
Title
A Study on Asynchronous Randomized Consensus
Algorithms for Byzantine Fault Tolerant
Replication

Author(s) 中村, 純哉

Citation 大阪大学, 2014, 博士論文

Version Type VoR

URL https://doi.org/10.18910/34568

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

A Study on

Asynchronous Randomized Consensus Algorithms

for Byzantine Fault Tolerant Replication

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2014

Junya NAKAMURA

iii

List of Major Publications

Journal Papers

1. Junya Nakamura, Tadashi Araragi, Toshimitsu Masuzawa, and Shigeru Masuyama, “A

method of parallelizing consensuses for accelerating byzantine fault tolerance,” IEICE Trans-

actions on Information and Systems, vol. E97-D, no. 1, 2014. (to appear).

2. Junya Nakamura, Tadashi Araragi, Shigeru Masuyama, and Toshimitsu Masuzawa, “Effi-

cient randomized byzantine fault-tolerant replication based on special valued coin tossing,”

IEICE Transactions on Information and Systems, vol. E97-D, no. 2, 2014. (to appear).

Conference Papers

3. Junya Nakamura, Tadashi Araragi, and Shigeru Masuyama, “Asynchronous byzantine request-

set agreement algorithm for replication,” in Proceedings of the 1st AAAC Annual Meeting,

p. 35, 2008.

4. Junya Nakamura, Tadashi Araragi, and Shigeru Masuyama, “Acceleration of byzantine fault

tolerance by parallelizing consensuses,” in Proceedings of the 10th International Conference

on Parallel and Distributed Computing, Applications and Technologies, PDCAT ’09, pp. 80–

87, Dec. 2009.

Technical Reports

5. Junya Nakamura, Tadashi Araragi, and Shigeru Masuyama, “Byzantine agreement on the

order of processing received requests is solvable deterministically in asynchronous systems,”

in IEICE Technical Report, vol. 106 of COMP2006-35, pp. 33–40, Oct. 2006.

6. Junya Nakamura, Tadashi Araragi, and Shigeru Masuyama, “Techniques to accelerate re-

quest processing for byzantine fault tolerance,” in IEICE Technical Report, vol. 107 of

COMP2007-34, pp. 13–20, Sep. 2007.

iv

List of Related Publications

Journal Papers

7. Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kakugawa,

and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in a population protocol

model,” Theoretical Computer Science, vol. 444, pp. 100–112, Jul. 2012.

8. Yonghwan Kim, Tadashi Araragi, Junya Nakamura, and Toshimitsu Masuzawa, “A concur-

rent partial snapshot algorithm for large-scale and dynamic distributed systems,” IEICE

Transactions on Information and Systems, vol. E97.D, no. 1, 2014. (to appear).

Conference Papers

9. Yuichi Sudo, Junya Nakamura, Yukiko Yamauchi, Fukuhito Ooshita, Hirotsugu Kaku-

gawa, and Toshimitsu Masuzawa, “Loosely-stabilizing leader election in population protocol

model,” in Proceedings of the 16th international conference on Structural Information and

Communication Complexity, SIROCCO’09, pp. 295–308, Springer-Verlag, 2009.

10. Yuichi Sudo, Daisuke Baba, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa, and

Toshimitsu Masuzawa, “An agent exploration in unknown undirected graphs with white-

boards,” in Proceedings of the Third International Workshop on Reliability, Availability,

and Security, WRAS ’10, pp. 8:1–8:6, ACM, 2010.

11. Yonghwan Kim, Tadashi Araragi, Junya Nakamura, and Toshimitsu Masuzawa, “Brief an-

nouncement: a concurrent partial snapshot algorithm for large-scale and dynamic dis-

tributed systems,” in Proceedings of the 13th international conference on Stabilization,

safety, and security of distributed systems, SSS’11, pp. 445–446, Springer-Verlag, 2011.

Technical Reports

12. Asaha Ishii, Yonghwan Kim, Junya Nakamura, Fukuhito Ooshita, Hirotsugu Kakugawa,

and Toshimitsu Masuzawa, “Evaluation of hadoop system consisting of virtual machines on

multi-core cpus (in Japanese),” in IPSJ SIG Technical Reports, vol. 2012-HPC-136, pp. 1–7,

Sep. 2012.

13. Kim Yonghwan, Araragi Tadashi, Nakamura Junya, and Masuzawa Toshimitsu, “A dis-

tributed and cooperative namenode cluster for a highly-available hadoop distributed file

v

system,” in Proceedings of the 13th High Performance Computing Symposium (HPCS),

p. 93, Jan. 2013.

vi

Abstract

A distributed system consists of multiple processes connected by a network and the processes can

communicate with each other by sending messages. The processes execute a distributed algorithm

to solve a problem to provide a function, e.g. routing, an overlay network, and a distributed file

system. One of the important features provided by the distributed system is fault tolerance.

A distributed system realizes the fault tolerance by utilizing redundancy, and a target of fault

tolerance, e.g., data, service, and so on, is replicated to the processes. The processes keep their

replicas consistent to tolerate failures of communication links or processes.

Byzantine failure is the most malicious failure, in which a faulty system behaves in an arbitrary

way deviating from the original program. Such failures are caused by software bugs, hardware

problems, or cracker attacks. In particular, cracker’s attacks such as infections from viruses

and intrusions are serious problems that severely damage systems connected in the Internet.

Therefore, a practical fault tolerant method for Byzantine failure is strongly demanded.

State machine replication is one of the main approaches to build a server system that can

tolerate such Byzantine failures. In the replication, the server role is replicated to multiple

replicas and the replicas process requests submitted by clients to the server. The replication

guarantees that the server system can continue to process requests, even if a fraction of the

replicas is Byzantine faulty because of crackers’ attacks or software errors. To eliminate their

malicious behaviors, a client uses a majority rule; the client collects responses from the replicas

of a request and accepts only a major value of them.

The non-faulty replicas must make the same responses so that the majority rule can work

correctly, and this is realized if the replicas process all requests in the same order. Since network

speed is not uniform and requests may be delivered to the replicas in different orders, the replicas

execute a consensus protocol to agree on processing orders of the requests.

In this dissertation, we propose two methods for the Byzantine fault tolerant (BFT) state

machine replication that focus on the consensus part of the replication and improve efficiency

vii

viii

and practicality.

First, we define a new type of consensus problem called request set consensus problem and

propose a randomized BFT protocol that solves it. The protocol is designed for an asynchronous

distributed system like the Internet, and can be used to realize state machine replication. The

protocol has two features to solve the problem efficiently. First, although most existing multi-

valued consensus protocols take a modular approach, in which replicas repeatedly solve a binary

consensus problem to reach an agreement, our consensus protocol solves the request set consensus

problem directly without such repetition. Thanks to the simple structure of the protocol, we can

reduce the communication steps needed to reach an agreement. Second, we introduce an efficient

coin tossing scheme that enables replicas to reach an agreement in a few rounds by exploiting

the structure of the BFT replication. We prove that the protocol satisfies the correctness of the

request set consensus problem. Performance evaluation is conducted from two viewpoints, i.e.,

analytically and experimentally. The analytical evaluation shows that our protocol can reach an

agreement within two rounds, even if there are many replicas to tolerate Byzantine faults. In the

experimental evaluation, our protocol achieves higher throughput and shorter latency than the

existing ones, especially when the number of replicas is large.

Second, we propose a method that parallelizes consensuses to determine processing order of

requests. Since the BFT replication is deployed on an asynchronous network such as the Internet

and every consensus protocol for the replication is a randomized one, the duration of an execution

of consensuses varies every time. If some consensus takes a long time, invocations of succeeding

consensuses are delayed. This causes performance degradation to the server replication, and we

solve the problem by parallelizing consensus executions. However, if replicas simply process the

agreed requests in their terminated orders of the consensuses, it also makes their replicated server

states inconsistency, since the network is asynchronous and the terminated orders may differ

among the replicas. Therefore, we introduce an extra agreement step to resolve this discrepancy.

Moreover, to decrease the cost of the parallelization, we introduce a randomization technique to a

consensus protocol to generate initial proposals for newly-invoked consensuses. It reduces the size

of the proposals, and, as a result, the duration taken for the consensus protocol becomes shorter.

We prove that the parallelizing method satisfies correctness for the replication and evaluate its

performance by comparing the parallelizing method with a sequential method currently in use.

The evaluation results show that the parallelization has a strong advantage in spite of requiring

additional consensuses, especially, when some replicas work slowly or some requests are delivered

late.

Contents

1 Introduction 1

1.1 Overview of This Dissertation . 4

1.1.1 Request Set Consensus Protocol for BFT Replication 4

1.1.2 Parallelizing Consensuses to Reduce Latency 5

1.2 Organization of This Dissertation . 5

2 Preliminary 7

2.1 System Model . 7

2.2 State Machine Replication . 8

2.3 Request Set Consensus Approach for State Machine Replication 9

3 Request Set Consensus Protocol for BFT Replication 13

3.1 Introduction . 13

3.1.1 Related work . 13

3.1.2 Contributions . 14

3.2 Request Set Consensus . 14

3.3 The RSC Protocol . 16

3.3.1 Reliable Broadcast . 16

3.3.2 Message Validity Check . 16

3.3.3 Protocol . 17

3.3.4 Coin Tossing . 20

3.4 Correctness . 21

3.5 Performance Evaluation . 23

3.5.1 Overview . 23

3.5.2 Performance Evaluation on RSC Protocol Features 24

ix

x CONTENTS

3.5.3 Experimental Comparison with Other Protocols 28

3.5.4 Request Set Consensus Using Atomic Broadcast 36

3.6 Concluding Remarks . 38

4 Parallelizing Consensuses to Reduce Latency 39

4.1 Introduction . 39

4.1.1 Contributions . 40

4.1.2 Related work . 41

4.2 Replciation by Request Set Consensus (RSC) . 42

4.3 Parallelizing Executions of RSC . 43

4.3.1 Problem with Parallelization . 43

4.3.2 Our Approach . 45

4.3.3 Multi-valued Consensus Protocol . 45

4.3.4 Protocol . 46

4.4 Correctness . 47

4.4.1 Safety . 49

4.4.2 Liveness . 49

4.5 Performance Evaluation . 49

4.5.1 Experiment environment . 50

4.5.2 Latency . 51

4.5.3 Scalability . 55

4.6 Concluding Remarks . 56

5 Conclusion 61

5.1 Summary of the Results . 61

5.2 Future Directions . 62

List of Figures

1.1 Structure of state machine replication . 2

2.1 An example of state machine replication . 9

2.2 Execution example of state machine replication by the request set consensus problem 10

3.1 Number of rounds to reach an agreement in SCV-full configurations 25

3.2 Change of ratio of candidate-full replicas . 27

3.3 Number of rounds to become a SCV-full configuration 28

3.4 Throughput for normal model . 31

3.5 Latency for normal model . 31

3.6 Throughput for delayed model . 32

3.7 Latency for delayed model . 32

3.8 Characteristics of agreements of RSC and RITAS for n = 4 in normal model 33

3.9 Characteristics of agreements of RSC and RITAS for n = 4 in delayed model . . . 34

3.10 Flow of deciding agreed values . 37

4.1 Invalid parallel executions of RSC . 43

4.2 Ineffective parallel executions of RSC . 44

4.3 Execution of our proposed parallelizing method . 44

4.4 Average response times of sequential and parallel executions for individual param-

eter configurations . 53

4.5 Message complexity of sequential and parallel executions for individual parameter

configurations . 54

4.6 Average response times of parallel executions with probabilities: 0.25, 0.5 and 1.0 . 55

4.7 Results with restriction on number of the parallel RSC executions. Para(x) means

“Parallel execution with #para = x”. 58

xi

xii LIST OF FIGURES

4.8 Results with additional restriction on frequency of the parallel RSC executions.

Para(x,y) means “Parallel execution with #para = x and freq = y”. 59

List of Tables

3.1 Ways of sending requests in two models for n = 4 30

xiii

xiv LIST OF TABLES

List of Algorithms

3.1 Pseudo code of Protocol RSC(p, i, Ii
p) for replica p (Part 1) 17

3.2 Pseudo code of Protocol RSC(p, i, Ii
p) for replica p (Part 2) 18

3.3 Protocol for Request Set Consensus using Atomic Broadcast 37

4.1 Proposed parallelizing method . 48

xv

xvi LIST OF ALGORITHMS

Chapter 1

Introduction

A distributed system [1] consists of multiple processes connected by a network and the processes

can communicate with each other by sending messages. The processes execute a distributed

algorithm [2] to solve a problem to provide a function, e.g. routing, an overlay network, and

a distributed file system. Especially, one of the important features provided by the distributed

system is fault tolerance. A distributed system realizes the fault tolerance by utilizing redundancy,

and a target of fault tolerance, e.g., data, service, and so on, is replicated to the processes. The

processes keep their replicas consistent to tolerate failures of communication links or processes.

Byzantine failure is the most malicious failure, in which a faulty system behaves in an arbitrary

way deviating from the original program. Such failures are caused by software bugs, hardware

problems, or cracker attacks. In particular, cracker’s attacks such as infections from viruses

and intrusions are serious problems that severely damage systems connected in the Internet.

Therefore, a practical fault tolerant method for Byzantine failure is strongly demanded.

One of the main approaches to tolerate Byzantine failure in asynchronous networks as the

Internet is state machine replication [3]. The state machine replication is designed for a server-

client system. In the replication, the server role is replicated to multiple replicas and the replicas

process requests submitted by clients to the server. In the replication, as shown in Fig. 1.1,

clients multicast requests to all the replicas. Here, the system’s internal state is supposed to be

determined by the initial states and the sequence of requests applied to the system. The replicas

make an agreement on the processing order of the received requests, and process them sequentially

in the agreed order. Even if the actual orders of the deliveries of the requests differ among the

replicas, the replicas process the requests in the same order and keep their replicated server states

identical. In the setting of the state machine replication for Byzantine failure, we assume that

1

2 CHAPTER 1. INTRODUCTION

Clients
Server replicas

Hijacked replica

Request

Reply

Invalid reply

Agreement

Disturb

Clients

Server
Request

Reply

Original system State machine replication

Figure 1.1: Structure of state machine replication

only a small fraction of replicas can be faulty and behave differently from the non-faulty replicas.

With this assumption, if a majority of identical replies for the request is issued from non-faulty

replicas, they can exclude the effect of the faulty replicas.

As stated above, in the state machine replication, agreement or consensus plays an important

role, and many researches in this area were done [4, 5, 6, 7, 8, 9]. Fischer et al. proved some

important result, that is, there exists no deterministic agreement protocol for an asynchronous

distributed system, even if only one process may crash during an execution. Therefore, to solve

the consensus and to realize the state machine replication, it is necessary to weaken the assumed

model or the requirements of the consensus problem. There are two approaches to overcome this

impossibility:

1. Ensure the termination deterministically under some assumptions about communication

delay called weak asynchrony assumptions (Byzantine failure: [9, 10, 11, 12], crash failure:

[8, 13, 14, 15]).

2. Ensure the termination with probability 1 by using randomized methods (Byzantine failure:

[16, 17, 18, 19, 20, 21, 22], crash failure: [23]).

In the first approach, to solve the consensus problem deterministically, the asynchrony as-

sumptions for the communication speed and the processing power of processes are weaken in the

weak asynchrony model; there exist an upper bound (usually unknown) about the communication

delay and a lower bound of the processing power of the processes. Although the impossibility of

the asynchronous consensus problem is mainly brought by the difficulty to distinguish the crashed

3

process from the one just working slowly, this difficulty is not a problem in the model. A process

in the model can detect another process’s failure, since the process can estimate these bounds.

If the process does not receive any response from the suspected process within the expected

interval, the process treats the suspected process as a faulty one from now on. Consequently,

a primary-backup approach is introduced to take advantage of this feature of the model. A

special replica, called primary or rotating coordinator, controls the protocol’s execution. When

the primary receives a request from its client, the primary assigns the processing order of the

request, and broadcasts the order and the request to the other replicas called backups. When the

backups receive the request with the assigned order, they process it and reply their responses to

the client. In such leader-based approach, replicas normally achieve an agreement very fast and

provide a practical solution for the state machine replication. The backups also keep watching

the primary’s work, and if they suspect that the current primary is faulty, because the primary

does not send such a assigned request within the predefined interval, they start a procedure to

move the primary’s role to another replica based on their agreement, which is why it is called a

rotating coordinator.

A representative consensus protocol for this approach is PBFT protocol proposed by Castro

and Liskov [9]. The Byzantine fault tolerant state machine replication has long been considered

costly and non-practical, the efficient PBFT protocol dispelled such negative rumor and their

result stimulated the development of efficient BFT protocols. PBFT guarantees the termination

of agreements, even if there are continuous rotations of a primary coordinator, assuming that

the message delay has an upper bound. However, this assumption can be broken if the attacker

skillfully controls the flow of messages, and this can happen in an open network like the Internet.

Even without such attacks, in a congested network, the primary coordinator is often changed and

the efficiency is greatly reduced because each change of the primary is very costly.

In the second approach, protocols use some randomization mechanisms implicitly or explicitly.

Most of protocols belonging to this approach randomized themself explicitly. An execution of the

randomized consensus protocols is composed of rounds, and in a round, processes propose their

own candidates and try to decide a common value for agreement. If they succeed to decide

the common value, they will terminate. When they fail to agree with some value, they change

own proposals randomly based on the messages received in this round (this random selection

is usually called coin tossing or coin flipping), and proceed to the next round. This repetition

continues until all non-faulty processes reach an agreement. For efficiency, in the context of the

BFT replication, the proposals and the agreed value are not a single request (i.e., the request

to be processed next), but a set of requests (i.e., the set of requests to be processed next). The

4 CHAPTER 1. INTRODUCTION

processing order among the requests in the set is determined by a predefined order (e.g., an order

of the IDs of the clients that issued the requests).

Another type of the randomization is used by a protocol proposed in [24]. The protocol as-

sumes randomized deliveries of messages sent in the protocol, and each process chooses a proposal

of a next round based on messages received during the current round. If a sufficient number of

non-faulty processes’ proposals become identical by the implicit randomization, the processes

agree with the proposal.

These randomization-based consensus protocols can be employed in more general environments

than the first leader-based ones, since the protocols do not need any extra assumptions to solve

the consensus problem correctly. Moreover, the randomization-based protocols’ performance

degradation during Byzantine faults occur is expected to be smaller than the leader-based ones,

since the leader-based ones must take care of faulty primaries. Borran et al. analytically compared

the two approaches on a partial synchronous model [25].

There also exists a hybrid solution [26], i.e., a protocol that uses both of the approaches. The

processes normally agree with the processing order based on the first approach, however, if once

a current leader is suspected to be faulty, replicas switch to a pessimistic mode and assign the

requests based on the second approach.

1.1 Overview of This Dissertation

This dissertation focuses on the second approach, i.e., randomization-based Byzantine fault toler-

ant replication in which replicas execute a randomized Byzantine consensus protocol to agree with

the processing order of submitted requests. We propose two methods for improving efficiency of

the replication.

1.1.1 Request Set Consensus Protocol for BFT Replication

In Chapter 3, we propose a fast and resource-efficient agreement protocol on a request set, which

is used to realize Byzantine fault tolerant state machine replication. Although most existing

randomized protocols for Byzantine agreement exploit a modular approach, that is, a combination

of agreement on a bit value and a reduction of request set values to the bit values, our protocol

directly solves the multi-valued agreement problem for request sets. We introduce a novel coin

tossing scheme to select a candidate of an agreed request set randomly. By specializing in the

structure of the replication, the coin tossing scheme enables replicas to merge their candidates

1.2. ORGANIZATION OF THIS DISSERTATION 5

quickly and realize fast agreement. In the performance evaluation, we analyze our protocol

theoretically, and compare the protocol with the existing representative protocols in a practical

environment.

1.1.2 Parallelizing Consensuses to Reduce Latency

In Chapter 3, we propose a new method that accelerates asynchronous Byzantine Fault Tolerant

(BFT) protocols designed on the principle of state machine replication. State machine replication

protocols ensure consistency among replicas by applying operations in the same order to all of

them. A naive way to determine the application order of the operations is to repeatedly execute

the BFT consensus to determine the next executed operation, but this may introduce inefficiency

caused by waiting for the completion of the previous execution of the consensus protocol. To

reduce this inefficiency, our method allows parallel execution of the consensuses while keeping

consistency of the consensus results at the replicas. We also prove the correctness of our method

and experimentally compare it with the existing method in terms of latency and throughput. The

evaluation results show that our method makes a BFT protocol three or four times faster than

the existing one when some machines or message transmissions are delayed.

1.2 Organization of This Dissertation

This dissertation is composed of five chapters. In Chapter 2, we define our distributed system

model and state machine replication. We also describe how to realize the state machine replication

by using a consensus protocol with examples. In Chapters 3 and 4, we propose two methods for

the Byzantine fault tolerant replication. Our new efficient randomized consensus protocol RSC is

proposed in Chapter 3. The protocol uses new randomization techniques to realize fast agreement

and its correctness and performance are also shown there. Chapter 4 proposes another method

that accelerates existing replication protocols, e.g., our consensus protocol RSC. The method ex-

ecutes a replication protocol concurrently to reduce response time of submitted requests, and also

does another special type of consensus protocol to keep consistency while executing consensuses

concurrently. Finally, we conclude this dissertation in Chapter 5.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Preliminary

Here, we describe our system model, state machine replication, and how the replication is realized

by a protocol that solves the request set consensus problem. Finally, we formally define the request

set consensus problem.

2.1 System Model

A distributed system consists of processes and communication links. We assume the followings

for our system model. The system is asynchronous; there is no bound on time to process data or

communication delays. Every pair of processes is directly connected by a communication link, and

processes only exchange information by message passing. The communication links are reliable

channels; messages sent by non-faulty processes must eventually be delivered to the destination

processes, and no message is lost in the communication links. From a received message, a process

can identify the sender process, and even a malicious process cannot impersonate it. Each process

has a local clock, but these clocks are not synchronized among processes; they may run at different

rates and indicate different times.

Some processes may fail during a protocol execution. We adopt Byzantine failure (also called

arbitrary failure) as a failure model. A Byzantine process can behave arbitrarily deviating from

the protocol specification by stopping processes, omitting messages, and submitting invalid mes-

sages, etc. The processes behaving based on the protocol specification are called non-faulty, and

the others (i.e. Byzantine processes) are called faulty.

7

8 CHAPTER 2. PRELIMINARY

2.2 State Machine Replication

State machine replication [3] is used in the server-client model, and a server is modeled as a state

machine. A state machine consists of a set of states and a set of commands, and executes a

command to change its state. The next state of a state machine is determined by an executed

command and its current state. The server’s role is replicated to n processes called replica that

independently operate the role on distinct hosts and interact with client processes by request

and response messages. A client submits a request to all replicas to request the servers to

execute commands. Although, an asynchronous system allows request messages to arrive at

different replicas in different orders, the replicas must process the requests in the same order to

keep consistency among the replicas. More formally, a protocol that realizes the state machine

replication must satisfy the following two requirements:

Safety All correct replicas process the requests submitted by clients in the same order.

Liveness A client eventually accepts the response to any request it submitted.

To realize identical processing order of requests, the replicas execute a consensus protocol.

After a replica processes a request, it replies to the client with the execution result. The client

accepts the result when it receives the same result from f + 1 replicas. Here, f is the upper

bound of the number of faulty replicas. A client can confirm that at least one correct result

was received from a correct replica when it collects f + 1 identical results. Since n must be

greater than or equal to 3f + 1 to realize Byzantine consensus by randomized protocols [27], we

assume that f ≤ b(n − 1)/3c. (In our model, we assume that clients never fail, and only replicas

may fail, because a faulty client cannot affect an execution of state machine replication based on

randomized Byzantine agreement. Therefore, the assumption never reduces the generality of our

protocol. On the other hand, a faulty client can do of rotating coordinator-based replication, e.g.

view-change of PBFT [9]).

Figure 2.1 shows an example of state machine replication. There are two clients and four

replicas, and the clients broadcast requests r1 and r2. Since its network is asynchronous, the

arrival orders of the requests are different among the replicas that execute a Byzantine consensus

protocol to agree with the processing order of the requests. As a result, the replicas agree with

processing order r1 → r2, process the requests in the order, and send their responses to the clients.

2.3. REQUEST SET CONSENSUS APPROACH FOR STATE MACHINE REPLICATION 9

Replica 4
(Byzantine)

Byz. Consensus

time
Client 1Client 1

Replica 1 Byz. Consensus EX

Replica 2 Byz. Consensus EX

Replica 3 Byz. Consensus EX

Request r1

EX: execution of requests

Client 2Client 2

Request r2

Response of r1

Response of r2

Figure 2.1: An example of state machine replication

2.3 Request Set Consensus Approach for State Machine

Replication

Here, we explain how state machine replication is realized by a protocol that solves the request

set consensus problem. Hereafter, we will formally define the requirements for the request set

consensus problem in Sec. 3.2.

As previously explained in Sec. 2.2, when a client requests a server to execute some commands,

it multicasts the requests to all the replicas. Although the requests are eventually received by all

the replicas, they can be delivered in different orders among replicas. For example, in Fig. 2.1,

Replica 1 receives request r2 from client 2 first and then request r1 from client 1, but Replica 2

may receive request r1 from client 1 first and then r2. If the replicas process the requests in the

order they are received, the behaviors of the non-faulty replicas can be different.

To obtain a common order of processing requests among replicas, they must repeatedly execute

a request set consensus protocol and arrange the requests in the agreed set as follows:

Step 1: A replica finds the set of requests it has received and has not yet processed, which is called

agreement candidate, and executes a request set consensus protocol with the candidate as

its initial value (or proposal) of the protocol. Let M be the agreed set of the execution,

which is, of course, common to all non-faulty replicas.

Step 2: A replica processes the requests in M in a given deterministic order common to the

replicas and returns the results to the corresponding clients.

10 CHAPTER 2. PRELIMINARY

Client 1

Client 2

Client 3

r1

r2

r3

r4

r5

Client-side

Replica 1

Replica 2

Replica 3

Replica 4
(faulty)

{r2 ,r5} Agreed value:

Execution order: r5 ⇒ r2

{r1 ,r3 ,r4}

r3 ⇒ r4 ⇒ r1

Server-side

i th ex. with {r2, r3}	

i th ex. with {r2, r4, r5}	

i th ex. with {r3}	

i th ex. with {r5}	

(i+1) th ex. with {r1, r3}	

(i+1) th ex. with {r3, r4}	

(i+1) th ex. with {r1, r3, r4}	

(i+1) th ex. with {r2, r6}	

Figure 2.2: Execution example of state machine replication by the request set consensus problem

Step 3: Return to Step 1.

This repetition is continued until the service is terminated.

Figure 2.2 illustrates the execution of state machine replication based on the request set

consensus problem. Here, the request set consensus problem is solved repeatedly, and Fig. 2.2

shows the i-th and the (i+1)-th agreements. The distributed system in Fig. 2.2 has three clients

and four replicas where Replica 4 is faulty. The clients issued five requests: r1, r2, · · · , r5. Before

starting the i-th agreement, every replica places the set of unprocessed requests it has received

to its initial value for the i-th execution of an agreement protocol. Since the order and timing of

arriving requests can be different among replicas, the initial values might also be different; e.g.,

Replica 1 sets {r2, r3} and Replica 3 sets {r3} to their initial values of the i-th agreement. Our

agreement protocol for the request set consensus problem guarantees that every non-faulty replica

obtains a common set of requests, and the agreed set is subset of the union of the initial values

of the non-faulty replicas. In Fig. 2.2, the i-th agreement returns agreed value {r2, r5}. Then

every non-faulty replica processes the elements of the agreed set in some deterministic order. If

r5 precedes r2 in the order, the non-faulty replicas execute r5 first and then r2. When a replica

finishes execution of the i-th agreement, it starts the (i + 1)-th agreement. Each replica’s initial

value of the (i + 1)-th agreement protocol is, as above, the sets of requests that have arrived

and have not been processed yet; they are not included in the agreed sets of any preceding j-th

agreement (j < i + 1). For example, Replica 2 sets {r2, r4, r5} to the i-th initial value, and r2

and r5 are included in the i-th agreed set, and then r4 is again included in the initial value of the

2.3. REQUEST SET CONSENSUS APPROACH FOR STATE MACHINE REPLICATION 11

(i + 1)-th agreement. On the other hand, r3 is received by Replica 2 during the i-th agreement

protocol execution and is also included in the (i + 1)-th initial value. In Fig. 2.2, Replica 4, a

faulty replica, is disturbing the agreement by proposing an invalid initial value for the (i + 1)-th

agreement. Replica 4 includes r2 in the initial value, which was already included in the i-th agreed

set. The replica also includes forged request r6 in the initial value. Even if malicious replicas

act in such a way, an agreement protocol works correctly, because it does not include requests

of the past agreement again or forged ones in the agreed value. The (i + 1)-th agreed value is

{r1, r3, r4}, and every replica processes the requests in some deterministic order. Replicas repeat

such agreements and processing until the service is terminated.

Note that definitions of request set consensus differ between Chapters 3 and 4. Although we

will focus on the state machine replication and the request set consensus approach throughout

the thesis, each chapter discusses different problems under different definitions.

12 CHAPTER 2. PRELIMINARY

Chapter 3

Request Set Consensus Protocol

for BFT Replication

3.1 Introduction

In this chapter, we present a new randomized multi-valued Byzantine consensus protocol for

Byzantine fault tolerant state machine replication. Our protocol is based on randomization, and

thus, can be employed in more general settings than leader-based consensus protocols such as

Castro and Liskov’s PBFT. We employ Bracha’s agreement protocol [24] as a framework of our

protocol, and develop a very original way of coin tossing, which is crucial to realize fast and

efficient agreement. Our protocol called RSC is as efficient as existing fast randomized protocols

ABC [16] and RITAS [17, 18, 19], and much less resource-consuming than these two protocols.

3.1.1 Related work

ABC [16] proposed by Cachin et al., and RITAS [17, 19, 18] proposed by Correia et al., take the

second approach. Their protocols realize atomic broadcast [28]. Atomic broadcast guarantees

that every non-faulty replica in a distributed system receives the same broadcast messages in

the same order, and is easily transformed to the state machine replication. ABC and RITAS

realize atomic broadcast by multi-valued Byzantine agreements, where replicas agree on the same

value in a given set of multiple values {v1, . . . , vn}. However, these multi-valued agreements are

implemented by reducing them to binary Byzantine agreements, where replicas agree on the same

value in the set {0, 1}. ABC uses Cachin et al’s binary Byzantine agreement protocol ABBA [29],

13

14 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

and RITAS uses Bracha’s binary Byzantine agreement protocol [24]. ABBA employs shared coin

tossing [6] that minimizes the number of rounds to get the same coin value by cryptographic

communication among the replicas, and Bracha’s protocol simply does local coin tossing, where

the replicas independently repeat the coin tossing until they happen to have the same coin value.

RITAS generally needs more rounds for an agreement, while ABC is time-consuming during

cryptographic communication. In addition, Moniz et al. evaluated ABBA and Bracha’s consensus

protocol in a real environment, and highlighted these protocols’ characteristics [30].

3.1.2 Contributions

Multi-valued Byzantine agreement with special valued coin tossing: A naive multi-

valued Byzantine agreement based on local coin tosses [5] is extremely inefficient, especially when

the number of replicas increases. Therefore, ABC and RITAS proposed ways of reducing multi-

valued agreement to binary agreement. In contrast, we employ multi-valued agreement with a

new way of coin tossing. First, by exploiting the structure of replication, we introduce a special

value of the coin that changes dynamically and independently on each replica but finally coincides

among the replicas. We analyze how this special coin value overcomes the inefficiency of multi-

valued agreement in the performance evaluation of Sec. 3.5.2. Second, our multi-valued agreement

also introduces a procedure for each replica to merge the request sets proposed by other replicas

during the rounds of the agreement process. This merging allows the proposed value to converge

and contributes to the fast termination of the agreement. We also analyze the effect in Sec. 3.5.2.

Less resource-consumption: Owing to the simple structure of the multi-valued agreement,

our protocol is much less resource-consuming than ABC and RITAS. In Sec. 3.5.3, we compare the

loads of the request processing (i.e., request frequency) that reach the resource bound among ABC,

RITAS, and our protocol by changing the number of replicas. We prove that our protocol is much

more resource-efficient especially in a large number of replicas, while preserving fast responses.

We also experimentally analyze and compare our protocol’s characteristics with RITAS.

3.2 Request Set Consensus

We formally define the requirements for the request set consensus problem for replication. Note

that the definition is specific to the replication rather than a general use of consensus. In partic-

ular, the agreed value is a set of requests, rather than a single numerical value, as stated in the

introduction.

3.2. REQUEST SET CONSENSUS 15

Let the initial value of the i-th execution of the request set consensus protocol for replica

p be Ii
p, the i-th execution of the request set consensus protocol by p be RSC(p, i, Ii

p) and its

agreed value be V i
p . Note that Ii

p and V i
p are sets of requests. Let R be the set of all the

requests submitted by clients and M i
p(⊂ R) be the set of requests that process p has received

before starting the i-th request set consensus execution. We assume that every replica eventually

receives all requests in R and Ii
p = M i

p−
(
V 1

p ∪ V 2
p ∪ · · · ∪ V i−1

p

)
. If there is no need to distinguish

replicas, we simply write V i
p as V i and do similarly for others.

The followings are the requirements of the request set consensus problem for replication:

Agreement, Termination, Integrity, and Validity.

Agreement: Let p and q be non-faulty replicas. For any i, if RSC(p, i, Ii
p) and RSC(q, i, Ii

q)

terminate, then V i
p = V i

q .

Termination: For any i and any non-faulty replica p, RSC(p, i, Ii
p) terminates with probability

1.

Integrity: For any i and any non-faulty replica p, V i
p ⊆ R.

Validity: For any r ∈ R and any non-faulty replica p, there exists i such that r ∈ V i
p .

Agreement ensures that all non-faulty replicas agree with the same value at each execution, and

termination ensures that every execution of the request set consensus at every non-faulty replica

terminates with probability 1. Integrity guarantees that no agreed value contains any forged

requests, and validity guarantees that any request is eventually processed.

The Integrity and Validity above and used in the thesis are slightly different from the require-

ments presented below of a usual request set consensus problem.

Usual Integrity: For any i and any non-faulty replica p, V i
p ⊆

∪
non-faulty q Ii

q.

Usual Validity: For any i and any non-faulty replica p,
∩

non-faulty q Ii
q ⊆ V i

p .

Our requirements are arranged for the repeated use of the request set consensus problem in

replication. Our integrity requirement is induced from the usual one, and our validity requirement

is also induced by the usual one on the assumption that every replica eventually receives all

requests in R, as mentioned above. Note that our RSC protocol presented in the next section

actually does not satisfy the usual integrity requirement.

16 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

3.3 The RSC Protocol

We propose a new efficient BFT protocol called RSC that solves the request set consensus problem,

based on Bracha’s binary Byzantine agreement protocol [24]. Let n be the number of replicas and

f be the maximum possible number of faulty replicas. The protocol works correctly, that is, it

satisfies the requirements: Agreement, Termination, Integrity, and Validity, when f ≤ b(n−1)/3c,
i.e., n ≥ 3fgT + 1. Since asynchronous Byzantine agreement cannot be solved deterministically

even if f = 1 [7], our protocol uses randomized coin tossing, like Bracha’s protocol.

We borrow two techniques, which we explain in Sec. 3.3.1 and Sec. 3.3.2, from Bracha’s original

protocol: reliable broadcast and internal message validity check. We introduce another message

validity check for RSC in Sec. 3.3.2. The details of our protocol are shown in Sec. 3.3.3. In Sec.

3.3.4, we describe our characteristic coin tossing scheme that plays a key role in RSC.

3.3.1 Reliable Broadcast

Reliable Broadcast [31, 24, 16] is a broadcast primitive that guarantees the followings: (i) a

message broadcast by a non-faulty replica is eventually delivered to all non-faulty replicas, and

(ii) if a message is delivered to a non-faulty replica, then the same message is eventually delivered

to all other non-faulty replicas. Therefore, every replica accepts at most one identical message

for a given ID, and a faulty replica cannot send distinct messages with identical IDs to different

replicas in a broadcast. We denote the action of sending message m by reliable broadcast by

R-Broadcast(m).

3.3.2 Message Validity Check

The RSC protocol uses two validity check methods: internal and external. The internal validity

check is applied to protocol messages exchanged among replicas at Steps 2 and 3, and the external

validity check is done to INITIAL messages issued at Step 0 and received at Step 3 in our protocol

as described later. The internal validity check is the same as that used in Bracha’s agreement

protocol [24], which prevents a faulty replica from disturbing protocol executions. The external

validity check, which is original with the RSC protocol, avoids false requests forged by faulty

replicas. In the following, we explain these message validity checking methods in more detail.

3.3. THE RSC PROTOCOL 17

Protocol 3.1 Pseudo code of Protocol RSC(p, i, Ii
p) for replica p (Part 1)

Protocol RSC(p, i, Ii
p)

Input:

1: p (1 ≤ p ≤ n): process number;

2: i ∈ N: execution ID of RSC protocol;

3: Ii
p ⊆ R: initial candidate-value;

Output:

4: V i
p ⊆ R: agreed value;

Variables:

5: rn ∈ N: round number, initially zero;

6: Cand ⊆ R: candidate of agreement, initially Ii
p;

7: RI ⊆ R: union of accepted initial values, initially Ii
p;

8: isMajor ∈ {true, false}: flag indicating whether Cand is a majority, initially false;

Internal Validity Check

In internal validity check, a non-faulty replica accepts a message after confirming that it can be

sent. A replica verifies that a message being checked can be sent by a sender replica after seeing

the messages received from other replicas in the last step. n − f messages must be sent in the

last step to induce the sender replica to send the message in the current step. Messages validated

by this checking are called internally-valid. By this checking, we can prevent faulty replicas from

sending illegal messages. A detailed and formal explanation of the internal validity check can be

found in [24].

External Validity Check

In external validity check, a non-faulty replica accepts a message including requests when it also

has directly received all the included requests from clients. With this check, we exclude forged

requests in the communication of the RSC protocol. Messages validated by this check are called

externally-valid.

3.3.3 Protocol

Protocols 3.1 and 3.2 show the pseudo code of the RSC protocol in which we denote a set

{1, 2, · · · , k} by [k]. The RSC protocol has four steps. Step 0 is executed once, and Steps 1, 2,

and 3 are executed repeatedly. We call a sequence of executions from Steps 1 to 3 a round, and

RSC repeats rounds until it reaches an agreement. The RSC input is a triplet of the identifier

of replica p, execution ID i, and a value of initial candidate Ii
p. The execution ID is a natural

sequence number that starts from 1 and increases by one after each agreement, and RSC outputs

18 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

Protocol 3.2 Pseudo code of Protocol RSC(p, i, Ii
p) for replica p (Part 2)

Code:

9: [Step 0]

10: R-Broadcast(〈INITIAL, i, Ii
p〉);

11: [Step 1]

12: R-Broadcast(〈MSG1, i, rn, Cand〉);
13: Wait for accepting n − f internally-valid messages 〈MSG1, i, rn, C1〉, · · · , 〈MSG1, i, rn, Cn−f 〉;
14: for all request r contained in at least f + 1 candidates of C1, · · · , Cn−f do

15: Cand := Cand ∪ {r};
16: RI := RI ∪ {r};
17: end for

18: [Step 2]

19: R-Broadcast(〈MSG2, i, rn, Cand〉);
20: Wait for accepting n − f internally-valid messages 〈MSG2, i, rn, C1〉, · · · , 〈MSG2, i, rn, Cn−f 〉;
21: for all request r contained in at least f + 1 candidates of C1, · · · , Cn−f do

22: RI := RI ∪ {r};
23: end for

24: if at least d(n + 1)/2e of C1, C2, · · · , Cn−f are the same (denoted by C) then

25: Cand := C;

26: isMajor := true;

27: end if

28: [Step 3]

29: R-Broadcast(〈MSG3, i, rn, Cand, isMajor〉);
30: Wait for accepting n − f internally-valid messages 〈MSG3, i, rn, C1, b1〉, · · · , 〈MSG3, i, rn, Cn−f , bn−f 〉;
31: for all request r contained in at least f + 1 candidates of C1, · · · , Cn−f do

32: RI := RI ∪ {r};
33: end for

34: if there are at least 2f + 1 MSG3 messages 〈MSG3, i, rn, V, true〉 for some V then

35: R-Broadcast(〈MSG1, i, rn + 1, V 〉);
36: R-Broadcast(〈MSG2, i, rn + 1, V 〉);
37: R-Broadcast(〈MSG3, i, rn + 1, V, true〉);
38: return V ;

39: else if there are at least f + 1 MSG3 messages 〈MSG3, i, rn, V, true〉 for some V then

40: Cand := V ;

41: else

42: if a message 〈INITIAL, i, I〉 has arrived but has not been accepted as an externally-valid message then

43: Accept its message as an externally-valid message;

44: RI := RI ∪ I;

45: end if

46: D := ({C1, C2, · · · , Cn−f}∩2RI)∪{RI}; {Here, D is a multiset, i.e., it can contain two or more identical values.}
47: Choose candidate C from D randomly;

48: Cand := C;

49: end if

50: isMajor := false;

51: rn := rn + 1;

52: goto Step 1;

3.3. THE RSC PROTOCOL 19

an agreed set of requests denoted by V i
p .

The control variables for the protocol are rn, Cand, RI, and isMajor. A current round

number is represented by rn. Cand represents a tentative candidate for an agreed value. The

value of Cand, which is initially the value of the initial candidate, is updated at each step based on

the values collected at that step. A non-faulty replica broadcasts these values and collects them

from other replicas. Roughly speaking, if most of the collected values are the same, the non-faulty

replicas agree with the value. RI represents the set of requests received indirectly from a replica

as its initial candidate and directly from a client after the initiation of the RSC protocol. The

RI value eventually becomes common among the non-faulty replicas, although their initial values

are different among replicas. In fact, the RI value is initially Ii
p and finally becomes a common

value
∪

q Ii
q, where q ranges over the replicas that have issued an INITIAL message, which might

include faulty ones. This value is used for two purposes. The first is as a special coin value used

by coin tossing, and the second is to exclude forged requests in the coin toss phase (line 46). A

Boolean variable isMajor indicates whether a majority exists in the received candidates at Step

2. An isMajor value is broadcast at Step 3 with Cand, and an update process of Cand at Step

3 branches based on how many received messages include isMajor as true.

During the RSC execution, four kinds of messages are exchanged. An INITIAL message

announces its own Ii
p to the other replicas. MSG1, MSG2, and MSG3 are used to inform other

replicas about Cand at Steps 1, 2, and 3, respectively. In addition, a MSG3 message contains a

flag isMajor. All of these messages are sent by reliable broadcast, which is explained in Sec. 3.3.1.

Thus, even a faulty replica cannot send different values to different replicas in the broadcast.

Step 0: Reliably broadcast an INITIAL message to announce its own initial candidate Ii
p to

other replicas. This message creates the special coin value RI that eventually becomes common

among the replicas (line 44).

Step 1: Reliably broadcast a MSG1 message to announce its own Cand to the others and wait

until n−f MSG1 messages have been received from others. During receiving, invalid messages are

ignored by internal validity check, which will be explained later. With these received messages, its

own Cand and RI are extended by adding the newly known unforged requests that are commonly

included by at least f + 1 Cand values in the messages.

Step 2: Reliably broadcast a MSG2 message containing its own Cand to the others and wait

until n − f internally-valid MSG2 messages have been received from others. Add the requests

contained in at least f + 1 candidates in the messages to RI. If d(n + 1)/2e or more Cand values

have an identical value, replace the value of its own Cand with the common one, and set its own

isMajor to true.

20 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

Step 3: Reliably broadcast a MSG3 message that has agreement candidate Cand and the

flag of majority isMajor, whose value was set in Step 2. Wait until n− f internally-valid MSG3

messages have been received from others. Add the requests contained in at least f +1 candidates

in the messages to RI. There are three cases to update its own internal states based on the

messages. (A) If there are 2f + 1 or more messages whose isMajor is true, then decide the

agreed value to be the Cand of these messages (lines 35–38). It is proven that for any two

messages whose isMajor values are true, their Cand values are the same, even if they are sent

by faulty replicas, owing to the reliable broadcast and the internal validity check. Therefore,

this decision is well defined. Send messages for the next round once to other replicas that are

proceeding to the next round, and then terminate. (B) If there are less than 2f + 1 but f + 1

or more messages whose isMajor values are true, then replace its own Cand with the Cand

of these messages (line 40). By doing this, the future decision value will be consistent with the

value already decided by other replicas. (C) In the remaining case, a non-faulty replica tosses a

coin (lines 42–48). The domain of the coin values consists of at most n− f different Cand values

received at Step 3 and RI. RI is extended by adding the union of the initial candidates included

in the INITIAL messages received so far. Here, the external validity of these received INITIAL

messages is checked, which is explained in Sec. 3.3.2, to exclude forged requests. Indirectly, Cand

values are also checked for any forged requests by seeing that they are included in RI. Update its

Cand to the coin toss result. Since the values of the non-faulty replica’s RI eventually coincide

with each other, termination is guaranteed.

3.3.4 Coin Tossing

When a non-faulty replica is not confident that a major value exists among the replica candidates,

it tosses a coin. Our coin tossing is local; every replica tosses independently. The domain of our

coin values is D = {D1, · · · , Dm, RI}, where D1, · · · , Dm are Cand values that are received at

Step 3 and are subsets of a local variable RI. We call RI “Special Coin Value” and RI plays an

important role to realize an efficient agreement and to ensure the correctness of RSC protocol.

A non-faulty replica randomly chooses a value from this domain, and proposes the value at the

next round. Here, the domain D is a multiset, i.e., it can contain two or more identical values.

Thus, the more D contains identical values, the higher the probability of choosing the value is.

We can ensure that the RI values of all the non-faulty replicas must eventually be stable and

coincide as some value, and this is why RI is called as “special coin value”. The reason is as

follows. The value of RI is updated mainly when a replica receives an INITIAL message and

3.4. CORRECTNESS 21

judges the message to be externally-valid. If a non-faulty replica receives an INITIAL message,

the other non-faulty replicas also do so even if its sender is Byzantine, since all communications

among replicas are done by the reliable broadcast. External validity of the message is judged

based on requests received directly from clients, and these requests are eventually delivered to

all replicas. Thus, if a non-faulty replica judges an INITIAL message to be externally-valid, the

other non-faulty replicas also do so. In addition, a replica reliably broadcast an INITIAL message

only once. Therefore, all non-faulty replicas eventually judge the same INITIAL messages to be

externally-valid, namely, the RI values of the replicas will coincide as the union U of the request

sets Ii
p sent as INITIAL messages. We call such a global configuration where the RI values of

all the non-faulty replicas are U SCV-full configuration. Here SCV means the special coin value

RI, and we call U a common-value, and the common-value ensures termination of our protocol.

3.4 Correctness

In this section, we prove that the RSC protocol satisfies the requirements for the request set

consensus problem shown in Sec. 3.2: Agreement, Termination, Integrity, and Validity.

First, we prove a lemma for Theorems 1 and 2.

Lemma 1. If all non-faulty replicas start at round r with the same value V of Cand, then they

decide V in the round.

Proof. Every replica reliably broadcasts its own Cand at Step 1 of round r. At most f faulty

replicas can broadcast a value other than V . Therefore, at the update of Step 1, the Cand value

of the non-faulty replicas remains unchanged. With this situation, at Step 2, every non-faulty

replica accepts only MSG2 messages, whose candidates are V , as internally-valid messages. Then

every non-faulty replica collects n − f (≥ d(n + 1)/2e) MSG2 messages with candidate V and

sets the isMajor flag to true. For the same reason as above, at Step 3, every non-faulty replica

accepts only MSG3 with a value of Cand V and a true flag as an internally-valid message. Then

every replica collects n − f (≥ 2f + 1) such messages and decides V .

Theorem 1 (Agreement). Let p, q be non-faulty replicas. For any i, if RSC(p, i, Ii
p) and

RSC(q, i, Ii
q) terminate, then V i

p = V i
q .

Proof. The main idea of the proof is identical to that for Bracha’s binary Byzantine agreement

protocol [24].

First, we consider the case where p and q decide at identical round r. Therefore, p and q have

to accept 2f + 1 internally-valid messages of 〈MSG3, i, r, V i
p , true〉 and 〈MSG3, i, r, V i

q , true〉 at

22 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

Step 3 of round r, respectively. This means that the two non-faulty replicas have to accept at

least d(n + 1)/2e 〈MSG2, i, r, V i
p 〉 messages and at least d(n + 1)/2e 〈MSG2, i, r, V i

q 〉 messages

respectively at Step 2. Since a replica cannot send two or more MSG2 messages in the same step

even if the replica is faulty, V i
p = V i

q . Next, assume that p decides at round r, and no non-faulty

replica decided in the preceding rounds. Therefore, all non-faulty replicas that do not decide at

round r, one of which is q, commonly set V i
p to their Cand values at Step 3 of round r (line 40),

and the replicas decide V i
p at the next round r + 1 by Lemma 1.

Theorem 2 (Termination). For any i and any non-faulty replica p, RSC(p, i, Ii
p) terminates

with probability 1.

Proof. From Lemma 1 and the fact that SCV-full configuration is eventually reached as stated

in Sec. 3.3.4, it is sufficient to show that the Cand values of all non-faulty replicas have the same

value with some probability at the beginning of every round after a finite time when a SCV-full

configuration is reached. There are three cases to update the Cand values at Step 3. (a) If a

non-faulty replica collects 2f + 1 MSG3 messages with the same candidate and isMajor is true

(lines 35–38), all non-faulty replicas have the same candidate at the beginning of the next round,

as discussed in the proof of Theorem 1. Note that the replicas collecting 2f + 1 such MSG3

messages (i.e., they decide the agreed value) behave as non-faulty replicas with the candidate in

the next round. (b) If there is no such non-faulty replica but only those collecting f + 1 or more

such MSG3 messages (line 40), then those replicas set the candidate of the messages to their

Cand values. On the other hand, the replicas that do not collect more than f + 1 such MSG3

messages must accept at least one such MSG3 message by the validity check and toss a coin

whose domain includes the candidate-value of the MSG3 messages. Therefore, the non-faulty

replicas share the candidate-value with some probability at the beginning of the next round. (c)

Lastly, if no non-faulty replica collects f + 1 or more such MSG3 messages (lines 42–48), every

non-faulty replica tosses a coin whose domain includes the common-value, RI. Thus, they have

a common candidate with some probability at the beginning of the next round.

Theorem 3 (Integrity). For any i and any non-faulty replica p, V i
p ⊆ R.

Proof. We show that no non-faulty replica contains forged requests in its Cand value during the

execution of the RSC protocol. Since the RSC protocol’s initial candidate is a set of requests

received directly from clients, there is no chance that a forged request is included. At Step 1,

the Cand value is modified by adding the requests that are commonly included in at least f + 1

internally-valid MSG1 messages (line 15), one of which is broadcast by a non-faulty replica.

3.5. PERFORMANCE EVALUATION 23

Therefore, if the candidate-values of any non-faulty replicas at the beginning of the round do

not include a forged request, the modified value does not either. At Step 2, the Cand value can

be completely changed to a common candidate-value of at least d(n + 1)/2e (≥ f + 1) MSG2

messages (line 25). Therefore, similar to Step 1, no forged request is included in it. At Step

3, if a replica receives f + 1 or more MSG3 of an identical candidate and isMajor true, the

replica sets its own Cand to the value (lines 35–37 and 40). Since at least one message is from

a non-faulty replica, no forged request is included in the Cand. In the case of coin tossing, the

coin values are subsets of RI (line 46). On the other hand, any element of RI is one included

in a candidate of a non-faulty replica (lines 16, 22, and 32) or an externally-valid message (line

42), and then it is not a forged request. When a replica decides a value at Step 3, the value is a

common candidate-value of at least 2f + 1 (≥ f + 1) MSG2 messages. By the above discussion

on the Cand value, no non-faulty replica contains any forged requests in its Cand.

Theorem 4 (Validity). For any r ∈ R and any non-faulty replica p, there exists i such that

r ∈ V i
p .

Proof. Let r be a request from a client and assume that it is never included in any agreed value.

It is obvious that such a request will eventually be included in the initial values of the RSC

protocol for all non-faulty replicas. That is, there is i such that for any non-faulty replica p,

r ∈ Ii
p. If, at the beginning of Step 1, all non-faulty replicas include r in their candidate-values,

then, after the modification of the candidate-value at Step 1, r is included in the candidate-value.

Because among n − f accepted messages, at least f + 1 MSG1 messages of them include r in

their candidates. Similarly, at the modification of Cand at Step 2 and Cases A (lines 35–38)

and B (line 40) of Step 3, the modified value is a candidate value of a non-faulty replica at the

previous step and includes r. At Case C of Step 3 (lines 42–48), i.e., at the coin tossing, its

domain is {D1, · · · , Dm, RI}, and all the values include r. Therefore, in every case, the modified

candidate-value include r. With this observation that the Cand value always includes r through

the execution, we conclude that V i
p includes r, which contradicts the assumption.

3.5 Performance Evaluation

3.5.1 Overview

We evaluate our RSC protocol from two points of view. First, we analyze the original features of

RSC by simulation experiments. We measure the effect of the special coin value RI in SCV-full

configurations (defined in Sec. 3.3.4) in Sec. 3.5.2 and Sec. 3.5.2 and how fast a system moves

24 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

from a non-SCV-full configuration to a SCV-full one in Sec. 3.5.2. We use the number of rounds

needed to reach an agreement as an efficiency measure, simulate executions of the RSC protocol by

replicas on a single machine, and evaluate the performance in relation to SCV-full configurations.

Next, we compare the latency and throughput of RSC with RITAS [19] and ABC [16] in

Sec. 3.5.3. We implement request set consensus protocols by using RITAS and ABC, which are

atomic broadcast protocols, in a straightforward way described in Sec. 3.5.4, and run these three

protocols on multiple machines in practical settings for comparison.

In these various experiments, the efficiencies are evaluated under fault-free executions. That

is, there is no Byzantine failure among the replicas. The passive reason is that there are an

enormous number of ways of attacking and delaying the agreement, and it is hard to give a

standard measure for the failure. The active reason is that the overhead of the agreement in

the fault-free execution is more important for the replication service. Because, Byzantine faults,

such as a cracker’s intrusion, infection of virus, and out of order of systems, happen rarely, while

the cost of operations providing against these faults is always charged, even for the case without

faults.

3.5.2 Performance Evaluation on RSC Protocol Features

Evaluation in SCV-full Configuration

Evaluation environment and settings: The initial values of the RSC protocol for individual

replicas, i.e., sets of requests, are set to random values so that achieving an agreement becomes

hard. These values are different to each other among the replicas, and no request is included

commonly in any two initial values. Note that the hardness in agreement is irrelevant to the

amount of the number of requests. We implement all replicas as individual processes in a single

host, and the order of receiving control messages for agreement is set to be uniformly random.

We evaluate the number of rounds for termination for the values of α, 0.1, 0.5, and 0.9, varying

the number of replicas n from 4 to 22. Here, α is the probability of choosing the special coin value

RI in the coin tossing of the RSC protocol (line 47 of Protocol 3.2). For each case, we executed

the evaluation 1,000 times, and we plot the average values in the graph of Fig. 3.1.

Result and discussion: Fig. 3.1 shows the increasing shape in the number of replicas. When α

is large, the number of rounds is around 2 for any case, which is as ideally small as we expected.

This is achieved by choosing a common-value with high probability at every non-faulty replica

in the coin tossing of the first round. A remarkable point of this graph is that the number of

rounds with small α is still reasonably small, while a naive estimation shows it needs 1/αn−f

3.5. PERFORMANCE EVALUATION 25

 1

 2

 3

 4

 5

 6

 7

 8

 4 7 10 13 16 19 22

E
xp

ec
te

d
nu

m
be

r
of

 r
ou

nd
s

Number of replicas

α = 0.1
α = 0.5
α = 0.9

Figure 3.1: Number of rounds to reach an agreement in SCV-full configurations

rounds. With this observation, it is found that in the fault-free executions, large α gives much

better performance. On the other hand, in the case of faulty replica’s attacking, large α can be

exploited by an attacker to delay the termination. Therefore, when we suspect such an attack,

we should dynamically decrease the value of α. Thus, we are still interested in small α. In the

following, we analyze the reason of this remarkable point.

Analysis of the Performance in SCV-full Configuration with Small α

First, we intuitively explain the reason of fast agreement for small α. We call a replica whose

Cand value is the common-value defined in Sec. 3.3.4 the candidate-full. When α is small, the

chance is small that replicas reach an agreement by coin tossing. However, if some replicas are

candidate-full, others’ candidate-values are more likely to be modified to the common-value in

their updates at Steps 1, 2, and 3 of the RSC protocol. As a result, more replicas can have the

same value in the possible coin values and the probability of getting agreement becomes high.

Below, we present a simulation experiment under some model, which confirms this intuition.

Analysis model: Assume that there exists k (≥ f + 1) candidate-full replicas at the beginning

of a round. In such a configuration, a replica can change its Cand in this round in the following

three cases:

Case 1: At Step 1, when there is a request that is contained in at least f +1 received candidates,

it is added to its own Cand.

Case 2: At Step 2, when it receives the same value from a majority of replicas, it replaces its

own candidate with the value.

26 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

Case 3: At Step 3,

1. when it receives k (f + 1 ≤ k < 2f + 1) candidates with isMajor = true, it replaces

its own candidate with the value.

2. when it does not receive more than f candidates with isMajor = true, it updates its

own candidate randomly by a coin toss.

Following these cases, we evaluate how the expected number of candidate-full replicas changes.

As a commonly used probability scheme through the evaluation, we introduce the following prob-

ability. Assume that there are y pieces of marked lots among x pieces of lots in a box. We denote

P (x, y, x′, y′) as the probability of obtaining at least y′ pieces of marked lots by randomly drawing

x′ pieces of lots from the box. By a simple calculation, the following holds:

P (x, y, x′, y′) =

 min{y,x′}∑
i=max{y′,x′−x−y}

yCi · x−yCx′−i

 /xCx′ .

Using this probability, we show the evaluation.

At first, for Case 1, the k candidate-full replicas remain candidate-full. A non-candidate-full

replica becomes candidate-full when it receives at least f + 1 common-values, and P (n, k, n −
f, f + 1) is the probability of this happening. There are a few other cases where non-candidate-

full replicas become candidate-full, but we ignore them for simplicity. Therefore, the expected

number of candidate-full replicas after Step 1 is at least

k1 = k + (n − k) · P (n, k, n − f, f + 1).

In Case 2, by the assumption that k ≥ f + 1, a non-candidate-full replica becomes candidate-full

only when it receives at least (n + 1)/2 common-values. Therefore, the expected number after

Step 2 is at least

k2 = k1 + (n − k1) · P (n, k1, n − f, (n + 1)/2).

Lastly, in Case 3, the probability that Case 3-1 happens is

p1 = P (n, k2, n − f, f + 1) − P (n, k2, n − f, 2f + 1),

while that of case 3-2 is chosen is

p2 = 1 − P (n, k2, n − f, f + 1).

For Case 3-1, the non-candidate-full replica becomes candidate-full. For Case 3-2, the non-

candidate-full replica becomes candidate-full by the coin tossing with probability

pc = α + (1 − α) · k2/n.

3.5. PERFORMANCE EVALUATION 27

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4

R
at

io
 o

f c
an

di
da

te
-f

ul
l r

ep
lic

as
 k

/n

Round

n = 4
n = 10
n = 16
n = 22

threshold (n-f)/n

Figure 3.2: Change of ratio of candidate-full replicas

Thus, the expected number after Step 3 is

k3 = n · (p1/(p1 + p2) + p2 · pc/(p1 + p2)).

Result and discussion: Next, we calculate how the ratio of candidate-full replicas changes

based on the above equations, and Fig. 3.2 shows the result, where α = 0.1 and k = f + 1. The

four lines correspond to Cases n = 4, 10, 16, and 22. In each case, f is fixed to b(n − 1)/3c.
The horizontal line is drawn at (n − f)/n = 0.75 as the threshold of the agreement. If the ratio

exceeds this line, any non-candidate-full replica becomes candidate-full. For example, in Case n

= 16, 38% of the replicas are candidate-full at the beginning of round 1, and after 2 rounds, it

exceeds the threshold line. Therefore, at round 4, all the replicas become candidate-full. In any

case, a configuration that all replicas become candidate-full is achieved quickly.

Evaluation of Transition Speed from non-SCV-full to SCV-full Configuration

In the previous evaluations, we showed that agreement by RSC protocol is achieved in a few

rounds for any α in a SCV-full configuration. Here, we show that a SCV-full configuration is

reached in a few rounds for practically reasonable sizes of n. Note that a SCV-full configuration is

a configuration where the values of all non-faulty replicas’ RI are the common-value. A replica’s

RI is updated in the following two cases:

Case 1: when there is a request contained in at least f + 1 received candidates at Steps 1, 2,

and 3, a non-faulty replica adds the request to its RI.

Case 2: when a non-faulty replica receives a request by INITIAL message under external validity

check, it adds the request to its RI.

28 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 4 7 10 13 16 19 22

E
xp

ec
te

d
nu

m
be

r
of

 r
ou

nd
s

Number of replicas

α = 0.1
α = 0.5
α = 0.9

Figure 3.3: Number of rounds to become a SCV-full configuration

Although, both updates independently contribute to achieving a SCV-full configuration, the

update by Case 2 depends on the communication speed on the networks between clients and

replicas, which are uncontrollable in open networks like the Internet. Thus, we only evaluate the

update with Case 1.

Simulation settings: We assume there are n requests and each request is included in the initial

values of just f +1 different replicas fairly. This is the hardest setting for a request to be included

in RI. Communication between replicas is simulated in the same way as Sec. 3.5.2. With this

environment, we count the number of rounds to reach a SCV-full configuration or a configuration

where all non-faulty replicas agree. The experiments are executed for α = 0.1, 0.5, and 0.9,

varying the number n of replicas from 4 to 22.

Result: The results are shown in Fig. 3.3 by plotting the averages of 1,000 executions for each

case. A large α brings a rapid transition to the SCV-full configuration. Up to n = 22, the number

of rounds is practically bounded.

3.5.3 Experimental Comparison with Other Protocols

Protocols to be compared: We compare our RSC protocol with two representative atomic

broadcast protocols: ABC [16] and RITAS [19], which are built on binary Byzantine agreement

protocols. An atomic broadcast protocol and a request set consensus protocol are equivalent in

the meaning that one protocol is easily transformed to the other with an efficient procedure. The

way of transformation from an atomic broadcast protocol to a request set consensus protocol is

shown in Sec. 3.5.4. We use it for this experimental comparison.

RITAS internally executes Bracha’s binary Byzantine agreement protocol [24] among the

3.5. PERFORMANCE EVALUATION 29

replicas to guarantee agreement termination on the request sets. Bracha’s protocol is itself a

randomized algorithm and may possibly repeat a number of rounds for agreement, because ter-

mination depends on the probability that the values of the local coins independently tossed by

replicas happen to coincide. On the other hand, since it does not employ any heavy cryptographic

procedure except message authentication code (MAC), the duration of each round is very short.

ABC internally executes the binary Byzantine agreement protocol ABBA [29] O(1) times for

each execution. ABBA performs shared coin tossing by using a dual threshold signature scheme.

The number of rounds for the agreement is ideally small, while the duration of each round is long

due to the heavy cryptographic procedures.

Experimental settings: We evaluate the latency and throughput of the replication based on

each of the three protocols. The protocols were implemented by C++ language with POSIX

library, and for ABC, we exploited H. Moniz’s implementation of dual threshold cryptographic

schemes1. We use seven machines as client hosts and n = 3f + 1 machines (f = 1, 2, 3) for the

individual replicas, which are totally connected by one 1 Gbps network switch. The machines

have a Core i3 540 3.07 GHz CPU and 2 GB RAM and run Linux 2.6.18.

Every client sends requests in a common frequency. We call the number of requests received

by a replica every second request frequency, which we change to evaluate the latency and the

throughput. We set up two models for the evaluation, and Table 3.1 depicts how requests are

sent in the two models. One is a normal one, where each client multicasts the requests in the

same order to the replicas. Therefore, the probability that replicas receive the requests in the

same order is high. The other is a delayed one, where each client sends the requests in a different

order among the replicas to represent delays of message delivery.

In RSC execution, we invoke the agreement protocol every five received requests or every

millisecond. Note that because we cannot execute two agreement protocol instances in parallel

for consistency, even if the scheduled timing is coming, we have to wait for the termination of the

previously invoked agreement protocol. Therefore, a replica may newly receive more than five

requests at the invocation and propose more than five. Through the experiments, probability α

to choose the special coin value RI is set to 0.9.

Evaluation results: Figures 3.4 and 3.5 show the results of evaluating the throughput and the

latency of RSC, RITAS, and ABC in the normal model, respectively. Similarly, Figs. 3.6 and 3.7

show the results in the delayed model. In each graph, the evaluation results for n = 4, 7 and 10

(f = 1, 2 and 3) are given.

In addition, Figs. 3.8 and 3.9 show the averages of the number of rounds, the duration of an

1http://sites.google.com/site/hmoniz/publications/ritas.zip

30 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

Table 3.1: Ways of sending requests in two models for n = 4
1st send 2nd 3rd 4th 5th 6th · · ·

Replica 1 r1 r2 r3 r4 r5 r6 · · ·
Replica 2 r1 r2 r3 r4 r5 r6 · · ·
Replica 3 r1 r2 r3 r4 r5 r6 · · ·
Replica 4 r1 r2 r3 r4 r5 r6 · · ·

(a) Normal model

1st 2nd 3rd 4th 5th 6th · · ·

Replica 1 r1 r2 r3 r4 r5 r6 · · ·
Replica 2 r2 r3 r4 r1 r6 r7 · · ·
Replica 3 r3 r4 r1 r2 r7 r8 · · ·
Replica 4 r4 r1 r2 r3 r8 r5 · · ·

(b) Delayed model

agreement, and the size of the agreed set (i.e., request set output of the agreements) by RSC and

RITAS for the two models respectively, which are presented to analyze the latency results of RSC

and RITAS for n = 4.

3.5. PERFORMANCE EVALUATION 31

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
hr

ou
gh

pu
t [

re
q/

se
c]

Load [req/sec]

RSC (n=4)
RSC (n=7)

RSC (n=10)
RITAS (n=4)
RITAS (n=7)

RITAS (n=10)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30
T

hr
ou

gh
pu

t [
re

q/
se

c]
Load [req/sec]

n=4
n=7

n=10

(a) RSC and RITAS (b) ABC

Figure 3.4: Throughput for normal model

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 500 1000 1500 2000 2500 3000

La
te

nc
y

[s
ec

]

Load [req/sec]

RSC (n=4)
RSC (n=7)

RSC (n=10)
RITAS (n=4)
RITAS (n=7)

RITAS (n=10)
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12

La
te

nc
y

[s
ec

]

Load [req/sec]

n=4
n=7

n=10

(a) RSC and RITAS (b) ABC

Figure 3.5: Latency for normal model

32 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
hr

ou
gh

pu
t [

re
q/

se
c]

Load [req/sec]

RSC (n=4)
RSC (n=7)

RSC (n=10)
RITAS (n=4)
RITAS (n=7)

RITAS (n=10)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t [

re
q/

se
c]

Load [req/sec]

n=4
n=7

n=10

(a) RSC and RITAS (b) ABC

Figure 3.6: Throughput for delayed model

 0

 0.05

 0.1

 0.15

 0.2

 0 500 1000 1500 2000

La
te

nc
y

[s
ec

]

Load [req/sec]

RSC (n=4)
RSC (n=7)

RSC (n=10)
RITAS (n=4)
RITAS (n=7)

RITAS (n=10)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 2 4 6 8 10 12

La
te

nc
y

[s
ec

]

Load [req/sec]

n=4
n=7

n=10

(a) RSC and RITAS (b) ABC

Figure 3.7: Latency for delayed model

3.5. PERFORMANCE EVALUATION 33

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 500 1000 1500 2000 2500

R
ou

nd

Load [req/sec]

RSC
RITAS

(a) Average round

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
tim

e
[s

ec
]

Load [req/sec]

RSC
RITAS

(b) Average execution time

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500

S
iz

e
of

 a
gr

ee
d

se
t

Load [req/sec]

RSC
RITAS

(c) Average size of agreed sets

Figure 3.8: Characteristics of agreements of RSC and RITAS for n = 4 in normal model

34 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

 0

 2

 4

 6

 8

 10

 12

 0 500 1000 1500 2000 2500

R
ou

nd

Load [req/sec]

RSC
RITAS

(a) Average round

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0 500 1000 1500 2000 2500

E
xe

cu
tio

n
tim

e
[s

ec
]

Load [req/sec]

RSC
RITAS

(b) Average execution time

 0

 20

 40

 60

 80

 100

 120

 140

 0 500 1000 1500 2000 2500

S
iz

e
of

 a
gr

ee
d

se
t

Load [req/sec]

RSC
RITAS

(c) Average size of agreed sets

Figure 3.9: Characteristics of agreements of RSC and RITAS for n = 4 in delayed model

3.5. PERFORMANCE EVALUATION 35

In general, the throughput values monotonically increase and at some point begin to decrease

or remain stable when the request frequency grows. At the point of the request frequency,

the system reaches the resource bound, and at the same point, the latency suddenly increases

markedly. Such resource bounds can be seen in the figures.

In observing Figs. 3.4 and 3.5, the ABC performance is much worse than RSC and RITAS.

ABC has much longer latency than RSC and RITAS and reaches the resource bound faster. We

can reason that the cryptographic primitives employed in ABC cause this. On the other hand, the

latency and the request frequency of the resource bound of ABC are not much different among

n = 4, 7, and 10.

In comparison of RSC and RITAS, RSC reaches the resource bound later than RITAS, es-

pecially for n = 7 and 10. This means that RSC consumes fewer resources than RITAS does.

As for latency, RSC outperforms RITAS for n = 7 and 10, which is affected by their resource

bounds. For n = 4, RSC is better until 800 requests/sec, and after that, RITAS is better until

the resource bound. To understand the RSC and RITAS behaviors in more detail, we consulted

the result of Fig. 3.8. In RITAS, the average execution time for an agreement increased slowly,

and the average size of a request set output by an agreement also increased monotonically. It is

obvious that when the average execution time increases, the latency increases, and when the size

of the request set increases, the latency decreases, because more requests can be processed for

an execution of agreement. We can observe in Fig. 3.5 that the RITAS latency first increases,

next remains stable, and then decreases. And now we can reason that the effect of increasing the

average execution time for agreement is dominant first, next it is in balance with the increasing

size of the agreed set, and then the increase becomes dominant. For RSC, the average size of re-

quests is stable while the average execution time is increasing. Therefore, the latency is increasing

monotonically.

Next, we consider Figs. 3.6 and 3.7 of the delayed model. ABC again shows worse performance

compared with RSC and RITAS as does in the normal model. In this model, however, ABC’s

latencies are different among n = 4, 7, and 10, while their resource bounds are the same. As for

throughput, RSC and RITAS show almost the same results as the normal model. The latencies

of RSC and RITAS worsen as a whole, but the relation between RSC and RITAS is the same as

the one in the normal model. The shape of RSC’s latency is different from that in the normal

model. First, it increases until 400 requests/sec and remains almost stable until the resource

bound. Fig. 3.9 explains this behavior. The average execution time for an agreement increases

until 400 requests/sec and then the increase slows down. On the other hand, the average size of a

request set output by an agreement increases monotonically. After 400 requests/sec, the average

36 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

execution time and the average size, whose increases negatively and positively affect the latency

respectively, are in balance so that the latency is stable.

Note how the results of the number of rounds in Figs. 3.8 and 3.9 clarify the differences of the

characteristics between RSC and RITAS. RITAS, which keeps the number of rounds to 1 through

all request frequencies for the both models, internally executes binary Byzantine agreements to

terminate the agreements on a request set. Before starting the binary agreement, RITAS makes

the replicas merge the requests for their proposals by communicating with each other so that the

binary agreement can quickly terminate. With this device, RITAS achieves one round agreement

even in the delayed model.

On the other hand, RSC executes multi-valued Byzantine agreements and needs more rounds

in general. In the results, the number of rounds is small and stable in the normal model, but it

is much larger and decreases as the load becomes higher in the delayed model. We can reason

that the difference is caused by the external validity check. In the normal model, the validity

check is accomplished quickly for every replica. On the other hand, in the delayed model, if some

requests are delayed over rounds, more time is needed to finish the external validity check, and so

more rounds are needed to agree with the special coin value among the replicas. However, when

the load increases, the number of rounds decreases. Because, the duration of a round becomes

longer, and the time needed for the validity check is encapsulated in the duration.

Summarizing the evaluation result, for the smallest n = 4, RSC and RITAS have similar

load performances of low request frequencies and RSC accepts a higher request frequency than

RITAS. For larger n = 7 and 10, RSC has more advantages in both response time and resource

bound. ABC’s performance is inferior to RSC and RITAS, but its performance does not change

over the number of replicas. These characteristics can make ABC more attractive in constructing

robust replication in a slower communication network like the Internet or in the future when the

hardware cryptographic processing is available.

3.5.4 Request Set Consensus Using Atomic Broadcast

Here, we describe how to realize a request set consensus protocol by using an atomic broadcast

protocol with a common idea described in [16]. This protocol is used in Sec. 3.5.3 to compare ABC

and RITAS with RSC; since they are atomic broadcast protocols and not request set consensus

ones, we cannot directly compare them with RSC.

Atomic broadcast is defined by the following four requirements. We write “a-broadcast m”

for broadcasting a message m by an atomic broadcast protocol and “a-deliver m” for accepting a

3.5. PERFORMANCE EVALUATION 37

...	
a	
 b	
 c	

Sequence	
 of	
 a-­‐delivered	
 requests	

a	
 c	
 b	

V0	
 =	
 {a}	
 V1	
 =	
 {c}	
 V2	
 =	
 {b}	

Figure 3.10: Flow of deciding agreed values

Protocol 3.3 Protocol for Request Set Consensus using Atomic Broadcast
1: Initialization:

2: i := 0;

3: When a request r is delivered from a client:

4: A-broadcast r;

5: When a request r is a-delivered:

6: Record the reception of the request r;

7: if this is the (f + 1)-th a-deliver of the request r then

8: V i
p := {r};

9: i := i + 1;

10: end if

broadcast message m in the protocol.

Validity: If a non-faulty process a-broadcasts a message m, then some non-faulty process even-

tually a-delivers the message m.

Agreement: If a non-faulty process a-delivers a message m, then all other non-faulty processes

eventually a-deliver m.

Integrity: Every non-faulty process a-delivers any given message m at most once, and only if m

was previously a-broadcast.

Total Order: If two non-faulty processes a-deliver two messages m1 and m2, then they a-deliver

them in the same order.

When a replica receives a request from a client, it a-broadcasts the request. When a replica

has a-delivered identical request r for f + 1 times from different replicas, it sets agreed value V i

to {r} (Fig. 3.10). By Total Order, the non-faulty replicas agree with the same value, and by

collecting the same f +1 requests, no forged request is included in the agreed value. Protocol 3.3

shows the protocol details.

38 CHAPTER 3. REQUEST SET CONSENSUS PROTOCOL FOR BFT REPLICATION

3.6 Concluding Remarks

In this chapter, we proposed a randomized Byzantine fault-tolerant request set consensus protocol

RSC to realize efficient state machine replication in asynchronous communication environments.

In this protocol, we introduced a new method of multi-valued local coin toss for consensus. In

general, multi-valued local coin toss for consensus is thought to be very inefficient. However, our

RSC protocol has a property in which the domain of the coin values is dynamically narrowed.

By simulation experiments, we showed that our protocol reached a consensus in fewer rounds

and outperformed RITAS and ABC, two well-known randomized Byzantine fault-tolerant atomic

broadcast protocols, in a network where replicas communicate with each other at high speed.

Chapter 4

Parallelizing Consensuses to

Reduce Latency

4.1 Introduction

In the randomization approach, randomized actions are introduced to avoid critical damage from

attackers. However, the approach is likely to be inefficient, since a number of rounds must be

repeated until the correct replicas reach agreement. To improve efficiency, a request set agreement

is employed rather than an agreement on a sequential number (the order to be processed) of each

request. Once agreement on a request set is achieved, the requests in the set are processed in

a predefined order (e.g., the order of the IDs of the clients submitting requests) among them.

This request set agreement is repeated sequentially and all requests are arranged in a common

order. However, if some replicas work very slowly or some requests reach very late, a request

set agreement may take a long time. It seriously delays the next invocation of the consensus

protocol. This chapter presents a method of solving this problem by parallelizing the request set

agreements.

Next, we explain more details of the randomization approach and the involved problem. Many

randomized protocols based on request set agreement have been already proposed [17, 16, 32, 33].

The consensus protocol is invoked periodically with a given time interval measured by a local

clock of each replica. When an execution of the protocol is finished by agreeing on a request set,

the requests in the set are arranged in a predefined order. By this series of arrangements, all the

requests are arranged in a common order among the replicas. At each invocation of the consensus

39

40 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

protocol, each replica proposes a set of the requests that were received so far but not included

in the previous agreement results. Of course, these proposals can be different among the replicas

because of the delay of the request arrival or the machine behavior. However, the set agreement

protocol guarantees that all non-faulty replicas agree on a subset of the union of the request sets

proposed by non-faulty replicas.

The length of the local time interval between invocations of the set agreement affects the

efficiency, but it is difficult to decide a suitable one. If it is short, the number of invocations of

the consensus protocol will increase. If it is long, requests have to wait long for the invocation of

the agreement protocol, and the agreement may take a long time because the size of the proposal

grows. When an execution of the consensus protocol does not terminate within the local time

interval, a big delay might occur. In this case, the invocation of the consensus protocol is kept

waiting until the termination of the previous consensus, even if the local time interval passes

to prevent inconsistency of the total order of requests among the replicas. Such blocking of the

invocation makes the following invocations of agreement postponed. As a result, the number of

unprocessed requests grows and the efficiency of the replication method is reduced. When request

arrivals or machine behaviors are delayed, the validity check becomes very time consuming in the

agreement, and the termination is easily delayed over the local time interval. Here, the validity

check is a process in the agreement for excluding forged requests.

4.1.1 Contributions

To solve the above problem, we introduce a method that allows parallel execution of agreements

so that executions of the set consensus protocol are not blocked by delayed requests or machines.

Our experimental results show that our parallelization method greatly improves the efficiency

compared with a sequential method, especially three or four times faster when some requests are

delayed or some replicas work slowly.

We solved the following two technical issues:

Safety problem: The parallel executions of the set consensus protocol may terminate in different

orders among the replicas. For example, on one replica, the execution of the agreement initiated

first terminates after the one initiated second, and on another replica, the one initiated first

terminates first. When the replicas are restricted to process the requests in the invocation order

of the agreements, they have to wait until the delayed agreement is completed. This may reduce

the efficiency achieved by parallelization. Therefore, we have to consistently arrange the outputs

(or request sets) of the parallel executions among the replicas.

4.1. INTRODUCTION 41

Liveness problem: A request contained in the proposal made by a replica is not necessarily

included in the output of the corresponding agreement. Therefore, to guarantee the liveness that

a request is eventually processed, a replica has to keep proposing the request until it is included

in an output of the agreements. On the other hand, a Byzantine faulty replica may propose

the request set that includes a forged request, which can collapse the replicated server state. To

exclude such requests, a replica validates the requests contained in the proposals of other replicas.

One possible way of validating a request is to wait for receiving it directly from a client [32, 33].

However, if the arrivals of the request are delayed at some correct replicas, the validation takes

a long time for the clients, and the agreement is delayed. This causes a situation that a request

that delays agreement can commonly be included in the proposals of the parallel executions of

the agreement. This reduces the positive effects of parallelization.

To solve the safety problem, we introduce another agreement process in the replication protocol

that identically arranges the output of the parallel executions among the replicas. We show that

this additional agreement’s overhead is small by experimentally evaluating the performance.

To solve the liveness problem, we introduce randomization to decide the proposals of each

execution of the consensus protocol. The requests in the proposal are chosen randomly from the

requests that have already been received but have not been processed. A request that causes a

delay in a previous execution may be missed in this choice, and a new execution can have no

delay. We experimentally show that this randomization brings a reasonable advantage of response

time.

4.1.2 Related work

As stated above, there are two main approaches for replications based on Byzantine agreement

in asynchronous distributed systems: randomization [17, 16, 32, 33] and a rotating coordinator

[9, 10, 11, 34].

In the rotating coordinator approach, a special replica (a rotating coordinator) determines

a sequence number (the processing order) for each received request and announces it to all the

other replicas. Therefore, all the replicas can process the requests in the same order and maintain

consistency. If the coordinator is suspected to be faulty, its role is taken over by another replica.

From the impossibility result of Fischer et al. [7], this approach needs some assumptions on

synchrony (weak synchrony) to guarantee termination. On the other hand, the randomization

approach guarantees termination with probability 1 and needs no additional assumption. It is

more robust but less efficient.

42 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

Among the protocols in the coordinator approach, the Castro-Liskov protocol [9] achieves very

high performance and is considered a practical replication method. Under the above assumption,

it terminates in a few rounds and executions of the consensus protocol are executed in parallel.

Although the original Castro-Liskov protocol executes the consensus protocol for each request,

it is not hard to modify the protocol to allow each process to propose a request set like the

randomization approach. However, parallel execution of the agreements for request sets in the

coordinate approach is essentially different from that in the randomization approach. Actually,

the modification of the Castro-Liskov protocol reduces the number of agreement executions and

consequently improves efficiency in ordinary situations. However, it worsens when requests or

replicas are delayed. Because of the delay, a coordinator is suspected to be faulty and coordinator

alternation often happens. At each alternation, a heavy load procedure must be done to maintain

this protocol’s integrity.

For the existing protocols in the randomization approach, to the best of our knowledge, our

parallelization proposal is the first.

4.2 Replciation by Request Set Consensus (RSC)

We introduce a state machine replication method based on Byzantine consensus on a set of

requests (called Request Set Consensus (RSC)), which is commonly used in replications in com-

pletely asynchronous distributed systems to accelerate replication execution.

In this replication method, a replica periodically initiates RSC with a predefined interval.

We denote the sequence of RSC executions by RSC1,RSC2, · · · . A replica maintains the arrived

request set to store the set of the requests that have already been received but have not yet been

processed; a request is added to the set when it is received, and it is removed when it is processed.

When a replica initiates RSCk, its proposal is the set of the requests stored in the arrived request

set. Let the output (a set of requests) of RSCk be Vk. Requests are processed in the order of

V1, V2, . . ., and the requests in each Vi are serialized in a deterministic order shared among the

replicas. In the existing methods, the initiation of RSCk+1 must be delayed until RSCk is finished

to maintain the consistency of the processing order of requests, even if it passes the scheduled

initiation time of RSCk+1 (Initiation Condition).

To ensure the safety and liveness requirements for state machine replication, the RSC protocol

must satisfy the following requirements. Hereafter we denote an execution of RSCi at a replica

with proposal v by RSCi(v) or RSCi if the proposal does not matter.

RSC Agreement No distinct correct replicas output different sets of requests.

4.3. PARALLELIZING EXECUTIONS OF RSC 43

Replica p

Replica q
RSC1

RSC2

timeRSC1

RSC2
EX

EX

EX
EX

Replica p

Replica q

time

V2 = {r2}

V2 = {r2}

V1 = {r1}

V1 = {r1}

EX: execution of requests

Replica p

Replica q
RSC1

RSC2

timeRSC1

RSC2
EX

EX

EX
EX

Replica p

Replica q

time

V2 = {r2}

V2 = {r2}

V1 = {r1}

V1 = {r1}

EX: execution of requests

Figure 4.1: Invalid parallel executions of RSC

RSC Validity The output set is a subset of the union of the proposals of all correct replicas.

RSC Termination Every correct replica eventually outputs a set of requests.

RSC Integrity A request contained in the proposals of all correct replicas is also contained in

the output.

RSC Agreement, Validity, and Termination are standard requirements for Byzantine consensus

protocols. RSC Integrity suffices to guarantee the Liveness requirement of state machine replica-

tion.

4.3 Parallelizing Executions of RSC

4.3.1 Problem with Parallelization

Executions of existing replication methods can be very slow due to the initiation condition men-

tioned above, especially when the behaviors of some replicas are delayed or requests reach some

replicas late. One idea to improve the efficiency of the replication method is parallelizing the

executions of RSC by consistently removing the initiation condition. To achieve this, we have to

solve the following two problems.

Safety problem: Since the delays of the communication links among replicas and clients are

different from each other in asynchronous systems, the order of finishing the RSC executed in

parallel can be different among the replicas. In Fig. 4.1, replica p finishes RSC1 first, while replica

q finishes RSC2 first. If a replica immediately executes requests after the agreements, then the

processing orders of the requests are not the same among replicas p and q, and the safety condition

is not guaranteed.

44 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

Replica p

Replica q
RSC1

RSC2

timeRSC1

RSC2
EX

EX

EX
EX

Replica p

Replica q

time

V2 = {r2}

V2 = {r2}

V1 = {r1}

V1 = {r1}

wait time
EX: execution of requests

Replica p

Replica q
RSC1

RSC2

timeRSC1

RSC2
EX

EX

EX
EX

Replica p

Replica q

time

V2 = {r2}

V2 = {r2}

V1 = {r1}

V1 = {r1}

wait time
EX: execution of requests

Figure 4.2: Ineffective parallel executions of RSC

RSC2 MVC EX
Replica p

Replica q

time

RSC2

RSC1

RSC1

MVCMVC EX
EX: execution of requests

MVCMVC EX

MVCMVC EX
RSC2 MVC EX

Replica p

Replica q

time

RSC2

RSC1

RSC1

MVCMVC EXMVCMVC EX
EX: execution of requests

MVCMVC EXMVCMVC EX

MVCMVC EXMVCMVC EX

Figure 4.3: Execution of our proposed parallelizing method

This problem can be simply resolved by waiting for the terminations of all RSCj (j < i) before

processing Vi the agreed set of requests. However, the method can cause great overhead (Fig.

4.2), where replica q has to wait for the termination of RSC1 to process V2. If a RSC takes a

long time, all requests already agreed by the following RSCs have to wait to be processed until

the previous RSC is terminated.

Liveness problem: Even if we reduce the overhead of waiting for the termination of other

RSC executions, inefficiency caused by the delayed replicas or the delayed requests remains. A

request included in a proposal may not be included in the output. Therefore, the replica must

keep proposing the request until it is included in an output of RSC to guarantee the liveness

requirement for state machine replication.

In such a naive parallelization, the proposal of RSCj+1 is likely to contain a request in that

of RSCj . However, if the request is greatly delayed for some replicas, the validity check in the

protocol commonly takes a long time for both executions RSCj and RSCj+1. Therefore, a few

delayed requests may cause big delays in the parallel execution of RSC.

4.3. PARALLELIZING EXECUTIONS OF RSC 45

4.3.2 Our Approach

To solve the safety problem, we introduce a multi-valued consensus (MVC) in the parallelization.

When an execution of RSCj is finished in a replica with output rsj , the replica initiates MVC

with proposal (j, rsj) (Fig. 4.3). If MVC outputs agreed value (id, rsid), the replicas process the

requests in rsid in an arbitrary predefined order. All correct replicas clearly process the same

requests in the same order. Note that MVC is itself executed sequentially on each replica. An

important point of this method is that the replica does not have to wait for the termination of

RSCi (i < id). In addition, even if RSCid has not finished at the replica, it can process the

requests in rsid since the replica can learn the requests from the MVC output.

To solve the liveness problem, we introduce randomization for deciding the proposal. We

decide the RSC proposal by probabilistically choosing requests from the set of requests already

received but not yet processed. With this simple modification, we can decrease the probability

that two proposals of two distinct RSC executions include the same request. Consequently, the

terminations of successive RSCs executed in parallel are rarely delayed by the same request in

the two proposals. At the same time, we can guarantee the liveness requirement with probability

1.

4.3.3 Multi-valued Consensus Protocol

We show the requirements for the multi-valued consensus protocol used to determine the request

set to be processed first. The MVC proposal at a correct replica is a pair of ID of a terminated

RSC execution and its agreed request set. The MVC protocol is, of course, the randomized

protocol, because the targeted distributed system is asynchronous and Byzantine faulty. The

MVC protocol must satisfy the following requirements:

MVC Agreement No distinct correct processes output different values.

MVC Validity If the proposals of all correct processes are the same, the agreed value is the

proposal.

MVC Termination Every correct process eventually outputs an agreed value.

MVC Extra Validity The output of a correct process must be a proposal of some correct

process.

MVC Agreement, Validity, and Termination are the common requirements for MVC in general.

MVC Extra Validity speeds up state machine replication while avoiding forged requests explained

46 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

in Sec. 4.3.4. MVC Extra Validity is feasible using a signature scheme on an existing MVC

protocol. Each replica repeatedly executes MVC, and we denote the i th execution of MVC by

MV Ci.

4.3.4 Protocol

Our proposed parallelizing method is shown in Protocol 4.1. The value of input rs is a set of

requests given to RSC as a proposal and is modified based on old rs and new rs. The value of

old rs is a set of requests that were received before the last RSC initiation and remain unprocessed.

The value of new rs is a set of requests that were received after the last RSC initiation. The

value of agreed rs is a set of requests that belong to RSC output. rsc id queue is a queue of

pairs (j, rsj) of RSC ID j and agreed set rsj output by the execution of the RSC with ID j. An

element of the queue is a proposal of MVC. wait queue is a queue of agreed request sets, and

a thread Tprocess processes them in order. mvc id is a counter that gives a sequence number to

each execution of MVC, allowing replicas to recognize a common execution of MVC.

We assume that each replica has its own special scheduler PS, which employs a local clock of

the replica. PS periodically outputs positive integers 0, 1, 2, . . . in this order with a predefined

interval. When PS outputs number k, the replica initiates the k th execution of RSC with ID k.

The shorter the PS interval is, the more frequently RSC is initiated.

We introduce choose function to process requests faster while keeping liveness property. The

function forms a request set from the elements of old rs and new rs, which is used as input

for newly initiated RSC. Here, old rs and new rs are the sets of requests that have not been

included in any MVC output yet, i.e., their processing orders have not been assigned yet. The

function resolves the following problems. To guarantee liveness, the requests must be included

in RSC proposals repeatedly until their processing orders are assigned. A naive way to realize

this is to include all the requests of old rs and new rs in every RSC input for the proposal.

However, if a proposal contains a request that arrives late at n − f replicas, the termination of

the RSC execution is also delayed. To solve the problem, choose function chooses a part of the

requests in old rs and new rs randomly for RSC input. As a result, we can reduce the risk that

the termination of the RSC execution is delayed. There are many ways to choose the requests

randomly, and we employ a simple way that chooses each request with a constant probability. By

the simple way, liveness is guaranteed with probability 1. In addition, we experimentally show in

Sec. 4.5.2 that choose function has a good effect on performance.

A replica initiates MVC with a proposal of a pair of an RSC ID and its agreed set. If MV Cj

4.4. CORRECTNESS 47

outputs the agreed value (id, V), the replica processes V at the j th turn. The MVC proposal

includes the corresponding agreed set as well as the RSC ID to improve the efficiency. If the

proposal is only RSC ID, when MVC outputs RSC ID id and the replica has not finished the

execution of the RSC of id, it has to wait for the termination of the RSC before processing the

requests in the agreed set. With the agreed value in the output of MVC and MVC extra validity,

which means that the agreed value is not forged, a replica can process the correct request set

immediately after the MVC outputs.

Our method starts from initialization in which a replica creates a new thread Tprocess. Tprocess

dequeues a request set from wait queue and processes the elements in a deterministic order shared

with all replicas.

Our protocol has four when clauses (the line numbers at the end of each when clause are of

Protocol 4.1):

• When a new request arrives from a client, it is added to new rs. (lines 13–14)

• When scheduler PS outputs value j, first, the already agreed requests are removed from

old rs and new rs. Next, the proposal for a new RSC is calculated using given function

choose. The choose function randomly selects requests from its input old rs and new rs in

a predefined manner. Then a new RSC with ID j is initiated, and the elements in new rs

are moved to old rs. (lines 15–21)

• When an RSC execution with ID id is finished with output rs, a replica updates agreed rs

and enqueues a pair (id, rs) to rsc id queue if id is not in agreed rsc id. If a previously

invoked MVC is running, it waits for the termination. Then the replica chooses the first

element, a pair of an RSC ID and an agreed set (id′, rs′) from rsc id queue (without deleting

it from the queue) and initiates a new MVC with ID mvc id with the proposal (id′, rs′).

Lastly, the replica increments the value of mvc id. (lines 22–30)

• When MVC outputs value (id, rs), a replica removes the pair whose first element is id from

rsc id queue and enqueues rs into wait queue and id into agreed rsc id. (lines 31–35)

4.4 Correctness

We prove that our proposed protocol, which parallelizes RSC executions, satisfies the safety and

liveness requirements of state machine replication.

48 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

Protocol 4.1 Proposed parallelizing method
1: Variables

2: input rs := ∅; {input of RSC}
3: old rs := ∅; {requests received before the last RSC}
4: new rs := ∅; {requests received after the last RSC}
5: agreed rs := ∅; {agreed requests}
6: agreed rsc id := ∅; {RSC IDs agreed by MVC}
7: prs := ∅; {processed requests}
8: mvc id := 1; {counter for MVC IDs}
9: rsc id queue := empty; {queue of pairs of RSC ID and a set of requests }

10: wait queue := empty; {queue of agreed sets waiting to be processed}
11: Initialization

12: start task Tprocess;

13: When a request r arrives do

14: new rs := new rs ∪ {r};
15: When PS outputs j do

16: old rs := old rs \ agreed rs;

17: new rs := new rs \ agreed rs;

18: input rs := choose(old rs, new rs);

19: invoke RSCj(input rs);

20: old rs := old rs ∪ new rs;

21: new rs := ∅;
22: When RSCid outputs its agreed value rs do

23: if id /∈ agreed rsc id then

24: agreed rs := agreed rs ∪ rs;

25: enqueue (id, rs) into rsc id queue;

26: if MVC is running then

27: wait until it terminates;

28: let (id′, rs′) be the first element of rsc id queue;

29: invoke MV Cmvcid(id′, rs′);

30: mvcid := mvcid + 1;

31: When MV Ci outputs its agreed value (id, rs) do

32: if rsc id queue contains (id, ∗) then

33: remove (id, ∗) from rsc id queue;

34: enqueue rs into wait queue;

35: agreed rsc id := agreed rsc id ∪ {id};
36: Task Tprocess

37: loop

38: wait until wait queue is not empty;

39: dequeue rs from wait queue;

40: for all r ∈ (rs \ prs) in some deterministic order do

41: execute r and send the result to the client;

42: prs := prs ∪ rs;

4.5. PERFORMANCE EVALUATION 49

4.4.1 Safety

We have to show that requests are processed in the same order among the correct replicas and

that no forged requests are included in them.

To show that requests are processed in the same order, it is sufficient to show that RSC

outputs are enqueued to wait queue in the same order among the replicas under RSC agreement,

since thread T process processes the requests in the order in which they are stored in wait queue

(line 39). On the other hand, enqueuing is executed only in the event of MVC output, and

MVC is executed sequentially (lines 26–30). Therefore, the desired result follows from the MVC

agreement. The non-forged requirement immediately follows from RSC validity and MVC extra

validity.

4.4.2 Liveness

Here we show that a request sent by a client will be eventually processed. Assume that there

exists a request rq that is never processed. Such a request is eventually delivered to all correct

replicas and stored in their new rs or old rs. Hence, there must be an RSC execution with some

probability in which every correct replica contains rq in its proposal. This is achieved by choose

function. Let the ID of the execution be k. By RSC termination, the execution must terminate,

and by RSC integrity, agreed set Vk must contain rq. Then every correct replica enqueues (k, Vk)

into rsc id queue. Assume that (k, Vk) has never been chosen as an output of any MVC execution.

rsc id queue is a queue, and if (k, Vk) is not removed for a long time, (k, Vk) moves to the front

of the rsc id queue. If the front of the rsc id queue of every correct replica gets (k, Vk), every

correct replica proposes (k, Vk) and the agreed value of the next MVC execution must be (k, Vk)

by MVC validity. The execution must terminate by MVC termination. Therefore, request rq is

eventually processed, which contradicts the assumption.

4.5 Performance Evaluation

In this section, we experimentally compare the performance of state machine replication employing

our proposed parallelizing method with an existing one based on sequential agreements. In

particular, we show how the delay of request message delivery and machine behavior affects the

response time of the requests. Moreover, we compare scalability, i.e., the ability to process a large

number of requests sent by many clients, of the two methods from the viewpoints of throughput

and latency.

50 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

In this section, we compare the performance of the parallelized Byzantine fault tolerant repli-

cation proposed in this chapter and the sequential one by experiments. Although our proposed

parallelized method is Byzantine fault tolerant, in the experiments, we do not model Byzantine

behavior as malicious behavior of a faulty replica, where it sends invalid messages not satisfy-

ing the protocol. The reason is as follows. Most Byzantine fault tolerant protocols use reliable

broadcast and validity check mechanisms [24, 33, 32, 16]. The malicious behaviors mentioned

above are detected immediately by these mechanisms, and cannot have an effect on performance

of the replication. Therefore, meaningful attacks that faulty replicas can do are restricted to

delayed behaviors, e.g. delaying message delivery. By the reason above, we consider only delayed

behaviors of faulty replicas’ attacks in the experimental performance evaluation here. Moreover,

delays in arrivals of requests from clients at some replicas and delays in correct replicas’ actions

also affect performance of the replication. To analyze how these three kinds of delay affect per-

formances of the sequential and parallelized replications and in what situations of the delays the

difference of the performances become larger, we introduce a simple model that simulates these

delays. The model is controlled by the four parameters: #d req, #d rcv, ed req, and ed mac,

described below. To the best of our knowledge, this is the first one that evaluates the effect of

these delays in detail for randomization approach.

4.5.1 Experiment environment

For our experiments, we use five machines completely connected by one network switch. Four of

them are used to run replicas and the other one is used to simulate clients. On each of the four

machines, a replica is running individually. On the other machine, several clients are simulated,

and their requests are issued from it. Each machine has a Core i3 540 3.07 GHz CPU and 2 GB

RAM and runs Linux 2.6.18. The network is 1 Gbps LAN.

Through the experiments, we fix the choose function so that it uniformly chooses every element

as an element of a proposal with 0.25 probability. This value is empirically preferable for the

parallelization as shown in Sec. 4.5.2.

We used the RSA protocol proposed in [32, 33] as an underlying RSC protocol and the

M V Consensus protocol proposed in [19] as the MVC protocol. These protocols and our proposed

parallelizing method were implemented by C++ language with POSIX socket library for the

evaluation. Note that the M V Consensus protocol may output a special value, ⊥, which is

different from any proposed value. To cope with this exceptional value, we slightly modified

our protocol. When this value is output, we reinvoke M V Consensus protocol with a different

4.5. PERFORMANCE EVALUATION 51

proposal: the element of rsc id queue whose RSC ID is the smallest. If the repetition of this

reinovocation continues, the proposals finally coincide among the replicas, and the invocation

terminates by outputting the proposal of a normal value by the M V Consensus property stated

in Theorem 3 in [19]. Then, the repetition is finished.

4.5.2 Latency

Evaluation model

To evaluate latency of the proposed method, we measure the response time, which takes at a client

until accepting the response after sending a request. It should be noted that a client accepts a

response when it receives f + 1 identical responses from different replicas. In the setting of our

experiments, each request is issued to replicas every 100 ms. The local time interval for invoking

RSC is 100 ms. For each combination of the parameter values described below, we execute the

experiments 50 times and average the response times.

From the machine that simulates clients, 50 requests are multicast to the replicas in total. Let

r1, r2, . . . , r50 be the requests issued from the clients. To realize delayed delivery of the requests,

we change the order of sending the requests. For example, if the delivery of request r1 is delayed

for replica R1, we send the requests to the replicas other than R1 in the order r1, r2, . . . , r50

and the requests to R1 in the order r2, r3, . . . , r25, r1, r26, . . . , r50. To realize delayed behavior of

the replicas, we delay the timing to start sending the requests to replicas. For example, if the

behavior of replica R1 is delayed, we start sending the requests to R1 after sending 25 requests

to the other replicas.

We introduce the following parameters and values to configure this model:

#d req: the number of delayed requests, which is chosen from {1,2,3}.

#d rcv: the number of machines that receive delayed requests. Their values are chosen from

{2*,3*}, where we attach “*” to distinguish them from the values of #d req.

ed req: extent of how much requests are delayed. The values are chosen from {middle, end}, in

short, {m, e}.

ed mac: extent of how much a machine’s behavior is delayed. The values are chosen from {0%,

50%, 100%}.

The values, middle and end, of ed req mean that the first requests are moved afterward to the

middle and to the end of the order of the sequence of requests, respectively. For example, if

52 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

#d req = 2 and ed req = middle, r1 and r2 are moved between r25 and r26, and if ed req = end,

they are moved after r50. We assume that at most one machine can be delayed, which is called

a delayed replica. The value of 0% of ed mac means that there is no machine delay. 50% and

100% mean that the sending of the requests to the delayed replica starts when the sending of

the requests for the other machines has progressed 50% and 100%, respectively. Machine delay

ed mac implies delays of all the requests, and request delay ed req does delay some requests.

Now, we explain the adequacy of our model. As described above, the purpose of the exper-

iments is to evaluate how the delayed requests and the delayed behavior of replicas (including

faulty one) affect the performance of replication. Since we are assuming f = 1 throughout the

experiments, the number of replicas n is limited to four. A factor that affects directly to the

performance of replication, e.g., throughput and latency, is the length of time for reaching an

agreement. The length for RSC depends on the number of the different values of the values that

replicas propose for agreement. If every correct replica happens to propose the same value, the

RSC execution reaches an agreement immediately. On the other hand, it takes long time to reach

an agreement when all the proposals from replicas are different to each other. By choosing the

number of delayed requests #d req from 1, 2, and 3, we can enumerate three situations where

the numbers of the different values that replicas propose are 2, 3, or 4 respectively. Thus, we can

cover all the possible situations for the number of the different proposals in the case of n = 4. On

the other hand, since we are targeting an asynchronous distributed system, the delayed behavior

of correct replicas also affects the length to reach an agreement. The delayed behavior of a cor-

rect replica does not affect the performance when the faulty replica works correctly, because the

underlying Byzantine request set consensus protocol we use here is designed to be able to reach

an agreement with three correct replicas. Note that the case where a faulty replica and a correct

replica behave slowly can be simulated by the case where two correct replicas behave slowly. Con-

sequently, it is sufficient to consider the two cases of the delayed behavior: two replicas behave

slowly and three ones does. In our model, a delayed behavior of correct replicas is realized by

delayed reception of requests. Then, all substantial patterns of delayed behaviors of replicas is

covered by the values of ed mac and #d rcv chosen from {2, 3} (obviously, delayed behaviors of

all the four replicas is not meaningful). Moreover, to model the degrees of the delays of requests

and a faulty replica, we introduce the parameters ed req and ed mac respectively.

Experimental results and analysis

The average response times of the sequential and parallel executions for each parameter configu-

ration are shown in Fig. 4.4.

4.5. PERFORMANCE EVALUATION 53

 0

 50

 100

 150

 200

 250
0%

-1
-2

*-
m

0%
-1

-2
*-

e

0%
-1

-3
*-

m

0%
-1

-3
*-

e

0%
-2

-2
*-

m

0%
-2

-2
*-

e

0%
-2

-3
*-

m

0%
-2

-3
*-

e

0%
-3

-2
*-

m

0%
-3

-2
*-

e

0%
-3

-3
*-

m

0%
-3

-3
*-

e

50
%

-1
-2

*-
m

50
%

-1
-2

*-
e

50
%

-1
-3

*-
m

50
%

-1
-3

*-
e

50
%

-2
-2

*-
m

50
%

-2
-2

*-
e

50
%

-2
-3

*-
m

50
%

-2
-3

*-
e

50
%

-3
-2

*-
m

50
%

-3
-2

*-
e

50
%

-3
-3

*-
m

50
%

-3
-3

*-
e

10
0%

-1
-2

*-
m

10
0%

-1
-2

*-
e

10
0%

-1
-3

*-
m

10
0%

-1
-3

*-
e

10
0%

-2
-2

*-
m

10
0%

-2
-2

*-
e

10
0%

-2
-3

*-
m

10
0%

-2
-3

*-
e

10
0%

-3
-2

*-
m

10
0%

-3
-2

*-
e

10
0%

-3
-3

*-
m

10
0%

-3
-3

*-
e

La
te

nc
y

[r
at

io
]

Parameter configurations

♠

♠

♠

♠

♠

♠

Seq. / Seq. (no delay)
Para. / Seq. (no delay)

Figure 4.4: Average response times of sequential and parallel executions for individual parameter

configurations

On the horizontal axis, each configuration is depicted in the form x1-x2-x3-x4, meaning that

the values of ed mac, #d rcv, #d req, and ed req are x1, x2, x3, and x4, respectively. On the

vertical axis, the average response times are measured in the ratio to the average response time

of the sequential executions with no delay of the delivery of requests or the behavior of replicas.

We clearly observed that at configurations of #d rcv = 3* and ed req = end, (i.e., when

the number of replicas receiving delayed requests is large and these requests arrive very late, the

peaks are marked with ♠ in Fig. 4.4), the response time of the sequential executions is 150 or

200 times longer than the no delay case, and the efficiency becomes very low. On the other hand,

the response time of the parallel executions is at most around 50 times longer than the no delay

case. Especially, when the efficiency of the sequential executions is terrible, the good effect of

parallel executions is remarkable for the following reason. Multiple replicas that receive many

delayed requests cannot indirectly verify the validity of the requests received from other replicas

until they receive them directly from clients. This greatly delays the termination of the involved

agreement and shifts the following agreements afterward. However, in parallel executions, a new

RSC can be started without waiting for termination of the agreement, and the delayed messages

have no effect on the following agreements.

Although at configurations of 50%-1-3*-e or 100%-1-3*-e the efficiency of the parallel execu-

tions is worse than that of the sequential executions, the difference is small. This means that

the overhead of additional MVC in parallel executions does not have much effect on the whole

response time.

Figure 4.5 shows the message complexity of sequential and parallel executions on each config-

54 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

 0

 50000

 100000

 150000

 200000

 250000

 300000

0%
-1

-2
*-

m

0%
-1

-2
*-

e

0%
-1

-3
*-

m

0%
-1

-3
*-

e

0%
-2

-2
*-

m

0%
-2

-2
*-

e

0%
-2

-3
*-

m

0%
-2

-3
*-

e

0%
-3

-2
*-

m

0%
-3

-2
*-

e

0%
-3

-3
*-

m

0%
-3

-3
*-

e

50
%

-1
-2

*-
m

50
%

-1
-2

*-
e

50
%

-1
-3

*-
m

50
%

-1
-3

*-
e

50
%

-2
-2

*-
m

50
%

-2
-2

*-
e

50
%

-2
-3

*-
m

50
%

-2
-3

*-
e

50
%

-3
-2

*-
m

50
%

-3
-2

*-
e

50
%

-3
-3

*-
m

50
%

-3
-3

*-
e

10
0%

-1
-2

*-
m

10
0%

-1
-2

*-
e

10
0%

-1
-3

*-
m

10
0%

-1
-3

*-
e

10
0%

-2
-2

*-
m

10
0%

-2
-2

*-
e

10
0%

-2
-3

*-
m

10
0%

-2
-3

*-
e

10
0%

-3
-2

*-
m

10
0%

-3
-2

*-
e

10
0%

-3
-3

*-
m

10
0%

-3
-3

*-
e

M
es

sa
ge

 c
om

pl
ex

ity
 [#

m
es

sa
ge

s]

Parameter configurations

Sequential
Parallel

Figure 4.5: Message complexity of sequential and parallel executions for individual parameter

configurations

uration. The vertical axis of Fig. 4.5 indicates the average number of messages sent by a replica

during an execution on each configuration. Since parallel executions run many RSC instances,

their message complexity could naively be presumed to be high. However, the message complexi-

ties of the parallel executions and the sequential ones are actually almost the same. Especially, the

parallel executions realize the lower latency with fewer messages than the sequential executions

in the configurations 0%-2-3*-e and 0%-3-3*-e. The reason is considered that the RSC executions

could reach agreements with small rounds thanks to the parallelization. On the other hand, it

should be noted that lower latency does not always mean small message complexity, as seen in

the configurations 50%-3-3*-e and 100%-3-3*-e.

Next, we focus on the effect of randomization of the RSC proposal. Fig. 4.6 shows the average

response times of parallel executions with different probabilities employed in the choose function:

0.25, 0.5, and 1.0. Similarly to Fig. 4.4, the response times are plotted as the ratio to the average

response time of the sequential executions with no delay. The case of probability 1.0 corresponds

to the naive approach without randomization in RSC proposals. As we presumed, the response

time is almost the same as the sequential executions, and no advantage of parallelization appears.

On the other hand, probabilities 0.25 and 0.5 equally and positively affect parallelization, which

proves the usefulness of our idea of randomization.

4.5. PERFORMANCE EVALUATION 55

 0

 50

 100

 150

 200

 250

 300
0%

-1
-2

*-
m

0%
-1

-2
*-

e

0%
-1

-3
*-

m

0%
-1

-3
*-

e

0%
-2

-2
*-

m

0%
-2

-2
*-

e

0%
-2

-3
*-

m

0%
-2

-3
*-

e

0%
-3

-2
*-

m

0%
-3

-2
*-

e

0%
-3

-3
*-

m

0%
-3

-3
*-

e

50
%

-1
-2

*-
m

50
%

-1
-2

*-
e

50
%

-1
-3

*-
m

50
%

-1
-3

*-
e

50
%

-2
-2

*-
m

50
%

-2
-2

*-
e

50
%

-2
-3

*-
m

50
%

-2
-3

*-
e

50
%

-3
-2

*-
m

50
%

-3
-2

*-
e

50
%

-3
-3

*-
m

50
%

-3
-3

*-
e

10
0%

-1
-2

*-
m

10
0%

-1
-2

*-
e

10
0%

-1
-3

*-
m

10
0%

-1
-3

*-
e

10
0%

-2
-2

*-
m

10
0%

-2
-2

*-
e

10
0%

-2
-3

*-
m

10
0%

-2
-3

*-
e

10
0%

-3
-2

*-
m

10
0%

-3
-2

*-
e

10
0%

-3
-3

*-
m

10
0%

-3
-3

*-
e

La
te

nc
y

[r
at

io
]

Parameter configurations

Prob. 0.25
Prob. 0.5
Prob. 1.0

Figure 4.6: Average response times of parallel executions with probabilities: 0.25, 0.5 and 1.0

4.5.3 Scalability

Here, we conduct experiments to evaluate scalability, i.e., the ability to process a large number of

requests, of the parallelizing method. In the experiments, we measure latencies and throughputs

of the sequential and the parallelizing methods. The experiments are done in an environment

where there is no delay on the delivery of requests or the behavior of replicas, because the delay

does not have an essential effect on the performance in processing a large number of requests.

In Figs. 4.7 and 4.8, we show the throughput and the latency of the sequential and the parallel

executions. Hereafter, we compare resource bounds of the sequential and the parallel executions,

first based on their throughputs.

First, we explain how we evaluate the throughput because reasonable evaluation of throughput

is a subtle problem at loads exceeding the resource bound of systems. To evaluate the throughput

at a given request frequency (or at a given load of requests), we execute the protocol for 25 seconds

at the load. Here, request frequency means the number of requests received by a replica every

second. Then we divide the execution into five successive sections of five-second long intervals.

For each section, we calculate a tentative throughput that is the average of processed requests

per second. Finally, we choose the maximum value among the five tentative throughput values

as the throughput value at the load. If the load does not exceed the resource bound, then the

tentative throughput value increases and becomes stable. On the other hand, if it exceeds the

resource bound, the value first increases and then decreases. Thus, we choose the maximum of

the tentative values as the estimated throughput for both cases. The result for each request

frequency listed below is an average value of ten executions.

56 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

In the throughput graph, the request frequency at which the throughput peaks corresponds to

the load where the system reaches the resource bound. By our calculation, the angle of inclination

after the peak shows how fast the resource will be exhausted after reaching the resource bound.

A larger angle means faster exhaustion.

In Fig. 4.7, parallel executions are controlled by restricting the number of parallel agreements

at a time, denoted by #para. For example, #para = 2 means that if two RSC are being executed

in parallel and timing for a new RSC invocation is reached, the invocation is postponed until one

of the executions is terminated. In Fig. 4.7, when the value of #para is large, the parallel

execution reaches the resource bound with a smaller load. At loads before reaching the resource

bound, parallel executions show the same throughput values as the sequential execution. At loads

beyond the resource bound, parallel executions exhaust the resource more rapidly.

In Fig. 4.8, to improve the scalability of the parallel execution, we add another restriction

on the frequency of the parallel executions of RSC, denoted by freq. For example, #para = 2

and freq = 5 mean that if two RSCs are executed in parallel and one terminates, parallel

RSC execution is not allowed until five newly invoked sequential executions of RSC have been

completed. In Fig. 4.8, if we control the frequency of the parallel executions of RSC, the resource

consumption is greatly reduced for #para = 2.

In Figs. 4.7 and 4.8, the graphs of throughput and latency show the same characteristics of

resource bound. When the executions reach the resource bound, the latency of each execution

becomes high, and the throughput does low. However, the effect of resource consumption appears

in lighter load for latency than throughput. Latency begins increasing before the execution reaches

its resource bound.

From these observations, we conclude that parallel executions consume resources in proportion

to the number of consensus protocol instances executed in parallel. When we restrict the number,

the executions still exhaust the resources rapidly when the load exceeds the bound. The speed

slows down when we restrict the frequency of RSC because time is required for parallel executions

to release the resource. For the practical use of the parallelizing method, when the load is heavy,

we should dynamically control the number of parallel executions and their frequency to avoid

resource exhaustion.

4.6 Concluding Remarks

In this chapter, we proposed a method to accelerate state machine replication for Byzantine fault

tolerance by parallelizing the executions of request set consensus and adding an extra multi-valued

4.6. CONCLUDING REMARKS 57

consensus for deciding the processing order of agreed sets. We also show the correctness of the

protocol for parallelizing agreements. Parallelism has a strong advantage in spite of requiring an

additional agreement, especially when some replicas work slowly or some requests are delivered

late. We showed this property by an experimental evaluation. In this evaluation, our parallelizing

method accelerates the latency of replication three or four times more than the existing sequential

method in delayed situations.

Clement et al. experimentally compared the performances in such delay situations among

representative protocols based on rotating coordinator approach [35]. They showed that Castro-

Liskov protocol [9], which is known to be practically very fast in the normal situation, degrades

the performance in the delayed situations. For randomization approach on which this chapter

focuses, Moniz et al. evaluated RITAS in the WAN environment where communication speeds

between processes are not uniform [17]. However, the evaluation models were not so detailed as

the one of this chapter. To the best of our knowledge, for randomization approach, this is the

first one that evaluated in such detail the effect caused by the delay of message delivery and slow

behavior of replicas.

58 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
hr

ou
gh

pu
t [

re
q/

se
c]

Load [req/sec]

Sequential
Para(2)
Para(5)

(a) Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

La
te

nc
y

[s
ec

]

Load [req/sec]

Sequential
Para(2)
Para(5)

(b) Latency

Figure 4.7: Results with restriction on number of the parallel RSC executions. Para(x) means

“Parallel execution with #para = x”.

4.6. CONCLUDING REMARKS 59

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

T
hr

ou
gh

pu
t [

re
q/

se
c]

Load [req/sec]

Sequential
Para(2,5)

Para(2,10)
Para(5,5)

Para(5,10)

(a) Throughput

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 500 1000 1500 2000 2500 3000 3500 4000 4500

La
te

nc
y

[s
ec

]

Load [req/sec]

Sequential
Para(2,5)

Para(2,10)
Para(5,5)

Para(5,10)

(b) Latency

Figure 4.8: Results with additional restriction on frequency of the parallel RSC executions.

Para(x,y) means “Parallel execution with #para = x and freq = y”.

60 CHAPTER 4. PARALLELIZING CONSENSUSES TO REDUCE LATENCY

Chapter 5

Conclusion

5.1 Summary of the Results

In this dissertation, we focused on Byzantine fault tolerant state machine replication, and pro-

posed two methods that make the replication more efficient and can motivate system administra-

tors to utilize the replication to improve reliability of server systems.

In Chapter 3, our new randomized Byzantine consensus protocol for a set of requests, RSC,

was proposed. It was designed for an asynchronous distributed system like the Internet, and can

be used to realize state machine replication. The protocol has two features. First, it directly

solves the request set consensus problem, differently from existing protocols. Most existing pro-

tocols take a modular approach, in which replicas repeatedly solve a binary consensus problem

to solve the request set consensus problem. In contrast, RSC can solve the problem without such

repetition and can reach an agreement efficiently. Second, it has an efficient local coin tossing

scheme. Although the local coin tossing approach was broadly known as inefficient, by exploiting

the structure of the BFT replication, we can guarantee that the candidate values of the non-

faulty replicas become identical with high probability. Thanks to the scheme, it can reach an

agreement within a few rounds. Performance evaluation was conducted from two viewpoints, i.e.,

analytically and experimentally. The analytical evaluation showed that our protocol can reach an

agreement within two rounds in some specific configurations, even if there are many replicas to

tolerate Byzantine faults. In addition, it reaches the specific configurations within 10 rounds from

initial configurations. Therefore, we could conclude that our protocol RSC has high scalability

with respect to the number of replicas. The experimental performance was evaluated on a real

distributed system composed of 10 physical machines and compared with that of two existing

61

62 CHAPTER 5. CONCLUSION

protocols. In the experimental evaluation, our protocol achieved higher throughput and shorter

latency than the existing ones, especially when the number of replicas is large.

In Chapter 4, we proposed another method that accelerates the Byzantine fault replication by

parallelizing consensuses to determine processing orders of requests. Since the BFT replication is

deployed on an asynchronous network, these concurrently executed consensuses possibly terminate

in different orders at different replicas. If the replicas simply process the requests in the agreed sets

in their terminated order, their replicated server states reach to distinct states and the replication

collapses. Therefore, when a consensus execution terminates, our method invokes a multi-valued

consensus protocol to determine which agreed set the replicas process next. However, there still

existed a problem about this parallelization, i.e. its computation cost of multiple consensuses.

To reduce the cost, we modified a procedure for creating an initial proposal for request set

consensus. Its original procedure created a set of all the requests that had received but not

been processed yet as the proposal. Since the size of the initial proposal affects both durations

of the consensus and processing times of the consensus protocol’s messages, we modified the

procedure so that it randomly removes requests from the set. We proved that the parallelizing

method satisfies correctness for the state machine replication, and evaluated its performance in

comparison with an existing sequential method experimentally. The evaluation results showed

that the parallelization has a strong advantage in spite of requiring an additional consensus,

especially, when some replicas work slowly or some requests are delivered late.

5.2 Future Directions

As summarized above, we aimed to improve practicality of the Byzantine fault tolerant replication

by proposing the two methods. However, many research themes that should be resolved still

remain, and we briefly discuss them here.

Dynamic Change of a Replication’s Configuration When considering the practicality of

the Byzantine fault tolerant replication, its replication cost is a serious problem. To tolerate f

faulty replicas, Byzantine fault tolerant replication requires 3f + 1 replicas in total, although the

replication that can tolerate only crash failures does 2f +1 ones. The Byzantine replication needs

50% more replicas, and it is difficult to pay such cost always. Yin et al. proposed an algorithm

that reduce the number of replicas that process requests from 3f + 1 to 2f + 1 [36], although its

configuration is static and fixed. If a user can change a configuration of the replication dynamically

during its execution, the user will be able to take a next scenario; When a threat of attacks is

5.2. FUTURE DIRECTIONS 63

expected to be relatively weak, the system administrator keeps the total number of the replicas

small as possible as the user can. If the expected threat becomes strong, the user increases a scale

of the replication and prepares for attacks. When the degree of the expected threat decreases,

the total number of the replicas also decreases. Bortnikov et al. proposed a prototype of such

system [37]. If such control is possible, the BFT replication will become more practical.

Support for Nondeterministic Applications Byzantine fault tolerant replication protocols

usually assume that a replication-target service has only deterministic operations and its state

is determined only by the processing order of requests. However, in practical systems, there

is nondeterminism caused by applications and/or operating systems, and the nondeterminism

also should be supported by replication protocols. For leader-based replication approach, Zhao

introduced a classification of common types of nondeterminism present in many applications and

proposed mechanisms needed to handle these types [38]. On other hand, for randomization-based

approach, more work is demanded.

Focus on Virtual Machine and Cloud Infrastructure Recently, virtual machines and

cloud infrastructures appear as a new execution environment of distributed algorithms. These en-

vironments have new properties that traditional environments, e.g. physical machines connected

with LAN, do not have, and it is expected to realize more efficient replication by exploiting the

properties.

First, let us consider an environment composed of a single physical machine equipping some

virtual machine monitor (also known as hypervisor) and multiple virtual machines are deployed

and running in the physical machine. Chun et al. investigated such environment, and, based on the

leader-based approach, they discussed what software/hardware functions will be important [39].

They also showed two new lightweight BFT protocols exploiting hardwares shared by all replicas

on the virtual machines. In the randomization approach, which we focus on the dissertation, there

also exist many opportunities to improve its efficiency. The replicas can share many devices, e.g.

bus, clock, random number generator, and so on. For example, shared coin tossing is known

to be slow due to cryptographic schemes it uses. Although the scheme is necessary to share

secrets without revealing them by attackers, in the above virtual machine environments, the

cryptographic scheme will become lighter, since malicious replicas must not be able to impersonate

other replicas and steal messages sent between other replicas.

Second, let us discuss about cloud infrastructures. In the cloud infrastructure, many virtual

machines are deployed in regions. A region is composed of physical machines connected by LAN.

64 CHAPTER 5. CONCLUSION

Regions are also connected by WAN. A virtual machine can migrate from a physical machine

to another one, possibly over two regions because of some reasons, e.g. stabilizing performance

of physical machines. This research area is novel, and there are only a few results [40, 41, 42].

One of the features of the cloud infrastructures is extensive variety of quality of communications.

Assume that two replicas on two virtual machines want to communicate with each other. If

the two virtual machines are deployed on the same physical machine, they can communicate

very efficiently. Even if the two virtual machines are deployed on two distinct physical machines

on the same region, the communication is still efficient. However, if the replicas communicate

over their regions, the communication is slow. Moreover, in typical cloud infrastructures such as

Amazon AWS [43] or Google Compute Engine [44], data transmission to WAN is charged based

on the amount of transferred data. Therefore, new distributed algorithms designed for the cloud

infrastructures are demanded. For instance, it is useful if there exists an algorithm that collects

statistical information about data transfer and autonomously migrates replicas to optimize its

distributed system for some predefined goal, e.g., minimizing data transfer charge, or maximizing

performance of the replication. A prototype of another optimization to the cloud infrastructure

was proposed by Amir et al. [45]. Their algorithm constructs a layered structure of the replication

and realizes the BFT replication on WAN. In the algorithm, since communications over regions

are costly, replicas in the same region agree with the contents of messages to other regions, and

only a leader of the region communicates with the other regions. Although the algorithm was

not specialized for the cloud infrastructure, such idea of the layered structure will be useful to

consider algorithms fitted with the cloud.

Standard Framework for BFT replication Standard framework for Byzantine fault tolerant

state machine replication is needed. Although there were many implementations of protocols for

the BFT replication, most of them were used once for the performance evaluation of the research

papers and never used again. If there exists a standard framework for the replication that defines

programming interfaces between a replication protocol and a replication-targeted service, how

to retrieve information of a running distributed system, and so on, we could re-use them easily.

Moreover, this enables easy performance tuning of a user’s replication system; the user just

tries many prepared replication protocols and chooses the best one. Although there exists some

attempts to build a framework/middleware for Byzantine fault tolerance [46, 47], their main

purpose was to make building a replicated service easy, and not interested in re-usability of the

implementations of algorithms. By combining with virtual machine management tools like Chef

[48] or Docker [49], automated deployment and management of replicas will be possible. There

5.2. FUTURE DIRECTIONS 65

are many advantages for the existence of the standard framework as see above, and thus, many

discussion about the standard framework should be done.

66 CHAPTER 5. CONCLUSION

Acknowledgements

I have been fortunate to receive assistance from many people. First of all, I would like to thank

Professor Toshimitsu Masuzawa for his guidance and encouragement. He has always given me

suggestive advices and helpful comments. Secondly, I want to express my gratitude strongly to

Tadashi Araragi at NTT Communication Science Laboratory. He has guided me perseveringly

and enthusiastically, since I began researches at Toyohashi University of Technology. I also thank

to Professor Kenichi Hagihara, Professor Shinji Kusumoto, and Associate Professor Hirotsugu

Kakugawa of Graduate School of Information Science and Technology, Osaka University, for their

valuable advice and comments on this dissertation.

The former part of this dissertation was formed with Professor Shigeru Masuyama at Toy-

ohashi University of Technology. He gave me many advices, even if after I left from his laboratory,

and I want to tell him my feeling of gratitude. I also would like to thank to Professor Masafumi

Yamashita at Kyushu University, Professor Koichi Wada at Hosei University, Professor Yoshiaki

Katayama at Nagoya Institute of Technology, Associate Professor Sayaka Kamei at Hiroshima

University, Associate Professor Taisuke Izumi at Nagoya Institute of Technology, Assistant Profes-

sor Tomoko Izumi at Ritsumeikan University, Associate Professor Hiroyuki Nagataki at Okayama

University, and Assistant Professor Yukiko Yamauchi at Kyushu University for their useful com-

ments.

I could not terminate this acknowledgements without saying my appreciation for all the mem-

bers of Algorithm Engineering Laboratory, Graduate School of Information Science and Tech-

nology, Osaka University. First of all, I thank to Assistant Professor Fukuhito Ooshita for his

friendly and practical supports. I also thank to Fusami “Nagae” Nishioka and Hisako Suzuki for

their kind supports. I have been able to concentrate on my research, since they backed up my

life at the laboratory every time. I remember my life with the great students of the laboratory.

I have been motivated and relaxed many times by exciting discussions and enjoyable activities

with the students.

67

68 ACKNOWLEDGEMENTS

I could not finish this dissertation if I were not encouraged by my best friends. It is priceless

and precious experience for me to meet and share the same time with the friends. Especially, I

wish to express my deep gratitude to Taro Nakazawa, Teru Ito, and Yonghwan Kim.

Finally, I strongly appreciate my parents, Dr. Kazuo Nakamura and Miyuki Nakamura, and

all of my family for their supports and kindness during my life.

Bibliography

[1] A. S. Tanenbaum and M. V. Steen, Distributed Systems: Principles and Paradigms (2nd

Edition). Prentice Hall, 2006.

[2] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[3] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: a

tutorial,” ACM Computing Surveys, vol. 22, no. 4, pp. 299–319, 1990.

[4] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM Transac-

tions on Programming Languages and Systems, vol. 4, no. 3, pp. 382–401, 1982.

[5] M. Ben-Or, “Another advantage of free choice (extended abstract): Completely asynchronous

agreement protocols,” in Proceedings of the second annual ACM symposium on Principles of

distributed computing, PODC ’83, pp. 27–30, ACM Press, 1983.

[6] M. O. Rabin, “Randomized byzantine generals,” in Proceedings of the 24th Annual Sympo-

sium on Foundations of Computer Science, SFCS ’83, pp. 403–409, IEEE Computer Society,

1983.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with

one faulty process,” J. ACM, vol. 32, no. 2, pp. 374–382, 1985.

[8] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable distributed systems,”

J. ACM, vol. 43, no. 2, pp. 225–267, 1996.

[9] M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in Proceedings of the

third symposium on Operating systems design and implementation, OSDI ’99, pp. 173–186,

USENIX Association, 1999.

69

70 BIBLIOGRAPHY

[10] J.-P. Martin and L. Alvisi, “Fast byzantine consensus,” IEEE Transactions on Dependable

and Secure Computing, vol. 3, no. 3, pp. 202–215, 2006.

[11] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: speculative byzantine

fault tolerance,” in Proceedings of the 21st ACM SIGOPS symposium on Operating systems

principles, SOSP ’07, pp. 45–58, ACM, 2007.

[12] K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, “Byzantine fault detectors for solving

consensus,” The Computer Journal, vol. 46, no. 1, pp. 16–35, 2003.

[13] F. Pedone and A. Schiper, “Optimistic atomic broadcast,” in Proceedings of the 12th In-

ternational Symposium on Distributed Computing, DISC ’98, pp. 318–332, Springer-Verlag,

1998.

[14] M. K. Aguilera, C. Delporte-Gallet, H. Fauconnier, and S. Toueg, “Thrifty generic broad-

cast,” in Proceedings of the 14th International Conference on Distributed Computing, DISC

’00, pp. 268–282, Springer-Verlag, 2000.

[15] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance broadcast for primary-

backup systems,” in Proceedings of the 41st International Conference on Dependable Systems

Networks, DSN ’11, pp. 245–256, 2011.

[16] C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and efficient asynchronous broad-

cast protocols,” in Proceedings of the 21st Annual International Cryptology Conference on

Advances in Cryptology, CRYPTO ’01, pp. 524–541, Springer-Verlag, 2001.

[17] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “Ritas: Services for randomized

intrusion tolerance,” IEEE Transactions on Dependable and Secure Computing, vol. 8, no. 1,

pp. 122–136, 2011.

[18] H. Moniz, N. F. Neves, M. Correia, and P. Veŕıssimo, “Randomized intrusion-tolerant asyn-

chronous services,” in Proceedings of the International Conference on Dependable Systems

and Networks, DSN ’06, pp. 568–577, 2006.

[19] M. Correia, N. F. Neves, and P. Verissimo, “From consensus to atomic broadcast: Time-free

byzantine-resistant protocols without signatures,” The Computer Journal, vol. 49, no. 1,

pp. 82–96, 2006.

BIBLIOGRAPHY 71

[20] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J. Wylie, “Fault-

scalable byzantine fault-tolerant services,” in Proceedings of the Twentieth ACM Symposium

on Operating Systems Principles, SOSP ’05, pp. 59–74, ACM, 2005.

[21] Y. J. Song and R. Renesse, “Bosco: One-step byzantine asynchronous consensus,” in Proceed-

ings of the 22nd International Symposium on Distributed Computing, DISC ’08, pp. 438–450,

Springer-Verlag, 2008.

[22] C. Cachin and J. A. Poritz, “Secure intrusion-tolerant replication on the internet,” in Pro-

ceedings of the 2002 International Conference on Dependable Systems and Networks, DSN

’02, pp. 167–176, IEEE Computer Society, 2002.

[23] P. Ezhilchelvan, A. Mostefaoui, and M. Raynal, “Randomized multivalued consensus,” in In

Proceedings of the 11th IEEE International Symposium on Object and Component-Oriented

Real-Time Distributed Computing, ISORC ’01, pp. 195–200, IEEE, 2001.

[24] G. Bracha, “An asynchronous [(n - 1)/3]-resilient consensus protocol,” in Proceedings of the

third annual ACM symposium on Principles of distributed computing, PODC ’84, pp. 154–

162, ACM Press, 1984.

[25] F. Borran, M. Hutle, and A. Schiper, “Timing analysis of leader-based and decentralized

byzantine consensus algorithms,” Journal of the Brazilian Computer Society, vol. 18, no. 1,

pp. 29–42, 2012.

[26] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “Hq replication: A hybrid

quorum protocol for byzantine fault tolerance,” in Proceedings of the 7th symposium on

Operating systems design and implementation, pp. 177–190, USENIX Association, 2006.

[27] G. Bracha and S. Toueg, “Resilient consensus protocols,” in Proceedings of the second annual

ACM symposium on Principles of distributed computing, PODC ’83, pp. 12–26, ACM Press,

1983.

[28] X. Défago, A. Schiper, and P. Urbán, “Total order broadcast and multicast algorithms:

Taxonomy and survey,” ACM Computing Surveys, vol. 36, no. 4, pp. 372–421, 2004.

[29] C. Cachin, K. Kursawe, and V. Shoup, “Random oracles in constantinople: Practical asyn-

chronous byzantine agreement using cryptography,” Journal of Cryptology, vol. 18, no. 3,

pp. 219–246, 2005.

72 BIBLIOGRAPHY

[30] H. Moniz, N. F. Neves, M. Correia, and P. Verissimo, “Experimental comparison of local and

shared coin randomized consensus protocols,” in Proceedings of the 27th IEEE Symposium

on Reliable Distributed Systems, SRDS ’06, 2006.

[31] V. Hadzilacos and S. Toueg, “A modular approach to fault-tolerant broadcasts and related

problems,” tech. rep., Cornell University, 1994.

[32] J. Nakamura, T. Araragi, and S. Masuyama, “Asynchronous byzantine request-set agreement

algorithm for replication,” in Proceedings of the 1st AAAC Annual Meeting, p. 35, 2008.

[33] J. Nakamura, T. Araragi, S. Masuyama, and T. Masuzawa, “Efficient randomized byzan-

tine fault-tolerant replication based on special valued coin tossing,” IEICE Transactions on

Information and Systems, vol. E97-D, no. 2, 2014. (to appear).

[34] L. Lamport, “Byzantizing paxos by refinement,” in Proceedings of the 25th international

conference on Distributed computing, DISC’11, pp. 211–224, Springer-Verlag, 2011.

[35] A. Clement, E. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making byzantine fault

tolerant systems tolerate byzantine faults,” in Proceedings of the 6th USENIX symposium on

Networked systems design and implementation, NSDI’09, pp. 153–168, USENIX Association,

2009.

[36] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Separating agreement

from execution for byzantine fault tolerant services,” in Proceedings of the 19th ACM sym-

posium on Operating systems principles, SOSP ’03, pp. 253–267, 2003.

[37] V. Bortnikov, G. Chockler, D. Perelman, A. Roytman, S. Shachor, and I. Shnayderman,

“Frappé: Fast replication platform for elastic services,” in Proceedings of the 5th Workshop

on Large Scale Distributed Systems and Middleware, 2011.

[38] W. Zhao, “Byzantine fault tolerance for nondeterministic applications,” in Proceedings of the

Third IEEE International Symposium on Dependable, Autonomic and Secure Computing,

DASC ’07, pp. 108–118, IEEE Computer Society, 2007.

[39] B.-G. Chun, P. Maniatis, and S. Shenker, “Diverse replication for single-machine byzantine-

fault tolerance,” in Proceedings of USENIX 2008 Annual Technical Conference on Annual

Technical Conference, ATC’08, pp. 287–292, USENIX Association, 2008.

BIBLIOGRAPHY 73

[40] Y. Zhang, Z. Zheng, and M. R. Lyu, “Bftcloud: A byzantine fault tolerance framework for

voluntary-resource cloud computing,” in Proceedings of the 4th International Conference on

Cloud Computing, CLOUD ’11, pp. 444–451, IEEE Computer Society, 2011.

[41] P. Garraghan, P. Townend, J. Xu, X. Yang, and P. Sui, “Using byzantine fault-tolerance to

improve dependability in federated cloud computing,” International Journal of Software and

Informatics, vol. 7, no. 2, pp. 221–237, 2013.

[42] H. Liu, H. Jin, X. Liao, C. Yu, and C.-Z. Xu, “Live virtual machine migration via asyn-

chronous replication and state synchronization,” IEEE Transactions on Parallel and Dis-

tributed Systems, vol. 22, no. 12, pp. 1986–1999, 2011.

[43] Amazon Web Services, Inc., “Amazon Web Services, Cloud Computing: Compute, Storage,

Database.” http://aws.amazon.com, 2013. [Online; accessed December 11, 2013].

[44] Google Inc., “Home Google Cloud Platform.” https://cloud.google.com, 2013. [Online;

accessed December 11, 2013].

[45] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen, and D. Zage,

“Steward: Scaling byzantine fault-tolerant replication to wide area networks,” IEEE Trans-

actions on Dependable and Secure Computing, vol. 7, no. 1, pp. 80–93, 2010.

[46] M. G. Merideth, A. Iyengar, T. Mikalsen, S. Tai, I. Rouvellou, and P. Narasimhan, “Thema:

Byzantine-fault-tolerant middleware forweb-service applications,” in Proceedings of the 24th

IEEE Symposium on Reliable Distributed Systems, SRDS ’05, pp. 131–142, IEEE Computer

Society, 2005.

[47] W. Zhao, “Design and implementation of a byzantine fault tolerance framework for web

services,” Journal of Systems and Software, vol. 82, no. 6, pp. 1004 – 1015, 2009.

[48] Chef, “Chef — Chef.” http://www.getchef.com/chef/, 2013. [Online; accessed December

11, 2013].

[49] Docker Inc., “Homepage - Docker: the Linux container engine.” https://www.docker.io/,

2013. [Online; accessed December 11, 2013].

http://aws.amazon.com
https://cloud.google.com
http://www.getchef.com/chef/
https://www.docker.io/

	1 Introduction
	1.1 Overview of This Dissertation
	1.1.1 Request Set Consensus Protocol for BFT Replication
	1.1.2 Parallelizing Consensuses to Reduce Latency

	1.2 Organization of This Dissertation

	2 Preliminary
	2.1 System Model
	2.2 State Machine Replication
	2.3 Request Set Consensus Approach for State Machine Replication

	3 Request Set Consensus Protocol for BFT Replication
	3.1 Introduction
	3.1.1 Related work
	3.1.2 Contributions

	3.2 Request Set Consensus
	3.3 The RSC Protocol
	3.3.1 Reliable Broadcast
	3.3.2 Message Validity Check
	3.3.3 Protocol
	3.3.4 Coin Tossing

	3.4 Correctness
	3.5 Performance Evaluation
	3.5.1 Overview
	3.5.2 Performance Evaluation on RSC Protocol Features
	3.5.3 Experimental Comparison with Other Protocols
	3.5.4 Request Set Consensus Using Atomic Broadcast

	3.6 Concluding Remarks

	4 Parallelizing Consensuses to Reduce Latency
	4.1 Introduction
	4.1.1 Contributions
	4.1.2 Related work

	4.2 Replciation by Request Set Consensus (RSC)
	4.3 Parallelizing Executions of RSC
	4.3.1 Problem with Parallelization
	4.3.2 Our Approach
	4.3.3 Multi-valued Consensus Protocol
	4.3.4 Protocol

	4.4 Correctness
	4.4.1 Safety
	4.4.2 Liveness

	4.5 Performance Evaluation
	4.5.1 Experiment environment
	4.5.2 Latency
	4.5.3 Scalability

	4.6 Concluding Remarks

	5 Conclusion
	5.1 Summary of the Results
	5.2 Future Directions

