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Abstract

A distributed system consists of multiple processes connected by a network and the processes can
communicate with each other by sending messages. The processes execute a distributed algorithm
to solve a problem to provide a function, e.g. routing, an overlay network, and a distributed file
system. One of the important features provided by the distributed system is fault tolerance.
A distributed system realizes the fault tolerance by utilizing redundancy, and a target of fault
tolerance, e.g., data, service, and so on, is replicated to the processes. The processes keep their
replicas consistent to tolerate failures of communication links or processes.

Byzantine failure is the most malicious failure, in which a faulty system behaves in an arbitrary
way deviating from the original program. Such failures are caused by software bugs, hardware
problems, or cracker attacks. In particular, cracker’s attacks such as infections from viruses
and intrusions are serious problems that severely damage systems connected in the Internet.
Therefore, a practical fault tolerant method for Byzantine failure is strongly demanded.

State machine replication is one of the main approaches to build a server system that can
tolerate such Byzantine failures. In the replication, the server role is replicated to multiple
replicas and the replicas process requests submitted by clients to the server. The replication
guarantees that the server system can continue to process requests, even if a fraction of the
replicas is Byzantine faulty because of crackers’ attacks or software errors. To eliminate their
malicious behaviors, a client uses a majority rule; the client collects responses from the replicas
of a request and accepts only a major value of them.

The non-faulty replicas must make the same responses so that the majority rule can work
correctly, and this is realized if the replicas process all requests in the same order. Since network
speed is not uniform and requests may be delivered to the replicas in different orders, the replicas
execute a consensus protocol to agree on processing orders of the requests.

In this dissertation, we propose two methods for the Byzantine fault tolerant (BFT) state

machine replication that focus on the consensus part of the replication and improve efficiency
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and practicality.

First, we define a new type of consensus problem called request set consensus problem and
propose a randomized BF'T protocol that solves it. The protocol is designed for an asynchronous
distributed system like the Internet, and can be used to realize state machine replication. The
protocol has two features to solve the problem efficiently. First, although most existing multi-
valued consensus protocols take a modular approach, in which replicas repeatedly solve a binary
consensus problem to reach an agreement, our consensus protocol solves the request set consensus
problem directly without such repetition. Thanks to the simple structure of the protocol, we can
reduce the communication steps needed to reach an agreement. Second, we introduce an efficient
coin tossing scheme that enables replicas to reach an agreement in a few rounds by exploiting
the structure of the BFT replication. We prove that the protocol satisfies the correctness of the
request set consensus problem. Performance evaluation is conducted from two viewpoints, i.e.,
analytically and experimentally. The analytical evaluation shows that our protocol can reach an
agreement within two rounds, even if there are many replicas to tolerate Byzantine faults. In the
experimental evaluation, our protocol achieves higher throughput and shorter latency than the
existing ones, especially when the number of replicas is large.

Second, we propose a method that parallelizes consensuses to determine processing order of
requests. Since the BFT replication is deployed on an asynchronous network such as the Internet
and every consensus protocol for the replication is a randomized one, the duration of an execution
of consensuses varies every time. If some consensus takes a long time, invocations of succeeding
consensuses are delayed. This causes performance degradation to the server replication, and we
solve the problem by parallelizing consensus executions. However, if replicas simply process the
agreed requests in their terminated orders of the consensuses, it also makes their replicated server
states inconsistency, since the network is asynchronous and the terminated orders may differ
among the replicas. Therefore, we introduce an extra agreement step to resolve this discrepancy.
Moreover, to decrease the cost of the parallelization, we introduce a randomization technique to a
consensus protocol to generate initial proposals for newly-invoked consensuses. It reduces the size
of the proposals, and, as a result, the duration taken for the consensus protocol becomes shorter.
We prove that the parallelizing method satisfies correctness for the replication and evaluate its
performance by comparing the parallelizing method with a sequential method currently in use.
The evaluation results show that the parallelization has a strong advantage in spite of requiring
additional consensuses, especially, when some replicas work slowly or some requests are delivered

late.
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Chapter 1

Introduction

A distributed system [} consists of multiple processes connected by a network and the processes
can communicate with each other by sending messages. The processes execute a distributed
algorithm [2] to solve a problem to provide a function, e.g. routing, an overlay network, and
a distributed file system. Especially, one of the important features provided by the distributed
system is fault tolerance. A distributed system realizes the fault tolerance by utilizing redundancy,
and a target of fault tolerance, e.g., data, service, and so on, is replicated to the processes. The
processes keep their replicas consistent to tolerate failures of communication links or processes.

Byzantine failure is the most malicious failure, in which a faulty system behaves in an arbitrary
way deviating from the original program. Such failures are caused by software bugs, hardware
problems, or cracker attacks. In particular, cracker’s attacks such as infections from viruses
and intrusions are serious problems that severely damage systems connected in the Internet.
Therefore, a practical fault tolerant method for Byzantine failure is strongly demanded.

One of the main approaches to tolerate Byzantine failure in asynchronous networks as the
Internet is state machine replication [3]. The state machine replication is designed for a server-
client system. In the replication, the server role is replicated to multiple replicas and the replicas
process requests submitted by clients to the server. In the replication, as shown in Fig. I,
clients multicast requests to all the replicas. Here, the system’s internal state is supposed to be
determined by the initial states and the sequence of requests applied to the system. The replicas
make an agreement on the processing order of the received requests, and process them sequentially
in the agreed order. Even if the actual orders of the deliveries of the requests differ among the
replicas, the replicas process the requests in the same order and keep their replicated server states

identical. In the setting of the state machine replication for Byzantine failure, we assume that



2 CHAPTER 1. INTRODUCTION

Server replicas

Clients Clients Request

Agreement

Request

/\ Server

Reply

Invalid reply"”

Hijacked replica

Original system State machine replication

Figure 1.1: Structure of state machine replication

only a small fraction of replicas can be faulty and behave differently from the non-faulty replicas.
With this assumption, if a majority of identical replies for the request is issued from non-faulty
replicas, they can exclude the effect of the faulty replicas.

As stated above, in the state machine replication, agreement or consensus plays an important
role, and many researches in this area were done [4, 5, B, 7, B, @]. Fischer et al. proved some
important result, that is, there exists no deterministic agreement protocol for an asynchronous
distributed system, even if only one process may crash during an execution. Therefore, to solve
the consensus and to realize the state machine replication, it is necessary to weaken the assumed
model or the requirements of the consensus problem. There are two approaches to overcome this

impossibility:

1. Ensure the termination deterministically under some assumptions about communication
delay called weak asynchrony assumptions (Byzantine failure: [0, @0, [T, 02], crash failure:
(R, @3, [, ©5]).

2. Ensure the termination with probability 1 by using randomized methods (Byzantine failure:

(@, 7, @R, [9, 20, 21, 29, crash failure: [23]).

In the first approach, to solve the consensus problem deterministically, the asynchrony as-
sumptions for the communication speed and the processing power of processes are weaken in the
weak asynchrony model; there exist an upper bound (usually unknown) about the communication
delay and a lower bound of the processing power of the processes. Although the impossibility of

the asynchronous consensus problem is mainly brought by the difficulty to distinguish the crashed



process from the one just working slowly, this difficulty is not a problem in the model. A process
in the model can detect another process’s failure, since the process can estimate these bounds.
If the process does not receive any response from the suspected process within the expected
interval, the process treats the suspected process as a faulty one from now on. Consequently,
a primary-backup approach is introduced to take advantage of this feature of the model. A
special replica, called primary or rotating coordinator, controls the protocol’s execution. When
the primary receives a request from its client, the primary assigns the processing order of the
request, and broadcasts the order and the request to the other replicas called backups. When the
backups receive the request with the assigned order, they process it and reply their responses to
the client. In such leader-based approach, replicas normally achieve an agreement very fast and
provide a practical solution for the state machine replication. The backups also keep watching
the primary’s work, and if they suspect that the current primary is faulty, because the primary
does not send such a assigned request within the predefined interval, they start a procedure to
move the primary’s role to another replica based on their agreement, which is why it is called a

rotating coordinator.

A representative consensus protocol for this approach is PBFT protocol proposed by Castro
and Liskov [8]. The Byzantine fault tolerant state machine replication has long been considered
costly and non-practical, the efficient PBFT protocol dispelled such negative rumor and their
result stimulated the development of efficient BFT protocols. PBFT guarantees the termination
of agreements, even if there are continuous rotations of a primary coordinator, assuming that
the message delay has an upper bound. However, this assumption can be broken if the attacker
skillfully controls the flow of messages, and this can happen in an open network like the Internet.
Even without such attacks, in a congested network, the primary coordinator is often changed and

the efficiency is greatly reduced because each change of the primary is very costly.

In the second approach, protocols use some randomization mechanisms implicitly or explicitly.
Most of protocols belonging to this approach randomized themself explicitly. An execution of the
randomized consensus protocols is composed of rounds, and in a round, processes propose their
own candidates and try to decide a common value for agreement. If they succeed to decide
the common value, they will terminate. When they fail to agree with some value, they change
own proposals randomly based on the messages received in this round (this random selection
is usually called coin tossing or coin flipping), and proceed to the next round. This repetition
continues until all non-faulty processes reach an agreement. For efficiency, in the context of the
BFT replication, the proposals and the agreed value are not a single request (i.e., the request

to be processed next), but a set of requests (i.e., the set of requests to be processed next). The
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processing order among the requests in the set is determined by a predefined order (e.g., an order
of the IDs of the clients that issued the requests).

Another type of the randomization is used by a protocol proposed in [24]. The protocol as-
sumes randomized deliveries of messages sent in the protocol, and each process chooses a proposal
of a next round based on messages received during the current round. If a sufficient number of
non-faulty processes’ proposals become identical by the implicit randomization, the processes
agree with the proposal.

These randomization-based consensus protocols can be employed in more general environments
than the first leader-based ones, since the protocols do not need any extra assumptions to solve
the consensus problem correctly. Moreover, the randomization-based protocols’ performance
degradation during Byzantine faults occur is expected to be smaller than the leader-based ones,
since the leader-based ones must take care of faulty primaries. Borran et al. analytically compared
the two approaches on a partial synchronous model [P3].

There also exists a hybrid solution [Z6], i.e., a protocol that uses both of the approaches. The
processes normally agree with the processing order based on the first approach, however, if once
a current leader is suspected to be faulty, replicas switch to a pessimistic mode and assign the

requests based on the second approach.

1.1 Overview of This Dissertation

This dissertation focuses on the second approach, i.e., randomization-based Byzantine fault toler-
ant replication in which replicas execute a randomized Byzantine consensus protocol to agree with
the processing order of submitted requests. We propose two methods for improving efficiency of

the replication.

1.1.1 Request Set Consensus Protocol for BFT Replication

In Chapter B, we propose a fast and resource-efficient agreement protocol on a request set, which
is used to realize Byzantine fault tolerant state machine replication. Although most existing
randomized protocols for Byzantine agreement exploit a modular approach, that is, a combination
of agreement on a bit value and a reduction of request set values to the bit values, our protocol
directly solves the multi-valued agreement problem for request sets. We introduce a novel coin
tossing scheme to select a candidate of an agreed request set randomly. By specializing in the

structure of the replication, the coin tossing scheme enables replicas to merge their candidates
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quickly and realize fast agreement. In the performance evaluation, we analyze our protocol
theoretically, and compare the protocol with the existing representative protocols in a practical

environment.

1.1.2 Parallelizing Consensuses to Reduce Latency

In Chapter B, we propose a new method that accelerates asynchronous Byzantine Fault Tolerant
(BFT) protocols designed on the principle of state machine replication. State machine replication
protocols ensure consistency among replicas by applying operations in the same order to all of
them. A naive way to determine the application order of the operations is to repeatedly execute
the BFT consensus to determine the next executed operation, but this may introduce inefficiency
caused by waiting for the completion of the previous execution of the consensus protocol. To
reduce this inefficiency, our method allows parallel execution of the consensuses while keeping
consistency of the consensus results at the replicas. We also prove the correctness of our method
and experimentally compare it with the existing method in terms of latency and throughput. The
evaluation results show that our method makes a BFT protocol three or four times faster than

the existing one when some machines or message transmissions are delayed.

1.2 Organization of This Dissertation

This dissertation is composed of five chapters. In Chapter B, we define our distributed system
model and state machine replication. We also describe how to realize the state machine replication
by using a consensus protocol with examples. In Chapters B and B, we propose two methods for
the Byzantine fault tolerant replication. Our new efficient randomized consensus protocol RSC is
proposed in Chapter B. The protocol uses new randomization techniques to realize fast agreement
and its correctness and performance are also shown there. Chapter @ proposes another method
that accelerates existing replication protocols, e.g., our consensus protocol RSC. The method ex-
ecutes a replication protocol concurrently to reduce response time of submitted requests, and also
does another special type of consensus protocol to keep consistency while executing consensuses

concurrently. Finally, we conclude this dissertation in Chapter B.
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Chapter 2

Preliminary

Here, we describe our system model, state machine replication, and how the replication is realized
by a protocol that solves the request set consensus problem. Finally, we formally define the request

set consensus problem.

2.1 System Model

A distributed system consists of processes and communication links. We assume the followings
for our system model. The system is asynchronous; there is no bound on time to process data or
communication delays. Every pair of processes is directly connected by a communication link, and
processes only exchange information by message passing. The communication links are reliable
channels; messages sent by non-faulty processes must eventually be delivered to the destination
processes, and no message is lost in the communication links. From a received message, a process
can identify the sender process, and even a malicious process cannot impersonate it. Each process
has a local clock, but these clocks are not synchronized among processes; they may run at different

rates and indicate different times.

Some processes may fail during a protocol execution. We adopt Byzantine failure (also called
arbitrary failure) as a failure model. A Byzantine process can behave arbitrarily deviating from
the protocol specification by stopping processes, omitting messages, and submitting invalid mes-
sages, etc. The processes behaving based on the protocol specification are called non-faulty, and

the others (i.e. Byzantine processes) are called faulty.

7
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2.2 State Machine Replication

State machine replication [8] is used in the server-client model, and a server is modeled as a state
machine. A state machine consists of a set of states and a set of commands, and executes a
command to change its state. The next state of a state machine is determined by an executed
command and its current state. The server’s role is replicated to n processes called replica that
independently operate the role on distinct hosts and interact with client processes by request
and response messages. A client submits a request to all replicas to request the servers to
execute commands. Although, an asynchronous system allows request messages to arrive at
different replicas in different orders, the replicas must process the requests in the same order to
keep consistency among the replicas. More formally, a protocol that realizes the state machine

replication must satisfy the following two requirements:

Safety All correct replicas process the requests submitted by clients in the same order.

Liveness A client eventually accepts the response to any request it submitted.

To realize identical processing order of requests, the replicas execute a consensus protocol.
After a replica processes a request, it replies to the client with the execution result. The client
accepts the result when it receives the same result from f + 1 replicas. Here, f is the upper
bound of the number of faulty replicas. A client can confirm that at least one correct result
was received from a correct replica when it collects f + 1 identical results. Since m must be
greater than or equal to 3f + 1 to realize Byzantine consensus by randomized protocols [27], we
assume that f < [(n —1)/3]. (In our model, we assume that clients never fail, and only replicas
may fail, because a faulty client cannot affect an execution of state machine replication based on
randomized Byzantine agreement. Therefore, the assumption never reduces the generality of our
protocol. On the other hand, a faulty client can do of rotating coordinator-based replication, e.g.

view-change of PBFT [d]).

Figure B0 shows an example of state machine replication. There are two clients and four
replicas, and the clients broadcast requests r; and r5. Since its network is asynchronous, the
arrival orders of the requests are different among the replicas that execute a Byzantine consensus
protocol to agree with the processing order of the requests. As a result, the replicas agree with

processing order 1 — 75, process the requests in the order, and send their responses to the clients.
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Request r, Response of r; time

Client 1
Client 2 -ﬂk f Z 4/‘

Byz. Consensus |EX

Byz. Consensus  |EX

Byz. Consensus |EX

Replica 4 Byz. Consensus |——+

(Byzantine) EX: execution of requests

Figure 2.1: An example of state machine replication

2.3 Request Set Consensus Approach for State Machine

Replication

Here, we explain how state machine replication is realized by a protocol that solves the request
set consensus problem. Hereafter, we will formally define the requirements for the request set
consensus problem in Sec. B2.

As previously explained in Sec. B2, when a client requests a server to execute some commands,
it multicasts the requests to all the replicas. Although the requests are eventually received by all
the replicas, they can be delivered in different orders among replicas. For example, in Fig. B,
Replica 1 receives request ro from client 2 first and then request r; from client 1, but Replica 2
may receive request r; from client 1 first and then r5. If the replicas process the requests in the
order they are received, the behaviors of the non-faulty replicas can be different.

To obtain a common order of processing requests among replicas, they must repeatedly execute

a request set consensus protocol and arrange the requests in the agreed set as follows:

Step 1: A replica finds the set of requests it has received and has not yet processed, which is called
agreement candidate, and executes a request set consensus protocol with the candidate as
its initial value (or proposal) of the protocol. Let M be the agreed set of the execution,

which is, of course, common to all non-faulty replicas.

Step 2: A replica processes the requests in M in a given deterministic order common to the

replicas and returns the results to the corresponding clients.
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Figure 2.2: Execution example of state machine replication by the request set consensus problem

Step 3: Return to Step 1.

This repetition is continued until the service is terminated.

Figure P2 illustrates the execution of state machine replication based on the request set
consensus problem. Here, the request set consensus problem is solved repeatedly, and Fig. 22
shows the i-th and the (i + 1)-th agreements. The distributed system in Fig. B2 has three clients
and four replicas where Replica 4 is faulty. The clients issued five requests: r1,79,--- ,7r5. Before
starting the i-th agreement, every replica places the set of unprocessed requests it has received
to its initial value for the i-th execution of an agreement protocol. Since the order and timing of
arriving requests can be different among replicas, the initial values might also be different; e.g.,
Replica 1 sets {ro,r3} and Replica 3 sets {r3} to their initial values of the i-th agreement. Our
agreement protocol for the request set consensus problem guarantees that every non-faulty replica
obtains a common set of requests, and the agreed set is subset of the union of the initial values
of the non-faulty replicas. In Fig. B2, the i-th agreement returns agreed value {rs,75}. Then
every non-faulty replica processes the elements of the agreed set in some deterministic order. If
r5 precedes ro in the order, the non-faulty replicas execute r5 first and then r.. When a replica
finishes execution of the i-th agreement, it starts the (i + 1)-th agreement. Each replica’s initial
value of the (i + 1)-th agreement protocol is, as above, the sets of requests that have arrived
and have not been processed yet; they are not included in the agreed sets of any preceding j-th
agreement (j < i+ 1). For example, Replica 2 sets {rq, 74,75} to the i-th initial value, and 7o

and 75 are included in the i-th agreed set, and then r4 is again included in the initial value of the
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(i + 1)-th agreement. On the other hand, r3 is received by Replica 2 during the i-th agreement
protocol execution and is also included in the (i + 1)-th initial value. In Fig. 22, Replica 4, a
faulty replica, is disturbing the agreement by proposing an invalid initial value for the (i + 1)-th
agreement. Replica 4 includes 75 in the initial value, which was already included in the i-th agreed
set. The replica also includes forged request r¢ in the initial value. Even if malicious replicas
act in such a way, an agreement protocol works correctly, because it does not include requests
of the past agreement again or forged ones in the agreed value. The (i + 1)-th agreed value is
{r1,7s,r4}, and every replica processes the requests in some deterministic order. Replicas repeat
such agreements and processing until the service is terminated.

Note that definitions of request set consensus differ between Chapters B and @. Although we
will focus on the state machine replication and the request set consensus approach throughout

the thesis, each chapter discusses different problems under different definitions.
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Chapter 3

Request Set Consensus Protocol

for BFT Replication

3.1 Introduction

In this chapter, we present a new randomized multi-valued Byzantine consensus protocol for
Byzantine fault tolerant state machine replication. Our protocol is based on randomization, and
thus, can be employed in more general settings than leader-based consensus protocols such as
Castro and Liskov’s PBFT. We employ Bracha’s agreement protocol [P4] as a framework of our
protocol, and develop a very original way of coin tossing, which is crucial to realize fast and
efficient agreement. Our protocol called RSC is as efficient as existing fast randomized protocols

ABC [16] and RITAS [I4, 08, T9], and much less resource-consuming than these two protocols.

3.1.1 Related work

ABC [16] proposed by Cachin et al., and RITAS [I7, 19, 08| proposed by Correia et al., take the
second approach. Their protocols realize atomic broadcast [28]. Atomic broadcast guarantees
that every non-faulty replica in a distributed system receives the same broadcast messages in
the same order, and is easily transformed to the state machine replication. ABC and RITAS
realize atomic broadcast by multi-valued Byzantine agreements, where replicas agree on the same
value in a given set of multiple values {v1,...,v,}. However, these multi-valued agreements are
implemented by reducing them to binary Byzantine agreements, where replicas agree on the same

value in the set {0,1}. ABC uses Cachin et al’s binary Byzantine agreement protocol ABBA [29],

13
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and RITAS uses Bracha’s binary Byzantine agreement protocol [24]. ABBA employs shared coin
tossing [B] that minimizes the number of rounds to get the same coin value by cryptographic
communication among the replicas, and Bracha’s protocol simply does local coin tossing, where
the replicas independently repeat the coin tossing until they happen to have the same coin value.
RITAS generally needs more rounds for an agreement, while ABC is time-consuming during
cryptographic communication. In addition, Moniz et al. evaluated ABBA and Bracha’s consensus

protocol in a real environment, and highlighted these protocols’ characteristics [30].

3.1.2 Contributions

Multi-valued Byzantine agreement with special valued coin tossing: A naive multi-
valued Byzantine agreement based on local coin tosses [5] is extremely inefficient, especially when
the number of replicas increases. Therefore, ABC and RITAS proposed ways of reducing multi-
valued agreement to binary agreement. In contrast, we employ multi-valued agreement with a
new way of coin tossing. First, by exploiting the structure of replication, we introduce a special
value of the coin that changes dynamically and independently on each replica but finally coincides
among the replicas. We analyze how this special coin value overcomes the inefficiency of multi-
valued agreement in the performance evaluation of Sec. Bh2. Second, our multi-valued agreement
also introduces a procedure for each replica to merge the request sets proposed by other replicas
during the rounds of the agreement process. This merging allows the proposed value to converge

and contributes to the fast termination of the agreement. We also analyze the effect in Sec. BZ22.

Less resource-consumption: Owing to the simple structure of the multi-valued agreement,
our protocol is much less resource-consuming than ABC and RITAS. In Sec. B533, we compare the
loads of the request processing (i.e., request frequency) that reach the resource bound among ABC,
RITAS, and our protocol by changing the number of replicas. We prove that our protocol is much
more resource-efficient especially in a large number of replicas, while preserving fast responses.

We also experimentally analyze and compare our protocol’s characteristics with RITAS.

3.2 Request Set Consensus

We formally define the requirements for the request set consensus problem for replication. Note
that the definition is specific to the replication rather than a general use of consensus. In partic-
ular, the agreed value is a set of requests, rather than a single numerical value, as stated in the

introduction.



3.2. REQUEST SET CONSENSUS 15

Let the initial value of the i-th execution of the request set consensus protocol for replica
p be Iziw the i-th execution of the request set consensus protocol by p be RSC(p,1, IZ,) and its
agreed value be Vpi. Note that I; and Vpi are sets of requests. Let R be the set of all the
requests submitted by clients and M;(C R) be the set of requests that process p has received
before starting the i-th request set consensus execution. We assume that every replica eventually
receives all requests in R and I;; = M; — (Vp1 U sz .-y Vpi’l). If there is no need to distinguish
replicas, we simply write sz‘ as V' and do similarly for others.

The followings are the requirements of the request set consensus problem for replication:

Agreement, Termination, Integrity, and Validity.

Agreement: Let p and ¢ be non-faulty replicas. For any i, if RSC’(p,i,I;;) and RSC(q,i,I;)

terminate, then sz‘ = ti.

Termination: For any ¢ and any non-faulty replica p, RSC(p, i, I;) terminates with probability
1.

Integrity: For any 7 and any non-faulty replica p, Vpi CR.
Validity: For any r € R and any non-faulty replica p, there exists ¢ such that r € Vpi.

Agreement ensures that all non-faulty replicas agree with the same value at each execution, and
termination ensures that every execution of the request set consensus at every non-faulty replica
terminates with probability 1. Integrity guarantees that no agreed value contains any forged
requests, and validity guarantees that any request is eventually processed.

The Integrity and Validity above and used in the thesis are slightly different from the require-
ments presented below of a usual request set consensus problem.

Usual Integrity: For any ¢ and any non-faulty replica p, Vpi C Unon_faulty q 1, é.

Usual Validity: For any ¢ and any non-faulty replica p, ﬂnon_faulty q I; - Vpi.

Our requirements are arranged for the repeated use of the request set consensus problem in
replication. Our integrity requirement is induced from the usual one, and our validity requirement
is also induced by the usual one on the assumption that every replica eventually receives all
requests in R, as mentioned above. Note that our RSC protocol presented in the next section

actually does not satisfy the usual integrity requirement.
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3.3 The RSC Protocol

We propose a new efficient BFT protocol called RSC that solves the request set consensus problem,
based on Bracha’s binary Byzantine agreement protocol [24]. Let n be the number of replicas and
f be the maximum possible number of faulty replicas. The protocol works correctly, that is, it
satisfies the requirements: Agreement, Termination, Integrity, and Validity, when f < [(n—1)/3],
i.e., n > 3fgT + 1. Since asynchronous Byzantine agreement cannot be solved deterministically

even if f =1 [iA], our protocol uses randomized coin tossing, like Bracha’s protocol.

We borrow two techniques, which we explain in Sec. B23 and Sec. B=32, from Bracha’s original
protocol: reliable broadcast and internal message validity check. We introduce another message
validity check for RSC in Sec. B33. The details of our protocol are shown in Sec. BE33. In Sec.

B33, we describe our characteristic coin tossing scheme that plays a key role in RSC.

3.3.1 Reliable Broadcast

Reliable Broadcast [B1, 24, 06] is a broadcast primitive that guarantees the followings: (i) a
message broadcast by a non-faulty replica is eventually delivered to all non-faulty replicas, and
(ii) if a message is delivered to a non-faulty replica, then the same message is eventually delivered
to all other non-faulty replicas. Therefore, every replica accepts at most one identical message
for a given ID, and a faulty replica cannot send distinct messages with identical IDs to different
replicas in a broadcast. We denote the action of sending message m by reliable broadcast by

R-Broadcast(m).

3.3.2 Message Validity Check

The RSC protocol uses two validity check methods: internal and external. The internal validity
check is applied to protocol messages exchanged among replicas at Steps 2 and 3, and the external
validity check is done to INITIAL messages issued at Step 0 and received at Step 3 in our protocol
as described later. The internal validity check is the same as that used in Bracha’s agreement
protocol [74], which prevents a faulty replica from disturbing protocol executions. The external
validity check, which is original with the RSC protocol, avoids false requests forged by faulty

replicas. In the following, we explain these message validity checking methods in more detail.
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Protocol 3.1 Pseudo code of Protocol RSC(p,,1}) for replica p (Part 1)

Protocol RSC(p, 7, I;)
Input:

1: p (1 < p < n): process number;

2: i € N: execution ID of RSC protocol;

3: I; C R: initial candidate-value;

Output:

4: V;’ C R: agreed value;

Variables:

5: rn € N: round number, initially zero;

6: Cand C R: candidate of agreement, initially I;;

7: RI C R: union of accepted initial values, initially I;;

8: isMajor € {true, false}: flag indicating whether Cand is a majority, initially false;

Internal Validity Check

In internal validity check, a non-faulty replica accepts a message after confirming that it can be
sent. A replica verifies that a message being checked can be sent by a sender replica after seeing
the messages received from other replicas in the last step. n — f messages must be sent in the
last step to induce the sender replica to send the message in the current step. Messages validated
by this checking are called internally-valid. By this checking, we can prevent faulty replicas from
sending illegal messages. A detailed and formal explanation of the internal validity check can be

found in [24)].

External Validity Check

In external validity check, a non-faulty replica accepts a message including requests when it also
has directly received all the included requests from clients. With this check, we exclude forged
requests in the communication of the RSC protocol. Messages validated by this check are called

externally-valid.

3.3.3 Protocol

Protocols Bl and B2 show the pseudo code of the RSC protocol in which we denote a set
{1,2,--- ,k} by [k]. The RSC protocol has four steps. Step 0 is executed once, and Steps 1, 2,
and 3 are executed repeatedly. We call a sequence of executions from Steps 1 to 3 a round, and
RSC repeats rounds until it reaches an agreement. The RSC input is a triplet of the identifier
of replica p, execution ID 4, and a value of initial candidate I;). The execution ID is a natural

sequence number that starts from 1 and increases by one after each agreement, and RSC outputs
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Protocol 3.2 Pseudo code of Protocol RSC(p,,1}) for replica p (Part 2)
Code:

9: [Step 0]

10: R-Broadcast((INITIAL, i, I}));

11: [Step 1]

12: R-Broadcast((MSG1,i,rn, Cand));

13: Wait for accepting n — f internally-valid messages (MSG1,%,mn,Cy),- -+ ,(MSG1,i,rn,Cr_f);
14: for all request r contained in at least f + 1 candidates of C1,---,C,_s do

15:  Cand:= Cand U {r};
16: RI := RIU{r};

17: end for

18: [Step 2]

19: R-Broadcast((MSG2,i,rn, Cand));

20: Wait for accepting n — f internally-valid messages (MSG2,1i,rn,Cy), - ,(MSG2,i,rn,Cp_y);
21: for all request r contained in at least f + 1 candidates of Cy, -+ ,Cp—5 do

22:  RI:=RIU{r};

23: end for

24: if at least [(n + 1)/2] of C1,C2, -+ ,Cp_j are the same (denoted by C) then

25:  Cand := C;
26:  isMajor := true;
27: end if

28: [Step 3]

29: R-Broadcast({(MSGS3, i, rn, Cand,isMajor));

30: Wait for accepting n — f internally-valid messages (MSGS,t,mn,Cy,b1), - , (MSG3,i,rn, Cr_f,bp_5);
31: for all request r contained in at least f + 1 candidates of C1,---,Cy_y do

32:  RI:=RIU{r}

33: end for

34: if there are at least 2f + 1 MSGS3 messages (MSGS3, i, rn, V, true) for some V then
35:  R-Broadcast((MSG1,i,rn+1,V));

36:  R-Broadcast((MSG2,i,rn+ 1,V));

37:  R-Broadcast({(MSGS,i,rn + 1, V, true));

38: return V;

39: else if there are at least f + 1 MSG3 messages (MSGS,i,rn, V, true) for some V then
40: Cand:=V;

41: else

42:  if a message (INITIAL,i,I) has arrived but has not been accepted as an externally-valid message then

43: Accept its message as an externally-valid message;

44: RI:= RIUI;

45:  end if

46: D := ({C1,C2,- -+ ,Cn_s}N2BYU{RI}; {Here, D is a multiset, i.e., it can contain two or more identical values.}

47:  Choose candidate C from D randomly;
48: Cand := C;

49: end if

50: isMajor := false;

51: rn:=rn+1;

52: goto Step 1;
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an agreed set of requests denoted by Vpi.

The control variables for the protocol are rn, Cand, RI, and isMajor. A current round
number is represented by rn. Cand represents a tentative candidate for an agreed value. The
value of Cand, which is initially the value of the initial candidate, is updated at each step based on
the values collected at that step. A non-faulty replica broadcasts these values and collects them
from other replicas. Roughly speaking, if most of the collected values are the same, the non-faulty
replicas agree with the value. RI represents the set of requests received indirectly from a replica
as its initial candidate and directly from a client after the initiation of the RSC protocol. The
RI value eventually becomes common among the non-faulty replicas, although their initial values
are different among replicas. In fact, the RI value is initially I;; and finally becomes a common
value |J p I;, where g ranges over the replicas that have issued an INITIAL message, which might
include faulty ones. This value is used for two purposes. The first is as a special coin value used
by coin tossing, and the second is to exclude forged requests in the coin toss phase (line 46). A
Boolean variable isMajor indicates whether a majority exists in the received candidates at Step
2. An isMajor value is broadcast at Step 3 with Cand, and an update process of Cand at Step
3 branches based on how many received messages include isMajor as true.

During the RSC execution, four kinds of messages are exchanged. An INITIAL message
announces its own IZ’; to the other replicas. MSG1, MSG2, and MSG3 are used to inform other
replicas about C'and at Steps 1, 2, and 3, respectively. In addition, a MSGS3 message contains a
flag isMagjor. All of these messages are sent by reliable broadcast, which is explained in Sec. BZ3I.
Thus, even a faulty replica cannot send different values to different replicas in the broadcast.

Step 0: Reliably broadcast an INITIAL message to announce its own initial candidate II’; to
other replicas. This message creates the special coin value RI that eventually becomes common
among the replicas (line 44).

Step 1: Reliably broadcast a MSG1 message to announce its own Cand to the others and wait
until n— f MSG1 messages have been received from others. During receiving, invalid messages are
ignored by internal validity check, which will be explained later. With these received messages, its
own Cand and RI are extended by adding the newly known unforged requests that are commonly
included by at least f + 1 Cand values in the messages.

Step 2: Reliably broadcast a MSG2 message containing its own C'and to the others and wait
until n — f internally-valid MSG2 messages have been received from others. Add the requests
contained in at least f+ 1 candidates in the messages to RI. If [(n+1)/2] or more Cand values
have an identical value, replace the value of its own C'and with the common one, and set its own

isMajor to true.
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Step 3: Reliably broadcast a MSG3 message that has agreement candidate Cand and the
flag of majority isMajor, whose value was set in Step 2. Wait until n — f internally-valid MSG3
messages have been received from others. Add the requests contained in at least f + 1 candidates
in the messages to RI. There are three cases to update its own internal states based on the
messages. (A) If there are 2f + 1 or more messages whose isMajor is true, then decide the
agreed value to be the Cand of these messages (lines 35-38). It is proven that for any two
messages whose isMajor values are true, their Cand values are the same, even if they are sent
by faulty replicas, owing to the reliable broadcast and the internal validity check. Therefore,
this decision is well defined. Send messages for the next round once to other replicas that are
proceeding to the next round, and then terminate. (B) If there are less than 2f 4+ 1 but f + 1
or more messages whose isMajor values are true, then replace its own Cand with the Cand
of these messages (line 40). By doing this, the future decision value will be consistent with the
value already decided by other replicas. (C) In the remaining case, a non-faulty replica tosses a
coin (lines 42-48). The domain of the coin values consists of at most n — f different Cand values
received at Step 3 and RI. RI is extended by adding the union of the initial candidates included
in the INITIAL messages received so far. Here, the external validity of these received INITIAL
messages is checked, which is explained in Sec. BZ32, to exclude forged requests. Indirectly, Cand
values are also checked for any forged requests by seeing that they are included in RI. Update its
Cand to the coin toss result. Since the values of the non-faulty replica’s RI eventually coincide

with each other, termination is guaranteed.

3.3.4 Coin Tossing

When a non-faulty replica is not confident that a major value exists among the replica candidates,
it tosses a coin. Our coin tossing is local; every replica tosses independently. The domain of our
coin values is D = {Dy, -+, Dy,, RI}, where Dy,---, D,, are Cand values that are received at
Step 3 and are subsets of a local variable RI. We call RI “Special Coin Value” and RI plays an
important role to realize an efficient agreement and to ensure the correctness of RSC protocol.
A non-faulty replica randomly chooses a value from this domain, and proposes the value at the
next round. Here, the domain D is a multiset, i.e., it can contain two or more identical values.
Thus, the more D contains identical values, the higher the probability of choosing the value is.
We can ensure that the RI values of all the non-faulty replicas must eventually be stable and
coincide as some value, and this is why RI is called as “special coin value”. The reason is as

follows. The value of RI is updated mainly when a replica receives an INITIAL message and
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judges the message to be externally-valid. If a non-faulty replica receives an INITIAL message,
the other non-faulty replicas also do so even if its sender is Byzantine, since all communications
among replicas are done by the reliable broadcast. External validity of the message is judged
based on requests received directly from clients, and these requests are eventually delivered to
all replicas. Thus, if a non-faulty replica judges an INITIAL message to be externally-valid, the
other non-faulty replicas also do so. In addition, a replica reliably broadcast an INITIAL message
only once. Therefore, all non-faulty replicas eventually judge the same INITIAL messages to be
externally-valid, namely, the RI values of the replicas will coincide as the union U of the request
sets I;; sent as INITIAL messages. We call such a global configuration where the RI values of
all the non-faulty replicas are U SCV-full configuration. Here SCV means the special coin value

RI, and we call U a common-value, and the common-value ensures termination of our protocol.

3.4 Correctness

In this section, we prove that the RSC protocol satisfies the requirements for the request set
consensus problem shown in Sec. B2: Agreement, Termination, Integrity, and Validity.

First, we prove a lemma for Theorems 0 and B.

Lemma 1. If all non-faulty replicas start at round r with the same value V of Cand, then they

decide V' in the round.

Proof. Every replica reliably broadcasts its own Cand at Step 1 of round r. At most f faulty
replicas can broadcast a value other than V. Therefore, at the update of Step 1, the Cand value
of the non-faulty replicas remains unchanged. With this situation, at Step 2, every non-faulty
replica accepts only MSG2 messages, whose candidates are V', as internally-valid messages. Then
every non-faulty replica collects n — f (> [(n 4+ 1)/2]) MSG2 messages with candidate V' and
sets the isMajor flag to true. For the same reason as above, at Step 3, every non-faulty replica
accepts only MSG3 with a value of Cand V and a true flag as an internally-valid message. Then

every replica collects n — f (> 2f 4+ 1) such messages and decides V. O

Theorem 1 (Agreement). Let p, q be non-faulty replicas. For any i, if RSC’(p,i,I;) and
RSC(q,i, Ié) terminate, then V;j = ti_

Proof. The main idea of the proof is identical to that for Bracha’s binary Byzantine agreement
protocol [4].
First, we consider the case where p and ¢ decide at identical round r. Therefore, p and ¢ have

to accept 2f + 1 internally-valid messages of (MSGS3,i,r, Vpi7true> and (MSGS,i,r, VZ,true) at
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Step 3 of round r, respectively. This means that the two non-faulty replicas have to accept at
least [(n +1)/2] (MSG2,i,r,V,}) messages and at least [(n + 1)/2] (MSG2,i,r, V) messages
respectively at Step 2. Since a replica cannot send two or more MSG2 messages in the same step
even if the replica is faulty, Vpi = ti. Next, assume that p decides at round r, and no non-faulty
replica decided in the preceding rounds. Therefore, all non-faulty replicas that do not decide at
round 7, one of which is ¢, commonly set Vpi to their Cand values at Step 3 of round r (line 40),

and the replicas decide fo at the next round r + 1 by Lemma 0. O

Theorem 2 (Termination). For any i and any non-faulty replica p, RSC(p,i,I;;) terminates

with probability 1.

Proof. From Lemma 0 and the fact that SCV-full configuration is eventually reached as stated
in Sec. B34, it is sufficient to show that the Cand values of all non-faulty replicas have the same
value with some probability at the beginning of every round after a finite time when a SCV-full
configuration is reached. There are three cases to update the Cand values at Step 3. (a) If a
non-faulty replica collects 2f + 1 MSGS3 messages with the same candidate and isMajor is true
(lines 35-38), all non-faulty replicas have the same candidate at the beginning of the next round,
as discussed in the proof of Theorem M. Note that the replicas collecting 2f 4+ 1 such MSG3
messages (i.e., they decide the agreed value) behave as non-faulty replicas with the candidate in
the next round. (b) If there is no such non-faulty replica but only those collecting f + 1 or more
such MSG3 messages (line 40), then those replicas set the candidate of the messages to their
Cand values. On the other hand, the replicas that do not collect more than f + 1 such MSG3
messages must accept at least one such MSG3 message by the validity check and toss a coin
whose domain includes the candidate-value of the MSG3 messages. Therefore, the non-faulty
replicas share the candidate-value with some probability at the beginning of the next round. (c)
Lastly, if no non-faulty replica collects f + 1 or more such MSGS messages (lines 42-48), every
non-faulty replica tosses a coin whose domain includes the common-value, RI. Thus, they have

a common candidate with some probability at the beginning of the next round. O
Theorem 3 (Integrity). For any i and any non-faulty replica p, Vpi CR.

Proof. We show that no non-faulty replica contains forged requests in its Cand value during the
execution of the RSC protocol. Since the RSC protocol’s initial candidate is a set of requests
received directly from clients, there is no chance that a forged request is included. At Step 1,
the Cand value is modified by adding the requests that are commonly included in at least f 4 1

internally-valid MSG1 messages (line 15), one of which is broadcast by a non-faulty replica.
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Therefore, if the candidate-values of any non-faulty replicas at the beginning of the round do
not include a forged request, the modified value does not either. At Step 2, the Cand value can
be completely changed to a common candidate-value of at least [(n + 1)/2] (> f+ 1) MSG2
messages (line 25). Therefore, similar to Step 1, no forged request is included in it. At Step
3, if a replica receives f + 1 or more MSGS of an identical candidate and isMajor true, the
replica sets its own Cand to the value (lines 35-37 and 40). Since at least one message is from
a non-faulty replica, no forged request is included in the Cand. In the case of coin tossing, the
coin values are subsets of RI (line 46). On the other hand, any element of RI is one included
in a candidate of a non-faulty replica (lines 16, 22, and 32) or an externally-valid message (line
42), and then it is not a forged request. When a replica decides a value at Step 3, the value is a
common candidate-value of at least 2f +1 (> f + 1) MSG2 messages. By the above discussion

on the Cand value, no non-faulty replica contains any forged requests in its Cand. O

Theorem 4 (Validity). For any r € R and any non-faulty replica p, there exists i such that
reVy.

Proof. Let r be a request from a client and assume that it is never included in any agreed value.
It is obvious that such a request will eventually be included in the initial values of the RSC
protocol for all non-faulty replicas. That is, there is ¢ such that for any non-faulty replica p,
re I;). If, at the beginning of Step 1, all non-faulty replicas include r in their candidate-values,
then, after the modification of the candidate-value at Step 1, r is included in the candidate-value.
Because among n — f accepted messages, at least f + 1 MSG1 messages of them include r in
their candidates. Similarly, at the modification of Cand at Step 2 and Cases A (lines 35-38)
and B (line 40) of Step 3, the modified value is a candidate value of a non-faulty replica at the
previous step and includes r. At Case C of Step 3 (lines 42-48), i.e., at the coin tossing, its
domain is {Ds,- -, Dy, RI}, and all the values include r. Therefore, in every case, the modified
candidate-value include r. With this observation that the Cand value always includes r through

the execution, we conclude that Vpi includes r, which contradicts the assumption. O

3.5 Performance Evaluation

3.5.1 Overview

We evaluate our RSC protocol from two points of view. First, we analyze the original features of
RSC by simulation experiments. We measure the effect of the special coin value RI in SCV-full

configurations (defined in Sec. B334) in Sec. B3 and Sec. B52 and how fast a system moves



24 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

from a non-SCV-full configuration to a SCV-full one in Sec. B5. We use the number of rounds
needed to reach an agreement as an efficiency measure, simulate executions of the RSC protocol by
replicas on a single machine, and evaluate the performance in relation to SCV-full configurations.

Next, we compare the latency and throughput of RSC with RITAS [9] and ABC [if] in
Sec. B53. We implement request set consensus protocols by using RITAS and ABC, which are
atomic broadcast protocols, in a straightforward way described in Sec. B54, and run these three
protocols on multiple machines in practical settings for comparison.

In these various experiments, the efficiencies are evaluated under fault-free executions. That
is, there is no Byzantine failure among the replicas. The passive reason is that there are an
enormous number of ways of attacking and delaying the agreement, and it is hard to give a
standard measure for the failure. The active reason is that the overhead of the agreement in
the fault-free execution is more important for the replication service. Because, Byzantine faults,
such as a cracker’s intrusion, infection of virus, and out of order of systems, happen rarely, while
the cost of operations providing against these faults is always charged, even for the case without

faults.

3.5.2 Performance Evaluation on RSC Protocol Features
Evaluation in SCV-full Configuration

Evaluation environment and settings: The initial values of the RSC protocol for individual
replicas, i.e., sets of requests, are set to random values so that achieving an agreement becomes
hard. These values are different to each other among the replicas, and no request is included
commonly in any two initial values. Note that the hardness in agreement is irrelevant to the
amount of the number of requests. We implement all replicas as individual processes in a single
host, and the order of receiving control messages for agreement is set to be uniformly random.
We evaluate the number of rounds for termination for the values of «, 0.1, 0.5, and 0.9, varying
the number of replicas n from 4 to 22. Here, « is the probability of choosing the special coin value
RI in the coin tossing of the RSC protocol (line 47 of Protocol B2). For each case, we executed
the evaluation 1,000 times, and we plot the average values in the graph of Fig. Bl

Result and discussion: Fig. B shows the increasing shape in the number of replicas. When «
is large, the number of rounds is around 2 for any case, which is as ideally small as we expected.
This is achieved by choosing a common-value with high probability at every non-faulty replica
in the coin tossing of the first round. A remarkable point of this graph is that the number of

rounds with small « is still reasonably small, while a naive estimation shows it needs 1/a"~f
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Expected number of rounds

Number of replicas

Figure 3.1: Number of rounds to reach an agreement in SCV-full configurations

rounds. With this observation, it is found that in the fault-free executions, large « gives much
better performance. On the other hand, in the case of faulty replica’s attacking, large o can be
exploited by an attacker to delay the termination. Therefore, when we suspect such an attack,
we should dynamically decrease the value of o. Thus, we are still interested in small «. In the

following, we analyze the reason of this remarkable point.

Analysis of the Performance in SCV-full Configuration with Small «

First, we intuitively explain the reason of fast agreement for small . We call a replica whose
Cand value is the common-value defined in Sec. B234 the candidate-full. When « is small, the
chance is small that replicas reach an agreement by coin tossing. However, if some replicas are
candidate-full, others’ candidate-values are more likely to be modified to the common-value in
their updates at Steps 1, 2, and 3 of the RSC protocol. As a result, more replicas can have the
same value in the possible coin values and the probability of getting agreement becomes high.
Below, we present a simulation experiment under some model, which confirms this intuition.

Analysis model: Assume that there exists k (> f + 1) candidate-full replicas at the beginning
of a round. In such a configuration, a replica can change its C'and in this round in the following

three cases:

Case 1: At Step 1, when there is a request that is contained in at least f+ 1 received candidates,

it is added to its own Cand.

Case 2: At Step 2, when it receives the same value from a majority of replicas, it replaces its

own candidate with the value.
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Case 3: At Step 3,

1. when it receives k (f + 1 < k < 2f 4+ 1) candidates with isMajor = true, it replaces

its own candidate with the value.

2. when it does not receive more than f candidates with isMajor = true, it updates its

own candidate randomly by a coin toss.

Following these cases, we evaluate how the expected number of candidate-full replicas changes.
As a commonly used probability scheme through the evaluation, we introduce the following prob-
ability. Assume that there are y pieces of marked lots among x pieces of lots in a box. We denote
P(x,y,2',y") as the probability of obtaining at least y’ pieces of marked lots by randomly drawing
2’ pieces of lots from the box. By a simple calculation, the following holds:

min{y,z’}
P(ﬂ?, Y, .73/, Z//) = Z yci . I—yca:’—i /LCJJ

i=max{y’ 2/ —z—y}
Using this probability, we show the evaluation.

At first, for Case 1, the k& candidate-full replicas remain candidate-full. A non-candidate-full
replica becomes candidate-full when it receives at least f 4+ 1 common-values, and P(n,k,n —
f, f + 1) is the probability of this happening. There are a few other cases where non-candidate-
full replicas become candidate-full, but we ignore them for simplicity. Therefore, the expected

number of candidate-full replicas after Step 1 is at least
kh=k+(n—k) - Pln,k,n—f,f+1).
In Case 2, by the assumption that k& > f + 1, a non-candidate-full replica becomes candidate-full
only when it receives at least (n + 1)/2 common-values. Therefore, the expected number after
Step 2 is at least
ka=ki+(n—Fk) -Plnki,n—f,(n+1)/2).
Lastly, in Case 3, the probability that Case 3-1 happens is
D1 :P(n,kg,n—f,f+1) _P(Tl,kg,n—f72f+1),
while that of case 3-2 is chosen is

p2:1_P(nak27n_f,f+1)'

For Case 3-1, the non-candidate-full replica becomes candidate-full. For Case 3-2, the non-

candidate-full replica becomes candidate-full by the coin tossing with probability

pe=a+ (1 —a)-ka/n.
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Figure 3.2: Change of ratio of candidate-full replicas

Thus, the expected number after Step 3 is

ks =n-(p1/(p1 + p2) + p2 - pe/(P1 + P2)).

Result and discussion: Next, we calculate how the ratio of candidate-full replicas changes
based on the above equations, and Fig. B2 shows the result, where o = 0.1 and k = f 4+ 1. The
four lines correspond to Cases n = 4, 10, 16, and 22. In each case, f is fixed to [(n — 1)/3].
The horizontal line is drawn at (n — f)/n = 0.75 as the threshold of the agreement. If the ratio
exceeds this line, any non-candidate-full replica becomes candidate-full. For example, in Case n
= 16, 38% of the replicas are candidate-full at the beginning of round 1, and after 2 rounds, it
exceeds the threshold line. Therefore, at round 4, all the replicas become candidate-full. In any

case, a configuration that all replicas become candidate-full is achieved quickly.

Evaluation of Transition Speed from non-SCV-full to SCV-full Configuration

In the previous evaluations, we showed that agreement by RSC protocol is achieved in a few
rounds for any « in a SCV-full configuration. Here, we show that a SCV-full configuration is
reached in a few rounds for practically reasonable sizes of n. Note that a SCV-full configuration is
a configuration where the values of all non-faulty replicas’ RI are the common-value. A replica’s

RI is updated in the following two cases:

Case 1: when there is a request contained in at least f + 1 received candidates at Steps 1, 2,

and 3, a non-faulty replica adds the request to its RI.

Case 2: when a non-faulty replica receives a request by INITIA L message under external validity

check, it adds the request to its RI.
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Expected number of rounds

Number of replicas

Figure 3.3: Number of rounds to become a SCV-full configuration

Although, both updates independently contribute to achieving a SCV-full configuration, the
update by Case 2 depends on the communication speed on the networks between clients and
replicas, which are uncontrollable in open networks like the Internet. Thus, we only evaluate the
update with Case 1.

Simulation settings: We assume there are n requests and each request is included in the initial
values of just f+1 different replicas fairly. This is the hardest setting for a request to be included
in RI. Communication between replicas is simulated in the same way as Sec. Baid. With this
environment, we count the number of rounds to reach a SCV-full configuration or a configuration
where all non-faulty replicas agree. The experiments are executed for « = 0.1, 0.5, and 0.9,
varying the number n of replicas from 4 to 22.

Result: The results are shown in Fig. B33 by plotting the averages of 1,000 executions for each
case. A large « brings a rapid transition to the SCV-full configuration. Up to n = 22, the number

of rounds is practically bounded.

3.5.3 Experimental Comparison with Other Protocols

Protocols to be compared: We compare our RSC protocol with two representative atomic
broadcast protocols: ABC [I6] and RITAS [[9], which are built on binary Byzantine agreement
protocols. An atomic broadcast protocol and a request set consensus protocol are equivalent in
the meaning that one protocol is easily transformed to the other with an efficient procedure. The
way of transformation from an atomic broadcast protocol to a request set consensus protocol is
shown in Sec. B54d. We use it for this experimental comparison.

RITAS internally executes Bracha’s binary Byzantine agreement protocol [24] among the
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replicas to guarantee agreement termination on the request sets. Bracha’s protocol is itself a
randomized algorithm and may possibly repeat a number of rounds for agreement, because ter-
mination depends on the probability that the values of the local coins independently tossed by
replicas happen to coincide. On the other hand, since it does not employ any heavy cryptographic
procedure except message authentication code (MAC), the duration of each round is very short.

ABC internally executes the binary Byzantine agreement protocol ABBA [29] O(1) times for

each execution. ABBA performs shared coin tossing by using a dual threshold signature scheme.
The number of rounds for the agreement is ideally small, while the duration of each round is long
due to the heavy cryptographic procedures.
Experimental settings: We evaluate the latency and throughput of the replication based on
each of the three protocols. The protocols were implemented by C++ language with POSIX
library, and for ABC, we exploited H. Moniz’s implementation of dual threshold cryptographic
schemes”. We use seven machines as client hosts and n = 3f + 1 machines (f = 1,2,3) for the
individual replicas, which are totally connected by one 1 Gbps network switch. The machines
have a Core i3 540 3.07 GHz CPU and 2 GB RAM and run Linux 2.6.18.

Every client sends requests in a common frequency. We call the number of requests received
by a replica every second request frequency, which we change to evaluate the latency and the
throughput. We set up two models for the evaluation, and Table BOl depicts how requests are
sent in the two models. One is a normal one, where each client multicasts the requests in the
same order to the replicas. Therefore, the probability that replicas receive the requests in the
same order is high. The other is a delayed one, where each client sends the requests in a different
order among the replicas to represent delays of message delivery.

In RSC execution, we invoke the agreement protocol every five received requests or every

millisecond. Note that because we cannot execute two agreement protocol instances in parallel
for consistency, even if the scheduled timing is coming, we have to wait for the termination of the
previously invoked agreement protocol. Therefore, a replica may newly receive more than five
requests at the invocation and propose more than five. Through the experiments, probability «
to choose the special coin value RI is set to 0.9.
Evaluation results: Figures B4 and B3 show the results of evaluating the throughput and the
latency of RSC, RITAS, and ABC in the normal model, respectively. Similarly, Figs. Bf and B™2
show the results in the delayed model. In each graph, the evaluation results for n = 4, 7 and 10
(f =1, 2 and 3) are given.

In addition, Figs. BR and B show the averages of the number of rounds, the duration of an

Lhttp://sites.google.com/site/hmoniz/publications/ritas.zip
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Table 3.1: Ways of sending requests in two models for n =4

1st send 2nd 3rd 4th 5th 6th
Replica 1 1 ro 73 T4 5 76
Replica 2 1 ro T3 T4 5 76
Replica 3 71 9 r3 T4 s T'6
Replica 4 71 ro r3 T4 5 76

(a) Normal model

1st 2nd 3rd 4th 5th 6th

Replica 1 | 7 9 r3 T4 rs T
Replica 2 | 7o r3 T4 1 T r7

Replica 3 | r3 T4 1 9 T T8

Replica 4 | ry4 71 T 73 T8 rs5
(b) Delayed model

agreement, and the size of the agreed set (i.e., request set output of the agreements) by RSC and
RITAS for the two models respectively, which are presented to analyze the latency results of RSC
and RITAS for n = 4.
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In general, the throughput values monotonically increase and at some point begin to decrease
or remain stable when the request frequency grows. At the point of the request frequency,
the system reaches the resource bound, and at the same point, the latency suddenly increases

markedly. Such resource bounds can be seen in the figures.

In observing Figs. B4 and B3, the ABC performance is much worse than RSC and RITAS.
ABC has much longer latency than RSC and RITAS and reaches the resource bound faster. We
can reason that the cryptographic primitives employed in ABC cause this. On the other hand, the
latency and the request frequency of the resource bound of ABC are not much different among
n =4,7,and 10.

In comparison of RSC and RITAS, RSC reaches the resource bound later than RITAS, es-
pecially for n = 7 and 10. This means that RSC consumes fewer resources than RITAS does.
As for latency, RSC outperforms RITAS for n = 7 and 10, which is affected by their resource
bounds. For n = 4, RSC is better until 800 requests/sec, and after that, RITAS is better until
the resource bound. To understand the RSC and RITAS behaviors in more detail, we consulted
the result of Fig. B8. In RITAS, the average execution time for an agreement increased slowly,
and the average size of a request set output by an agreement also increased monotonically. It is
obvious that when the average execution time increases, the latency increases, and when the size
of the request set increases, the latency decreases, because more requests can be processed for
an execution of agreement. We can observe in Fig. B3 that the RITAS latency first increases,
next remains stable, and then decreases. And now we can reason that the effect of increasing the
average execution time for agreement is dominant first, next it is in balance with the increasing
size of the agreed set, and then the increase becomes dominant. For RSC, the average size of re-
quests is stable while the average execution time is increasing. Therefore, the latency is increasing
monotonically.

Next, we consider Figs. B@ and B2 of the delayed model. ABC again shows worse performance
compared with RSC and RITAS as does in the normal model. In this model, however, ABC’s
latencies are different among n = 4, 7, and 10, while their resource bounds are the same. As for
throughput, RSC and RITAS show almost the same results as the normal model. The latencies
of RSC and RITAS worsen as a whole, but the relation between RSC and RITAS is the same as
the one in the normal model. The shape of RSC’s latency is different from that in the normal
model. First, it increases until 400 requests/sec and remains almost stable until the resource
bound. Fig. BM explains this behavior. The average execution time for an agreement increases
until 400 requests/sec and then the increase slows down. On the other hand, the average size of a

request set output by an agreement increases monotonically. After 400 requests/sec, the average
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execution time and the average size, whose increases negatively and positively affect the latency
respectively, are in balance so that the latency is stable.

Note how the results of the number of rounds in Figs. B8 and B clarify the differences of the
characteristics between RSC and RITAS. RITAS, which keeps the number of rounds to 1 through
all request frequencies for the both models, internally executes binary Byzantine agreements to
terminate the agreements on a request set. Before starting the binary agreement, RITAS makes
the replicas merge the requests for their proposals by communicating with each other so that the
binary agreement can quickly terminate. With this device, RITAS achieves one round agreement
even in the delayed model.

On the other hand, RSC executes multi-valued Byzantine agreements and needs more rounds
in general. In the results, the number of rounds is small and stable in the normal model, but it
is much larger and decreases as the load becomes higher in the delayed model. We can reason
that the difference is caused by the external validity check. In the normal model, the validity
check is accomplished quickly for every replica. On the other hand, in the delayed model, if some
requests are delayed over rounds, more time is needed to finish the external validity check, and so
more rounds are needed to agree with the special coin value among the replicas. However, when
the load increases, the number of rounds decreases. Because, the duration of a round becomes
longer, and the time needed for the validity check is encapsulated in the duration.

Summarizing the evaluation result, for the smallest n = 4, RSC and RITAS have similar
load performances of low request frequencies and RSC accepts a higher request frequency than
RITAS. For larger n = 7 and 10, RSC has more advantages in both response time and resource
bound. ABC’s performance is inferior to RSC and RITAS, but its performance does not change
over the number of replicas. These characteristics can make ABC more attractive in constructing
robust replication in a slower communication network like the Internet or in the future when the

hardware cryptographic processing is available.

3.5.4 Request Set Consensus Using Atomic Broadcast

Here, we describe how to realize a request set consensus protocol by using an atomic broadcast
protocol with a common idea described in [[6]. This protocol is used in Sec. B3 to compare ABC
and RITAS with RSC; since they are atomic broadcast protocols and not request set consensus
ones, we cannot directly compare them with RSC.

Atomic broadcast is defined by the following four requirements. We write “a-broadcast m”

for broadcasting a message m by an atomic broadcast protocol and “a-deliver m” for accepting a
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Figure 3.10: Flow of deciding agreed values

Protocol 3.3 Protocol for Request Set Consensus using Atomic Broadcast

Initialization:
3 := 0
: When a request r is delivered from a client:

A-broadcast r;

Record the reception of the request r;
if this is the (f + 1)-th a-deliver of the request r then
vV, = A{r}
i:=1+1;
10: end if

1:
2
3
4
5: When a request r is a-delivered:
6
7
8
9

broadcast message m in the protocol.

Validity: If a non-faulty process a-broadcasts a message m, then some non-faulty process even-

tually a-delivers the message m.

Agreement: If a non-faulty process a-delivers a message m, then all other non-faulty processes

eventually a-deliver m.

Integrity: Every non-faulty process a-delivers any given message m at most once, and only if m

was previously a-broadcast.

Total Order: If two non-faulty processes a-deliver two messages my and mo, then they a-deliver

them in the same order.

When a replica receives a request from a client, it a-broadcasts the request. When a replica
has a-delivered identical request r for f + 1 times from different replicas, it sets agreed value V*
to {r} (Fig. B10). By Total Order, the non-faulty replicas agree with the same value, and by
collecting the same f + 1 requests, no forged request is included in the agreed value. Protocol B33

shows the protocol details.
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3.6 Concluding Remarks

In this chapter, we proposed a randomized Byzantine fault-tolerant request set consensus protocol
RSC to realize efficient state machine replication in asynchronous communication environments.
In this protocol, we introduced a new method of multi-valued local coin toss for consensus. In
general, multi-valued local coin toss for consensus is thought to be very inefficient. However, our
RSC protocol has a property in which the domain of the coin values is dynamically narrowed.
By simulation experiments, we showed that our protocol reached a consensus in fewer rounds
and outperformed RITAS and ABC, two well-known randomized Byzantine fault-tolerant atomic

broadcast protocols, in a network where replicas communicate with each other at high speed.



Chapter 4

Parallelizing Consensuses to

Reduce Latency

4.1 Introduction

In the randomization approach, randomized actions are introduced to avoid critical damage from
attackers. However, the approach is likely to be inefficient, since a number of rounds must be
repeated until the correct replicas reach agreement. To improve efficiency, a request set agreement
is employed rather than an agreement on a sequential number (the order to be processed) of each
request. Once agreement on a request set is achieved, the requests in the set are processed in
a predefined order (e.g., the order of the IDs of the clients submitting requests) among them.
This request set agreement is repeated sequentially and all requests are arranged in a common
order. However, if some replicas work very slowly or some requests reach very late, a request
set agreement may take a long time. It seriously delays the next invocation of the consensus
protocol. This chapter presents a method of solving this problem by parallelizing the request set
agreements.

Next, we explain more details of the randomization approach and the involved problem. Many
randomized protocols based on request set agreement have been already proposed [I7, 6, 32, 33].
The consensus protocol is invoked periodically with a given time interval measured by a local
clock of each replica. When an execution of the protocol is finished by agreeing on a request set,
the requests in the set are arranged in a predefined order. By this series of arrangements, all the

requests are arranged in a common order among the replicas. At each invocation of the consensus
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protocol, each replica proposes a set of the requests that were received so far but not included
in the previous agreement results. Of course, these proposals can be different among the replicas
because of the delay of the request arrival or the machine behavior. However, the set agreement
protocol guarantees that all non-faulty replicas agree on a subset of the union of the request sets
proposed by non-faulty replicas.

The length of the local time interval between invocations of the set agreement affects the
efficiency, but it is difficult to decide a suitable one. If it is short, the number of invocations of
the consensus protocol will increase. If it is long, requests have to wait long for the invocation of
the agreement protocol, and the agreement may take a long time because the size of the proposal
grows. When an execution of the consensus protocol does not terminate within the local time
interval, a big delay might occur. In this case, the invocation of the consensus protocol is kept
waiting until the termination of the previous consensus, even if the local time interval passes
to prevent inconsistency of the total order of requests among the replicas. Such blocking of the
invocation makes the following invocations of agreement postponed. As a result, the number of
unprocessed requests grows and the efficiency of the replication method is reduced. When request
arrivals or machine behaviors are delayed, the validity check becomes very time consuming in the
agreement, and the termination is easily delayed over the local time interval. Here, the validity

check is a process in the agreement for excluding forged requests.

4.1.1 Contributions

To solve the above problem, we introduce a method that allows parallel execution of agreements
so that executions of the set consensus protocol are not blocked by delayed requests or machines.
Our experimental results show that our parallelization method greatly improves the efficiency
compared with a sequential method, especially three or four times faster when some requests are
delayed or some replicas work slowly.
We solved the following two technical issues:

Safety problem: The parallel executions of the set consensus protocol may terminate in different
orders among the replicas. For example, on one replica, the execution of the agreement initiated
first terminates after the one initiated second, and on another replica, the one initiated first
terminates first. When the replicas are restricted to process the requests in the invocation order
of the agreements, they have to wait until the delayed agreement is completed. This may reduce
the efficiency achieved by parallelization. Therefore, we have to consistently arrange the outputs

(or request sets) of the parallel executions among the replicas.
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Liveness problem: A request contained in the proposal made by a replica is not necessarily
included in the output of the corresponding agreement. Therefore, to guarantee the liveness that
a request is eventually processed, a replica has to keep proposing the request until it is included
in an output of the agreements. On the other hand, a Byzantine faulty replica may propose
the request set that includes a forged request, which can collapse the replicated server state. To
exclude such requests, a replica validates the requests contained in the proposals of other replicas.
One possible way of validating a request is to wait for receiving it directly from a client [32, B3].
However, if the arrivals of the request are delayed at some correct replicas, the validation takes
a long time for the clients, and the agreement is delayed. This causes a situation that a request
that delays agreement can commonly be included in the proposals of the parallel executions of
the agreement. This reduces the positive effects of parallelization.

To solve the safety problem, we introduce another agreement process in the replication protocol
that identically arranges the output of the parallel executions among the replicas. We show that
this additional agreement’s overhead is small by experimentally evaluating the performance.

To solve the liveness problem, we introduce randomization to decide the proposals of each
execution of the consensus protocol. The requests in the proposal are chosen randomly from the
requests that have already been received but have not been processed. A request that causes a
delay in a previous execution may be missed in this choice, and a new execution can have no
delay. We experimentally show that this randomization brings a reasonable advantage of response

time.

4.1.2 Related work

As stated above, there are two main approaches for replications based on Byzantine agreement
in asynchronous distributed systems: randomization [[7, 06, B2, B3] and a rotating coordinator
(G, 10, 11, 34].

In the rotating coordinator approach, a special replica (a rotating coordinator) determines
a sequence number (the processing order) for each received request and announces it to all the
other replicas. Therefore, all the replicas can process the requests in the same order and maintain
consistency. If the coordinator is suspected to be faulty, its role is taken over by another replica.
From the impossibility result of Fischer et al. [[], this approach needs some assumptions on
synchrony (weak synchrony) to guarantee termination. On the other hand, the randomization

approach guarantees termination with probability 1 and needs no additional assumption. It is

more robust but less efficient.
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Among the protocols in the coordinator approach, the Castro-Liskov protocol [d] achieves very
high performance and is considered a practical replication method. Under the above assumption,
it terminates in a few rounds and executions of the consensus protocol are executed in parallel.
Although the original Castro-Liskov protocol executes the consensus protocol for each request,
it is not hard to modify the protocol to allow each process to propose a request set like the
randomization approach. However, parallel execution of the agreements for request sets in the
coordinate approach is essentially different from that in the randomization approach. Actually,
the modification of the Castro-Liskov protocol reduces the number of agreement executions and
consequently improves efficiency in ordinary situations. However, it worsens when requests or
replicas are delayed. Because of the delay, a coordinator is suspected to be faulty and coordinator
alternation often happens. At each alternation, a heavy load procedure must be done to maintain
this protocol’s integrity.

For the existing protocols in the randomization approach, to the best of our knowledge, our

parallelization proposal is the first.

4.2 Replciation by Request Set Consensus (RSC)

We introduce a state machine replication method based on Byzantine consensus on a set of
requests (called Request Set Consensus (RSC)), which is commonly used in replications in com-
pletely asynchronous distributed systems to accelerate replication execution.

In this replication method, a replica periodically initiates RSC with a predefined interval.
We denote the sequence of RSC executions by RSC', RSC?,---. A replica maintains the arrived
request set to store the set of the requests that have already been received but have not yet been
processed; a request is added to the set when it is received, and it is removed when it is processed.
When a replica initiates RS C*, its proposal is the set of the requests stored in the arrived request
set. Let the output (a set of requests) of RSC* be Vj,. Requests are processed in the order of
V1,Va, ..., and the requests in each V; are serialized in a deterministic order shared among the
replicas. In the existing methods, the initiation of RSC*T! must be delayed until RSC* is finished
to maintain the consistency of the processing order of requests, even if it passes the scheduled
initiation time of RSC*! (Initiation Condition).

To ensure the safety and liveness requirements for state machine replication, the RSC protocol
must satisfy the following requirements. Hereafter we denote an execution of RSC' at a replica

with proposal v by RSCi(v) or RSC' if the proposal does not matter.

RSC Agreement No distinct correct replicas output different sets of requests.
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Figure 4.1: Invalid parallel executions of RSC

RSC Validity The output set is a subset of the union of the proposals of all correct replicas.
RSC Termination Every correct replica eventually outputs a set of requests.

RSC Integrity A request contained in the proposals of all correct replicas is also contained in

the output.

RSC Agreement, Validity, and Termination are standard requirements for Byzantine consensus
protocols. RSC Integrity suffices to guarantee the Liveness requirement of state machine replica-

tion.

4.3 Parallelizing Executions of RSC

4.3.1 Problem with Parallelization

Executions of existing replication methods can be very slow due to the initiation condition men-
tioned above, especially when the behaviors of some replicas are delayed or requests reach some
replicas late. One idea to improve the efficiency of the replication method is parallelizing the
executions of RSC by consistently removing the initiation condition. To achieve this, we have to
solve the following two problems.

Safety problem: Since the delays of the communication links among replicas and clients are
different from each other in asynchronous systems, the order of finishing the RSC executed in
parallel can be different among the replicas. In Fig. BT, replica p finishes RSC' first, while replica
q finishes RSC? first. If a replica immediately executes requests after the agreements, then the
processing orders of the requests are not the same among replicas p and ¢, and the safety condition

is not guaranteed.
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Figure 4.2: Ineffective parallel executions of RSC
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Figure 4.3: Execution of our proposed parallelizing method

This problem can be simply resolved by waiting for the terminations of all RS (j < 1) before
processing V; the agreed set of requests. However, the method can cause great overhead (Fig.
B7), where replica g has to wait for the termination of RSC" to process V. If a RSC takes a
long time, all requests already agreed by the following RSCs have to wait to be processed until

the previous RSC is terminated.

Liveness problem: Even if we reduce the overhead of waiting for the termination of other
RSC executions, inefficiency caused by the delayed replicas or the delayed requests remains. A
request included in a proposal may not be included in the output. Therefore, the replica must
keep proposing the request until it is included in an output of RSC to guarantee the liveness

requirement for state machine replication.

In such a naive parallelization, the proposal of RSC/*! is likely to contain a request in that
of RSC?. However, if the request is greatly delayed for some replicas, the validity check in the
protocol commonly takes a long time for both executions RSCY and RSC?T!. Therefore, a few

delayed requests may cause big delays in the parallel execution of RSC.
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4.3.2 Our Approach

To solve the safety problem, we introduce a multi-valued consensus (MVC) in the parallelization.
When an execution of RSCY is finished in a replica with output rsj, the replica initiates MVC
with proposal (j,rs;) (Fig. B3). If MVC outputs agreed value (id, rs;4), the replicas process the
requests in rs;q in an arbitrary predefined order. All correct replicas clearly process the same
requests in the same order. Note that MVC is itself executed sequentially on each replica. An
important point of this method is that the replica does not have to wait for the termination of
RSC' (i < id). In addition, even if RSC™ has not finished at the replica, it can process the
requests in rs;q since the replica can learn the requests from the MVC output.

To solve the liveness problem, we introduce randomization for deciding the proposal. We
decide the RSC proposal by probabilistically choosing requests from the set of requests already
received but not yet processed. With this simple modification, we can decrease the probability
that two proposals of two distinct RSC executions include the same request. Consequently, the
terminations of successive RSCs executed in parallel are rarely delayed by the same request in
the two proposals. At the same time, we can guarantee the liveness requirement with probability
1.

4.3.3 Multi-valued Consensus Protocol

We show the requirements for the multi-valued consensus protocol used to determine the request
set to be processed first. The MVC proposal at a correct replica is a pair of ID of a terminated
RSC execution and its agreed request set. The MVC protocol is, of course, the randomized
protocol, because the targeted distributed system is asynchronous and Byzantine faulty. The

MVC protocol must satisfy the following requirements:

MVC Agreement No distinct correct processes output different values.

MVC Validity If the proposals of all correct processes are the same, the agreed value is the

proposal.
MVC Termination Every correct process eventually outputs an agreed value.

MVC Extra Validity The output of a correct process must be a proposal of some correct

process.

MVC Agreement, Validity, and Termination are the common requirements for MVC in general.

MVC Extra Validity speeds up state machine replication while avoiding forged requests explained
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in Sec. B234. MVC Extra Validity is feasible using a signature scheme on an existing MVC
protocol. Each replica repeatedly executes MVC, and we denote the i th execution of MVC by
MV,

4.3.4 Protocol

Our proposed parallelizing method is shown in Protocol El. The value of input_rs is a set of
requests given to RSC as a proposal and is modified based on old_rs and new_rs. The value of
old_rs is a set of requests that were received before the last RSC initiation and remain unprocessed.
The value of new_rs is a set of requests that were received after the last RSC initiation. The
value of agreed_rs is a set of requests that belong to RSC output. rsc_id_queue is a queue of
pairs (j,7s;) of RSC ID j and agreed set rs; output by the execution of the RSC with ID j. An
element of the queue is a proposal of MVC. wait_queue is a queue of agreed request sets, and
a thread Tjrocess processes them in order. muc_id is a counter that gives a sequence number to
each execution of MVC, allowing replicas to recognize a common execution of MVC.

We assume that each replica has its own special scheduler P.S, which employs a local clock of
the replica. PS periodically outputs positive integers 0, 1, 2, ...in this order with a predefined
interval. When PS outputs number k, the replica initiates the k th execution of RSC with ID k.
The shorter the PSS interval is, the more frequently RSC is initiated.

We introduce choose function to process requests faster while keeping liveness property. The
function forms a request set from the elements of old_rs and new_rs, which is used as input
for newly initiated RSC. Here, old_rs and new_rs are the sets of requests that have not been
included in any MVC output yet, i.e., their processing orders have not been assigned yet. The
function resolves the following problems. To guarantee liveness, the requests must be included
in RSC proposals repeatedly until their processing orders are assigned. A naive way to realize
this is to include all the requests of old_rs and new_rs in every RSC input for the proposal.
However, if a proposal contains a request that arrives late at n — f replicas, the termination of
the RSC execution is also delayed. To solve the problem, choose function chooses a part of the
requests in old_rs and new_rs randomly for RSC input. As a result, we can reduce the risk that
the termination of the RSC execution is delayed. There are many ways to choose the requests
randomly, and we employ a simple way that chooses each request with a constant probability. By
the simple way, liveness is guaranteed with probability 1. In addition, we experimentally show in
Sec. B3 that choose function has a good effect on performance.

A replica initiates MVC with a proposal of a pair of an RSC ID and its agreed set. If MV CJ
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outputs the agreed value (id, V'), the replica processes V at the j th turn. The MVC proposal
includes the corresponding agreed set as well as the RSC ID to improve the efficiency. If the
proposal is only RSC ID, when MVC outputs RSC ID id and the replica has not finished the
execution of the RSC of id, it has to wait for the termination of the RSC before processing the
requests in the agreed set. With the agreed value in the output of MVC and MVC extra validity,
which means that the agreed value is not forged, a replica can process the correct request set
immediately after the MVC outputs.

Our method starts from initialization in which a replica creates a new thread Tprocess- Lprocess
dequeues a request set from wait_queue and processes the elements in a deterministic order shared
with all replicas.

Our protocol has four when clauses (the line numbers at the end of each when clause are of

Protocol E1):
e When a new request arrives from a client, it is added to new_rs. (lines 13-14)

e When scheduler PS outputs value j, first, the already agreed requests are removed from
old_rs and new_rs. Next, the proposal for a new RSC is calculated using given function
choose. The choose function randomly selects requests from its input old_rs and new_rs in
a predefined manner. Then a new RSC with ID j is initiated, and the elements in new_rs

are moved to old_rs. (lines 15-21)

e When an RSC execution with ID id is finished with output rs, a replica updates agreed_rs
and enqueues a pair (id,rs) to rsc_id_queue if id is not in agreed_rsc_id. If a previously
invoked MVC is running, it waits for the termination. Then the replica chooses the first
element, a pair of an RSC ID and an agreed set (id’, rs’) from rsc_id_queue (without deleting
it from the queue) and initiates a new MVC with ID muwc_id with the proposal (id’,rs’).

Lastly, the replica increments the value of muvc_id. (lines 22-30)

e When MVC outputs value (id, rs), a replica removes the pair whose first element is id from

rsc_id_queue and enqueues rs into wait_queue and id into agreed_rsc_id. (lines 31-35)

4.4 Correctness

We prove that our proposed protocol, which parallelizes RSC executions, satisfies the safety and

liveness requirements of state machine replication.
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Protocol 4.1 Proposed parallelizing method

Variables
input_rs := @; {input of RSC}
old_rs := (; {requests received before the last RSC}

new_rs := (; {requests received after the last RSC}

1:

2

3

4

5:  agreed_rs := (); {agreed requests}

6 agreed_rsc_id := (; {RSC IDs agreed by MVC}

7 prs := 0; {processed requests}

8 muc_id := 1; {counter for MVC IDs}

9 rscid_queue := empty; {queue of pairs of RSC ID and a set of requests }
10: wait_queue := empty; {queue of agreed sets waiting to be processed}
11: Initialization

12: start task Tprocess;

13: When a request r arrives do

14: new-rs :=new_rsU {r};

15: When PS outputs j do

16:  old_rs := old_rs \ agreed_rs;

17: new_rs := new-rs \ agreed_rs;

18:  input_rs := choose(old_rs, new_rs);
19:  invoke RSCY (input_rs);

20: old_rs := old_rs U new_rs;

21: new-rs := 0;

22: When RSC'? outputs its agreed value rs do
23:  if id ¢ agreed-rsc_id then

24: agreed_rs := agreed_rs U rs;

25: enqueue (id,rs) into rsc_id_queue;
26: if MVC is running then

27: wait until it terminates;

28:  let (id',rs’) be the first element of rsc_id_queue;
29:  invoke MV O™V (id’ rs');

30: mucid := mwvcid + 1;

31: When MV C® outputs its agreed value (id,rs) do

32:  if rsc_id_queue contains (id, *) then
33: remove (id, *) from rsc_id_queue;
34: enqueue rs into wait_queue;

35: agreed_rsc_id := agreed_rsc_id U {id};
36: Task Tprocess

37: loop

38: wait until wait_queue is not empty;

39: dequeue rs from wait_queue;

40: for all » € (rs\ prs) in some deterministic order do
41: execute r and send the result to the client;

42: prs := prsUrs;
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4.4.1 Safety

We have to show that requests are processed in the same order among the correct replicas and
that no forged requests are included in them.

To show that requests are processed in the same order, it is sufficient to show that RSC
outputs are enqueued to watt_queue in the same order among the replicas under RSC agreement,
since thread T'_process processes the requests in the order in which they are stored in wait_queue
(line 39). On the other hand, enqueuing is executed only in the event of MVC output, and
MVC is executed sequentially (lines 26-30). Therefore, the desired result follows from the MVC
agreement. The non-forged requirement immediately follows from RSC validity and MVC extra

validity. O

4.4.2 Liveness

Here we show that a request sent by a client will be eventually processed. Assume that there
exists a request rq that is never processed. Such a request is eventually delivered to all correct
replicas and stored in their new_rs or old_rs. Hence, there must be an RSC execution with some
probability in which every correct replica contains rq in its proposal. This is achieved by choose
function. Let the ID of the execution be k. By RSC termination, the execution must terminate,
and by RSC integrity, agreed set Vi, must contain rq. Then every correct replica enqueues (k, V)
into rsc_id_queue. Assume that (k, V%) has never been chosen as an output of any MVC execution.
rsc_id_queue is a queue, and if (k, V}) is not removed for a long time, (k, V}) moves to the front
of the rsc_id_queue. If the front of the rsc_id_queue of every correct replica gets (k,Vy), every
correct replica proposes (k, Vi) and the agreed value of the next MVC execution must be (k, V)
by MVC validity. The execution must terminate by MVC termination. Therefore, request rq is

eventually processed, which contradicts the assumption. O

4.5 Performance Evaluation

In this section, we experimentally compare the performance of state machine replication employing
our proposed parallelizing method with an existing one based on sequential agreements. In
particular, we show how the delay of request message delivery and machine behavior affects the
response time of the requests. Moreover, we compare scalability, i.e., the ability to process a large
number of requests sent by many clients, of the two methods from the viewpoints of throughput

and latency.
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In this section, we compare the performance of the parallelized Byzantine fault tolerant repli-
cation proposed in this chapter and the sequential one by experiments. Although our proposed
parallelized method is Byzantine fault tolerant, in the experiments, we do not model Byzantine
behavior as malicious behavior of a faulty replica, where it sends invalid messages not satisfy-
ing the protocol. The reason is as follows. Most Byzantine fault tolerant protocols use reliable
broadcast and validity check mechanisms [24, B3, B2, [6]. The malicious behaviors mentioned
above are detected immediately by these mechanisms, and cannot have an effect on performance
of the replication. Therefore, meaningful attacks that faulty replicas can do are restricted to
delayed behaviors, e.g. delaying message delivery. By the reason above, we consider only delayed
behaviors of faulty replicas’ attacks in the experimental performance evaluation here. Moreover,
delays in arrivals of requests from clients at some replicas and delays in correct replicas’ actions
also affect performance of the replication. To analyze how these three kinds of delay affect per-
formances of the sequential and parallelized replications and in what situations of the delays the
difference of the performances become larger, we introduce a simple model that simulates these
delays. The model is controlled by the four parameters: #d_req, #d_rcv, ed_req, and ed_mac,
described below. To the best of our knowledge, this is the first one that evaluates the effect of

these delays in detail for randomization approach.

4.5.1 Experiment environment

For our experiments, we use five machines completely connected by one network switch. Four of
them are used to run replicas and the other one is used to simulate clients. On each of the four
machines, a replica is running individually. On the other machine, several clients are simulated,
and their requests are issued from it. Each machine has a Core i3 540 3.07 GHz CPU and 2 GB
RAM and runs Linux 2.6.18. The network is 1 Gbps LAN.

Through the experiments, we fix the choose function so that it uniformly chooses every element
as an element of a proposal with 0.25 probability. This value is empirically preferable for the
parallelization as shown in Sec. E52.

We used the RSA protocol proposed in [32, B3] as an underlying RSC protocol and the
M_V_Consensus protocol proposed in [19] as the MVC protocol. These protocols and our proposed
parallelizing method were implemented by C++ language with POSIX socket library for the
evaluation. Note that the M_V_Consensus protocol may output a special value, L, which is
different from any proposed value. To cope with this exceptional value, we slightly modified

our protocol. When this value is output, we reinvoke M_V_Consensus protocol with a different
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proposal: the element of rsc_id_queue whose RSC ID is the smallest. If the repetition of this
reinovocation continues, the proposals finally coincide among the replicas, and the invocation
terminates by outputting the proposal of a normal value by the M_V_Consensus property stated

in Theorem 3 in [[9]. Then, the repetition is finished.

4.5.2 Latency
Evaluation model

To evaluate latency of the proposed method, we measure the response time, which takes at a client
until accepting the response after sending a request. It should be noted that a client accepts a
response when it receives f + 1 identical responses from different replicas. In the setting of our
experiments, each request is issued to replicas every 100 ms. The local time interval for invoking
RSC is 100 ms. For each combination of the parameter values described below, we execute the
experiments 50 times and average the response times.

From the machine that simulates clients, 50 requests are multicast to the replicas in total. Let
r1,T2,...,750 be the requests issued from the clients. To realize delayed delivery of the requests,
we change the order of sending the requests. For example, if the delivery of request ry is delayed
for replica Ry, we send the requests to the replicas other than R; in the order ri,73,...,750
and the requests to R; in the order ro,73,...,725,71,726,--.,750. 10 realize delayed behavior of
the replicas, we delay the timing to start sending the requests to replicas. For example, if the
behavior of replica R; is delayed, we start sending the requests to R; after sending 25 requests
to the other replicas.

We introduce the following parameters and values to configure this model:
#d_req: the number of delayed requests, which is chosen from {1,2,3}.

#d_rcv: the number of machines that receive delayed requests. Their values are chosen from

{2*,3*}, where we attach “*” to distinguish them from the values of #d_req.

ed_req: extent of how much requests are delayed. The values are chosen from {middle, end}, in

short, {m, e}.

ed_mac: extent of how much a machine’s behavior is delayed. The values are chosen from {0%,

50%, 100%}.

The values, middle and end, of ed_req mean that the first requests are moved afterward to the

middle and to the end of the order of the sequence of requests, respectively. For example, if



52 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

#d_req = 2 and ed_req = middle, 71 and o are moved between ra5 and rog, and if ed_req = end,
they are moved after r5g. We assume that at most one machine can be delayed, which is called
a delayed replica. The value of 0% of ed_mac means that there is no machine delay. 50% and
100% mean that the sending of the requests to the delayed replica starts when the sending of
the requests for the other machines has progressed 50% and 100%, respectively. Machine delay
ed_mac implies delays of all the requests, and request delay ed_req does delay some requests.
Now, we explain the adequacy of our model. As described above, the purpose of the exper-
iments is to evaluate how the delayed requests and the delayed behavior of replicas (including
faulty one) affect the performance of replication. Since we are assuming f = 1 throughout the
experiments, the number of replicas n is limited to four. A factor that affects directly to the
performance of replication, e.g., throughput and latency, is the length of time for reaching an
agreement. The length for RSC depends on the number of the different values of the values that
replicas propose for agreement. If every correct replica happens to propose the same value, the
RSC execution reaches an agreement immediately. On the other hand, it takes long time to reach
an agreement when all the proposals from replicas are different to each other. By choosing the
number of delayed requests #d_req from 1, 2, and 3, we can enumerate three situations where
the numbers of the different values that replicas propose are 2, 3, or 4 respectively. Thus, we can
cover all the possible situations for the number of the different proposals in the case of n = 4. On
the other hand, since we are targeting an asynchronous distributed system, the delayed behavior
of correct replicas also affects the length to reach an agreement. The delayed behavior of a cor-
rect replica does not affect the performance when the faulty replica works correctly, because the
underlying Byzantine request set consensus protocol we use here is designed to be able to reach
an agreement with three correct replicas. Note that the case where a faulty replica and a correct
replica behave slowly can be simulated by the case where two correct replicas behave slowly. Con-
sequently, it is sufficient to consider the two cases of the delayed behavior: two replicas behave
slowly and three ones does. In our model, a delayed behavior of correct replicas is realized by
delayed reception of requests. Then, all substantial patterns of delayed behaviors of replicas is
covered by the values of ed_mac and #d_rcv chosen from {2,3} (obviously, delayed behaviors of
all the four replicas is not meaningful). Moreover, to model the degrees of the delays of requests

and a faulty replica, we introduce the parameters ed_req and ed_mac respectively.

Experimental results and analysis

The average response times of the sequential and parallel executions for each parameter configu-

ration are shown in Fig. £2.



4.5. PERFORMANCE EVALUATION 53

250IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Seq. / Seq. (no delay) —+—

Para. / Seq. (no delay) --—x--—

200 + d- ( y) i
)
=

© 150 - B
>
2

o 100 B
<
-

0 \,\/ x A SR ANy //_

L ¥ x Nl g g X

0 1 1 1 1 T T o T T T N T TR S N |

€ o €E o E o E o E o E o

EwEwEmeEwEw*'.K'*';,'.,"*'*'.,'*'),'.K')f

FE SRS SRS R TR LIRS SRR R AR R R R A R 2 5

GhbbAEbBEEBL L L LI i dddddd sl dydyeeee

B R R Ty B N VSV S N NI - S-S- S-S N G- S-S- S-S

S L Y bbb YYLbsSSSTSSsSSsTTTTSss22999999999999

ST T T T2 2O0OQ0O00QO0O0Q0O0Q0O0O0O0O0O0O0O0O0O0O0Oo oo o

O O O OO0 0O 00000 OoO L LWL L WLWMWMWLWWMIWLWLWMWLWAoAA-«o-=««-+«o-«o«cd«od«dA«d

Parameter configurations

Figure 4.4: Average response times of sequential and parallel executions for individual parameter

configurations

On the horizontal axis, each configuration is depicted in the form x1-22-x3-x4, meaning that
the values of ed_mac, #d_rcv, #d_req, and ed_req are x1, x2, 3, and x4, respectively. On the
vertical axis, the average response times are measured in the ratio to the average response time
of the sequential executions with no delay of the delivery of requests or the behavior of replicas.

We clearly observed that at configurations of #d_rcv = 3* and ed-req = end, (i.e., when
the number of replicas receiving delayed requests is large and these requests arrive very late, the
peaks are marked with # in Fig. B4), the response time of the sequential executions is 150 or
200 times longer than the no delay case, and the efficiency becomes very low. On the other hand,
the response time of the parallel executions is at most around 50 times longer than the no delay
case. Especially, when the efficiency of the sequential executions is terrible, the good effect of
parallel executions is remarkable for the following reason. Multiple replicas that receive many
delayed requests cannot indirectly verify the validity of the requests received from other replicas
until they receive them directly from clients. This greatly delays the termination of the involved
agreement and shifts the following agreements afterward. However, in parallel executions, a new
RSC can be started without waiting for termination of the agreement, and the delayed messages
have no effect on the following agreements.

Although at configurations of 50%-1-3*-e¢ or 100%-1-3*-¢ the efficiency of the parallel execu-
tions is worse than that of the sequential executions, the difference is small. This means that
the overhead of additional MVC in parallel executions does not have much effect on the whole
response time.

Figure B3 shows the message complexity of sequential and parallel executions on each config-
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Figure 4.5: Message complexity of sequential and parallel executions for individual parameter

configurations

uration. The vertical axis of Fig. B8 indicates the average number of messages sent by a replica
during an execution on each configuration. Since parallel executions run many RSC instances,
their message complexity could naively be presumed to be high. However, the message complexi-
ties of the parallel executions and the sequential ones are actually almost the same. Especially, the
parallel executions realize the lower latency with fewer messages than the sequential executions
in the configurations 0%-2-3*-e and 0%-3-3*-e. The reason is considered that the RSC executions
could reach agreements with small rounds thanks to the parallelization. On the other hand, it
should be noted that lower latency does not always mean small message complexity, as seen in

the configurations 50%-3-3*-e and 100%-3-3*-e.

Next, we focus on the effect of randomization of the RSC proposal. Fig. B8 shows the average
response times of parallel executions with different probabilities employed in the choose function:
0.25, 0.5, and 1.0. Similarly to Fig. B4, the response times are plotted as the ratio to the average
response time of the sequential executions with no delay. The case of probability 1.0 corresponds
to the naive approach without randomization in RSC proposals. As we presumed, the response
time is almost the same as the sequential executions, and no advantage of parallelization appears.
On the other hand, probabilities 0.25 and 0.5 equally and positively affect parallelization, which

proves the usefulness of our idea of randomization.
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Figure 4.6: Average response times of parallel executions with probabilities: 0.25, 0.5 and 1.0

4.5.3 Scalability

Here, we conduct experiments to evaluate scalability, i.e., the ability to process a large number of
requests, of the parallelizing method. In the experiments, we measure latencies and throughputs
of the sequential and the parallelizing methods. The experiments are done in an environment
where there is no delay on the delivery of requests or the behavior of replicas, because the delay

does not have an essential effect on the performance in processing a large number of requests.

In Figs. B74 and B=8, we show the throughput and the latency of the sequential and the parallel
executions. Hereafter, we compare resource bounds of the sequential and the parallel executions,

first based on their throughputs.

First, we explain how we evaluate the throughput because reasonable evaluation of throughput
is a subtle problem at loads exceeding the resource bound of systems. To evaluate the throughput
at a given request frequency (or at a given load of requests), we execute the protocol for 25 seconds
at the load. Here, request frequency means the number of requests received by a replica every
second. Then we divide the execution into five successive sections of five-second long intervals.
For each section, we calculate a tentative throughput that is the average of processed requests
per second. Finally, we choose the maximum value among the five tentative throughput values
as the throughput value at the load. If the load does not exceed the resource bound, then the
tentative throughput value increases and becomes stable. On the other hand, if it exceeds the
resource bound, the value first increases and then decreases. Thus, we choose the maximum of
the tentative values as the estimated throughput for both cases. The result for each request

frequency listed below is an average value of ten executions.
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In the throughput graph, the request frequency at which the throughput peaks corresponds to
the load where the system reaches the resource bound. By our calculation, the angle of inclination
after the peak shows how fast the resource will be exhausted after reaching the resource bound.
A larger angle means faster exhaustion.

In Fig. B2, parallel executions are controlled by restricting the number of parallel agreements
at a time, denoted by #para. For example, #para = 2 means that if two RSC are being executed
in parallel and timing for a new RSC invocation is reached, the invocation is postponed until one
of the executions is terminated. In Fig. BZ4, when the value of #para is large, the parallel
execution reaches the resource bound with a smaller load. At loads before reaching the resource
bound, parallel executions show the same throughput values as the sequential execution. At loads
beyond the resource bound, parallel executions exhaust the resource more rapidly.

In Fig. B3, to improve the scalability of the parallel execution, we add another restriction
on the frequency of the parallel executions of RSC, denoted by freq. For example, #para = 2
and freq = 5 mean that if two RSCs are executed in parallel and one terminates, parallel
RSC execution is not allowed until five newly invoked sequential executions of RSC have been
completed. In Fig. B3, if we control the frequency of the parallel executions of RSC, the resource
consumption is greatly reduced for #para = 2.

In Figs. B27 and B8, the graphs of throughput and latency show the same characteristics of
resource bound. When the executions reach the resource bound, the latency of each execution
becomes high, and the throughput does low. However, the effect of resource consumption appears
in lighter load for latency than throughput. Latency begins increasing before the execution reaches
its resource bound.

From these observations, we conclude that parallel executions consume resources in proportion
to the number of consensus protocol instances executed in parallel. When we restrict the number,
the executions still exhaust the resources rapidly when the load exceeds the bound. The speed
slows down when we restrict the frequency of RSC because time is required for parallel executions
to release the resource. For the practical use of the parallelizing method, when the load is heavy,
we should dynamically control the number of parallel executions and their frequency to avoid

resource exhaustion.

4.6 Concluding Remarks

In this chapter, we proposed a method to accelerate state machine replication for Byzantine fault

tolerance by parallelizing the executions of request set consensus and adding an extra multi-valued
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consensus for deciding the processing order of agreed sets. We also show the correctness of the
protocol for parallelizing agreements. Parallelism has a strong advantage in spite of requiring an
additional agreement, especially when some replicas work slowly or some requests are delivered
late. We showed this property by an experimental evaluation. In this evaluation, our parallelizing
method accelerates the latency of replication three or four times more than the existing sequential
method in delayed situations.

Clement et al. experimentally compared the performances in such delay situations among
representative protocols based on rotating coordinator approach [85]. They showed that Castro-
Liskov protocol [d], which is known to be practically very fast in the normal situation, degrades
the performance in the delayed situations. For randomization approach on which this chapter
focuses, Moniz et al. evaluated RITAS in the WAN environment where communication speeds
between processes are not uniform [7]. However, the evaluation models were not so detailed as
the one of this chapter. To the best of our knowledge, for randomization approach, this is the
first one that evaluated in such detail the effect caused by the delay of message delivery and slow

behavior of replicas.
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“Parallel execution with #para = z”.
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Figure 4.8: Results with additional restriction on frequency of the parallel RSC executions.

Para(z,y) means “Parallel execution with #para = x and freq = y”.
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Chapter 5

Conclusion

5.1 Summary of the Results

In this dissertation, we focused on Byzantine fault tolerant state machine replication, and pro-
posed two methods that make the replication more efficient and can motivate system administra-
tors to utilize the replication to improve reliability of server systems.

In Chapter B, our new randomized Byzantine consensus protocol for a set of requests, RSC,
was proposed. It was designed for an asynchronous distributed system like the Internet, and can
be used to realize state machine replication. The protocol has two features. First, it directly
solves the request set consensus problem, differently from existing protocols. Most existing pro-
tocols take a modular approach, in which replicas repeatedly solve a binary consensus problem
to solve the request set consensus problem. In contrast, RSC can solve the problem without such
repetition and can reach an agreement efficiently. Second, it has an efficient local coin tossing
scheme. Although the local coin tossing approach was broadly known as inefficient, by exploiting
the structure of the BFT replication, we can guarantee that the candidate values of the non-
faulty replicas become identical with high probability. Thanks to the scheme, it can reach an
agreement within a few rounds. Performance evaluation was conducted from two viewpoints, i.e.,
analytically and experimentally. The analytical evaluation showed that our protocol can reach an
agreement within two rounds in some specific configurations, even if there are many replicas to
tolerate Byzantine faults. In addition, it reaches the specific configurations within 10 rounds from
initial configurations. Therefore, we could conclude that our protocol RSC has high scalability
with respect to the number of replicas. The experimental performance was evaluated on a real

distributed system composed of 10 physical machines and compared with that of two existing
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protocols. In the experimental evaluation, our protocol achieved higher throughput and shorter
latency than the existing ones, especially when the number of replicas is large.

In Chapter @, we proposed another method that accelerates the Byzantine fault replication by
parallelizing consensuses to determine processing orders of requests. Since the BFT replication is
deployed on an asynchronous network, these concurrently executed consensuses possibly terminate
in different orders at different replicas. If the replicas simply process the requests in the agreed sets
in their terminated order, their replicated server states reach to distinct states and the replication
collapses. Therefore, when a consensus execution terminates, our method invokes a multi-valued
consensus protocol to determine which agreed set the replicas process next. However, there still
existed a problem about this parallelization, i.e. its computation cost of multiple consensuses.
To reduce the cost, we modified a procedure for creating an initial proposal for request set
consensus. Its original procedure created a set of all the requests that had received but not
been processed yet as the proposal. Since the size of the initial proposal affects both durations
of the consensus and processing times of the consensus protocol’s messages, we modified the
procedure so that it randomly removes requests from the set. We proved that the parallelizing
method satisfies correctness for the state machine replication, and evaluated its performance in
comparison with an existing sequential method experimentally. The evaluation results showed
that the parallelization has a strong advantage in spite of requiring an additional consensus,

especially, when some replicas work slowly or some requests are delivered late.

5.2 Future Directions

As summarized above, we aimed to improve practicality of the Byzantine fault tolerant replication
by proposing the two methods. However, many research themes that should be resolved still

remain, and we briefly discuss them here.

Dynamic Change of a Replication’s Configuration When considering the practicality of
the Byzantine fault tolerant replication, its replication cost is a serious problem. To tolerate f
faulty replicas, Byzantine fault tolerant replication requires 3f + 1 replicas in total, although the
replication that can tolerate only crash failures does 2 f +1 ones. The Byzantine replication needs
50% more replicas, and it is difficult to pay such cost always. Yin et al. proposed an algorithm
that reduce the number of replicas that process requests from 3f + 1 to 2f + 1 [6], although its
configuration is static and fixed. If a user can change a configuration of the replication dynamically

during its execution, the user will be able to take a next scenario; When a threat of attacks is



5.2. FUTURE DIRECTIONS 63

expected to be relatively weak, the system administrator keeps the total number of the replicas
small as possible as the user can. If the expected threat becomes strong, the user increases a scale
of the replication and prepares for attacks. When the degree of the expected threat decreases,
the total number of the replicas also decreases. Bortnikov et al. proposed a prototype of such

system [37]. If such control is possible, the BFT replication will become more practical.

Support for Nondeterministic Applications Byzantine fault tolerant replication protocols
usually assume that a replication-target service has only deterministic operations and its state
is determined only by the processing order of requests. However, in practical systems, there
is nondeterminism caused by applications and/or operating systems, and the nondeterminism
also should be supported by replication protocols. For leader-based replication approach, Zhao
introduced a classification of common types of nondeterminism present in many applications and
proposed mechanisms needed to handle these types [BR]. On other hand, for randomization-based

approach, more work is demanded.

Focus on Virtual Machine and Cloud Infrastructure Recently, virtual machines and
cloud infrastructures appear as a new execution environment of distributed algorithms. These en-
vironments have new properties that traditional environments, e.g. physical machines connected
with LAN, do not have, and it is expected to realize more efficient replication by exploiting the
properties.

First, let us consider an environment composed of a single physical machine equipping some
virtual machine monitor (also known as hypervisor) and multiple virtual machines are deployed
and running in the physical machine. Chun et al. investigated such environment, and, based on the
leader-based approach, they discussed what software/hardware functions will be important [39].
They also showed two new lightweight BF'T protocols exploiting hardwares shared by all replicas
on the virtual machines. In the randomization approach, which we focus on the dissertation, there
also exist many opportunities to improve its efficiency. The replicas can share many devices, e.g.
bus, clock, random number generator, and so on. For example, shared coin tossing is known
to be slow due to cryptographic schemes it uses. Although the scheme is necessary to share
secrets without revealing them by attackers, in the above virtual machine environments, the
cryptographic scheme will become lighter, since malicious replicas must not be able to impersonate
other replicas and steal messages sent between other replicas.

Second, let us discuss about cloud infrastructures. In the cloud infrastructure, many virtual

machines are deployed in regions. A region is composed of physical machines connected by LAN.
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Regions are also connected by WAN. A virtual machine can migrate from a physical machine
to another one, possibly over two regions because of some reasons, e.g. stabilizing performance
of physical machines. This research area is novel, and there are only a few results A0, &1, 47).
One of the features of the cloud infrastructures is extensive variety of quality of communications.
Assume that two replicas on two virtual machines want to communicate with each other. If
the two virtual machines are deployed on the same physical machine, they can communicate
very efficiently. Even if the two virtual machines are deployed on two distinct physical machines
on the same region, the communication is still efficient. However, if the replicas communicate
over their regions, the communication is slow. Moreover, in typical cloud infrastructures such as
Amazon AWS [43] or Google Compute Engine [d4], data transmission to WAN is charged based
on the amount of transferred data. Therefore, new distributed algorithms designed for the cloud
infrastructures are demanded. For instance, it is useful if there exists an algorithm that collects
statistical information about data transfer and autonomously migrates replicas to optimize its
distributed system for some predefined goal, e.g., minimizing data transfer charge, or maximizing
performance of the replication. A prototype of another optimization to the cloud infrastructure
was proposed by Amir et al. [@5]. Their algorithm constructs a layered structure of the replication
and realizes the BFT replication on WAN. In the algorithm, since communications over regions
are costly, replicas in the same region agree with the contents of messages to other regions, and
only a leader of the region communicates with the other regions. Although the algorithm was
not specialized for the cloud infrastructure, such idea of the layered structure will be useful to

consider algorithms fitted with the cloud.

Standard Framework for BFT replication Standard framework for Byzantine fault tolerant
state machine replication is needed. Although there were many implementations of protocols for
the BFT replication, most of them were used once for the performance evaluation of the research
papers and never used again. If there exists a standard framework for the replication that defines
programming interfaces between a replication protocol and a replication-targeted service, how
to retrieve information of a running distributed system, and so on, we could re-use them easily.
Moreover, this enables easy performance tuning of a user’s replication system; the user just
tries many prepared replication protocols and chooses the best one. Although there exists some
attempts to build a framework/middleware for Byzantine fault tolerance [d6, @7], their main
purpose was to make building a replicated service easy, and not interested in re-usability of the
implementations of algorithms. By combining with virtual machine management tools like Chef

[@%] or Docker [49], automated deployment and management of replicas will be possible. There
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are many advantages for the existence of the standard framework as see above, and thus, many

discussion about the standard framework should be done.
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