = j = 0, r = s+ 2).

Therefore
−→Tp(Q) is given by the following:

−→
lkp(P (0))

−→
lkp(τ

−1P (0))

−→
lkp(τ

−2P (0))

−→
lkp(τ

−3P (0))
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5.3 The case of l(Q) ≤ 1

In this section we consider the quiver
−→
T p(Q) for those Q that satisfy the following conditions:

(i) Q has a unique source,
(ii) Q satisfies the condition (C),
(iii) l(Q) := max{lQ(x, y) | x, y ∈ Q0} ≤ 1.
In this case we can completely determine poset-structure of Tp(Q).

Denote by Q the set of finite connected acyclic quivers. For any quiver Q ∈ Q define a
new quiver Q◦ by adding arrows which directly connects sources and sinks. Namely for each
pair (x, y) of a source x and a sink y we add an arrow x→ y. Then we define subsets A,B,A◦

of Q as follows:
A := {Q ∈ Q | Q has the unique source},
B := {Q ∈ A | Q has the unique sink},
A◦ := {Q◦ | Q ∈ A}.

Note that

A◦ =

Q ∈ Q
∣∣∣∣∣∣
• Q has a unique source
• Q satisfies the condition (C)
• l(Q) ≤ 1

 .

Definition 5.3.1. We define maps
−→⨿ : Q × Q → Q, ϕ : A◦ × A◦ → A◦, ψ : A◦ → B and

Ψ : A◦ ×A◦ → B × B as follows:

(1)

 (Q
−→⨿Q′

)0 := Q0 ⨿Q
′
0,

(Q
−→
⨿Q′

)1 := Q1 ⨿Q
′
1 ⨿

{
y → x

′
∣∣∣∣ y ∈ Q0 : there is no arrow starting at y

x
′ ∈ Q′

0 : there is no arrow ending at x
′

}
.

(2) ϕ(Q,Q
′
) := (Q

−→
⨿Q′

)◦.

(3) ψ(Q) :=
−→
lkp(PQ), where PQ is the indecomposable projective module associated with the

unique source.
(4) Ψ(Q,Q

′
) := (ψ(Q

′
), ψ(Q)).

Proposition 5.3.2. The following diagram is commutative.

A◦ ×A◦

A◦

B × B

B

Ψ

ψ

ϕ ⨿⃗

Proof. Let Q(1), Q(2) ∈ A◦, s(k) a unique source of Q(k) (k = 1, 2) and

T =
⊕

x∈ϕ(Q(1),Q(2))0

τ−rxP (x).

Then Corollary 5.2.4 shows T ∈ ψ(ϕ(Q(1), Q(2)))0 if and only if one of the following holds:
(i) (rx)x∈Q(2)0 ∈ L(Q(2)) with rs(2) = 0 and ry = 0 for any y ∈ Q(1)0,
(ii) (ry)y∈Q(1)0 ∈ L(Q(1)) with rs(1) = 0 and rx = 1 for any x ∈ Q(2)0.
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Now it is easy to check that

ψ(ϕ(Q(1), Q(2))) = ψ(Q(2))
−→⨿ψ(Q(1)).

Let α ∈ Q0. Then we write

Q⇝ Q \ {α}

if α ∈ Q1 satisfies either (1) or (2) below:
(1) s(α) is not a source or t(α) is not a sink, and there exists a path w ̸= α from s(α) to t(α).
(2) s(α) is a source, t(α) is a sink, and there are at least two arrows from s(α) to t(α) and
another path from s(α) to t(α).

Let S := {Q ∈ A◦ | there is no quiver Q
′
such that Q⇝ Q

′}. It is easy to check that if

Q⇝ · · ·⇝ Q
′ ∈ S, Q⇝ · · ·⇝ Q

′′ ∈ S,

then Q
′
= Q

′′
and in this case put π(Q) := Q

′
= Q

′′
. Now we define an equivalence relation

∼ on A◦ as follows:

Q ∼ Q′ def⇔ π(Q) = π(Q
′
).

Remark 5.3.3. It is easy to check that if Q ∼ Q′
, then

lQ(i, j) = lQ′ (i, j), ∀i, j ∈ Q0 = Q
′
0.

Lemma 5.3.4. Let Q,Q
′ ∈ A◦. If Q ∼ Q

′
, then ψ(Q) = ψ(Q). In particular we obtain a

map

ψ/∼ : A◦/∼ → B.

Proof. This follows from Corollary 5.2.4 and Remark 5.3.3.

Lemma 5.3.5. Let Q(1), Q(2), Q
′
(1), Q

′
(2) ∈ A◦. If Q(i) ∼ Q′

(i) (i = 1, 2), then ϕ(Q(1), Q(2)) ∼
ϕ(Q

′
(1), Q

′
(2)). In particular we get a map

ϕ/∼ : A◦/∼×A◦/∼ → A◦/∼.

Proof. Let Q,Q
′
, Q

′′ ∈ A◦ with Q⇝ Q
′
= Q \ {α}. By the definition we get

ϕ(Q
′
, Q

′′
) = ϕ(Q,Q

′′
) \ {α}.

Since one can check that α satisfies (1) in ϕ(Q,Q
′′
),we have

ϕ(Q,Q
′′
)⇝ ϕ(Q

′
, Q′′).

We repeat this procedure and obtain

ϕ(Q,Q
′′
)⇝ ϕ(π(Q), Q

′′
).

Similarly we have that

ϕ(Q,Q
′′
)⇝ ϕ(Q, π(Q

′′
)).

Therefore we obtain ϕ(Q,Q
′′
)⇝ ϕ(π(Q), π(Q

′′
)).
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Let Cn be the Hasse-quiver of ({0, 1}n,≤op) and Q ∈ A◦ with Q0 = {s, 1, 2, · · ·n − 1}
where s is the unique source of Q. Then a map

ρ : P (s)⊕ (
n−1⊕
i=1

τ−riP (i)) 7→ (r(i))i

induces a full embedding ψ(Q) → Cn−1 of quivers. Therefore we can identify ψ(Q) as a
full sub-quiver of Cn−1. For any T ∈ Cn−1

0 denote by Ti the i-th entry of T . We note that
(0, · · · , 0), (1, · · · 1) ∈ ψ(Q).

Proposition 5.3.6. Let Q ∈ A◦. Then ψ(Q) = K(1)
−→
⨿K(2) for some quivers K(1),K(2) ∈

B if and only if there exists (Q(1), Q(2)) ∈ A◦ ×A◦ such that ψ(Q(i)) = K(i) (i = 1, 2) and
ϕ(Q(2), Q(1)) ∼ Q.

Proof. First assume that there is (Q(1), Q(2)) ∈ A◦×A◦ such that ϕ(Q(2), Q(1)) ∼ Q. Then
define ψ(Q(i)) =: K(i) (i = 1, 2). Then Proposition 5.3.2, Lemma 5.3.4 and Lemma 5.3.5
imply

ψ(Q) = K(1)
−→⨿K(2).

Next assume that ψ(Q) = K(1)
−→⨿K(2) for some quivers K(1),K(2) ∈ B. By the above

Lemma 5.3.5, we can assume that Q ∈ S. Let T be a minimum element of K1 and T
′
a

maximum element of K2. Lemma 5.2.3 implies that there is a unique vertex i ∈ Q0 such
that Ti = 0 and T

′
i = 1. Note that T

′′ ≤ T or T
′′
> T for any T

′′ ∈ ψ(Q). We note also
that T

′′
> T

′
or T

′′ ≤ T
′
for any T

′′ ∈ ψ(Q). Since T
′
< T (i) ≤ T we have T = T (i). If

T (j) ≤ T = T (i) then l(i, j) ≤ l(j, j) = 0. If T (j) > T (i) then l(j, i) ≤ l(i, i) = 0. Therefore
for any j ≤ n − 1 there is either a path from i to j or a path from j to i. Thus we obtain

that Q = (Q
′
(2)
−→⨿Q′

(1))◦, where Q
′
(1) ∈ A (resp. Q

′
(2) ∈ A) is the full sub-quiver of Q with

Q
′
(1)0 = {j | j ̸= i, l(j, i) = 0} (resp. Q′

(2)0 = {j | l(i, j) = 0}) (here we use the fact Q ∈ S).
Let Q(i) := Q

′
(i)◦, then (Q

′
(2)
−→
⨿Q′

(1))◦ ∼ ϕ(Q(2), Q(1)).
Now it is sufficient to show that ψ(Q(i)) = K(i). Consider an injective map

ι : ψ(Q(1))→ K(1) given by ι(T
′′
)j :=

{
T

′′
j j ∈ Q(1)0
0 otherwise.

We show that ι is surjective.
Let T

′′ ∈ K(1). Then T
′′
j ≤ T

′′

j
′ + lQ(j

′
, j) = T

′′

j
′ + lQ(1)(j

′
, j) for any j, j

′ ∈ Q(1)0. Since

T
′′ ≥ T (i) we have T

′′
j ≤ T (i)j = lQ(i, j) = 0 for any j ∈ Q(2)0. Therefore we obtain

T
′′ ∈ ι(ψ(Q(1))). In particular we get ψ(Q(1)) = K(1). Similarly we obtain ψ(Q(2)) = K(2).

Definition 5.3.7. Let T, T
′
be vertices of Cn.

(1) We set T ∨ T ′
:= (min{Ti, T

′
i })i.

(2) We set T ∧ T ′
:= (max{Ti, T

′
i })i.

We consider the following properties for a full sub-quiver K of Cn.
(i)n (0, · · · 0), (1, · · · , 1) ∈ K0.
(ii)n for any T >op T

′
in K, there is a path from T to T

′
in K.

(iii)n T ∨ T
′
, T ∧ T ′ ∈ K0 for any T, T

′ ∈ K0

We put
Ln := {K ∈ B | K satisfies (i)n, (ii)n, (iii)n} and L := ⨿Ln.
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Remark 5.3.8. Note that (Cn,∨,∧) is a finite distributive lattice. Let L be a finite distributive
lattice with a maximum element x and a minimum element y. Then there is a unique positive
integer n such that there exists a lattice-embedding

ι : L→ Cn

which satisfies ι(x) = (0, 0, · · · 0) and ι(y) = (1, 1, · · · 1). Thus the following are equivalent:
(1) L is a finite distributive lattice.
(2) L is isomorphic to some element of L.

Lemma 5.3.9. For any K ∈ Ln, we define a relation ≤K on {1, 2, · · · , n− 1} as follows:

i ≤K j
def⇔ Ti ≥ Tj for any T ∈ K.

Proof. It is sufficient to show that

i ≤K j ≤K i⇒ i = j.

Assume Ti = Tj for any T ∈ K. Now there is a path (0, · · · , 0) = T 0 → T 1 → · · · → T r =
(1, · · · , 1) in K. Therefore there exists a positive integer a such that T a−1

i = T a−1
j = 0 and

T ai = T aj = 1. In particular we obtain i = j.

Definition 5.3.10. We define a map ψ− : L → S as follows:

ψ−(K) := ({s◦}
−→
⨿Q′

(K))◦,

where Q
′
(K) is the Hasse-quiver of ({1, 2, · · · , n− 1},≤K).

Lemma 5.3.11. If Q ∈ A◦, then ψ(Q) ∈ L.

Proof. Let K = ψ(Q) with Q ∈ A◦ and n := #Q0. Then we have already seen that K is a
full sub-quiver of Cn−1 and (0, · · · , 0), (1, · · · , 1) ∈ K0. Therefore K satisfies the condition
(i)n−1. Note that K also satisfies the condition (ii)n−1 (Lemma 5.1.3).

Therefore we prove that K satisfies the condition (iii)n−1. By Corollary 5.2.4, it is suffi-
cient to show that

(T ∨ T ′
)i ≤ (T ∨ T ′

)j + lQ(j, i) and (T ∧ T ′
)i ≤ (T ∧ T ′

)j + lQ(j, i) (∀i, j),

for any vertices T, T
′
of K. Let T, T

′ ∈ K0 and i, j ∈ Q0. If min{Ti, T
′
i } = 0 or lQ(j, i) = 1,

then min{Ti, T
′
i } ≤min{Tj , T

′
j} + lQ(j, i). Assume that min{Ti, T

′
i } = 1 and lQ(j, i) = 0. In

this case 1 = Ti ≤ Tj and 1 = T
′
i ≤ T

′
j . Therefore we obtain Tj = T

′
j = 1. In particular

min{Ti, T
′
i } ≤min{Tj , T

′
j}+ lQ(j, i) for any i, j ∈ Q0. Thus we get T ∨ T ′ ∈ K0. Similarly we

obtain T ∧ T ′ ∈ K0.

Lemma 5.3.12. We obtain Q ∼ ψ−(ψ(Q)) for any Q ∈ A◦. In particular the map

ψ/∼ : A◦/∼ → B

is injective.
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Proof. It is sufficient to show that if Q ∈ S then Q = ψ−(ψ(Q)). Let s ̸= i→ j in Q. Then

Ti ≤ Tj + lQ(j, i) = Tj

for any T ∈ ψ(Q). If j <ψ(Q) j
′
<ψ(Q) i, then we have

l(j
′
, i) = T (j

′
)i ≤ T (j

′
)j′ = 0 and l(j, j

′
) = T (j)j′ ≤ T (j)j = 0.

Therefore we obtain that there exists a path

i→ · · · → j
′ → · · · → j

in Q. Since Q ∈ S, we get a contradiction. In particular i→ j in Q
′
(ψ(Q)).

On the other hand if i→ j in Q
′
(ψ(Q)) then

lQ(j, i) = T (j)i ≤ T (j)j = 0.

Therefore there is a path
i→ j

′ → · · · → j

in Q. Since
Ti ≤ Tj′ + l(j

′
, i) = Tj′ ≤ Tj + l(j, j

′
) = Tj

for any T ∈ ψ(Q), we have
j ≤ψ(Q) j

′
<ψ(Q) i.

In particular we obtain j = j
′
.

Hence we obtain Q \ {s} = Q
′
(ψ(Q)). We conclude that

Q = ({s◦}
−→
⨿Q′

(ψ(Q)))◦ = ψ−(ψ(Q)).

Lemma 5.3.13. Let K ∈ B. Then the following are equivalent.
(1) K = ψ(Q) for some Q ∈ A◦.
(2) K ∈ L.

Proof. ((1)⇒ (2)) It follows from Lemma 5.3.11.
((2)⇒ (1)) Let K ∈ Ln. It is sufficient to show K0 = ψ(ψ−(K))0.
First let T ∈ K0 and i, j ∈ ψ−(K)0 \ {s}. If l(j, i) := lψ−(K)(j, i) = 0 then j ≤K i. Thus

we obtain Ti ≤ Tj . If l(j, i) = 1 then Ti ≤ Tj + l(j, i). Hence we obtain

Ti ≤ Tj + lψ−(K)(j, i) (∀i, j).

This implies that
T ∈ ψ(ψ−(K))0.

Next suppose that ψ(ψ−(K))0 \K0 ̸= ∅. Note that ψ(ψ−(K)) ∈ Ln. Then the conditions
(i)n and (ii)n give that

{T ∈ ψ(ψ−(K))0 \K0 | T
′ → T for some T

′ ∈ K0} ̸= ∅.

Let T be a minimal element of {T ∈ ψ(ψ−(K))0\K0 | T
′ → T for some T

′ ∈ K0} and T
′ ∈ K0

with T
′ → T . Then the conditions (i)n and (ii)n imply that there exists T

′′ ∈ K0 such that
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T
′ → T

′′
. Now there exists i, j such that 0 = Tj < Ti = 1, T

′
i = T

′
j = 0 and 0 = T

′′
i < T

′′
j = 1.

Note that Lemma 5.3.12 implies ≤K=≤ψ(ψ−(K)). In fact if we let Q := ψ−(K), then

i ≤ψ(Q) j ⇔ lψ−(ψ(Q))(i, j) = 0

⇔ lQ(i, j) = 0
⇔ i ≤K j.

Since Ti > Tj , we have

i ̸≥ψ(ψ−(K)) j ⇔ i ̸≥K j.

In particular there exists S ∈ K0 such that Si > Sj . Let T
′′′
:= T ∧T ′′

. Then the minimality
of T gives T

′′′ ∈ K0. Since

((T
′ ∧ S) ∨ T ′′′

)a =


min{max{Ta, Sa}, Ta} a ̸= i, j,

1 a = i,
0 a = j,

we obtain that T = (T
′ ∧ S) ∨ T ′′′ ∈ K0. Therefore we get a contradiction.

Corollary 5.3.14. ψ induces a bijection between S and L.

Now Theorem 5.2.6 gives the following result.

Theorem 5.3.15. (1) For any Q ∈ A◦, there exists K ∈ L such that
−→Tp(Q) =

−→⨿K.

(2) For any K ∈ L, there exists Q ∈ A◦ such that
−→Tp(Q) =

−→⨿K.

Theorem 5.3.15 says that a poset which is obtained from infinitely many copies of a finite
distributive lattice may be realized as the pre-projective tilting Hasse quiver of Q ∈ A◦ and
vice verse.

Finally we give an equivalent condition for two quivers in A◦ to have the same pre-
projective tilting Hasse quiver.

Corollary 5.3.16. Let Q(1), Q(2) ∈ A◦. Then the following are equivalent.

(1)
−→Tp(Q(1)) =

−→Tp(Q(2)).
(2) There exists t1, t2 ∈ Z>0 and Q ∈ A◦ such that,

Q(1) ∼ (Q
−→
⨿Q
−→
⨿ · · ·

−→
⨿Q︸ ︷︷ ︸

t1

)◦ and Q(2) ∼ (Q
−→
⨿Q
−→
⨿ · · ·

−→
⨿Q︸ ︷︷ ︸

t2

)◦.

Proof. ((2)⇒ (1)) This follows from Proposition 5.3.6, Lemma 5.3.4 and Lemma 5.3.5.
((1)⇒ (2)) Let

ψ(Q(i)) = S1(i)
−→⨿S2(i)

−→⨿ · · ·−→⨿Sri(i) (St(i) ∈ B)

be a decomposition with ri being maximal (i = 1, 2) and r := gcd(r1, r2).
Consider a homomorphism f : Z → Z/r1Z ⊕ Z/r2Z where f(t) = (t mod r1, t mod r2).

Let 1 ≤ a ≤ r1 and 1 ≤ b ≤ r2. Then the condition (1) implies

a ≡ b mod r ⇒ (a mod r1, b mod r2) ∈ Im f ⇒ Sa(1) = Sb(2).
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Therefore we get Sx+tr(1) = Sx(2) = Sx(1) and Sx+tr(2) = Sx(1) = Sx(2)(x ≤ r). In
particular we get,

ψ(Q(1)) = S
−→
⨿S · · ·

−→
⨿S︸ ︷︷ ︸

t1

, ψ(Q(2)) = S
−→
⨿S · · ·

−→
⨿S︸ ︷︷ ︸

t2

,

where S = S1(1)
−→⨿S2(1)

−→⨿ · · ·−→⨿Sr(1) and ti = ri
r (i = 1, 2). By Proposition 5.3.6, there

exists a quiver Q satisfying ψ(Q) = S. Then Lemma 5.3.12 shows Q satisfies the condition (2).
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