|

) <

The University of Osaka
Institutional Knowledge Archive

An Autonomous Decentralized Architecture with
Title Agreement Protocols for Safety-Critical Embedded
Distributed Control Systems

Author(s) |#8H, BRI

Citation | KPrRKZE, 2014, {EtH

Version Type|VoR

URL https://doi.org/10.18910/34575

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

An Autonomous Decentralized Architecture
with Agreement Protocols for Safety-Critical

Embedded Distributed Control Systems

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2014

Kohei SAKURAI

ABSTRACT

Embedded control systems are widely equipped in current industrial products such as
home appliances, automobiles, trains, and power plants. They need to have hard real-time
and mission-critical capabilities, and to be more severely restricted in cost and available

hardware resources than computer systems in the information technology industry.

Automotive control systems, out of the various embedded control systems, impose
particularly severe restrictions on the cost because of the scale of mass production, while
recent advances in electronic control using embedded controllers should enable more so-
phisticated vehicle control systems that are aimed toward autonomous driving. One of the
emerging systems is an X-by-Wire system, where driving, steering, and braking are elec-
trically and electronically controlled synthetically, that further enhances vehicle driving
performance and safety. Since control of acceleration, steering, and braking has a great
influence on the safe operation of vehicles, X-by-Wire systems need to be extremely de-
pendable. Various controllers, sensors, and actuators in this system cooperate with one
another through a communication network. We take X-by-Wire systems as an example

application of safety-critical embedded distributed control systems in this dissertation.

A technical challenge to X-by-Wire systems is that they are restricted by limited costs
in mass production to achieve fault-tolerance. Therefore, the goal of this dissertation is
to propose suitable solutions that can satisfy not only high dependability but also cost-

effectiveness for automotive safety-critical distributed control systems.

ii ABSTRACT

We first propose a novel architecture that incorporates the concept of autonomous
decentralized systems to accomplish this goal. This architecture allows all nodes in the
system including sensor and actuator nodes to obtain the shared information required
for vehicle control through the communication network and to autonomously execute
backup control if some node in the system fails. Therefore, the proposed architecture
can be fail-operational even though it does not have expensive fail-operational nodes with
redundant hardware. This approach to dependability through reduced-redundancy is also
applied to the node level by taking into consideration the node function. We propose a
validity check method instead of dual redundancy to detect faults in actuator nodes. We
demonstrate that the proposed system and node level architectures can be applied to actual
automotive brake and steering control systems and that they satisfy both requirements of
cost-effectiveness and dependability. Our estimation reveals that the system cost can be
reduced by approximately from 20 to 30% due to the proposed autonomous decentralized
architecture and optimal node hardware architecture, which contributes to a substantial

cost reduction for automotive control systems.

Although the autonomous decentralized architecture satisfies competing demands, we
point out that some coordination scheme in this architecture, i.e., an agreement protocol, is
required to accurately identify failed nodes so that disagreements in the control mode can
be avoided. To provide the coordination scheme, we propose a membership protocol as an
agreement protocol for safety-critical distributed systems. In contrast to related work, our
membership protocol tolerates simultaneous and non-fail-silent (Byzantine) faults and can
flexibly be implemented in time-triggered systems as a middleware component. Important
properties such as correctness, completeness, and consistency are defined for the proposed

membership protocol and are proved by hand.

With a widely used time-triggered communication network in the automotive industry,

we developed a prototype Brake-by-Wire system incorporating the proposed autonomous

ABSTRACT il

decentralized architecture and membership middleware in a realistic hardware and soft-
ware environment for automotive control systems. Although we found that the prototype
system could persevere in practical use, the results from evaluating the performance of
this prototype system indicated that the computation overhead for the membership mid-
dleware was prohibitively large and that the execution time required for the voting process
increased along with the number of nodes in the system.

To resolve these problems, we further propose novel lightweight membership proto-
cols, which are based on what we call voting sharing and clustering approaches. These
approaches can reduce the computation overhead and the communication bandwidth for
the membership protocol. Our experiments revealed that the execution time for the vot-
ing process in the voting sharing approach was reduced by approximately 60% compared
with the original protocol for eight nodes. Following proofs of the same properties as
the original protocol, we investigate advantages and disadvantages of the three proposed
membership protocols in terms of computation and communication overhead, diagnosis
latency, and fault tolerance. Our analysis shows a tradeoff between the overhead and fault
tolerance. The lightweight protocols incur degradation in diagnosis accuracy in exchange
for the reduction of the computational overhead. We provide additional mechanisms such
as rotating voters and self-accusation to mitigate this problem.

Finally, we propose a customizable formal model of generic time-triggered systems
to support key system design processes such as task scheduling, test case generation, and
verification. Because the proposed formal model has a modular architecture, it can be
reused and easily customized, which can reduce the model development costs for indus-
trial practitioners. We demonstrate a prototype implementation of the formal model with
the SAL (Symbolic Analysis Laboratory) language and present some use cases using the
SAL tool suite. The proposed membership protocols were model-checked in a use case

of verification, and the design correctness of the protocols was guaranteed.

LI1ST OF MAJOR PUBLICATIONS

1)

(2)

3)

(4)

Kohei Sakurai, Nobuyasu Kanekawa, Kunihiko Tsunedomi, Shoji Sasaki, Katsuya
Oyama, Takanori Yokoyama, and Mitsuru Watabe, High performance and cost-
effective electronic controller architecture for powertrain system®rtrceedings

of SAE 2004 World Congress: In-Vehicle Network Sessitaper Number: 2004-
01-0209, March 2004.

Kohei Sakurai, Yuichiro Morita, Kentaro Yoshimura, Nobuyasu Kanekawa, Kotaro

Shimamura, Kenichi Kurosawa, and Yoshiaki Takahashi, Cost-effective and fault
tolerant vehicle control architecture for X-by-Wire systems (Part 2: Implementation
design), InProceedings of SAE 2005 World Congress: In-Vehicle Network Session
Paper Number: 2005-01-1543, April 2005.

Kentaro Yoshimura, Kohei Sakurai, Yuichiro Morita, Nobuyasu Kanekawa, Kenichi
Kurosawa, Yoshiaki Takahashi, Shigetoshi Sameshima, and Akitoshi Shimura, A
dependable and cost-effective vehicle control architecture for X-by-wire systems
based on autonomous decentralized concep§ulpplemental Volume of the 2005
International Conference on Dependable Systems and Networks (DSN pp05)

130-138, June 2005.

Kentaro Yoshimura, Kohei Sakurai, Yuichiro Morita, Kenichi Kurosawa, Yoshiaki

Takahashi, Shigetoshi Sameshima, and Akitoshi Shimura, A dependable E/E ar-

Vv

Vi

LIST OF MAJOR PUBLICATIONS

()

(6)

(7)

(8)

(9)

chitecture for X-By-Wire systems based on autonomous decentralized concept, In
Proceedings of the 12th International Congress on Electronic Systems for Vehicles

VDI Berichte 1907, pp. 523-534, October 2005.

Kohei Sakurai, Masatoshi Hoshino, Yuichiro Morita, and Yoshiaki Takahashi, De-
sign and implementation of middleware for network centric X-by-Wire systems, In
Proceedings oSAE 2006 World Congress: In-Vehicle Software Session, Paper
Number: 2006-01-1326, April 2006.

Kohei Sakurai, Masahiro Matsubara, Marco Serafini, and Neeraj Suri, Dependable
and cost-effective architecture for X-by-Wire systems with membership middle-
ware, InProceedings of FISITA 2008 World Automotive Congré&gper Number:
F2008-05-048, September 2008.

Kohei Sakurai, Bter Bokor, and Neeraj Suri, Aiding modular design and verifi-
cation of safety-critical time-triggered systems by use of executable formal speci-
fications, InProceedings of the 11th IEEE High Assurance Systems Engineering

Symposium (HASE 20Q8)p. 261-270, December 2008.

Masahiro Matsubara, Takao Kojima, Kotaro Shimamura, Nobuyasu Kanekawa, and
Kohei Sakurai, Node status monitoring and state transition mechanism for network
centric X-by-Wire systems, IRroceedings of the 9th IEEE International Sympo-

sium on Autonomous Decentralized Systems (ISADS 2009)—6, March 2009.

Kohei Sakurai, Masahiro Matsubara, and Masatoshi Hoshino, Membership mid-
dleware for dependable and cost-effective X-by-wire systeBSE International
Journal of Passenger Cars - Electronic and Electrical Systerok 1, no. 1, pp.

180-186, April 2009.

(10) Kohei Sakurai, Marco Serafini,&ter Bokor, and Neeraj Suri, Design and formal

LI1ST OF MAJOR PUBLICATIONS vii

verification of membership middleware for dependable automotive network sys-
tems, InProceedings of the 14th International Congress on Electronic Systems for

Vehicles VDI Berichte 2075, pp. 399-410, October 2009.

(11) Masahiro Matsubara, Kohei Sakurai, Fumio Narisawa, Masushi Enshoiwa, Yoshio
Yamane, and Hisamitsu Yamanaka, Model checking with program slicing based on
variable dependence graphs, Rroceedings of the 1st International Workshop on
Formal Techniques for Safety-Critical Systems (FTSCS 2@2)56—68, Novem-
ber 2012.

(12) Masahiro Matsubara, Kohei Sakurai, Fumio Narisawa, Masushi Enshoiwa, Yoshio
Yamane, and Hisamitsu Yamanaka, Application of model checking to automo-
tive control software with slicing technique, Froceedings of SAE 2013 World
Congress: Model-Based Design and In-Vehicle Software SesBiaper Number:
2013-01-0436, April 2013.

(13) Kohei Sakurai, Masahiro Matsubara, and Tatsuhiro Tsuchiya, Voting sharing: An
approach to reducing computation time for fault diagnosis in time-triggered sys-
tems,|EICE Transactions on Information and Systend. E97-D, no. 2, February
2014 (to be published).

ACKNOWLEDGMENTS

During the course of this study, | have been fortunate to receive invaluable assistance from

many individuals.

| deeply appreciate my supervisor Professor Tatsuhiro Tsuchiya, who has continu-
ously inspired me and provided me with valuable insights and advice throughout this
work. | am also grateful to Emeritus Professor Tohru Kikuno for his encouragement be-

fore | enrolled in the doctoral course at Osaka University.

| would also like to thank the members of my dissertation review committee, particu-
larly Professor Masaharu Imai, Professor Toshimitsu Masuzawa, and Associate Professor
Masanori Hashimoto for their invaluable comments and constructive criticism of this dis-

sertation.

Furthermore, my gratitude goes to the members of Tsuchiya Laboratory, especially to
Assistant Professor Hideharu Kojima for the productive discussions on this work, and Mr.
Hirofumi Terada, who is also a colleague at Hitachi, Ltd., for his encouragement.

A significant part of this work has also been done with researchers of the DEEDS (De-
pendable Embedded Systems and Software) group in Technische UaivBraimstadt
in Germany. | would like to express my sincere gratitude to Professor Dr. Neeraj Suri,
Dr. Péter Bokor, and Dr. Marco Serafini for all the valuable discussions | had with them

on dependable distributed systems and formal methods.

Some research work | have engaged in Hitachi, Ltd. has been helpful to me in com-

iX

X ACKNOWLEDGMENTS

pleting this dissertation. | would therefore like to express my thanks to Dr. Takashi Hotta,
Mr. Atsushi Kawabata, Dr. Toshiharu Nogi, Mr. Takaomi Nishigaito, Dr. Masahiko
Amano, Mr. Yoshiaki Takahashi, and Mr. Kenichi Kurosawa for giving me the opportu-
nity of doing research on automotive safety-critical control systems. | would also like to
acknowledge Dr. Hiroyuki Mikami and Mr. Takuya Shiraishi who encouraged me while
| was compiling this thesis.

This work has been done collaboratively with many colleagues at Hitachi Research
Laboratory, especially Mr. Masahiro Matsubara, Dr. Kentaro Yoshimura, Dr. Nobuyasu
Kanekawa, Mr. Kotaro Shimamura, Mr. Masatoshi Hoshino, and Dr. Yuichiro Morita
(the last two researchers are currently with Hitachi Construction Machinery). | would
like to express my deep appreciation to all of them for the valuable insights they gave me
and the productive discussions from the perspectives of industry.

Finally, my sincere appreciation also goes to my family who always supported me

throughout difficult times.

CONTENTS Xi

CONTENTS

Abstract i
List of Major Publications v
Acknowledgments L e iX

1 Introduction 1
1.1 ScopeandBackground 1
1.1.1 Embedded Control Systems 1

1.1.2 Trend in Automotive Electronic Control Systems 2

1.1.3 Automotive X-by-Wire Systems 4

1.2 Motivationand Objective 4
1.3 Contributions 5
1.3.1 Autonomous Decentralized Architecture 5

1.3.2 Membership Protocol 7

1.3.3 Generic Formal Model of Time-Triggered Systems 9

1.4 Overviewof Dissertation 11

2 Autonomous Decentralized Architecture 13
2.1 Reduced-Redundancy Approach 13
2.2 Autonomous Decentralized Architecture 14

2.2.1 Conventional Control Systems 14

Xii CONTENTS
2.2.2 Autonomous Decentralized Control Systems 16
2.3 Fail-Silent Node Architecture 24
2.3.1 Comparison of Fail-SilentNodes 24
2.3.2 Node Hardware Architecture 27
2.4 Estimation of System Cost Reduction 30
3 Agreement Protocol 35
3.1 Challenges to Autonomous Decentralized Architecture 35.
3.2 Model of Time-Triggered Systems 36
3.2.1 CommunicationModel 36
3.22 FaultModel 37
3.3 Membership Protocol 38
3.3.1 Protocol Description. 38
3.3.2 Example of Membership Protocol 43
3.3.3 Properties 45
4 Prototype Brake-by-Wire System 47
4.1 Introduction a7
4.2 Software Architecture 47
4.3 Prototype Implementation and Evaluation 51
4.4 DISCUSSION v vt i i e 54
5 Lightweight Membership Protocol 57
5.1 Introduction. 57
5.2 \WotingSharing 58
5.2.1 Protocol 58
5.2.2 Properties 61

5.2.3 RotatingVoters e 63

CONTENTS Xiii

5.24 ExperimentResults 65

53 Clustering 66
53.1 Protocol 67

532 Properties 68

5.3.3 Self-Accusation. L 71

54 DISCUSSION 73
6 Formal Model of Time-Triggered Systems 77
6.1 Introduction 77
6.2 Overviewof TTSystems 80
6.2.1 Basic Concepts and Definitions 80

6.2.2 Consistency-AbstractionLayer. 82

6.2.3 Characterizationof Faults 83

6.3 Customizable FormalModel 84
6.4 Implementation with SAL Language 87
6.5 Example Use Cases: Design and Verification 926
6.5.1 \Verification L 96

6.5.2 SchedulingofJdobs 100

6.5.3 TestGeneration 101

6.6 RelatedWork 102
6.7 Summary e 104
7 Conclusion 105
7.1 Achievements. 105
7.2 FutureWork. 109
Bibliography 111

SECTION 1.1 INTRODUCTION 1

CHAPTER 1

INTRODUCTION

1.1 Scope and Background

1.1.1 Embedded Control Systems

First, we define an embedded control system, which is the scope of this dissertation.
An embedded control system is a computer system integrated into some equipment and
it achieves the required functionality by executing the specific control operation to the
equipment. A model of embedded control systems is shown in Figure 1.1. The system
consists of a controller, a controlled object that is often called a plant, sensors, and actu-
ators. The controller is equipped with microcontrollers, on which the embedded software
runs. The controller calculates control target values using information from sensors that
measure the status of the plant, and drives the actuators based on the calculated control
target values.

Embedded control systems are widely used in industrial products such as home ap-
pliances, automobiles, trains, and power plants. For instance, the automotive industry re-
cently recognized that electronics and embedded software developments would represent

90% of all new-vehicle innovations. The increasing functional requirements of embedded

2 INTRODUCTION CHAPTER 1.

<4— Sensor |
Controlled
Controller Object
(Plant)

—»| Actuator [

Figure 1.1: Embedded control systems

control systems have led to an enormous increase in software complexity and size.

Embedded control systems are required to have hard real-time and mission-critical
capabilities, while they are severely restricted in cost and available hardware resources
such as CPU performance, memory size, and communication bandwidth, compared with
computer systems like servers and personal computers in the information technology in-
dustry.

This dissertation focuses on automotive control systems which impose one of the
tightest technical restrictions in the industry due to the scale of mass production. In this
dissertation, controllers will be called ECUs, or Electronic Control Units, within the con-

text of automotive control systems.

1.1.2 Trend in Automotive Electronic Control Systems

Automotive control systems have been evolving to improve environmental friendliness
(i.e., better fuel efficiency, lower exhaust gas emissions), safety, and passenger comfort.
Figure 1.2 outlines the trend in automotive electronic control systems. Electronic control
using embedded controllers started in the 1980s for powertrain systems such as engines
and transmissions. After that, electronic control was also applied to chassis systems such
as brakes, suspensions, and steering in the 1990s. In addition to electronics, electric in-

verters and motor technologies have been used in electric powertrain and chassis systems.

SECTION 1.1 SCOPE AND BACKGROUND 3

Electro-
Brake Hydraulic &
Brak
. fake Electric Brake
Suspension Electric Steering
_ = X-by-Wire System
Steering Electric and Electronic Control of
Electric Power Driving, Steering, and Braking
Steering X =e.g., Drive, Steer, and Brake

£

Electronic Throttle Direct Injection
Control Transmission Control
Control

Engine

Digital Engine Control

Analog Control

1980 2000 2020 Year

Figure 1.2: Trend in automotive electronic control systems

Recent advances in automotive electronic control systems should enable more sophis-
ticated vehicle control systems toward autonomous driving [1]. Among these sy3tems,
by-Wiresystems, where driving, steering, and braking are electrically and electronically
controlled synthetically are expected to further enhance vehicle driving performance and
safety. The term “X-by-Wire” was derived from “Fly-by-Wire” in aircraft control sys-
tems, where “by-Wire” means that systems are controlled by wire, i.e., by electricity,
instead of conventional mechanical devices. “X” corresponds to such as Drive, Brake,
and Steer. X-by-Wire systems are expected to reduce vehicle weight and increase cabin

space due to the absence of mechanical links, as well as enhance vehicle controllability.

4 INTRODUCTION CHAPTER 1.

Camera . Vehicle Dynami
j’ teering Integrated ECU
,,r/g 1

% #I |_|_| IC Communication Network-

' N

Radarm 1 Accelerator Brake Pedal
ngine Pedal !
ic Transmission Electric

Steering

I:l : ECU (Electronic Control Unit)

Figure 1.3: Automotive X-by-Wire system

1.1.3 Automotive X-by-Wire Systems

An example of the X-by-Wire system architecture is described in Figure 1.3. Various con-
trollers (ECUSs), sensors such as a camera, radar, and actuators including electric brakes
and steering motors cooperate with one another through a communication network, which
attains integrated control of vehicle dynamics. The vehicle dynamics integrated ECU ex-
ecutes integrated control using information on driver operations and the external environ-
ment, and sends control target values to the actuators. Braking and steering are electri-
cally and electronically controlled and thus system dependability is no longer guaranteed
by conventional mechanical links such as hydraulic brake hoses and steering columns to
transmit driver operations to braking and steering mechanisms. Therefore, we can regard
X-by-Wire systems asafety-critical distributed control system&n example application

in this dissertation is automotive X-by-Wire systems.

1.2 Motivation and Objective

X-by-Wire systems need to be highly dependable since acceleration, steering, and braking

control have a great influence on the safe operation of vehicles. Several studies on the

SECTION 1.3 CONTRIBUTIONS 5

reliability of X-by-Wire systems have been done [2, 3]. However, the cost to implement
fault-tolerance is limited in mass produced X-by-Wire systems in the automotive industry.
Furthermore, available hardware resources such as CPUs, memories and communication
bandwidths are severely restricted. These constraints differ from those in transportation or
industrial systems domains like aviation, trains, and power plant systems, where relatively
expensive systems with high redundancy and sufficient hardware resources are acceptable.
Therefore, the goal of this dissertation is to propose suitable solutions that can fulfill not
only high levels of dependability but also cost-effectiveness for automotive safety-critical

systems.

1.3 Contributions

1.3.1 Autonomous Decentralized Architecture

Because acceleration, steering, and braking control have a great influence on the safe
operation of vehicles, X-by-Wire systems are required to be highly dependable. The
conventional approach to improving dependability is to have component level redundancy,
where nodes in the system are designed to be fail-operational with such as triple or more
redundancy and to keep on operating when faults occur. Several studies on the reliability
of X-by-Wire systems with this approach have been done [2, 3]. On the other hand,
to mass-produce systems for various vehicle segments, the cost cannot be excessive to
implement fault-tolerance.

We take a reduced-redundancy approach with system level redundancy instead of
component level redundancy to balance these competing requirements of cost-effectiveness
and dependability in automotive control systems. We propose a novel architecture that in-
corporates the concept of autonomous decentralized systems [4]. Because no general

methods of applying the concept of autonomous decentralized systems have yet been

6 INTRODUCTION CHAPTER 1.

established, it is necessary to develop a suitable architecture for individual domains of

application.

In the conventional architecture, all the control functions and information such as the
sensing data from the driver’s acceleration, braking, and steering operations are central-
ized in the controller node. In contrast, in the proposed architecture, all nodes related
to vehicle control, including sensor and actuator nodes, share various data required for
control through the communication network, and each node autonomously obtains or
broadcasts the necessary data from or to the network. If a certain node stops operat-
ing because of some fault, the remaining normal nodes autonomously execute a backup
control function to maintain at least the minimum functionality necessary for the system
using the shared data. Therefore, the proposed architecture can tolerate the existence of
failed nodes and thus does not need expensive fail-operational nodes with triple or more
redundant architectures, which satisfies the requirements of cost-effectiveness as well as
dependability. We demonstrate that the proposed architecture can be applied to actual

automotive brake and steering control systems.

We apply this approach of reduced-redundancy dependability to the node level. Nodes
in distributed systems need to be fail-silent so that a failed node does not interfere with
communication between fully functional nodes. Conventional fail-silent nodes are de-
signed with dual redundant architecture to detect faults. To further reduce redundancy,
the concept of an output validity check is proposed for actuator control nodes. Low per-
formance inexpensive sub-microcontrollers can be used in this concept to diagnose the
main microcontrollers. The sub-microcontrollers only compare target control values and
actual actuator output instead of rigidly checking the main microcontroller’s execution as
is done in a dual redundant architecture. The hardware architecture of individual con-

trollers is optimized in this way according to their functions.

We estimate the system cost reduction by the proposed autonomous decentralized

SECTION 1.3 CONTRIBUTIONS 7

architecture and optimal node hardware architecture, and show that the system cost can
be reduced by approximately from 20 to 30%, which contributes to a substantial cost

reduction for automotive control systems.

1.3.2 Membership Protocol

Autonomous backup control in the autonomous decentralized architecture is based on
the accurate identification of failed nodes. However, since there is no master node to
monitor the status of nodes in the system, node status monitoring or diagnosis function
in each node plays a key role for fault-tolerance. Therefore, some coordination scheme,
i.e., an agreement protocol, is required to accurately identify the failed nodes and ensure
consistency in views on available nodes for all the normally functioning nodes so that
disagreements in the control mode can be avoided. We propusewership protocas

an agreement protocol for safety-critical distributed systems to resolve this issue.

The membership protocol is a functionality that provides a consistent view of active
nodes to each node. Time-triggered (TT) communication platforms such as FlexRay [5],
TTP/C [6], TT-Ethernet [7], and SAFEbus [8] are increasingly being applied to safety-
critical distributed control systems. Although FlexRay has widely been applied to auto-
motive control systems, it does not specify a membership protocol in its standard specifi-
cations and this protocol remains as a user dependent functionality. The TT-Ethernet does
not provide a standardized protocol either. The AUTOSAR (AUTomotive Open System
ARchitecture) [9], which is a worldwide de facto standard specification for automotive
electric/electronic systems, neither defines membership services. TTP/C, on the other
hand, which is used in aerospace systems, has a membership protocol. However, the
protocol is implemented in hardware and has been designed for dedicated applications.
Furthermore, several membership protocols have been proposed [10-12], or formally ver-

ified [13, 14].

8 INTRODUCTION CHAPTER 1.

Many previous membership protocols for TT systems only assumed fail-silent nodes
and single fault. We also assume fail-silence on the communication protocol level, as
was discussed earlier. However, application programs in reality might send semantically
erroneous messages because of, e.g., corrupted memory or failure in processing units,
even though the messages conform to the communication protocol specifications. Several
faults might also occur simultaneously. In contrast, Serafini et al. have proposed pro-
tocols that do not rely on the single-fault assumption and that can also tolerate non-fail-
silent (Byzantine) faults [15]. The protocols can be added to generic TT communication

protocols.

Our proposed membership protocol in this dissertation also tolerates simultaneous and
Byzantine faults and can be flexibly implemented in TT systems as a middleware com-
ponent [16]. We further enhance its real-time capabilities and aim at implementing the
protocol in realistic automotive control systems. Each node in the membership proto-
col locally evaluates the status of other nodes in the system and exchanges a local view,
which we call a local syndrome, with all nodes. Then, every node identifies the failed
node by voting on the exchanged local syndromes. We propose a pipeline-like method
of executing the protocol to improve its real-time capabilities, where a fault detected in
a certain TT communication round can be identified in the next round. The membership
middleware in practical X-by-Wire systems should coexist with real-time critical appli-
cation programs such as motor control on microcontrollers with restricted resources. We
developed a prototype Brake-by-Wire system that incorporated the proposed autonomous
decentralized architecture and membership protocol, and clarified that the prototype sys-

tem could persevere in practical use.

The results we obtained from evaluating the performance of this prototype system,
however, revealed that the computational overhead incurred by membership functionality

was unacceptably large and it increased along with the number of nodes in the system.

SECTION 1.3 CONTRIBUTIONS 9

The membership overhead has to be small enough so that vehicle control applications
can use sufficient CPU resources. Therefore, we propose novel lightweight membership
protocols, which we calNoting sharingandclusteringin this dissertation.

The main idea behind voting sharing is to have each node vote for only one respective
node and to share the voting results with all nodes. In the clustering conaepdes are
logically divided inton/c clusters, where each cluster consists nbdes. Node sends a
local syndrome only with respect to nodes within the cluster to which pdddongs to all
the other nodes in the system. Both approaches can reduce the computation overhead for
membership, and the clustering protocol can also decrease the communication bandwidth,
compared with the original protocol. The results from our experiments revealed that
the execution time for the voting process in the voting sharing protocol was reduced by
approximately 60% compared with the original membership protocol for eight nodes.

We investigate advantages and drawbacks of the three proposed membership proto-
cols in terms of computation and communication overhead, diagnosis latency, and fault
tolerance. Our analysis shows that there is a tradeoff between the overhead and fault toler-
ance. The lightweight protocols incur degradation in diagnosis accuracy in exchange for
the reduction of the computational overhead. However, it can be mitigated with additional
mechanisms such as rotating voters, counter update algorithm, and self-accusation. De-
spite the drawbacks, we point out that the clustering protocol is a well-balanced protocol
among these three protocols when the system consists of large number of nodes and the

fault condition is not so severe.

1.3.3 Generic Formal Model of Time-Triggered Systems

The use oformal methodss increasingly being advocated to verify general safety-critical
systems, e.g., [17]. However, previous work [18, 19] has demonstrated that the correct-

ness of high-level applications in TT systems does not directly imply the correctness of

10 INTRODUCTION CHAPTER 1.

implementation. Consequently, formal techniques dedicated to time-triggered systems

are required, especially given their increasing deployment.

Results on the successful formal analysis of TT systems do exist; however, they
present specific solutions (e.g., [18-20]), where modeling patterns can only partially be
re-used in new projects. It is generally difficult in industry to apply formal methods to
the development processes of mass production. Software engineers rarely design formal
models of their systems or software from scratch. Therefore, we propose a generalized
formal model of TT applications that can be customized, which is not restricted to any
dedicated implementation and that can also easily be used by engineers who are not spe-

cialists in formal methods.

Furthermore, we seek a unified and formal treatment of general TT systems to guide
key system design tasks such as task scheduling, test case generation, and verification. Al-
though deductive reasoning (e.g., theorem proving [17]) is a powerful tool to even verify
the complex properties of infinite systems, it cannot directly be used to simulate systems
for finding certain execution paths (e.g., counterexamples and test cases). Consequently,
we propose executable system specifications to provide further features besides verifica-

tion by using model checking.

Because the proposed formal model has a modular architecture, it can be reused and
easily customized, which can reduce the model development costs for practitioners in
industry. Users only need to tailor the corresponding modules to customize the general

model.

A prototype formal model was implemented with the SAL (Symbolic Analysis Labo-
ratory) language [21]. We also demonstrate the usability of our prototype with the SAL
tool suite by presenting use cases of verification, task scheduling, and test case generation
based on an identical model. The proposed membership protocols were model-checked

in a use case of verification, and we confirmed the design correctness of the protocols.

SECTION 1.4 OVERVIEW OF DISSERTATION 11

1.4 Overview of Dissertation

This dissertation is organized as follows:

Chapter 2 proposes an architecture that incorporates the concept of autonomous de-
centralized systems to satisfy both requirements of cost-effectiveness and dependability,
which is in contrast to the conventional architecture. Fail-silent node architectures ac-
cording to node functionalities are also discussed. We give the estimation results on the
system cost reduction by the proposed autonomous decentralized architecture and optimal

node hardware architecture.

Chapter 3 describes a membership protocol as an agreement protocol in distributed
systems. We clarify a model of time-triggered systems including fault behaviors, follow-
ing a discussion on the importance of membership services in the autonomous decen-
tralized architecture. Then, we explain the proposed membership protocol using some
examples and pseudo-codes. Important properties for distributed systems such as correct-

ness, completeness, and consistency are defined and proved by hand.

Chapter 4 presents a prototype Brake-by-Wire system that employs the proposed au-
tonomous decentralized architecture and membership protocol. We explain how the mem-
bership middleware is implemented on a resource-restricted microcontroller with realistic
control application programs. Results obtained from evaluating the performance of the

membership middleware are also provided in this chapter.

Taking into account the performance evaluation results, in Chapter 5, we propose
lightweight membership protocols, voting sharing and clustering, which can reduce the
computation overhead and communication bandwidth. We explain both protocols in detail
by using pseudo-codes and prove the same properties as the original protocol. This chap-
ter also compares three types of membership protocols, i.e., original, voting sharing, and

clustering, in terms of various aspects and discusses a tradeoff between the computational

12 INTRODUCTION CHAPTER 1.

overhead and fault tolerance.

Chapter 6 proposes a modular formal model of generic time-triggered systems. We
demonstrate a prototype implementation of the formal model with the SAL language and
provide example use cases of system design such as task scheduling, verification, and
test case generation based on the same model in the SAL tool suite environment. The
proposed membership protocols are also model-checked in a verification use case.

Finally, we conclude this dissertation in Chapter 7 with achievements and directions

for future work.

SECTION2.1 AUTONOMOUS DECENTRALIZED ARCHITECTURE 13

CHAPTER 2

AUTONOMOUS DECENTRALIZED

ARCHITECTURE

2.1 Reduced-Redundancy Approach

We take a reduced-redundancy approach to satisfy both dependability and cost-effectiveness

requirements for automotive control systems.

In systems where system fault-tolerance is achieved by improving fault-tolerance of
each component that makes up the system, components are designed to be fail-operational,
e.g., triple redundant, which will increase the cost of the components. Our basic concept
to balance dependability and cost-effectivenessdsiced-redundancy dependabilifys
can be seen in Figure 2.1, this approach tries to reduce redundancy as much as possible
and to accomplish equivalent dependability with lower additional cost than the conven-
tional solution. Because we cannot rely on the redundancy, we design the system such
that it can keep on operating without the functions of failed components if some compo-
nents should fail. Consequently, the component cost can be reduced as each component

does not necessarily need to be fail-operational.

14 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

[
»

Dependability
with redundancy

Reduced-
Redundancy

XBW vehicle with
proposed approach

XBW vehicle with
conventional solution

Conventional
vehicle

Dependability required
for vehicle control systems

v

Additional Cost for Dependability

Figure 2.1: Reduced-redundancy approach

We have developed technologies for reduced-redundancy dependability in several lay-
ers at the system level, node (ECU) level, and chip (microcontroller) level. This disserta-
tion focuses on the system and the node levels. We propose an autonomous decentralized
architecture for the system level, and optimal hardware architectures in fail-silent nodes
appropriate to their functions for the node level, which will be discussed in Sections 2.2

and 2.3 respectively.

2.2 Autonomous Decentralized Architecture

2.2.1 Conventional Control Systems

Figure 2.2 outlines the architecture for a conventional control system. The system consists
of sensor nodes, controller nodes, and actuator nodes. The controller nodes execute the
control functions based on sensor signals received from the sensor nodes, and send control
commands to the actuator nodes. The controller nodes also monitor the status of the
sensor/actuator nodes and if failure in a certain node is detected, the controller nodes

change the normal control function to a backup control function. The actuator nodes

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 15

Fail-operational
Controller Node (L | RedundantController Node

Normal Backup
Control Control

Node Status

Monitoring

y

Sensor Actuator
Node Node

Sensor Signal Actuator
Processing Control

Figure 2.2: Conventional control system architecture

receive the control command for backup coritrol

However, all the control functions in the conventional architecture are centralized
in the controller node, which means that this architecture is essentially equivalent to a
master-slave architecture. The actuator node (slave) only executes actuator control as the
controller node (master) orders. It follows that a failure in the controller node will easily
lead to system failure due to centralization of the control functions. To avoid this problem,
the controller node should be fail-operational, i.e., it should keep operating even if one or
possibly multiple faults have occurred in the node. A triple or more redundant architec-
ture is commonly used for fail-operational nodes, but this solution tends to increase node

costs, and consequently system costs.

*Each node actually has a self-diagnosis function and a node-level backup function based on the self-

diagnosis results, which are not specifically described in Figure 2.2.

16 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

2.2.2 Autonomous Decentralized Control Systems
Basic ldea

We propose an architecture based on the concepitohomous decentralized systdris
to balance the competing requirements of cost-effectiveness and dependability for auto-

motive control systems.

Autonomous decentralized systems represent one type of distributed control systems,
that are used in industrial systems such as factory and train control systems required to
be highly efficient and dependable. For example, the ATOS (Autonomous decentralized
Transport Operation Control System) has been developed for the train traffic control sys-

tem in the Tokyo metropolitan area [22].

The concept is derived from an analogy of living organisms that consagttohomous
anddecentralizecatells. Elements calledodesare loosely connected througldata field
where the data required for control are shared. We can achieve a fault-tolerant and scalable
system with this concept, where every node is autonomous and independent. The system
will not fail when nodes malfunction and improve scalability because of communication
based on a standardized data interface. Itis necessary to develop a suitable architecture for
each application domain to apply the concept based on a biological model to real systems

because no general methods of application have yet been established.

We propose the autonomous decentralized architecture for automotive control systems
outlined in Figure 2.3. Although the normal vehicle control function is centralized in
the controller node in this architecture, the backup control function and the node status
monitoring function are decentralized in all nodeAll nodes share various data required
to control the vehicle through the data field, equivalent to a virtual shared memory. Each

node autonomouslgetsor putsdata from or to the data field and executes its functions,

tSensor nodes do not have backup control functions.

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 17

Controller Node

Normal Backup
Control Control

Node Status

Monitoring

put

. ———

Data Field

get

| Data A | | Data B |

Sensor Node Actuator Node

Node Status Actuator Basic
Monitoring Control ?:?)(r:wl':rL:)Fl)
Sensor Signal
Processing
i

| Sensor | | Actuator |

Node Status
Monitoring

Figure 2.3: Architecture for autonomous decentralized control system

which are triggered by conditions in the time and state transitions of the node without

receiving processing demands from the control nodes.

Every node, including the sensor/actuator nodes, can monitor the status of the other
nodes in the system to ensure fault-tolerance. Figure 2.4 shows how the system operates
when the controller node has failed. If the actuator node has diagnosed the controller
node as faulty, it autonomously gets shared Dathat is put by the sensor node because
the control target, Dat#, from the controller node can no longer be used for actuator
control. Then, the actuator node executes the backup control function by using shared

DataA.

Figure 2.5 summarizes a process flow in actuator nodes. The actuator node periodi-

18 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

74
Node Statu
Monitoring

Sensor Node Actuator Node v

Node Status Actuator Basic
Monitoring Control Eé?)ﬂ?rl:)?

Sensor Signal
Processing Node Status
Monitoring
3

| Sensor | | Actuator |

Figure 2.4: Autonomous backup control when controller node has failed

cally monitors the status of the controller node. If the actuator node diagnoses that the
controller node normally functions, it uses Ddgaas the control target. Otherwise, the
actuator node itself calculates the control targeftiyataA) and controls actuators with

this target value. Although sensor/actuator nodes in the autonomous decentralized ar-
chitecture are required to be more intelligent than those in the conventional architecture,
the increase in computational overhead in actuator nodes can be suppressed by limiting
the backup control function to a minimum necessary function for safe vehicle operation,

which we call abasic backup contrdiunction.

Therefore, as the proposed architecture can tolerate the existence of failed nodes and

does not require expensive redundant fail-operational nodes, we can reduce system costs.

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 19

failed

controller node
status?

normal

control target = Data B control target = f (Data A)

y A

normal actuator control basic backup control

end

Figure 2.5: Process flow in actuator nodes

In other words, the system with the proposed autonomous decentralized architecture can
be fail-operational although the system consists of only inexpensive fail-silent compo-

nents.

Actual Vehicle Control Systems

Figure 2.6 shows a brake-by-wire system with the conventional control architecture. The
system consists of a vehicle dynamics integrated ECU (Electronic Control Unit), four
brake ECUs that actuate braking motors, and a brake pedal sensor. The brake pedal
position signal,S1, from the brake pedal sensor is directly input only to the integrated
ECU. The integrated ECU calculates the target braking force valgiesp B4, for the
four brake ECUs, using'l as well as the signals from vehicle dynamics sensors such
as yaw rate and acceleration sensors. Each brake ECU receives the target braking force
values and controls a braking motor so that the actual braking force becomes the target
value.

In this architecture, however, if the integrated ECU fails, it becomes impossible to

control the vehicle dynamics because each brake ECU cannot receive the target braking

20 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Redundant
Integrated ECU

Vehicle

Figure 2.6:Brake-by-wire system with conventional control architecture

force values. Therefore, the integrated ECU should be redundant to be fail-operational,

which increases the system cost.

In contrast to the conventional architecture, all the ECUs share the information re-
quired for brake control throughout the data field in the autonomous decentralized brake-
by-wire system. The data field is implemented with a communication network. As shown
in Figure 2.7, the brake pedal sensor is connected to the network and thus becomes more

intelligent node, i.e., brake pedal sensor ECU, so that driver demand can be shared.

When the system normally operates, as indicated in Figure 2.7 (a), the control opera-
tion is logically the same as one in the conventional architectifitbe integrated ECU
should fail, its sophisticated braking control function would be suspended. However, the
vehicle can maintain the minimal necessary braking functionality for safe vehicle opera-
tion thanks to the autonomous backup control mechanism shown in Figure 2.7 (b). After
recognizing the integrated ECU has failed, each brake ECU gets shared brake pedal po-
sition signalS1 in autonomous backup control. The brake ECU independently calculates
the target braking force valug;(S1) (1 < i < 4), with the basic backup control func-

tion implemented in each brake ECU by using data Therefore, we can eliminate

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 21

Data Field
(S1and B1-B4 are shared)

Brake Pedal
Sensor ECU
1 B1 :

DataField
(S1is shared)

(b) When integrated ECU has failed

Figure 2.7: Autonomous decentralized brake-by-wire system

redundancy from the integrated ECU because it does not need to be fail-operational.

Figure 2.8 outlines the entire architecture for vehicle dynamics control with the con-
cept of autonomous decentralized systems. This figure focuses on the components that
are related to vehicle fundamental functions of driving, steering, and braking. The data
field is implemented by the communication network, which we call a vehicle control net-
work. The integrated ECUs, motor driver ECUs, and sensor nodes communicate with
one another through the vehicle control network. For example, FlexRay is utilized for the

vehicle control network due to its high bandwidth and deterministic features.

22 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Steering
Wheel

Vehicle

Integrated
ECU

Vehicle
Dynamics
Sensors

Vehicle Control
Network

TER IR 70 SRR SEREITIFITTITITRICTEITE SEPTPRPITEEFEPPS I PEPRERPREeY Y & £E8

| = Backup Bus

Main Bus

DBW
Integrated
Drive-by-Wire ECU
Brake Accelerator Network

Pedal Pedal r
Engine Transmission Motor
ECU ECU ECU

[:] Fail-SilentNode @ Fail-Operational Node M: Motor, S: Smart Sensor Node

—
777 7 770

N
N
a

Y2222z

Figure 2.8: Vehicle dynamics control system with autonomous decentralized architecture

The vehicle integrated ECU synthetically controls the vehicle dynamics by interpret-
ing driver demand from the signals received from the accelerator pedal sensor, brake
pedal sensor, and steering wheel angle sensor, and also by recognizing the vehicle’s mo-
tion status from the acceleration sensor, yaw rate sensor, and wheel rotation sensor. It
is essential in the autonomous decentralized architecture to connect sensors to measure
driver demand, i.e., the accelerator pedal sensor, brake pedal sensor, and steering wheel
angle sensor, to the vehicle control network so that this information can be shared among
all ECUs. On the other hand, these sensors are not connected to the network in the con-

ventional architecture, but directly to the vehicle integrated ECU.

The vehicle integrated ECU calculates the target values for each actuator, such as
those for the engine, steering, and braking, and transmits these target values to the vehicle
control network. The Drive-by-Wire (DBW) integrated ECU receives the target driving

force value, the Steer-by-Wire (SBW) driver ECU receives the target steering angle value,

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 23

and the Brake-by-Wire (BBW) driver ECU receives the target braking force value. The
SBW/BBW driver ECU controls a motor by calculating the motor torque required to
achieve these target values. The SBW driver ECU also controls a motor for actuating a
variable gear ratio (VGR) mechanism that is installed on the steering column to generate a
virtual reactive force for vehicle drivers. The DBW integrated ECU is a master controller
for the powertrain system. This ECU executes the driving force distribution to the engine
and motor to improve energy efficiency. The calculated target driving torque and gear ratio
values are transmitted to the engine ECU, motor ECU, and transmission ECU through the

drive-by-wire network, e.g., CAN (Controller Area Network).

The vehicle control network has redundant buses for fault-tolerance, i.e., main and
backup buses. The vehicle integrated ECU, DBW integrated ECU, SBW driver ECU,
BBW driver ECUs, and three sensor nodes are connected to the main bus. In contrast,
only the minimum necessary nodes for safe vehicle operation, viz., the SBW driver ECU,
BBW driver ECUs, brake pedal sensor, and steering wheel angle sensor, are connected
to the backup bus to decrease network costs. Since a loss of function to generate driving
force does not cause fatal accidents, the accelerator pedal sensor is not connected to the
backup bus and the drive-by-wire network is not redundant. If the main bus of the vehicle
control network should fail, as described in the autonomous backup function, the BBW
Driver ECU autonomously obtains data from the brake pedal sensor and the SBW driver
ECU autonomously obtains those from the steering wheel angle sensor, and they control
the motors with the control target values calculated in the basic braking/steering backup

control functions.

Furthermore, the SBW driver ECU, brake pedal sensor, and steering wheel angle sen-
sor should be fail-operational nodes as shown in Figure 2.8 to maintain the functions for
safe vehicle operation. It is also necessary to make the steering motor dual-redundant.

A fail-operational SBW driver ECU consists of two fail-silent nodes and each fail-silent

24 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

node independently controls one steering motor. Although some nodes and motors have
to be fail-operational, the number of fail-operational nodes can be minimized and thus the
system cost can be reduced due to the autonomous decentralized architecture.

The autonomous decentralized architecture also improves system scalability and thus
simplifies the development process because the data on the vehicle control network have
a high degree of abstraction. For example, the target values for each actuator are defined
so that the vehicle control logic in the vehicle integrated ECU can be developed without
any knowledge of actuator variety or characteristics. Sensor nodes broadcast physical
values that are meaningful to control logic after processing of sensor signal filtering and
conversion of voltage to a physical value.

Various functions can easily be extended in the proposed architecture due to high lev-
els of scalability by connecting the required components to the vehicle control network.
Moreover, integrating a gateway function into the vehicle integrated ECU enables coop-
erative control with the components connected to other networks, such as information,

body, and safety networks.

2.3 Fail-Silent Node Architecture

2.3.1 Comparison of Fail-Silent Nodes

The proposed X-by-Wire systems can be mostly implemented with inexpensive fail-silent
ECUs, as shown in Figure 2.8, i.e., they do not interfere with communication between
other ECUs even if they have failed. Although the SBW driver ECU, brake pedal sensor,
and steering wheel angle sensor have to be fail-operational, a fail-silent node is essential
for safety-critical distributed systems since a fail-operational node can be composed of
two fail-silent nodes.

The fail-silent nodes of three redundancy types are compared in Table 2.1 in terms of

SECTION 2.3 FAIL -SILENT NODE ARCHITECTURE 25

Table 2.1: Comparison of fail-silent nodes

Red#”dancy Q&A Validity Check Dual Redundancy
ype
Q Sub- Q Sub-
Main Micro Main Micro Main Reference
Micro A Micro A Micro Micro
Node
Architecture I I/O Diagnosis I I/0 Diagnosis L
/O Diagnosis
Self-Checking
Output Validity Comparator
Check
Fault Detection . _— .
Coverage Low Middle-High High
Cost Low Low Low**-Middle
ECU Type Engine ECU BBW/SBW Driver Ecu| ~ 'fegrated ECU
Sensor Node

*Coverage for fatal fault, ** Where dual CPU LSI is applied

cost and coverage of fault detection. The fault detection coverage has a great influence
on system reliability, although it is difficult to precisely estimate its value. A node is not
guaranteed to be fail-silent if a fault is not detected, and this fatal event occurs with a rate
of (1 — C) x A, whereC'is the fault detection coverage ands the failure rate of the

node. The fatal event rate decreaseg a@pproaches one. However, because there is a
tradeoff between node cost and coverage, we have to apply a suitable architecture to each

node depending on node function to optimize costs.

A node in theguestion and answer (@A) method consists of a main microcontroller
and a sub-microcontroller (a microcontroller is called a micro after this). The sub-micro
transmits an appropriate calculation problem to the main micro, and the main micro cal-
culates the answer and returns it to the sub-micro. The sub-micro compares the returned
answer with a predetermined answer. If the two values differ, the sub-micro determines
that the main micro has failed, and stops the node function. Conversely, the state of health

of the sub-micro is monitored by the main micro. The main micro also diagnoses 1/O

26 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

circuits and related sensors/actuators. Although this structure is inexpensive, its fault de-
tection coverage is the lowest at around 90% [23] among the three types because it is
unsure whether the calculation problems are designed such that all faults can be com-
pletely detected. This architecture has been applied to conventional ECUs, such as engine

and transmission ECUSs.

We found that while the hardware architecture was similar to the question and answer
method, i.e., without cost increases, a methodalidity checkcould improve the fault
detection coverage. The sub-micro monitors not only the returned answer from the main
micro, but also the actuation output result. The sub-micro compares the actuator output
with the target value for actuation and determines the validity of the actuation. Although
a rigid check of the main microcontroller’s execution result is not carried out, a fatal fault
generated in the path from the main micro to the actuator can reliably be detected by
monitoring the final actuation status. This architecture is suitable for the motor driver
ECU. It is essential to design the node such that the execution load to compare these two

values in the sub-micro can be reduced to utilize inexpensive sub-micros.

Rigid checks of the microcontroller execution result are required in the node that cal-
culates the control target value based on control logic and outputs the calculated value to
the other nodes. Therefore, not the validity check method lolutséh redundancyarchi-
tecture is applied to nodes such as vehicle integrated ECUs. The nodes are composed of
two equivalent microcontrollers and a comparator. The comparator confirms whether the
execution results of the main and reference micros coincide. A self-checking type com-
parator has to be used to detect faults in the comparator itself, which will be discussed
later. The coverage in this architecture exceeds 99% [23]. The cost of dual redundancy is
higher than that of the other two types, but it is still lower than that of a fail-operational
architecture like triple redundancy. Moreover, the cost can be reduced where the two

micros and the self-checking comparator are integrated into one LSI chip.

SECTION 2.3 FAIL -SILENT NODE ARCHITECTURE 27

2.3.2 Node Hardware Architecture

Motor Driver ECU

The hardware architecture for the fail-silent SBW driver EGdJshown in Figure 2.9 as

an example of the method of validity check. The SBW driver ECU obtains the target steer-
ing angle value calculated by the vehicle integrated ECU. The main micro calculates the
required target motor torque and current to attain this target steering angle, and performs
vector control of the three phase motor. The sub-micro compares the steering angle target
value with the actual steering angle that is measured by a steering angle sensor. When the
sub-micro detects that these values are different, it disables access to the communication

network and shuts down the power supply for the steering motor.

It is important to determine the timing in this architecture to compare the target and
the actual steering angle by taking into account the response delay time of the mechanical
system. Because the sub-micro is not connected to the network to reduce the cost of
the communication interface, it cannot receive the target value directly from the network.
Consequently, if the main micro fails and sends an incorrect target value to the sub-micro,
failure in the main micro may not be able to be detected since the main micro controls the
motor and the sub-micro executes the validity check based on this incorrect target value.
The vehicle integrated ECU adds a data check code to the target value data to prevent this
problem. After the frame from the vehicle integrated ECU is received, the main micro
sends it to the sub-micro without processing. The sub-micro can determine whether the

data are correct or not by checking this data check code.

HTwo fail-silent ECUs form fail-operational SBW driver ECU described in Subsection 2.2.2.

28 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Vehicle q
o
ECU 9

Vehicle Control Network

Steering Angle i
Target Value y

SBW Driver ECU

Bus

Driver Steering Angle
1 Target Value

Main "> Sub-
Micro Micro

I N

™

Steering Angle|

Gate | Validity
Driver| Check
—_ VBat

Inverter 0 O

P

-
’\r‘M

SteeringAngle
Sensor

Figure 2.9: Validity check architecture for SBW driver ECU

Integrated ECU

Figure 2.10 indicates the hardware architecture for the vehicle integrated ECU to which
dual redundancy architecture is applied. Signals from vehicle dynamics sensors, such as
the acceleration and yaw rate sensors are input to both the main and the reference micros.
The main and reference micros communicate with each other via the serial communica-
tion to synchronize the analog-to-digital (A/D) conversion and make the conversion values
coincide. The calculated values in both microcontrollers are compared by self-checking
comparators. If the self-checking comparators detect disagreements in both values, they

disable the bus driver to stop network access.

SECTION 2.3 FAIL -SILENT NODE ARCHITECTURE 29

Serial Com.
Vehicle Dynamics .
Sensyors \ Main Reference
Microcontroller Microcontroller
bee || L cc |

Bus Driver<—| SC CMP Bus Driver(—| SC CMP

Main Bus
Backup Bus

CC: Communication Controller
SC CMP: Self-Checking Comparator

Figure 2.10: Dual redundancy architecture for integrated vehicle ECU

A self-checking comparator consists of the test pattern generator and comparator as
shown in Figure 2.11 [24]. The test pattern generator periodically injects a test pattern
and “00 --00” (all bits are 0) to each bit of the input data. When inputs A and B are
equal, and the self-checking comparator is operating correctly, it outputs a rectangular
wave with a period that is identical to the test pattern injection period. If the comparator
does not output a rectangular wave with this predetermined period, it means either “input
A and input B are not equal” or “the self-checking comparator itself is faulty”. Thus,
the self-checking comparator can not only detect faults in the input data, but also in the

comparator itself, which improves the reliability of the dual redundancy node.

Sensor ECU

The autonomous decentralized architecture requires fail-silent sensor ECUs that can di-

rectly broadcast the sensing data to the vehicle control network, as was explained in Sub-

30 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Comparison of two CPU outputs
_{InputA|aO|a1|a2| [| [[an]

InputB|b0|b1|b2| | | | |bn|

(InputA = Input B) and
(Comparator is correct)

Test Pattern Generator /
| | | | | | Correct

T\ H Error
a0 d B
b0 \wy Error

(T
an P
bn Sn
Comparator

Figure 2.11: Configuration of self-checking comparator

section 2.2.2. The hardware block diagram of a smart sensor node that employs the dual
redundancy architecture is shown in Figure 2.12. The sensor node consists of two sensing
devices and a dual CPU LSI chip that integrates dual CPU cores, A/D converters, com-
munication controllers, self-checking comparators, and ROMs/RAMs with ECC (Error
Correcting Code). This LSI contributes to size reduction in the sensor node. The two
CPUs communicate with each other to synchronize the A/D conversion and make the
A/D conversion values of the sensor signals coincide. The CPUs execute the appropriate
signal processing for each sensing device, such as sensor signal filtering and conversion

of voltage to physical values to improve system scalability.

2.4 Estimation of System Cost Reduction

We estimate the effect of the system cost reduction due to the proposed autonomous de-
centralized architecture and optimal node hardware architecture. A brake-by-wire system
with the conventional architecture (Figure 2.6) is compared with one incorporating the

autonomous decentralized architecture (Figure 2.7). We focus on electronic components,

SECTION 2.4 ESTIMATION OF SYSTEM COST REDUCTION 31

Sensing Device Sensing Device
(Main) (Reference)
DualCPU LSI
ADC i ADC
o 3
CPU | 1 CPU
re-Yeene TROW TROMY | -e-Yoms

Bus Driver Bus Driver

Main Bus

Backup Bus

Figure 2.12: Hardware architecture for smart sensor node

i.e., ECUs to estimate the system cost. The system cost for the conventional architecture,
Ceye'®, is as follows:
Cgn¥® = 2Cc +4Cy (2.1)

whereC'- is the cost of a fail-silent integrated ECU, afid is the cost of a fail-silent brake
ECU that employs the conventional dual redundancy architecture shown in Table 2.1.
Note that the fail-operational integrated ECU consists of two fail-silent integrated ECUs
as discussed in Section 2.2. The cost of a sensing device of the brake pedal sensor is
assumed to be negligible small compared with that of an ECU.

The increase of the system cost;, for the autonomous decentralized architecture

is as follows:

Cr = Cs + Caer

sys Npro

2.2)

32 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

whereCs is the cost of the intelligent brake pedal sensor ECU that can communicate
with the other ECUs through the control netwoék,., is the additional software devel-
opment cost for the node status monitoring and the backup control functionsy,and
is the production volume of the system. We assume Mg} is large enough to make
the second term in Equation (2.2) negligible because of the mass-production scale in the
automotive industry. Although the autonomous decentralized architecture requires the
node status monitoring and the backup control functions even for sensor and actuator
nodes, a microcontroller with equivalent performance as one equipped with the conven-
tional architecture can be applied. This is because only the basic function is required for
the autonomous backup control and the CPU computational overhead for the node status
monitoring can be sufficiently reduced, which will be discussed in Chapter 5. Thus, the
cost increase of the microcontroller in each ECU is not included in Equation (2.2).
Equation (2.3) expresses the cost decredsg, by the proposed autonomous decen-

tralized architecture and optimal node hardware architecture:
CS;,S =Cc+4ACy = Cc + 2C e (2.3)

where AC) is the cost reduction per one fail-silent brake ECU. Because we can apply
less expensive validity check architecture to fail-silent brake ECUs as indicated in Ta-
ble 2.1, ACy can approximately be estimated&s,,. — 1.5C,.., whereC,,. is the cost
of a main microcontroller which is assumed to be double compared with the cost of a
sub-microcontroller. Furthermore, as discussed in Section 2.2, since the integrated ECU
can be fail-silent due to the system-level redundancy in the autonomous decentralized
architecture, we can eliminate one fail-silent integrated ECU.

Therefore, with Equations (2.1), (2.2), and (2.3), we can calculate a ratio of the re-

duced system costiCys, to the system cost for the conventional architecture as follows:

AOSyS - C,.—CH N Co +2C, — Cq N Cc + 2aCq — C¢

Sys Sys

(Clconve 200 +4Cy 2Cc + 4Cy N 6Cc

Sys

(2.4)

SECTION 2.4 ESTIMATION OF SYSTEM COST REDUCTION 33

whereq is a ratio of the cost of a microcontroller to that of a fail-silent integrated ECU
(a = Cne/Cc < 1), andf is a ratio of the cost of a sensor ECU to that of a fail-silent
integrated ECU{ = Cs/Cc < 1). In Equation (2.4), we assume th@f is almost the
same a$.

Figure 2.13 shows the estimation results on the system cost reduction. Although pa-
rametersy and G depend on the actual hardware implementation, we conclude that ap-
proximately from 20 to 30% cost reduction can be achieved with practically possible
combinations of parametessand3, which contributes to a substantial cost reduction for

automotive control systems.

0.35

0.3 ‘
0.25 ‘

0.2 ‘ ®p=0.1
Bp=02
B=0.3

0.15

0.1

0.05

Ratio of System Cost Reduction
e

0)))])
0 0.1 0.2 0.3 0.4 0.5 0.6

a (Cme/Ce)

Figure 2.13: Cost reduction in autonomous decentralized brake-by-wire system

SECTION 3.1 AGREEMENT PROTOCOL 35

CHAPTER 3

AGREEMENT PROTOCOL

3.1 Challenges to Autonomous Decentralized

Architecture

The autonomous backup control is an essential feature in the autonomous decentralized
architecture as was discussed in the previous chapter. Backup control should be based
on the accurate identification of failed nodes. However, as there is no master node for
monitoring the status of nodes in the system, the node status monitoring function in each
node plays a key role for fault-tolerance.

For example, as shown in Figure 3.1, suppose that the brake ECU 2 has not received
braking control target valuB2 from the integrated ECU because of failure in the receiver,
i.e., brake ECU 2. In this case, only the brake ECU 2 autonomously changes the control
mode to the backup control mode because it cannot determine by itself whether the sender
(integrated ECU) or the receiver (brake ECU 2) is faulty, which might lead to vehicle spin
due to braking imbalances.

Therefore, some coordination scheme, i.e., an agreement protocol, is required to accu-

rately identify the failed node and ensure consistency of the information on which nodes

36 AGREEMENT PROTOCOL CHAPTER 3.

Risk of vehicle spin

Backup Brake |ntegrated Ve ;e
Control ECU 2 ECU gggg:;c
fa(7)

S1I B1 B4
Data Field
511 (S1and B1-B4 are shared) | | S7
Brake Pedal
Normal Brake Sensor ECU
Control ECU 1

Figure 3.1: Disagreements in control mode in autonomous decentralized architecture

are available among all remaining normal nodes so that disagreements in the control mode
can be avoided. We propose a membership protocol as an agreement protocol for safety-

critical distributed systems to address this issue, which will be discussed in this chapter.

3.2 Model of Time-Triggered Systems

3.2.1 Communication Model

Before we discuss the proposed membership protocol, let us first define a generic time-
triggered (TT) system including a FlexRay communication system, which will be used in
X-by-Wire systems.

The system consists of nodes having unique ID§, 2, ...,n. The communication
network is the bus type with TDMA (Time Division Multiple Access). As we can see
from Figure 3.2, the system runs by consecutively executing synchronous rounds, starting
from round 1. A node is assigned its own sending slots as to where it can send a message

frame. A frame sent by a node is received by all the other nodes. All sending slots are

SECTION 3.2 M ODEL OF TIME -TRIGGERED SYSTEMS 37

statically scheduled in the design time and thus never overlap. Every node sends a frame

at least once in one round.

Round k Round k+1
Node 1 rcv rcv rev rcv
Node 2 rov rov
Node n rev rov

Figure 3.2: Communication in time-triggered systems

3.2.2 Fault Model

Faults in nodes are observed as communication erfeigire 3.3 illustrates three fault
types: correct benign faulf andsymmetric Byzantine faultf node: suffers neither be-

nign fault nor symmetric Byzantine fault, the node correctly sends the messagerframe

If node i suffers a benign fault in rounkl, then the message frame sent by the node

in the round is lost. Hence, all nodes can locally detect it in roknd\ benign fault

arises from a transmission error due to e.g., a node crash. Ifingaféers a symmetric
Byzantine fault in round:, then, all nodes in the same round receive the same erroneous
messagen’ from the faulty node, which does not conform to the protocol specifications.

In this dissertation, we assume that a reception error in a certain node can be seen as a
symmetric Byzantine fault, as discussed in detail later.

We take account of intermittent faults as well as permanent faults, and also assume
that the fault types, either benign or symmetric Byzantine, never change along with com-
munication rounds in one node.

Our fault model does not include faults in terms of timing violation in communica-

tion, where a node sends message frames at the sending slots disallowed for the node.

38 AGREEMENT PROTOCOL CHAPTER 3.

This is because we assume that each node is equipped with solmadlgdiardianghat
physically prevent a faulty node from accessing the bus at the sending slots assigned to

the other nodes [25].

m m m@m m, m’
e SO

Correct Benign fault Symmetric Byzantine fault

Figure 3.3: Fault types

Nodes arecorrect obedient or symmetric Byzantine faultfCorrect nodes follow the
protocol specifications and suffer no faults. Obedient nodes follow the specifications but
they may or may not suffer benign faults. Correct nodes are thus also obedient. Symmetric
Byzantine faulty nodes do not follow the specifications and suffer symmetric Byzantine
faults. We assume:

2s+b+1<n (3.1)

wheres is the number of symmetric Byzantine faulty nodes aisithe number of benign

faulty nodes.

3.3 Membership Protocol

3.3.1 Protocol Description

We propose a membership protocol for TT systems as an agreement protocol to solve
these problems in the autonomous decentralized architecture [16]. It provides information
on the availability of all nodes in the system by exchanging a local view of the status of

other nodes with all nodes.

SECTION 3.3 M EMBERSHIP PROTOCOL 39

Round k Round k+1
Node 1 rov rov
Node 2
Noden rcv det_job) rcv det_job)
< > e = >
' Local Syndrome Evaluation /” Local Syndrome Exchange ™ Determination
N (EVA) el (EXC)--" (DET)

EVA EXC |DET

EVA EXC |[DET

| EVA | | EXC |DET|

Figure 3.4: Overview of execution sequence in membership protocol

An execution sequence of the protocol in the TT system is outlined in Figure 3.4. In
every roundk, the membership protocol starts the sequence of three phases, which spans
two consecutive rounds, viz., rounélsandk + 1. The pseudo-code of the membership
process of three phases executed in each paderound k is also presented in Algo-
rithm 1. In the pseudo-code, hereinafterf ormation pli, . . ., j| denotesn formation

on statuses with respect to from nade nodej in roundk computed by node.

In round &, each node evaluates other nodes’ statuses locally by receiving frames
sent by the other nodeseeive_lsy_1-msg_i| |) and evaluating them (EVA phase). The
evaluation result, which we calllacal syndromerepresents the local view of other nodes’
statuses that was evaluated in rodnd\ local syndrome evaluated in nogg.e.,ls;. pl[|,
is a binaryn-tuple (sq, s, ..., s,) wheres; = 1 if p evaluates nodéas non-faulty and
s; = 0 otherwise (Algorithm 1, lines 5-8). In the pseudo-codedenotes no received

message (line 5). Note that, p[| has to be buffered inend_ls;,-msg_p|[| because it is

40 AGREEMENT PROTOCOL CHAPTER 3.

not sent in the current round, but in the next round, i.e., roundl (line 12).

In the following round, round: + 1, the local syndromes evaluated in rouhdre
exchanged by all nodes and ngdeonstructs a local syndrome matrix;_matriz|][],
where theith row is the local syndrome received from nadand thejth column is a
vector representing the evaluation for ngdgom all nodes (EXC phase). An element,
e; j, is either 1, Og, or —. The caseg; ; = ¢,¢ # j, occurs if nodé failed to send its local
syndrome in round + 1 because of its benign fault (lines 17-18). Inline 8, .. , ¢],, is
a vector that has elements ot. The opinion of a node about itself, i.e;;, 1 < i < n,
is considered unreliable and thus is assigned special valuéhich specifies that it is to
be discarded in voting (line 22).

Each node determines node status in the same round (i.e., kaur)dy voting on the
local syndrome matrix (DET phase). Each node obtains a bindunple called demporal
health vectorhv, where theith element represents whether nade non-faulty or faulty
by hybrid voting [26] over each of the columns (line 27). Hybrid voting is specifically

defined as:

H—maj(V) = 0 No(V) > Ny(V)

L No(V) < Ny(V)
whereV is the column that is voted on, aid, (V') and N, (V') are the number of occur-
rences of 0 and 1 iir.
The temporal health vector is then updated to accuse symmetric Byzantine faulty

nodes, which we call aninority accusation If the temporal health vectofw, and the
local syndrome sent from nodeespectively have 0 and 1 or 1 and 0 in the same posi-

tion, then node is identified as a faulty node (lines 31-32Yhe final health vectorv,

is obtained fromhu by setting the value in thigh position to 0 for all such nodes.

*We regard benign and symmetric Byzantine faulty nodes as equally serious because the potential causes
of these faults are all physical [27]. This is in contrast to systems deployed in open networks, where

intrusion is the main cause of Byzantine faults.

SECTION 3.3 M EMBERSHIP PROTOCOL 41

Finally, a node updates counters associated with nodes based on the health vector
and possibly eliminates faulty nodes from active ones. For example, one can eliminate
a node by counting the number of times when the node is diagnosed as faulty and by
deciding to eliminate it when the counter exceeds a predefined threshold. The process of
updating the counters can be regarded as executing a stateful function that takes a health
vector,hv, as input and produces a set of active nodes as output. We denote this counter
updating function byupdateCounter(hv). Thus, the output of the membership protocol

is obtained by executing the following operation in each node (lines 38 and 40):

active_nodes «— updateCounter(hv)

We emphasize that multiple instances of this sequence of phases are executed concur-
rently, as shown in Figure 3.4. The node status evaluation process (EVA) can be done
concurrently in the status data exchanging phase (EXC) by evaluating the exchanged sta-
tus data. The node status, correct or faulty, in a certain round can be identified in the
next round, which can enhance real-time capabilities for diagnosing faults, due to this

pipeline-like process execution.

42

AGREEMENT PROTOCOL CHAPTER 3.

Algorithm 1: Nodep membership process in routd

1
2
3

© o N o u b

10
11
12
13
14

[

5
16
17
18
19
20
21
22
23
24
25
26

27
28
29
30

w

1

33

34

35
36

w

7
38
39

/Il EVA Phase
/l'local syndrome evaluation
fori—1,...,ndo
Isp—1-[1,...,n] « receive_lsy_1_-msg[l,...,n];
if lsp_1.[1,...,n] = @then [/ noreceived message
Isk-pli] < 0;
else
Isg-pli] < 1;
endif

/l'local syndrome buffering to be sent in rouhd- 1
sendlsp-msg-p[l,...,n] — lspp[l,...,n];

/I EXC Phase
/l'local syndrome exchange and local syndrome matrix construction

fori«—1,...,ndo
if lsp_1-i[1,...,n] = @ then [/ noreceived message
Isg—1-matriz[i][l,...,n] — [g,... ,&|n;
else
Isp—1-matriz(i][1,...,n] « lsp_14[1,...,n];
endif

Isg—1-matriz[i][i] «— —;

/ DET Phase
/I hybrid voting
fori«—1,...,ndo

hvg_1[i] — H-maj(lsp—1-matriz[l, ... n][]);

/I minority accusation
fori—1,...,ndo
if lsp—12[1,...,n] # ﬁvk_l[l, ...,n]then
hl}k_l[i] — 0;
else
hog_1[i] < hvg_1[il;
endif

/I counter update
active_nodes «— updateCounter(hvg_1[1,...,n]);

return active_nodes;

SECTION 3.3 M EMBERSHIP PROTOCOL 43

3.3.2 Example of Membership Protocol

Consider a system consisting of five nodes< 5) as an example where node 2 is sym-
metric Byzantine faulty and the other nodes are obedient. Suppose that node 1 suffers
benign faults in rounds and% + 1. Also suppose that node 2 sends an erroneous local
syndrome in round: + 1. Then, each obedient node formdocal syndrome matrix

roundk + 1 as follows:

[_ E € € € _ from node 1
0 — 1 0 1 | fromnode2
0o 1 — 1 1 from node 3
0O 1 1 — 1 from node 4
I 0O 1 1 1 — | from node 5

Every obedient node carries out hybrid voting on each column after the local syndrome
matrix is formed. The and— values are first discarded in hybrid voting and then voting
is performed on the remaining values. In this case, all obedient nodes obtain the following

temporal health vector:

h=(0,1,1,1,1)

Then, symmetric Byzantine faulty nodes are accused. Of the five syndromes, only the
one from node 2 has different 0/1 values fram Specifically, the syndrome from node 2
differs from ko in the fourth position.The temporal health vector is updated to record

that node 2 has been identified as a faulty node by setting the second position to O:

hv = (0,0,1,1,1)

Finally, using the health vector, each node updates the set of active nodes by executing

updateCounter(hv).

44 AGREEMENT PROTOCOL CHAPTER 3.

Figure 3.5 shows an example of a detailed execution sequence for the protocol. The
system configuration and fault conditions are the same as those in the above example.
Node 2 becomes symmetric Byzantine faulty in rounél 1 because node 2 could not
receive node 4's message frame in rodndue to, e.g., electrical noise in node 2 or at a

network stub to node 2.

D Sentlocalsyndrome

/} Round k /} Round k+1 Round k+2

NOde 1 /Fault /? %Fault« Benign fau“y | 11111

Node 2 11111 /Fault 01101 01111

Node 3 11111 Symmetric 01111 01111

Byzantine
Node 4 11111 faulty 01111 01111
Node 5 11111 01111 01111
Local Syndrome Matrix in Round k+1 Local Syndrome Matrix in Round k+2
Node 1||Node 2||Node 3||Node 4||Node 5 Node 1||Node 2||Node 3||Node 4||Node 5

from Node 1 || -eeee||| | -ece€ ||| | -eeee ||| -ecee ||| | -ecee ST -1 -1 -1 |]] -1111
from Node 2 | [0-101]||{0-101]]]|0-101|]||[{0-101|||[0-101 0-111({{{0-111]}| {O-111]]}|0-111]]]|0-111
from Node 3 | [01-11]||[01-11|]|{O1-11f||{O1-11|||[01-11 01-11(]{[(01-11{|{{01-11]]||01-11]]]|01-11
from Node 4 ||011-1{|||{011-1]]}|011-1]]]{{011-1]{]] |011-1 011-1(]{[{011-1{||{011-1]]{|O11-1{]]|011-1
from Node 5 [[0111-|||{0111-[]]|0111-[||{0111-]{|]|O111+ 0111-(]1[{0111-{|| {0111-]}}|0111-|]]{[0111+

Temporal
|Jlealth\/ector| o1111|| 01111 || 01111 |[01111 |[01111 [01111 [01111 || 01111 || 01711 || 01111]

Health Vector | 00111 |[00111 [00111]| 00111|| 00111 [01111]| 01111 || 07111 |[01111 || 01111]

Counter | 11000|[11000|[11000|| 11000]| 11000| | 21000|| 27000 || 21000]| 21000 || 27000

Figure 3.5: Detailed execution sequence for membership protocol

Node 2 evaluates that node 4 was benign faulty in rokrathd then node 2 sends

a local syndrome “01101” in round + 1, which differs from a temporal health vector

“01111". Thus, node 2 is identified as symmetric Byzantine faulty by the minority ac-

cusation processNote that the result of the minority accusation in round- 1 is not

broadcast in round + 2. Node 1, which suffered benign faults in roundandk + 1,

SECTION 3.3 M EMBERSHIP PROTOCOL 45

sends a correct local syndrome in round- 2, because it could receive message frames

even during benign faulty periods

3.3.3 Properties

Lemma 1 Node: is diagnosed as faulty in temporal health vedtorin roundk -+ 1 by
any obedient node if and only ifsuffers a benign fault in rountl
Proof: If i suffers no benign fault in rounkl, then no obedient node sets tile bit to O

in its local syndrome in rouné + 1. From Equation (3.1), we have:
s<n—s—b-—1 (3.2)

Let p be any obedient node (which is possibl)yand letV; denote theith column of

p's local syndrome matrix. Thenyy(V;) < s andN(V;) > n — b — s — 1*. From
Equation (3.2),No(Vi) < Ny(V;), thus H —maj(V;) = 1 and nodei is diagnosed as
correct inhv. If i suffers a benign fault in rounkl, then no obedient node sets ttie bit

to 1 in its local syndrome in rounkl + 1. Because of the same argument as in the case
wherei suffers no benign faultd/ —maj(V;) = 0 and node is diagnosed as faulty in

A~

hv.

Lemma 2 Node: is accused as symmetric Byzantine faulty in the minority accusation
by any obedient node in rourid+ 1 if and only if : sends an erroneous local syndrome
in roundk + 1.

Proof: Let p be any obedient node. ifsends a correct local syndrome in rouhd-

1, then by Lemma 1p's temporal health vectokv is the same as the local syndrome

received fromi, and thusi is not accused. If the local syndrome sentiby lost, theni

"We only assume that a message frame from a benign faulty node cans@ttbe the other nodes in

the fault model discussed in Section 3.2.
IThe term—1 is necessary singgs evaluation of itself is discarded.

46 AGREEMENT PROTOCOL CHAPTER 3.

is not accused in the minority accusation jaylf i sends an erroneous local syndrome
in roundk + 1, then the local syndrome differs from the correct one with respect to the
evaluation of some nodg# 7). LetV; be thejth column inp’s local syndrome matrix
andv € {0,1} and1 — v € {0, 1} be the correct and erroneous values for the evaluation
of nodej. Because of the same argument as in Lemm,1};) > N;_,(V;). Therefore,

i is accused as symmetric Byzantine faultygoy the minority accusation.

Theorem 1 The following two properties hold:

e Correctnessa correct node is never diagnosed as faulty in the health vector of any

obedient nodes.

e Completenessa faulty node that suffers a benign fault in rouhdr sends an
erroneous local syndrome in roukd- 1 is always diagnosed as faulty in the health

vector of all obedient nodes in roukd+ 1.

Proof: The theorem directly follows from Lemmas 1 and 2.

Theorem 2 Consistencythe health vector is agreed by all obedient nodes in each round.
Proof: Because of Theorem 1, the set of nodes identified as correct or faulty in the health

vector is agreed by all obedient nodes. Hence, the theorem follows.

Theorem 3 Consistent Isolationthe set of active nodes is agreed by all obedient nodes
in each round.

Proof: Let hv denote the health vector obtained by an obedient node. Because of The-
orem 2,hv is agreed by all obedient nodes. Since updating functjfuteCounter is

deterministic, its outputpdateCounter(hv) is also agreed by all obedient nodes.

SECTIONA4.2 PROTOTYPE BRAKE -BY-WIRE SYSTEM 47

CHAPTER 4

PROTOTYPE BRAKE-BY-WIRE

SYSTEM

4.1 Introduction

The membership protocol was implemented on a hardware and software platform equiv-
alent to one assumed to be used in commercial X-by-Wire systems. Subsequently, we
developed a prototype FlexRay-based brake-by-wire system based on the proposed au-
tonomous decentralized architecture to evaluate its function and the required overhead,
especially the CPU computational load of the membership middleware. This chapter de-
scribes details of implementation and results obtained from evaluating the function of the

prototype system and the performance of the membership middleware.

4.2 Software Architecture

Because the membership function is separable from the backup control logic executed by
an application program, a natural design choice is to implement it in a middleware layer.

We implemented the membership middleware with other software modules required in

48 PROTOTYPE BRAKE -BY-WIRE SYSTEM CHAPTERA4.

Software

Application Program

1 active_nodes

Membership Middleware

OSEK OS COM middleware

FlexRay
Communication Driver

Hardware
FlexRay
Communication Controller
CPU
Transceiver
FlexRay I

Figure 4.1: Software architecture

actual X-by-Wire systems on a Renesas M32C microcontroller capable of FlexRay com-

munication, and developed a prototype autonomous decentralized brake-by-wire system.

Figure 4.1 shows the software architecture in each node. FlexRay is used for the com-
munication network. The software is composed of basic software including OSEK OS
(Operating System) [28], communication (COM) middleware, and a FlexRay communi-
cation driver, membership middleware, and an application program to execute the brake
control algorithm. A three-phase brushless motor control application was implemented in

the brake ECUSs.

The COM middleware, which is not a standardized one like OSEK COM or AU-
TOSAR COM, provides features such as frame packing/unpacking, fault detection above
the data link layer by adding and checking the checksum code and sequential number, and

handling the redundant frames.

The membership middleware executes the sequence indicated in Figure 3.4, where it

SECTIONA4.2 SOFTWARE ARCHITECTURE 49

evaluates the status of other nodes based on the fault information stored in the COM mid-
dleware and communication driver, exchanges the local syndrome with all nodes, and de-
termines other nodes’ statuses by voting on the exchanged local syndromes. The middle-
ware offers an API (Application Program Interface) to provide the application programs
with the status information of other nodes, i&ctivenodes The application programs
switch the vehicle control logic according to this information. Because the application
program itself does not need to monitor the node status, the development efficiency of the
application program can be improved, thanks to the membership middleware. We regard
the membership function as one of the essential features of the NM (Network Manage-

ment) layer for safety-critical distributed systems.

Executing the membership middleware has to be synchronized with FlexRay commu-
nication, as we discussed in Section 3.3. One solution to achieve this is to use a time-
triggered OS such as OSEKTime [29]. However, time-triggered tasks in OSEKTime have
higher priority than OSEK event-triggered tasks and interrupts. This feature is suitable
for complete time-triggered systems, but automotive control systems generally have some
event-triggered tasks and interrupts with the highest priority, e.g., fuel injection and igni-
tion control synchronized to engine revolution. Furthermore, the task scheduling strategy
of OSEKTime is stack-based scheduling, where a running task is always preempted by
another task regardless of its priority. This strategy is completely different from that
of OSEK, which can implement multiple task execution with a priory-based scheduling
scheme, i.e., a task with higher priory is not preempted by a lower priority task. The
above-mentioned engine control and three-phase brushless motor control require multiple
tasks to be executed. Therefore, OSEK was used in our implementation based on this
analysis, as shown in Figure 4.1, so that the membership middleware task could coexist

with the motor control task.

Figure 4.2 shows how we synchronize the OSEK tasks including the membership task

50 PROTOTYPE BRAKE -BY-WIRE SYSTEM CHAPTERA4.

with FlexRay communication. The absolute timer, which counts the time elapsed from the
start of the communication rourahd is reset at the start of every communication round

is implemented in the FlexRay communication controller. We use an interrupt handler
activated by this timer. In the interrupt handleGSeatEventall is issued to a task that has

to be activated at that time, and the next task activation time is set. The task receiving
SetEventnakes a transition from theait state to theeadystate. When multiple tasks
receiveSetEventsuch as at timé5, in Figure 4.2, the OSEK scheduler determines the
order of execution for these tasks based on task priority. The task transitionswaithe
state again by callingvaitEventat the end of the task, and waits fdetEvento be called

in the next communication round.

Start of Round k Interrupt by Interrupt by Start of Round k+1
FlexRay-synchronized timer FlexRay-synchronized timer l
1 SetTime T, Set Time T, in the next round k+1
FlexRay-Synchronized
Timer InterrLIth Handler
' SetEvent (Task A)

SetEvent (Task B, Task C)

i T ClearEvent
FlexRay- | Task A WaitEvent
Synchronized : . - |
OSEK Tasks TaskB | : ¥ Task B has higher

i i i ClearEvent i
(e.g., membership ! i 1 WaitEvent ! - priority than Task C
middleware task) H - — -

Task C

Other Interrupt Handlers or P

Event-Triggered Tasks with — ClearEvent

Higher Priority (e.g., motor current D D '] WaitEvent |:|
FB control tallsk, engine control tlask) : :

0 T, T, 0

| FA)

Figure 4.2: Synchronization of FlexRay communication and OSEK tasks

OSEK tasks can be synchronized with FlexRay communication in this way. Further-
more, as shown in Figure 4.2, because tasks and interrupt handlers with higher priority
than that of the FlexRay-synchronized tasks can preempt the FlexRay-synchronized tasks,
event-triggered tasks with the highest priority such as the engine control task and the mo-

tor current feedback control task, are not influenced by FlexRay-synchronized tasks, and

SECTION4.3 PROTOTYPE |MPLEMENTATION AND EVALUATION 51

both kinds of tasks can exist together on the same processor.

One point to note is that FlexRay-synchronized tasks can only be executed when the
FlexRay communication controller is in a state where the absolute timer is operating (i.e.,
“Normal Active” state). Therefore, we have to implement a FlexRay communication-
independent task that monitors the state of the communication controller and executes

certain exception handling in case the state is other than that state.

4.3 Prototype Implementation and Evaluation

We implemented this software architecture on a Renesas M32C microcontroller integrat-
ing a FlexRay communication controller, and developed a prototype autonomous decen-
tralized brake-by-wire system. Figure 4.3 indicates the structure of the prototype system,
which consists of six ECUs, i.e., a brake pedal sensor ECU, an integrated ECU that cal-
culates the target braking force values for four wheels based on the brake pedal position,
and four brake ECUs (Front-Left, Front-Right, Rear-Left, and Rear-Right) for braking
motor control. These ECUs communicate with one another via FlexRay of 5 Mbps baud
rate and a communication round of 5 ms.

The rear-left brake ECU executes position servo control of a real three-phase brushless
motor with a 150us current feedback control loop. The control loop is implemented by
a timer interrupt handler that is independent of FlexRay communication and executed at
higher priority than that of the membership functionality implemented with the FlexRay-
synchronized OSEK task.

Furthermore, as shown in Figure 4.3, the accelerator pedal position signal, steering
wheel angle signal, and braking force signals, which the four brake ECUs generate, are
input to a real-time vehicle dynamics simulator to observe the vehicle motion during

fault injection such as an ECU power supply shutdown or disconnection of the network

52 PROTOTYPE BRAKE -BY-WIRE SYSTEM CHAPTERA4.

Integrated
ECU

N

Brake ECU
(FR)

Brake ECU
“(RR)

Brake Pedal
T Target Braking Force Position T FlexRay
| Brake ECU Brake Pedal | | Brake ECU
L) Sensor ECU s (RL)

m 3-phase
Psoesnltslgr: Steering Wheel Brushless
(Acceleration) || Ang'e Sensor B> Motor
i
] =
Real-time Vehicle Dynamics
’\] Simulator /\]
|| v
Braking |[&a Braking

Force Force

Figure 4.3: Prototype autonomous decentralized brake-by-wire system

channel.

First, functions were evaluated when faults occurred in this prototype system. When
the integrated ECU was shut off, the middleware in all the remaining normal ECUs could
identify the failure in the integrated ECU. The four brake ECUs shifted to autonomous
backup control, where they directly obtained the brake pedal position signal from the
network and calculated the target braking force based on the pedal position signal by
themselves. Even if the integrated ECU failed, the vehicle maintained the braking func-
tion without generating unintended yaw moment, and we successfully demonstrated that
the autonomous backup control function worked well in the proposed architecture. More-
over, we found that the vehicle could stably decelerate even when simultaneous faults
occurred, e.g., when the power supply of the integrated ECU was shut off and one of the

brake ECUs was disconnected from the network.

SECTION4.3 PROTOTYPE |MPLEMENTATION AND EVALUATION 53

Table 4.1: Execution time and CPU load in prototype system

Process E_xecution CPU load
time (us) (%)
Frame reception 570 11
Frame transmission 70 14
Membership 290 5.8
Motor control 70 47

We also evaluated the performance of the membership middleware. Table 4.1 sum-
marizes the execution time and CPU load for each process on the rear-left brake ECU in
which the motor control function was also implemented. These results were based on the
following conditions: six nodes, a 5 ms FlexRay communication round, a Renesas M32C
microcontroller with a 40 MHz CPU clock and bus of 16 bits, and an IAR EWM32C
compiler without any compiler options. The rear-left brake ECU received five message
frames that contained the local syndromes from the other five nodes, and two message
frames that contained the control application data from the integrated ECU and the brake
pedal sensor ECU. The frame reception and transmission execution times in Table 4.1
include those of both the FlexRay communication driver and the COM middleware which
provides features such as frame packing/unpacking, fault detection above the data link
layer by adding and checking the checksum code and sequential number, and handling of
redundant frames. The execution time of the membership process under these conditions
was 290us, which means it consumed 5.8% (229divided by the communication round
of 5 ms) of the whole available CPU time.

Furthermore, we investigated the execution time needed to compute the health vector
by the voting process in systems consisting of 4, 5, and 6 nodes. Each node had a mi-

crocontroller with a 40 MHz CPU clock. Table 4.2 reveals that the voting execution time

54 PROTOTYPE BRAKE -BY-WIRE SYSTEM CHAPTERA4.

Table 4.2:\oting execution time with respect to number of nodes

Numberofnodes 4 5 6

Voting execution

time (uis) 78 121 169

increases quadratically with respect to the number of nodes. This is because the local
syndrome matrix contains x n bits for ann-node system, as seen in Figure 3.5.

Finally, we confirmed that motor position servo control could be adequately executed
without interference by the membership service, and that the membership task also sat-
isfied a specified deadline, i.e., the start time of the task in the next communication
round, although it took longer to execute due to the interruption by the motor control
task. Therefore, we can conclude that the membership middleware can coexist with ap-
plication programs like three-phase brushless motor control that have to satisfy severe
real-time requirements with the proposed method of synchronization between FlexRay

communication and OSEK tasks.

4.4 Discussion

The overhead of 5.8% evaluated in the prototype system might sound small, but in prac-
tice, this is prohibitively large, because CPU time is already a very scarce resource. Itis
ideal to assign as much CPU time as possible to control application programs to achieve
better driving performance and safety in automotive systems. Thus, it is not acceptable in
practice to spend that much CPU time only on the membership seRucthermore, the
execution time for the voting increases with the square of the number of nodes.

Using faster CPUs could mitigate the problem to some extent. In fact, we can predict

that the CPU load will be less than that in these evaluation results since we will be able

SECTION 4.4 DISCUSSION 55

to use much higher performance microcontrollers with around 100 MHz CPU when X-
by-Wire systems will actually become commercially available. However, the demands
for high levels of responsiveness in driving control will be simultaneously increasing. For
example, current automotive control systems often require a much shorter communication
round time than that in our prototype system. Such increasing demands for shorter round
times easily offset the increase in CPU performance.

Therefore, we have to further develop membership protocols that consume less CPU
resources, even in largenode systems that can have more than 10 or 20 nodes in the

actual automotive control systems.

SECTIONS.1 LIGHTWEIGHT MEMBERSHIP PROTOCOL 57

CHAPTER 5

LIGHTWEIGHT MEMBERSHIP

PROTOCOL

5.1 Introduction

We propose two membership protocols to reduce the overheadjatag sharingand
clustering to address the problem that the protocol requires much CPU resources, espe-
cially for systems consisting of large number of nodes, as discussed in Sections 4.3 and

4.4,

Both approaches aim to decrease the computation overhead for voting in the member-
ship protocol. The main idea behind voting sharing is to have each node vote for only
one respective node and to share the voting results with all nodes. On the other hand, in
the clustering protocoh nodes are logically divided inte/c clusters, where each cluster
consists of: nodes. Node sends a local syndrome only with respect to nodes within the
cluster to which node belongs to all the other nodes in the system. The clustering proto-

col can also reduce the communication bandwidth, compared with the original protocol.

58 LIGHTWEIGHT MEMBERSHIP PROTOCOL CHAPTERDS.

This chapter discusses both protocols in detail and presents experimental results on the
execution time. We further analyze a tradeoff between the overhead and fault-tolerance

in the proposed three membership protocols including the original protocol.

5.2 Voting Sharing

In the voting sharing protocol, each node performs voting to detect a fault in a single node
and to share its voting result with all the node&ach node has a responsibility to vote

on the exchanged local syndromes with respect to one specific node and to broadcast the
result in the following round. As a result, the computation cost required for voting is

reduced compared with the original approach which votes for each of tioeles.

5.2.1 Protocol

The execution of the protocol now involvas leastthree rounds, instead of two rounds,
as outlined in Figure 5.1The pseudo-code of the process in the voting sharing protocol
executed in each nogein roundk is also presented in Algorithm 2.

A node locally evaluates other nodes’ statuses in raunas is done in the original
protocol (EVA phase).

In roundk + 1, the local syndrome representing errors observed in réusdroad-

[Roundk [Roundk+1 | Roundk+2 | Roundk+3 |

EVA EXC VT EXCV DET|
EVA EXC VT EXCV DET|

EVA EXC VT

Figure 5.1: Execution sequence for voting sharing protocol

SECTIONDS.2 VOTING SHARING 59

cast, just as is done in the original protocol (EXC phase). Then, in VT phase, each node
only votes for a single node, unlike what occurs in the original protocol. Nasldracts

one element that is associated with a node phatresponsible for from each of the local
syndromes received. We define nadeget(p, k) as the node for which is responsible

for diagnosis in the protocol execution that starts from rokin@hus, node collectsn—1
values (excludingarget(p, k)'s own evaluation), each of which is either 1, 0,.oNode

p carries out hybrid voting on these— 1 values (Algorithm 2, line 26). The result of vot-
ing, result_pltarget(p, k)], is either 1 or 0. Following the hybrid voting, nogdexecutes

the minority accusation described in Subsection 3.3.1 by comparing the voting result with
then — 1 values excludingarget(p, k) (lines 29-31). Finally, the result of the diagno-
sis is encoded as ambit vector,result_p[|, where 0 on theth bit means that nodé

has been diagnosed as benign fautty-§et(p, k) = ¢) or symmetric Byzantine faulty
(target(p, k) # i). The result vectoresult_p|] is buffered insend_result_msg_p| | to

be exchanged in the next round (line 37).

In round k£ + 2, the results of the voting and the minority accusation are broadcast
(EXCV phase). This phase can be combined with the EXC phase of the next protocol
execution by adding the-bit diagnosis data to the local syndrome. Each node collects
diagnosis results from nodes including itself, to construct a result matrix (lines 46-49).

Finally, in the DET phase, the node obtains the status for nau¢he health vector,
holi], by computing a bitwise AND of all received-bit results in theith column of the
result matrix, i.e.result_matriz[|[i] (line 55). After health vectorv is calculated, the
set of active nodes is updated to the return value of funatj@fateCounter(hv), which

is deterministic.

60

LIGHTWEIGHT MEMBERSHIP PROTOCOL CHAPTERDS.

Algorithm 2: Nodep voting sharing membership process in roind

1
2
3

© o N o g b

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
a1

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

/Il EVA Phase
/l'local syndrome evaluation
fori«—1,...,ndo
Isg—1-i[1,...,n] < receive_lsy_1-msg-i[l,...,n];
if Isy—1-[1,...,n] = @ then // no received message
sk _pli] < 0;
else
Isp-pli] < 1;
endif

/l'local syndrome buffering to be sent in rouhd- 1
send_lsp_msgp[l,...,n] — lsgp[l,...,n];

/Il EXC Phase
/l'local syndrome exchange and local syndrome matrix construction
fori—1,...,ndo
if lsy_1.[1,...,n] = @ then // no received message
Isg—1-matriz[i][l,...,n] < [e,... €|n;
else
Isg—1-matriz[i|[l,...,n] — lsg_1-[1,...,n];
endif
Isg—1-matrix[i|[i] — —;

/I VT Phase
/I hybrid voting
resulty_q_pltarget(p, k)] — H-maj(lsg—1-matriz[l,... n][target(p, k)]);

/I minority accusation
for i — 1,... target(p, k) — 1,target(p,k) + 1,...,n do
if lsi_1-i[target(p, k)] # resulty_;_p[target(p, k)] then
resulty_1-pli] < 0;
else
resulty_1-pli] — 1;
endif

/I diagnosis result buffering to be sent in round- 1
send_resulty_1-msg-p[l,...,n| — resulty_1p[l,...,n];

/ target node rotation for voting in rourkd+ 1
target(p, k + 1) < rotate(target(p, k));

/I EXCV phase
/I exchange of diagnosis results with respect to rokrd2 computed in round: — 1
fori—1,...,ndo

resulty_o-i[1,...,n] « receive_resulty_o-msg_i[l,...,nl;
if resulty_oi[l,...,n] = @ then // no received message
resulty_g-matrizli][1,...,n] < [e,...,€]n;
else
resulty_o-matrixli|[1,...,n] « resulty_o-i[1,...,nl;
endif
resulty_o-matrix[i|[i] — —;
/I DET phase
fori«—1,...,ndo

hvg_oli] « resulty_o-matriz(1][i] & ... & resulty_o-matriz[n|[d];

/I counter update
active_nodes «— updateCounter(hvg_o[1,...,n]);

return active_nodes;

SECTIONDS.2 VOTING SHARING 61

Thetarget(p, k) must meet two properties for any rouhd
Vp,q:p # q = target(p, k) # target(q, k)

Vp : p # target(p, k)

The first property states that two different nodes are responsible for voting for two differ-
ent nodes. This property ensures that every node in every round has its own unique node
that is responsible for voting for it. The second property signifies that such a voter node
is different from the node diagnosed by that voter node.

Note that in an execution of the proposed protocol that starts from rbundde: is
diagnosed twice: in round + 1 by the voter node, such thatarget(p, k + 1) = i, and
in roundk + 2 by all nodes in the health vector. When necessary, we say that a node is

diagnosed (as faulty or non-faulty) the health vectom the latter case.

5.2.2 Properties

Here, we prove some key properties of voting sharifigese properties hold when there
are no symmetric Byzantine faulty voters. We will discuss how we resolve a problem of
symmetric Byzantine faulty voters in Subsection 5.2.3.

First, consistency and consistent isolation hold straightforwardly.

Theorem 4 ConsistencyThe health vector is agreed by all obedient nodes in each round.
Proof: When a node sends its diagnosis result, the message is either received correctly
by all nodes, lost due to a benign fault, or received incorrectly by all nodes due to a
symmetric Byzantine fault. Hence, the health vector finally obtained is identical in all

obedient nodes.

Theorem 5 Consistent isolationThe set of active nodes is agreed by all obedient nodes

in each round.

62 LIGHTWEIGHT MEMBERSHIP PROTOCOL CHAPTERDS.

Proof: The counter updating functionpunterUpdate(hv), is deterministic. Because of
Theorem 4, health vectar is identical for all obedient nodes. Hence, the active nodes,
which are updated to the output of the function in every round, are always identical for all

obedient nodes.

Correctness and completeness hold in a somewhat weaker form than those in the orig-

inal protocol.

Theorem 6 CorrectnessCorrect nodey is never diagnosed as faulty in the health vector
in roundk + 2 if all nodes are obedient.

Proof: Suppose thatis a correct node and all nodes are obedient. From Lemmas 1 and 2,
q is always diagnosed as correct by any node in rokird1. The diagnosis result sent

by each node in rounkl+ 2 is either correctly broadcast or simply lost, because the node
is obedient. Hencej is never diagnosed as faulty in rouhdt 2 by any nodes in their

health vector.

Theorem 7 Completeness w.r.t benign faulténode ¢ suffers a benign fault in rounk,
theng is diagnosed as faulty in rourkc+ 2 by all obedient nodes if's voter nodep (i.e.,
the node such thatrget(p, k) = ¢) is obedient and suffers no faults in rouhd- 2.

Proof: From Lemma 1, if node suffers a benign fault in round, thengq is always
diagnosed as faulty by voter nogen roundk + 1 if p is obedient. If no faults occur in
the voter node in round + 2, then the voting result is correctly broadcast and occurs in

the health vector of all obedient nodes in the round.

Theorem 8 Completeness w.r.t symmetric Byzantine fa@tgppose that symmetric Byzan-
tine faulty node; sends an erroneous local syndrome in roknd and that the erroneous
syndrome differs from the correct one with respect to the evaluation of nddeen,q is

diagnosed as faulty in rounid+ 2 by all obedient nodes in their health vector if nqgde

SECTIONDS.2 VOTING SHARING 63

such thatarget(p, k) = i, is obedient and suffers no faults in rouhd- 2.

Proof: By using the argument in Lemma 2, if nogesuch thatarget(p, k) = i, is obe-
dient, theny is always diagnosed as faulty pyn the minority accusation in round+ 1.

If no faults occur inp in roundk + 2, then the diagnosis result is correctly broadcast and

reflected in the health vector of all obedient nodes in the round.

These weaker guarantees pose the following two problems:

e False negatives: diagnosing faulty nodes as non-faulty.

e False positives: diagnosing correct nodes as faulty.

These problems are mainly caused by symmetric Byzantine faulty voters. The next sub-

section explains how these problems can be addressed.

5.2.3 Rotating Voters

We propose the use abtating voterso mitigate these two problems. The main idea is to
change the voter node for each node in every round so that a node becomes the voter node
for any other node in any consecutive— 1 rounds. More concretely, nogebecomes
the voter of node + 1 in round 1 and then changes the node it is responsible for (i.e.,
target(p,k))top+ 2,p + 3,...,n,1,2,...,p — 1. This rotation is repeated every— 1
roundsbecause of the conditiotvp : p # target(p, k), defined in Subsection 5.2.1.
Note that the rotating voter scheme ensures the two conditionsrgat(p, k). Function
rotate(target(p, k)) (Algorithm 2, line 40) calculates the target node in the next round
for nodep (target(p, k + 1))) based on these conditions.

By means of rotating voters and the design of the algorithm for the counter updating

function, counterUpdate(hv), the two problems can be mitigated as follows.

64 LIGHTWEIGHT MEMBERSHIP PROTOCOL CHAPTERDS.

A false negative with respect to nog@ccurs if all nodes that should be able to diag-
noseq as faulty happen to be simultaneously faulty in the same rouRdtating voters
ensure that any node always becomes a voter for any other node in every conseedtive
rounds. Thus, ify suffers faults intermittently or permanently, it is safely diagnosed as
faulty by correct nodés

The case of false positives is trickier than that of false negatives because a symmetric
Byzantine voter can repeatedly produce incorrect diagnosis results for any correct nodes.
Therefore, if the counter updating function simply counted the times when each node was
diagnosed as faulty, this would lead to a rapid and undesirable shrink of the set of active
nodes. A possible solution to this is to offset the effects of incorrect diagnosis with those
of correct ones. This solution can be implemented, e.g., by decreasing the counter if the
node is diagnosed as correct. Another approach could be to use two counters for each

node that represent penalties and rewards in the p-r algorithm proposed in [15].

Figure 5.2 shows the voting sharing protocol with rotating vofers4 nodes If
target(p, k+1) is nodep+ 1 for nodep (1 < p < 3) and node 1 for node 4 in rourid+ 1,
nodep (1 < p < 3) votes on the local syndromes with respect to npdel and node 4
votes on node 1 in round+ 1. In roundk + 2, target(p, k + 2) changes to node + 2
for nodep (p = 1, 2) and node (¢ + 2) mod 4) for nodep (p = 3,4). Nodep broadcasts
n-bit results consisting of one bit voting result airget(p, k + 1) andn — 1-bit result
of the minority accusation executed in rouhd- 1 (Algorithm 2, lines 26-33). Note that
in roundk + 2, along with thesex-bit results, every node sends théit local syndrome
evaluated in round + 1. Therefore, the required communication bandwidth in the voting

sharing protocol i2n x n bits.

*A node responsible for diagnosis of nogend nodes that diagnose nogeas symmetric Byzantine

faulty by using the minority accusation can diagnose npds faulty.
fEven though there might be cases wheoes not suffer faults only during voting by correct voters,

we assume this probability to be quite low.

SECTIONDS.2 VOTING SHARING 65

Round k+1 Round k+2
Local Syndrome Matrix Local Syndrome Matrix
f Node 1 Node 2 Node 3 Node 4 B Node 2 Node 3 Node 4
rom Node } Status Status Status Status Status Status
f Node 2 Node 1 R Node 3 Node 4 Node 1 R Node 3 Node 4
rom Node Status Status Status Status Status Status
Node 1 Node 2 Node 4 Node 1 Node 2 Node 4
from Node 3 Status Status) Status Status Status - Status
from Node 4 Node 1 Node 2 Node 3 B Node 1 Node 2 Node 3
Status Status Status Status Status Status
v v v v
:][]
Results of Results of
ode 2 Status and 1 1 Node 3 Status and
- Minority Accusation Minority Accusation

Results of Results of
Node 4 Status and Node 1 Status and
Minority Accusation

Minority Accusation
3 4 i 3 4|
% i % ¥
Voting on target (4, k+1), i.e., Node 1 Voting on target (4, k+2), i.e., Node 2

Figure 5.2: Voting sharing protocol with rotating voters

5.2.4 Experiment Results

This section presents the results we obtained from our experiment. We developed a pro-
totype system that was equipped with four to eight nodes. Each node was equipped with

a 60 MHz CPU.

The results are summarized in Table 5.1. The row “Voting” indicates the time required
for 1) calculating a health vector (DET phase) in the original membership protocol, and
that for 2) hybrid voting of the target node (VT phase) and calculating a health vector
(DET phase) in the voting sharing protocol. The row “All” indicates the total time used
for the membership service including the execution time to receive and send message

frames.

Although various processing overheads such as task switching are added to the pure
voting calculation, which is theoretically reduced by a factor of the number of nodes, the

time to execute the voting process in the voting sharing is reduced by approximately 60%

66 LIGHTWEIGHT MEMBERSHIP PROTOCOL CHAPTERDS.

Table 5.1: Comparison of execution time in original and voting sharing protocols

Original Voting sharing

Number of nodes 4 6 8 4 6 8

voting (us) | 16.06 26.72 34.60 10.22 12.85 14.60

All (us) 86.42 133.43 181.1782.19 121.46 161.31

compared with the original protocol for eight nodes. The total execution time for the
membership service is decreased by approximately 10%, which is substantially effective

for industrial embedded systems with extremely limited hardware resources.

5.3 Clustering

Then nodes in the clustering protocol are logically divided intt: clusters, where each
cluster consists af nodes, as shown in Figure 5.3. Even though we assume ttaat be
divided byc for simplicity in this example, the following discussion can also be applied
to systems that have nodes not dividable by.

The underlying concept of this protocol is that ngdeansmits a local syndronanly

with respect to nodewithin the cluster to which nodg belongsto all the other nodes

Cluster1 Cluster2 Clusternic

...

Figure 5.3: Clustering of nodes

SECTION 5.3 CLUSTERING 67

in the system. The data size of the transmitted local syndrome is thus reduced from
to ¢ bits, which reduces the communication bandwidth as well as the computation cost

compared with the original protocol.

5.3.1 Protocol

The execution of the clustering protocol requires two rounds to identify the node status,
which is the same as the original protocol. Figure 5.4 indicates a local syndrome matrix
in each node. The pseudo-code of the process in the clustering protocol executed in each
nodep in roundk is also described in Algorithm 3. As explained in Subsection 3.3.1, we
definein formationy _pli, . . ., j] asin formation on statuses with respect to from nade
to nodej in roundk computed by nodg. INT(a/b) denotes a quotient af/b.

In round £, a node locally evaluates all the other nodes’ statuses, as is done in the
original protocol (EVA phase).

Then, the local syndrome expressing errors observed in rbanelbroadcast in round
k + 1, just as is done in the original protocol (EXC phase). Unlike what is done in the
previous two approaches, if noges a member of cluster, it sends a local syndrome
with respect to nodes within cluster (Algorithm 3, lines 15-16). In the clustering pro-
tocol, the bit for node itself in the local syndrome has a dedicated function, which will
be discussed in Subsection 5.3.3.

In the DET phase, nodecalculates the status of nodél < : < n) by hybrid voting
on the local syndromes sent from the nodes in the same cluster to which heltegs
(line 35). The minority accusation is also performed for each cluster (lines 42-43), as is
done in the original protocolThus, each node generates health vektofor all nodes
in the system by the end of rourid+ 1. Finally, a counter is handled by computing
updateCounter(hv) and the set of active nodes is updated like the other two protocols.

Every node in this protocol hasx ¢ bits of local syndromes for clustet. Since there

68

LIGHTWEIGHT MEMBERSHIP PROTOCOL

CHAPTERDS.

Local Syndrome
Evaluated by Node 1

Local Syndrome
Evaluated by Node 2

Local Syndrome
Evaluated by Node ¢

Local Syndrome
Evaluated by Node c+1

Local Syndrome
Evaluated by Node c+2

Local Syndrome
Evaluated by Node 2¢

Local Syndrome
Evaluated by Node n-c+1

Local Syndrome
Evaluated by Node n-c+2

Local Syndrome
Evaluated by Node n

Health Vector

[====- g—— ===
Self- Node 2 Node ¢ .
Accusation] Status Status Computation and
Node 1 Self- Node ¢ communication bandwidth gain
Status fAccusation Status
. . [.
Node 1 Node 2 Self-
Status Status Accusation g = = = = =
Fr==r=—"==-"" Self- Nodec+2 | | Node2c
Accusation| Status Status
Node c+1 Self- .| Node2c
Status |Accusation Status
- 1 - 5
. 1 . . . n bits
Nodec+1] Nodec+2 |, , ., Self-
Status Status Accusation
I ——— cbits
.)) Self- Nodern-c+2f [Noden
Voting Voting Voting Accusation| Status Status
Node n-c+1 Self- Noden
cbits Status |Accusation Status
. 1 . .
Node n-c+1|Node n-c+2{, , , Self-
Status Status Accusation
A ———
\
nbits
Node 1 Node 2 Node c+1 Node n-c+1
Status Status Status Status

Figure 5.4: Local syndrome matrix in clustering protocol

aren/c clusters in the system, we can reduce the local syndrome matrix ta.onfybits,

which reduces the communication bandwidth and the execution time for the voting pro-

cess by a factor of/n compared with the original membership protocol. The shadowed

area in Figure 5.4 represents the gain in computation and communication bandwidth.

5.3.2 Properties

Here, we prove four key properties of the clustering protocol. All the four properties are

straightforwardly derived from the lemmas of the original protocol if the fault condition

(3.1) is modified as follows:

2s+b+1<c

wherec is the number of nodes in a cluster.

(5.1)

SECTION 5.3 CLUSTERING 69

Theorem 9 CorrectnessCorrect node; is never diagnosed as faulty in the health vector
in roundk + 1 if all nodes are obedient.

Proof: Suppose thatis a correct node and all nodes are obedient. From Lemmas 1 and 2,
q is always diagnosed as correct by any node inside and outsidkister in round: + 1

if n is substituted with: in the discussion of Lemma 1.

Theorem 10 CompletenessA faulty node that suffers a benign fault in rouhdr sends
an erroneous local syndrome in rouhd- 1 is always diagnosed as faulty in the health
vector of all obedient nodes in rouidi- 1.

Proof: Whenever faulty node is benign faulty or symmetric Byzantine faultyjs diag-
nosed as faulty by any node inside and outsgidecluster because of Lemmas 1 and 2 if

n is substituted withe: in the discussion of Lemma 1.

Theorem 11 Consistency The health vector is agreed by all obedient nodes in each
round.
Proof: Because of Theorems 9 and 10, the set of nodes identified as correct or faulty in

the health vector is agreed by all obedient nodes. Hence, the theorem holds.

Theorem 12 Consistent isolationThe set of active nodes is agreed by all obedient nodes
in each round.

Proof: Let hv denote the health vector obtained by an obedient node. Because of Theo-
rem 11,hv is agreed by all obedient nodes. Since updating funatjefuteCounter is

deterministic, its outputpdateCounter(hv) is also agreed by all obedient nodes.

70

LIGHTWEIGHT MEMBERSHIP PROTOCOL CHAPTERDS.

Algorithm 3: Nodep clustering membership process in round

© o N o 0 b~ W N P

W W W W wWN NN NN DN NN NDN R PR R R R R R R R
A W N P O ©OW 0 N O 00 & W N PP O O 0 N O 00 b W N P O

35
36
37
38
39
40
41

42
43
44

45
46
47
48
49
50
51
52
53
54
55
56
57
58

constu = INT(p/c);

/l EVA Phase
/l'local syndrome evaluation
fori«—1,...,ndo
v =INT(i/c);
Isg—1-ifc-v+1,...,c- (v+1)] « receivelsy_1-msg_ifc-v+1,...,c- (v+1)];
if lsp—1[c-v+1,...,¢-(v+1)] = & then // no received message
ls-pli] < 0;
else
Isk-pli] — 1;
endif

/l'local syndrome buffering to be sent in rouhd- 1
form«—c-u+1,....p—1,p+1,...,¢- (u+ 1) do // wrt. nodes within node’s cluster
send_lsy_msg_p[m] < lsi_p[m];

/Il EXC Phase
/l'local syndrome exchange and local syndrome matrix construction
fori—1,...,ndo

v=1INT(i/c);

if isp_1-ifc-v+1,...,¢-(v+1)] = &then // no received message
Isg—1-matrizlillc-v+1,...,c- (v+1)] < [&,...,&le

else

Isg—1-matrizfillc-v+1,...,c- (v+1)] — lsp_1-ifc-v+1,...,¢- (v+1)];
endif

/I DET Phase
/I hybrid voting
fori—1,...,ndo
v =1INT(i/c);
if Isk—1-matriz[i][i] = 0 then
hvg_1[i] < 0; sa < i /l result of self-accusation

else
Isp_1-matriz[i][i] — —; hvg_1[i] — H-maj(lsg_1-matrizlc-v+1,...,c- (v+ D][]);
endif
/I minority accusation
fori«—1,...,sa —1,sa+1,...,ndo
v =INT(i/c);

forj—c-v+1,...,¢c-(v+1)Aj+# sado
if lskfl,i[j] 7é iL’kal[j] then
hkal[i] «— 0;
else

hvg—1[i] < ilvk_l[i];
endif

/I self-accusation
send_lsp-msg_plp] — 1;
fori—1,...,c-u,c-(u+1)+1,...,ndo // wrt. nodes outside nodes cluster
if hog—1[i] # 0 A (Isg—1-p[i] # hvk_1]i]) then
send_lsp-msg_p[p] < 0;
endif

/I counter update
active_nodes — updateCounter(hvg_1[1,...,n]);

return active_nodes;

SECTION 5.3 CLUSTERING 71

5.3.3 Self-Accusation

Although all the properties of the original protocol also hold in the clustering protocol, a
latent symmetric Byzantine faulty node cannot be diagnosed in some cases. This is be-
cause a node sends a local syndrome with respect to nodes only within its cluster. Suppose
that latent symmetric Byzantine faulty nogeind correct node belong to clustei and

j (i # 7) respectively. Even if the local syndrome of nqddiffers from health vectohv

in the ¢th position, which should be 1, the other nodes except for pada never accuse

nodep since node cannot broadcast the local syndrome with respect to pode

Figure 5.5 indicates this case, where eight nodes are divided into two clusters con-
sisting of four nodes. We assume that node 7 belonging to cluster 2 could not receive a
message sent from node 3 in cluster 1 because of a receiver fault, while the other nodes in
cluster 1 could correctly receive it. Node 7 in this case receives local syndromes “1111”
from all the nodes in cluster 1 and calculates the health vector of the nodes in cluster 1 as
“1111". However, as node 7 could not receive a message from node 3, the local syndrome
on cluster 1 evaluated by node 7 is “1101”, which is different from that of the health

vector.

Node 7 is not a symmetric Byzantine faulty node by definition because it does not

send erroneous messages. However, this case might cause adverse situations in practical

Cluster 1 In Node 7

M Local syndrome on Cluster 1 from Node 1: 1111
Local syndrome on Cluster 1 from Node 2: 1111
! Local syndrome on Cluster 1 from Node 3: - - - -
T AN ! Local syndrome on Cluster 1 from Node 4: 1111

voting
Cluster2 @
5 Health Vector on Cluster 1: 1111

PO compare

N e e m e e mmmmm——mmm——— ’ Local Syndrome on Cluster 1: 1101

Figure 5.5: Example of self-accusation

72 LIGHTWEIGHT MEMBERSHIP PROTOCOL CHAPTERDS.

control systems. Suppose that node 7 controls some actuator based on control target
data calculated in node 3’s control logic. Node 3 then continues to execute control logic
without noticing that the control target data have not been received by nade node 3
cannot switch to the backup control function.

A diagonal element of the local syndrome matrix is used as a self-accusation bit to
solve this problem, as shown in Figure 5.4. In the DET phase in réund, with respect
to each node, nodep is responsible for checking whether the local syndrome evaluated
by p agrees with the health vector calculated by using the local syndromes from the nodes
of ¢’'s cluster(Algorithm 3, lines 50-51) If not, nodep accuses itself by setting the self-
accusation bit in its local syndrome to “faulty”, i.e.(lthe 52).

The self-accusation result is broadcast in rolire? to all nodes in the systenthus,
all nodes recognize that nogeuffered a latent symmetric Byzantine fault in rounand
set thepth bit in the health vector to 0 (lines 32-33Note that hybrid voting is executed
only with respect to nodes which are not self-accused (line 8&)reover, node has
to execute self-accusation only with respect to nodes whose bits in the health vector are
correct in this extended protocfline 51), otherwise node® may have to set the self-
accusation bit to “faulty” even though nogs correct, which will further be discussed
in Section 6.5.

Due to the self-accusation mechanism, node 3 in Figure 5.5 can switch the normal

control mode to the backup control mode in which node 7 cannot control the actuator.

fAlthough the actual Byzantine faulty node may not set the self-accusation bit to 0, it will immediately
be accused by nodes within its cluster with the original minority accusation mechanism, because such a

Byzantine faulty node usually sends a local syndrome with random values.

SECTION5.4 DISCUSSION 73

5.4 Discussion

This section summarizes advantages and drawbacks of the three proposed membership
protocols of original, voting sharing, and clustering. Table 5.2 compares the three pro-
tocols in terms of five featurestiagnosis accuracy, tolerable number of faults, computa-
tional overhead, required communication bandwidth, and diagnosis lat&fecassume

that the computational overhead mostly stems from voting calculations and estimate this
from the data size of the local syndromes to be voted on although the actual execution

time depends on the software implementation.

The general characteristics indicate that there is a tradeoff between the computa-
tional overhead and the diagnosis accuracy. Although the cost of the lightweight pro-
tocols involves small degradation in diagnosis accuracy, the computational overhead can
be substantially reduced. However, degradation in diagnosis accuracy can be mitigated
with additional mechanisms such as rotating voters, counter update algorithms, and self-
accusation, as discussed in Subsections 5.2.3 and $18&3Irawbacks of the lightweight
protocols also include the increase in the required communication bandwidth and diag-
nosis latency in the voting sharing protocol, and the decrease in the tolerable number of

faults in the clustering protocol.

The required communication bandwidth increases in the voting sharing because every
node sends the-bit voting and minority accusation results in addition to thbit local

syndrome.

We further analyze the degradation of diagnosis latency in the voting sharing. As
shown in Figure 5.1, the diagnosis latency is three communication rounds if voters are
non-faulty. However, if votep suffers either benign or symmetric Byzantine fault in
roundk and the fault lasts permanently, the correct diagnostic restidt-gét(p, k) cannot

be sent in round + 2, and thus the diagnosis latency increases. The latency increases by

74

LIGHTWEIGHT MEMBERSHIP PROTOCOL

Table 5.2: Comparison of three proposed membership protocols

Protocols o)))
Original Voting sharing Clustering
Features
N ++
Correctness and . .
4 In consideration of
completeness latent Byzantine
Diagnosis Correctness, degrade
completeness,
accuracy F++

and consistency
properties hold

w/ rotating voters
and counter update
algorithm

+++
w/ self-accusation
for latent Byzantine

Tolerable number

+++

+++
n>2s+b+1

+

of faults n>2s+b+1 (w/ additional c>2s+hb+1
mechanisms)
; +++
Compu;atlczjnal o +2 O(n) + hvcalc. in O++
overhea (n?) DET phase (cn)
Required +
communication ++ 2n? (results of +++
bandwidth n? voting and minority ch
(bits) accusation added)
Diagnosis et + it
latency 5 max:s+b+3 5
(rounds) min: 3

CHAPTERDS.

one round per one faulty voter, while once the correct voter appears, the correct voting
result of the target node is guaranteed to be sent within three rounds from Theorems 6, 7,
and 8. Therefore, the worst case happens when voters responsible for voting on the same

target node continuously fail in multiple rounds.

From the above discussion,tiirget(p, k) is correct,s + b faulty nodes can contin-
uously be voters fotarget(p, k), wheres is the number of symmetric Byzantine faulty
nodes and is the number of benign faulty nodes, and thus the maximum latency to iden-
tify the status ofarget(p, k) as correctis + b + 3. On the other hand, ffarget(p, k) is
either benign or symmetric Byzantine faultyt+ b — 1 faulty nodes can continuously be

voters fortarget(p, k), and thus the latency is+ b + 2.

In the clustering protocol, the tolerable number of faults does not dependdaty,

SECTION5.4 DISCUSSION 75

which means that fault tolerance cannot be improved if we increase the number of nodes
in the system, in contrast to the original and the voting sharing protocols. In other words,
the original and the voting sharing protocols can tolerate more faults than the clustering
protocol ifn is the same and > 2¢. However, the clustering protocol is a well-balanced
protocol when the system consists of large number of nodes, e.g., equal to or more than 8
or 10 nodes and the condition of the number of faults is not so severes e<g), b = 2

ors=1,b=1.

SECTION6.1 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS 77

CHAPTER 6

FORMAL MODEL OF

TIME -TRIGGERED SYSTEMS

6.1 Introduction

The design of safety-critical systems entails ensuring the predictability of their behavior
and their overall correctness. Thme-triggered(TT) paradigm has emerged as a viable
concept to implement safety-critical systems, with implementations such as TTP/C [6],
TT-Ethernet [7], FlexRay [5], or SAFEDbus [8] actually deployed in the avionic and auto-
motive fields. The use ddormal methodss increasingly being advocated to verify general
safety-critical systems (e.g., [17]). However, it has been reported in previous work [18,19]
that the correctness of high-level applications for TT systems does not directly imply
correctness in their implementation. Consequently, formal techniques dedicated to time-

triggered systems are needed especially given their increasing deployment.

Although results on successful formal analyses of TT systems do exist, they present
specific solutions (e.g., [18—20]) where modeling patterns can only partially be re-used in

new projects. Itis generally difficult in industry to apply formal methods to the develop-

78 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

Safety-critical Non-safety-critical
applications applications

Core safety-critical services

Node 1 Node 2 s Node N

Consistency-abstraction layer

Time-triggered communication

Unspecified behavior (faults)

Shared communication medium

Figure 6.1: Scheme of TT systems

ment processes of mass production. Software engineers rarely design formal models of
their system or software from scratch. Therefore, we propose a generalized customizable
template model for TT applications that is not restricted to any dedicated implementation
and that can be easily used also by engineers who are not specialists in formal methods.

Our model is an executable specification of a system that (a) not only enables verifi-
cation but, (b) through simulating the system, it can also guide the deployment of appli-
cations, and (c) the effective generation of test suites.

To establish the context and contributions in this chapter, we provide a brief overview

of TT systems, discuss the motivation, and highlight our proposed solutions.

Overview of system

Figure 6.1 outlines our model of TT architecture that follows the general view of TT
systems [45] and augments it with a consistency abstraction layer [18, 47]. This model
is generic and encompasses the one described in Section 3.2. User applications and core
services are implemented by jobs with each of them running on one or more nodes. The

actions of the system are triggered as time passes. The execution of jobs in the host nodes

SECTIONG6.1 INTRODUCTION 79

is scheduled at design time to guarantee predictability. Nodes communicate with one
another using a shared bus where a communication controller grants write access to the
nodes in a round-robin manner and where receiver nodes can read the bus when messages
are sent.

Because the system executes safety-critical applications, our model provides core
safety-critical services such as diagnosis or a membership protocol [15,46]. In this proto-
col, one of the replicated jobs is executed in every node. Each job exchanges a local view
on the status of nodes within the system and determines whether there are failed nodes
within the system based on a majority vote of the exchanged local views. Inconsistency
in the freshness of the sent and received messages should be avoided in such a proto-
col. This mismatch can be tackled by buffering the messages to delay operations [18,47],
whose functionality is implemented as a consistency-abstraction layer that will be dis-
cussed later in more detail. Our model also has to incorporate faults at different levels of

the architecture to verify fault-tolerance of the system.

Motivation

We seek a unified and formal treatment of general TT systems to guide key system de-
sign tasks such d@ask schedulingest case generatigandverificationover user-guided
applications and system configuration scenarios. Consequently, users should be able to
customize the general model to describe specific applications while ensuring the required

levels of system assurance.

Solutions

Deductive reasoning (e.g., theorem proving [17]) is a powerful tool to verify the complex
properties of even infinite systems; however, it cannot directly be applied to simulate the

system to find certain execution paths (e.g., counterexamples and test cases). Therefore,

80 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

we propose the use of an executable system specification to provide further features be-
sides verification. Since our approach uses the same model to perform different tasks of
design and verification, we do not need to prove conformance between different repre-

sentations. Our model is easy-to-understand as it maps each component of the high-level
model (see Figure 6.1) into a syntactic module of the applied formal language. Users only

need to tailor corresponding modules to customize the general model.

Our three overall contributions in this chapter are:

e We present aexecutabldormal model of general TT systems. The model is in-
tuitive and easilycustomizabldor TT operations and the required classes of faults
due to itsmodular structure. We use the abstraction of discrete time scales that

directly stems from the assumption that the system is synchronous.

e We present grototype implementatioof the general model by using SAL lan-

guage.

e \We demonstrate the usability of our prototype by utilizing the SAL tool suite to
carry outverification effectivedeploymentandtest generatiomased on the same

model in a case study.

6.2 Overview of TT Systems

This section defines TT systems [6, 45] and a general class of faults to expand the TT

communication and fault models discussed in Section 3.2 to more generic ones.

6.2.1 Basic Concepts and Definitions

A system consists aV nodeswith unique IDs{1, ..., N}. Each node hosts one or more

jobs that use the local resources of the node when executed. Jobs communicate with

SECTIONG6.2 OVERVIEW OF TT SYSTEMS 81

> time
Round k Round k+1
Slot1 | Siot2 | Siot3 | Siot4 [Siot1 | Siot2 | Siot3 [siot4
job1 job1
Node 1 | ! | | ! |
EXCE e [|
) msg. historys {m;)
ob 2 ob 2
Nogez | L2] Liob2 |
m (k) — ~ [maen]
job3 l msg. history, {m; , m, , ma} J | job3
Node 3
I m(k) | Ima(k+1)|
[job4 job 4
Node 4
[mae) | m,(K)
] Message broadcast based on TDMA schedule [__] Nodejob execution

Figure 6.2: TDMA communication and internal node schedules

one another following a synchronous schedule called TDMA (Time Division Multiple
Access), as can be seen in Figure 6.2. The main idea is that nodes share a communication
bus in a round-robin mannfer Each node is assigned a time window, called a sending
slot, in each TDMAround Nodei sends a message at sending skd other nodes can
receive this message by identifying the sender from the time it is sent. The communication
is time-triggered because the action of sending the message and receiving it is launched
by the time of local clocks. Collision on the bus is avoided by assuming that clocks are
synchronized. Disallowed access to the bus is avoided by so called bus guardians that

physically prevent a faulty node from accessing the bus.

Besides the TDMA communication schedule, each node has itsndemal schedule
which determines when jobs are executed, as shown in Figure 6.2. Both the TDMA
and the internal node schedules are independent of each other in a general model of TT

systems. Both schedules are statically defined when the system is designed.

*Other TT systems, liklame-basedystems [39], use dedicated channels and can be treated as a special

case of our general model.

82 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

6.2.2 Consistency-Abstraction Layer

Fault-tolerance is often achieved by replicating application jobs on different nodes. A
convenient abstraction layer is provided by a mechanism called a read/send alignment
[18, 47], which enables nodes to exchange and compute messages as if there were dedi-
cated links between every pair of nodes and the replicated jobs were executed parallel in
time. This facilitates the development of applications where replicated jobs are assumed
to maintain a common consistent state (e.g., diagnosis [47]). The solution is flexible since

it is able to provide the same abstraction independent of how a replicated job is sched-
uled within the host node. Consequently, even core (transparent) services that should not
assume constrained scheduling can be implemented with this technique. For example, a
low-level diagnostic service can be designed without posing any assumptions\ddewut

the code of the service is executed within a particular node.

Example Inconsistency

Let us demonstrate the need for abstraction through a simple example of a replicated ser-
vice. Assume that replication is achieved through jobs that execute the same deterministic
operation in every round using the same inputs from other jobs sent via messages. Con-
sistency is defined by requiring every replica job to have the same local state in every
round after execution. The main problem in TT systems is thatréshnes®f data sent

or processed by different replicas might be different. For example, in Figure 6.2, repli-
cated job 4 reads messages, m», andms sent in the current round from nodes 1, 2,

and 3 respectively. However, job 3 can read only one fresh messagénconsistency

can arise in this way in rounk since jobs 3 and 4 update their local states based on dif-
ferent message histories. Node scheduling also determines when the message calculated
by a job can actually be sent. Freshness now means whether a message can be sent in the

TDMA round when itis calculated. For example, messageandm, contain the results

SECTIONG6.2 OVERVIEW OF TT SYSTEMS 83

calculated in the previous round as the job execution of the respective node occurs after or
during the assigned sending slot. Nodes 2 and 3, on the other hand, can send fresh mes-
sagesn, andms in the current round since both jobs are completed before the sending
slots of the hosting nodes. As a result, messages that are sent in the same TDMA round
by different nodes might refer to different TDMA rounds. This can cause inconsistency,

if, e.g., nodes want to agree on a view of the system regarding the time period of a round

(e.g., diagnosis or membership [46,47]).

Read and Send Alignment

We useread and send alignmefit8, 47] to rectify the previous inconsistencies and pro-

vide it as a layer between jobs and the host nodes communicating via TDMA. The read
alignment layer buffers the messages read from the shared bus and computes a consistent
message history in the following way. Assume that a job can read the messages sent by
nodesl, ..., 7 in the current TDMA round. A consistent message history now contains
{my,...,m;} as read in the previous TDMA round, afich; 1, ..., my } as read in the cur-

rent round. The send alignment layer buffers the message calculated by the job and sends
the old message if there is at least one other job that cannot send the newly computed

message. Note that the alignment mechanisms are basegdrari known schedules.

6.2.3 Characterization of Faults

Faults can be manifested in any component of the system. The most obvious classifica-
tion of faults in TT systems distinguishes between communication and application faults.
Application faults happen during the execution of a job and are usually specific to the
application logic. Faults in communication mean that a message other than intended is
sent or received. We define communication faults independent of the application. Note

that the number of faults tolerated by the application is generally based on their degree

84 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

of severity [50]. The three different classes of communication faults are defined with

ascending severity:

- benign fault A fault can be detected locally by every receiver other than the sender,

e.g., missing messagdse to sender crashes.

- symmetric fautt All receivers read the same semantically incorrect but locally un-

detectable messageg., a sender processor fails and improper messages are sent.

- asymmetric faul{or Byzantine [41]): The most severe fault where no assumptions
are made about what message is sent by a faulty sender. We categorize every fault
that is neither benign nor symmetric as Byzanting,, Some receivers receive mes-
sagem and others receive)’ or do not receive any message due to sender faults or

malicious intrusions.

Note that asymmetric faults are added to the fault model defined in Section 3.2. Appli-
cation faults depend on the application itself. The rationale of simultaneously modeling
communication and application faults is the ability to analyze their interplay with respect

to the high-level specifications of the system.

6.3 Customizable Formal Model

This section proposes a template for the formal model of general TT systems, based on
the previous description of TT systems. The model consists of five types of high-level
elements (called modulesjontroller, node alignment TDMA, andfaults The modules

and their interconnections are shown in Figure 6.3. We then detail the module operations
and describe their interfaces. A prototype implementation of the model will be presented

in Section 6.4.

SECTION 6.3 CusTOMIZABLE FORMAL MODEL 85

Module: faults

- node faults, alignment faults, communication faults
- correlated/independent faults

A
app[]| |node_faults[] align_faults[] comm_faults
of
nodes # of
f nodes g
: — i 2 Module: TDMA
Module: node node_job_ | Module: alignment ||{{ write_iface_
schedule, aligned
- job(s) schedule write_iface) -— -TDMA schedule
- application execution <« | -read/send alignment read_iface[J[]
- local state read_iface
. . - A 1
- message generation aligned][] o
= |
[read_iface[J[] b
event ittt ettt ettt ettt ettt i
T wnite_iface ' .
time time time B time

Module: controller

- time control
- auxiliary operations

Figure 6.3: General modular structure of proposed customizable formal model

Controller Module The controller module implements the notiortiofieand distributes
it to the other modules to organize synchronized execution for the system. The controller
adjusts the time and triggers operations in other modules. Such a centralized treatment of

time corresponds to the assumption of synchronized clocks in TT systems.

Node Module The node module has multiple instances, i.e., one for each node. This
module is in charge of executing the hosted jobs when they are scheduled by updating
the local state of each job and handling external events, e.g., reading sensors. We as-
sume that every node hosts a single job to simplify further discussion. The input interface
defines eventsefenj, the current time, and messages received from other nodes. The

messages are accessed by reading a buffer, called a read interface, which stores mes-

86 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

sages read from the bus. If a job uses the consistency abstraction, it reads consistently
aligned messagesge@d iface aligned]); otherwise it simply reads data from the TDMA

bus fead.ifacd]). Jobs send messages by writing them into the write interface, which are
then copied and sent on the bus by the communication controller. The output interface of
the node module contains the job schedualedgjob_schedul@and the messages sent by

a job (write_iface). The former is required by the alignment layer, and the latter is sent

directly on the bus or via alignment.

Alignment Module The alignment module is a consistency abstraction thatimplements
read and send alignment at every node. The input interface contains the current time, the
node’s internal schedule, the message to be sent, and the messages read on the TDMA
bus. Based on this information, the module outputs the aligned message of the node
(write_iface aligned to the TDMA module, and outputs the consistently aligned incom-

ing messagesdad iface aligned]) to the node module.

TDMA Module The TDMA module simulates the TDMA communication bus that
nodes use to send and receive messages. The input interface consists of the current time
and the message to be sent by each node, and the output interface returns the values of
delivered messages at each nodmad.ifacd][]). The returned variable is a matrix of
messages where tli#¢ message in thg' row is the message that nodeeceives from

nodej. Messages are passed between the node and TDMA modules either directly or via

the abstraction layer.

Fault Module The fault module extends the input and output interfaces of normal oper-
ation. As the modeling of correlated faults needs coordination between different system
elements, we assume that faults are implemented by a single module. The fault module

takes the current time as input and injects faults into nodeddfault]), the alignment

SECTION 6.4 | MPLEMENTATION WITH SAL L ANGUAGE 87

layer (@lign_fault]), and the communication buggmmfaults). Since the application
logic is system specific, the list of jobad]) is passed to the fault module to derive

application faults.

The proposed overall model supports reusability and customization for varied TT func-
tionalities and applications. The implementation of the modules can be tailored to the
characteristics of an actual TT system. For example, when we verify fault-tolerance under
different fault conditions within the same TT application, only the fault module needs to
be modified. Note that more simplistic models can be proposed by assuming services like
alignment or membership. For example, it has been demonstrated that the frame-based
model can be used to model general TT systems if alignment is used [18]. In contrast, we
propose a realistic model in this dissertation that can also be used for the design of new

algorithms that exploit the characteristics of the TT architecture.

6.4 Implementation with SAL Language

This section provides a detailed walkthrough of our prototype implementation of the gen-
eral formal model described in Section 6.3. Although we concentrate on safety-critical
applications where jobs are replicated and each job executes the same program, our im-
plementation can easily be customized to describe any TT application.

We used the SAL (Symbolic Analysis Laboratory) language in our prototype imple-
mentation. The SAL language is a formal description language to specify concurrent
systems. The SAL model checker offers various tools based on BDD (Binary Decision
Diagrams) based symbolic and SAT (Satisfiability) based bounded model checkers, and
it also has auxiliary tools including a simulator, a deadlock checker, and an automated

test generator [21]. We focused on SAL language because of its expressiveness and high-

88 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

level constructs and also because a powerful execution environment is attached to the
language [33] that enables direct analysis, which will be explained in Section 6.5. Here,
we describe the implementation of each module and the composition of the modules. We

use a convention where the SAL code in the explanatory text is writtgalics.

Snippet 1: Type declarations, auxiliary functions

1 tt{;N: natural, A: naturgl: CONTEXT =

2 BEGIN

node: TYPE =[1..N];

discrtime: TYPE =[0..N];

fault: TYPE ={nonfaulty, benign, symmetric, asymmetric
fault_.vector: TYPE = ARRAY node OF fault;

error: natural = 2;

message: TYPE =[0..error];

messagearray: TYPE = ARRAY node OF message;

10 function:TYPE =[[messagarray,message, messageessage];

© o N o 0o b~ W

12 Yauxiliary definitions

13 _fault_.counter(v: faultvector,e: fault,sum: [0..N],i: node):[0..N]=
14 IFi=0THEN sum ELSE

15 _fault_ counter(v,e,sum+IF v[i]=e THEN 1 ELSE 0 ENDIF,i-1)
16 ENDIF;

SAL is a typed language and every SAL model begins with the definitions of types
and functions (Snippet 1). Our general system model contdinm®des fodeat line
3), the usual communication faulti&qlt at line 5), and a binary message domain that is
augmented with an error valueméssagat line 8). Time is modeled on a discrete scale
such that each clock tick corresponds to a stlisdrtime at line 4). The main idea is
that the same clock tick triggers all operations in every module that are supposed to be
performed in a corresponding slot, i.e., scheduled jobs are executed (in node), messages
are written/read to/from the bus (in TDMA), messages are buffered (in alignment) and
faults are generated (in faults). A virtual slot is defined (with time value zero) to model
jobs that can read every message from the previous TDMA round and that are ready to
send in the current round from slot 1 on. The correctness of our discrete-time abstraction
stems directly from the assumption that the precision of the applied clock synchronization

algorithm allows agreement in the time slots. Otherwise, the discrete-time model needs

SECTION 6.4 | MPLEMENTATION WITH SAL L ANGUAGE 89

to be justified by users (e.g., [20]). Jobs execute applicatibnefjon at line 10) in

our model, which are functions taking a message received from each node, the current
local state, and an external event as inputs and returning the new value of the local state.
For simplicity, messages, states, and events share the same type. In addition, array types
define a value for each node (emgessagearray at line 9). These basic definitions can be
customized by the user. For example, a simple counter function is defined (lines 13-16),

which returns the number of faults in an array.

Snippet 2: Controller module

17 controller: MODULE =

18 BEGIN

19 INPUT

20 inp_ev.vec: ARRAY node OF message
21 OUTPUT

22 time: discrtime,

23 fun: function,

24 ev.vec: ARRAY node OF message
25 INITIALIZATION

26 time =0;

27 DEFINITION

28 €V.vec = inpev.vec;

29 T[RANSITION

31 time< N --> time’=time + 1;

33 time =N--> time'=0;
34 1
35 ELSE-->

%]
37 END;

SAL is able to directly map the modules of the general model into modules of the
language. SAL modules define local variables, communicate with other modules via in-
put and output variables, initialize local and output variables, and define invariants and
guarded transitions. The controller module (Snippet 2) periodically adjusts the discrete
time, thus modeling an infinite sequence of TDMA rounds. The module also maintains
auxiliary operations in the SAL implementation, like the definition of the replicated ap-
plication logic and the distribution of node events. Assuming that a job is a replicated in-

stance of a safety-critical application, the application logio at line 23) can be defined

90 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

only once and passed on to each node. Sfones not initialized, SAL will arbitrarily
assign a function to it. Events are defined as external input variahlegy vecat line

20), which are passed to the nodes yecat lines 24,28) for processing.

Snippet 3: Alignment module

s alignment[id: node]: MODULE =

39 BEGIN

20 LOCAL

s readiface buffered: messagarray,

22 write_iface buffered: message

43 INPUT

4a time: discrtime,

45 job_sched: disctime,

4 readiface: messagarray,

47 write_iface: message,

48 sendcurrroundvec: ARRAY node OF BOOLEAN
49 OUTPUT

so readiface aligned: messagarray,

51 write_iface aligned: message

52 DEFINITION

s3 write_iface aligned = %send alignment

54 IF FORALL (n: node): sencturr_roundvec[n]

55 THEN write_iface ELSE

56 IF time > job_sched %ob exec. is modeled as atomic event
57 THEN write_iface buffered ELSE writeface

58 ENDIF

59 ENDIF;

e0o readifacealigned = [[n:node] %ead alignment

61 IF n<job_sched

62 THEN readiface buffered[n] ELSE readface[n]

63 ENDIF]

64 INITIALIZATION

es readiface buffered = [[n:node] 0];
66 write_iface buffered = 0;

67 TRANSITION

68 [

69 time>0-->

70 readiface buffered’[time] = readiface[time];

71 write_iface buffered’ =

72 IF time = joh.sched

73 THEN write_iface ELSE writeiface buffered
74 ENDIF;

75 1]
76 ELSE-->
77

]
78 END;

SAL allows the parameterized definition of modules. The parameters need to be de-
fined when the module definitions are used to compose the system. An alignment module
instance (Snippet 3) is defined for each nadeaf line 38). We abstract the job schedule

of a node by defining at which discrete time instant the job starts execijning¢hedat

SECTION 6.4 | MPLEMENTATION WITH SAL L ANGUAGE 91

line 45) and whether the nodes of the system are able to send the latest message in the
current TDMA round $¢endcurr_round vecat line 48). Local buffers are defined to store
values that were sent by other node=afl iface bufferedat line 41) and that were com-

puted by the corresponding noderite_iface bufferedat line 42) in the previous TDMA

round. The former is updated every time a remote node sends a message on the bus (line
70), and the latter only changes when the local node updates its local state and generates
a new message (lines 71-74). Send (lines 53-59) and read alignment (lines 60-63) can be
defined as invariants based on the current and buffered values. Definitions in SAL (labeled
DEFINITION) can be thought of as macros that use the values of other state variables.
Consequently, using SAL definitions is not only a logical way of modeling send and read
alignment but it can also save state space during analysis because definitions do not affect

the state transition relation of the system.

Note that we do not need read and send alignment in a particular solution, when we
design the system such that every node executes a job after the last communication slot in
a communication round, e.g., Slot 4 in Figure 6.2. In the proposed membership protocol
asindicated in Figure 3.4 in Section 3.3, process of the node status determidatigon,
is also executed at the end of each communication round, which can simplify the model

of TT systems.

The node module (Snippet 4) is also parameterized by the identifier of the idcate (
line 79). The job schedule is not initialized, which corresponds to an arbitrary schedule.
This is according to the premise that safety-critical services are not prioritized. Unrealis-
tic cases are ruled out such that a node is only able to send a fresh message in the same
TDMA round if it finishes execution before its sending slot (lines 93:94%ye abstract

that an application is executed instantaneously when a job is scheduled (99-100). For

fWe use SAL'IN operator to non-deterministically assign a value from a set of constrained candidates.

The empty constraint is denoted by the Bool@&®UE

92 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

Snippet 4: Node module

79 node[id: node]: MODULE =

so BEGIN

s1 INPUT

g2 time: discrtime,

83 fun: function,

84 readiface aligned: messagarray,

85 €V: message

ss OUTPUT

g7 write_iface: message,

ss job_sched: disctime,

89 sendcurr_round: BOOLEAN,

90 local state: message

91 INITIALIZATION

92 localstate = 0;

93 sendcurr.round IN{v: BOOLEAN |

94 IF job_sched>=id THEN v = FALSE ELSE TRUE ENDIF;
95 DEFINITION

96 write_iface = localstate;%@ssumption: node sends local state
97 TRANSITION

99 time = joh.sched->

100 local state’ = fun(readface aligned, localstate, ev);
100]

102 ELSE-->

103

]
104 END;

simplicity, it is assumed that the local state is sent as the node’s message (line 96). How-
ever, the message can generally be a function of the local state. Note that the domain of
discrete time instant).. V] cannot cover the full generality of job scheduling. It cannot

be modeled that a node reads everything up to tihecluding the message sent in sipt

and immediately sends a message at fifnel). For that, the model needs to be extended
such that an intermediate time instant is defined betweserd (i + 1) where the appli-

cation computes the message to be sent. As such extensions can affect the complexity of

analysis, their use is only recommended if needed.

The TDMA module is responsible for modeling the communication of messages on
the bus (Snippet 5). Faults are generally defined and propagated by the fault module.
However, our SAL implementation reduces the number of transitions by directly injecting
communication faults into the TDMA module. The output of the module is a matrix

that indicates the value received by nod&om node; after each tick. If nodg is

SECTION 6.4 | MPLEMENTATION WITH SAL L ANGUAGE 93

Snippet 5: TDMA module

105 TDMA: MODULE =

106 BEGIN

107 INPUT

108 time: discrtime,

109 write_iface alignedvec: messagarray,
10 fv_comm: faultvector

111 OUTPUT

112 readifacevec: ARRAY node OF messagaray
13 INITIALIZATION

usa readifacevec = [[n:node] [[m:node] 0]];
115 TRANSITION

116

117 time>0-->

118 readifacevec’ IN {v: ARRAY node OF messagarray|
119 FORALL (i, j: node):

120 IF j /= time THEN v[i][j]=read.iface.vec]i][j] ELSE (
121 IF fv_comm[j] = nonfaulty

122 THEN V[i][j] = write _iface alignedvec]j] ELSE (
123 IF fv_comm[j] = benign

124 THEN V[i][j] = error ELSE (

125 IF fv_comm[j] = symmetric

126 THEN FORALL(k: node):

127 V[i][j] = v[K][j] AND V[i][j] /= error ELSE

128 TRUE

129 ENDIF) ENDIF) ENDIF) ENDIF};

130

(0
131 ELSE-->
132

]
133 END;

not the sender in the slot then the value remains unchanged (line 120). Otherwise, non-
faulty and faulty cases are distinguished. If the sender is non-faulty, the correct value
that is determined by the alignment layer is sent (lines 121-122). In case of a benign
sender, every recipient receivasor (lines 123-124), while symmetric senders distribute
arbitrary but consistent and valid data (lines 125-127). Asymmetric senders can send any
value to any node (line 128).

Our prototype currently implements communication faults (Snippet 6), and other re-
quired system specific faults can be added by users. The number of faults that the applica-
tion is able to tolerate is usually limited. We explain how the number of communication
faults can be tuned in our model using the example of asymmetric faults. The number of

asymmetric faults is initially limited by (lines 142-143), which is an input parameter

IThe definition can be modified such that the faulty sender can read its own message.

94 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

Snippet 6: Commfaults module

13« commfaults: MODULE =

135 BEGIN

136 INPUT

137 time: discrtime

138 OUTPUT

139 fv_comm: faultvector

140 INITIALIZATION

141 %t most A asymmetric faults
12 fv_comm IN{v: fault.vector|
143 _fault_counter(v, asymmetric, 0,)= A};
144 TRANSITION

ws

146 time = 0-->
147 fv_comm’ IN {v: fault.vector|
148 _fault_ counter(v, asymmetric, 0, Nd= A};

149 1]
150 ELSE-->
151

]
152 END;

of the model (line 1).Transient faults, in addition to permanent faults, can be modeled
by periodically re-defining the fault vector at the beginning of each TDMA round (lines
147-148).

Note that model checking is a powerful method to verify the fault-tolerance of the sys-
tem as it exhaustively generates all fault combinations within the given condition. Hence,
we can find design bugs even though the system consists of a large number of nodes and
suffers from complex fault injection.

The previous modules can easily be composed together by wiring the corresponding
input and output variables (see Snippet 7). We use the synchronous composition operator
(|)) so that modules cagxecute transitions in parallel. This means, e.g., that the simulated
execution of an application occurs in parallel when a message is sent on the bus. Recall
that the use of the alignment module is generally optional, although it is “hard-wired” in

this prototype implementation.

SECTION 6.4 IMPLEMENTATION WITH SAL L ANGUAGE

95

Snippet 7: Synchronized composition @f-node system

153 system: MODULE =

154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

controller
| | (WITH INPUT readiface alignedvec:

ARRAY node OF messagarray
WITH INPUT ev.vec: ARRAY node OF message
WITH OUTPUT write iface vec: messagarray
WITH OUTPUT joh.schedvec: ARRAY node OF disctime
WITH OUTPUT sendcurr_roundvec:
ARRAY node OF BOOLEAN
WITH OUTPUT localstatevec: ARRAY node OF message
(I'| (n: node): RENAME
readiface aligned TO readface alignedvec|n],
ev TO evvec[n],
write_iface TO writeiface vec[n],
job_sched TO jobschedvec|n],
sendcurr_round TO sendcurr_roundvecn],
local state TO localtatevec|n]
IN node[n]))

| | (WITH INPUT job_schedvec: ARRAY node OF disctime

WITH INPUT readiface vec:
ARRAY node OF messagerray
WITH INPUT write_iface vec: messagarray
WITH OUTPUT readiface alignedvec:
ARRAY node OF messagarray
WITH OUTPUT write iface alignedvec: messagarray
(I'| (n: node): RENAME
job_sched TO jobschedvec]n],
readiface TO readface vec|n],
write_iface TO writeiface vec[n],
readiface aligned TO readface alignedvec|n],
write_iface aligned TO writeiface alignedvec[n]
IN alignment[n]))

| | commfaults
| | TDMA;

96 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

6.5 Example Use Cases: Design and Verification

We will now explain how the SAL model of TT systems can be used to verify the
properties of the system (Subsection 6.5.1) to find appropriate scheduling of jobs (Sub-
section 6.5.2) and to automatically generate test cases for specific test goals (Subsec-
tion 6.5.3). The different tools we use are all part of the SAL environment; thus, they can
directly work on the model described in the previous section. In every case, the execution
engine is anodel checkethat performs exhaustive simulation of the system model [32].
We only assume that the model checker is able to explore all executions of the system
independently of the actual model checking algorithm. Therefore, we can safely state that
a property is true in a system if the model checker cannot find a counterexample. For sim-
plicity, we assume that the system contains four nodes=(4) if not specified. Note that
setting/V to a constant value is necessary in classical model checking as it is impossible

to explore infinitely numerous states.

6.5.1 \Verification

Task 1: Consistent Replica States Suppose we prove that send and read alignment
indeed implements the abstraction of dedicated communication paths and parallel job ex-
ecution. We consider an abstract application that is implemented asbérary function

taking N messages and the local state as inputs and returning the new local state. All
values are ternary (0, 1 amatror) similarly to the type offun (see Snippet 1). The cor-
rectness of the abstraction can be shown by proving consistency, i.e., replica jobs have the

same state at the end of each rdund

$Auxiliary variableslocal _state _vec[i] (andlocal _state _prev _vec[i]) are introduced to

denote the local state of jakin the current and previous rounds.

SECTION 6.5 EXAMPLE USE CASES. DESIGN AND VERIFICATION 97

consistency: THEOREM
system |- G(time=0 => FORALL(i,j:node):

local_state_vec[i]=local_state vec]j]);

Result 1: Consistency in Symmetric Systems In fact, the SAL model checker could

prove the property unless asymmetric faults were allowed in the system. faimce

never explicitly initialized in the model, SAL assumes that it can be any function and
tries all possibilities. This corresponds to checking #@tsistency is true for any
application expressed bdun. Note that this is a special case of the general theorem that
states that consistency holds for any application with any number of replica nodes [18].
The model checker finds a counterexample if an asymmetric sender distributes different
messages to different nodes that then compute inconsistent local states. This means that
consistency can be proven foA = 0 and a counterexample is foundAf > 0, where

A is the number of asymmetric faulty nodes. In the latter case, consistency can only be

obtained through the use of a Byzantine agreement protocol [41].

Task 2: Proposed Membership Protocol We applied our customizable formal models

to our proposed membership protocols in the next step, including the clustering protocol
explained in Sections 3.3 and 5.3. We redesignaduch that it could execute the mem-
bership protocol in the node module. We impose a fault conditiény 25 + B + 1,

as given in Equation (3.1) in Section 3.2 in the corfaults module, wherévV, S, and

B correspond to the number of nodes in the system, symmetric faulty nodes, and benign
faulty node§. The fault condition in the clustering protocol@s> 25 + B + 1, whereC

is the number of nodes in a cluster.

9In this chapter, capital letters are used to represent the numbers of nodes in the system and faulty nodes.

98 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

Result 2 With SAL BMC (Bounded Model Checker), we could prove twrectness
completenessandconsistencyroperties wheréV = 4,5, 6 in the original membership
protocol even though symmetric faults occurred. The BDD-based SAL SMC (Symbolic
Model Checker) could not prove the properties #or> 4 and we could not obtain results
even with the SAL BMC for more than six nodes because of state explosion.

The SAL BMC could prove these three properties for the clustering protocol for up
to N = 16 andC' = 4, and N = 10 andC = 5 within a few tens of minutes on an
average laptop PC, while the SAL SMC could not prove them for such a large number of
nodes. Even the SAL BMC could not prove the property whewas increased to six,
i.e., N =12 andC = 6, in our current model.

Before the protocol design was fixed, the SAL BMC actually exhibited a counterex-
ample for the correctness property, i.e., a correct node is never diagnosed as faulty by any
obedient nodes. After the counterexample was analyzed, we found a design bug in the
self-accusation mechanism discussed in Subsection 5.3.3.

In the original design, a node resets a self-accusation bit to 0 if its local syndrome
differs from the calculated health vector, as explained in Figure 5.5. This can be specified
in the SAL language as follows, where we defingi] andls _prev[i] asthe health
vector on nodé and the local syndrome denoting whether the message fromirzate

be correctly received in the previous communication round respectively:

IF (EXISTS(i: nodes): hv[i] /= Is_prev[i) THEN 0 ELSE 1 ENDIF;

The model checker found a counterexample, where riagd@ symmetric faulty. All
nodes in this case receive the message from adterectly, i.e. s _prev[j]=1 , al-
though the message is semantically incorrect. In the next round, as discussed in Sec-
tion 3.3, nodgj is determined as faulty by the minority accusation because fisaees-

sage is different from that of the other nodes in ngdeluster. Thushv[j] becomes 0.

SECTION 6.5 EXAMPLE USE CASES. DESIGN AND VERIFICATION 99

However, all nodes outside nogés cluster also have to accuse themselves by the self-
accusation sincav[j] /= Is _prev[j] , although they are non-faulty nodes. This
does not satisfy the correctness property. Therefore, we added a precondition such that
hv[j] /= 0 to execute the self-accusation, and then the correctness property was fi-

nally proven:

IF (EXISTS(i: nodes): hv[i] /= 0 AND hv[i] /= Is_prev[i) THEN 0 ELSE 1 ENDIF;

Discussion Although we observed that it was computationally very expensive to con-
sider all possible fault conditions, we could successfully prove the properties within a few
tens of minutes with the SAL BMC. The proof took approximately 20 minutes running
on a single processor of a dual-core Intel Xeon 5130 at 2 GHz with 4 GBytes of memory.
SAL was installed on a Linux system with kernel version 2.6.17. We found that the BDD-
based SAL SMC turned out to be ineffective to prove the properties as it took a long time
(> 1 hour) to compute the BDD-representation of the model.

The next applications of the model described in the following subsections are based on
finding counterexamples that are in general computationally less complex than complete
verification. This is because only a portion of the state space needs to be explored. In
fact, proving consistency took the most time in our set of experiments.

We found that model checking was helpful especially for communication systems
with a large number of nodes and complex fault conditions, e.g., different kinds of faults
occurred simultaneously because it was very difficult to find bugs in these systems only
through manual verification. However, model abstraction techniqgues may become neces-
sary for more complex systems to avoid state explosion.

On a final note, we only modified the node and the cafamits modules in Task 2,
which means that our customizable generic formal model can effectively be tailored for

various TT applications and easily be handled by software engineers.

100 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

6.5.2 Scheduling of Jobs

Task: Schedule for Reduced Abstraction Delay We now present a proof-of-concept
example of how to use the model checker to find effective scheduling of replicated jobs
within the hosting nodes. We see that the delay induced by alignment abstraction can be
mitigated if all nodes are able to send a message in the same round when the message is
computed. The delay in this case is caused by read alignment and is one TDMA round.
In fact, the model checker can find an appropriate schedule that minimizes these delays.
We achieve this by stating that such a schedule does not exist and the model checker finds
a counterexample that is a required solution. To track the delay between when a message
is sent and when it is processed at a remote node, we extend the domain of messages and
define thafun returns a special valUBPECVIf all input messages are 1. The following
property states that it is never true that the local state in a rouSBECVand the local

state in the previous round is 1 in all nodes:

exist_schedule:

THEOREM system |-
G(NOT(time=0 AND FORALL(i:node):
local_state_prev_vec[i]=1 =>

EXISTS(j:node):local_state vec[j]=SPECV));

Result: Early Scheduled Jobs The property cannot be proven and a counterexample

is provided where four jobs are executed “early”, at slots 0, 0, 1, and 1 respectively. We
can see that this schedule indeed allows every job to send a fresh message (value 1).
Therefore, the overall delay can be reduced in this proof-of-concept example. Note that
the same technique can be used to find appropriate mapping to deploy jobs on nodes even

if more complex constraints are specified.

SECTION 6.5 EXAMPLE USE CASES. DESIGN AND VERIFICATION 101

6.5.3 Test Generation

The idea of automated test generation is to construct a sequence of inputs {estled
case$ that will cause the system under test to exhibit some behavior of interest, called a
test goal Model checkers can be naturally used to generate test cases such that Boolean
trap variablesare defined that are initially false and set to true by the program when
the corresponding test goal is reached. The model checker is instructed to prove that
the trap variables cannot become true; therefore, every counterexample is a valid test
case. However, the straightforward way of doing that can be ineffective. For example,
the strategy of generating one test case for each test goal might be redundant. More
sophisticated techniques leverage the model checker, e.g., by checking for paths that are
extensions (i.e., continuations) of already explored executions [36]. This technique is also
implemented by SAL's ATG (Automated Test Generation) tool that integrates the BMC
and BDD model checkers of SAL by augmenting them with clever techniques required

for effective test generation.

Task: Tests for Specific Message PatternsWe used the ATG tool of SAL to generate

a sequence of events observed by a node that drives the system to a certain state. We
re-definefun suchthat it returnsSSPECVif a node observes an external event of one. Let

the test goal be to reach a state where v&AIRECVis sent on the bus as the message of

the ' node. Therefore, we place the following assignment of trap variigle trap

(newly added) in the TDMA module:

atg_trap’=IF EXISTS(n:node):

read_iface_vec[n][1]=SPECV THEN TRUE
ELSE FALSE ENDIF;

Result: Test Case Found By running SAL ATG, we find that node 1 has observed

event 1 and generaté8PECVbut it could not send it immediately because of the node

102 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

schedule. Therefore, the trap variable only becomes true in the second TDMA round

of the execution path that constitutes the test case. A sequence of events in the SAL
example, containing one event for every node, is returned by the tool for each slot until

the trap variable becomes true.

We have shown how our executable formal specification and trap variables can be
used to support model-based test generation. An important issue concerning testing is the
coverage of the obtained test cases, i.e., whether it is able to exercise the system to the
required extent, which is determined by the coverage metrics. However, a discussion on

test coverage in TT systems is beyond the scope of this dissertation.

6.6 Related Work

Formal methods have been successfully used to verify various TT applications. For exam-
ple, the membership protocol in the TTP/C time-triggered protocol suite was found to be
correct through manual proofs in [11], or automated theorem proving was applied to an-
alyze an agreement protocol in another time-triggered environment [19]. Other work has
used executable formal specifications to model check the startup protocol in TTP/C [20].
It is also possible to specify the system in an intermediate, preferably understandable and
easy-to-read, notation and translate it into the input language of the verification engine
(e.g., [42]). Our prototype implementation omits this intermediate step and specifies the
system directly in the input language of analysis. We argue that the modularity of the
proposed model of TT systems and the resemblance of its structure to a real system fulfill
the role of a precise though intuitive specification. Our approach mainly differs from pre-
vious work in that it proposes a skeleton model of the target systems that can be used as a

template for customized solutions and the specifications need not be created from scratch.

As part of the system integration process, deployment, allocation, and scheduling

SECTIONG6.7 RELATED WORK 103

tasks can be uniformly thought of as restrictions with respect to the unconstrained space of
solutions. Different techniques such as constraint propagation, branch and bound, back-
tracking, or mixed integer programming have been proposed (e.g., [31,38,40]). However,
they require either the development of new computation engines (e.g., written in C [38]
or Java [40]) or the use of existing dedicated engines (e.g., [31]) to solve (or even op-
timize) the constraint problem. Although our method, when used for scheduling, might
be outperformed by other techniques, it uses the same system representation that is used
for other tasks. Therefore, the overall cost of design and analysis can be reduced. If the
constraint problem entails infeasible complexity with our executable formal model, the
application of other techniques is inevitable. However, it is possible that the combination
of our approach with other techniques will enhance quality and performance in finding
the best solution. Investigations into using model checking to integrate the system is part

of our ongoing work.

Testing of distributed systems deals withatto test anchowto test it. Our approach
is related to the former question because we generate test cases as opposed to actually
testing the system. The latter question is nontrivial in distributed systems due to issues
such as interoperability, synchronization, timing, and concurrency. Model-based testing

can support existing solutions to testing distributed systems like [30, 49].

We applied the method of model-based test generation using a model checker [34,44]
to generate tests to validate TT systems. The main idea was to challenge the model
checker to find execution paths in the model of the system that reached specific test goals.
This was done by stating that no such paths exist and the counterexample returned by the
model checker could be directly used as a test case. As an alternative or a supplement to
the model-based approach, requirement-based test-case generation [43,51] can be used,
where tests are generated by only analyzing the requirements. This can be useful if tests

are required to be independent of the unit under test.

104 FORMAL MODEL OF TIME -TRIGGERED SYSTEMS CHAPTERG.

6.7 Summary

We have proposed a formal but intuitive method to support the development of safety-
critical TT systems from design to verification and testing. The solution is general and
the core elements of the method (i.e., system characteristics, application logic, and fault
modes) can be customized by application developers. We have implemented a prototype
model of general safety-critical TT applications in our case study. This model has been
analyzed by model checkers, and simple verification, task scheduling, and test genera-
tion examples have been shown. We have also applied our customizable generic formal
model to real membership protocols for automotive brake-wire systems and demonstrated
that the model can effectively be reused for various TT applications. We used the SAL
language in our implementation, but other executable specification languages such as
NuSMV [48], SystemC [37] could also be applied equally well. However, additional
transformation steps might be needed to translate from the specifications to the language
of the execution engine (e.g., model checking of SystemC codes [35]). The main strength
of our method compared to the previous work is that it provides an all-in-one solution that

can be used for tasks that usually require multiple representations of the system.

SECTION 7.1 CONCLUSION 105

CHAPTER 7

CONCLUSION

7.1 Achievements

This dissertation has focused on safety-critical embedded distributed control systems and
taken emerging automotive X-by-Wire systems, where driving, steering, and braking are
electrically and electronically controlled synthetically, as an example application. Auto-
motive control systems, out of the various embedded control systems, impose particularly
severe restrictions on cost and available hardware resources because of the scale of mass
production. Therefore, the goal of this dissertation is to propose suitable solutions that
can fulfill not only high dependability but also cost-effectiveness for automotive safety-

critical systems.

We have first proposed a novel architecture that incorporates the concept of autonomous
decentralized systems to achieve this goal. This architecture allows all nodes in the sys-
tem including sensor and actuator nodes to obtain the shared information required for
vehicle control through the data field implemented with the communication network and
to autonomously execute backup control if some node in the system fails. Therefore, the

proposed architecture can tolerate the existence of failed nodes and thus does not need

106 CONCLUSION CHAPTERY.

expensive fail-operational nodes with triple or more redundant hardware. This approach
with reduced-redundancy dependability has also been applied to the node level by taking
into consideration the node function. We have proposed a validity check method instead
of dual redundancy to detect faults in fail-silent actuator nodes. Our estimation revealed
that the system cost could be reduced by approximately from 20 to 30% due to the pro-
posed autonomous decentralized architecture and optimal node hardware architecture,

which contributes to a substantial cost reduction for automotive control systems.

Although the autonomous decentralized architecture satisfies competing demands, a
coordination scheme, i.e., an agreement protocol, is required in this architecture to accu-
rately identify failed nodes so that disagreements in the control mode can be avoided. To
resolve this challenge, we have proposed a membership protocol as an agreement protocol

for safety-critical distributed systems.

Each node in the proposed membership protocol locally evaluates the status of other
nodes in the system and exchanges a local view, which we call a local syndrome, with
all nodes. Then, every node identifies the failed node by voting on the exchanged local
syndromes. In contrast to related work, our membership protocol tolerates simultaneous
and non-fail-silent (Byzantine) faults and can flexibly be implemented in time-triggered
systems as a middleware component. In addition, a pipeline-like execution of the protocol
has been proposed to improve real-time capabilities, where a fault detected in a certain
communication round can be identified in the next round. Important properties such as
correctness, completeness, and consistency have been defined and proved by hand for the

proposed membership protocol.

With a widely used time-triggered communication network, i.e., FlexRay, in the auto-
motive industry, we developed a prototype Brake-by-Wire system employing the proposed
autonomous decentralized architecture and membership protocol in a realistic hardware

and software environment for automotive control systems. Although we demonstrated

SECTION 7.1 ACHIEVEMENTS 107

that the prototype system could persevere in practical use, the results obtained from eval-
uating the performance of this prototype system revealed that the computation overhead
for the membership middleware was prohibitively large. The overhead was 5.8% under
conditions where there were six nodes, a communication round of 5 ms, and a 40 MHz
CPU. ltis ideal to assign as much CPU time as possible to control application programs
to achieve better driving performance and safety in automotive systems. Thus, it is not
practically acceptable to spend that much CPU time only for the membership service.
Furthermore, the execution time required for the voting process increases along with the

number of nodes in the system.

We have further proposed novel lightweight membership protocols, i.e., voting sharing
and clustering protocols, to address this problem. The main idea behind voting sharing is
to have each node vote for only one respective node and to share the voting results with
all nodes. In the clustering conceptnodes are logically divided inte/c clusters, where
each cluster consists ohodes. Node sends a local syndrome only with respect to nodes
within the cluster to which nodg belongs to all the other nodes in the system. Proofs
of the same properties as the original protocol have been also done. Both approaches
can reduce the computation overhead for membership, and the clustering protocol can
also decrease the communication bandwidth, compared with the original protocol. Our
experiments revealed that the execution time for the voting process in the voting sharing
protocol was reduced by approximately 60% compared with the original protocol for eight

nodes.

We have investigated advantages and drawbacks of the three proposed membership
protocols in terms of computation and communication overhead, diagnosis latency, and
fault tolerance. Our analysis showed a tradeoff between the overhead and fault toler-
ance. The lightweight protocols incur degradation in diagnosis accuracy in exchange for

the reduction of the computational overhead. However, it can be mitigated with addi-

108 CONCLUSION CHAPTERTY.

tional mechanisms such as rotating voters, counter update algorithm, and self-accusation.
Drawbacks of the lightweight protocols also include the increase in the required commu-
nication bandwidth and diagnosis latency in the voting sharing protocol, and the decrease
in the tolerable number of faults in the clustering protocol. Despite these drawbacks, the
clustering protocol is well-balanced among these three protocols when the system con-
sists of large number of nodes, e.g., equal to or more than 8 or 10 nodes and the fault
condition is not so severe, e.g.= 0,b = 2o0rs = 1,b = 1, wheres is the number of

symmetric Byzantine faulty nodes, afhiés the number of benign faulty nodes.

Finally, we have proposed a customizable formal model of generic time-triggered
systems to support essential system design processes such as task scheduling, test case
generation, and verification. Our model is not restricted to any dedicated implementation
and can easily be used also by industrial practitioners who are not specialists in formal
methods. Because the proposed formal model has a modular architecture, it can be reused
and easily customized, which can reduce the model development costs. Users only need to
tailor corresponding modules to customize the general model. The prototype implemen-
tation of the formal model was carried out with the SAL language. We have demonstrated
the usability of our prototype with the SAL tool suite by presenting use cases of verifica-
tion, task scheduling, and test case generation based on one identical formal model. The
proposed membership protocols were model-checked in a use case of verification, and we

confirmed the design correctness of the protocols.

In conclusion, the overall achievement of the goal in this dissertation is to propose an
autonomous decentralized architecture and membership protocols that can be applied to
actual safety-critical automotive control systems. The key is that the proposed architec-
ture and protocols allow the system to be fail-operational even though it consists of only

inexpensive fail-silent components with limited computational capability.

SECTION 7.2 FUTURE WORK 109

7.2 Future Work

Future research directions include implementation and evaluation of the proposed ap-
proaches in actual products. Additional improvements to the lightweight membership

protocols to mitigate degradation in diagnosis accuracy remains as important outstanding
work. One of the most promising directions is to enhance a counter updating algorithm

for the voting sharing. It is worth considering a system-oriented method to cluster nodes
in the clustering protocol, where, for example, nodes in the same subsystem belong to
an identical cluster, to avoid latent symmetric Byzantine faults. We are also interested in

how we can solve the state explosion problem in model checking. Appropriate solutions
like abstraction techniques will be required to verify fault-tolerance in distributed control

systems with more nodes and more complex fault conditions.

BIBLIOGRAPHY

[1]

[2]

[3]

[4]

[5]

[6]

K. H. Gaubatz, Progress of Automotive Electronics — Trends at Electronic Sys-
tems for Chassis Control, IRroceedings of the 9th International Conference on

Automobil Elektronik2005.

R. C. Hammett and P. S. Babcock, Achieving 1®ependability with Drive-by-
Wire Systems, IrProceedings of SAE 2003 World Congrell®. 2003-01-1290,
2003.

C. Wilwert, Y. Song, F. Simonot-Lion, A. Charlois, and A. Gilberg, Impact of Fault
Tolerance Mechanisms on X-by-Wire System Dependabilitrobceedings of SAE
2004 World CongressNo. 2004-01-0705, 2004.

K. Mori, Autonomous Decentralized Systems: Concept, Data Field Architecture and
Future Trends, IrProceedings of IEEE International Symposium on Autonomous

Decentralized Systemgp. 28-34 (1993).

FlexRay Consortium, FlexRay Communications System, Protocol Specification

Version 3.0.1, 2010.

H. Kopetz and G. Grunsteidl, TTP — A Protocol for Fault Tolerant Real Time Sys-
tems,Computervol. 27, no. 1, pp. 14-23, 1994.

111

112

BIBLIOGRAPHY

[7]

[8]

H. Kopetz et al., The Time-Triggered Ethernet (TTE) Design,Ptaceedings of
International Symposium on Object-Oriented Real-Time Distributed Comppiing

22-23, 2005.

K. Hoyme and K. Driscoll, SAFEbusJEEE Aerospace and Electronic Systems
Magazinevol. 8, no. 3, pp. 34-39, 1993.

[9] AUTOSAR, http://www.autosar.org/, AUTOSAR Specification R4.1.2, 2013.

[10]

[11]

[12]

[13]

[14]

P. D. Ezhilchelvan and R. Lemos, A Robust Group Membership Algorithm for
Distributed Real-Time Systems, Rroceedings of Real-Time Systems Sympqgsium

pp. 173-179, 1990.

G. Bauer and M. Paulitsch, An Investigation of Membership and Clique Avoidance
in TTP/C, InProceedings of Symposium on Reliable Distributed Systemd.18—
124, 2000.

C. Bergenhem and J. Karlsson, A Process Health Status Service for Safety Re-
lated Systems Using TT/ET Communication Scheduling, Ptaceedings of the

14th IEEE Pacific Rim International Symposium on Dependable Compuimg
122-131, 2008.

H. Pfeifer, Formal Verification of the TTP Group Membership Algorithm,Pio-
ceedings of Joint International Conference on Formal Description Techniques for
Distributed Systems and Communication Protocols and Protocol Specification, Test-

ing and Verificationpp. 3—18, 2000.

A. Bouajjani and A. Merceron, Parametric Verification of a Group Membership
Algorithm, Theory and Practice of Logic Programmingpl. 6, no. 3, pp. 321-353,
2006.

BIBLIOGRAPHY 113

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

M. Serafini, P. Bokor, N. Suri, J. Vinter, A. Ademaj, W. Brardtser, F. Tagliab,
and J. Koch, Application-Level Diagnostic and Membership Protocols for Generic
Time-Triggered SystemdEEE Transactions on Dependable and Secure Comput-

ing, vol. 8, no. 2, pp. 177-193, 2011.

K. Sakurai, M. Matsubara, and M. Hoshino, Membership Middleware for Depend-
able and Cost-effective X-by-wire systen®AE International Journal of Passenger

Cars - Electronic and Electrical Systepwol. 1, no. 1, pp. 180-186, 2009.

J. Rushby, Formal Methods and their Role in the Certification of Critical Systems,

TR SRI-CSL-95-1, SRI International, 1995.

P. Bokor et al., Sustaining Property Verification of Synchronous Dependable Proto-
cols over Implementation, IRroceedings of the 10th IEEE High Assurance Systems

Engineering Symposiump. 169-178, 2007.

J. Rushby, Systematic Formal Verification for Fault-Tolerant Time-Triggered Algo-
rithms, IEEE Transactions on Software Engineeringl. 25, no. 5, pp. 651-660,
1999.

W. Steiner et al., Model Checking a Fault-Tolerant Startup Algorithm: From Design
Exploration to Exhaustive Fault Simulation, Rroceedings of IEEE Dependable

Systems and Networkp. 189-198, 2004.

SAL (Symbolic Analysis Laboratory), http://sal.csl.sri.com/.

F. Kitahara, et al., The ATOS Tokyo Metropolitan Area Train Traffic Control Sys-
tem, HITACHI REVIEW vol. 46, no. 2, 1997.

International Standard, ISO 26262-5, Road vehicles — Functional safety —, Part 5:

Product development at the hardware level, Annex D, 2011.

114 BIBLIOGRAPHY

[24] N. Kanekawa, M. Nohmi, Y. Satoh, and H. Satoh, Self-Checking and Fail-Safe LSIs
by Intra-Chip Redundancy, IRroceedings of the 26th International Symposium on

Fault-Tolerant Computingpp. 426—430, 1996.

[25] FlexRay Consortium, FlexRay Communications System, Electrical Physical Layer

Specification, Version 2.1 Revision B, 2006.

[26] P.Lincoln and J. Rushby, A Formally Verified Algorithm for Interactive Consistency
under Hybrid Fault Models, IRroceedings of the 23rd International Symposium on

Fault-Tolerant Computingpp. 402—411, 1993.

[27] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, Byzantine Fault Tolerance,
from Theory to Reality, InProceedings of the 22nd International Conference on

Computer Safety, Reliability, and Secuyipyp. 235-248, 2003.

[28] OSEK VDX, Operating System (Version 2.2.3), 2005.

[29] OSEK VDX, Time-Triggered Operating System (Version 1.0), 2001.

[30] G. A. Alvarez and F. Cristian, Simulation-Based Testing of Communication Proto-
cols for Dependable Embedded Systerdsurnal of Supercomputind.6(1-2), pp.
93-116, 2000.

[31] A. Balogh, A. Pataricza, and J.aRz, Scheduling of Embedded Time-Triggered
Systems, IrProceedings of Workshop on Engineering Fault Tolerant Systpms
44-49, 2007.

[32] E. Clarke, O. Grumberg, and D. Pelédpdel CheckingMIT Press, 2000.

[33] L. de Moura et al., SAL 2, IrProceedings of Computer Aided Verificatiqp.
496-500, 2004.

BIBLIOGRAPHY 115

[34] A. Gargantini and C. L. Heitmeyer, Using Model Checking to Generate Tests from
Requirements Specifications, Rroceedings of European Software Engineering

Conferencepp. 146-162, 1999.

[35] A. Habibiand S. Tahar, An Approach for the Verification of SystemC Designs using
AsmL, In Proceedings of Automated Technology for Verification and Analgpis

69-83, 2005.

[36] G.Hamon, L. de Moura, and J. Rushby, Generating Efficient Test Sets with a Model
Checker, InProceedings of Software Engineering and Formal Methqqs 261—
270, 2004.

[37] Open SystemC Initiative, http://www.systemc.org.

[38] S. Islam and N. Suri, A Multi Variable Optimization Approach for the Design of
Integrated Dependable Real-Time Embedded Systenfspbeedings of Embedded
and Ubiquitous Computingp. 517-530, 2007.

[39] R. M. Kieckhafer et al., The MAFT Architecture for Distributed Fault Tolerance,

IEEE Transactions on Computei37(4), pp. 398—405, 1988.

[40] K. Kuchcinski, Constraints-Driven Scheduling and Resource Assignmagiyl

Transactions on Design Automation of Electronic Sysi&{®, pp. 355-383, 2003.

[41] L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals ProlA€i]

Transactions on Programming Languages and Systé(3, 1982.

[42] S. P. Miller et al., Proving the Shalls, FProceedings of Formal Methods Eurgpe
pp. 75-93, 2003.

116

BIBLIOGRAPHY

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

A. Rajan, M. W. Whalen, and M. P. Heimdahl, Model Validation using Automati-
cally Generated Requirements-Based TestBréceedings of IEEE High Assurance

Systems Engineering Symposjyp. 95-104, 2007.

S. Rayadurgam and M. Heimdahl, Coverage based Test-Case Generation using
Model Checkers, IfProceedings of Workshop on Engineering of Computer Based

Systemspp. 83-91, 2001.

J. Rushby, Bus Architectures for Safety-Critical Embedded Systen®spbeedings
of Embedded Softwarpp. 306-323, 2001.

K. Sakurai, M. Hoshino, Y. Morita, and Y. Takahashi, Design and Implementation
of Middleware for Network Centric X-by-Wire Systems, Rroceedings of SAE
2006 World CongressNo. 2006-01-1326, 2006.

M. Serafini et al., A Tunable Add-On Diagnostic Protocol for Time Triggered Sys-
tems, InProceedings of IEEE Dependable Systems and Netwpiksl64-174,
2007.

NuSMV Toolset, http://nusmv.irst.itc.it/.

W. Tsai et al., Scenario-based Object-Oriented Test Frameworks for Testing Dis-
tributed Systems, IProceedings of Future Trends of Distributed Computing Sys-
tems pp. 288-294, 2003.

C. J. Walter, M. Hugue, and N. Suri, Continual On-Line Diagnosis of Hybrid Faults,
In Proceedings of the 4th Conference on Dependable Computing for Critical Appli-

cations pp. 233-249, 1994.

BIBLIOGRAPHY 117

[51] M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller, Coverage Metrics for
Requirements-based Testing, Rroceedings of Software Testing and Analypjs

25-36, 2006.

