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Chapter 1

Introduction

1.1 Motivation

Knowing the mechanisms of various biological systems is one of vital prob-
lems. Direct researches on these systems often take a lot of time and exper-
iments cost immensely. Sometimes they are even unfeasible. Other way in
getting desired information about biological systems is constructing mathe-
matical models which describe the systems and then studying the models by
using mathematical tools. In the study of some biological systems, numerical
simulations on the basis of mathematical models are indispensable. This ap-
proach has several advantages: Mathematical modelling is a simple means of
doing hypothetical experiments which are not easily done with real phenom-
ena. Numerical simulations are useful in suggesting the relative importance
of different features of the models and the effect of varying the magnitude of
different parameters. They also have the power of performing simultaneous
calculations of many interacting terms. Their outputs can be checked again
with the actual observations.

Many systems have been modelled in view of deterministic mechanisms.
However, we know that real biological systems are always subject to environ-
mental noises and incompletely understood information. These factors need
to be carefully considered so that the model predictions are meaningful and
parameter values are possible to interpret. To be realistic, models of biological
systems should include these factors. They will be well-modelled by stochas-
tic models which embrace complex variations in their dynamics. Stochastic
differential equation is a natural extension of a deterministic differential equa-
tion where we model relevant parameters as suitable stochastic processes or
add stochastic processes to the driving system equations. This assumes that
the dynamics are partly driven by noise.

This dissertation is devoted to a numerical study on stochastic models for
some biological systems. More precisely, we study two problems as follows.

The first one is a Stochastic Forest Model. There is no doubt that conser-
vation of forest resources is one of the main subjects in environmental issues.

1



2 CHAPTER 1. INTRODUCTION

In order to preserve our forest resources, we must first understand the prin-
ciples of growth of trees in the forest. Then we can take positive actions to
protect our forest from vanishing. In [3, 4], Antonovsky et al. introduced
a deterministic, mono-species ecosystem model with two age classes of trees:
the young and the old ones. In our study, we are interested in another aspect
of the forest model, that is the effects of random factors on the forest model,
since a real forest is often subject to environmental noises. It is seen that the
asymptotic behavior of the solutions depends strongly on the magnitude of
the mortality rate of old age trees. So, on the basis of that age-structured
model, we incorporate a noise factor to the mortality rate of old age class.
That results in a stochastic forest model.

{
du = {ρv − [γ(v) + f ]u}dt,
dv = (fu− hv)dt+ σvdwt.

Here, u(t) and v(t) denote tree densities of young and old age classes, re-
spectively. The parameters ρ, h and f are coefficients of reproduction and
mortality of old age trees, and aging of young age trees, respectively; while,
γ(v) is a mortality of young age trees which is allowed to depend on the old
tree density v. The process {wt, t > 0} is a one-dimensional Brownian motion
with coefficient σ > 0. We are concerned with the long time behavior of solu-
tions which characterizes the stable existence or decline of the forest. Our aim
is to consider the existence and uniqueness of global positive solutions and
conditions for sustainability of the forest. Our obtained results may provide
us some information on the nature of real forest systems.

The second problem concerns with biological swarming. For this problem,
we study four models which describe swarming behaviors.

The first one is a stochastic Cucker-Smale model which is stated below


dxi = vidt,

dvi =
N∑
j=1

ψ(‖xj − xi‖)(vj − vi)dt+ σ
N∑
j=1

(vj − vi) ◦ dwt,
1 6 i 6 N.

Here xi, vi are respectively the position and velocity of the i-th particle in
the system consisting of N particles. All particles interacts with each other
through velocity matching rule represented by communication rate ψ. Param-
eter σ > 0 is the strength of white noise and {wt, t > 0} is a one-dimensional
Brownian motion, and ◦ denotes the operation for Stratonovich stochastic
differential equations. This model describes flocking behavior of particles.
We want to find out conditions for flocking and non-flocking behaviors in the
system.
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The second one is called the Basic Fish Schooling Model

dxi(t) = vidt+ σidwi(t), i = 1, 2, . . . , N,

dvi(t) =
[
−α

N∑
j=1, j 6=i

(
rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
(xi − xj)

−β
N∑

j=1, j 6=i

(
rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
(vi − vj)

+Fi(t, xi, vi)
]
dt, i = 1, 2, . . . , N,

which describes the process of schooling of N -fish system. The unknown
stochastic processes xi(t), vi(t) with values in Rd denote a position and a ve-
locity of the i-th fish of system at time t; The fish are allowed to swim in
the unbounded, continuous and homogeneous space Rd. σidwi denote noise
resulting from the imperfectness of information-gathering and action of the
i-th fish, where {wi(t), t > 0} (i = 1, 2, ..., N) are independent d-dimensional
Brownian motions. Powers p, q satisfying 1 < p < q < ∞ are fixed expo-
nents, r > 0 is a fixed distance and α, β are positive coefficients for interac-
tion between fish and velocity matching, respectively. Finally, the functions
Fi(t, xi, vi) denote external forces at time t which are given functions defined
for (xi, vi) with values in Rd. With this model, we would like to survey the
model quantitatively and see how some parameters, e.g., population size, crit-
ical distance between individuals, contribute to the geometrical structure of
created school. Then we study a stochastic dynamical system incorporating
white noises which represent various perturbations from the environment to
the above model equations. Information about how forming a school is robust
with respect to noises is studied by means of computer simulations.

In the other two models which is derived from the basic fish schooling
model by incorporating additional components, we are interested in prob-
lems of avoiding obstacles and finding food resources. We expect to find out
behavioral patterns of the school in the environment with presence of obsta-
cles which can give some information about the cohesiveness of fish schools.
We would also like to check the hypothesis that fish benefit better foraging
success by forming school. Here we have just introduced briefly the model
equations of three over five models under consideration in this dissertation.
More descriptive explanations of all five models will be given in concerning
chapters.

Studying biological swarming is important because besides more under-
standing about our world it brings, information acquired from the study of
swarming behaviors can be applied to many important problems. Knowledge
gained from studying interaction rules between agents in some biological sys-
tems may be used to build blocks for the design of artificial systems, such
as reactive robotic systems [18], cellular network [47] or to construct infor-
mation systems [27, 45]. The self-organizing feature of school can provide a
deeper insight in design of sensor networks, self-assembly of connected mobile
networks, automated parallel delivery of payloads [22, 55].
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The information obtained can be seen as guidelines for constructing new
information system like ambient system. It seems that we have to consider
complex systems whose constituents react each other with certain rules. Such
systems may not have a beforehand goal or the goal can even depend on
the process. In one hand such systems have robustness, but in the other
hand, they also have fragility. We would like to apply our research results on
robustness and fragility of self-organizing biological systems for information
systems.

1.2 Outline

This dissertation is organized as follows.
Chapter 2 reviews roughly some basic notions in probability theory, sev-

eral known results for stochastic differential equations and some numerical
methods for solving stochastic differential equations. In this chapter, we rep-
resent in detail two schemes which will be used to numerically solve the two
problems mentioned above. They are the explicit Euler scheme and the order
1.5 strong Taylor scheme.

Chapter 3 is devoted to investigating a Stochastic Forest Model. We first
introduce the model equations for the problem. We are concerned with the
asymptotic behavior of solutions which characterizes stable existence or de-
cline of the forest. After proving the existence and uniqueness of global pos-
itive solutions, we show some sufficient conditions for sustainability of the
forest by means of numerical solutions.

Chapter 4 considers conditions for flocking and non-flocking behaviors in
Cucker-Smale model. We then surveys the basic fish schooling model de-
scribing the process of fish’s school formation. After introducing the model
equations, we make some quantitative investigations. We study how some
parameters, e.g., population size, critical distance between individuals, con-
tribute to the geometrical structure of the school. A stochastic dynamical sys-
tems incorporating white noises which represent various perturbations from
the environment is constructed. Numerical simulations are performed to show
how the school formation is robust with respect to noises.

Chapter 5 is concerned with the problems of avoiding obstacles and finding
food resources. We are interested in behavioral patterns of the school in the
environment with the presence of obstacles. We find four patterns of school
while avoiding obstacles. The relationships between parameters contained
in the model and school behaviors are studied. This result shows that the
fish school has its cohesiveness. We also find that the fish acquire foraging
advantages by forming school.

Chapter 6 contains conclusions and some future researches.
Chapter 7 is Appendix in which we show detailed data of simulation re-

sults.



Chapter 2

Preliminaries

This chapter contains some concepts on probability theory, several basic
results on stochastic differential equations and two numerical methods for
solving these equations. Materials in this chapter are viewed in [7, 23, 28, 37].

2.1 Convergence of random sequences

Many problems deal with approximations to random variables. There are
various possible ways of defining limit of a sequence of random variables. We
recall here some of them.

We first introduce some notions which will be used in this section. Let
Xn, n = 1, 2, . . . be a sequence of random variables defined on a given proba-
bility space (Ω,A,P) consisting of the sample space Ω, the collection of events
A, and the probability measure P.

Definition 2.1.1 (Almost sure convergence (a.s)). A sequence of random
variables {Xn} converges almost surely to random variable X if, for all ω ∈ Ω
except a set of probability zero,

lim
n→∞

Xn(ω) = X(ω).

Or equivalently

P
(
{ω ∈ Ω : lim

n→∞
|Xn(ω)−X(ω)| = 0

)
= 1.

So this is also called the convergence with probability one (w.p.1).

Definition 2.1.2 (Mean-square limit (or limit in the mean)). We say that
the sequence {Xn} converges to random variable X in the mean square if

lim
n→∞

E(|Xn −X|2) = 0.

Mean square limit is well known in Hilbert space theory.

5



6 CHAPTER 2. PRELIMINARIES

Definition 2.1.3 (Limit in probability (or stochastic limit)). We can consider
the possibility that Xn approaches X in such a way that the probability of
deviation from X approaches zero: precisely, this means that if for any ε > 0

lim
n→∞

P (|Xn −X| > ε) = 0

then the stochastic limit of Xn is X.

Definition 2.1.4 (Limit in distribution). An even weaker form of convergence
occurs if

lim
n→∞

FXn(x) = FX(x) at all continuous points of FX ,

where FY (y) := P ({ω ∈ Ω : Y (ω) < y}) is the distribution function of Y at
y. In this case the convergence of the limit is said to be in distribution. This
is also known as convergence in law.

Definition 2.1.5 (Weak convergence).

lim
n→∞

∞∫
−∞

f(x)dFXn(x) =

∞∫
−∞

f(x)dF (x)

for all test function f : R→ R.

Now we show some relationships between the above notions
Almost sure convergence =⇒ stochastic convergence =⇒ convergence in dis-
tribution,
Convergence in mean square =⇒ stochastic convergence.

2.2 Stochastic differential equations

2.2.1 Wiener Processes

Definition 2.2.1 (Standard Wiener process). [28, 37] A standard Wiener
process is a family of random variables W = {W (t), t > 0} such that W (t)
depends continuously on t and satisfies the following conditions.

• W (0) = 0 w.p.1,

• For 0 6 s 6 t, the random variable given by the increment W (t)−W (s)
is normally distributed with mean zero and variance t− s.

• For 0 6 s < t < u < v, the increments W (t)−W (s) and W (v)−W (u)
are independent.

The Wiener process is a mathematical description of Brownian motion.
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Remark 2.2.2. A standard Wiener process can be approximated in distri-
bution on any finite time interval by a scaled random walk.

For example, we divide the interval [0, 1] into N subintervals of equal
length ∆t = 1

N
by partition:

0 = t0 < t1 < . . . < tN = 1

and construct a stepwise continuous random walk SN(t) by taking inde-
pendent, equally probable steps of length ±

√
∆t at the endpoint of each

subinterval. Starting with independent two-point random variables Xn, n =
1, 2, . . . , N , taking values ±1 with equal probability, we define

SN(tn) = (X1 +X2 + . . .+Xn)
√

∆t,

SN(t) = SN(tn), tn 6 t < tn+1, n = 0, 1, . . . , N − 1,

SN(0) = 0.

This random walk has independent increments X1

√
∆t, X2

√
∆t, X3

√
∆t, . . .

for the given subintervals, but is not a process with independent increments.

E(SN(t)) = 0,

Var(SN(t)) = ∆t

[
t

∆t

]
,where

[
t

∆t

]
is the integer part of

t

∆t
,

Var(SN(t))→ t as N =
1

∆t
→∞ for all t ∈ [0, 1],

Var(SN(t)− SN(s))→ t− s as N →∞ for all 0 6 s < t 6 1.

By the Central Limit Theorem (stated below), it follows that SN(t) converges
in distribution as N →∞ to a standard Wiener process.

Theorem 2.2.3 (Classical Central Limit Theorem). Let {X1, X2, . . . , Xn}
be a random sample of size n, that is, a sequence of independent and iden-
tically distributed random variable with expected values µ and variances σ2.
Let Sn = 1

n
(X1 + X2 + . . . + Xn). For large n’s, the distribution of Sn is

approximately normal with mean µ and variance σ2

n
(regardless of the shapes

of the distribution of individual Xi’s).

2.2.2 White noise

In many time-invariant engineering systems the (time-independent) vari-
ance of a stochastic process X(t) can be interpreted as an average power (or
energy) and is written as

Var(X(t)) = c(0) =

∞∫
−∞

S(ν)dν,
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where c(0) is the value of the covariance c(t−s) at s = t and S(ν) denotes the
spectral density measuring the average power per unit frequency at frequency
ν. Function S(ν) is real-valued and nonnegative with S(−ν) = S(ν) for
all ν, and can be extracted from the above expression by an inverse Fourier
transform

S(ν) =

∞∫
−∞

c(s)e−2πiνsds =

∞∫
−∞

c(s) cos(2πνs)ds.

This brings us to Gaussian white noise, which can be thought of as a zero
mean wide-sense stationary process with constant nonzero spectral density
S(ν) = S0.

Its average power is uniformly distributed in frequency. Its covariances
c(s) = S0δ(s) for all s, where δ(s) is the Dirac function

δ(s) = 0 ∀s 6= 0 :

∞∫
−∞

f(s)δ(s)ds = f(0)

for all f continuous at s = 0.
This suggests that Gaussian white noise Ẇ is an unusual stochastic pro-

cess. Let W = {W (t), t > 0} be a standard Wiener process. For fixed h > 0,
we define a new process Xh = {Xh(t), t > 0} by

Xh(t) =
W (t+ h)−W (t)

h
, for all t > 0.

Xh(t) is a wide-sense stationary Gaussian process with

µ = 0, c(t− s) =
1

h
max

{
0, 1− 1

h
|t− s|

}
.

Thus it has spectral density

Sh(ν) =
1

h

h∫
−h

(
1− |s|

h

)
cos(2πνs)ds =

(
sin(2πνh)

πνh

)2

.

This density is very broad for small h and converges to 1 for all ν 6= 0 as h
converges to 0, which suggests that the process Xh converges in some sense
to a Gaussian white noise process Ẇ as h converges to 0. Hence a Gaussian
white noise process is the derivative of a Wiener process.

2.2.3 Ito stochastic integral

Suppose that we have a probability space (Ω,A,P), a Wiener process
W = {Wt, t > 0} and an increasing family {At, t > 0} of sub-σ-algebras of
A such that Wt is At-measurable with

E(Wt|A0) = 0 and E(Wt −Ws|As) = 0 w.p.1 for all 0 6 s 6 t.
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For 0 < T < ∞ we define a class L2
T of functions f : [0, T ] × Ω → R

satisfying

f is jointly L ×A−measurable;

T∫
0

E(f(t, .)2)dt <∞;

E(f(t, .)2)dt <∞ for each 0 6 t 6 T ;

f(t, .) is At-measurable for each 0 6 t 6 T.

Two functions f, g ∈ L2
T are considered to be identical if f(t, ω) = g(t, ω) for

all (t, ω) except possibly on a subset of µL×P-measure zero. On L2
T we equip

the norm

‖f‖2,T =

√√√√√ T∫
0

E(f(t, .)2)dt. (2.2.1)

Then L2
T is a Banach space (that is a complete normed linear space), provided

we identify functions which differ only on sets of measure zero.
For any partition 0 = t1 < t2 < . . . < tn+1 = T and any mean-square

integrable Atj -measurable random variables f1, f2, . . . , fn, we define a step
function f ∈ L2

T by f(t, ω) = fj(ω), w.p.1, for tj 6 t < tj+1 and j =
1, 2, . . . , n. Hence

T∫
0

E(f(t, .)2)dt =
n∑
j=1

E(f 2
j )(tj+1 − tj).

We denote by S2
T the subset of all step functions in L2

T . Then we can ap-
proximate any function in L2

T by step functions in S2
T to any desired degree of

accuracy in the norm (2.2.1). To be specific we have S2
T is dense in (L2

T , ‖.‖2,T )
[37, Lemma 3.2.1].

Let f be a step function in S2
T corresponding to a partition 0 = t1 <

t2 < . . . < tn+1 = T and random variables f1, f2, . . . , fn. We define the Ito
stochastic integral for f over the interval [0, T ] by

I(f)(ω) =
n∑
j=1

fj(ω)[Wtj+1
(ω)−Wtj(ω)], (2.2.2)

w.p.1. I(f) is AT -measurable because fj is Atj -measurable and Wtj+1
−Wtj

is Atj+1
-measurable for j = 1, 2, . . . , n. Moreover, each product is integrable

over Ω, which follows from the Cauchy-Schwarz inequality and the fact that
each term is mean-square integrable; hence I(f) is AT integrable. In addition

E(I(f)) = 0,
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E(I(f)2) =

T∫
0

E(f(t, .)2)dt, (2.2.3)

I(αf + βg) = αI(f) + βI(g) w.p.1, (2.2.4)

for any f, g ∈ S2
T and α, β ∈ R.

Since S2
T is dense in (L2

T , ‖.‖2,T ), for an arbitrary function f ∈ L2
T , there

exists a sequence of step functions f (n) ∈ S2
T for which

T∫
0

E
(∣∣f (n)(t, .)− f(t, .)

∣∣2) dt→ 0 as n→∞.

The Ito integrals I(f (n)) specified by (2.2.2) are well-defined and they satisfy

E
(∣∣I(f (n))− I(f (n+m))

∣∣2) = E
(∣∣I(f (n) − f (n+m))

∣∣2)
=

T∫
0

E
(∣∣f (n)(t, .)− f (n+m)(t, .)

∣∣2) dt
6 2

T∫
0

E
(∣∣f (n)(t, .)− f(t, .)

∣∣2) dt+ 2

T∫
0

E
(∣∣f(t, .)− f (n+m)(t, .)

∣∣2) dt.
(2.2.5)

(the last inequality is got due to (a+ b)2 6 2(a2 + b2)).
This means that {I(fn)} is a Cauchy sequence in the Banach space L2(Ω,A,P),
and so there exists a unique, w.p.1, random variable I in L2(Ω,A,P) such that
E(|I(f (n))− I|2)→ 0 as n→∞. This I is AT -measurable since it is the limit
of AT -measurable random variables.

In the following, we prove that the limit I is unique regardless the choice
of step functions converging to f in L2

t . Indeed, let f̂ (n) be another sequence
of step functions converging to f and suppose that I(f̂ (n)) converges to Î.
Then

E
(∣∣∣I − Î∣∣∣2) 6 2E

(∣∣I − I(f (n))
∣∣2)+ 2E

(∣∣∣Î − I(f̂ (n))
∣∣∣2)

Applying (2.2.5) with f (n+m) replaced by f̂ (n), then taking limits as n→∞,
we obtain E(|I − Î|2) = 0, and hence I = Î, w.p.1.

The Ito stochastic integral I(f) of a function f ∈ L2
T is defined to be the

common mean-square limit of sequences of the sums (2.2.2) for any sequence
of step functions in S2

T converging to f in the norm (2.2.1).
So far we have only considered the Ito integral I(f) of a function f ∈ L2

T

over a fixed time interval [0, T ]. Let B be a Borel subset of [0, T ]. Then the
Ito integral of f over the subset B is the Ito integral I(fIB) of fIB over [0, T ],
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where IB is the indicator function of B; clearly fIB ∈ L2
T . We denote the Ito

integral of f over interval [t0, t1] by
t1∫
t0

fdWs. For 0 6 t0 < t1 < t2 6 T , we

have
fI[t0,t2] = fI[t0,t1] + fI[t1,t2],

except at the instant t = t1. So by (2.2.4) we obtain, w.p.1,

t2∫
t0

f(s, ω)dWs(ω) =

t1∫
t0

f(s, ω)dWs(ω) +

t2∫
t1

f(s, ω)dWs(ω).

For a variable subinterval [t0, t] ⊆ [0, T ], we form a stochastic process
Z = {Zt, t0 6 t 6 T}, defined by

Zt(ω) =

t∫
t0

f(s, ω)dWs(ω),

w.p.1, for t0 6 t 6 T . We have Zt is At-measurable with

E(Zt) = 0 and E(Z2
t ) =

t∫
t0

E(f(s, .)2)ds.

Finally, we extend the Ito integral to a wider class of integrands than those
in the space L2

T . We say that f belongs to LωT if f is jointly L×A-measurable,
f(t, .) is At-measurable for each t ∈ [0, T ] and

T∫
0

f(s, ω)2ds <∞,

w.p.1; hence L2
T ⊂ LωT . We then define fn ∈ LωT by

fn(t, ω) =

f(t, ω) :
t∫
0

f(s, ω)2ds 6 n,

0 : otherwise.

The Ito stochastic integrals I(fn) of the fn over 0 6 t 6 T are thus well-
defined. It can then be shown that they converge in probability to a unique,
w.p.1, random variable, which we denote by I(f) and call the Ito stochastic
integral of f ∈ LωT over the interval [0, T ].

2.2.4 Ito formula

Firstly we recall the Ito formulae which is a scalar transformation of a
single stochastic differential, by which we mean an expression

dXt(ω) = e(t, ω)dt+ f(t, ω)dWt(ω). (2.2.6)
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Here e(t, ω), f(t, ω) are two functions with
√
|e|, f ∈ LωT .

We need the following lemma

Lemma 2.2.4. [37, Lemma 3.3.1] Let U : [0, T ] × R → R have continuous
partial derivatives ∂U

∂t
, ∂U

∂x
, and ∂2U

∂x2
. Then for any t, t + ∆t ∈ [0, T ] and

x, x+ ∆x ∈ R, there exist constants 0 6 α, β 6 1 such that

U(t+ ∆t, x+ ∆x)− U(t, x) =
∂U

∂t
(t+ α∆t, x)∆t+

∂U

∂x
(t, x)∆x

+
1

2

∂2U

∂x2
(t, x+ β∆x)(∆x)2.

Theorem 2.2.5 (The Ito Formula). [37, Theorem 3.3.2] Let Yt = U(t,Xt)
for 0 6 t 6 T , where U is as in Lemma 2.2.4 and Xt satisfies (2.2.6). Then

Yt − Ys =

t∫
s

[
∂U

∂t
(u,Xu) + e(u, ω)

∂U

∂x
(u,Xu) +

1

2
f(u, ω)2

∂2U

∂x2
(u,Xu)

]
du

+

t∫
s

f(u, ω)
∂U

∂x
(u,Xu)dWu,

w.p.1, for any 0 6 s 6 t 6 T .

Now we state the vector form of the Ito formula. Let U : [0, T ]×Rd → R
have continuous partial derivatives ∂U

∂t
, ∂U
∂xk

, ∂2U
∂xk∂xi

for k, i = 1, 2, . . . , d, and

define a scalar process {Yt, 0 6 t 6 T} by

Yt = U(t,Xt) = U(t,X1
t , X

2
t , . . . , X

d
t ),

w.p.1, where Xt satisfies

dXt = e(t, ω)dt+ F (t, ω)dWt.

Here e : [0, T ] × Ω → Rd with components ek satisfying
√
|ek| ∈ LωT (or L2

T )
for k = 1, 2, . . . , d, and F : [0, T ]× Rd×m with components F i,j ∈ LωT (or L2

T )
for k = 1, 2, . . . , d and j = 1, 2, . . . ,m.
Then the stochastic differential for Yt is given by

dYt =

[
∂U

∂t
+

d∑
k=1

ek(t, ω)
∂U

∂xk
+

1

2

m∑
j=1

d∑
k=1

F i,j(t, ω)F k,j(t, ω)
∂2U

∂xi∂xk

]
dt

+
m∑
j=1

d∑
i=1

F i,j(t, ω)
∂U

∂xi
dW j

t ,

where the partial derivatives are evaluated at (t,Xt)
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2.2.5 Ito stochastic differential equations

For a deterministic ordinary differential equation, under certain condi-
tions, we know how the system behaves at all time t, even if we cannot find
a solution analytically. We can always solve it numerically up to any de-
sired precision. However, many biological systems can not be modeled by
deterministic ordinary differential equations because they are often subject to
environmental noises and incompletely understood information. These sys-
tems will be more realistically modeled if we allow some randomness in the
description. A stochastic differential equation is a natural extension of a
deterministic ordinary differential equation by including some relevant ran-
domized parameters or some suitable form of random processes, or adding a
noise term to the driving equations of the system. This approach assumes
that some degree of noise is present in the dynamics of the process, for in-
stance, we can use the Wiener process. It leads to a mixed system with both
a deterministic and a stochastic part in the following way

dXt = a(t,Xt)dt+ b(t,Xt)dWt (2.2.7)

where Xt = X(t) is a stochastic process, not a deterministic function. Wt =
W (t) is a Wiener process. It is useful to write dWt = ξtdt, where ξt is a white
noise process which is the derivative of a Wiener process.

We call a process given by an equation of the form (2.2.7) an Ito process.
The functions a(.) and b(.) can be nonlinear, where a(.) is the drift part or
the deterministic component, and b(.) is the diffusion part or the stochastic
component (system noise). Equation (2.2.7) can be interpreted in the integral
form

Xt = Xt0 +

t∫
t0

a(s,Xs)ds+

t∫
t0

b(s,Xs)dWs (2.2.8)

where Xt0 is a random variable independent of the Wiener process. It is a
diffusion process, called an Ito diffusion. The first integral on the right hand
side can be interpreted as an ordinary integral, the second integral is an Ito
stochastic integral with respect to the Wiener process Wt.

We classify two kinds of solutions for stochastic differential equations:
strong solution and weak solution, as defined below.

Definition 2.2.6 (Strong solution). When we change the Wiener process in
(2.2.8), we again obtain a unique solution with the new Wiener process in it.
Then we call such a solution a strong solution of the stochastic differential
equations.

Definition 2.2.7 (Weak solution). When we are free to select a Wiener pro-
cess and then find a solution corresponding to this particular Wiener process,
we call such a solution a weak solution.

Note that some stochastic differential equations only have weak solutions
and no strong solutions.
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Theorem 2.2.8 (The existence and uniqueness for strong solutions). [37,
Theorem 4.5.3] Given an arbitrary, but fixed instant 0 6 t0 < T , and coeffi-
cient functions a, b : [t0, T ]×R→ R. Fixed a Wiener process W = {Wt, t >
0} with independent components associated with an increasing family of σ-
algebras {At, t > 0}. That is Wt = (W 1

t ,W
2
t , . . . ,W

m
t ), where the W j for

j = 1, 2, . . . ,m are scalar Wiener process with respect to {At, t > 0}, which
are pairwise independent.

Under the following assumptions:
A1 (Measurability): a = a(t, x), b = b(t, x) are jointly L2-measurable in
(t, x) ∈ [t0, T ]× R;
A2 (Lipschitz condition): There exists a constant K > 0 such that

|a(t, x)− a(t, y)| 6 K|x− y|,
|b(t, x)− b(t, y)| 6 K|x− y|,

for all t ∈ [t0, T ], x, y ∈ R.
A3 (Linear growth bound): There exists a constant L > 0 such that

|a(t, x)|2 6 L2(1 + |x|2),
|a(t, x)|2 6 L2(1 + |x|2),

for all t ∈ [t0, T ], x, y ∈ R.
A4 (Initial value): Xt0 is At0-measurable with E(|Xt0 |2) <∞,

the stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt

has a pathwise unique strong solution Xt on [t0, T ] with

sup
t06t6T

E(|Xt|2) <∞.

We need the following lemmas for proving the above theorem.

Lemma 2.2.9 (The Gronwall inequality). Let α, β : [t0, T ]→ R be integrable
with

0 6 α(t) 6 β(t) + L

t∫
t0

α(s)ds

for t ∈ [t0, T ] where L > 0. Then

α(t) 6 β(t) + L

t∫
t0

eL(t−s)β(s)ds

for t ∈ [t0, T ].
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Lemma 2.2.10. [37, Lemma 4.5.2] If A1 and A2 hold, then the solutions of
(2.2.8) corresponding to the same initial value and the same Wiener process
are pathwise unique.

Proof. Let Xt and X̂t be two solutions corresponding to the same initial value
and the same Wiener process of (2.2.8) on [t0, T ] with, almost surely, contin-
uous sample paths. Since they may not have finite second moments, we use
the following truncation procedure: for N > 0 and t ∈ [t0, T ] we define

I
(N)
t (ω) =

{
1 : |Xu(ω)|, |X̂u(ω)| 6 N for t0 6 u 6 t,

0 : otherwise.

We have I
(N)
t is At-measurable and I

(N)
t = I

(N)
t I

(N)
s for t0 6 s 6 t. Conse-

quently, the integrals in the following expression are meaningful:

Z
(N)
t = I

(N)
t

t∫
t0

I(N)
s

(
a(s,Xs)− a(s, X̂s)

)
ds (2.2.9)

+ I
(N)
t

t∫
t0

I(N)
s

(
b(s,Xs)− b(s, X̂s)

)
dWs,

where Z
(N)
t = I

(N)
t (Xt − X̂t). From the Lipschitz condition A2 we have

max
{∣∣∣I(N)

s

(
a(s,Xs)− a(s, X̂s)

)∣∣∣ , ∣∣∣I(N)
s

(
b(s,Xs)− b(s, X̂s)

)∣∣∣}
6 KI(N)

s |Xs − X̂s| 6 2KN (2.2.10)

for t0 6 s 6 t. Thus the second order moments exist for Z
(N)
t and so do

the two integrals in (2.2.9). Using the inequality (a + b)2 6 2(a2 + b2), the
Cauchy-Schwarz inequality and the property (2.2.3) of the Ito integral we
obtain from (2.2.9)

E
(∣∣∣Z(N)

t

∣∣∣2) 6 2E

∣∣∣∣∣∣
t∫

t0

I(N)
s

(
a(s,Xs)− a(s, X̂s)

)
ds

∣∣∣∣∣∣
2

+ 2E

∣∣∣∣∣∣
t∫

t0

I(N)
s

(
b(s,Xs)− b(s, X̂s)

)
dWs

∣∣∣∣∣∣
2

6 2(T − t0)
t∫

t0

E
(∣∣∣I(N)

s

(
a(s,Xs)− a(s, X̂s)

)∣∣∣2) ds
+ 2

t∫
t0

E
(∣∣∣I(N)

s

(
b(s,Xs)− b(s, X̂s)

)∣∣∣2) ds,
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which we combine with (2.2.10) to get

E
(∣∣∣Z(N)

t

∣∣∣2) 6 L

t∫
t0

E
(∣∣Z(N)

s

∣∣2) ds
for t ∈ [t0, T ] where L = 2(t − t0 + 1)K2. Applying the Gronwall inequality

with α(t) = E(|Z(N)
t |2) and β ≡ 0, we conclude that

E
(∣∣∣Z(N)

t

∣∣∣2) = E
(∣∣∣I(N)

t

(
Xt − X̂t

)∣∣∣2) = 0,

and hence I
(N)
t Xt = I

(N)
t X̂t, w.p.1, for each t ∈ [t0, T ]. Since the sample paths

are continuous almost surely, they are bounded almost surely. Thus we can
make the probability

P
(
I
(N)
t 6= 1∀t ∈ [t0, T ]

)
6 P

(
sup

t06t6T
|Xt| > N

)
+ P

(
sup

t06t6T

∣∣∣X̂t

∣∣∣ > N

)
arbitrarily small by taking N sufficiently large. This means that P (Xt 6=
X̂t) = 0 for each t ∈ [t0, T ], and hence that P (Xt 6= X̂t : t ∈ D) = 0
for any countably dense subset D of [t0, T ]. As the solutions are continuous
and coincide on a countably dense subset of [t0, T ], they must coincide, almost
surely, on the entire interval [t0, T ]. Thus the solutions of (2.2.8) are pathwise
unique.

Proof of Theorem 2.2.8. In view of Lemma 2.2.10 we have only to establish
the existence of a continuous solutionXt on [t0, T ] for the given Wiener process
W = {Wt, t > 0}. For doing this, we use the successive approximation
method. We define

X
(0)
t ≡ Xt0

X
(n+1)
t = Xt0 +

t∫
t0

a(s,X(n)
s )ds+

t∫
t0

b(s,X(n)
s )dWs (2.2.11)

for n = 0, 1, 2, . . .. If for a fixed n > 0 the approximation X
(n)
t is At-

measurable and continuous on [t0, T ], then it follows from assumptions A1,
A2 and A3 that the integrals in (2.2.11) are meaningful and that the resulting

process X
(n+1)
t is also At-measurable and continuous on [t0, T ]. As X

(0)
t is

At-measurable and continuous on [t0, T ], it follows by induction that so is

each X
(n)
t for n = 1, 2, 3, . . ..

From assumption A4 and the definition of X
(0)
t , it is clear that

sup
t06t6T

E
(∣∣∣X(0)

t

∣∣∣2) <∞.
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Applying the inequality (a + b + c)2 6 3(a2 + b2 + c2), the Cauchy-Schwarz
inequality |(x, y)| 6 |x| |y|, the identity (2.2.3) and the linear growth bound
A3 to (2.2.11) we obtain

E
(∣∣∣X(n+1)

t

∣∣∣2)

6 3E(|Xt0|2) + 3E

∣∣∣∣∣∣
t∫

t0

a(s,X(n)
s )ds

∣∣∣∣∣∣
2+ 3E

∣∣∣∣∣∣
t∫

t0

b(s,X(n)
s )dWs

∣∣∣∣∣∣
2

6 2E(|Xt0|2) + 3(T − t0)E

 t∫
t0

∣∣a(s,X(n)
s )
∣∣2 ds

+ 3E

 t∫
t0

∣∣b(s,X(n)
s )
∣∣2 ds


6 3E(|Xt0|2) + 3(T − t0 + 1)K2E

 t∫
t0

(
1 + |X(n)

s |2
)
ds


for n = 0, 1, 2, . . .. By induction we thus have

sup
t06t6T

E
(∣∣∣X(n)

t

∣∣∣2) 6 C0 <∞ (2.2.12)

for n = 1, 2, 3, . . ..
Similarly to the derivation of the inequality (2.2.9), except now factors

like I
(N)
t are not required because of (2.2.12), we can show that

E
(∣∣∣X(n+1)

t −X(n)
t

∣∣∣2) 6 L

t∫
t0

E
(∣∣X(n+1)

s −X(n)
s

∣∣2) ds (2.2.13)

for t ∈ [t0, T ] and n = 1, 2, 3, . . . where L = 2(T − t0 + 1)K2. Then using the
Cauchy formula

t∫
t0

tn−1∫
t0

. . .

t1∫
t0

f(s)dsdt1 . . . dtn−1 =
1

(n− 1)!

t∫
t0

(t− s)n−1f(s)ds

in repeated iterations of (2.2.13), we obtain

E
(∣∣∣X(n+1)

t −X(n)
t

∣∣∣2) 6 Ln

(n− 1)!

t∫
t0

(t− s)n−1E
(∣∣X(1)

s −X(0)
s

∣∣2) ds (2.2.14)

for t ∈ [t0, T ] and n = 1, 2, 3, . . .. Also, using the growth bound A3 instead
of the Lipschitz condition A2 in the derivation of (2.2.13) for n = 0, we find
that

E
(∣∣∣X(1)

t −X
(0)
t

∣∣∣2) 6 L

t∫
t0

(
1 + E(|X(0)

s |2)
)
ds
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6 L(T − t0)
(
1 + E(|Xt0|2)

)
= C1.

Inserting this into (2.2.14), we get

E
(∣∣∣X(n+1)

t −X(n)
t

∣∣∣2) 6 C1L
n(t− t0)n

n!

for t ∈ [t0, T ] and n = 0, 1, 2, . . ., and hence

sup
t06t6T

E
(∣∣∣X(n+1)

t X
(n)
t

∣∣∣2) 6 C1L
n(T − t0)n

n!
(2.2.15)

for n = 0, 1, 2, . . .. This implies the mean-square convergence of the successive
approximations uniformly on [t0, T ], but we need the almost sure convergence
of their sample paths uniformly on [t0, T ]. To show this we define

Zn = sup
t06t6T

∣∣∣X(n+1)
t −X(n)

t

∣∣∣
for n = 0, 1, 2, . . . and so from (2.2.10), we obtain

Zn 6

T∫
t0

∣∣a(s,X(n)
s )− a(s,X(n−1)

s )
∣∣ ds

+ sup
t06t6T

∣∣∣∣∣∣
t∫

t0

(
b(s,X(n)

s )− b(s,X(n−1)
s )

)
dWs

∣∣∣∣∣∣ .
Using the Doob inequality

E
(

sup
06s6t

|Xt|p
)
6

(
p

p− 1

)p
E(|Xt|p),

the Cauchy-Schwarz inequality and the Lipschitz condition A2, we determine

E
(
|Zn|2

)
6 2(T − t0)K2

T∫
t0

E
(∣∣X(n)

s −X(n−1)
s

∣∣2) ds
+ 8K2

T∫
t0

E
(∣∣X(n)

s −X(n−1)
s

∣∣2) ds
6 2(T − t0 + 4)K2

T∫
t0

E
(∣∣X(n)

s −X(n−1)
s

∣∣2) ds,
which we combine with (2.2.15) to conclude that

E
(
|Zn|2

)
6
C2L

n−1(T − t0)n−1

(n− 1)!
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for n = 1, 2, 3, . . ., where C2 = 2C1K
2(T−t0+4)(T−t0). Then, after applying

the Markov inequality

P ({ω ∈ Ω : |X(ω)| > a}) 6 1

ap
E(|X|p)

for any a, p > 0 to each term and summing, we have

∞∑
n=1

P

(
Zn >

1

n2

)
6 C2

∞∑
n=1

n4

(n− 1)!
Ln−1(T − t0)n−1,

where the series on the right hand side converges by the ratio test. Hence the
series on the left hand side also converges, so by the Borel-Cantelli Lemma
[37, Lemma 2.1.4] we conclude that the Zn converge to 0, almost surely, so

that the successive approximations X
(n)
t converge, almost surely, uniformly

on [t0, T ] to a limit X̂t defined by

X̂t = Xt0 +
∞∑
n=0

[X
(n+1)
t −X(n)

t ].

It follows from (2.2.12) that X̂ is mean square bounded on [0, T ]. As the
limit of A?-adapted processes, X̂ is A?-adapted and as the uniform limit of
continuous processes it is continuous. In view of this and the growth bound
A3, the right hand side of the integral equation (2.2.8) is well defined for
process X̂. It remains to show that it then equals the left hand side. Taking
the limit as n → ∞ in (2.2.11) we see that X̂ is a solution of (2.2.8). The
left hand side of (2.2.11) converges to X̂ uniformly on [t0, T ]. Concerning the
right hand side, by the Lipschitz condition A2, we have∣∣∣∣∣∣

t∫
t0

a(s,X(n)
s )ds−

t∫
t0

a(s, X̂(n)
s )ds

∣∣∣∣∣∣ 6 K

t∫
t0

∣∣∣X(n)
s − X̂s

∣∣∣ ds→ 0

and
t∫

t0

∣∣∣b(s,X(n)
s )− b(s, X̂s)

∣∣∣2 ds 6 K2

t∫
t0

∣∣∣X(n)
s − X̂s

∣∣∣2 ds→ 0,

w.p.1, which imply that

t∫
t0

a(s,X(n)
s )ds→

t∫
t0

a(s, X̂s)ds

w.p.1, and
t∫

t0

b(s,X(n)
s )dWs →

t∫
t0

b(s, X̂s)dWs,
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in probability, as n → ∞ for each t ∈ [t0, T ]. Hence the right hand side of
(2.2.11) converges to the right hand side of (2.2.8), and so the limit process
X̂ satisfies the stochastic integral equation (2.2.8).

This completes the proof of the existence and uniqueness of a strong solu-
tion of the stochastic differential equation (2.2.7) for an initial value Xt0 with
E(|Xt0 |2) <∞.

2.2.6 Stratonovich stochastic differential equations

Ito stochastic differential equation is only one kind of stochastic differential
equations in which we use Ito integral. Another one that is frequently used is
the Stratonovich integral, in which the integrand is evaluated at the midpoint
1
2

(
f
(n)
j + f

(n)
j+1

)
of each partition subinterval of a given partition. This integral

is very convenient for use because it satisfies the usual transformation rule of
classical calculus, such as the chain rule. Therefore, methods that have been
developed to solve ordinary differential equations can sometimes be used suc-
cessfully to solve Stratonovich stochastic differential equations. Stratonovich
stochastic differential equations are defined similarly to those of Ito.

We denote a Stratonovich differential equation by

dXt = a(t,Xt)dt+ b(t,Xt) ◦ dWt (2.2.16)

or in integral form

Xt = Xt0 +

t∫
t0

a(s,Xs)ds+

t∫
t0

b(s,Xs) ◦ dWs,

where the Stratonovich integral of h(t,Xt(ω)) for a function h = h(t, x) and
a diffusion process Xt

T∫
0

h(s,Xs(ω)) ◦ dWs (2.2.17)

to be the mean-square limit of the sums

Sn(ω) =
n∑
j=1

h

(
t
(n)
j ,

1

2

(
Xtnj

+Xtnj+1

))
(Wtnj

−Wtnj+1
)

for partitions 0 = t
(n)
1 < t

(n)
2 < . . . < t

(n)
n+1 = T with

δ(n) = max
16j6n

∣∣∣t(n)j+1 − t
(n)
j

∣∣∣→ 0 as n→∞.

The integral (2.2.17) is meaningful if the above limits exist and are unique,
w.p.1. To ensure that we need to impose some restrictions on h and Xt. Let
W = {Wt, t > 0} be a Wiener process with an associated family {At, t > 0}
of increasing σ-algebras. Moreover, suppose that
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• Xt is a diffusion process in R for 0 6 t 6 T with continuous drift
a = a(t, x) and diffusion coefficient b = b(t, x).

• h : [0, T ] × R → R is continuous in t with the partial derivative ∂h
∂x

continuous in both t and x.

• The function f defined by f(t, ω) := h(t,Xt(ω)) belongs to the function
space L2

T which requires Xt to be At-measurable for each 0 6 t 6 T
and

T∫
0

E
(
|h(t,Xt)|2

)
dt <∞.

If we start with the Stratonovich differential equation (2.2.16), then the
corresponding Ito stochastic differential equation (that is they have common
solutions) is

dXt = a(t,Xt)dt+ b(t,Xt)dWt

with the drift modified to an a defined by

a(t, x) = a(t, x) +
1

2
b(t, x)

∂b

∂x
(t, x).

For vector stochastic differential equation we have similar relationships
between these as stated below: Let Xt be a solution of the vector Ito stochastic
differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt

where a,X ∈ Rd, b ∈ Rd×m, W ∈ Rm.
Then its corresponding Stratonovich SDEs is

dXt = a(t,Xt) + b(t,Xt) ◦ dWt,

where the modified drift is defined component wise by

ai(t,X) = ai(t,X)− 1

2

d∑
j=1

m∑
k=1

bj,k(t,X)
∂bi,k

∂xj
(t,X).

Remark 2.2.11. Note that we can always switch a stochastic differential
equation from Ito SDEs to Stratonovich SDEs and vice verse. This is very
useful because depending on the certain situation we will choose the one
which is easier to interpret. For example, as the systems containing many
equations we should use the Stratonovich form because we can apply usual
transformation rules of classical calculus; Using the existence and uniqueness
results for Ito SDEs (Theorem 2.2.8), we can obtain the analogous results for
the corresponding Stratonovich SDEs; From a Stratonovich SDE, we can use
the corresponding Ito SDE to determine the appropriate coefficients of the
Fokker-Planck equation for a diffusion process as arising as the solution of
original equations.
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2.3 Some numerical methods for solving SDEs

For numerical method for solving stochastic differential equations, we refer
the reader to some literatures [7, 23, 28, 37, 38, 39, 40]

2.3.1 Multiple Ito integrals

Definition 2.3.1 (Multi-index). A row vector α = (j1, j2, . . . , jl) with ji ∈
{0, 1, . . . ,m} for i ∈ {1, 2, . . . , l} and m = 1, 2, 3, . . ., is called a multi-index
of length l := l(α) ∈ {1, 2, . . .}. Here m denotes the number of components of
the Wiener process under consideration. We denote by v the multi-index of
length zero.

We write n(α) for the number of components of a multi-index α which are
equal to 0.

Denote by M the set of all multi-indeces

M = {(j1, j2, . . . , jl) : ji ∈ {0, 1, . . . ,m}, i ∈ {1, . . . , l}, for l = 1, 2, 3, . . .}∪{v}.

Given α ∈ M with l(α) > 1, we write −α and α− for the multi-index in
M obtained by deleting the first and the last component, respectively, of α.

We define below some sets of adapted right continuous stochastic processes
f = {f(t), t > 0} with left hand limits:

Hv = {f : |f(t, ω)| <∞, w.p.1, for each t > 0} ,

H(0) =

f :

t∫
0

|f(s, ω)|ds <∞, w.p.1, for each t > 0

 ,

H(1) =

f :

t∫
0

|f(s, ω)|2ds <∞, w.p.1, for each t > 0

 .

We write H(j) = H(1) for each j ∈ {2, . . . ,m} if m > 2.
Let ρ and τ be two stopping times with 0 6 ρ(ω) 6 τ(ω) 6 T , w.p.1.

Then, for a mutli-index α = (j1, j2, . . . , jl) ∈ M with l := l(α) and a pro-
cess f ∈ Hα (Hα will be defined latter), we define the multiple Ito integral
Iα[f(.)]ρ,τ recursively by

Iα[f(.)]ρ,τ :=


f(τ) : l = 0
τ∫
ρ

Iα−[f(.)]ρ,sds : l > 1 and jl = 0

τ∫
ρ

Iα−[f(.)]ρ,sdW
jl
s : l > 1 and jl > 1.

For multi-indices α = (j1, j2, . . . , jl) ∈ M with length l(α) > 1, we define
recursively the set

Hα = {f : {Iα−[f(.)]ρ,t ∈ H(jl), t > 0}.
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2.3.2 Ito-Taylor expansions

This subsection states the Ito-Taylor expansion for a d-dimensional Ito
process

Xt = Xt0 +

t∫
t0

a(s,Xs)ds+
m∑
j=1

t∫
t0

bj(s,Xs)dW
j
s ,

where t ∈ [t0, T ].

Definition 2.3.2 (Hierarchical set). A nonempty subset A ⊂M is an hier-
archical set if the multi-indeces in A are uniformly bounded in length, i.e.,
sup
α∈A

l(α) <∞ and −α ∈ A for each α ∈ A\{v}, where v is the multi-index of

length zero.

Definition 2.3.3 (Remainder set). For any given hierarchical setA, we define
the remainder set B(A) of A by

B(A) = {α ∈M\A : −α ∈ A}.

Theorem 2.3.4. [37, Theorem 5.5.1] Let ρ and τ be two stopping times with

t0 6 ρ(ω) 6 τ(ω) 6 T,

w.p.1; let A ⊂M be an hierarchical set; and let f : R+ × Rd → R. Then the
Ito-Taylor expansion

f(τ,Xτ ) =
∑
α∈A

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈B(A)

Iα[fα(., X.)]ρ,τ , (2.3.1)

holds, provided all of the derivatives of f , a and b and all of the multiple Ito
integrals appearing in (2.3.1) exist.

2.3.3 Stochastic approximation

In order to evaluate the convergence for stochastic process, there are two
criteria of optimality: the strong and the weak orders of convergence. But
in the scope of this dissertation, we consider only the strong one. Strong
approximation is used when we want to find a good pathwise approximation.

We consider a d-dimensional Ito process X = {Xt, t > 0} satisfying the
stochastic differential equation

dXt = a(t,Xt)dt+ b(t,Xt)dWt

or in integral form

Xt = Xt0 +

t∫
t0

a(s,Xs)ds+

t∫
t0

b(s,Xs)dWs,

where a : R+ × Rd → Rd, b : R+ × Rd → Rd×m, W = {Wt, |, t > 0} :
m-dimensional Wiener process.
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Definition 2.3.5 (Stochastic time discrete approximation). Let t0 = τ0 <
τ1 < . . . < τN = T be a time discretization. A stochastic time discrete
approximation of Xt is a sequence {Yn, n = 0, 1, . . . , N} approximating Xt

at τn, n = 0, 1, . . . , N .

Definition 2.3.6 (Stochastic continuous time approximation). A stochastic
continuous time approximation of Xt is a continuous time stochastic process
Y = {Y (t), t0 6 t 6 T} satisfying Y (τn) = Yn.

We can obtain stochastic continuous time approximations from stochastic
time discrete approximations by using interpolation methods. The following
example introduces two interpolations commonly used.

Example 2.3.7. 1) Piecewise constant interpolation

Y (t) = Ynt , nt = max{n = 0, 1, . . . , N : τn 6 t}.

2) Linear interpolation

Y (t) = Ynt +
t− τn

τnt+1 − τnt
(Ynt+1 − Ynt).

Definition 2.3.8 (Approximation criterion). To evaluate a strong approxi-
mation we use the absolute error criterion

ε := E(|XT − Y (T )|),

where E(Z) is the expectation of random variable Z.

Definition 2.3.9 (Strong approximation or pathwise approximation). A time
discrete approximation Y δ with maximum step size δ converges strongly to
Xt at time T if

lim
δ→0

E(|XT − Y δ(T )|) = 0.

A time discrete approximation Y δ converges strongly with order γ > 0 at
time T if there exist constants C > 0, δ0 > 0 such that

ε(δ) = E(|XT − Y δ(T )|) 6 Cδγ

for any δ ∈ (0, δ0).

The order of convergence shows us the rate of strong convergence.

Definition 2.3.10 (Strong consistence). A time discrete approximation Y δ

with maximum step size δ corresponding to a time discretization (τ)σ = {τn :
n = 0, 1, . . .} with increment ∆n = τn+1 − τn is strongly consistent if there
exists a nonnegative function c = c(δ) with

lim
δ↓0

c(δ) = 0
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such that

E

(∣∣∣∣E(Y δ
n+1 − Y δ

n

∆n

|Aτn
)
− a(τn, Y

δ
n )

∣∣∣∣2
)
≤ c(δ)

and

E
(

1

∆n

|Y δ
n+1 − Y δ

n − E(Y δ
n+1 − Y δ

n |Aτn)− b(τn, Y δ
n )∆Wn|2

)
≤ c(δ)

for all fixed values Y δ
n = y and n = 0, 1, . . . . Here ∆Wn = Wτn+1 −Wτn .

2.3.4 Some strong schemes for SDEs

The Ito-Taylor expansions are used to derive time discrete strong approx-
imations which are called strong Taylor approximations. This subsection
introduces two of them: the explicit Euler scheme and the order 1.5 strong
Taylor scheme which we shall apply to study our problems numerically.

The explicit Euler scheme

In the general multi-dimensional case with d,m = 1, 2, . . ., the k-th com-
ponent of the explicit Euler scheme has the form

Y k
n+1 = Y k

n + ak∆ +
m∑
j=1

bk,j∆W j,

where ∆W j = W j
τn+1−W j

τn = I(j) is the N(0; ∆) distributed increment of the
j-th component of the m-dimensional standard Wiener process W on [τn, τn+1]
and ∆W j1 ,∆W j2 are independent for j1 6= j2; b = [bk,j] is a d×m-matrix.

In the following, we prove that the explicit Euler scheme

Yn+1 = Yn + a(τn+1 − τn) + b(Wτn+1 −Wτn)

is strongly consistent with c(δ) ≡ 0. Indeed,

E

(∣∣∣∣E(Y δ
n+1 − Y δ

n

∆n

∣∣∣Aτn)− a(τn, Y
δ
n )

∣∣∣∣2
)

= E

(∣∣∣∣E(a(τn, Y
δ
n ) +

b(τn, Y
δ
n )

∆n

∆Wn

∣∣∣Aτn)− a(τn, Y
δ
n )

∣∣∣∣2
)

= E

(∣∣∣∣a(τn, Y
δ
n ) + E

(
b(τn, Y

δ
n )

∆n

∆Wn

∣∣∣Aτn)− a(τn, Y
δ
n )

∣∣∣∣2
)

= E

(∣∣∣∣b(τn, Y δ
n )

∆n

[E(Wn+1|Aτn)−Wn]

∣∣∣∣2
)

(because {Wn} is a Martingale)

= 0.
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E
(

1

∆n

∣∣Y δ
n+1 − Y δ

n − E(Y δ
n+1 − Y δ

n |Aτn)− b(τn, Y δ
n )∆Wn

∣∣2)
= E

(
1

∆n

|a∆n + b∆Wn − E(a∆n + b∆Wn|Aτn)− b∆Wn|2
)

= E
(

1

∆n

|a∆n − E(a∆n + b∆Wn|Aτn)|2
)

= E
(

1

∆n

|a∆n − a∆n − E(b∆Wn|Aτn)|2
)

= E
(

1

∆n

|E(b∆Wn)|Aτn
)

= 0.

Where ∆n = τn+1 − τn and ∆Wn = Wτn+1 −Wτn .
In general, the explicit Euler scheme has strong order of convergence at

least γ = 0.5. This scheme is also called the order 0.5 strong Taylor scheme.
In special cases, the scheme may actually achieve a higher order of strong con-
vergence. For example, when the noise is additive, that is when the diffusion
coefficient has the form

b(t, x) ≡ b(t)

for all (t, x) ∈ R+×Rd and under appropriate smoothness assumptions on a, b
it turns out that the Euler scheme has order of strong convergence γ = 1.0.

The order 1.5 strong Taylor scheme

In the general multi-dimensional case with d,m = 1, 2, . . . the k-th com-
ponent of the order 1.5 strong Taylor scheme takes the form

Y k
n+1 = Y k

n + ak∆ +
1

2
L0ak∆2 +

m∑
j=1

(bk,j∆W j + L0bk,jI(0,j) + LjakI(j,0))

+
m∑

j1,j2=1

Lj1bk,j2I(j1,j2) +
m∑

j1,j2,j3=1

Lj1Lj2bk,j3I(j1,j2,j3),

where

L0 =
∂

∂t
+

d∑
k=1

ak
∂

∂xk
+

1

2

d∑
k,l=1

m∑
j=1

bk,jbl,j
∂2

∂xk∂xl
,

Lj =
d∑

k=1

bk,j
∂

∂xk
, j = 1, 2, . . . ,m,

I(j1,...,jl) =

τn+1∫
τn

. . .

s2∫
τn

dW j1
s1
. . . dW jl

sl
,

j1, . . . , jl ∈ {0, 1, . . . ,m}, l = 1, 2, . . . , n = 0, 1, . . .with W 0
t = t.
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Remark 2.3.11. The order 1.5 strong Taylor scheme can be derived from
the Ito-Taylor expansion with the hierarchical set

A = {v, (0), (1), (0, 1), (1, 0), (0, 0), (1, 1, 1)}.

We can obtain more accurate strong Taylor schemes by including further mul-
tiple stochastic integrals from the stochastic Taylor expansion in the scheme.
These multiple stochastic integrals contain additional information about the
sample path of the Wiener process.

Theorem 2.3.12. [37, Theorem 10.6.3] Let Y δ = {Y δ(t), t ∈ [0, T ]} be the
order γ strong Ito-Taylor approximation, for a given γ = 0.5, 1.0, 1.5, 2.0, ...,
corresponding to a time discretization (τ)δ, where δ ∈ (0, 1). Suppose that the
coefficient functions fα satisfy

|fα(t, x)− fα(t, y)| 6 K1|x− y| (2.3.2)

for all α ∈ Aγ, t ∈ [0, T ] and x, y ∈ Rd;

f−α ∈ C1,2 and fα ∈ Hα

for all α ∈ Aγ ∪ B(Aγ); and

|fα(t, x)| 6 K2(1 + |x|) (2.3.3)

for all α ∈ Aγ ∪ B(Aγ), t ∈ [0, T ] and x ∈ Rd. Then

E
(

sup
06t6T

|Xt − Y γ(t)|2
∣∣A0

)
6 K3(1 + |X0|2)δ2γ +K4|X0 − Y γ(0)|2.

The constants K1, K2, K3, K4 do not depend on δ.

In order to prove the above theorem we need the following lemma.

Lemma 2.3.13. [37, Lemma 10.8.1] Suppose for a multi-index α ∈ M\{v},
time discretization (τ)δ with δ ∈ (0, 1) and a right continuous adapted process
g ∈ Hα that

Rt0,u := E
(

sup
t06s6u

|g(s)|2
∣∣At0) <∞,

and let

Fα
t := E

 sup
t06z6t

∣∣∣∣∣
ns−1∑
n=0

Iα[g(.)]τn,τn+1 + Iα[g(.)]τns,z

∣∣∣∣∣
2 ∣∣At0

 .

Then

Fα
t 6


(T − t0)δ2(l(α)−1)

t∫
t0

Rt0,udu : l(α) = n(α)

4l(α)−n(α)+2δl(α)+n(α)−1
t∫
t0

Rt0,u : l(α) 6= n(α),

w.p.1, for each t ∈ [t0, T ].
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Proof of Theorem 2.3.12. From the uniform moment estimates [37, Exercise
4.5.5] we have

E
(

sup
06s6T

|Xs|2
∣∣A0

)
6 C1(1 + |X0|2). (2.3.4)

We can show that

E
(

sup
06s6T

|Y δ(s)|2
∣∣A0

)
6 C2(1 + |Y δ(0)|2), (2.3.5)

where the constant C2 does not depend on the maximum step size δ. In ad-
dition, from the Ito-Taylor expansion (2.3.1) we can represent the Ito process
X as

Xτ =
∑
α∈Aγ

Iα[fα(ρ,Xρ)]ρ,τ +
∑

α∈B(Aγ)

Iα[fα(., X.)]ρ,τ

for any two stopping times ρ and τ with 0 6 ρ 6 τ 6 T , w.p.1. Thus, we can
write

Xt = X0 +
∑

α∈Aγ\{v}

{
nt−1∑
n=0

Iα[fα(τn, Xτn)]τn,τn+1 + Iα[fα(τnt , Xτnt
)]

}

+
∑

α∈B(Aγ)

{
nt−1∑
n=0

Iα[fα(., X.)]τn,τn+1 + Iα[fα(., X.)]τnt ,t

}
. (2.3.6)

Otherwise, let γ = 0.5, 1.0, 1.5, 2.0, ... and d,m = 1, 2, . . .. Then, for a given
time discretization (τ)δ we define the general multi-dimensional order γ strong
Ito-Taylor approximation Y = {Y (t), t > 0} by the vector equation [37,
(10.6.4)]

Y (t) = Ynt +
∑

α∈Aγ\{v}

Iα[fα(τnt , YNt)]τnt ,t (2.3.7)

=
∑
α∈Aγ

Iα[fα(τnt , Ynt)]τnt ,t,

From (2.3.6) and (2.3.7) we obtain

Z(t) = E
(

sup
06s6t

|Xs − Y δ(s)|2
∣∣A0

)

6 C3

|X0 − Y δ(0)|2 +
∑

α∈Aγ\{v}

Rα
t +

∑
α∈B(Aγ)

Uα
t

 (2.3.8)

for all t ∈ [0, T ], where Rα
t and uαt will be defined below when they are

estimated. In particular, from Lemma 2.3.13 and the Lipschitz condition
(2.3.2) we have

Rα
t := E( sup

06s6t
|
ns−1∑
n=0

Iα[fα(τn, Xτn)− fα(τn, Y
δ
n )]τn,τn+1
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Iα[fα(τnt , Xτnt
)− fα(τns , Y

δ
nt)]τns ,s|

∣∣∣A0)

6 C4

t∫
0

E
(

sup
06s6u

∣∣fα(τnt , Xτnt
)− fα(τns , Y

δ
nt)
∣∣2 ∣∣∣A0

)
du

6 C4K
2
1

t∫
0

Z(u)du (2.3.9)

for all α ∈ Aγ.
In addition, for all α ∈ B(Aγ) from Lemma 2.3.13, (2.3.3) and (2.3.5) we

have

Uα
t := E

(
sup
06s6t

|
ns−1∑
n=0

Iα[fα(., X.)]τn,τn+1 + Iα[fα(., X.)]τns ,s|
2
∣∣∣A0

)
6 C5

(
1 + |X0|2

)
δφ(α), (2.3.10)

where

φ(α) =

{
2(l(α)− 1) : l(α) = n(α)

l(α) + n(α)− 1 : l(α) 6= n(α)
.

For all such α we have l(α) > γ+1 when l(α) = n(α) and l(α)+n(α) > 2γ+1
when l(α) 6= n(α). Thus, for all α ∈ B(Aγ), (2.3.10) gives

Uα
t 6 C5

(
1 + |X0|2

)
δ2γ. (2.3.11)

Combining (2.3.8), (2.3.9) and (2.3.11) we obtain

Z(t) 6 C7|X0 − Y δ(0)|2 + C8

(
1 + |X0|2

)
δ2γ + C9

t∫
0

Z(u)du

for all t ∈ [0, T ]. By the assumed bounds (2.3.4) and (2.3.5), Z(t) is bounded,
so by the Gronwall inequality (Lemma 2.2.9) we obtain

Z(T ) 6 K3

(
1 + |X0|2

)
δ2γ +K4|X0 − Y δ(0)|2,

which is the assertion of the theorem.
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Chapter 3

Forest Model

This chapter is devoted to investigating long-time behavior of solutions
to a stochastic forest model. First, we review the existence and uniqueness
results for global positive solutions. Then, we will study long-time behavior
of solutions numerically.

3.1 Model equations

Figure 3.1: Forest model diagram

In [3, 4], Antonovsky et al. have presented a deterministic, mono-species
ecosystem model with two age classes of trees: the young age class and the
old age class: {

du = {ρv − [γ(v) + f ]u}dt,
dv = (fu− hv)dt.

(3.1.1)

Here, u(t) and v(t) denote tree densities of young and old age classes, respec-
tively. The parameter f is the aging coefficient of young tree. It stands for
proportion of young trees growing into old trees as time goes by. ρ is the
reproduction rate of young trees from seeds of old trees. h is the mortality

31
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rate of old age trees. While, γ(v) is a mortality of young age trees which is
allowed to depend on the old-tree density v.

We assume that there exists some optimal value of v under which the
recruitment of young age trees is maximal. Considering qualitative nature of
the forest system, it is usually taken as γ(v) = a(v − b)2 + c, here a, b, c are
positive constants (See Figure 3.2). It deduces that at v = b the function γ(v)
attains its minimal value c. This is reasonable because when the density of
old trees is too large then they will cover almost the area, so the young tree
may not get enough light from the sun and nutrient from soil. Conversely,
if v is too small then they can not protect young trees from negative effect
from the environment, for example heavy rain, soil erosion. That makes the
mortality rate of young age trees to increase. For ecological reason, initial
values are always taken nonnegative, i.e., u(0), v(0) > 0.

Figure 3.2: Mortality of old tree function

Remark 3.1.1. With non-negative initial value u(0) > 0 and v(0) > 0,
solutions of (3.1.1) is non-negative and global. The non-negative stationary
solutions are:

P1 = (0, 0),

P2 =

(
h

f

(
b+

√
ρf − h(c+ f)

ah

)
, b+

√
ρf − h(c+ f)

ah

)
if h 6

ρf

c+ f
,

P3 =

(
h

f

(
b−

√
ρf − h(c+ f)

ah

)
, b−

√
ρf − h(c+ f)

ah

)
if

ρf

ab2 + c+ f
6 h 6

ρf

c+ f
.

Furthermore, if h ∈
(

ρf
c+f

,∞
)

then P1 is globally asymptotically stable, that

is lim
t→∞

u(t) = lim
t→∞

v(t) = 0 for any initial value u(0) > 0 and v(0) > 0. In the
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other words, the forest falls into decline; if h ∈
(

ρf
ab2+c+f

, ρf
c+f

)
then P1 and P2

are stable and P3 is unstable; if h ∈
(

0, ρf
ab2+c+f

)
then P1 is unstable, and P2

is stable.

Now we will show some numerical results illustrating those results.

Example 3.1.2. In Figure 3.3, we illustrate that when h ∈
(

ρf
ab2+c+f

, ρf
c+f

)
then among 10 trajectories which start from u(0) = v(0) = k, k = 1, 2, . . . , 10,
some tend to P1 and the others tend to P2.

Example 3.1.3. Figure 3.4 shows that if h ∈
(

0, ρf
ab2+c+f

)
then P1 is un-

stable, and P2 is stable. In this figure, we draw 13 trajectories starting from
(u(0), v(0)), where u(0) = 10 and v(0) = 0, 0.5, 1, . . . , 6, in phase space (u, v).
We can see that all these tend to P2.

Figure 3.3: h ∈
(

ρf
ab2+c+f

, ρf
c+f

)
then P1 and P2 are stable
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Figure 3.4: h ∈
(

0, ρf
ab2+c+f

)
then P1 is unstable, and P2 is stable

From the above results we see that the asymptotic behavior of solutions
of (3.1.1) depends strongly on the magnitude of mortality of old age trees h.
On the other hand, we know that real forest systems are always subject to
environmental noises such as temperature, humidity, amount of sunlight, etc.
However, it is very difficult to survey a mathematical model that includes
noise factor to many elements. So, it is meaningful to begin with a simple
model focusing on a central element. It is interesting to consider the above
model with effect of noise on h, i.e., h; h+noise (See Figure 3.1). This is the
motivation to study the following stochastic forest model which is performed
by Ito stochastic differential equations in R2:{

du = {ρv − [γ(v) + f ]u}dt,
dv = (fu− hv)dt+ σvdwt.

(3.1.2)

Here the process {wt, t > 0} is a one-dimensional Brownian motion defined on
a complete probability space (Ω,F , {Ft}t>0,P) with filtration satisfying the
usual conditions [35] with coefficient σ > 0.

Remark 3.1.4. In our model, we consider the mortality rate of old age trees
h + σ which contains two components: h is a well-understood component
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and σ is a random or noise component. The component h can be considered
as a controllable parameter as it includes the number of old tree human cut
down for their need. So that the study of sustainability of forest gives us
information for effectively exploiting our food resource without destroying it.

3.2 Numerical scheme for forest model

We apply the 1.5 order strong Taylor scheme to the above system, we get
the following iteration scheme:

us+1 = us + {ρvs − [a(vs − b)2 + c+ f ]us}∆ + ρσvs∆Z

+
∆2

2

{
− ρvs [a(vs − b)2 + c+ f ] + [a(vs − b)2 + c+ f ]

2
us

+ (fus − hvs)ρ
}
,

vs+1 = vs

{
1 +

σ2

2
[(∆W )2 −∆]− hσ∆Z

}
+ (fus − hvs)∆ + σvs∆W

+σ(fus − hvs)(∆W∆−∆Z)

+
∆2

2
{fρvs − [a(vs − b)2 + c+ f ] fus − h(fus − hvs)}

+
σ3

2
vs

[
(∆W )2

3
−∆

]
∆W,

s = 0, 1, . . . , n− 1.

Here ∆ = ts+1 − ts for all s = 0, 1, . . . , n− 1 and ∆Z = I(1,0) =
τn−1∫
τn

dWs1ds2.

The pair (∆W,∆Z) can be determined from two independent N(0, 1) random
variables U1, U2 through:

∆W = U1

√
∆, ∆Z =

1

2
∆3/2

(
U1 +

1√
3
U2

)
.

Our objective of studying this problem is to study the asymptotic behav-
ior of solutions to the above stochastic model equations. In order to achieve
that we will survey:

(a) The existence, uniqueness, and boundedness of global solutions.
(b) Sufficient conditions for the decline of the system.
(c) The support of stationary density.

3.3 Some results

Now we will state briefly some theoretical results and illustrate some of
the results by numerical simulations using the order 1.5 strong Taylor scheme.
The content of this section mainly lies in the paper [43].
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3.3.1 Existence, uniqueness and boundedness of global
positive solution

Theorem 3.3.1 (Existence of unique global solution). For any (u0, v0) ∈ R2
+,

there exists a unique solution (ut, vt) of (3.1.2) for t > 0. Furthermore, with
probability one, R2

+ is positively invariant for (3.1.2), i.e., if (u0, v0) ∈ R2
+

then (ut, vt) ∈ R2
+ for all t > 0 with probability one.

Proof. Since the functions on the right side of (3.1.2) are locally Lipschitz
continuous, for any initial value (u0, v0) ∈ R2

+ there is a unique local solution
(ut, vt) defined on an interval [0, τ), where τ ≤ ∞. If τ <∞ it is an explosion
time, i.e., lim

t→τ
(|ut| + |vt|) = ∞ (see for instance [6, 19]). To show that this

solution is global and R2
+ is positively invariant, we use the technique of

localization introduced in [31].
Let k0 > 0 be sufficiently large for u0 and v0 to lie within interval [ 1

k0
, k0].

Denote Hk = [ 1
k
, k] × [ 1

k
, k] then ∪∞k=k0Hk = R2

+. Let us define a sequence of
stopping times for each integer k > k0 by

τk = inf {t > 0 : (ut, vt) /∈ Hk} .

Here we use convention that the infimum of the empty set is ∞. Since τk is
nondecreasing as k → ∞, there exists a limit τ∞ = lim

k→∞
τk. It is clear that

τ∞ ≤ τ a.s.
Suppose to the contrary that P(Ω∗) > 0 where Ω∗ = {ω ∈ Ω : τ < ∞}.

Then, τ∞ <∞ on Ω∗. Therefore, there would exist T > 0 and ε ∈ (0, 1) such
that P{τ∞ < T} > ε. Consider a positive function V (u, v) = u2+v2−lnu−ln v
on R2

+. Using the Ito formula, we have

dV (u(t), v(t)) = LV (u(t), v(t))dt+ (2σ2v2 − σv)dwt, (3.3.1)

where infinitesimal operator L is

LV (u, v) =
1

2
σ2v2

∂2V

∂v2
+ [ρv − {a(v − b)2 + c+ f}u]

∂V

∂u
+ (fu− hv)

∂V

∂v
.

It is seen that

LV (u, v) =2(ρ+ f)uv − 2[a(v − b)2 + c+ f ]u2 + (σ2 − 2h)u2 + a(v − b)2

− ρv

u
− fu

v
+ c+ f + h+

σ2

2
.

Therefore, there exist Mi > 0 (i = 1, 2) such that LV (u, v) < M1V (u, v)+M2

for all (u, v) ∈ R2
+. It then follows from (3.3.1) that

t∧τk∫
0

dV (u(s), v(s)) ≤
t∧τk∫
0

[M1V (u(s), v(s)) +M2]ds
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+

t∧τk∫
0

(2σ2v(s)2 − σv(s))dws.

Taking expectations of both sides of this inequality, we have for t ≤ T,

EV ((ut∧τk , vt∧τk)) ≤ V (u(0), v(0)) +M2(t ∧ τk) +M1E
t∧τk∫
0

V (u(s), v(s))ds

≤ [V (u(0), v(0)) +M2T ] +M1

t∫
0

EV (u(s ∧ τk), v(s ∧ τk))ds.

By the Gronwall inequality (Lemma 2.2.9), for any 0 < t ≤ T it holds true
that

EV ((ut∧τk , vt∧τk)) ≤ [V (u(0), v(0)) +M2T ]eM1t

≤ [V (u(0), v(0)) +M2T ]eM1T .

Therefore,

[V (u(0), v(0)) +M2T ]eM1T > EV ((uT∧τk , vT∧τk))

> E[1{τ∞<T}V ((uT∧τk , vT∧τk))]

= E[1{τ∞<T}V (u(τk), v(τk)].

On the other hand, if τk <∞ then

V ((uT∧τk , uT∧τk)) > min
{
k2 − ln k,

(
1

k

)2

−
(

1

k

)}
= min

{
k2 − ln k, ln k +

1

k2

}
.

Therefore

[V (u(0), v(0)) +M2T ]eM1T > εmin
{
k2 − ln k, ln k +

1

k2

}
.

Letting k →∞ we arrive at a contradiction

∞ > [V (u(0), v(0)) +M2T ]eM1T =∞.

This implies that P{τ =∞} = 1. Consequently, R2
+ is an invariant set. The

proof is complete.

Theorem 3.3.2 (Boundedness). For any (u0, v0) ∈ R2
+, the following state-

ments hold true.
(i) sup

t>0
u(t) 6M? := max{u0, M0} a.s.

(ii) lim sup
t→∞

u(t) 6M0 a.s.

(iii) For every θ ∈
[
1, 1 + 2h

σ2

)
, there exists Mθ > 0 such that

lim sup
t→∞

Evθ(t) 6Mθ.
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(iv) lim inf
t→∞

v(t) = 0 a.s.

Here

M0 = inf{u | ρv − [a(v − b)2 + c+ f ]u < 0 for every v > 0}

= inf
{
u | ρv

a(v − b)2 + c+ f
− u < 0 for every v > 0

}
= sup

v>0

ρv

a(v − b)2 + c+ f

=
ρ
√
ab2 + c+ f

√
a
[
(
√
ab2 + c+ f −

√
ab)2 + c+ f

] . (3.3.2)

For the proof of this theorem, we refer the reader to [60].
In Figure 3.5, we draw the end points (u(T ), v(T )) at time T = 50 of 2601

trajectories starting from different points (u0, v0) ∈ {(x, y) : x, y = 0.2n, n =
0, 1, . . . , 50}. This figure illustrates results stated in Theorem 3.3.2. For (iii)
statement, here we take θ = 1, then we have M1 = f

h
M0. This figure also

suggests the support of the stationary density function of random variable
(u(t), v(t)) when it exists.

0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

u

v

v = M
1

u = M
0

T = 50

Figure 3.5: States of trajectories at a long-time instant
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3.3.2 Stability of forest

Example 3.1.2 and Example 3.1.3 show the stability of solution in deter-
ministic model. We now want to observe the asymptotic behavior of solutions
to stochastic system (3.1.2) under relatively small noise. To do that, we re-
peat simulations similar to those in Example 3.1.2 and Example 3.1.3 with
small noises.

Example 3.3.3. In Figure 3.6, we illustrate that when h ∈
(

ρf
ab2+c+f

, ρf
c+f

)
and σ = 0.5 which is relatively small, then among 6 trajectories which start
from u(0) = v(0) = k, k = 1, 2, . . . , 6, some tend to P1 and the others oscillate
around P2.

Figure 3.6: Asymptotic behavior of solutions under small noises (a)

Example 3.3.4. In this example we take h ∈
(

0, ρf
ab2+c+f

)
and small noise

(here we set σ = 0.5). In Figure 3.7, we draw 13 trajectories starting from
(u(0), v(0)) where u(0) = 10 and v(0) = 0, 0.5, 1, . . . , 6 in phase space (u, v).
We can see that all these tend to a small neighbour of P2.

Next, let’s observe some more stable examples showing that, if σ and h
are sufficiently small, then the forest can survive stably.
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Figure 3.7: Asymptotic behavior of solutions under small noises (b)

Set a = 2, b = 1, c = 2.5, f = 4, ρ = 5, h = 1, σ = 0.5, and take an initial
value (u(0), v(0)) = (2, 1). Figure 3.8 shows a sample trajectory of (u(t), v(t))
in the phase space and graphs of u(t) and v(t). Figure 3.9 plots the points
(u(T ), v(T )) at T = 103 for 104 sample trajectories corresponding to different
trajectories of Wiener process.

From the above examples we see that with small noises, then the behavior
of solutions to stochastic model seems to be predictable from the results for
deterministic model. They are only primary observations, we will now state
more quantitative results in Subsection 3.3.3.

3.3.3 Decline of forest

In this subsection, we show that if the mortality of old age trees or noise’s
magnitude are larger than some critical values, then the forest falls into de-

cline. More precisely, if h > min
{

ρf
c+f

, f(ρ+2abM∗)
ab2+c+f

}
or σ2 > (ρ+c−h)2

2c
, then

decline of the forest takes place. In the second case, an almost sure conver-
gence to zero is shown.

Theorem 3.3.5. Assume that

h > min

{
ρf

c+ f
,
f(ρ+ 2abM∗)

ab2 + c+ f

}
,
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Figure 3.8: Stability of stochastic forest model

where M∗ = max{u0,M0} and M0 is defined in (3.3.2). Then, u(t) and v(t)
converge to 0 in expectation as t tends to infinity, that is

lim
t→∞

Eu(t) = lim
t→∞

Ev(t) = 0.

Consequently, u(t) and v(t) converge to 0 in probability as t tends to infinity,
i.e., for any constant c1 > 0,

lim
t→∞

P{u(t) > c1} = lim
t→∞

P{v(t) > c1} = 0.

Furthermore, for any compact set A ⊂ R2
+,

lim
t→∞

P{(u(t), v(t)) ∈ A} = 0.

Proof. First, we consider the case h > ρf
c+f

. It follows from (3.1.2) that
Eu(t) ≤ u(0) +

t∫
0

[ρEv(s)− (c+ f)Eu(s)]ds,

Ev(t) = v(0) +
t∫
0

[fEu(s)− hEv(s)]ds.

Since functions $1(X, Y ) = ρY − (c + f)X and $2(X, Y ) = fX − hY are
non-decreasing with respect to arguments Y and X respectively, it follows
from the comparison theorem that

Eu(t) ≤ x(t), Ev(t) ≤ y(t) for every t > 0,

where (x(t), y(t)) satisfies the following equations{
dx(t)
dt

= ρy(t)− (c+ f)x(t),
dy(t)
dt

= fx(t)− hy(t)
(3.3.3)



42 CHAPTER 3. FOREST MODEL

0.2 0.4 0.6 0.8 1 1.2

0

2

4

6

8

10

12

14

u

v

Figure 3.9: Support of invariant measure

with an initial value (x(0), y(0)) = (u0, v0). One can show from (3.3.3) that

lim
t→∞

x(t) =
β1(c+ f)− β2ρ
h(c+ f)− ρf

, lim
t→∞

y(t) =
β2h− β1f

h(c+ f)− ρf
.

Therefore, (β1(c+f)−β2ρ
h(c+f)−ρf ,

β2h−β1f
h(c+f)−ρf ) is a stationary solution of (3.3.3). Conse-

quently, {
[ρf + (c+ f)2]β1 = ρ(c+ f + h)β2,

[f(c+ f) + hf ]β1 = (ρf + h2)β2.

This algebraic equation system has a unique solution β1 = β2 = 0. Hence, we
obtain

lim
t→∞

Eu(t) = lim
t→∞

Ev(t) = 0.

Second, we consider the case h > f(ρ+2abM∗)
ab2+c+f

. It follows from (3.1.2) and
Theorem 3.3.2 that

Eu(t) ≤ u(0) +

t∫
0

[ρEv(s) + 2abE(u(s)v(s))− (ab2 + c+ f)Eu(s)]ds

≤ u(0) +

t∫
0

[(ρ+ 2abM∗)Ev(s)− (ab2 + c+ f)Eu(s)]ds,

Ev(t) = v(0) +
t∫
0

[fEu(s)− hEv(s)]ds.

By the same arguments as above, we derive that

lim
t→∞

Eu(t) = lim
t→∞

Ev(t) = 0.
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Finally, for any constants 0 < c1 < c2, 0 < d1 < d2, by using the Chebyshev
inequality, we have

P{(u(t), v(t)) ∈ [c1, c2]× [d1, d2]} ≤ P{
√
u(t) >

√
c1} ≤

1

c1
Eu(t).

By the above result, it is now easy to prove the rest of assertions of theorem.

Set a = 3, b = 4, c = 5, f = 6, ρ = 7, σ = 0.2 and take (u(0), v(0)) = (4, 3).
By computing 500 sample trajectories of u(t) and v(t), we obtain Figure 3.10
which illustrates the graphs of expectation of young age trees and old age trees
with h = 1.71 and h = 2.11 both of which satisfy the condition in Theorem
3.3.5.
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Figure 3.10: Decline of forest under large mortality of old age trees

In the following theorem, we shall show the almost sure convergence of
u(t) and v(t) to 0.

Theorem 3.3.6. If one of the following conditions holds true:
H1: inf

x∈(0, c+f
f

)
F1(x) < 0,

H2: sup
x∈( 2ρ

σ2+2h
, c+f
f

)

F1(x) > 0 and inf
x∈( 2ρ

σ2+2h
, c+f
f

)
F2(x) < 0, where

F1(x) =f 2x4 + 2f(σ2 + h− c− f)x3 + [(c+ f − h)2

− 2ρf − 2(c+ f)σ2]x2 + 2ρ(c+ f − h)x+ ρ2,

F2(x) =fx2 − (c+ f + h)x+ ρ.

(3.3.4)

Then
lim
t→∞

u(t) = lim
t→∞

v(t) = 0 a.s.
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Proof. Let Q(u, v) := ln(u+ kv), k > 0. Using the Ito formula, we see that

dQ(u(t), v(t)) = K(u(t), v(t))dt+
σkv

u+ kv
dwt, (3.3.5)

where

K(u, v) =
(kf − c− f)u+ (ρ− kh)v

u+ kv
− σ2k2v2

2(u+ kv)2
− au(v − b)2

u+ kv
.

First, we show that under H1 or H2 there exists a sufficiently small ε > 0
such that K(u, v) ≤ − ε

2
for every (u, v) ∈ R2

+. A sufficient condition (in fact,
it is also necessary condition) for this is showing existence of ε > 0 such that
for every u > 0, v > 0,

F (u, v) :=[2(c+ f − kf)− ε]u2 − 2[k(kf − c− f) + ρ− kh+ kε]vu

+ [σ2k2 + 2k(kh− ρ)− k2ε]v2 > 0.
(3.3.6)

It is easy to see that under assumption H1, there exists sufficiently small
ε1 > 0 such that quadratic equation F (u, v) = 0 in variable u has non-positive
discriminant for every v > 0. Similarly, under assumption H2, there exists
ε2 > 0 such that this quadratic equation has non-positive two solutions for
every v > 0. We set ε := max{ε1, ε2}. Therefore, (3.3.6) holds true.

Next, from (3.3.5), we have

1

t
Q(u(t), v(t)) =

1

t
Q(u(0), v(0)) +

1

t

t∫
0

K(u(s), v(s))ds+
1

t

t∫
0

σv(s)

u(s) + v(s)
dws

≤ 1

t
Q(u(0), v(0))− ε+

1

t

t∫
0

σv(s)

u(s) + v(s)
dws. (3.3.7)

We set Mt :=
t∫
0

σv(s)
u(s)+v(s)

dws, then {Mt}t>0 is a real valued continuous martin-

gale vanishing at t = 0. Furthermore, Mt has quadratic form:

< M >t=

t∫
0

σ2v2(s)

[u(s) + v(s)]2
ds ≤ σ2t.

Since a continuous local martingale can be represented as time-change Brow-
nian motion [35, Theorem 4.6], we have

lim
t→∞

Mt

t
= 0 a.s.

Therefore, it follows from (3.3.7) that

lim sup
t→∞

1

t
Q(u(t), v(t)) ≤ −ε a.s.



3.3. SOME RESULTS 45

Consequently, lim
t→∞

Q(u(t), v(t)) = −∞ a.s. It induces that

lim
t→∞

u(t) = lim
t→∞

v(t) = 0 a.s.

The proof is complete.

Remark 3.3.7. Consider the case F1(1) < 0 which implies that H1 takes

place. This condition is equivalent to σ2 > (ρ+c−h)2
2c

. By Theorem 3.3.6, this
means that a large noise cause decline of the forest.

Let us next observe examples suggesting decline of forest when σ is suffi-
ciently large.

We set a = 3, b = 4, c = 5, f = 6, h = 2, ρ = 7, σ = 1 and take
(u(0), v(0)) = (4, 3). Figure 3.11 illustrates a sample trajectory of (u(t), v(t))
on phase space on the left and separated graphs for u(t) and v(t) on the right.
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Figure 3.11: Decline of forest under large noise

Figure 3.12 represents 6 trajectories of solution to the system correspond-
ing to 6 initial value (u(0), v(0)) = (u0, v0), u0 = 10, v0 = 0, 1, . . . , 5. The
calculations are made with the same parameter as above except for h and σ.
We set h = 0.5 and σ = 3.7 . We can see that all these trajectories tend to
P1 = (0, 0).
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Figure 3.12: Forest decays under large noise



Chapter 4

Swarming Behavior

In this chapter, we study two models concerning with swarming of ani-
mals: the stochastic Cucker-Smale model and the basic fish schooling model.
For both of them we consider swarming behaviors and influences of noise on
swarming behaviors.

4.1 Related works

Swarming behavior is a collective behavior exhibited by animals. Specifi-
cally, “flocking” is the term used to refer to swarm behavior in bird, “herding”
to refer to swarm behavior in quadrupeds, “shoaling” or “schooling” to re-
fer to swarm behavior in fish. Swarming is one of the most easily observed
in the real world but challenging to study phenomena in biology. It has at-
tracted many interests of scientists from diverse fields: biologists, engineers,
mathematicians, computer scientists, physicists, etc.

There are many researches dealing with this phenomena which can be
classified into two categories: experimental and theoretical studies.

Empirical study on fish schooling has been done in [8, 10, 12, 36, 49, 51, 52].
We could mention here some of them. Keenleyside [36] considered the density
of fish in space. His method measures essentially the nonrandom distribution
of the individual fish, using a chi-squared statistic - the more closely they
are schooling, the more nonrandom the distribution. With different approach
comparing to Keenleyside’s, Breder [8, 10] measured the fish-to-fish distances
using photographs taken from above. He gave some preliminary measurements
concerning the relative speed of swimming of the different members of the
school. He also pointed out a number of structural characteristic on the basis
of quantitative observations.

As for the theoretical approach we want to quote [1, 5, 9, 17, 24, 29, 30, 50,
55, 57, 63, 64, 66, 68]. Vicsek et al. [64] introduced a simple difference model,
assuming that each particle is driven with a constant absolute velocity and the
average direction of motion of the particles in its neighborhood together with
some random perturbation. Oboshi et al. [50] presented another difference

47
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model in which an individual selects one basic behavioral pattern from four
based on the distance between it and its nearest neighbor. Olfati-Saber [55]
and D´Orsogna et al. [17] constructed deterministic differential models using
a generalized Morse and attractive/repulsive potential functions, respectively.
In [24], the authors constructed a behavior model in which the influence of
neighbors is formulated by the interface between the states of neighbors and
a map of changes in these states. The same model show both schooling be-
havior with a high degree of polarization and territorial behavior due to the
influencee neighbors can have on duality. Viscido et al. [66] studied the effect
of population size and number of influential neighbors on the emergent prop-
erties of fish schools. They are also explored the most social factors, such that
the functional form of attraction to - and repulsion from- neighbors, alignment
with neighbors, regions of no social force, scaling of neighbor influence, ran-
dom noise,... that contribute to fish school formation and maintenance using
a series of computer simulation experiments in [67]. Our models presented in
this dissertation also follow this approach.

4.2 Cucker-Smale model

4.2.1 Introduction to a stochastic Cucker-Smale model

Based on the model presented by Vicsek et al. in [64], Cucker and
Smale [14, 15] introduced a model for an N -particle system in the space
Rd (d = 1, 2, 3, . . .). The position of the i-th particle is denoted by xi(t)
(i = 1, 2, . . . , N). Its velocity is denoted by vi(t) (i = 1, 2, . . . , N). The
Cucker-Smale system is as follows

x′i = vi,

v′i =
1

N

N∑
j=1

ψ(‖xj − xi‖)(vj − vi),
1 6 i 6 N. (4.2.1)

Here, the weights ψ(‖xj − xi‖) quantify the influence between the i-th and
the j-th particles. The communication rate ψ is a non-increasing function
from [0,∞) to itself of the distances between particles. This function has
various forms. In [14, 15], ψ(s) = K

(c+s2)β
, while in [25, 26], ψ(s) = K

(c+s2)β
,

ψ(s) = K
s2β

or ψ(s) = const. For such functions, it is shown that when β > 1
2

the convergence is guaranteed under some condition on the initial positions
and velocities of particles.

Some authors extend the above deterministic models to ones that embrace
more complicated variations. This is necessary because all real systems are
subject to environmental noises and include incompletely understood infor-
mation. One of the ways to do that is including stochastic influences or noise.
For example, in [16], Cucker and Mordecki modified the model (4.2.1) in R3
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by adding random noise to it
x′i = vi,

v′i =
N∑
j=1

ψ(‖xj − xi‖)(vj − vi) +Hi

1 6 i 6 N. (4.2.2)

Here the communication rate ψ has the same form as that in (4.2.1). Exter-
nal force Hi(t) is a three-dimensional Gaussian centered, stationary stochastic
process and satisfies a δ-dependence condition for some δ > 0, that is, two
sets {Hi(s)|s 6 t} and {Hi(s)|s > t + δ} are independent for each t. More-
over, Hi(t) has C0 trajectories and independent coordinates. The authors
showed that the conditional ν-nearly flocking occurs in finite time with a con-
fidence which is similar to the conditional flocking of the deterministic system
(4.2.1). That is, for ν > 0 small enough, there exists a time T0 depending
on ν and initial values vi(0) (1 6 i 6 N) such that for every t ∈ [0, T0),∑
i,j

‖vi(t) − vj(t)‖ 6 ν with a positive probability. This probability, however,

is not one and the interval time for the occuring is not [0,∞). In other words,
it is just nearly flocking, not flocking. Ha and collaborators [2, 25, 26], in an-
other approach, studied Cucker-Smale systems with presence of white noise.
They achieved some remarkable results: In [2], by giving another definition
for flocking which is relative to almost surely convergence, the author showed
flocking of system under consideration which cover the case of the communi-
cation weight in [14, 15]. If the communication rate satisfies a lower bound
condition, then the relative fluctuations of velocities around a mean velocity
have a uniformly bounded variance in time [25, 26].

We are also interested in the effect of white noise on the system. On the
other hand, the flocking behavior strongly depends on the communication rate
ψ in (4.2.1). This motivates us to study the following stochastic Cucker-Smale
system which incorporates a noise factor to the communication rate:

dxi = vidt,

dvi =
N∑
j=1

ψ(‖xj − xi‖)(vj − vi)dt+ σ
N∑
j=1

(vj − vi) ◦ dwt,
1 6 i 6 N.

(4.2.3)
Here σ > 0 is the strength of white noise and {wt, t > 0} is a one-dimensional
Brownian motion defined on a complete probability space with normal filtra-
tion (Ω,F , {F}t>0,P) satisfying the usual conditions [35], and ◦ denotes the
operation for Stratonovich stochastic differential equations. We assume that
the communication rate ψ : [0,∞)→ [0,∞) is locally Lipschitz continuous.

4.2.2 Existence of global solution

Before studying some flocking features of (4.2.3), we must prove the exis-
tence of global solution to the system. This is stated in the following theorem.
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Theorem 4.2.1 (Existence and uniqueness of global solution). For any given
initial values (xi(0), vi(0)) ∈ R2d (1 6 i 6 N), system (4.2.3) has a unique
global solution.

Proof. Since the functions on the right side of (4.2.3) are locally Lipschitz
continuous on R2d, there is a unique solution (xi(t), vi(t)) (1 6 i 6 N) defined
on an interval [0, τ), where τ 6∞ and if τ <∞ it is an explosion time [6, 19],
i.e.,

τ = sup{t : sup
s∈[0,t),16i6N

[||xi(s)||+ ||vi(s)||] <∞}.

Put

||x|| =

√√√√ N∑
i=1

||xi||2, ||v|| =

√√√√ N∑
i=1

||vi||2, x̄ =
1

N

N∑
i=1

xi, v̄ =
1

N

N∑
i=1

vi.

It follows from system (4.2.3) that{
dx̄ = v̄dt,

dv̄ = 0.

Then almost surely x̄(t) = x̄(0) + v̄(0)t and v̄(t) = v̄(0) for every t ∈ [0, τ).
Without loss of generality, we may assume that x̄(0) = v̄(0) = 0. Then,

N∑
i=1

xi(t) =
N∑
i=1

vi(t) = 0 a.s.

and
N∑

i,j=1

||vi(t)− vj(t)||2 = 2N ||v(t)||2. (4.2.4)

It follows from the second equation of (4.2.3) and from the chain rule of
Stratonovich stochastic differential equation that

d||v||2 =
N∑
i=1

d||vi||2 = 2
N∑
i=1

< vi, dvi >

=2
N∑

i,j=1

ψ(||xj − xi||) < vi, vj − vi > dt+ 2σ
N∑

i,j=1

< vi, vj − vi > ◦dwt.

(4.2.5)
We have

N∑
i,j=1

< vi, vj − vi > =
N∑

i,j=1

< vi − vj, vj − vi > +
N∑

i,j=1

< vj, vj − vi >
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= −
N∑

i,j=1

||vi − vj||2 −
N∑

i,k=1

< vk, vi − vk >,

which induces

2
N∑

i,j=1

< vi, vj − vi > = −
N∑

i,j=1

||vi − vj||2

= −2N ||v||2 ( see (4.2.4)). (4.2.6)

Furthermore, it follows from

N∑
i,j=1

ψ(||xj − xi||) < vi, vj − vi >=−
N∑

i,j=1

ψ(||xj − xi||)||vi − vj||2

+
N∑

i,j=1

ψ(||xj − xi||) < vj, vj − vi >

that

2
N∑

i,j=1

ψ(||xj − xi||) < vi, vj − vi >= −
N∑

i,j=1

ψ(||xj − xi||)||vi − vj||2. (4.2.7)

Thus, by (4.2.5)-(4.2.7), we obtain

d||v||2 = −
N∑

i,j=1

ψ(||xj − xi||)||vi − vj||2dt− 2Nσ||v||2 ◦ dwt.

Or, equivalently, in the Ito form:

d||v||2 =

[
−

N∑
i,j=1

ψ(||xj − xi||)||vi − vj||2 + 2N2σ2||v||2
]
dt− 2Nσ||v||2dwt.

(4.2.8)
Hence, by using the comparison theorem in [31], it follows from (4.2.8) that for
every t > 0, ||v(t)||2 6 V (t) a.s., where V (t) satisfies the following equation{

dV = 2N2σ2V dt− 2NσV dwt,

V (0) = ||v(0)||2.

This linear equation has a unique global solution V (t) = V (0)e−2Nσwt . Thus
for every t ∈ [0, τ)

||v(t)|| 6 ||v(0)||e−Nσwt a.s. (4.2.9)
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Then, from the first equation of (4.2.3) we have almost surely

d||x||2 =
N∑
i=1

d||xi||2 = 2
N∑
i=1

< xi, vi > dt

6 2||x|| ||v||dt 6 2||v(0)||e−Nσwt ||x||dt.

By the comparison theorem, we obtain ||x(t)||2 6 X(t) for all t > 0, where
X(t) satisfies the following equation{

dX = 2||v(0)||e−Nσwt
√
Xdt,

X(0) = ||x(0)||2 > 0.

Since X(t) = [||x(0)||+ ||v(0)||
∫ t
0
e−Nσwsds]2, then for every t ∈ [0, τ)

||x(t)|| 6 ||x(0)||+ ||v(0)||
∫ t

0

e−Nσwsds a.s. (4.2.10)

From (4.2.9), (4.2.10) and the definition of τ , we see that τ =∞ a.s. It means
that the solution to (4.2.3) is unique and global.

4.2.3 Flocking and non-flocking behaviors

In this subsection, we show some results concerning non-flocking and flock-
ing of the system under noise. For proof of the theoretical results in this part,
we refer the reader to [59]. Numerical results are shown by means of simula-
tions based on the explicit Euler scheme which we represented in Chapter 2.
Before that, we introduce a new definition of flocking.

Definition 4.2.2 (Time-asymptotic flocking). The state (xi(t), vi(t)) of par-
ticles (1 6 i 6 N) in system (4.2.3) has a time-asymptotic flocking if, for
1 6 i, j 6 N , the velocity alignment and group forming in the following
senses, respectively, are satisfied

b) lim
t→∞

E||vi − vj||2 = 0.

a) sup
06t<∞

E||xi − xj|| <∞.

We assume that the communication rate satisfies an upper bound condi-
tion α := sup

s>0
ψ(s) >∞.

Theorem 4.2.3 (Non-flocking theorem). [59] If σ >
√

α
N

then the particles
do not flock.
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Now we show an example of non-flocking. The parameters are set: σ =
0.3 and ψ(s) = 1

(1+s2)0.25
which satisfy the condition in Theorem 4.2.3. We

compute 100 trajectories of solution of (4.2.3) in R2 with N = 50 and initial
values (xi(0), vi(0)) are randomly generated in [0, 0.1]4. Figure 4.1 illustrates
behavior of function f(t) =

∑
i<j

E‖vi(t) − vj(t)‖2 up to time T = 0.2. We see

that values of function f(t) become extremely large even at small time instant
t.
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Figure 4.1: Non-flocking in two-dimensional space

Theorem 4.2.4 (Flocking theorem). [59] Assume that there exists ψ∗ > 0
such that

inf
s>0

ψ(s) > ψ∗.

If σ <
√

ψ∗

N
then particles flock under any initial values (xi(0), vi(0)) ∈

R2d (1 6 i 6 N).

Let us next observe an example showing flocking. Set σ = 0.05 and
ψ(s) = 1, then the condition in Theorem 4.2.4 is satisfied with ψ? = 1. Initial
values (xi(0), vi(0)) are generated randomly in [0, 1]6. Figure 4.2 shows the
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evolution of 50 particle group at four time instants T = 0, 0.02, 0.5, 1. Each
vector shows position and direction of motion of each particle. The lengths of
vectors represent the magnitudes of velocity vectors (or speeds) of particles.
In words, the group starts at random positions and velocities at time t = 0,
by obeying (4.2.3), after a short period of time, it reaches to a flock-state,
that is all particles’ velocities tend to a common one.
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Figure 4.2: Flocking in three-dimensional space

4.3 Basic fish schooling model

As mentioned in Chapter 1, using mathematical models is a powerful
method for studying biological systems. The first step of this is to construct
the model for the system under consideration. It is a very important problem
to build models which are suitable for our objectives from knowledge and
information obtained by observations.

In Camazine-Deneubourg-Franks-Sneyd-Theraulaz-Bonabeau [11, Chap-
ter 11], the authors proposed a model of schooling based on self-organization.
The model incorporates the known behaviors and sensory capabilities of in-



4.3. BASIC FISH SCHOOLING MODEL 55

dividual fish as they move in a school. Three of four main features and
assumptions are:

a. The school has no leaders and each fish follows the same behavioral
rules.

b. To decide where to move, each fish uses some form of weighted average
of the position and orientation of its nearest neighbors.

c. There is a degree of uncertainty in the individual’s behavior that re-
flects both the imperfect information-gathering ability of a fish and the
imperfect execution of the fish’s actions.

Base on the above fish’s behavioral rules, Uchitane and collaborators [61]
introduced an ordinary differential equations (ODE)

dxi(t) = vidt+ σidwi(t), i = 1, 2, . . . , N,

dvi(t) =
[
−α

N∑
j=1, j 6=i

(
rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
(xi − xj)

−β
N∑

j=1, j 6=i

(
rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
(vi − vj)

+Fi(t, xi, vi)
]
dt, i = 1, 2, . . . , N,

(4.3.1)

for describing the process of schooling of N -fish system. Each fish is regarded
as a moving particle in the Euclidean space Rd, where d = 2 or 3. The
unknown xi(t) is a stochastic process with values in Rd denoting a position
of the i-th fish of system at time t; meanwhile, vi(t) is a stochastic process
with values in Rd denoting a velocity of the i-th fish at time t. The fish are
allowed to swim in the unbounded, continuous and homogeneous space Rd.

The first equations of (4.3.1) are stochastic equations concerning xi, where
σidwi denote noise resulting from the imperfectness of information-gathering
and action of the i-th fish. In fact, {wi(t), t > 0} (i = 1, 2, ..., N) are indepen-
dent d-dimensional Brownian motions defined on a complete probability space
with filtration (Ω,F , {Ft}t>0,P) satisfying the usual conditions [35]. The sec-
ond equations are deterministic equations on vi, where 1 < p < q < ∞ are
fixed exponents, r > 0 is a fixed distance and α, β are positive coefficients
for interaction between fish and velocity matching, respectively. The param-
eters will differ from species to species. For example, for species having long
vision field we should take interaction range, characterised by p, q large; for
species which is small, the critical distance is taken shorter than that of bigger
ones. Finally, the functions Fi(t, xi, vi) denote external forces at time t which
are given functions defined for (xi, vi) with values in Rd. It is assumed that
Fi(t, xi, vi) (i = 1, 2, . . . , N) are locally Lipschitz continuous.

Here we model the interaction between fish similar to that between ele-
ments in particle systems. We assume that the perception of fish is global,
namely each fish have interactions with all other member in the group. This
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is different from many other works where each individual only interacts with
some others lying in some local neighbors, for example repulsive-reaction field,
parallel-orientation field, attractive-reaction field, as in [33, 53, 65]. In future
works, we will study the models that take fish’s vision into account. The idea
of using repulsive force and attractive force comes from physics that in any
particle system, every particles interacts with each other with two kinds of
forces: the repulsive force and attractive force. In addition, the magnitudes
of these forces depend on the distance between two particles. We model sep-
aration and alignment mechanisms through pairwise repulsive and attractive
forces. More precisely, the interaction between the i-th and the j-th fish can
be expressed through

−α
(

rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
(xi − xj).

By this, if the distance between xi and xj exceeds a given critical distance r,
that is ‖xi− xj‖ > r then the attractive force is dominant, or the interaction
is attraction. Conversely, if ‖xi−xj‖ < r then the repulsive force is dominant,
or the interaction is repulsion. This holds true for any 1 < p < q <∞.

A similar weight of average is used for velocity matching

−β
N∑

j=1, j 6=i

(
rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
(vi − vj).

From now on, we called the above model the basic fish schooling model
(or shortly the basic model). Uchitane-Yagi [62] introduce an optimization
algorithm which is devised on a basic of the same equation model as above.
The main result derived is that if parameters included in the algorithm are
suitably set, then their scheme can show very good performance even in higher
dimensional problem. But we are interested in another aspect, that is using
computer simulations to study fish schooling principles. The reason we use
the ODE model is that such a model can describe the fish’s behavior precisely.
Moreover, an ODE model is tractable for making numerical simulations. In
this chapter, we will use the explicit Euler scheme for stochastic differential
equations which has been introduced by Kloeden and Platen [37].

4.4 Quantitative investigations for basic model

The objective of this section is to investigate quantitatively the model
introduced in the previous section. More detail, we study geometrical struc-
tures of the fish school when the fish move by obeying the kinematic equa-
tions (4.3.1) and create a swarm. For this purpose, we intend to introduce
several quantitative notions: Distance to School Mates, Minimum Distance,
Mean Distance to School Mates, Diameter of School, Variance of Velocity,
and ε-Graph, to measure the geometrical structure of school. We in addition
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introduce a notion of ε, θ-schooling where ε is fixed almost equal to r and θ is
a tolerance speed difference. We then perform many numerical computations
to clarify effects of each parameter or exponent of the equations in determin-
ing geometry of structures of school. These will be presented in Subsection
4.4.1 with absence of noise. Next, in Subsection 4.4.2, we focus on studying
effects of the noise which is an indispensable factor in the real world to school
forming. In particular, it will be shown that, if the noise’s magnitude is larger
than a certain threshold, then fish can no longer form a school. Main results
in this section is published in [42].

4.4.1 Various measures for geometrical structures of
school

In this subsection we want to introduce various measures to study the
geometrical structures of school. Using these measures we will also clarify
contributions of exponents and parameters included in (4.3.1) to the geomet-
rical structures of school by examining numerical examples.

For simplicity, we consider throughout this section the deterministic case,
i.e., σi = 0 for all i. (xi(t), vi(t)) denotes a trajectory of the i-th fish in the
phase space Rd × Rd.

Distance to school mates

For each fish i, put

DSi(t) = min
16j6N, j 6=i

‖xj(t)− xi(t)‖, 0 < t <∞, i = 1, 2, . . . , N.

By definition, DSi(t) denotes the distance between the i-th individual to its
nearest mates at time t. We call DSi(t) the distance of i-th fish to the school
mates. It is observed that DSi(t) depends on the position xi(t) considerably.

If xi(t) is near the center of school, i.e., x̄(t) = 1
N

N∑
j=1

xi(t), then DSi(t) is

much smaller than r; on the contrary, if xi(t) is in the periphery of school,
then DSi(t) can be almost equal to the maximum value r.

Minimum distance

We define
MiDS(t) = min

16i6N
DSi(t), 0 < t <∞,

and call this value the minimum distance of school. This is the nearest dis-
tance between two fish in a group of N individuals at time t. Basically,
MiDS(t) is dependent on r. But, it is seen that MiDS(t) depends on the
exponents p and q, too. For example, we have

lim
p→∞

MiDS(T ) = r,
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Figure 4.3: Dependence of minimum distance on exponent p

provided that T is a sufficiently large time. That is the nearest distance tends
to the critical distance as power p tends to infinity for sufficiently large time
T . By simulations, we find such a relationship between r and MiDS(T ).

We consider a 100-fish system in the 2-dimensional space with Fi = −5.0vi,
which is often used to present the resistance against the moving particles. We
fix two initial positions for two examples of 100-individual system (the initial
positions xi(0), 1 6 i 6 100, are randomly distributed in the square domain
[0, 10]2 ⊂ R2) with all null initial velocities vi = (0, 0), (1 6 i 6 100). Taking
the critical distance r = 1 for the first example and r = 0.5 for the second,
we tune the exponent p from 1 to 12 and always keep the relation q = p+ 1.
Other parameters are chosen as follows: α = 1, β = 0.5, step size δ = 0.001.
The result is got after 30.000 running steps, that is at time T = 30. Figure
4.3 illustrates the dependence of MiDS(T ) on the exponent p.

Remark 4.4.1. The model we consider contains many parameters, but we
can find that the powers p and q are especially meaningful. p and q are
concerned with a range of interactions among fish. As p and q increase, the
range shortens and approaches sharply to the critical length r, namely, if
‖xi−xj‖ > r the attraction between i and j is dominant and if ‖xi−xj‖ < r
the repulsive is very strong. �

In order to simplify our arguments, in what follows of this section, we will
always take q so that q = p+ 1. This assures the condition q > p in modeling
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and the difference is similar to that of the Van der Waals and the Newton’s
law, where p = 3 and q = 4.

Figure 4.4: Dependence of mean distance on population size

Mean distance to school mates

We consider the mean of DSi(t), i.e.,

MDS =
1

N

N∑
i=1

DSi(t), 0 < t <∞.

This quantity is called the mean distance to school mates and is one of quan-
titative measures which are used to study the internal structure of the fish
school.

It may be a very interesting question to know how MDS(t) depends on
the total number of fish. In order to examine this, we consider an N -fish
system in the 3-dimensional space with Fi = −5.0vi, 1 6 i 6 N . Let α =
5, β = 1, p = 3, q = 4 and r = 0.5. We take various values N between 20 and
200. Initial positions xi(0), 1 6 i 6 N , are randomly distributed in the cubic
domain [0, 20]3 with all null initial velocities vi(0) = (0, 0, 0). The time T is
fixed as T = 120 throughout the simulations. Simulation results for this is
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given in Table 7.1. Figure 4.4 then shows dependence of MDS(T) on the total
number N . In order to reduce the effect of the random initial positions to the
result, for each value of N , we run 10 simulations each with different random
initial positions in [0, 20]3 ⊂ R3. The mean distance for each N is drawn by
a cross ×. After that we take the mean value of these and then interpolate
these values by a curve.

As seen, MDS(T ) decreases monotonically as N increases. This means
that the school becomes “more condensed” as N is larger. This agrees with
the results stated in a number of works, such as [9, 36, 49, 51] in which the
authors show that the mean distance to school mates decreases as a function
of the population size. From Figure 4.4, we also see that the range of the
simulation results for MDS decreases as N increases.

Figure 4.5: Dependence of mean distance and school diameter on critical
distance

Diameter of school

The diameter of school is defined by

δS(t) = sup
16i6N

‖xi(t)− x̄(t)‖, 0 < t <∞,

where x̄(t) = 1
N

N∑
i=1

xi(t) is the center of the group at time t.
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The diameter of school is, by definition, the radius of the minimal ball
centered at x̄(t) and containing all the individuals at time t.

Now we will report statistical results for the relationship between mean
distance to school mate, diameter of school and the critical distance. The
following numerical example shows that MDS(T ) and δS(T ) are linearly de-
pendent on r for sufficiently large time T . We consider a 50-fish system in
the 3-dimensional space with Fi = −5vi. Let α = 5, β = 1, p = 3 with
q = p + 1. Now, r is a tuning parameter which varies from 0.5 to 2. Initial
positions xi(0), 1 6 i 6 50, are randomly distributed in the cubic domain
[0, 20]3 with null initial velocities vi(0) = (0, 0, 0). The time T is fixed as
T = 150. Figure 4.5 then illustrats the dependence of MDS(T ) and δS(T ) on
the critical distance r. The plots of these values are approximately on linear
lines δS(T ) = ar and MDS(T ) = br, respectively. In this parameter setting
we observe that a = 1.18984 and b = 0.60158. Simulation data for this is
given in Tables 7.2 and 7.3.

Figure 4.6: Dependence of school diameter on population size

How does δS(T ) respond when the total number N increases? To examine
this question, we consider an N -fish system in the 2 or 3-dimensional space
with Fi = −5.0vi, and set α = 1, β = 0.5, p = 3, q = p+ 1, r = 1 and T = 20.
As stated before, in order to simplify the arguments, each value shown in
the figure is calculated by taking the mean value of the corresponding values
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for 10 simulations with different initial positions. Simulation data for this is
given in Tables 7.4, 7.5 and 7.6. Figure 4.6 shows that the diameter of school
typically increases with the fish number. This is generally true in animal
flocks, cf. also [17].

By observing the figure we find that the slope of the school diameter as
function of N is larger when p becomes larger.

Polarization

Polarization, denoted by Pol, is defined as the arithmetic average of the
angular deviation of each fish from the average swim direction of the fish
group

Pol =
N∑
i=1

θ(vi(t), v̄(t)),

where v̄(t) = 1
N

N∑
i=1

vi(t) is the average of all fish’s velocities in the group at

time t; θ(x, y) is the angle (in degree) between vectors x, y. It is defined as

θ(x, y) =

arccos
| < x, y > |
‖x‖.‖y‖

, if x, y are nonzero vectors

0, else.

Here < x, y > is the inner product of x, y and arccos is the inverse trigono-
metric function of cosine.

Variance of velocity

In order to measure matching of velocities, we will use the ordinary vari-
ance

σVS(t) =

√√√√ 1

N

N∑
i=1

‖vi(t)− v̄(t)‖2, 0 < t <∞,

where v̄(t) = 1
N

N∑
i=1

vi(t) is the average of all velocities of fish at time t.

ε-Graph

We finally introduce the ε-graph notion. Let ε > 0 be a fixed length. The
vertices of graph at time t are all the positions of particles, xi(t), 1 6 i 6 N .
Two vertices xi(t) and xj(t) are connected by the edge of graph if and only
if ‖xi(t) − xj(t)‖ 6 ε. This graph is called the ε-graph of group at time t
and is denoted by GSε(t). We also denote by Nε(t) the number of connected
components of GSε(t). When Nε(t) = 1, we consider that the fish have created
a single group with max

16i6N
DSi(t) 6 ε. If Nε(t) > 2, Nε(t) denotes the number

of sub-groups.



4.4. QUANTITATIVE INVESTIGATIONS FOR BASIC MODEL 63

Figure 4.7: Effect of population size on number of connected components

Let us now examine effects of the population sizeN onNε(t) for sufficiently
large time t. To create a single group, N must be sufficiently large. To see
this fact, consider an N -fish system in the 2-dimensional space with Fi =
−5.0vi. Let α = 1, β = 0.5, p = 4, q = p + 1, r = ε = 0.5. Initial
positions xi(0), 1 6 i 6 N , are randomly distributed in [0, 10]2 with null
initial velocities vi(0) = (0, 0). The population number N changes from 20 to
50. Figure 4.7 illustrates the graph GS0.5(400) for each N . Up to N = 39,
N0.5(400) > 2 and so the fish are divided into a few sub-groups. But after a
threshold number N = 40, they can create a single group.

4.4.2 Robustness of ε, θ-schooling against noise

As we know all biological dynamical systems evolve under stochastic forces.
Fish school is not an exception. It is essential to understand and investigate
the influence of noise in the dynamics. In some cases, the noise simply blurs
the dynamics without quantitative effects. However, in some other cases
especially in nonlinear dynamical systems, the noise drastically changes the
corresponding deterministic dynamic behavior of the system. In this section,
we consider the stochastic model (4.3.1). Under σi > 0, we want to study
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how the terms σidwi(t) affect the geometrical structure of school. Can the
fish system still create a school?

Let us here give a mathematical definition of schooling with distance ε
and tolerance speed difference θ.

Definition 4.4.2 (ε, θ-Schooling). For a given length ε > 0 and a tolerance
speed θ > 0, we say that the fish system is in ε, θ-schooling if there exists a
time T > 0 such that Nε(t) = 1 and σVS(t) < θ for every t > T .

According to the above definition, a system forms a school only if velocities
of all the fish tend to their average with the error less than tolerance θ.
Therefore, the distance ‖xi(t) − xj(t)‖ between any pair (i, j) will mostly
remain unchanged for t > T . So, the school structure remains unchanged,
too. The second condition ensures that all the fish keep the relation DSi(t) 6 ε
for t > T . As a consequence, Nε(t) = 1 remains to hold for t > T .

Assume that a system is in ε, θ-schooling for t > T . According to Remark
4.4.1 (cf. also Figure 4.3), if ‖xi(t) − xj(t)‖ > ε, then i and j keep their
distance far away and consequently(

rp

‖xi(t)− xj(t)‖p
− rq

‖xi(t)− xj(t)‖q

)
(xi(t)− xj(t)) (4.4.1)

is sufficiently small. In the meantime, if ‖xi(t)−xj(t)‖ ≈ ε, then their distance
is ‖xi(t) − xj(t)‖ ≈ r and consequently (4.4.1) is again sufficiently small. In
addition, it is clear that(

rp

‖xi(t)− xj(t)‖p
+

rq

‖xi(t)− xj(t)‖q

)
(vi(t)− vj(t))

is sufficiently small because of ‖vi(t)− vj(t)‖ ≈ 0. We thus verify that

N∑
i=1

dvi ≈
N∑
i=1

Fi(t, xi, vi)dt.

On the other hand, we have

N∑
i=1

dvi =
N∑
i=1

[
−α

N∑
j=1, j 6=i

(
rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
(xi − xj)

− β
N∑

j=1, j 6=i

(
rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
(vi − vj) + Fi(t, xi, vi)

]
dt

= −α
∑
i 6=j

{( rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
[(xi − xj) + (xj − xi)]

}
dt

− β
{( rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
[(vi − vj) + (vj − vi)]

}
dt
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+
N∑
i=1

Fi(t, xi, xi)dt

=
N∑
i=1

Fi(t, xi, xi)dt.

That is, the sum of increments of all velocities equals to the sum of increments
of Fi(t, xi, xi).

In particular, if we take Fi(t, xi, xi) = −cvi (i = 1, 2, . . . , N) which is
usually used to present the resistance in physical particle systems and initialize
the system from no transport, namely the initial velocities of all fish in the
group are zeros, then

N∑
i=1

dvi ≈ −c

(
N∑
i=1

vi

)
dt.

Consequently,
N∑
i=1

vi(t) decays exponentially as t → ∞ and the system con-

verges to a steady state.

Figure 4.8: Example of ε, θ-schooling

Figure 4.8 shows an example of ε, θ-schooling generated by (4.3.1). 100
fish are situated at random positions in [0, 10]2 ⊂ R2 with null velocities at
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time t = 0. Then they interact with each other with α = 5, β = 1, p = 3,
q = 4, r = 0.5, σ = 0, Fi = −5vi, (1 6 i 6 100), we set ε = 0.5 = r.

In the first three subfigures, we show ε-graphs of the system at different
instants t. Each of these figure shows the positions of fish by points, their
velocities by vectors and ε-graph edges by lines. The last subfigure draws the
variance of velocity and the diameter of school as functions of t.

Of course whether a system creates a school or not depends strongly on
initial positions. It is also observed that 3-dimensional systems can create
schools much easier than 2-dimensional ones.

Let us next study effects of the noise. First, let’s consider the polarization
of group respect to noise. In order to illustrate the influence of noise to
polarization of fish group we take an initial position of 50-fish group randomly
in [0, 3]3 ∈ R3. We put noise with different magnitudes to that group. Initial
velocities of fish are independent, uniformly distributed variables in [−1, 1]3.

Figure 4.9: Polarization of group with respect to noise

From Figure 4.9 we find that with small value of σ, the group tend to
optimal parallel orientation with 0 degree polarization. But for relatively
large noise that does not happen.

Next, we see how noise affects schooling and school structure. We set
σi(t) = σ, for i = 1, 2, . . . , N. Simulations are implemented in the 3-dimensional
space. We fix initial positions taking randomly in [0, 5]3 ⊂ R3 with 50 fish,
run 10 simulations with different realizations of the Wiener process for each
value of σ. We observe the end point of each trajectories of σVS(T ) and
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δS(T ) at T = 50. Other parameters are set as p = 3, q = p+ 1, α = 5, β = 1,
r = 0.5, Fi = −5.0vi, step size δ = 0.001. Figure 4.10 shows that the fish can
keep schooling against the noises when their magnitudes are small enough.
To the contrary, when they are large, the noises prevent the fish from creating
school. It might be allowed, however, to insist that the swarming behavior
described by our model (4.3.1) possesses the robustness for schooling. Figure
4.11 shows the expectation of school diameter as a function of σ. From this
figure, too, we can find a similar tendency.

Figure 4.10: Influence of the noise on schooling
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Figure 4.11: Influence of the noise on school diameter



Chapter 5

Cohesiveness and Foraging
Advantages

5.1 Motivation

In the previous chapter, we considered the model for fish schooling in
free-space. Parrish and Viscido in [52] argued that even when empirical data
of real fish are similar to those in the model, their significance is unclear
because in modeling, we usually make unrealistic assumptions. Ours of being
free-space is one of such assumptions. The environment surrounding real
school fish often includes other components such as, obstacles, food resources,
predators, etc. In those situations, fish exhibit more complex behavior rather
than cohesive parallel movement such as obstacle avoidance, food finding,
escaping from predator. Sometimes fish make school for common purpose,
for instance enhancing foraging success, higher success in finding mates or
defencing against predators.

This chapter extends the model (4.3.1) handled in Section 4.3. Now we
will consider the model in more realistic situations by adding components that
always present in the environment of real fish, they are obstacles and food
resources. We will give precise descriptions of such models which are derived
from incorporating additional components to the basic fish schooling model.
Then we present observation patterns that fish form when approaching to
a static obstacle by means of numerical simulations in Section 5.2. These
patterns give us information about the cohesiveness of school. Furthermore,
by investigating which parameters in the model determine the school patterns,
we acquire knowledge about the effect of these parameters to the structure
of school. Finally, we consider how fish enjoy advantages of schooling to find
out food resources in a challenging environment in Section 5.3. Main results
in this chapter is contained in [44].

69
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5.2 School cohesiveness with respect to be-

havioral patterns

Up to our knowledge, so far there are a few works considering swarm-
ing with presence of obstacles. We could mention here the works of C. W.
Reynolds, Reza Olfati-Saber, D. E. Chang, and E. Rimon. Reynolds [53] only
represents some descriptive simple rules for each individual without any pre-
cise mathematical model and then uses computer to simulate the behavior of
birds while avoiding obstacles. Reza Olfati-Saber [54] uses the same point of
view as Reynolds that the society of agents is viewed as a distributed system.
He provides a dynamic graph theoretical frame work for flocking in presence
of multiple obstacles. Recently, Chang et al. [13] have introduced techniques
using gyroscopic forces and scalar potentials to create swarming behaviors for
multiple agent systems in which agents perform collision avoidance between
each others as well as obstacles. The use of gyroscopic forces is an alternative
approach to obstacle avoidance using centralized constructions of potential
functions by Rimon and Kodischek in [56].

In this section, we will provide another mathematical model which de-
scribes fish schooling in the environment with obstacles. Then we derive the
cohesiveness of the school. In Subsection 5.2.1 we introduce our model equa-
tion for fish schooling with the presence of obstacles that we will call the fish
schooling with obstacle model. Besides three fundamental behavioral rules
which all individuals follow to interact with each other as in (4.3.1) now we
add another rule that fish use to avoid obstacles on their way. Subsection 5.2.2
considers the model with a static obstacle. In this subsection, we present dif-
ferent patterns of school while avoiding the obstacle. Through that, we know
about the cohesiveness of school. We are also able to predict stability and
morphology of organization of the model by observing the school patterns.
Subsection 5.2.3 surveys how some model parameters influence on the school
cohesiveness.

5.2.1 Fish schooling with obstacle model

This model is derived from modifying the basic fish schooling model. But
in order to make it convenient for the reader, we repeat detail descriptions.
We consider an N -fish system making school in the environment with presence
of static obstacles. Each fish is regarded as a moving particle in the Euclidean
space Rd where d = 2 or 3. The direction toward which a fish proceeds is
regarded as its forward direction. Because all individuals in the group act
identically, we need only represent the dynamics of an arbitrary one, say the
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i-th.

dxi(t) = vidt+ σidwi(t), i = 1, 2, . . . , N,

dvi(t) =
[
−α

N∑
j=1, j 6=i

(
rp

‖xi − xj‖p
− rq

‖xi − xj‖q

)
(xi − xj)

−β
N∑

j=1, j 6=i

(
rp

‖xi − xj‖p
+

rq

‖xi − xj‖q

)
(vi − vj)

−γ
(

RP

‖xi − yi‖P
+

RQ

‖xi − yi‖Q

)
(vi − Rf(xi, vi,Ob))

]
dt,

i = 1, 2, . . . , N.

(5.2.1)
The unknown xi(t) is a stochastic process with values in Rd denoting a position
of the i-th fish of system at time t; meanwhile, vi(t) is a stochastic process
taking values in Rd denoting a velocity of the i-th fish at time t. They are
continuous functions of t.

The first equation of (5.2.1) is a stochastic equation concerning xi, where
σidwi denotes a noise resulting from the imperfectness of information-gathering
and action of the i-th fish. In fact, {wi(t), t > 0} (i = 1, 2, . . . , N) are inde-
pendent d-dimensional Brownian motions defined on a complete probability
space with filtration (Ω,F , {Ft}t>0,P) satisfying the usual conditions. The
second equation is a deterministic equation on vi. Where 1 < p < q < ∞,
1 < P < Q <∞ are fixed exponents, r, R > 0 are given fixed radius, α, β, γ
are positive coefficients for interaction between fish, velocity matching and
obstacle avoidance, respectively.

The rules of interactions between fish are explained in Section 4.3. Now
we will explain in detail the rules that fish use to avoid obstacles.

Figure 5.1: Obstacle avoidance rules in 2-dimensional case

We are interested in the influence of static obstacles on the school cohe-
siveness. We restrict our consideration to sphere obstacles and walls. For the
former case, assume that the static obstacle is a sphere S with center at point
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xC ∈ Rd and radius RC > 0, i.e.,

S = {x ∈ Rd : ‖x− xC‖ 6 RC}.
Vector Rf(xi, vi,Ob) is the complete reflection of vi from the obstacle. We
note that if the i-th fish stays still, that is its velocity is zero, then we specify
Rf(xi, vi,Ob) = vi. Otherwise, it is defined as follows. Denote di(t) the ray
starting from xi(t) and having direction vi(t), that is

di(t) = {x ∈ Rd :x = xi(t) + svi(t), s ≥ 0}.
If this ray cuts the sphere S at less than two points, then Rf(xi, vi,Ob) = vi(t),
namely, the i-th fish is not affected by the sphere obstacle. In the other cases,
we denote yi the intersection point between di and S which is closer to xi than
the other. If xC ∈ di(t) then Rf(xi, vi,Ob) = −vi(t). Finally, if xC /∈ di(t)
then we denote d∗i (t) the symmetric line for di(t) through the line xCyi. In
this case, ui is a direction vector of d∗i (t) which is outward of S and has length
‖ui(t)‖ = ‖vi(t)‖. (This rule is illustrated in Figure 5.1(a)). For the sphere
obstacle avoidance rule in 3-dimensional case, we first specify the plane that
contain three points xi, xi + vi and xC , then we find the reflection vector
Rf(xi, vi,Ob) of vi in this 2-dimensional plane using the rule presented above.

The later case- we consider wall obstacles. Similar to the previous case, we
only consider the effect of obstacle at time t if the i-th fish “see” the obstacle
on its way at that time. In other words, vector Rf(xi, vi,Ob) is specified
completely the same as fully reflection of a light ray through a mirror (This
rule is shown in Figure 1(b)). We note that for other basic shapes, for example
triangular, square, rectangle, etc, we can apply wall collision avoidance rule
by regarding their sides as walls.

The space in which fish move, there may be many obstacles. But at each
time t, a fish is influenced by at most one obstacle which is closest to it among
the ones it “can see” on its way at that time. This is different from the model
introduced in [55] where more than one obstacles can have effect on one fish
at a time. They are called “active obstacles” of the fish and the “activeness”
is determined through the distances from the obstacles to the fish.

Similar to the rule when fish tries to avoid collision with its neighbor, to
avoid obstacle, each particle will attempt to match velocity with its ‘reflex’
velocity Rf(xi, vi,Ob). That is, the i-th fish at position xi and velocity vi, has
an orientation matching:

γ

[
RP

(‖xi − yi‖)P
+

RQ

(‖xi − yi‖)Q

]
(vi − Rf(xi, vi,Ob)).

5.2.2 School cohesiveness with respect to behavioral
patterns of fish school while avoiding a static ob-
stacle

In this subsection, we focus on studying the effect of obstacles to the school
cohesiveness. For simplicity, we restrict our consideration to a system with
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only one static sphere obstacle. By observing, we find four different patterns
of school while avoiding a static sphere obstacle:

Pattern I (Rebound): The school changes their direction before approach-
ing the obstacle, then all fish together move toward a common direction in
one group.

Pattern II (Pullback): The school approaches to the obstacle then they
separate into two directions to avoid the obstacle. The obstacle seems to lie
deeply in the school and make the school structure be collapsed. But then,
all the individuals of the initial school change their direction and come back
to preserve their school structure.

Pattern III (Pass and reunion): When approaching to the obstacle,
the school also separates into two subgroups to pass the obstacle, but all
individuals tend to move along the border of the obstacle. After passing the
obstacle, the two subgroups reunion into one. Then they recreate the school
structure as before getting to the obstacle.

Pattern IV (Separation): The school has the same behavior as in Pattern
III when avoiding the obstacle, that is school also separates into two subgroups
to pass the obstacle but after that the two subgroups still move along two
different directions and each creates a smaller new school.

Figure 5.2 illustrates these four patterns. In this figure, the sphere obstacle
is drawn by the circle, position of each fish is represented by a point and its
velocity by a vector.

From observing patterns of school while avoiding obstacle we can derive
the cohesiveness of the school structure: As the index of the pattern type
(defined above) increases, the cohesiveness of the school decreases. In Pattern
I, the cohesiveness is the strongest, it is harder than the effect of the obstacle.
So the school changes its direction before approaching to the obstacle. The
school structure is not collapsed while school passes the obstacle. In Pattern
II, the cohesiveness of the school is weaker than that in Pattern I. So that the
school structure is partly destroyed by the effect of the obstacle. But then the
cohesiveness in this case is still strong enough to make the individuals change
their direction to come back to preserve their school without passing the
obstacle. In Pattern III, the obstacle’s effect causes the school to separate into
two subgroups and then school passes obstacle as two subgroups. But after
they have passed the obstacle, the effect of obstacle decreases, the cohesiveness
of the school makes these two subgroups reunion and then recreate the school
structure. In Pattern IV, the cohesiveness of the school is the weakest, so
that after passing the obstacle, the two subgroups can not reunion. They still
move along two different directions.

By observing the movement of school while avoiding obstacle in the simu-
lation, we also see that for some case when the school reaches to some position
at which the effects of school and obstacle to the fish group seem to be equal.
So they cause the fish to stay in an stable positions (from a certain time) which
is either in front of the obstacle, before the school reaches to the obstacle or
when the obstacle lies deeply in the group (Figure 5.3).
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Figure 5.2: School patterns while avoiding obstacle

5.2.3 Effect of parameters on school cohesiveness

Because our model contains many parameters, it is very difficult to specify
phase diagram for different patterns as in [17]. In the remaining part of
this section, we will consider the effect of some parameters, one by one, to
the cohesiveness of the school by observing the change in school pattern in
obstacle presence space as these parameters change. The parameters under
consideration includes power p, q, initial velocity of school, critical distance
r, and magnitude of noise. These parameters differ from species to species.
In order to get the best understanding of effects of only one parameter, at a
time we change only the parameter being considered and keep all the others
unchange. And in this section we firstly omit the presence of noise. Then, we
consider how noise influences on school cohesiveness. We always start each
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Figure 5.3: School reaches stable positions

simulation from an equilibrium position of the school so that we can see the
effect of the obstacle to the school pattern. Note that by “schoolling” we
mean ε, θ- schooling which is defined in Definition 4.4.2.

Effect of power p, q on the cohesiveness of school

First, we consider how powers p, q influence school patterns. Numerical
simulations (in 2-dimensional case) show that the pattern of school changes
orderly from I, to II, to III then IV as powers p, q increase (In this section we
always take q = p+ 1). That is, when we fix all other parameters except for p
(and q) and then change only p, q we find that the interval under consideration
(1, 8] is divided into four subintervals in each of which the school follows one
of four patterns defined above orderly.

For example we fix initial position of a 20-fish school whose center is
5 (length distance unit) far from the center of a static circle obstacle with
radius 1.2. Initial velocities are taken the same for all fish in the school. The
common velocity directs from the center of the school to the center of the
obstacle with the length equals to half distance between these two centers.
The other parameters are set as α = β = γ = 1, r = 0.5. Then the division
mentioned above is shown in Table 5.1 (the increment considered is 0.001):

From the simulations, we suggest that for p > 8, the school pattern is also
Pattern IV.
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Table 5.1: Powers p, q affect school pattern (a)
p (1, 2.1] [2.101, 3.371] [3.372, 3.497] [3.498, 8]

Pattern I II III IV

Of course, these subintervals will change according to other parameters,
for example distance from the average initial positions of fish in school and
the center of obstacle. But the order of subintervals for patterns I, II, III,
IV remains the same as above. For example, when we change that distance
to 3.5 (length distance unit), then we get the result shown in Table 5.2 (the
increment considered is 0.01).

Table 5.2: Powers p, q affect school pattern (b)
p (1, 2] [2.1, 3.36] [3.37, 3.7] [3.71, 8]

Pattern I II III IV

It shows that when powers p, q increase, the cohesiveness of the school
decreases. This result agrees with remark in [61] that powers p, q characterize
for the interaction range between fish. More precisely, the larger p (q) is, the
larger the interaction range, so the smaller the attractive force between fish
in school.

Figure 5.2 illustrates four patterns received when we run simulations using
parameters as set above except for initial position of the school to the center
of obstacle is 3.5 and p takes value 2, 3, 3.62, and 4 respectively for patterns
I, II, III, IV.

Effect of initial velocity on the cohesiveness of school

When considering the effect of initial velocity on school pattern, we find
a result similar to the one found in the previous subsection. That is, school
patterns I, II, III, IV change orderly as initial velocity of the school v0 in-
creases. Table 5.3 shows a numerical result illustrating that in 2-dimensional
case. The parameters are set N = 20, α = β = γ = 1, p = 2, r = 0.5, distance
from average initial position of fish in school to the center of the obstacle is
3.5. The increment considered in these simulations is also 0.001.

Table 5.3: Initial velocity of school affects school pattern
Initial velocity (0, 1.199] [1.2, 2.589] [2.59, 4.866] [4.867, 20]

Pattern I II III IV

The result still holds true for 3-dimensional case.
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Of course, when the initial velocity is too large, then collision may happen
because large velocity makes fish not have enough time to adjust to avoid
collision with other fish or with the obstacle.

Effect of critical distance on the cohesiveness of school

As mentioned in [42], when the critical distance increases, then the school
diameter also increases. Because school diameter will also affect the school
pattern when avoiding obstacle. So in this subsection, besides changing crit-
ical distance, we also change radius of obstacle. More precisely, after getting
the equilibrium position of fish in a school for each simulation, we calculate
the school diameter then take obstacle radius equals to 2/3 of school diameter.

Firstly we need initial positions for simulations. Taking a random position
of 20-fish group in [0, 10]2. We run the program for the model without obstacle
with the same parameters except for r, which are taken values from 0.2 to 3
with increment 0.1, to the instant that groups make r, 10−6-schooling. Then
we make calculations for model including obstacle with d = 2, α = β = γ = 1,
p = 3. All fish in the r, 10−6-schooling start with the same initial velocity v0.
Common velocity v0 is parallel to and has the same direction as the vector
which connects the center of school and center of the obstacle, and ‖v0‖ = 4.
The distance between centers of school and obstacle is 8. The result we get
is shown in Table 5.4.

Table 5.4: Critical distance affects school pattern
r 0.2, 0.3 0.4, 0.5 0.6, 0.8–2.0 2.1–2.8

Pattern IV III II I

While making simulations, we also find that for some values of critical
distance at which the school gets to stable positions: Stable case as in Figure
5.3 (a) happens when r is chosen too large (r = 2.9, 3.0) while the case stable
as in Figure 5.3 (b) occurs somewhere in the domain of pattern II (r = 0.7).

Because the larger the critical distance is, the weaker the interaction be-
tween fish is, when critical distance increases, the school pattern change or-
derly from IV to III to II to I.

The following diagram shows the relationship between some model param-
eters, school cohesiveness and behavioral patterns.

• p, q increase⇒ cohesiveness decreases ⇒ behavioral pattern index in-
creases,

• v0 increases ⇒ cohesiveness decreases ⇒ behavioral pattern index in-
creases,

• r increases⇒ cohesiveness increases ⇒ behavioral pattern index de-
creases.
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Effect of noise on the results

We repeated the above simulations but now with presence of noise and
found that when the noise is relatively small (comparing to other parameters)
then the above results still remain true. But if the noise is larger than some
critical one then those results are no longer true. Moreover, if the magnitude
of noise is too large then the school structure is even broken due to collision
between fish and between fish and obstacle. Of course, the critical values
mentioned above depends relatively on other parameters.

Besides negative effects of noise, we also find its positive effect in the
following sense. As mentioned above, there exist some parameter sets that
fish school is trapped in stable states (in the case there is no noise). Under
small noise, the situation is still the same. But when we enlarge magnitude
of noise a little bit, then fish school can escape from stable states.

Figure 5.4: Positive effect of noise

We illustrate this result in Figure 5.4. Subfigures on the first row of this
figure show the evolution of fish school until it traps in a stable state when
σ = 0. The bottom row’s subfigures represent positive effect of noise that
helps fish school escaping from stable state.

However, if we choose σ quite large, then collision between fish and their
neighbours or between fish and obstacles happens easily. With presence of
positive noise, we can not predict the school pattern because different realiza-
tions of Wiener process lead to different patterns even though the magnitudes
of noise are the same. Figure 5.4 (b) and Figure 5.5 illustrate school evolu-
tion with the same magnitudes of noises σ = 0.005 but different trajectories
of Wiener process. These lead to different behavioral patterns.
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Figure 5.5: Unpredictable pattern under positive noise

5.3 Foraging advantages of fish schooling

Now, besides obstacles, we will consider also the presence of food resources
in the environment. This section considers the another aspect of school, that
is “Does school make any advantages for fish in finding food resources in their
environment?”.

5.3.1 Fish foraging model
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(5.3.1)

The unknown functions and parameters are the same as in (5.2.1). The func-
tion Fi(t, xi, vi) denotes an external force at time t which is a given function
defined for (xi, vi) with values in Rd. It is assumed that Fi(t, xi, vi) (i =
1, 2, . . . , N) are locally Lipschitz continuous.

To model food resource, we use a function f specified on the whole domain
space Ω, and is resource which impacts on the movement of fish through its
smell. Food smell will guide fish to food’s locations along its concentration
gradient. More precisely, we model the food resource’s influence through
function Fi(t, xi, vi), (i = 1, 2, ..., N) in (5.3.1) as follows:

Fi(t, xi, vi) = k∇u(xi),
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where ∇ is the gradient notation, and k is the smell attractive coefficient.
Consider C1 potential function u : Rd → R,

∇u(z) =

(
∂u

∂z1
,
∂u

∂z2
, . . . ,

∂u

∂zd

)
, z ∈ Rd.

Function u(z) denotes the smell from food resource at position z. It satisfies
the following equation.−c∆u+ au = f(z), z ∈ Ω

∂u

∂n
= 0, z ∈ ∂Ω

(5.3.2)

This is an elliptic equation with Neumann boundary. Here notation ∆ denotes
the Laplace operator

∆u =
d∑

k=1

∂2u

∂z2k
.

Ω is the space in which fish move and ∂Ω is the boundary of Ω. Coefficients
c, a are positive. They can be constants or functions of position x and time
t. In Neumann boundary equation, n denotes the (typically exterior) normal
to the boundary ∂Ω. The above boundary condition ensures that no smell
can enter or leave the boundary of the domain, i.e., the domain is perfectly
insulated.

5.3.2 Advantages of schooling in finding food resources

We now consider a system with presence of noise, obstacles and food
resources. We will illustrate the roles of schooling in helping fish to find food
resources by means of computer simulations. For simplicity, we will only
demonstrate results in two-dimensional case.

In our simulations, we restrict the space for fish swimming in to be the
rectangle domain D = [0, 7]× [0, 4] whose boundary are wall obstacles. Inside
this domain, we put three other obstacles Ob1 = [2, 2.5] × [1.75, 4], Ob2 =
[4.5, 5]× [0, 2.5], Ob3 is the below half of the circle centered at [2.25, 1.75] with
radius 0.25, i.e,

Ob3 = {(x, y) ∈ R2 : x = 2.25 + 0.25 cos θ, y = 1.75 + 0.25 sin θ, θ ∈ [−π, 0]}.

We specify the area where the fish can move in is Ω = D \ (Ob1∪Ob2∪Ob3).
By the Neumann condition, smell also can not pass the boundary ∂Ω of this
area.

There is one sphere food resource centered at C = (5.5, 0.1) with radius
0.04. More precisely, we specify the food resource function as

f(x) =

{
50, if x ∈ B = {y ∈ R2 : ‖x− C‖ 6 0.04}
0, else.

(5.3.3)
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In Figure 5.6, we draw the domain Ω. In our simulations, we let fish group
take random positions in the small rectangle on the upper left corner of the
domain. Fish group aims to get to food location which is represented by the
small circle on the lower right corner.

Figure 5.6: Simulation environment for fish foraging model

We can find the smell function from f specified in (5.3.3) by solving dif-
fusion equation (5.3.2) with c = 0.1, a = 0.2. The smell function u for above
setting is shown in Figure 5.7.

In order to survey positive effect of schooling on foraging tasks, we consider
the role of school population on the process of finding food resource. In
doing so, we make simulations using our model with all parameters are fixed
except for parameter N , which is the number of fish in the school. We will
change N from 1 to 20. For each value of n we take 10 independent runs.
The simulations start at initial positions of N -fish randomly distributed in
the rectangle domain [0, 2] × [3.5, 4] with all null velocities vi = (0, 0), i =
1, 2, . . . , N . Other parameters are set α = β = γ = 1, p = P = 3, q = Q = 5,
r = 0.1, R = 0.2, σ = 0.001. We also included a parameter vmax to restrict
the maximum speed of fish. If the magnitude of vi exceeds vmax, our program
rescaled it to magnitude vmax while preserving its direction. This is reasonable
because each species of fish has a tolerance of velocity that they can not



82 CHAPTER 5. COHESIVENESS AND FORAGING ADVANTAGES

Figure 5.7: Food smell potential function

exceed. That is,

vi(t) =

{
vi(t) if ‖vi(t)‖ 6 vmax,
vi(t)
‖vi(t)‖vmax otherwise.

In our experiments we choose vmax = 0.8.

Now let us show some numerical results we have obtained. We can see
that a group of 20 fish can approach to food resource location after a period of
time (see Figure 5.8), while a 5-fish group can not (Figure 5.9). The situation
is even worse when there is only one fish. In this case, the fish is trapped,
it can not pass even the first obstacle (Figure 5.10). In each of these three
figures, four subfigures, from the left to right and then from the top to bottom,
respectively present state of school at different instants t = 30, 60, 90, 120.

When fish in group all lies on the left side of Ob1, the value of smell
function is very small, so their movements are affected mostly by the fish-fish
interaction force (including attractive and repulsive force) and fish-obstacle
collision avoidance rule. Because of that, fish together make school very fast.
Then all fish in the school will move together when interaction between them
are chosen large enough.

In order to report our statistic results, we will classify the observed results
into 3 states as follows:
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Figure 5.8: Big group can get to the target within allotted time

State I: The school reaches the goal at T = 120, that is at the 1200000-th
step.

State II: The whole or a part of the school has pass the left wall of Ob1

but has not reached the goal at T = 120.
State III: The whole school lies on the left of Ob1 at T = 120.
These states are illustrated respectively in Figures 5.8, 5.9, 5.10. Because

we choose parameter characterizing for the fish-fish interaction large enough,
once school is created it will keep still. So we can say the school reaches to

the goal when distance from the center of school (x̄ = 1
n

n∑
i=1

xi) to the center

of food resource C(5.5, 0.1) does not exceed 0.04.
In Figure 5.11, we give our numerical result with parameter setting as

above and different value of smell attractive coefficient k.
If the school reaches to the goal within allotted time period (in our exper-

iments, it is T = 120) that is it has State I then we call it “success” otherwise
we say it “fail”. Now we illustrate the percentage of successful case (among
simulation trials) in Figure 5.11.

From the results we see that with all four values of k under consideration, a
single fish fail to find food resource. As the number of fish is larger than 1 then
the probability of foraging success is positive. Especially, when parameters are
chosen appropriately then this probability seems to increases as the population
of fish increase (until some large N). For example, we can see this in the case
k = 2: the above remark holds true until N = 18. This can be explained as
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Figure 5.9: Small group can not get to the target within allotted time

follows. We let the fish take initial position in a small rectangle domain in
the upper left side of the domain where the smell of food is very weak. So one
fish senses the smell weakly. But if there are more fish at different positions,
some fish can be at good positions to smell food better. They have tendency
to move toward the food resource by moving along the smell’s concentration
gradient direction. Then their neighbor fish, thanks to attractive force, will
follow them. This results in the success of the whole school in finding food
resource. Another possible reason for this can be the total effect of food smell
on a big group of fish is stronger than that on smaller group. From this we
can conclude that the school provides advantage for its members getting to
the food resource.

However, we can see in Figure 5.12 that from some large value of school
population the graph of success percentage trends to decrease. For example
in the case k = 1, the percentage of success case is 100% with N = 16, then it
decreases to 80% and 50% for N = 17 and N = 18, respectively. While in the
case k = 0.5, at N = 17, there are 8 successful case over 10 trials, but after
that the probabilities for success are 0 for n = 18, 19. This is also reasonable
because besides the food resource attraction, the movement of school fish is
affected also by obstacles. When the number of fish increases, the cohesiveness
of school is high. So, it will keep the school lying in on the left of the first
obstacle or cause the school to spend a lot of time before reaching to the
food resource. This suggests that for each parameter set which is chosen
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Figure 5.10: A single can not get to the target within allotted time

appropriately, there exist some optimal values of group population such that
the school gets highest possibility in getting food. In our simulations, such
optimal values are N = 15 for k = 0.5; N = 16 for k = 1; N = 4, 5, . . . , 18 for
k = 2.
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Figure 5.11: Foraging advantages of fish school (a)

Figure 5.12: Foraging advantages of fish school (b)



Chapter 6

Conclusions and Future
Researches

6.1 Conclusions

This dissertation handles stochastic models for two biological systems:
growth of forest and schooling of fish. Stochastic differential equations are
built up to describe these systems in order to create more realistic models
than deterministic ones. Then we study these models by means of numerical
techniques.

The main contributions of this dissertation are as follows:

For stochastic forest model

1. Proved the existence and uniqueness of global positive solutions to the
stochastic differential equations (3.1.2). (See Theorem 3.3.1).
This implies that we can describe the growth of forest by the evolution
of this system’s dynamics. It is the theoretical base that ensures for
further numerical researches on this model.

2. Showed the boundedness of the solutions to the forest model equations.
(See Subsection 3.3.1).

3. Showed the sustainability of the forest when the mortality rate of old tree
and noise is sufficiently small. (See Subsection 3.3.2).

4. Suggests the support of the stationary density function of random vari-
able (u(t), v(t)) when it exists by numerical calculations (See Subsection
3.3.2).

5. Gave some sufficient conditions under which the forest declines. (See
Subsection 3.3.2, Theorem 3.3.5, Theorem 3.3.6).
These results stated that if the mortality rate of old tree and noise factor
exceeds some thresholds (which are functions of other parameters in the
system), then the forest falls to decay.

87
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For stochastic fish schooling models

1. Studied flocking and non-flocking behaviors in a new stochastic Cucker-
Smale system (See Section 4.2).

2. Gave some quantitative investigations of an ODE fish schooling model.
(See Section 4.4).

3. Introduced a new mathematical definition for fish schooling. (See Defi-
nition 4.4.2).

4. Studied the influence of some model parameters to the geometrical struc-
ture of the school. (See Subsection 4.4.1).

5. Investigated the robustness of schooling against noises. (See Subsection
4.4.2).

6. Proposed a stochastic model describing fish movements in the environ-
ment with presence of obstacles and food resources. (See Subsection
5.2.1, Subsection 5.3.1).

7. Surveyed fish school cohesiveness through its behavioral patterns. (See
Subsection 5.2.2)

8. Indicated how some model parameters influence school cohesiveness (See
Subsection 5.2.3).

9. Checked the hypothesis that fish acquire foraging advantages by forming
school. (See Subsection 5.3.2).

6.2 Future researches

Let us suggest further study on the two present problems: growth of forest
and fish schooling.

For forest model, it is important to study the asymptotic behavior of
solutions of some “good” systems in which noise factor affects on several
parameters. Conditions for the stationary density of solutions to such systems
should be considered.

For fish schooling models, it may be attractive to construct a mathematical
model describing fish schooling in the environment with presence of predator
and prey fish. By this, we can acquire knowledge about the behaviors of these
two kinds of fish in such situation. These information help us to understand
how both predator and prey benefit from forming school, which is suggested
in many literatures, both in experiment and computer simulations. We name
here some of them [20, 21, 32, 34, 41, 48, 58, 69].

Besides ordinary differential equations, many biological systems are mod-
elled by partial differential equations, for example Coat Model [46]. It is also a
very interesting problem to investigate stochastic versions for these problems.



Chapter 7

Appendix

This chapter represents some numerical data of simulations. In order to
reduce the effects of random factors on initial positions, initial velocities or
Wiener trajectories, for each parameter set, we perform 10 simulations. Then,
we take mean values over these trials.

In the tables below, we use notations:
S: simulation number,
N : population size,
µ: mean value over simulations,
p: power p,
r: critical distance.
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Table 7.1: Simulation results illustrate dependence of mean distance on pop-
ulation size

S N=20 30 40 50 60 70 80
1 0.35641 0.33278 0.31006 0.3001 0.28379 0.27538 0.26712
2 0.35776 0.33379 0.31417 0.3005 0.28482 0.27616 0.26829
3 0.35827 0.33432 0.31423 0.29642 0.28487 0.27635 0.26832
4 0.35967 0.33539 0.31619 0.29863 0.28498 0.27648 0.26841
5 0.36091 0.33545 0.31666 0.29883 0.28596 0.27664 0.26869
6 0.36098 0.33631 0.31667 0.30044 0.28625 0.27702 0.26898
7 0.36113 0.33636 0.31715 0.30117 0.28649 0.27722 0.26929
8 0.36216 0.33671 0.31731 0.30147 0.28654 0.27728 0.26936
9 0.36252 0.33691 0.31752 0.30161 0.28802 0.27749 0.26947

10 0.36266 0.33786 0.31907 0.30401 0.28875 0.27847 0.26983
µ 0.36025 0.33559 0.31590 0.30032 0.28605 0.27685 0.26878

S N=90 100 110 120 130 140
1 0.26142 0.25364 0.2492 0.2428 0.2406 0.23402
2 0.26144 0.25364 0.24788 0.2447 0.23844 0.23405
3 0.26183 0.25422 0.24799 0.2449 0.23867 0.23472
4 0.26226 0.25473 0.24882 0.24307 0.23877 0.23507
5 0.26245 0.25506 0.24909 0.24317 0.23896 0.23525
6 0.26267 0.25508 0.24913 0.24392 0.23916 0.23528
7 0.26272 0.25576 0.24936 0.24439 0.23959 0.23532
8 0.26288 0.25591 0.24938 0.24466 0.24005 0.23554
9 0.26302 0.25593 0.24989 0.24472 0.24047 0.23584

10 0.26309 0.25637 0.25008 0.24481 0.24141 0.23617
µ 0.26238 0.25503 0.24908 0.24411 0.23961 0.23513

S N=150 160 170 180 190 200
1 0.2305 0.2273 0.2242 0.22065 0.21761 0.2152
2 0.23056 0.22695 0.22384 0.22122 0.21828 0.21544
3 0.23059 0.22696 0.22426 0.22123 0.21838 0.21544
4 0.23062 0.22719 0.22431 0.22135 0.21842 0.21544
5 0.23084 0.22728 0.22432 0.22144 0.21847 0.21553
6 0.23085 0.22758 0.22433 0.22152 0.21876 0.21569
7 0.23097 0.22771 0.22442 0.22178 0.21876 0.21586
8 0.23127 0.22778 0.22454 0.22204 0.21884 0.21608
9 0.23135 0.22806 0.22465 0.22225 0.21915 0.21615

10 0.23197 0.22826 0.22466 0.21987 0.21917 0.21659
µ 0.23095 0.22751 0.22435 0.22134 0.21858 0.21574
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Table 7.2: Simulation results illustrate dependence of mean distance on crit-
ical distance

S r = 0.5 0.6 0.7 0.8 0.9 1.0
1 0.29709 0.35927 0.41975 0.47991 0.54301 0.60011
2 0.29625 0.36407 0.42083 0.48187 0.54291 0.60207
3 0.30125 0.35801 0.42034 0.48626 0.54617 0.59774
4 0.30124 0.35692 0.42632 0.48031 0.54296 0.60013
5 0.30097 0.3597 0.41945 0.47709 0.53381 0.60129
6 0.29698 0.35982 0.41727 0.4764 0.54604 0.60579
7 0.30042 0.36347 0.41645 0.48122 0.54252 0.60061
8 0.30113 0.36018 0.42029 0.48263 0.54703 0.60188
9 0.30079 0.3588 0.41898 0.48011 0.53824 0.60569

10 0.29952 0.35948 0.42672 0.4783 0.54025 0.60256
µ 0.29956 0.35997 0.42064 0.48041 0.54229 0.60179

S r = 1.1 1.2 r=1.3 1.4 1.5
1 0.65904 0.72351 0.79227 0.8462 0.90144
2 0.65966 0.71604 0.7801 0.83851 0.91229
3 0.67156 0.72048 0.78244 0.8442 0.90068
4 0.66143 0.7221 0.78158 0.85165 0.89746
5 0.65452 0.71564 0.78158 0.84078 0.90179
6 0.66095 0.73118 0.77993 0.84382 0.90488
7 0.66218 0.71506 0.77641 0.83899 0.91383
8 0.66807 0.72307 0.77628 0.84023 0.89868
9 0.66541 0.72139 0.78157 0.84429 0.90053

10 0.66948 0.72178 0.7793 0.83981 0.90138
µ 0.66323 0.72103 0.78115 0.84285 0.9033

S r = 1.6 1.7 1.8 1.9 2.0
1 0.95758 1.02451 1.07688 1.14588 1.19322
2 0.95885 1.0206 1.09782 1.14932 1.21876
3 0.95105 1.02321 1.09767 1.14147 1.20078
4 0.96072 1.02055 1.07022 1.15482 1.20478
5 0.96134 1.02189 1.08486 1.16042 1.20304
6 0.9636 1.02017 1.0892 1.15821 1.20141
7 0.96366 1.02132 1.08428 1.14466 1.2031
8 0.97156 1.02837 1.08406 1.13746 1.20362
9 0.95629 1.03251 1.08451 1.15514 1.20909

10 0.96091 1.02336 1.08383 1.14573 1.18721
µ 0.96056 1.02365 1.08533 1.14931 1.2025
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Table 7.3: Simulation results illustrate dependence of school diameter on
critical distance

S r = 0.5 0.6 0.7 0.8 0.9 1.0
1 0.60726 0.72575 0.84129 0.96366 1.084 1.19581
2 0.60594 0.72218 0.83796 0.95602 1.08108 1.19396
3 0.60082 0.71941 0.83713 0.95594 1.07939 1.19188
4 0.59958 0.71784 0.83712 0.95084 1.07798 1.18939
5 0.59824 0.71651 0.83197 0.94896 1.07244 1.18879
6 0.59822 0.71609 0.83091 0.94786 1.07034 1.18597
7 0.59497 0.71609 0.82929 0.94779 1.06843 1.17857
8 0.59237 0.71049 0.82797 0.94773 1.06483 1.17522
9 0.59071 0.70987 0.8337 0.94388 1.06435 1.17422

10 0.58758 0.71915 0.8331 0.94258 1.06288 1.1798
µ 0.59757 0.71734 0.83404 0.95053 1.07257 1.18536

S r = 1.1 1.2 1.3 1.4 1.5
1 1.32102 1.43478 1.55604 1.66726 1.79771
2 1.30946 1.43448 1.55264 1.66691 1.79579
3 1.30916 1.43177 1.55044 1.66573 1.79144
4 1.30788 1.43066 1.54973 1.66504 1.78793
5 1.29995 1.42944 1.54349 1.66476 1.78696
6 1.29756 1.42767 1.54129 1.65718 1.78547
7 1.29439 1.42475 1.53724 1.65323 1.78431
8 1.3095 1.42257 1.53599 1.6595 1.77857
9 1.3059 1.41167 1.52966 1.684 1.7954

10 1.31665 1.4366 1.52672 1.667 1.7786
µ 1.30715 1.42844 1.54232 1.66506 1.78822

S r = 1.6 1.7 1.8 1.9 2.0
1 1.91723 2.02406 2.15627 2.23743 2.41724
2 1.91098 2.02271 2.15314 2.27818 2.38651
3 1.90168 2.01971 2.15169 2.27005 2.38538
4 1.90166 2.01775 2.15129 2.27099 2.38154
5 1.90108 2.01530 2.14335 2.26065 2.37635
6 1.89618 2.01527 2.14011 2.26034 2.36826
7 1.89169 2.01458 2.13555 2.25552 2.36758
8 1.89139 2.04387 2.13389 2.25124 2.36576
9 1.89009 2.03652 2.11821 2.25023 2.35511

10 1.88914 2.01461 2.1203 2.24818 2.3802
µ 1.89911 2.02244 2.14038 2.25828 2.37839
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Table 7.4: Simulation results illustrate dependence of school diameter on
population size in 2-dimensional case with p = 1.2

S N=20 30 40 50 60
1 1.06972 1.08362 1.08708 1.09897 1.14457
2 1.05652 1.08116 1.08297 1.09840 1.14235
3 1.03907 1.07207 1.08134 1.09502 1.13746
4 1.03434 1.06598 1.07843 1.08386 1.12231
5 1.03699 1.06326 1.07745 1.12788 1.12121
6 1.0292 1.06106 1.11517 1.12529 1.12025
7 1.02414 1.05809 1.11474 1.11715 1.11829
8 1.03145 1.04227 1.11361 1.10918 1.10799
9 0.99628 1.03829 1.10461 1.10529 1.10357

10 0.97244 1.10653 1.07809 1.09747 1.10083
µ 1.02901 1.06723 1.09335 1.10585 1.12188

S N=70 80 90 100 110
1 1.15432 1.15175 1.17393 1.16022 1.16493
2 1.14788 1.14663 1.16976 1.15511 1.16349
3 1.14781 1.14558 1.16769 1.15505 1.16332
4 1.14628 1.14437 1.15266 1.15226 1.16176
5 1.13987 1.13763 1.15064 1.15194 1.15846
6 1.13211 1.13501 1.14819 1.15021 1.15771
7 1.12466 1.13485 1.14803 1.14958 1.15469
8 1.11968 1.14091 1.14761 1.14763 1.14946
9 1.11952 1.12546 1.14001 1.14155 1.14522

10 1.1373 1.1474 1.13763 1.13921 1.15183
µ 1.13694 1.14096 1.15362 1.15028 1.15709

S N=120 130 140 150 200
1 1.16222 1.16362 1.16743 1.16971 1.1805
2 1.15713 1.16343 1.16668 1.16833 1.17644
3 1.15707 1.16286 1.16663 1.16757 1.17657
4 1.15644 1.16146 1.16653 1.16669 1.17688
5 1.15353 1.15923 1.16579 1.16577 1.17803
6 1.15179 1.15759 1.16424 1.16543 1.17889
7 1.15105 1.15691 1.15818 1.16291 1.17899
8 1.14752 1.15687 1.15712 1.16259 1.18132
9 1.14697 1.1639 1.15688 1.16149 1.18369

10 1.14618 1.165 1.1656 1.1715 1.20931
µ 1.153 1.16109 1.16351 1.1662 1.18206
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Table 7.5: Simulation results illustrate dependence of school diameter on
population size in 2-dimensional case with p = 2

S N=20 30 40 50 60
1 1.21247 1.3292 1.34834 1.432 1.41979
2 1.23284 1.3321 1.36466 1.4245 1.43709
3 1.26985 1.33478 1.36565 1.41613 1.46477
4 1.28027 1.33374 1.37639 1.41687 1.46768
5 1.2073 1.34617 1.37144 1.44209 1.44257
6 1.2961 1.27465 1.4021 1.4058 1.45993
7 1.20855 1.29737 1.36634 1.38578 1.46107
8 1.23738 1.30055 1.37001 1.41202 1.46394
9 1.24253 1.33194 1.37014 1.41604 1.46792

10 1.24471 1.33534 1.37711 1.41849 1.46831
µ 1.24550 1.33704 1.37958 1.42278 1.46309

S N=70 80 90 100 110
1 1.47305 1.49686 1.51974 1.554 1.54846
2 1.47806 1.49887 1.52716 1.5524 1.55248
3 1.51018 1.50987 1.52935 1.55564 1.55376
4 1.54663 1.54312 1.53002 1.53293 1.56549
5 1.46059 1.5296 1.51845 1.54756 1.5581
6 1.47392 1.49882 1.52773 1.55237 1.5709
7 1.48117 1.50077 1.52791 1.55742 1.55519
8 1.48149 1.50683 1.53363 1.55874 1.55565
9 1.48422 1.51316 1.53967 1.55905 1.55998

10 1.49199 1.51944 1.53988 1.55913 1.5601
µ 1.49073 1.51382 1.53265 1.55292 1.55896

S N=120 130 140 150 200
1 1.58137 1.57421 1.5918 1.59842 1.64489
2 1.58254 1.58843 1.59649 1.59937 1.65177
3 1.57936 1.58875 1.58321 1.59955 1.65248
4 1.57067 1.59421 1.58807 1.60322 1.64456
5 1.57344 1.55962 1.60326 1.61277 1.6343
6 1.57485 1.57665 1.63429 1.60021 1.63627
7 1.57596 1.58422 1.59774 1.59732 1.64359
8 1.58001 1.58611 1.6033 1.59281 1.64965
9 1.58091 1.58981 1.5969 1.59164 1.64484

10 1.58281 1.57188 1.59329 1.60207 1.64456
µ 1.57879 1.58139 1.59884 1.59974 1.64469
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Table 7.6: Simulation results illustrate dependence of school diameter on
population size in 3-dimensional case

S N=50 100 150 200 250 300
1 0.86734 0.90354 0.9249 0.9387 0.9328 0.9313
2 0.88606 0.90726 0.92019 0.92725 0.9398 0.9369
3 0.88703 0.90765 0.92326 0.92899 0.9429 0.9376
4 0.88778 0.90789 0.92447 0.92971 0.93242 0.9416
5 0.89479 0.91024 0.92475 0.93116 0.93443 0.9419
6 0.89493 0.91047 0.92507 0.93264 0.93482 0.93957
7 0.89661 0.91957 0.92563 0.93269 0.93778 0.94069
8 0.89943 0.92521 0.92718 0.93657 0.93847 0.94164
9 0.89961 0.92717 0.92721 0.93919 0.93944 0.94237

10 0.90815 0.93038 0.93333 0.94765 0.93254 0.92181
µ 0.89217 0.91494 0.9256 0.93446 0.93654 0.93754

p = 2
S N=50 100 150 200 250 300
1 1.02451 1.11282 1.11844 1.12682 1.14104 1.16026
2 1.03638 1.11883 1.1112 1.1433 1.1574 1.1596
3 1.04334 1.09053 1.1207 1.12228 1.13974 1.15085
4 1.04717 1.09120 1.11401 1.13104 1.14311 1.15873
5 1.05285 1.09321 1.11485 1.13555 1.14623 1.15896
6 1.05433 1.09484 1.12033 1.13973 1.14796 1.15957
7 1.05709 1.10396 1.12105 1.14046 1.14876 1.16008
8 1.06772 1.10984 1.12665 1.14222 1.14998 1.16456
9 1.06792 1.1016 1.12748 1.14239 1.15075 1.16496

10 1.06896 1.07971 1.12774 1.15065 1.15578 1.17724
µ 1.05203 1.09965 1.12104 1.13977 1.14892 1.16148

p = 3
S N = 50 100 150 200 250 300
1 1.28711 1.37693 1.45226 1.51494 1.55542 1.5464
2 1.36216 1.383 1.4679 1.5353 1.5633 1.5794
3 1.28147 1.36553 1.45196 1.50365 1.52716 1.56169
4 1.29033 1.37129 1.46378 1.50424 1.53479 1.56234
5 1.32823 1.37761 1.47132 1.50905 1.54041 1.56274
6 1.33819 1.37824 1.48282 1.52223 1.54933 1.56952
7 1.35794 1.38788 1.49504 1.52662 1.56852 1.57824
8 1.39511 1.38981 1.50306 1.52876 1.57629 1.59012
9 1.41792 1.40221 1.55482 1.53381 1.56333 1.51157

10 1.28798 1.40844 1.48932 1.52488 1.52716 1.5464
µ 1.33464 1.39099 1.48323 1.52035 1.55057 1.56084
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