
Title
An Autonomous Decentralized Architecture with
Agreement Protocols for Safety-Critical Embedded
Distributed Control Systems

Author(s) 櫻井, 康平

Citation 大阪大学, 2014, 博士論文

Version Type VoR

URL https://doi.org/10.18910/34575

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

An Autonomous Decentralized Architecture

with Agreement Protocols for Safety-Critical

Embedded Distributed Control Systems

Submitted to

Graduate School of Information Science and Technology

Osaka University

January 2014

Kohei SAKURAI

ABSTRACT

Embedded control systems are widely equipped in current industrial products such as

home appliances, automobiles, trains, and power plants. They need to have hard real-time

and mission-critical capabilities, and to be more severely restricted in cost and available

hardware resources than computer systems in the information technology industry.

Automotive control systems, out of the various embedded control systems, impose

particularly severe restrictions on the cost because of the scale of mass production, while

recent advances in electronic control using embedded controllers should enable more so-

phisticated vehicle control systems that are aimed toward autonomous driving. One of the

emerging systems is an X-by-Wire system, where driving, steering, and braking are elec-

trically and electronically controlled synthetically, that further enhances vehicle driving

performance and safety. Since control of acceleration, steering, and braking has a great

influence on the safe operation of vehicles, X-by-Wire systems need to be extremely de-

pendable. Various controllers, sensors, and actuators in this system cooperate with one

another through a communication network. We take X-by-Wire systems as an example

application of safety-critical embedded distributed control systems in this dissertation.

A technical challenge to X-by-Wire systems is that they are restricted by limited costs

in mass production to achieve fault-tolerance. Therefore, the goal of this dissertation is

to propose suitable solutions that can satisfy not only high dependability but also cost-

effectiveness for automotive safety-critical distributed control systems.

i

ii ABSTRACT

We first propose a novel architecture that incorporates the concept of autonomous

decentralized systems to accomplish this goal. This architecture allows all nodes in the

system including sensor and actuator nodes to obtain the shared information required

for vehicle control through the communication network and to autonomously execute

backup control if some node in the system fails. Therefore, the proposed architecture

can be fail-operational even though it does not have expensive fail-operational nodes with

redundant hardware. This approach to dependability through reduced-redundancy is also

applied to the node level by taking into consideration the node function. We propose a

validity check method instead of dual redundancy to detect faults in actuator nodes. We

demonstrate that the proposed system and node level architectures can be applied to actual

automotive brake and steering control systems and that they satisfy both requirements of

cost-effectiveness and dependability. Our estimation reveals that the system cost can be

reduced by approximately from 20 to 30% due to the proposed autonomous decentralized

architecture and optimal node hardware architecture, which contributes to a substantial

cost reduction for automotive control systems.

Although the autonomous decentralized architecture satisfies competing demands, we

point out that some coordination scheme in this architecture, i.e., an agreement protocol, is

required to accurately identify failed nodes so that disagreements in the control mode can

be avoided. To provide the coordination scheme, we propose a membership protocol as an

agreement protocol for safety-critical distributed systems. In contrast to related work, our

membership protocol tolerates simultaneous and non-fail-silent (Byzantine) faults and can

flexibly be implemented in time-triggered systems as a middleware component. Important

properties such as correctness, completeness, and consistency are defined for the proposed

membership protocol and are proved by hand.

With a widely used time-triggered communication network in the automotive industry,

we developed a prototype Brake-by-Wire system incorporating the proposed autonomous

ABSTRACT iii

decentralized architecture and membership middleware in a realistic hardware and soft-

ware environment for automotive control systems. Although we found that the prototype

system could persevere in practical use, the results from evaluating the performance of

this prototype system indicated that the computation overhead for the membership mid-

dleware was prohibitively large and that the execution time required for the voting process

increased along with the number of nodes in the system.

To resolve these problems, we further propose novel lightweight membership proto-

cols, which are based on what we call voting sharing and clustering approaches. These

approaches can reduce the computation overhead and the communication bandwidth for

the membership protocol. Our experiments revealed that the execution time for the vot-

ing process in the voting sharing approach was reduced by approximately 60% compared

with the original protocol for eight nodes. Following proofs of the same properties as

the original protocol, we investigate advantages and disadvantages of the three proposed

membership protocols in terms of computation and communication overhead, diagnosis

latency, and fault tolerance. Our analysis shows a tradeoff between the overhead and fault

tolerance. The lightweight protocols incur degradation in diagnosis accuracy in exchange

for the reduction of the computational overhead. We provide additional mechanisms such

as rotating voters and self-accusation to mitigate this problem.

Finally, we propose a customizable formal model of generic time-triggered systems

to support key system design processes such as task scheduling, test case generation, and

verification. Because the proposed formal model has a modular architecture, it can be

reused and easily customized, which can reduce the model development costs for indus-

trial practitioners. We demonstrate a prototype implementation of the formal model with

the SAL (Symbolic Analysis Laboratory) language and present some use cases using the

SAL tool suite. The proposed membership protocols were model-checked in a use case

of verification, and the design correctness of the protocols was guaranteed.

L IST OF M AJOR PUBLICATIONS

(1) Kohei Sakurai, Nobuyasu Kanekawa, Kunihiko Tsunedomi, Shoji Sasaki, Katsuya

Oyama, Takanori Yokoyama, and Mitsuru Watabe, High performance and cost-

effective electronic controller architecture for powertrain systems, InProceedings

of SAE 2004 World Congress: In-Vehicle Network Session, Paper Number: 2004-

01-0209, March 2004.

(2) Kohei Sakurai, Yuichiro Morita, Kentaro Yoshimura, Nobuyasu Kanekawa, Kotaro

Shimamura, Kenichi Kurosawa, and Yoshiaki Takahashi, Cost-effective and fault

tolerant vehicle control architecture for X-by-Wire systems (Part 2: Implementation

design), InProceedings of SAE 2005 World Congress: In-Vehicle Network Session,

Paper Number: 2005-01-1543, April 2005.

(3) Kentaro Yoshimura, Kohei Sakurai, Yuichiro Morita, Nobuyasu Kanekawa, Kenichi

Kurosawa, Yoshiaki Takahashi, Shigetoshi Sameshima, and Akitoshi Shimura, A

dependable and cost-effective vehicle control architecture for X-by-wire systems

based on autonomous decentralized concept, InSupplemental Volume of the 2005

International Conference on Dependable Systems and Networks (DSN 2005), pp.

130–138, June 2005.

(4) Kentaro Yoshimura, Kohei Sakurai, Yuichiro Morita, Kenichi Kurosawa, Yoshiaki

Takahashi, Shigetoshi Sameshima, and Akitoshi Shimura, A dependable E/E ar-

v

vi L IST OF M AJOR PUBLICATIONS

chitecture for X-By-Wire systems based on autonomous decentralized concept, In

Proceedings of the 12th International Congress on Electronic Systems for Vehicles,

VDI Berichte 1907, pp. 523–534, October 2005.

(5) Kohei Sakurai, Masatoshi Hoshino, Yuichiro Morita, and Yoshiaki Takahashi, De-

sign and implementation of middleware for network centric X-by-Wire systems, In

Proceedings ofSAE 2006 World Congress: In-Vehicle Software Session, Paper

Number: 2006-01-1326, April 2006.

(6) Kohei Sakurai, Masahiro Matsubara, Marco Serafini, and Neeraj Suri, Dependable

and cost-effective architecture for X-by-Wire systems with membership middle-

ware, InProceedings of FISITA 2008 World Automotive Congress, Paper Number:

F2008-05-048, September 2008.

(7) Kohei Sakurai, Ṕeter Bokor, and Neeraj Suri, Aiding modular design and verifi-

cation of safety-critical time-triggered systems by use of executable formal speci-

fications, InProceedings of the 11th IEEE High Assurance Systems Engineering

Symposium (HASE 2008), pp. 261–270, December 2008.

(8) Masahiro Matsubara, Takao Kojima, Kotaro Shimamura, Nobuyasu Kanekawa, and

Kohei Sakurai, Node status monitoring and state transition mechanism for network

centric X-by-Wire systems, InProceedings of the 9th IEEE International Sympo-

sium on Autonomous Decentralized Systems (ISADS 2009), pp. 1–6, March 2009.

(9) Kohei Sakurai, Masahiro Matsubara, and Masatoshi Hoshino, Membership mid-

dleware for dependable and cost-effective X-by-wire systems,SAE International

Journal of Passenger Cars - Electronic and Electrical Systems, vol. 1, no. 1, pp.

180–186, April 2009.

(10) Kohei Sakurai, Marco Serafini, Péter Bokor, and Neeraj Suri, Design and formal

L IST OF M AJOR PUBLICATIONS vii

verification of membership middleware for dependable automotive network sys-

tems, InProceedings of the 14th International Congress on Electronic Systems for

Vehicles, VDI Berichte 2075, pp. 399–410, October 2009.

(11) Masahiro Matsubara, Kohei Sakurai, Fumio Narisawa, Masushi Enshoiwa, Yoshio

Yamane, and Hisamitsu Yamanaka, Model checking with program slicing based on

variable dependence graphs, InProceedings of the 1st International Workshop on

Formal Techniques for Safety-Critical Systems (FTSCS 2012), pp. 56–68, Novem-

ber 2012.

(12) Masahiro Matsubara, Kohei Sakurai, Fumio Narisawa, Masushi Enshoiwa, Yoshio

Yamane, and Hisamitsu Yamanaka, Application of model checking to automo-

tive control software with slicing technique, InProceedings of SAE 2013 World

Congress: Model-Based Design and In-Vehicle Software Session, Paper Number:

2013-01-0436, April 2013.

(13) Kohei Sakurai, Masahiro Matsubara, and Tatsuhiro Tsuchiya, Voting sharing: An

approach to reducing computation time for fault diagnosis in time-triggered sys-

tems,IEICE Transactions on Information and Systems, vol. E97-D, no. 2, February

2014 (to be published).

ACKNOWLEDGMENTS

During the course of this study, I have been fortunate to receive invaluable assistance from

many individuals.

I deeply appreciate my supervisor Professor Tatsuhiro Tsuchiya, who has continu-

ously inspired me and provided me with valuable insights and advice throughout this

work. I am also grateful to Emeritus Professor Tohru Kikuno for his encouragement be-

fore I enrolled in the doctoral course at Osaka University.

I would also like to thank the members of my dissertation review committee, particu-

larly Professor Masaharu Imai, Professor Toshimitsu Masuzawa, and Associate Professor

Masanori Hashimoto for their invaluable comments and constructive criticism of this dis-

sertation.

Furthermore, my gratitude goes to the members of Tsuchiya Laboratory, especially to

Assistant Professor Hideharu Kojima for the productive discussions on this work, and Mr.

Hirofumi Terada, who is also a colleague at Hitachi, Ltd., for his encouragement.

A significant part of this work has also been done with researchers of the DEEDS (De-

pendable Embedded Systems and Software) group in Technische Universität Darmstadt

in Germany. I would like to express my sincere gratitude to Professor Dr. Neeraj Suri,

Dr. Péter Bokor, and Dr. Marco Serafini for all the valuable discussions I had with them

on dependable distributed systems and formal methods.

Some research work I have engaged in Hitachi, Ltd. has been helpful to me in com-

ix

x ACKNOWLEDGMENTS

pleting this dissertation. I would therefore like to express my thanks to Dr. Takashi Hotta,

Mr. Atsushi Kawabata, Dr. Toshiharu Nogi, Mr. Takaomi Nishigaito, Dr. Masahiko

Amano, Mr. Yoshiaki Takahashi, and Mr. Kenichi Kurosawa for giving me the opportu-

nity of doing research on automotive safety-critical control systems. I would also like to

acknowledge Dr. Hiroyuki Mikami and Mr. Takuya Shiraishi who encouraged me while

I was compiling this thesis.

This work has been done collaboratively with many colleagues at Hitachi Research

Laboratory, especially Mr. Masahiro Matsubara, Dr. Kentaro Yoshimura, Dr. Nobuyasu

Kanekawa, Mr. Kotaro Shimamura, Mr. Masatoshi Hoshino, and Dr. Yuichiro Morita

(the last two researchers are currently with Hitachi Construction Machinery). I would

like to express my deep appreciation to all of them for the valuable insights they gave me

and the productive discussions from the perspectives of industry.

Finally, my sincere appreciation also goes to my family who always supported me

throughout difficult times.

CONTENTS xi

CONTENTS

Abstract . i

List of Major Publications . v

Acknowledgments .ix

1 Introduction 1

1.1 Scope and Background .1

1.1.1 Embedded Control Systems .1

1.1.2 Trend in Automotive Electronic Control Systems2

1.1.3 Automotive X-by-Wire Systems4

1.2 Motivation and Objective .4

1.3 Contributions . 5

1.3.1 Autonomous Decentralized Architecture5

1.3.2 Membership Protocol .7

1.3.3 Generic Formal Model of Time-Triggered Systems9

1.4 Overview of Dissertation .11

2 Autonomous Decentralized Architecture 13

2.1 Reduced-Redundancy Approach .13

2.2 Autonomous Decentralized Architecture14

2.2.1 Conventional Control Systems14

xii CONTENTS

2.2.2 Autonomous Decentralized Control Systems16

2.3 Fail-Silent Node Architecture .24

2.3.1 Comparison of Fail-Silent Nodes24

2.3.2 Node Hardware Architecture .27

2.4 Estimation of System Cost Reduction. 30

3 Agreement Protocol 35

3.1 Challenges to Autonomous Decentralized Architecture35

3.2 Model of Time-Triggered Systems .36

3.2.1 Communication Model .36

3.2.2 Fault Model .37

3.3 Membership Protocol .38

3.3.1 Protocol Description. 38

3.3.2 Example of Membership Protocol43

3.3.3 Properties .45

4 Prototype Brake-by-Wire System 47

4.1 Introduction .47

4.2 Software Architecture .47

4.3 Prototype Implementation and Evaluation51

4.4 Discussion .54

5 Lightweight Membership Protocol 57

5.1 Introduction . 57

5.2 Voting Sharing .58

5.2.1 Protocol .58

5.2.2 Properties .61

5.2.3 Rotating Voters .63

CONTENTS xiii

5.2.4 Experiment Results .65

5.3 Clustering .66

5.3.1 Protocol .67

5.3.2 Properties .68

5.3.3 Self-Accusation .71

5.4 Discussion .73

6 Formal Model of Time-Triggered Systems 77

6.1 Introduction .77

6.2 Overview of TT Systems .80

6.2.1 Basic Concepts and Definitions80

6.2.2 Consistency-Abstraction Layer82

6.2.3 Characterization of Faults .83

6.3 Customizable Formal Model .84

6.4 Implementation with SAL Language .87

6.5 Example Use Cases: Design and Verification96

6.5.1 Verification .96

6.5.2 Scheduling of Jobs .100

6.5.3 Test Generation .101

6.6 Related Work .102

6.7 Summary .104

7 Conclusion 105

7.1 Achievements. .105

7.2 Future Work. .109

Bibliography 111

SECTION 1.1 I NTRODUCTION 1

CHAPTER 1

I NTRODUCTION

1.1 Scope and Background

1.1.1 Embedded Control Systems

First, we define an embedded control system, which is the scope of this dissertation.

An embedded control system is a computer system integrated into some equipment and

it achieves the required functionality by executing the specific control operation to the

equipment. A model of embedded control systems is shown in Figure 1.1. The system

consists of a controller, a controlled object that is often called a plant, sensors, and actu-

ators. The controller is equipped with microcontrollers, on which the embedded software

runs. The controller calculates control target values using information from sensors that

measure the status of the plant, and drives the actuators based on the calculated control

target values.

Embedded control systems are widely used in industrial products such as home ap-

pliances, automobiles, trains, and power plants. For instance, the automotive industry re-

cently recognized that electronics and embedded software developments would represent

90% of all new-vehicle innovations. The increasing functional requirements of embedded

2 I NTRODUCTION CHAPTER 1.

Controller Sensor
Actuator ControlledObject(Plant)

Figure 1.1: Embedded control systems

control systems have led to an enormous increase in software complexity and size.

Embedded control systems are required to have hard real-time and mission-critical

capabilities, while they are severely restricted in cost and available hardware resources

such as CPU performance, memory size, and communication bandwidth, compared with

computer systems like servers and personal computers in the information technology in-

dustry.

This dissertation focuses on automotive control systems which impose one of the

tightest technical restrictions in the industry due to the scale of mass production. In this

dissertation, controllers will be called ECUs, or Electronic Control Units, within the con-

text of automotive control systems.

1.1.2 Trend in Automotive Electronic Control Systems

Automotive control systems have been evolving to improve environmental friendliness

(i.e., better fuel efficiency, lower exhaust gas emissions), safety, and passenger comfort.

Figure 1.2 outlines the trend in automotive electronic control systems. Electronic control

using embedded controllers started in the 1980s for powertrain systems such as engines

and transmissions. After that, electronic control was also applied to chassis systems such

as brakes, suspensions, and steering in the 1990s. In addition to electronics, electric in-

verters and motor technologies have been used in electric powertrain and chassis systems.

SECTION 1.1 SCOPE AND BACKGROUND 3

20001980 2020

Steering
Brake Electro-HydraulicBrake

Engine
Year

Electric BrakeElectric Steering

Electronic ThrottleControl
Digital Engine ControlAnalog Control

Suspension
Electric PowerSteering X-by-Wire SystemElectric and Electronic Control of Driving, Steering, and BrakingX = e.g., Drive, Steer, and Brake

TransmissionControl

Autonomous Driving

Direct InjectionControl

Figure 1.2: Trend in automotive electronic control systems

Recent advances in automotive electronic control systems should enable more sophis-

ticated vehicle control systems toward autonomous driving [1]. Among these systems,X-

by-Wiresystems, where driving, steering, and braking are electrically and electronically

controlled synthetically are expected to further enhance vehicle driving performance and

safety. The term “X-by-Wire” was derived from “Fly-by-Wire” in aircraft control sys-

tems, where “by-Wire” means that systems are controlled by wire, i.e., by electricity,

instead of conventional mechanical devices. “X” corresponds to such as Drive, Brake,

and Steer. X-by-Wire systems are expected to reduce vehicle weight and increase cabin

space due to the absence of mechanical links, as well as enhance vehicle controllability.

4 I NTRODUCTION CHAPTER 1.

AcceleratorPedal Brake Pedal
SteeringCamera

Radar ElectricSteering EngineTransmission

Vehicle Dynamics Integrated ECUCommunication Network
: ECU (Electronic Control Unit)Electric Brake

Figure 1.3: Automotive X-by-Wire system

1.1.3 Automotive X-by-Wire Systems

An example of the X-by-Wire system architecture is described in Figure 1.3. Various con-

trollers (ECUs), sensors such as a camera, radar, and actuators including electric brakes

and steering motors cooperate with one another through a communication network, which

attains integrated control of vehicle dynamics. The vehicle dynamics integrated ECU ex-

ecutes integrated control using information on driver operations and the external environ-

ment, and sends control target values to the actuators. Braking and steering are electri-

cally and electronically controlled and thus system dependability is no longer guaranteed

by conventional mechanical links such as hydraulic brake hoses and steering columns to

transmit driver operations to braking and steering mechanisms. Therefore, we can regard

X-by-Wire systems assafety-critical distributed control systems. An example application

in this dissertation is automotive X-by-Wire systems.

1.2 Motivation and Objective

X-by-Wire systems need to be highly dependable since acceleration, steering, and braking

control have a great influence on the safe operation of vehicles. Several studies on the

SECTION 1.3 CONTRIBUTIONS 5

reliability of X-by-Wire systems have been done [2, 3]. However, the cost to implement

fault-tolerance is limited in mass produced X-by-Wire systems in the automotive industry.

Furthermore, available hardware resources such as CPUs, memories and communication

bandwidths are severely restricted. These constraints differ from those in transportation or

industrial systems domains like aviation, trains, and power plant systems, where relatively

expensive systems with high redundancy and sufficient hardware resources are acceptable.

Therefore, the goal of this dissertation is to propose suitable solutions that can fulfill not

only high levels of dependability but also cost-effectiveness for automotive safety-critical

systems.

1.3 Contributions

1.3.1 Autonomous Decentralized Architecture

Because acceleration, steering, and braking control have a great influence on the safe

operation of vehicles, X-by-Wire systems are required to be highly dependable. The

conventional approach to improving dependability is to have component level redundancy,

where nodes in the system are designed to be fail-operational with such as triple or more

redundancy and to keep on operating when faults occur. Several studies on the reliability

of X-by-Wire systems with this approach have been done [2, 3]. On the other hand,

to mass-produce systems for various vehicle segments, the cost cannot be excessive to

implement fault-tolerance.

We take a reduced-redundancy approach with system level redundancy instead of

component level redundancy to balance these competing requirements of cost-effectiveness

and dependability in automotive control systems. We propose a novel architecture that in-

corporates the concept of autonomous decentralized systems [4]. Because no general

methods of applying the concept of autonomous decentralized systems have yet been

6 I NTRODUCTION CHAPTER 1.

established, it is necessary to develop a suitable architecture for individual domains of

application.

In the conventional architecture, all the control functions and information such as the

sensing data from the driver’s acceleration, braking, and steering operations are central-

ized in the controller node. In contrast, in the proposed architecture, all nodes related

to vehicle control, including sensor and actuator nodes, share various data required for

control through the communication network, and each node autonomously obtains or

broadcasts the necessary data from or to the network. If a certain node stops operat-

ing because of some fault, the remaining normal nodes autonomously execute a backup

control function to maintain at least the minimum functionality necessary for the system

using the shared data. Therefore, the proposed architecture can tolerate the existence of

failed nodes and thus does not need expensive fail-operational nodes with triple or more

redundant architectures, which satisfies the requirements of cost-effectiveness as well as

dependability. We demonstrate that the proposed architecture can be applied to actual

automotive brake and steering control systems.

We apply this approach of reduced-redundancy dependability to the node level. Nodes

in distributed systems need to be fail-silent so that a failed node does not interfere with

communication between fully functional nodes. Conventional fail-silent nodes are de-

signed with dual redundant architecture to detect faults. To further reduce redundancy,

the concept of an output validity check is proposed for actuator control nodes. Low per-

formance inexpensive sub-microcontrollers can be used in this concept to diagnose the

main microcontrollers. The sub-microcontrollers only compare target control values and

actual actuator output instead of rigidly checking the main microcontroller’s execution as

is done in a dual redundant architecture. The hardware architecture of individual con-

trollers is optimized in this way according to their functions.

We estimate the system cost reduction by the proposed autonomous decentralized

SECTION 1.3 CONTRIBUTIONS 7

architecture and optimal node hardware architecture, and show that the system cost can

be reduced by approximately from 20 to 30%, which contributes to a substantial cost

reduction for automotive control systems.

1.3.2 Membership Protocol

Autonomous backup control in the autonomous decentralized architecture is based on

the accurate identification of failed nodes. However, since there is no master node to

monitor the status of nodes in the system, node status monitoring or diagnosis function

in each node plays a key role for fault-tolerance. Therefore, some coordination scheme,

i.e., an agreement protocol, is required to accurately identify the failed nodes and ensure

consistency in views on available nodes for all the normally functioning nodes so that

disagreements in the control mode can be avoided. We propose amembership protocolas

an agreement protocol for safety-critical distributed systems to resolve this issue.

The membership protocol is a functionality that provides a consistent view of active

nodes to each node. Time-triggered (TT) communication platforms such as FlexRay [5],

TTP/C [6], TT-Ethernet [7], and SAFEbus [8] are increasingly being applied to safety-

critical distributed control systems. Although FlexRay has widely been applied to auto-

motive control systems, it does not specify a membership protocol in its standard specifi-

cations and this protocol remains as a user dependent functionality. The TT-Ethernet does

not provide a standardized protocol either. The AUTOSAR (AUTomotive Open System

ARchitecture) [9], which is a worldwide de facto standard specification for automotive

electric/electronic systems, neither defines membership services. TTP/C, on the other

hand, which is used in aerospace systems, has a membership protocol. However, the

protocol is implemented in hardware and has been designed for dedicated applications.

Furthermore, several membership protocols have been proposed [10–12], or formally ver-

ified [13,14].

8 I NTRODUCTION CHAPTER 1.

Many previous membership protocols for TT systems only assumed fail-silent nodes

and single fault. We also assume fail-silence on the communication protocol level, as

was discussed earlier. However, application programs in reality might send semantically

erroneous messages because of, e.g., corrupted memory or failure in processing units,

even though the messages conform to the communication protocol specifications. Several

faults might also occur simultaneously. In contrast, Serafini et al. have proposed pro-

tocols that do not rely on the single-fault assumption and that can also tolerate non-fail-

silent (Byzantine) faults [15]. The protocols can be added to generic TT communication

protocols.

Our proposed membership protocol in this dissertation also tolerates simultaneous and

Byzantine faults and can be flexibly implemented in TT systems as a middleware com-

ponent [16]. We further enhance its real-time capabilities and aim at implementing the

protocol in realistic automotive control systems. Each node in the membership proto-

col locally evaluates the status of other nodes in the system and exchanges a local view,

which we call a local syndrome, with all nodes. Then, every node identifies the failed

node by voting on the exchanged local syndromes. We propose a pipeline-like method

of executing the protocol to improve its real-time capabilities, where a fault detected in

a certain TT communication round can be identified in the next round. The membership

middleware in practical X-by-Wire systems should coexist with real-time critical appli-

cation programs such as motor control on microcontrollers with restricted resources. We

developed a prototype Brake-by-Wire system that incorporated the proposed autonomous

decentralized architecture and membership protocol, and clarified that the prototype sys-

tem could persevere in practical use.

The results we obtained from evaluating the performance of this prototype system,

however, revealed that the computational overhead incurred by membership functionality

was unacceptably large and it increased along with the number of nodes in the system.

SECTION 1.3 CONTRIBUTIONS 9

The membership overhead has to be small enough so that vehicle control applications

can use sufficient CPU resources. Therefore, we propose novel lightweight membership

protocols, which we callvoting sharingandclusteringin this dissertation.

The main idea behind voting sharing is to have each node vote for only one respective

node and to share the voting results with all nodes. In the clustering concept,n nodes are

logically divided inton/c clusters, where each cluster consists ofc nodes. Nodep sends a

local syndrome only with respect to nodes within the cluster to which nodep belongs to all

the other nodes in the system. Both approaches can reduce the computation overhead for

membership, and the clustering protocol can also decrease the communication bandwidth,

compared with the original protocol. The results from our experiments revealed that

the execution time for the voting process in the voting sharing protocol was reduced by

approximately 60% compared with the original membership protocol for eight nodes.

We investigate advantages and drawbacks of the three proposed membership proto-

cols in terms of computation and communication overhead, diagnosis latency, and fault

tolerance. Our analysis shows that there is a tradeoff between the overhead and fault toler-

ance. The lightweight protocols incur degradation in diagnosis accuracy in exchange for

the reduction of the computational overhead. However, it can be mitigated with additional

mechanisms such as rotating voters, counter update algorithm, and self-accusation. De-

spite the drawbacks, we point out that the clustering protocol is a well-balanced protocol

among these three protocols when the system consists of large number of nodes and the

fault condition is not so severe.

1.3.3 Generic Formal Model of Time-Triggered Systems

The use offormal methodsis increasingly being advocated to verify general safety-critical

systems, e.g., [17]. However, previous work [18, 19] has demonstrated that the correct-

ness of high-level applications in TT systems does not directly imply the correctness of

10 I NTRODUCTION CHAPTER 1.

implementation. Consequently, formal techniques dedicated to time-triggered systems

are required, especially given their increasing deployment.

Results on the successful formal analysis of TT systems do exist; however, they

present specific solutions (e.g., [18–20]), where modeling patterns can only partially be

re-used in new projects. It is generally difficult in industry to apply formal methods to

the development processes of mass production. Software engineers rarely design formal

models of their systems or software from scratch. Therefore, we propose a generalized

formal model of TT applications that can be customized, which is not restricted to any

dedicated implementation and that can also easily be used by engineers who are not spe-

cialists in formal methods.

Furthermore, we seek a unified and formal treatment of general TT systems to guide

key system design tasks such as task scheduling, test case generation, and verification. Al-

though deductive reasoning (e.g., theorem proving [17]) is a powerful tool to even verify

the complex properties of infinite systems, it cannot directly be used to simulate systems

for finding certain execution paths (e.g., counterexamples and test cases). Consequently,

we propose executable system specifications to provide further features besides verifica-

tion by using model checking.

Because the proposed formal model has a modular architecture, it can be reused and

easily customized, which can reduce the model development costs for practitioners in

industry. Users only need to tailor the corresponding modules to customize the general

model.

A prototype formal model was implemented with the SAL (Symbolic Analysis Labo-

ratory) language [21]. We also demonstrate the usability of our prototype with the SAL

tool suite by presenting use cases of verification, task scheduling, and test case generation

based on an identical model. The proposed membership protocols were model-checked

in a use case of verification, and we confirmed the design correctness of the protocols.

SECTION 1.4 OVERVIEW OF DISSERTATION 11

1.4 Overview of Dissertation

This dissertation is organized as follows:

Chapter 2 proposes an architecture that incorporates the concept of autonomous de-

centralized systems to satisfy both requirements of cost-effectiveness and dependability,

which is in contrast to the conventional architecture. Fail-silent node architectures ac-

cording to node functionalities are also discussed. We give the estimation results on the

system cost reduction by the proposed autonomous decentralized architecture and optimal

node hardware architecture.

Chapter 3 describes a membership protocol as an agreement protocol in distributed

systems. We clarify a model of time-triggered systems including fault behaviors, follow-

ing a discussion on the importance of membership services in the autonomous decen-

tralized architecture. Then, we explain the proposed membership protocol using some

examples and pseudo-codes. Important properties for distributed systems such as correct-

ness, completeness, and consistency are defined and proved by hand.

Chapter 4 presents a prototype Brake-by-Wire system that employs the proposed au-

tonomous decentralized architecture and membership protocol. We explain how the mem-

bership middleware is implemented on a resource-restricted microcontroller with realistic

control application programs. Results obtained from evaluating the performance of the

membership middleware are also provided in this chapter.

Taking into account the performance evaluation results, in Chapter 5, we propose

lightweight membership protocols, voting sharing and clustering, which can reduce the

computation overhead and communication bandwidth. We explain both protocols in detail

by using pseudo-codes and prove the same properties as the original protocol. This chap-

ter also compares three types of membership protocols, i.e., original, voting sharing, and

clustering, in terms of various aspects and discusses a tradeoff between the computational

12 I NTRODUCTION CHAPTER 1.

overhead and fault tolerance.

Chapter 6 proposes a modular formal model of generic time-triggered systems. We

demonstrate a prototype implementation of the formal model with the SAL language and

provide example use cases of system design such as task scheduling, verification, and

test case generation based on the same model in the SAL tool suite environment. The

proposed membership protocols are also model-checked in a verification use case.

Finally, we conclude this dissertation in Chapter 7 with achievements and directions

for future work.

SECTION 2.1 AUTONOMOUS DECENTRALIZED ARCHITECTURE 13

CHAPTER 2

AUTONOMOUS DECENTRALIZED

ARCHITECTURE

2.1 Reduced-Redundancy Approach

We take a reduced-redundancy approach to satisfy both dependability and cost-effectiveness

requirements for automotive control systems.

In systems where system fault-tolerance is achieved by improving fault-tolerance of

each component that makes up the system, components are designed to be fail-operational,

e.g., triple redundant, which will increase the cost of the components. Our basic concept

to balance dependability and cost-effectiveness isreduced-redundancy dependability. As

can be seen in Figure 2.1, this approach tries to reduce redundancy as much as possible

and to accomplish equivalent dependability with lower additional cost than the conven-

tional solution. Because we cannot rely on the redundancy, we design the system such

that it can keep on operating without the functions of failed components if some compo-

nents should fail. Consequently, the component cost can be reduced as each component

does not necessarily need to be fail-operational.

14 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Additional Cost for Dependability

XBW vehicle with conventional solution
Dependabilitywith redundancyReduced-RedundancyXBW vehicle with proposed approach

ConventionalvehicleDepend
ability re
quired

for vehi
cle con
trol sys
tems

Figure 2.1: Reduced-redundancy approach

We have developed technologies for reduced-redundancy dependability in several lay-

ers at the system level, node (ECU) level, and chip (microcontroller) level. This disserta-

tion focuses on the system and the node levels. We propose an autonomous decentralized

architecture for the system level, and optimal hardware architectures in fail-silent nodes

appropriate to their functions for the node level, which will be discussed in Sections 2.2

and 2.3 respectively.

2.2 Autonomous Decentralized Architecture

2.2.1 Conventional Control Systems

Figure 2.2 outlines the architecture for a conventional control system. The system consists

of sensor nodes, controller nodes, and actuator nodes. The controller nodes execute the

control functions based on sensor signals received from the sensor nodes, and send control

commands to the actuator nodes. The controller nodes also monitor the status of the

sensor/actuator nodes and if failure in a certain node is detected, the controller nodes

change the normal control function to a backup control function. The actuator nodes

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 15

Controller NodeBackupControlNormalControl Fail-operational Redundant Controller Node

ActuatorNodeActuatorControlSensorNodeSensor SignalProcessing Sensor ActuatorSensor

Node StatusMonitoring

Figure 2.2: Conventional control system architecture

receive the control command for backup control∗.

However, all the control functions in the conventional architecture are centralized

in the controller node, which means that this architecture is essentially equivalent to a

master-slave architecture. The actuator node (slave) only executes actuator control as the

controller node (master) orders. It follows that a failure in the controller node will easily

lead to system failure due to centralization of the control functions. To avoid this problem,

the controller node should be fail-operational, i.e., it should keep operating even if one or

possibly multiple faults have occurred in the node. A triple or more redundant architec-

ture is commonly used for fail-operational nodes, but this solution tends to increase node

costs, and consequently system costs.

∗Each node actually has a self-diagnosis function and a node-level backup function based on the self-

diagnosis results, which are not specifically described in Figure 2.2.

16 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

2.2.2 Autonomous Decentralized Control Systems

Basic Idea

We propose an architecture based on the concept ofautonomous decentralized systems[4]

to balance the competing requirements of cost-effectiveness and dependability for auto-

motive control systems.

Autonomous decentralized systems represent one type of distributed control systems,

that are used in industrial systems such as factory and train control systems required to

be highly efficient and dependable. For example, the ATOS (Autonomous decentralized

Transport Operation Control System) has been developed for the train traffic control sys-

tem in the Tokyo metropolitan area [22].

The concept is derived from an analogy of living organisms that consist ofautonomous

anddecentralizedcells. Elements callednodesare loosely connected through adata field,

where the data required for control are shared. We can achieve a fault-tolerant and scalable

system with this concept, where every node is autonomous and independent. The system

will not fail when nodes malfunction and improve scalability because of communication

based on a standardized data interface. It is necessary to develop a suitable architecture for

each application domain to apply the concept based on a biological model to real systems

because no general methods of application have yet been established.

We propose the autonomous decentralized architecture for automotive control systems

outlined in Figure 2.3. Although the normal vehicle control function is centralized in

the controller node in this architecture, the backup control function and the node status

monitoring function are decentralized in all nodes†. All nodes share various data required

to control the vehicle through the data field, equivalent to a virtual shared memory. Each

node autonomouslygetsor putsdata from or to the data field and executes its functions,

†Sensor nodes do not have backup control functions.

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 17

Data A

Controller NodeBackupControlNormalControl

Sensor Node
Sensor SignalProcessing

Sensor ActuatorSensor
Node StatusMonitoring Actuator NodeBasicBackupControlActuatorControl

Data BData Fieldget
put

put
get

Node StatusMonitoring

Node StatusMonitoring
Figure 2.3: Architecture for autonomous decentralized control system

which are triggered by conditions in the time and state transitions of the node without

receiving processing demands from the control nodes.

Every node, including the sensor/actuator nodes, can monitor the status of the other

nodes in the system to ensure fault-tolerance. Figure 2.4 shows how the system operates

when the controller node has failed. If the actuator node has diagnosed the controller

node as faulty, it autonomously gets shared DataA that is put by the sensor node because

the control target, DataB, from the controller node can no longer be used for actuator

control. Then, the actuator node executes the backup control function by using shared

DataA.

Figure 2.5 summarizes a process flow in actuator nodes. The actuator node periodi-

18 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Data A

Controller NodeBackupControlNormalControl

Sensor Node
Sensor SignalProcessing

Sensor ActuatorSensor
Node StatusMonitoring Actuator NodeBasicBackupControlActuatorControl

Data BData Fieldget
put

put
get

Node StatusMonitoring

Node StatusMonitoring
Figure 2.4: Autonomous backup control when controller node has failed

cally monitors the status of the controller node. If the actuator node diagnoses that the

controller node normally functions, it uses DataB as the control target. Otherwise, the

actuator node itself calculates the control target byf(DataA) and controls actuators with

this target value. Although sensor/actuator nodes in the autonomous decentralized ar-

chitecture are required to be more intelligent than those in the conventional architecture,

the increase in computational overhead in actuator nodes can be suppressed by limiting

the backup control function to a minimum necessary function for safe vehicle operation,

which we call abasic backup controlfunction.

Therefore, as the proposed architecture can tolerate the existence of failed nodes and

does not require expensive redundant fail-operational nodes, we can reduce system costs.

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 19

startcontroller node status?
control target = Data B control target = f (Data A)
normal actuator control basic backup control

failednormal

end
Figure 2.5: Process flow in actuator nodes

In other words, the system with the proposed autonomous decentralized architecture can

be fail-operational although the system consists of only inexpensive fail-silent compo-

nents.

Actual Vehicle Control Systems

Figure 2.6 shows a brake-by-wire system with the conventional control architecture. The

system consists of a vehicle dynamics integrated ECU (Electronic Control Unit), four

brake ECUs that actuate braking motors, and a brake pedal sensor. The brake pedal

position signal,S1, from the brake pedal sensor is directly input only to the integrated

ECU. The integrated ECU calculates the target braking force values,B1 to B4, for the

four brake ECUs, usingS1 as well as the signals from vehicle dynamics sensors such

as yaw rate and acceleration sensors. Each brake ECU receives the target braking force

values and controls a braking motor so that the actual braking force becomes the target

value.

In this architecture, however, if the integrated ECU fails, it becomes impossible to

control the vehicle dynamics because each brake ECU cannot receive the target braking

20 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Vehicle dynamicssensors
NetworkB1-B4 S1B1B2 B3 B4

RedundantIntegrated ECU

BrakeECU 1

BrakeECU 2 BrakeECU 4
BrakeECU 3

IntegratedECU
NetworkBrake Pedal Sensor

B2
B1

B4
B3

Figure 2.6:Brake-by-wire system with conventional control architecture

force values. Therefore, the integrated ECU should be redundant to be fail-operational,

which increases the system cost.

In contrast to the conventional architecture, all the ECUs share the information re-

quired for brake control throughout the data field in the autonomous decentralized brake-

by-wire system. The data field is implemented with a communication network. As shown

in Figure 2.7, the brake pedal sensor is connected to the network and thus becomes more

intelligent node, i.e., brake pedal sensor ECU, so that driver demand can be shared.

When the system normally operates, as indicated in Figure 2.7 (a), the control opera-

tion is logically the same as one in the conventional architecture.If the integrated ECU

should fail, its sophisticated braking control function would be suspended. However, the

vehicle can maintain the minimal necessary braking functionality for safe vehicle opera-

tion thanks to the autonomous backup control mechanism shown in Figure 2.7 (b). After

recognizing the integrated ECU has failed, each brake ECU gets shared brake pedal po-

sition signalS1 in autonomous backup control. The brake ECU independently calculates

the target braking force value,fi(S1) (1 ≤ i ≤ 4), with the basic backup control func-

tion implemented in each brake ECU by using dataS1. Therefore, we can eliminate

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 21

Vehicle dynamicssensors
NetworkB1-B4 S1B1B2 B3 B4

BrakeECU 1

BrakeECU 2 BrakeECU 4
BrakeECU 3

IntegratedECU
Brake Pedal Sensor ECUData Field (S1 and B1-B4 are shared)

B2
B1

B4
B3

(a) Normal operation

NetworkB1-B4 S1S1S1 S1 S1
BrakeECU 1

BrakeECU 2 BrakeECU 4
BrakeECU 3

IntegratedECU
Data Field (S1 is shared)

f2 (S1) f4 (S1)
f1 (S1) f3 (S1)Brake Pedal Sensor ECU

Vehicle dynamicssensors

(b) When integrated ECU has failed

Figure 2.7: Autonomous decentralized brake-by-wire system

redundancy from the integrated ECU because it does not need to be fail-operational.

Figure 2.8 outlines the entire architecture for vehicle dynamics control with the con-

cept of autonomous decentralized systems. This figure focuses on the components that

are related to vehicle fundamental functions of driving, steering, and braking. The data

field is implemented by the communication network, which we call a vehicle control net-

work. The integrated ECUs, motor driver ECUs, and sensor nodes communicate with

one another through the vehicle control network. For example, FlexRay is utilized for the

vehicle control network due to its high bandwidth and deterministic features.

22 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

M

M

M

BrakePedalS S
VehicleIntegratedECU BBWDriverECU

DBWIntegratedECU

S

EngineECU MotorECUTransmissionECU
AcceleratorPedal BBWDriverECU

SBWDriverECU Main BusBackup Bus Vehicle ControlNetwork

M: Motor, S: Smart Sensor Node
Drive-by-WireNetwork

M

M

BBWDriverECU

BBWDriverECU

MM

Fail-Operational Node

Steering Wheel

Fail-Silent Node

Vehicle DynamicsSensors

Figure 2.8: Vehicle dynamics control system with autonomous decentralized architecture

The vehicle integrated ECU synthetically controls the vehicle dynamics by interpret-

ing driver demand from the signals received from the accelerator pedal sensor, brake

pedal sensor, and steering wheel angle sensor, and also by recognizing the vehicle’s mo-

tion status from the acceleration sensor, yaw rate sensor, and wheel rotation sensor. It

is essential in the autonomous decentralized architecture to connect sensors to measure

driver demand, i.e., the accelerator pedal sensor, brake pedal sensor, and steering wheel

angle sensor, to the vehicle control network so that this information can be shared among

all ECUs. On the other hand, these sensors are not connected to the network in the con-

ventional architecture, but directly to the vehicle integrated ECU.

The vehicle integrated ECU calculates the target values for each actuator, such as

those for the engine, steering, and braking, and transmits these target values to the vehicle

control network. The Drive-by-Wire (DBW) integrated ECU receives the target driving

force value, the Steer-by-Wire (SBW) driver ECU receives the target steering angle value,

SECTION 2.2 AUTONOMOUS DECENTRALIZED ARCHITECTURE 23

and the Brake-by-Wire (BBW) driver ECU receives the target braking force value. The

SBW/BBW driver ECU controls a motor by calculating the motor torque required to

achieve these target values. The SBW driver ECU also controls a motor for actuating a

variable gear ratio (VGR) mechanism that is installed on the steering column to generate a

virtual reactive force for vehicle drivers. The DBW integrated ECU is a master controller

for the powertrain system. This ECU executes the driving force distribution to the engine

and motor to improve energy efficiency. The calculated target driving torque and gear ratio

values are transmitted to the engine ECU, motor ECU, and transmission ECU through the

drive-by-wire network, e.g., CAN (Controller Area Network).

The vehicle control network has redundant buses for fault-tolerance, i.e., main and

backup buses. The vehicle integrated ECU, DBW integrated ECU, SBW driver ECU,

BBW driver ECUs, and three sensor nodes are connected to the main bus. In contrast,

only the minimum necessary nodes for safe vehicle operation, viz., the SBW driver ECU,

BBW driver ECUs, brake pedal sensor, and steering wheel angle sensor, are connected

to the backup bus to decrease network costs. Since a loss of function to generate driving

force does not cause fatal accidents, the accelerator pedal sensor is not connected to the

backup bus and the drive-by-wire network is not redundant. If the main bus of the vehicle

control network should fail, as described in the autonomous backup function, the BBW

Driver ECU autonomously obtains data from the brake pedal sensor and the SBW driver

ECU autonomously obtains those from the steering wheel angle sensor, and they control

the motors with the control target values calculated in the basic braking/steering backup

control functions.

Furthermore, the SBW driver ECU, brake pedal sensor, and steering wheel angle sen-

sor should be fail-operational nodes as shown in Figure 2.8 to maintain the functions for

safe vehicle operation. It is also necessary to make the steering motor dual-redundant.

A fail-operational SBW driver ECU consists of two fail-silent nodes and each fail-silent

24 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

node independently controls one steering motor. Although some nodes and motors have

to be fail-operational, the number of fail-operational nodes can be minimized and thus the

system cost can be reduced due to the autonomous decentralized architecture.

The autonomous decentralized architecture also improves system scalability and thus

simplifies the development process because the data on the vehicle control network have

a high degree of abstraction. For example, the target values for each actuator are defined

so that the vehicle control logic in the vehicle integrated ECU can be developed without

any knowledge of actuator variety or characteristics. Sensor nodes broadcast physical

values that are meaningful to control logic after processing of sensor signal filtering and

conversion of voltage to a physical value.

Various functions can easily be extended in the proposed architecture due to high lev-

els of scalability by connecting the required components to the vehicle control network.

Moreover, integrating a gateway function into the vehicle integrated ECU enables coop-

erative control with the components connected to other networks, such as information,

body, and safety networks.

2.3 Fail-Silent Node Architecture

2.3.1 Comparison of Fail-Silent Nodes

The proposed X-by-Wire systems can be mostly implemented with inexpensive fail-silent

ECUs, as shown in Figure 2.8, i.e., they do not interfere with communication between

other ECUs even if they have failed. Although the SBW driver ECU, brake pedal sensor,

and steering wheel angle sensor have to be fail-operational, a fail-silent node is essential

for safety-critical distributed systems since a fail-operational node can be composed of

two fail-silent nodes.

The fail-silent nodes of three redundancy types are compared in Table 2.1 in terms of

SECTION 2.3 FAIL -SILENT NODE ARCHITECTURE 25

Table 2.1: Comparison of fail-silent nodesRedundancyType Q&A
NodeArchitecture MainMicro Sub-Micro

I/O
Q Validity Check

I/O Diagnosis MainMicro Sub-Micro
I/OI/O DiagnosisOutput ValidityCheck

Dual RedundancyMainMicro
I/O

ReferenceMicro
Self-CheckingComparatorI/O Diagnosis

Fault DetectionCoverage Low Middle-High* High
Engine ECU Cost Low Low Low**-Middle

A QA

BBW/SBW Driver ECU Integrated ECUSensor NodeECU Type * Coverage for fatal fault, ** Where dual CPU LSI is applied
cost and coverage of fault detection. The fault detection coverage has a great influence

on system reliability, although it is difficult to precisely estimate its value. A node is not

guaranteed to be fail-silent if a fault is not detected, and this fatal event occurs with a rate

of (1 − C) × λ, whereC is the fault detection coverage andλ is the failure rate of the

node. The fatal event rate decreases asC approaches one. However, because there is a

tradeoff between node cost and coverage, we have to apply a suitable architecture to each

node depending on node function to optimize costs.

A node in thequestion and answer (Q&A) method consists of a main microcontroller

and a sub-microcontroller (a microcontroller is called a micro after this). The sub-micro

transmits an appropriate calculation problem to the main micro, and the main micro cal-

culates the answer and returns it to the sub-micro. The sub-micro compares the returned

answer with a predetermined answer. If the two values differ, the sub-micro determines

that the main micro has failed, and stops the node function. Conversely, the state of health

of the sub-micro is monitored by the main micro. The main micro also diagnoses I/O

26 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

circuits and related sensors/actuators. Although this structure is inexpensive, its fault de-

tection coverage is the lowest at around 90% [23] among the three types because it is

unsure whether the calculation problems are designed such that all faults can be com-

pletely detected. This architecture has been applied to conventional ECUs, such as engine

and transmission ECUs.

We found that while the hardware architecture was similar to the question and answer

method, i.e., without cost increases, a method ofvalidity checkcould improve the fault

detection coverage. The sub-micro monitors not only the returned answer from the main

micro, but also the actuation output result. The sub-micro compares the actuator output

with the target value for actuation and determines the validity of the actuation. Although

a rigid check of the main microcontroller’s execution result is not carried out, a fatal fault

generated in the path from the main micro to the actuator can reliably be detected by

monitoring the final actuation status. This architecture is suitable for the motor driver

ECU. It is essential to design the node such that the execution load to compare these two

values in the sub-micro can be reduced to utilize inexpensive sub-micros.

Rigid checks of the microcontroller execution result are required in the node that cal-

culates the control target value based on control logic and outputs the calculated value to

the other nodes. Therefore, not the validity check method but adual redundancyarchi-

tecture is applied to nodes such as vehicle integrated ECUs. The nodes are composed of

two equivalent microcontrollers and a comparator. The comparator confirms whether the

execution results of the main and reference micros coincide. A self-checking type com-

parator has to be used to detect faults in the comparator itself, which will be discussed

later. The coverage in this architecture exceeds 99% [23]. The cost of dual redundancy is

higher than that of the other two types, but it is still lower than that of a fail-operational

architecture like triple redundancy. Moreover, the cost can be reduced where the two

micros and the self-checking comparator are integrated into one LSI chip.

SECTION 2.3 FAIL -SILENT NODE ARCHITECTURE 27

2.3.2 Node Hardware Architecture

Motor Driver ECU

The hardware architecture for the fail-silent SBW driver ECU‡ is shown in Figure 2.9 as

an example of the method of validity check. The SBW driver ECU obtains the target steer-

ing angle value calculated by the vehicle integrated ECU. The main micro calculates the

required target motor torque and current to attain this target steering angle, and performs

vector control of the three phase motor. The sub-micro compares the steering angle target

value with the actual steering angle that is measured by a steering angle sensor. When the

sub-micro detects that these values are different, it disables access to the communication

network and shuts down the power supply for the steering motor.

It is important to determine the timing in this architecture to compare the target and

the actual steering angle by taking into account the response delay time of the mechanical

system. Because the sub-micro is not connected to the network to reduce the cost of

the communication interface, it cannot receive the target value directly from the network.

Consequently, if the main micro fails and sends an incorrect target value to the sub-micro,

failure in the main micro may not be able to be detected since the main micro controls the

motor and the sub-micro executes the validity check based on this incorrect target value.

The vehicle integrated ECU adds a data check code to the target value data to prevent this

problem. After the frame from the vehicle integrated ECU is received, the main micro

sends it to the sub-micro without processing. The sub-micro can determine whether the

data are correct or not by checking this data check code.

‡Two fail-silent ECUs form fail-operational SBW driver ECU described in Subsection 2.2.2.

28 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

VehicleIntegratedECU
BusDriverMainMicro
Inverter

M
GateDriver

Steering Angle Target Value
i

VBat
Sub-Micro
Vehicle Control NetworkSteering Angle Target Value SBW Driver ECU

Steering AngleValidityCheck
Steering AngleSensor

Steering WheelAngle Sensor

θ

Figure 2.9: Validity check architecture for SBW driver ECU

Integrated ECU

Figure 2.10 indicates the hardware architecture for the vehicle integrated ECU to which

dual redundancy architecture is applied. Signals from vehicle dynamics sensors, such as

the acceleration and yaw rate sensors are input to both the main and the reference micros.

The main and reference micros communicate with each other via the serial communica-

tion to synchronize the analog-to-digital (A/D) conversion and make the conversion values

coincide. The calculated values in both microcontrollers are compared by self-checking

comparators. If the self-checking comparators detect disagreements in both values, they

disable the bus driver to stop network access.

SECTION 2.3 FAIL -SILENT NODE ARCHITECTURE 29

MainMicrocontroller ReferenceMicrocontrollerCC

SC CMPBus Driver

Serial Com.

Main Bus Backup Bus

Vehicle DynamicsSensors CC

Bus Driver SC CMP
CC: Communication ControllerSC CMP: Self-Checking Comparator

Figure 2.10: Dual redundancy architecture for integrated vehicle ECU

A self-checking comparator consists of the test pattern generator and comparator as

shown in Figure 2.11 [24]. The test pattern generator periodically injects a test pattern

and “00· · ·00” (all bits are 0) to each bit of the input data. When inputs A and B are

equal, and the self-checking comparator is operating correctly, it outputs a rectangular

wave with a period that is identical to the test pattern injection period. If the comparator

does not output a rectangular wave with this predetermined period, it means either “input

A and input B are not equal” or “the self-checking comparator itself is faulty”. Thus,

the self-checking comparator can not only detect faults in the input data, but also in the

comparator itself, which improves the reliability of the dual redundancy node.

Sensor ECU

The autonomous decentralized architecture requires fail-silent sensor ECUs that can di-

rectly broadcast the sensing data to the vehicle control network, as was explained in Sub-

30 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

Comparator
a0b0
anbn

c0
cn

Comparison of two CPU outputsInput B a0 a1 a2 anb0 b1 b2 bn
ErrorCorrect
Error

Test Pattern Generator
Input A

(Input A = Input B) and(Comparator is correct)

Figure 2.11: Configuration of self-checking comparator

section 2.2.2. The hardware block diagram of a smart sensor node that employs the dual

redundancy architecture is shown in Figure 2.12. The sensor node consists of two sensing

devices and a dual CPU LSI chip that integrates dual CPU cores, A/D converters, com-

munication controllers, self-checking comparators, and ROMs/RAMs with ECC (Error

Correcting Code). This LSI contributes to size reduction in the sensor node. The two

CPUs communicate with each other to synchronize the A/D conversion and make the

A/D conversion values of the sensor signals coincide. The CPUs execute the appropriate

signal processing for each sensing device, such as sensor signal filtering and conversion

of voltage to physical values to improve system scalability.

2.4 Estimation of System Cost Reduction

We estimate the effect of the system cost reduction due to the proposed autonomous de-

centralized architecture and optimal node hardware architecture. A brake-by-wire system

with the conventional architecture (Figure 2.6) is compared with one incorporating the

autonomous decentralized architecture (Figure 2.7). We focus on electronic components,

SECTION 2.4 ESTIMATION OF SYSTEM COST REDUCTION 31

Dual CPU LSIADCCPU ADCCPUCC CCROM/RAM
SC CMP

Bus Driver Bus Driver
SC CMP

Main Bus Backup Bus

Sensing Device(Main) Sensing Device(Reference)
ROM/RAM

Figure 2.12: Hardware architecture for smart sensor node

i.e., ECUs to estimate the system cost. The system cost for the conventional architecture,

Cconve
sys , is as follows:

Cconve
sys = 2CC + 4CA (2.1)

whereCC is the cost of a fail-silent integrated ECU, andCA is the cost of a fail-silent brake

ECU that employs the conventional dual redundancy architecture shown in Table 2.1.

Note that the fail-operational integrated ECU consists of two fail-silent integrated ECUs

as discussed in Section 2.2. The cost of a sensing device of the brake pedal sensor is

assumed to be negligible small compared with that of an ECU.

The increase of the system cost,C+
sys, for the autonomous decentralized architecture

is as follows:

C+
sys = CS +

Cdev

Npro

(2.2)

32 AUTONOMOUS DECENTRALIZED ARCHITECTURE CHAPTER 2.

whereCS is the cost of the intelligent brake pedal sensor ECU that can communicate

with the other ECUs through the control network,Cdev is the additional software devel-

opment cost for the node status monitoring and the backup control functions, andNpro

is the production volume of the system. We assume thatNpro is large enough to make

the second term in Equation (2.2) negligible because of the mass-production scale in the

automotive industry. Although the autonomous decentralized architecture requires the

node status monitoring and the backup control functions even for sensor and actuator

nodes, a microcontroller with equivalent performance as one equipped with the conven-

tional architecture can be applied. This is because only the basic function is required for

the autonomous backup control and the CPU computational overhead for the node status

monitoring can be sufficiently reduced, which will be discussed in Chapter 5. Thus, the

cost increase of the microcontroller in each ECU is not included in Equation (2.2).

Equation (2.3) expresses the cost decrease,C−
sys, by the proposed autonomous decen-

tralized architecture and optimal node hardware architecture:

C−
sys = CC + 4∆CA = CC + 2Cmc (2.3)

where∆CA is the cost reduction per one fail-silent brake ECU. Because we can apply

less expensive validity check architecture to fail-silent brake ECUs as indicated in Ta-

ble 2.1,∆CA can approximately be estimated as2Cmc − 1.5Cmc, whereCmc is the cost

of a main microcontroller which is assumed to be double compared with the cost of a

sub-microcontroller. Furthermore, as discussed in Section 2.2, since the integrated ECU

can be fail-silent due to the system-level redundancy in the autonomous decentralized

architecture, we can eliminate one fail-silent integrated ECU.

Therefore, with Equations (2.1), (2.2), and (2.3), we can calculate a ratio of the re-

duced system cost,∆Csys, to the system cost for the conventional architecture as follows:

∆Csys

Cconve
sys

=
C−

sys − C+
sys

2CC + 4CA

' CC + 2Cmc − CS

2CC + 4CA

' CC + 2αCC − βCC

6CC

(2.4)

SECTION 2.4 ESTIMATION OF SYSTEM COST REDUCTION 33

whereα is a ratio of the cost of a microcontroller to that of a fail-silent integrated ECU

(α = Cmc/CC < 1), andβ is a ratio of the cost of a sensor ECU to that of a fail-silent

integrated ECU (β = CS/CC < 1). In Equation (2.4), we assume thatCA is almost the

same asCC.

Figure 2.13 shows the estimation results on the system cost reduction. Although pa-

rametersα andβ depend on the actual hardware implementation, we conclude that ap-

proximately from 20 to 30% cost reduction can be achieved with practically possible

combinations of parametersα andβ, which contributes to a substantial cost reduction for

automotive control systems.

Ratio of Sys
tem Cost Re
duction

α (Cmc/Cc)00.050.10.150.20.250.30.35

0 0.1 0.2 0.3 0.4 0.5 0.6
β=0.1β=0.2β=0.3

Figure 2.13: Cost reduction in autonomous decentralized brake-by-wire system

SECTION 3.1 AGREEMENT PROTOCOL 35

CHAPTER 3

AGREEMENT PROTOCOL

3.1 Challenges to Autonomous Decentralized

Architecture

The autonomous backup control is an essential feature in the autonomous decentralized

architecture as was discussed in the previous chapter. Backup control should be based

on the accurate identification of failed nodes. However, as there is no master node for

monitoring the status of nodes in the system, the node status monitoring function in each

node plays a key role for fault-tolerance.

For example, as shown in Figure 3.1, suppose that the brake ECU 2 has not received

braking control target valueB2 from the integrated ECU because of failure in the receiver,

i.e., brake ECU 2. In this case, only the brake ECU 2 autonomously changes the control

mode to the backup control mode because it cannot determine by itself whether the sender

(integrated ECU) or the receiver (brake ECU 2) is faulty, which might lead to vehicle spin

due to braking imbalances.

Therefore, some coordination scheme, i.e., an agreement protocol, is required to accu-

rately identify the failed node and ensure consistency of the information on which nodes

36 AGREEMENT PROTOCOL CHAPTER 3.

Vehicle dynamicssensors
NetworkB1-B4 S1B1S1 B3 B4

BrakeECU 1

BrakeECU 2 BrakeECU 4
BrakeECU 3

IntegratedECU
Brake Pedal Sensor ECUData Field (S1 and B1-B4 are shared)

B1
B4
B3

Risk of vehicle spin

NormalControl

BackupControl f2 (S1)

Figure 3.1: Disagreements in control mode in autonomous decentralized architecture

are available among all remaining normal nodes so that disagreements in the control mode

can be avoided. We propose a membership protocol as an agreement protocol for safety-

critical distributed systems to address this issue, which will be discussed in this chapter.

3.2 Model of Time-Triggered Systems

3.2.1 Communication Model

Before we discuss the proposed membership protocol, let us first define a generic time-

triggered (TT) system including a FlexRay communication system, which will be used in

X-by-Wire systems.

The system consists ofn nodes having unique IDs1, 2, ..., n. The communication

network is the bus type with TDMA (Time Division Multiple Access). As we can see

from Figure 3.2, the system runs by consecutively executing synchronous rounds, starting

from round 1. A node is assigned its own sending slots as to where it can send a message

frame. A frame sent by a node is received by all the other nodes. All sending slots are

SECTION 3.2 M ODEL OF T IME -TRIGGERED SYSTEMS 37

statically scheduled in the design time and thus never overlap. Every node sends a frame

at least once in one round.snd rcv
rcv

snd
rcv
rcv

snd
rcvrcvNode 1Node 2

Node n
snd rcv

rcv
snd

rcv
rcv

snd
rcvrcvRound k Round k+1

…
Figure 3.2: Communication in time-triggered systems

3.2.2 Fault Model

Faults in nodes are observed as communication errors.Figure 3.3 illustrates three fault

types:correct, benign fault, andsymmetric Byzantine fault. If nodei suffers neither be-

nign fault nor symmetric Byzantine fault, the node correctly sends the message framem.

If node i suffers a benign fault in roundk, then the message framem sent by the node

in the round is lost. Hence, all nodes can locally detect it in roundk. A benign fault

arises from a transmission error due to e.g., a node crash. If nodei suffers a symmetric

Byzantine fault in roundk, then, all nodes in the same round receive the same erroneous

messagem′ from the faulty node, which does not conform to the protocol specifications.

In this dissertation, we assume that a reception error in a certain node can be seen as a

symmetric Byzantine fault, as discussed in detail later.

We take account of intermittent faults as well as permanent faults, and also assume

that the fault types, either benign or symmetric Byzantine, never change along with com-

munication rounds in one node.

Our fault model does not include faults in terms of timing violation in communica-

tion, where a node sends message frames at the sending slots disallowed for the node.

38 AGREEMENT PROTOCOL CHAPTER 3.

This is because we assume that each node is equipped with so calledbus guardiansthat

physically prevent a faulty node from accessing the bus at the sending slots assigned to

the other nodes [25].

Correct Benign fault Symmetric Byzantine fault
im m m im m m×××××××××××× im’m’ m’

Figure 3.3: Fault types

Nodes arecorrect, obedient, or symmetric Byzantine faulty. Correct nodes follow the

protocol specifications and suffer no faults. Obedient nodes follow the specifications but

they may or may not suffer benign faults. Correct nodes are thus also obedient. Symmetric

Byzantine faulty nodes do not follow the specifications and suffer symmetric Byzantine

faults. We assume:

2s + b + 1 < n (3.1)

wheres is the number of symmetric Byzantine faulty nodes andb is the number of benign

faulty nodes.

3.3 Membership Protocol

3.3.1 Protocol Description

We propose a membership protocol for TT systems as an agreement protocol to solve

these problems in the autonomous decentralized architecture [16]. It provides information

on the availability of all nodes in the system by exchanging a local view of the status of

other nodes with all nodes.

SECTION 3.3 M EMBERSHIP PROTOCOL 39

snd rcv
rcv

snd
rcv
rcv

snd
rcvrcvNode 1Node 2

Node n
snd rcv

rcv
snd

rcv
rcv

snd
rcvrcv det_jobRound k Round k+1

Local Syndrome Evaluation （EVA） Local Syndrome Exchange（EXC） Determination（DET）
EXC DETRound k Round k+1 Round k+2 Round k+3EVA EVA

… det_job
det_job

det_jobdet_job
det_job

EXC DETEVA EXC DET
Figure 3.4: Overview of execution sequence in membership protocol

An execution sequence of the protocol in the TT system is outlined in Figure 3.4. In

every roundk, the membership protocol starts the sequence of three phases, which spans

two consecutive rounds, viz., roundsk andk + 1. The pseudo-code of the membership

process of three phases executed in each nodep in roundk is also presented in Algo-

rithm 1. In the pseudo-code, hereinafter,informationk p[i, . . . , j] denotesinformation

on statuses with respect to from nodei to nodej in roundk computed by nodep.

In round k, each node evaluates other nodes’ statuses locally by receiving frames

sent by the other nodes (receive lsk−1 msg i[]) and evaluating them (EVA phase). The

evaluation result, which we call alocal syndrome, represents the local view of other nodes’

statuses that was evaluated in roundk. A local syndrome evaluated in nodep, i.e.,lsk p[],

is a binaryn-tuple 〈s1, s2, . . . , sn〉 wheresi = 1 if p evaluates nodei as non-faulty and

si = 0 otherwise (Algorithm 1, lines 5-8). In the pseudo-code,Φ denotes no received

message (line 5). Note thatlsk p[] has to be buffered insend lsk msg p[] because it is

40 AGREEMENT PROTOCOL CHAPTER 3.

not sent in the current round, but in the next round, i.e., roundk + 1 (line 12).

In the following round, roundk + 1, the local syndromes evaluated in roundk are

exchanged by all nodes and nodep constructs a local syndrome matrix,lsk matrix[][],

where theith row is the local syndrome received from nodei and thejth column is a

vector representing the evaluation for nodej from all nodes (EXC phase). An element,

ei,j, is either 1, 0,ε, or−. The case,ei,j = ε, i 6= j, occurs if nodei failed to send its local

syndrome in roundk+1 because of its benign fault (lines 17-18). In line 18,[ε, . . . , ε]n is

a vector that hasn elements ofε. The opinion of a node about itself, i.e.,ei,i, 1 ≤ i ≤ n,

is considered unreliable and thus is assigned special value−, which specifies that it is to

be discarded in voting (line 22).

Each node determines node status in the same round (i.e., roundk+1) by voting on the

local syndrome matrix (DET phase). Each node obtains a binaryn-tuple called atemporal

health vector, ĥv, where theith element represents whether nodei is non-faulty or faulty

by hybrid voting [26] over each of the columns (line 27). Hybrid voting is specifically

defined as:

H−maj(V) =

0 N0(V) > N1(V)

1 N0(V) ≤ N1(V)

whereV is the column that is voted on, andN0(V) andN1(V) are the number of occur-

rences of 0 and 1 inV .

The temporal health vector is then updated to accuse symmetric Byzantine faulty

nodes, which we call aminority accusation. If the temporal health vector,̂hv, and the

local syndrome sent from nodei respectively have 0 and 1 or 1 and 0 in the same posi-

tion, then nodei is identified as a faulty node (lines 31-32).The final health vector,hv,

is obtained from̂hv by setting the value in theith position to 0 for all such nodesi∗.

∗We regard benign and symmetric Byzantine faulty nodes as equally serious because the potential causes

of these faults are all physical [27]. This is in contrast to systems deployed in open networks, where

intrusion is the main cause of Byzantine faults.

SECTION 3.3 M EMBERSHIP PROTOCOL 41

Finally, a node updates counters associated with nodes based on the health vector

and possibly eliminates faulty nodes from active ones. For example, one can eliminate

a node by counting the number of times when the node is diagnosed as faulty and by

deciding to eliminate it when the counter exceeds a predefined threshold. The process of

updating the counters can be regarded as executing a stateful function that takes a health

vector,hv, as input and produces a set of active nodes as output. We denote this counter

updating function byupdateCounter(hv). Thus, the output of the membership protocol

is obtained by executing the following operation in each node (lines 38 and 40):

active nodes ← updateCounter(hv)

We emphasize that multiple instances of this sequence of phases are executed concur-

rently, as shown in Figure 3.4. The node status evaluation process (EVA) can be done

concurrently in the status data exchanging phase (EXC) by evaluating the exchanged sta-

tus data. The node status, correct or faulty, in a certain round can be identified in the

next round, which can enhance real-time capabilities for diagnosing faults, due to this

pipeline-like process execution.

42 AGREEMENT PROTOCOL CHAPTER 3.

Algorithm 1: Nodep membership process in roundk
1 // EVA Phase
2 // local syndrome evaluation
3 for i ← 1, . . . , n do
4 lsk−1 i[1, . . . , n] ← receive lsk−1 msg i[1, . . . , n];
5 if lsk−1 i[1, . . . , n] = Φ then // no received message
6 lsk p[i] ← 0;
7 else
8 lsk p[i] ← 1;
9 endif

10

11 // local syndrome buffering to be sent in roundk + 1
12 send lsk msg p[1, . . . , n] ← lsk p[1, . . . , n];
13

14 // EXC Phase
15 // local syndrome exchange and local syndrome matrix construction
16 for i ← 1, . . . , n do
17 if lsk−1 i[1, . . . , n] = Φ then // no received message
18 lsk−1 matrix[i][1, . . . , n] ← [ε, . . . , ε]n;
19 else
20 lsk−1 matrix[i][1, . . . , n] ← lsk−1 i[1, . . . , n];
21 endif
22 lsk−1 matrix[i][i] ← −;
23

24 // DET Phase
25 // hybrid voting
26 for i ← 1, . . . , n do
27 ĥvk−1[i] ← H-maj(lsk−1 matrix[1, . . . , n][i]);
28

29 // minority accusation
30 for i ← 1, . . . , n do
31 if lsk−1 i[1, . . . , n] 6= ĥvk−1[1, . . . , n] then
32 hvk−1[i] ← 0;
33 else
34 hvk−1[i] ← ĥvk−1[i];
35 endif
36

37 // counter update
38 active nodes ← updateCounter(hvk−1[1, . . . , n]);
39

40 return active nodes;

SECTION 3.3 M EMBERSHIP PROTOCOL 43

3.3.2 Example of Membership Protocol

Consider a system consisting of five nodes (n = 5) as an example where node 2 is sym-

metric Byzantine faulty and the other nodes are obedient. Suppose that node 1 suffers

benign faults in roundsk andk + 1. Also suppose that node 2 sends an erroneous local

syndrome in roundk + 1. Then, each obedient node formsa local syndrome matrixin

roundk + 1 as follows:

− ε ε ε ε

0 − 1 0 1

0 1 − 1 1

0 1 1 − 1

0 1 1 1 −

from node 1

from node 2

from node 3

from node 4

from node 5

Every obedient node carries out hybrid voting on each column after the local syndrome

matrix is formed. Theε and− values are first discarded in hybrid voting and then voting

is performed on the remaining values. In this case, all obedient nodes obtain the following

temporal health vector:

ĥv = 〈0, 1, 1, 1, 1〉

Then, symmetric Byzantine faulty nodes are accused. Of the five syndromes, only the

one from node 2 has different 0/1 values fromĥv. Specifically, the syndrome from node 2

differs from ĥv in the fourth position.The temporal health vector is updated to record

that node 2 has been identified as a faulty node by setting the second position to 0:

hv = 〈0, 0, 1, 1, 1〉

Finally, using the health vector, each node updates the set of active nodes by executing

updateCounter(hv).

44 AGREEMENT PROTOCOL CHAPTER 3.

Figure 3.5 shows an example of a detailed execution sequence for the protocol. The

system configuration and fault conditions are the same as those in the above example.

Node 2 becomes symmetric Byzantine faulty in roundk + 1 because node 2 could not

receive node 4’s message frame in roundk due to, e.g., electrical noise in node 2 or at a

network stub to node 2.

Node 2 Node 3 Node 4 Node 5Node 1

Node 1 Round kNode 2Node 3Node 4Node 5
11111 11111 11111 11111
0-10101-11011-1

Round k+1 Round k+20110101111 01111 01111
01111 01111 01111 01111

11111Fault Fault

-εεεε -εεεε01-11011-10111-
0-101 0-101-εεεε

011-10111-01-11 0-101-εεεε01-110111-011-1 0-101-εεεε
011-101-110111-from Node 4

Node 2 Node 3 Node 4 Node 5Node 10-11101-11011-1
-1111 -111101-11011-10111-

0-111 0-111-1111
011-10111-01-11 0-111-111101-110111-011-1 0-111-1111

011-101-110111-0111-0111-from Node 3from Node 2from Node 1
from Node 5

00111 00111 00111 00111 00111 01111 01111 01111 01111 01111

Sent local syndrome

TemporalHealth Vector 01111 01111 01111 01111 01111 01111 01111 01111 01111 01111
Counter 11000 11000 11000 11000 11000 21000 21000 21000 21000 21000Health Vector

Fault

Local Syndrome Matrix in Round k+1 Local Syndrome Matrix in Round k+2
Symmetric Byzantinefaulty

Benign faulty

Figure 3.5: Detailed execution sequence for membership protocol

Node 2 evaluates that node 4 was benign faulty in roundk and then node 2 sends

a local syndrome “01101” in roundk + 1, which differs from a temporal health vector

“01111”. Thus, node 2 is identified as symmetric Byzantine faulty by the minority ac-

cusation process.Note that the result of the minority accusation in roundk + 1 is not

broadcast in roundk + 2. Node 1, which suffered benign faults in roundsk andk + 1,

SECTION 3.3 M EMBERSHIP PROTOCOL 45

sends a correct local syndrome in roundk + 2, because it could receive message frames

even during benign faulty periods†.

3.3.3 Properties

Lemma 1 Nodei is diagnosed as faulty in temporal health vectorĥv in roundk + 1 by

any obedient node if and only ifi suffers a benign fault in roundk.

Proof: If i suffers no benign fault in roundk, then no obedient node sets theith bit to 0

in its local syndrome in roundk + 1. From Equation (3.1), we have:

s < n − s − b − 1 (3.2)

Let p be any obedient node (which is possiblyi) and letVi denote theith column of

p’s local syndrome matrix. Then,N0(Vi) ≤ s andN1(Vi) ≥ n − b − s − 1‡. From

Equation (3.2),N0(Vi) < N1(Vi), thusH −maj(Vi) = 1 and nodei is diagnosed as

correct inĥv. If i suffers a benign fault in roundk, then no obedient node sets theith bit

to 1 in its local syndrome in roundk + 1. Because of the same argument as in the case

wherei suffers no benign faults,H−maj(Vi) = 0 and nodei is diagnosed as faulty in

ĥv.

Lemma 2 Node i is accused as symmetric Byzantine faulty in the minority accusation

by any obedient node in roundk + 1 if and only if i sends an erroneous local syndrome

in roundk + 1.

Proof: Let p be any obedient node. Ifi sends a correct local syndrome in roundk +

1, then by Lemma 1,p’s temporal health vector̂hv is the same as the local syndrome

received fromi, and thusi is not accused. If the local syndrome sent byi is lost, theni

†We only assume that a message frame from a benign faulty node cannot besentto the other nodes in

the fault model discussed in Section 3.2.
‡The term−1 is necessary sincep’s evaluation of itself is discarded.

46 AGREEMENT PROTOCOL CHAPTER 3.

is not accused in the minority accusation byp. If i sends an erroneous local syndrome

in roundk + 1, then the local syndrome differs from the correct one with respect to the

evaluation of some nodej(6= i). Let Vj be thejth column inp’s local syndrome matrix

andv ∈ {0, 1} and1 − v ∈ {0, 1} be the correct and erroneous values for the evaluation

of nodej. Because of the same argument as in Lemma 1,Nv(Vj) > N1−v(Vj). Therefore,

i is accused as symmetric Byzantine faulty byp in the minority accusation.

Theorem 1 The following two properties hold:

• Correctness: a correct node is never diagnosed as faulty in the health vector of any

obedient nodes.

• Completeness: a faulty node that suffers a benign fault in roundk or sends an

erroneous local syndrome in roundk +1 is always diagnosed as faulty in the health

vector of all obedient nodes in roundk + 1.

Proof: The theorem directly follows from Lemmas 1 and 2.

Theorem 2 Consistency: the health vector is agreed by all obedient nodes in each round.

Proof: Because of Theorem 1, the set of nodes identified as correct or faulty in the health

vector is agreed by all obedient nodes. Hence, the theorem follows.

Theorem 3 Consistent Isolation: the set of active nodes is agreed by all obedient nodes

in each round.

Proof: Let hv denote the health vector obtained by an obedient node. Because of The-

orem 2,hv is agreed by all obedient nodes. Since updating functionupdateCounter is

deterministic, its outputupdateCounter(hv) is also agreed by all obedient nodes.

SECTION 4.2 PROTOTYPE BRAKE -BY-W IRE SYSTEM 47

CHAPTER 4

PROTOTYPE BRAKE -BY-W IRE

SYSTEM

4.1 Introduction

The membership protocol was implemented on a hardware and software platform equiv-

alent to one assumed to be used in commercial X-by-Wire systems. Subsequently, we

developed a prototype FlexRay-based brake-by-wire system based on the proposed au-

tonomous decentralized architecture to evaluate its function and the required overhead,

especially the CPU computational load of the membership middleware. This chapter de-

scribes details of implementation and results obtained from evaluating the function of the

prototype system and the performance of the membership middleware.

4.2 Software Architecture

Because the membership function is separable from the backup control logic executed by

an application program, a natural design choice is to implement it in a middleware layer.

We implemented the membership middleware with other software modules required in

48 PROTOTYPE BRAKE -BY-W IRE SYSTEM CHAPTER 4.

Hardware

Software

OSEK OS

FlexRay

COM middleware
FlexRayCommunication ControllerCPU

active_nodes
FlexRayCommunication Driver

Application Program

Transceiver

Membership Middleware

Figure 4.1: Software architecture

actual X-by-Wire systems on a Renesas M32C microcontroller capable of FlexRay com-

munication, and developed a prototype autonomous decentralized brake-by-wire system.

Figure 4.1 shows the software architecture in each node. FlexRay is used for the com-

munication network. The software is composed of basic software including OSEK OS

(Operating System) [28], communication (COM) middleware, and a FlexRay communi-

cation driver, membership middleware, and an application program to execute the brake

control algorithm. A three-phase brushless motor control application was implemented in

the brake ECUs.

The COM middleware, which is not a standardized one like OSEK COM or AU-

TOSAR COM, provides features such as frame packing/unpacking, fault detection above

the data link layer by adding and checking the checksum code and sequential number, and

handling the redundant frames.

The membership middleware executes the sequence indicated in Figure 3.4, where it

SECTION 4.2 SOFTWARE ARCHITECTURE 49

evaluates the status of other nodes based on the fault information stored in the COM mid-

dleware and communication driver, exchanges the local syndrome with all nodes, and de-

termines other nodes’ statuses by voting on the exchanged local syndromes. The middle-

ware offers an API (Application Program Interface) to provide the application programs

with the status information of other nodes, i.e.,activenodes. The application programs

switch the vehicle control logic according to this information. Because the application

program itself does not need to monitor the node status, the development efficiency of the

application program can be improved, thanks to the membership middleware. We regard

the membership function as one of the essential features of the NM (Network Manage-

ment) layer for safety-critical distributed systems.

Executing the membership middleware has to be synchronized with FlexRay commu-

nication, as we discussed in Section 3.3. One solution to achieve this is to use a time-

triggered OS such as OSEKTime [29]. However, time-triggered tasks in OSEKTime have

higher priority than OSEK event-triggered tasks and interrupts. This feature is suitable

for complete time-triggered systems, but automotive control systems generally have some

event-triggered tasks and interrupts with the highest priority, e.g., fuel injection and igni-

tion control synchronized to engine revolution. Furthermore, the task scheduling strategy

of OSEKTime is stack-based scheduling, where a running task is always preempted by

another task regardless of its priority. This strategy is completely different from that

of OSEK, which can implement multiple task execution with a priory-based scheduling

scheme, i.e., a task with higher priory is not preempted by a lower priority task. The

above-mentioned engine control and three-phase brushless motor control require multiple

tasks to be executed. Therefore, OSEK was used in our implementation based on this

analysis, as shown in Figure 4.1, so that the membership middleware task could coexist

with the motor control task.

Figure 4.2 shows how we synchronize the OSEK tasks including the membership task

50 PROTOTYPE BRAKE -BY-W IRE SYSTEM CHAPTER 4.

with FlexRay communication. The absolute timer, which counts the time elapsed from the

start of the communication roundand is reset at the start of every communication round,

is implemented in the FlexRay communication controller. We use an interrupt handler

activated by this timer. In the interrupt handler, aSetEventcall is issued to a task that has

to be activated at that time, and the next task activation time is set. The task receiving

SetEventmakes a transition from thewait state to thereadystate. When multiple tasks

receiveSetEvent, such as at timeT2 in Figure 4.2, the OSEK scheduler determines the

order of execution for these tasks based on task priority. The task transitions to thewait

state again by callingWaitEventat the end of the task, and waits forSetEventto be called

in the next communication round.

T1

Interrupt by FlexRay-synchronized timer

T2

Start of Round k Start of Round k+1

0 0

FlexRay-Synchronized Timer Interrupt Handler SetEvent (Task A)
Other Interrupt Handlers or Event-Triggered Tasks with Higher Priority (e.g., motor current FB control task, engine control task)

SetEvent (Task B, Task C)
ClearEventWaitEvent

Set Time T2
FlexRay-SynchronizedOSEK Tasks(e.g., membership middleware task)

Set Time T1 in the next round k+1
Task ATask BTask C ClearEventWaitEvent

ClearEventWaitEvent
Interrupt by FlexRay-synchronized timer

Task B has higher priority than Task C

Figure 4.2: Synchronization of FlexRay communication and OSEK tasks

OSEK tasks can be synchronized with FlexRay communication in this way. Further-

more, as shown in Figure 4.2, because tasks and interrupt handlers with higher priority

than that of the FlexRay-synchronized tasks can preempt the FlexRay-synchronized tasks,

event-triggered tasks with the highest priority such as the engine control task and the mo-

tor current feedback control task, are not influenced by FlexRay-synchronized tasks, and

SECTION 4.3 PROTOTYPE I MPLEMENTATION AND EVALUATION 51

both kinds of tasks can exist together on the same processor.

One point to note is that FlexRay-synchronized tasks can only be executed when the

FlexRay communication controller is in a state where the absolute timer is operating (i.e.,

“Normal Active” state). Therefore, we have to implement a FlexRay communication-

independent task that monitors the state of the communication controller and executes

certain exception handling in case the state is other than that state.

4.3 Prototype Implementation and Evaluation

We implemented this software architecture on a Renesas M32C microcontroller integrat-

ing a FlexRay communication controller, and developed a prototype autonomous decen-

tralized brake-by-wire system. Figure 4.3 indicates the structure of the prototype system,

which consists of six ECUs, i.e., a brake pedal sensor ECU, an integrated ECU that cal-

culates the target braking force values for four wheels based on the brake pedal position,

and four brake ECUs (Front-Left, Front-Right, Rear-Left, and Rear-Right) for braking

motor control. These ECUs communicate with one another via FlexRay of 5 Mbps baud

rate and a communication round of 5 ms.

The rear-left brake ECU executes position servo control of a real three-phase brushless

motor with a 150µs current feedback control loop. The control loop is implemented by

a timer interrupt handler that is independent of FlexRay communication and executed at

higher priority than that of the membership functionality implemented with the FlexRay-

synchronized OSEK task.

Furthermore, as shown in Figure 4.3, the accelerator pedal position signal, steering

wheel angle signal, and braking force signals, which the four brake ECUs generate, are

input to a real-time vehicle dynamics simulator to observe the vehicle motion during

fault injection such as an ECU power supply shutdown or disconnection of the network

52 PROTOTYPE BRAKE -BY-W IRE SYSTEM CHAPTER 4.

Brake PedalPosition FlexRay

Steering WheelAngle Sensor
BrakingForce

Real-time Vehicle DynamicsSimulator
PositionSensor(Acceleration)

BrakingForce

Target Braking Force

3-phaseBrushlessMotor

Brake ECU(RR)
Brake ECU(RL)

IntegratedECUBrake ECU(FR)
Brake PedalSensor ECU

PositionSensor(Braking)
Brake ECU(FL)

Figure 4.3: Prototype autonomous decentralized brake-by-wire system

channel.

First, functions were evaluated when faults occurred in this prototype system. When

the integrated ECU was shut off, the middleware in all the remaining normal ECUs could

identify the failure in the integrated ECU. The four brake ECUs shifted to autonomous

backup control, where they directly obtained the brake pedal position signal from the

network and calculated the target braking force based on the pedal position signal by

themselves. Even if the integrated ECU failed, the vehicle maintained the braking func-

tion without generating unintended yaw moment, and we successfully demonstrated that

the autonomous backup control function worked well in the proposed architecture. More-

over, we found that the vehicle could stably decelerate even when simultaneous faults

occurred, e.g., when the power supply of the integrated ECU was shut off and one of the

brake ECUs was disconnected from the network.

SECTION 4.3 PROTOTYPE I MPLEMENTATION AND EVALUATION 53

Table 4.1: Execution time and CPU load in prototype system

570Frame reception 70MembershipMotor control
Frame transmission

Executiontime (μs)
29070

CPU load(%)
47
111.45.8

Process

We also evaluated the performance of the membership middleware. Table 4.1 sum-

marizes the execution time and CPU load for each process on the rear-left brake ECU in

which the motor control function was also implemented. These results were based on the

following conditions: six nodes, a 5 ms FlexRay communication round, a Renesas M32C

microcontroller with a 40 MHz CPU clock and bus of 16 bits, and an IAR EWM32C

compiler without any compiler options. The rear-left brake ECU received five message

frames that contained the local syndromes from the other five nodes, and two message

frames that contained the control application data from the integrated ECU and the brake

pedal sensor ECU. The frame reception and transmission execution times in Table 4.1

include those of both the FlexRay communication driver and the COM middleware which

provides features such as frame packing/unpacking, fault detection above the data link

layer by adding and checking the checksum code and sequential number, and handling of

redundant frames. The execution time of the membership process under these conditions

was 290µs, which means it consumed 5.8% (290µs divided by the communication round

of 5 ms) of the whole available CPU time.

Furthermore, we investigated the execution time needed to compute the health vector

by the voting process in systems consisting of 4, 5, and 6 nodes. Each node had a mi-

crocontroller with a 40 MHz CPU clock. Table 4.2 reveals that the voting execution time

54 PROTOTYPE BRAKE -BY-W IRE SYSTEM CHAPTER 4.

Table 4.2:Voting execution time with respect to number of nodesNumber of nodesVoting execution time (μs) 4 5 678 121 169
increases quadratically with respect to the number of nodes. This is because the local

syndrome matrix containsn × n bits for ann-node system, as seen in Figure 3.5.

Finally, we confirmed that motor position servo control could be adequately executed

without interference by the membership service, and that the membership task also sat-

isfied a specified deadline, i.e., the start time of the task in the next communication

round, although it took longer to execute due to the interruption by the motor control

task. Therefore, we can conclude that the membership middleware can coexist with ap-

plication programs like three-phase brushless motor control that have to satisfy severe

real-time requirements with the proposed method of synchronization between FlexRay

communication and OSEK tasks.

4.4 Discussion

The overhead of 5.8% evaluated in the prototype system might sound small, but in prac-

tice, this is prohibitively large, because CPU time is already a very scarce resource. It is

ideal to assign as much CPU time as possible to control application programs to achieve

better driving performance and safety in automotive systems. Thus, it is not acceptable in

practice to spend that much CPU time only on the membership service.Furthermore, the

execution time for the voting increases with the square of the number of nodes.

Using faster CPUs could mitigate the problem to some extent. In fact, we can predict

that the CPU load will be less than that in these evaluation results since we will be able

SECTION 4.4 DISCUSSION 55

to use much higher performance microcontrollers with around 100 MHz CPU when X-

by-Wire systems will actually become commercially available. However, the demands

for high levels of responsiveness in driving control will be simultaneously increasing. For

example, current automotive control systems often require a much shorter communication

round time than that in our prototype system. Such increasing demands for shorter round

times easily offset the increase in CPU performance.

Therefore, we have to further develop membership protocols that consume less CPU

resources, even in largen-node systems that can have more than 10 or 20 nodes in the

actual automotive control systems.

SECTION 5.1 L IGHTWEIGHT M EMBERSHIP PROTOCOL 57

CHAPTER 5

L IGHTWEIGHT M EMBERSHIP

PROTOCOL

5.1 Introduction

We propose two membership protocols to reduce the overhead, i.e.,voting sharingand

clustering, to address the problem that the protocol requires much CPU resources, espe-

cially for systems consisting of large number of nodes, as discussed in Sections 4.3 and

4.4.

Both approaches aim to decrease the computation overhead for voting in the member-

ship protocol. The main idea behind voting sharing is to have each node vote for only

one respective node and to share the voting results with all nodes. On the other hand, in

the clustering protocol,n nodes are logically divided inton/c clusters, where each cluster

consists ofc nodes. Nodep sends a local syndrome only with respect to nodes within the

cluster to which nodep belongs to all the other nodes in the system. The clustering proto-

col can also reduce the communication bandwidth, compared with the original protocol.

58 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

This chapter discusses both protocols in detail and presents experimental results on the

execution time. We further analyze a tradeoff between the overhead and fault-tolerance

in the proposed three membership protocols including the original protocol.

5.2 Voting Sharing

In the voting sharing protocol, each node performs voting to detect a fault in a single node

and to share its voting result with all the nodes.Each node has a responsibility to vote

on the exchanged local syndromes with respect to one specific node and to broadcast the

result in the following round. As a result, the computation cost required for voting is

reduced compared with the original approach which votes for each of then nodes.

5.2.1 Protocol

The execution of the protocol now involvesat leastthree rounds, instead of two rounds,

as outlined in Figure 5.1.The pseudo-code of the process in the voting sharing protocol

executed in each nodep in roundk is also presented in Algorithm 2.

A node locally evaluates other nodes’ statuses in roundk, as is done in the original

protocol (EVA phase).

In roundk + 1, the local syndrome representing errors observed in roundk is broad-Round k Round k+1 Round k+2 Round k+3EVA EXC VT EXCVEVA EXC VT EXCVDETEVA EXC VT DET
Figure 5.1: Execution sequence for voting sharing protocol

SECTION 5.2 VOTING SHARING 59

cast, just as is done in the original protocol (EXC phase). Then, in VT phase, each nodep

only votes for a single node, unlike what occurs in the original protocol. Nodep extracts

one element that is associated with a node thatp is responsible for from each of the local

syndromes received. We define nodetarget(p, k) as the node for whichp is responsible

for diagnosis in the protocol execution that starts from roundk. Thus, nodep collectsn−1

values (excludingtarget(p, k)’s own evaluation), each of which is either 1, 0, orε. Node

p carries out hybrid voting on thesen−1 values (Algorithm 2, line 26). The result of vot-

ing, result p[target(p, k)], is either 1 or 0. Following the hybrid voting, nodep executes

the minority accusation described in Subsection 3.3.1 by comparing the voting result with

then − 1 values excludingtarget(p, k) (lines 29-31). Finally, the result of the diagno-

sis is encoded as ann-bit vector,result p[], where 0 on theith bit means that nodei

has been diagnosed as benign faulty (target(p, k) = i) or symmetric Byzantine faulty

(target(p, k) 6= i). The result vectorresult p[] is buffered insend result msg p[] to

be exchanged in the next round (line 37).

In roundk + 2, the results of the voting and the minority accusation are broadcast

(EXCV phase). This phase can be combined with the EXC phase of the next protocol

execution by adding then-bit diagnosis data to the local syndrome. Each node collects

diagnosis results fromn nodes including itself, to construct a result matrix (lines 46-49).

Finally, in the DET phase, the node obtains the status for nodei in the health vector,

hv[i], by computing a bitwise AND of all receivedn-bit results in theith column of the

result matrix, i.e.,result matrix[][i] (line 55). After health vectorhv is calculated, the

set of active nodes is updated to the return value of functionupdateCounter(hv), which

is deterministic.

60 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

Algorithm 2: Nodep voting sharing membership process in roundk

1 // EVA Phase
2 // local syndrome evaluation
3 for i ← 1, . . . , n do
4 lsk−1 i[1, . . . , n] ← receive lsk−1 msg i[1, . . . , n];
5 if lsk−1 i[1, . . . , n] = Φ then // no received message
6 lsk p[i] ← 0;
7 else
8 lsk p[i] ← 1;
9 endif

10

11 // local syndrome buffering to be sent in roundk + 1
12 send lsk msg p[1, . . . , n] ← lsk p[1, . . . , n];
13

14 // EXC Phase
15 // local syndrome exchange and local syndrome matrix construction
16 for i ← 1, . . . , n do
17 if lsk−1 i[1, . . . , n] = Φ then // no received message
18 lsk−1 matrix[i][1, . . . , n] ← [ε, . . . , ε]n;
19 else
20 lsk−1 matrix[i][1, . . . , n] ← lsk−1 i[1, . . . , n];
21 endif
22 lsk−1 matrix[i][i] ← −;
23

24 // VT Phase
25 // hybrid voting
26 resultk−1 p[target(p, k)] ← H-maj(lsk−1 matrix[1, . . . , n][target(p, k)]);
27

28 // minority accusation
29 for i ← 1, . . . , target(p, k) − 1, target(p, k) + 1, . . . , n do
30 if lsk−1 i[target(p, k)] 6= resultk−1 p[target(p, k)] then
31 resultk−1 p[i] ← 0;
32 else
33 resultk−1 p[i] ← 1;
34 endif
35

36 // diagnosis result buffering to be sent in roundk + 1
37 send resultk−1 msg p[1, . . . , n] ← resultk−1 p[1, . . . , n];
38

39 // target node rotation for voting in roundk + 1
40 target(p, k + 1) ← rotate(target(p, k));
41

42 // EXCV phase
43 // exchange of diagnosis results with respect to roundk − 2 computed in roundk − 1
44 for i ← 1, . . . , n do
45 resultk−2 i[1, . . . , n] ← receive resultk−2 msg i[1, . . . , n];
46 if resultk−2 i[1, . . . , n] = Φ then // no received message
47 resultk−2 matrix[i][1, . . . , n] ← [ε, . . . , ε]n;
48 else
49 resultk−2 matrix[i][1, . . . , n] ← resultk−2 i[1, . . . , n];
50 endif
51 resultk−2 matrix[i][i] ← −;
52

53 // DET phase
54 for i ← 1, . . . , n do
55 hvk−2[i] ← resultk−2 matrix[1][i] & . . . & resultk−2 matrix[n][i];
56

57 // counter update
58 active nodes ← updateCounter(hvk−2[1, . . . , n]);
59

60 return active nodes;

SECTION 5.2 VOTING SHARING 61

Thetarget(p, k) must meet two properties for any roundk:

∀p, q : p 6= q ⇒ target(p, k) 6= target(q, k)

∀p : p 6= target(p, k)

The first property states that two different nodes are responsible for voting for two differ-

ent nodes. This property ensures that every node in every round has its own unique node

that is responsible for voting for it. The second property signifies that such a voter node

is different from the node diagnosed by that voter node.

Note that in an execution of the proposed protocol that starts from roundk, nodei is

diagnosed twice: in roundk + 1 by the voter nodep, such thattarget(p, k + 1) = i, and

in roundk + 2 by all nodes in the health vector. When necessary, we say that a node is

diagnosed (as faulty or non-faulty)in the health vectorin the latter case.

5.2.2 Properties

Here, we prove some key properties of voting sharing.These properties hold when there

are no symmetric Byzantine faulty voters. We will discuss how we resolve a problem of

symmetric Byzantine faulty voters in Subsection 5.2.3.

First, consistency and consistent isolation hold straightforwardly.

Theorem 4 Consistency: The health vector is agreed by all obedient nodes in each round.

Proof: When a node sends its diagnosis result, the message is either received correctly

by all nodes, lost due to a benign fault, or received incorrectly by all nodes due to a

symmetric Byzantine fault. Hence, the health vector finally obtained is identical in all

obedient nodes.

Theorem 5 Consistent isolation: The set of active nodes is agreed by all obedient nodes

in each round.

62 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

Proof: The counter updating function,counterUpdate(hv), is deterministic. Because of

Theorem 4, health vectorhv is identical for all obedient nodes. Hence, the active nodes,

which are updated to the output of the function in every round, are always identical for all

obedient nodes.

Correctness and completeness hold in a somewhat weaker form than those in the orig-

inal protocol.

Theorem 6 Correctness: Correct nodeq is never diagnosed as faulty in the health vector

in roundk + 2 if all nodes are obedient.

Proof: Suppose thatq is a correct node and all nodes are obedient. From Lemmas 1 and 2,

q is always diagnosed as correct by any node in roundk + 1. The diagnosis result sent

by each node in roundk + 2 is either correctly broadcast or simply lost, because the node

is obedient. Hence,q is never diagnosed as faulty in roundk + 2 by any nodes in their

health vector.

Theorem 7 Completeness w.r.t benign faults: If nodeq suffers a benign fault in roundk,

thenq is diagnosed as faulty in roundk + 2 by all obedient nodes ifq’s voter nodep (i.e.,

the node such thattarget(p, k) = q) is obedient and suffers no faults in roundk + 2.

Proof: From Lemma 1, if nodeq suffers a benign fault in roundk, thenq is always

diagnosed as faulty by voter nodep in roundk + 1 if p is obedient. If no faults occur in

the voter node in roundk + 2, then the voting result0 is correctly broadcast and occurs in

the health vector of all obedient nodes in the round.

Theorem 8 Completeness w.r.t symmetric Byzantine faults: Suppose that symmetric Byzan-

tine faulty nodeq sends an erroneous local syndrome in roundk+1 and that the erroneous

syndrome differs from the correct one with respect to the evaluation of nodei. Then,q is

diagnosed as faulty in roundk + 2 by all obedient nodes in their health vector if nodep,

SECTION 5.2 VOTING SHARING 63

such thattarget(p, k) = i, is obedient and suffers no faults in roundk + 2.

Proof: By using the argument in Lemma 2, if nodep, such thattarget(p, k) = i, is obe-

dient, thenq is always diagnosed as faulty byp in the minority accusation in roundk + 1.

If no faults occur inp in roundk + 2, then the diagnosis result is correctly broadcast and

reflected in the health vector of all obedient nodes in the round.

These weaker guarantees pose the following two problems:

• False negatives: diagnosing faulty nodes as non-faulty.

• False positives: diagnosing correct nodes as faulty.

These problems are mainly caused by symmetric Byzantine faulty voters. The next sub-

section explains how these problems can be addressed.

5.2.3 Rotating Voters

We propose the use ofrotating votersto mitigate these two problems. The main idea is to

change the voter node for each node in every round so that a node becomes the voter node

for any other node in any consecutiven − 1 rounds. More concretely, nodep becomes

the voter of nodep + 1 in round 1 and then changes the node it is responsible for (i.e.,

target(p, k)) to p + 2, p + 3, ..., n, 1, 2, ..., p − 1. This rotation is repeated everyn − 1

roundsbecause of the condition,∀p : p 6= target(p, k), defined in Subsection 5.2.1.

Note that the rotating voter scheme ensures the two conditions ontarget(p, k). Function

rotate(target(p, k)) (Algorithm 2, line 40) calculates the target node in the next round

for nodep (target(p, k + 1))) based on these conditions.

By means of rotating voters and the design of the algorithm for the counter updating

function,counterUpdate(hv), the two problems can be mitigated as follows.

64 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

A false negative with respect to nodeq occurs if all nodes that should be able to diag-

noseq as faulty happen to be simultaneously faulty in the same round∗. Rotating voters

ensure that any node always becomes a voter for any other node in every consecutiven−1

rounds. Thus, ifq suffers faults intermittently or permanently, it is safely diagnosed as

faulty by correct nodes†.

The case of false positives is trickier than that of false negatives because a symmetric

Byzantine voter can repeatedly produce incorrect diagnosis results for any correct nodes.

Therefore, if the counter updating function simply counted the times when each node was

diagnosed as faulty, this would lead to a rapid and undesirable shrink of the set of active

nodes. A possible solution to this is to offset the effects of incorrect diagnosis with those

of correct ones. This solution can be implemented, e.g., by decreasing the counter if the

node is diagnosed as correct. Another approach could be to use two counters for each

node that represent penalties and rewards in the p-r algorithm proposed in [15].

Figure 5.2 shows the voting sharing protocol with rotating votersfor 4 nodes. If

target(p, k+1) is nodep+1 for nodep (1 ≤ p ≤ 3) and node 1 for node 4 in roundk+1,

nodep (1 ≤ p ≤ 3) votes on the local syndromes with respect to nodep + 1 and node 4

votes on node 1 in roundk + 1. In roundk + 2, target(p, k + 2) changes to nodep + 2

for nodep (p = 1, 2) and node ((p + 2) mod 4) for nodep (p = 3, 4). Nodep broadcasts

n-bit results consisting of one bit voting result ontarget(p, k + 1) andn − 1-bit result

of the minority accusation executed in roundk + 1 (Algorithm 2, lines 26-33). Note that

in roundk + 2, along with thesen-bit results, every node sends then-bit local syndrome

evaluated in roundk +1. Therefore, the required communication bandwidth in the voting

sharing protocol is2n × n bits.

∗A node responsible for diagnosis of nodeq and nodes that diagnose nodeq as symmetric Byzantine

faulty by using the minority accusation can diagnose nodeq as faulty.
†Even though there might be cases whereq does not suffer faults only during voting by correct voters,

we assume this probability to be quite low.

SECTION 5.2 VOTING SHARING 65

1 2
3 4

- Node 2StatusNode 1Status - Node 3Status Node 4StatusNode 3Status Node 4StatusNode 1Status Node 2StatusNode 1Status Node 2Status - Node 4StatusNode 3Status -
from Node 1

1 2
4

- Node 2StatusNode 1Status - Node 3Status Node 4StatusNode 3Status Node 4StatusNode 1Status Node 2StatusNode 1Status Node 2Status - Node 4StatusNode 3Status -
Round k+1 Round k+2

3

from Node 2from Node 3from Node 4
Local Syndrome Matrix Local Syndrome Matrix

Voting on target (4, k+1), i.e., Node 1 Voting on target (4, k+2), i.e., Node 2
Results of Node 3 Status and Minority AccusationResults of Node 1 Status and Minority AccusationResults of Node 2 Status and Minority AccusationResults of Node 4 Status and Minority Accusation

Figure 5.2: Voting sharing protocol with rotating voters

5.2.4 Experiment Results

This section presents the results we obtained from our experiment. We developed a pro-

totype system that was equipped with four to eight nodes. Each node was equipped with

a 60 MHz CPU.

The results are summarized in Table 5.1. The row “Voting” indicates the time required

for 1) calculating a health vector (DET phase) in the original membership protocol, and

that for 2) hybrid voting of the target node (VT phase) and calculating a health vector

(DET phase) in the voting sharing protocol. The row “All” indicates the total time used

for the membership service including the execution time to receive and send message

frames.

Although various processing overheads such as task switching are added to the pure

voting calculation, which is theoretically reduced by a factor of the number of nodes, the

time to execute the voting process in the voting sharing is reduced by approximately 60%

66 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

Table 5.1: Comparison of execution time in original and voting sharing protocols

Original Voting sharing

Number of nodes 4 6 8 4 6 8

Voting (µs) 16.06 26.72 34.60 10.22 12.85 14.60

All (µs) 86.42 133.43 181.1782.19 121.46 161.31

compared with the original protocol for eight nodes. The total execution time for the

membership service is decreased by approximately 10%, which is substantially effective

for industrial embedded systems with extremely limited hardware resources.

5.3 Clustering

Then nodes in the clustering protocol are logically divided inton/c clusters, where each

cluster consists ofc nodes, as shown in Figure 5.3. Even though we assume thatn can be

divided byc for simplicity in this example, the following discussion can also be applied

to systems that haven nodes not dividable byc.

The underlying concept of this protocol is that nodep transmits a local syndromeonly

with respect to nodeswithin the cluster to which nodep belongsto all the other nodesCluster 1
…

… Cluster 2
…

… Cluster n/c
…

……1 2
i c

c+1 c+2
c+i 2c

n-c+1 n-c+2
n-c+i n

Figure 5.3: Clustering of nodes

SECTION 5.3 CLUSTERING 67

in the system. The data size of the transmitted local syndrome is thus reduced fromn

to c bits, which reduces the communication bandwidth as well as the computation cost

compared with the original protocol.

5.3.1 Protocol

The execution of the clustering protocol requires two rounds to identify the node status,

which is the same as the original protocol. Figure 5.4 indicates a local syndrome matrix

in each node. The pseudo-code of the process in the clustering protocol executed in each

nodep in roundk is also described in Algorithm 3. As explained in Subsection 3.3.1, we

defineinformationk p[i, . . . , j] asinformation on statuses with respect to from nodei

to nodej in roundk computed by nodep. INT(a/b) denotes a quotient ofa/b.

In roundk, a node locally evaluates all the other nodes’ statuses, as is done in the

original protocol (EVA phase).

Then, the local syndrome expressing errors observed in roundk are broadcast in round

k + 1, just as is done in the original protocol (EXC phase). Unlike what is done in the

previous two approaches, if nodep is a member of clusterm, it sends a local syndrome

with respect to nodes within clusterm (Algorithm 3, lines 15-16). In the clustering pro-

tocol, the bit for nodep itself in the local syndrome has a dedicated function, which will

be discussed in Subsection 5.3.3.

In the DET phase, nodep calculates the status of nodei (1 ≤ i ≤ n) by hybrid voting

on the local syndromes sent from the nodes in the same cluster to which nodei belongs

(line 35). The minority accusation is also performed for each cluster (lines 42-43), as is

done in the original protocol. Thus, each node generates health vectorhv for all nodes

in the system by the end of roundk + 1. Finally, a counter is handled by computing

updateCounter(hv) and the set of active nodes is updated like the other two protocols.

Every node in this protocol hasc×c bits of local syndromes for clusterm. Since there

68 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

Self-Accusation Node 2StatusNode 1Status Self-AccusationLocal Syndrome Evaluated by Node 1 ……… …

n bits

Node cStatusNode cStatusNode 1Status Node 2Status Self-Accusation………… Node c+2StatusNode c+1Status Self-Accusation……… … Node 2cStatusNode 2cStatusNode c+1Status Node c+2Status Self-Accusation………
Self-Accusation

Node n-c+2StatusNode n-c+1Status Self-Accusation……… … Node nStatusNode nStatusNode n-c+1Status Node n-c+2Status Self-Accusation………
Self-Accusation c bits

c bits
n bits

Computation and communication bandwidth gainLocal SyndromeEvaluated by Node 2Local SyndromeEvaluated by Node cLocal SyndromeEvaluated by Node c+1…Local SyndromeEvaluated by Node c+2Local SyndromeEvaluated by Node 2cLocal SyndromeEvaluated by Node n-c+1…Local SyndromeEvaluated by Node n-c+2Local SyndromeEvaluated by Node n
Voting

Node 1Status Node c+1Status…
VotingVoting …

Node 2Status Node n-c+1Status

…
… …Health Vector

Figure 5.4: Local syndrome matrix in clustering protocol

aren/c clusters in the system, we can reduce the local syndrome matrix to onlyn×c bits,

which reduces the communication bandwidth and the execution time for the voting pro-

cess by a factor ofc/n compared with the original membership protocol. The shadowed

area in Figure 5.4 represents the gain in computation and communication bandwidth.

5.3.2 Properties

Here, we prove four key properties of the clustering protocol. All the four properties are

straightforwardly derived from the lemmas of the original protocol if the fault condition

(3.1) is modified as follows:

2s + b + 1 < c (5.1)

wherec is the number of nodes in a cluster.

SECTION 5.3 CLUSTERING 69

Theorem 9 Correctness: Correct nodeq is never diagnosed as faulty in the health vector

in roundk + 1 if all nodes are obedient.

Proof: Suppose thatq is a correct node and all nodes are obedient. From Lemmas 1 and 2,

q is always diagnosed as correct by any node inside and outsideq’s cluster in roundk + 1

if n is substituted withc in the discussion of Lemma 1.

Theorem 10 Completeness: A faulty node that suffers a benign fault in roundk or sends

an erroneous local syndrome in roundk + 1 is always diagnosed as faulty in the health

vector of all obedient nodes in roundk + 1.

Proof: Whenever faulty nodeq is benign faulty or symmetric Byzantine faulty,q is diag-

nosed as faulty by any node inside and outsideq’s cluster because of Lemmas 1 and 2 if

n is substituted withc in the discussion of Lemma 1.

Theorem 11 Consistency: The health vector is agreed by all obedient nodes in each

round.

Proof: Because of Theorems 9 and 10, the set of nodes identified as correct or faulty in

the health vector is agreed by all obedient nodes. Hence, the theorem holds.

Theorem 12 Consistent isolation: The set of active nodes is agreed by all obedient nodes

in each round.

Proof: Let hv denote the health vector obtained by an obedient node. Because of Theo-

rem 11,hv is agreed by all obedient nodes. Since updating functionupdateCounter is

deterministic, its outputupdateCounter(hv) is also agreed by all obedient nodes.

70 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

Algorithm 3: Nodep clustering membership process in roundk

1 constu = INT(p/c);
2

3 // EVA Phase
4 // local syndrome evaluation
5 for i ← 1, . . . , n do
6 v = INT(i/c);
7 lsk−1 i[c · v + 1, . . . , c · (v + 1)] ← receive lsk−1 msg i[c · v + 1, . . . , c · (v + 1)];
8 if lsk−1 i[c · v + 1, . . . , c · (v + 1)] = Φ then // no received message
9 lsk p[i] ← 0;

10 else
11 lsk p[i] ← 1;
12 endif
13

14 // local syndrome buffering to be sent in roundk + 1
15 for m ← c · u + 1, . . . , p − 1, p + 1, . . . , c · (u + 1) do // wrt. nodes within nodep’s cluster
16 send lsk msg p[m] ← lsk p[m];
17

18 // EXC Phase
19 // local syndrome exchange and local syndrome matrix construction
20 for i ← 1, . . . , n do
21 v = INT(i/c);
22 if lsk−1 i[c · v + 1, . . . , c · (v + 1)] = Φ then // no received message
23 lsk−1 matrix[i][c · v + 1, . . . , c · (v + 1)] ← [ε, . . . , ε]c;
24 else
25 lsk−1 matrix[i][c · v + 1, . . . , c · (v + 1)] ← lsk−1 i[c · v + 1, . . . , c · (v + 1)];
26 endif
27

28 // DET Phase
29 // hybrid voting
30 for i ← 1, . . . , n do
31 v = INT(i/c);
32 if lsk−1 matrix[i][i] = 0 then
33 hvk−1[i] ← 0; sa ← i // result of self-accusation
34 else
35 lsk−1 matrix[i][i] ← −; ĥvk−1[i] ← H-maj(lsk−1 matrix[c · v + 1, . . . , c · (v + 1)][i]);
36 endif
37

38 // minority accusation
39 for i ← 1, . . . , sa − 1, sa + 1, . . . , n do
40 v = INT(i/c);
41 for j ← c · v + 1, . . . , c · (v + 1) ∧ j 6= sa do
42 if lsk−1 i[j] 6= ĥvk−1[j] then
43 hvk−1[i] ← 0;
44 else
45 hvk−1[i] ← ĥvk−1[i];
46 endif
47

48 // self-accusation
49 send lsk msg p[p] ← 1;
50 for i ← 1, . . . , c · u, c · (u + 1) + 1, . . . , n do // wrt. nodes outside nodep’s cluster
51 if hvk−1[i] 6= 0 ∧ (lsk−1 p[i] 6= hvk−1[i]) then
52 send lsk msg p[p] ← 0;
53 endif
54

55 // counter update
56 active nodes ← updateCounter(hvk−1[1, . . . , n]);
57

58 return active nodes;

SECTION 5.3 CLUSTERING 71

5.3.3 Self-Accusation

Although all the properties of the original protocol also hold in the clustering protocol, a

latent symmetric Byzantine faulty node cannot be diagnosed in some cases. This is be-

cause a node sends a local syndrome with respect to nodes only within its cluster. Suppose

that latent symmetric Byzantine faulty nodep and correct nodeq belong to clusteri and

j (i 6= j) respectively. Even if the local syndrome of nodep differs from health vectorhv

in theqth position, which should be 1, the other nodes except for nodep can never accuse

nodep since nodep cannot broadcast the local syndrome with respect to nodeq.

Figure 5.5 indicates this case, where eight nodes are divided into two clusters con-

sisting of four nodes. We assume that node 7 belonging to cluster 2 could not receive a

message sent from node 3 in cluster 1 because of a receiver fault, while the other nodes in

cluster 1 could correctly receive it. Node 7 in this case receives local syndromes “1111”

from all the nodes in cluster 1 and calculates the health vector of the nodes in cluster 1 as

“1111”. However, as node 7 could not receive a message from node 3, the local syndrome

on cluster 1 evaluated by node 7 is “1101”, which is different from that of the health

vector.

Node 7 is not a symmetric Byzantine faulty node by definition because it does not

send erroneous messages. However, this case might cause adverse situations in practical

×××× Local syndrome on Cluster 1 from Node 1: 1111Local syndrome on Cluster 1 from Node 2: 1111Local syndrome on Cluster 1 from Node 3: - - - -Local syndrome on Cluster 1 from Node 4: 1111Cluster 1
Local Syndrome on Cluster 1: 1101Health Vector on Cluster 1: 11115 6 8Cluster 2

In Node 7
comparevoting7

3 41 2

Figure 5.5: Example of self-accusation

72 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

control systems. Suppose that node 7 controls some actuator based on control target

data calculated in node 3’s control logic. Node 3 then continues to execute control logic

without noticing that the control target data have not been received by node 7,and node 3

cannot switch to the backup control function.

A diagonal element of the local syndrome matrix is used as a self-accusation bit to

solve this problem, as shown in Figure 5.4. In the DET phase in roundk +1, with respect

to each nodeq, nodep is responsible for checking whether the local syndrome evaluated

by p agrees with the health vector calculated by using the local syndromes from the nodes

of q’s cluster(Algorithm 3, lines 50-51). If not, nodep accuses itself by setting the self-

accusation bit in its local syndrome to “faulty”, i.e., 0(line 52).

The self-accusation result is broadcast in roundk +2 to all nodes in the system.Thus,

all nodes recognize that nodep suffered a latent symmetric Byzantine fault in roundk and

set thepth bit in the health vector to 0 (lines 32-33)‡. Note that hybrid voting is executed

only with respect to nodes which are not self-accused (line 35).Moreover, nodep has

to execute self-accusation only with respect to nodes whose bits in the health vector are

correct in this extended protocol(line 51), otherwise nodep may have to set the self-

accusation bit to “faulty” even though nodep is correct, which will further be discussed

in Section 6.5.

Due to the self-accusation mechanism, node 3 in Figure 5.5 can switch the normal

control mode to the backup control mode in which node 7 cannot control the actuator.

‡Although the actual Byzantine faulty node may not set the self-accusation bit to 0, it will immediately

be accused by nodes within its cluster with the original minority accusation mechanism, because such a

Byzantine faulty node usually sends a local syndrome with random values.

SECTION 5.4 DISCUSSION 73

5.4 Discussion

This section summarizes advantages and drawbacks of the three proposed membership

protocols of original, voting sharing, and clustering. Table 5.2 compares the three pro-

tocols in terms of five features:diagnosis accuracy, tolerable number of faults, computa-

tional overhead, required communication bandwidth, and diagnosis latency.We assume

that the computational overhead mostly stems from voting calculations and estimate this

from the data size of the local syndromes to be voted on although the actual execution

time depends on the software implementation.

The general characteristics indicate that there is a tradeoff between the computa-

tional overhead and the diagnosis accuracy. Although the cost of the lightweight pro-

tocols involves small degradation in diagnosis accuracy, the computational overhead can

be substantially reduced. However, degradation in diagnosis accuracy can be mitigated

with additional mechanisms such as rotating voters, counter update algorithms, and self-

accusation, as discussed in Subsections 5.2.3 and 5.3.3.The drawbacks of the lightweight

protocols also include the increase in the required communication bandwidth and diag-

nosis latency in the voting sharing protocol, and the decrease in the tolerable number of

faults in the clustering protocol.

The required communication bandwidth increases in the voting sharing because every

node sends then-bit voting and minority accusation results in addition to then-bit local

syndrome.

We further analyze the degradation of diagnosis latency in the voting sharing. As

shown in Figure 5.1, the diagnosis latency is three communication rounds if voters are

non-faulty. However, if voterp suffers either benign or symmetric Byzantine fault in

roundk and the fault lasts permanently, the correct diagnostic result oftarget(p, k) cannot

be sent in roundk + 2, and thus the diagnosis latency increases. The latency increases by

74 L IGHTWEIGHT M EMBERSHIP PROTOCOL CHAPTER 5.

Table 5.2: Comparison of three proposed membership protocolsOriginal Voting sharing Clustering

Tolerable numberof faultsComputational overhead
Diagnosis latency(rounds)

Diagnosis accuracy

Required communication bandwidth(bits)
+O(n2) +++O(n) + hv calc. in DET phase ++O(cn)

+++n > 2s + b + 1 +++n > 2s + b + 1(w/ additional mechanisms) +c > 2s + b + 1

+++2 +max: s + b + 3 min: 3

+++Correctness, completeness, and consistency properties hold
++In consideration of latent Byzantine

ProtocolsFeatures

+++2

+Correctness and completeness degrade+++w/ rotating voters and counter update algorithm +++w/ self-accusation for latent Byzantine

++n2 +2n2 (results of voting and minority accusation added) +++cn
one round per one faulty voter, while once the correct voter appears, the correct voting

result of the target node is guaranteed to be sent within three rounds from Theorems 6, 7,

and 8. Therefore, the worst case happens when voters responsible for voting on the same

target node continuously fail in multiple rounds.

From the above discussion, iftarget(p, k) is correct,s + b faulty nodes can contin-

uously be voters fortarget(p, k), wheres is the number of symmetric Byzantine faulty

nodes andb is the number of benign faulty nodes, and thus the maximum latency to iden-

tify the status oftarget(p, k) as correct iss + b + 3. On the other hand, iftarget(p, k) is

either benign or symmetric Byzantine faulty,s + b − 1 faulty nodes can continuously be

voters fortarget(p, k), and thus the latency iss + b + 2.

In the clustering protocol, the tolerable number of faults does not depend onn but c,

SECTION 5.4 DISCUSSION 75

which means that fault tolerance cannot be improved if we increase the number of nodes

in the system, in contrast to the original and the voting sharing protocols. In other words,

the original and the voting sharing protocols can tolerate more faults than the clustering

protocol ifn is the same andn ≥ 2c. However, the clustering protocol is a well-balanced

protocol when the system consists of large number of nodes, e.g., equal to or more than 8

or 10 nodes and the condition of the number of faults is not so severe, e.g.,s = 0, b = 2

or s = 1, b = 1.

SECTION 6.1 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS 77

CHAPTER 6

FORMAL M ODEL OF

T IME -TRIGGERED SYSTEMS

6.1 Introduction

The design of safety-critical systems entails ensuring the predictability of their behavior

and their overall correctness. Thetime-triggered(TT) paradigm has emerged as a viable

concept to implement safety-critical systems, with implementations such as TTP/C [6],

TT-Ethernet [7], FlexRay [5], or SAFEbus [8] actually deployed in the avionic and auto-

motive fields. The use offormal methodsis increasingly being advocated to verify general

safety-critical systems (e.g., [17]). However, it has been reported in previous work [18,19]

that the correctness of high-level applications for TT systems does not directly imply

correctness in their implementation. Consequently, formal techniques dedicated to time-

triggered systems are needed especially given their increasing deployment.

Although results on successful formal analyses of TT systems do exist, they present

specific solutions (e.g., [18–20]) where modeling patterns can only partially be re-used in

new projects. It is generally difficult in industry to apply formal methods to the develop-

78 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

Shared communication medium
Consistency-abstraction layer
Node 1 Node 2

Time-triggered communication
Node N

Core safety-critical services
Safety-critical applications Non-safety-critical applications

Unspec
ified beh
avior (fa
ults)…

Figure 6.1: Scheme of TT systems

ment processes of mass production. Software engineers rarely design formal models of

their system or software from scratch. Therefore, we propose a generalized customizable

template model for TT applications that is not restricted to any dedicated implementation

and that can be easily used also by engineers who are not specialists in formal methods.

Our model is an executable specification of a system that (a) not only enables verifi-

cation but, (b) through simulating the system, it can also guide the deployment of appli-

cations, and (c) the effective generation of test suites.

To establish the context and contributions in this chapter, we provide a brief overview

of TT systems, discuss the motivation, and highlight our proposed solutions.

Overview of system

Figure 6.1 outlines our model of TT architecture that follows the general view of TT

systems [45] and augments it with a consistency abstraction layer [18, 47]. This model

is generic and encompasses the one described in Section 3.2. User applications and core

services are implemented by jobs with each of them running on one or more nodes. The

actions of the system are triggered as time passes. The execution of jobs in the host nodes

SECTION 6.1 I NTRODUCTION 79

is scheduled at design time to guarantee predictability. Nodes communicate with one

another using a shared bus where a communication controller grants write access to the

nodes in a round-robin manner and where receiver nodes can read the bus when messages

are sent.

Because the system executes safety-critical applications, our model provides core

safety-critical services such as diagnosis or a membership protocol [15,46]. In this proto-

col, one of the replicated jobs is executed in every node. Each job exchanges a local view

on the status of nodes within the system and determines whether there are failed nodes

within the system based on a majority vote of the exchanged local views. Inconsistency

in the freshness of the sent and received messages should be avoided in such a proto-

col. This mismatch can be tackled by buffering the messages to delay operations [18,47],

whose functionality is implemented as a consistency-abstraction layer that will be dis-

cussed later in more detail. Our model also has to incorporate faults at different levels of

the architecture to verify fault-tolerance of the system.

Motivation

We seek a unified and formal treatment of general TT systems to guide key system de-

sign tasks such astask scheduling, test case generation, andverificationover user-guided

applications and system configuration scenarios. Consequently, users should be able to

customize the general model to describe specific applications while ensuring the required

levels of system assurance.

Solutions

Deductive reasoning (e.g., theorem proving [17]) is a powerful tool to verify the complex

properties of even infinite systems; however, it cannot directly be applied to simulate the

system to find certain execution paths (e.g., counterexamples and test cases). Therefore,

80 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

we propose the use of an executable system specification to provide further features be-

sides verification. Since our approach uses the same model to perform different tasks of

design and verification, we do not need to prove conformance between different repre-

sentations. Our model is easy-to-understand as it maps each component of the high-level

model (see Figure 6.1) into a syntactic module of the applied formal language. Users only

need to tailor corresponding modules to customize the general model.

Our three overall contributions in this chapter are:

• We present anexecutableformal model of general TT systems. The model is in-

tuitive and easilycustomizablefor TT operations and the required classes of faults

due to itsmodular structure. We use the abstraction of discrete time scales that

directly stems from the assumption that the system is synchronous.

• We present aprototype implementationof the general model by using SAL lan-

guage.

• We demonstrate the usability of our prototype by utilizing the SAL tool suite to

carry outverification, effectivedeployment, andtest generationbased on the same

model in a case study.

6.2 Overview of TT Systems

This section defines TT systems [6, 45] and a general class of faults to expand the TT

communication and fault models discussed in Section 3.2 to more generic ones.

6.2.1 Basic Concepts and Definitions

A system consists ofN nodeswith unique IDs{1, ...,N}. Each node hosts one or more

jobs that use the local resources of the node when executed. Jobs communicate with

SECTION 6.2 OVERVIEW OF TT SYSTEMS 81

Node 1Node 2 job 1Slot 1 Slot 2 Slot 3 Slot 4
Node 3Node 4 job 4

Round k job 1Slot 1 Slot 2 Slot 3 Slot 4Round k+1msg. history3 {m1}msg. history4 {m1 , m2 , m3}m1(k-1) m2(k) m3(k) m4(k-1)
m1(k) m2(k+1) m3(k+1) m4(k)

job 2 job 2
Message broadcast based on TDMA schedule Node job execution

job 3 job 3 job 4
time

Figure 6.2: TDMA communication and internal node schedules

one another following a synchronous schedule called TDMA (Time Division Multiple

Access), as can be seen in Figure 6.2. The main idea is that nodes share a communication

bus in a round-robin manner∗. Each node is assigned a time window, called a sending

slot, in each TDMAround. Nodei sends a message at sending sloti and other nodes can

receive this message by identifying the sender from the time it is sent. The communication

is time-triggered because the action of sending the message and receiving it is launched

by the time of local clocks. Collision on the bus is avoided by assuming that clocks are

synchronized. Disallowed access to the bus is avoided by so called bus guardians that

physically prevent a faulty node from accessing the bus.

Besides the TDMA communication schedule, each node has its owninternal schedule

which determines when jobs are executed, as shown in Figure 6.2. Both the TDMA

and the internal node schedules are independent of each other in a general model of TT

systems. Both schedules are statically defined when the system is designed.

∗Other TT systems, likeframe-basedsystems [39], use dedicated channels and can be treated as a special

case of our general model.

82 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

6.2.2 Consistency-Abstraction Layer

Fault-tolerance is often achieved by replicating application jobs on different nodes. A

convenient abstraction layer is provided by a mechanism called a read/send alignment

[18, 47], which enables nodes to exchange and compute messages as if there were dedi-

cated links between every pair of nodes and the replicated jobs were executed parallel in

time. This facilitates the development of applications where replicated jobs are assumed

to maintain a common consistent state (e.g., diagnosis [47]). The solution is flexible since

it is able to provide the same abstraction independent of how a replicated job is sched-

uled within the host node. Consequently, even core (transparent) services that should not

assume constrained scheduling can be implemented with this technique. For example, a

low-level diagnostic service can be designed without posing any assumptions aboutwhen

the code of the service is executed within a particular node.

Example Inconsistency

Let us demonstrate the need for abstraction through a simple example of a replicated ser-

vice. Assume that replication is achieved through jobs that execute the same deterministic

operation in every round using the same inputs from other jobs sent via messages. Con-

sistency is defined by requiring every replica job to have the same local state in every

round after execution. The main problem in TT systems is that thefreshnessof data sent

or processed by different replicas might be different. For example, in Figure 6.2, repli-

cated job 4 reads messagesm1, m2, andm3 sent in the current round from nodes 1, 2,

and 3 respectively. However, job 3 can read only one fresh message,m1. Inconsistency

can arise in this way in roundk since jobs 3 and 4 update their local states based on dif-

ferent message histories. Node scheduling also determines when the message calculated

by a job can actually be sent. Freshness now means whether a message can be sent in the

TDMA round when it is calculated. For example, messagesm1 andm4 contain the results

SECTION 6.2 OVERVIEW OF TT SYSTEMS 83

calculated in the previous round as the job execution of the respective node occurs after or

during the assigned sending slot. Nodes 2 and 3, on the other hand, can send fresh mes-

sagesm2 andm3 in the current round since both jobs are completed before the sending

slots of the hosting nodes. As a result, messages that are sent in the same TDMA round

by different nodes might refer to different TDMA rounds. This can cause inconsistency,

if, e.g., nodes want to agree on a view of the system regarding the time period of a round

(e.g., diagnosis or membership [46,47]).

Read and Send Alignment

We useread and send alignment[18, 47] to rectify the previous inconsistencies and pro-

vide it as a layer between jobs and the host nodes communicating via TDMA. The read

alignment layer buffers the messages read from the shared bus and computes a consistent

message history in the following way. Assume that a job can read the messages sent by

nodes1, ..., i in the current TDMA round. A consistent message history now contains

{m1, ...,mi} as read in the previous TDMA round, and{mi+1, ...,mN} as read in the cur-

rent round. The send alignment layer buffers the message calculated by the job and sends

the old message if there is at least one other job that cannot send the newly computed

message. Note that the alignment mechanisms are based ona priori known schedules.

6.2.3 Characterization of Faults

Faults can be manifested in any component of the system. The most obvious classifica-

tion of faults in TT systems distinguishes between communication and application faults.

Application faults happen during the execution of a job and are usually specific to the

application logic. Faults in communication mean that a message other than intended is

sent or received. We define communication faults independent of the application. Note

that the number of faults tolerated by the application is generally based on their degree

84 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

of severity [50]. The three different classes of communication faults are defined with

ascending severity:

- benign fault: A fault can be detected locally by every receiver other than the sender,

e.g., missing messagesdue to sender crashes.

- symmetric fault: All receivers read the same semantically incorrect but locally un-

detectable message,e.g., a sender processor fails and improper messages are sent.

- asymmetric fault(or Byzantine [41]): The most severe fault where no assumptions

are made about what message is sent by a faulty sender. We categorize every fault

that is neither benign nor symmetric as Byzantine,e.g., some receivers receive mes-

sagem and others receivem′ or do not receive any message due to sender faults or

malicious intrusions.

Note that asymmetric faults are added to the fault model defined in Section 3.2. Appli-

cation faults depend on the application itself. The rationale of simultaneously modeling

communication and application faults is the ability to analyze their interplay with respect

to the high-level specifications of the system.

6.3 Customizable Formal Model

This section proposes a template for the formal model of general TT systems, based on

the previous description of TT systems. The model consists of five types of high-level

elements (called modules):controller, node, alignment, TDMA, andfaults. The modules

and their interconnections are shown in Figure 6.3. We then detail the module operations

and describe their interfaces. A prototype implementation of the model will be presented

in Section 6.4.

SECTION 6.3 CUSTOMIZABLE FORMAL M ODEL 85

tnemngila dnes/daer-

tnemngila :eludoM

tnemngila dnes/daer-

tnemngila :eludoM

tnemngila dnes/daer-

tnemngila :eludoM

rellortnoc :eludoM

lortnoc emit-

 snoitarepo yrailixua-

edon :eludoM

eludehcs)s(boj-

noitucexe noitacilppa-

etats lacol-

noitareneg egassem-

tnemngila dnes/daer-

tnemngila :eludoM

eludehcs AMDT-

AMDT :eludoM

af tnemngila ,stluaf edon- stluaf noitacinummoc ,stlu
stluaf tnednepedni/detalerroc-

stluaf :eludoM

emit

 fo #
sedon fo #

sedon

ecafi_daer] [] [

_ecafi_daer

] [dengila

emit emit

] [ppa

_ecafi_etirw

dengila

_boj_edon

,eludehcs

ecafi_etirw

emit

] [stluaf_edon] [stluaf_ngila stluaf_mmoc

ecafi_etirw

] [] [ecafi_daer
tneve

Figure 6.3: General modular structure of proposed customizable formal model

Controller Module The controller module implements the notion oftimeand distributes

it to the other modules to organize synchronized execution for the system. The controller

adjusts the time and triggers operations in other modules. Such a centralized treatment of

time corresponds to the assumption of synchronized clocks in TT systems.

Node Module The node module has multiple instances, i.e., one for each node. This

module is in charge of executing the hosted jobs when they are scheduled by updating

the local state of each job and handling external events, e.g., reading sensors. We as-

sume that every node hosts a single job to simplify further discussion. The input interface

defines events (event), the current time, and messages received from other nodes. The

messages are accessed by reading a buffer, called a read interface, which stores mes-

86 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

sages read from the bus. If a job uses the consistency abstraction, it reads consistently

aligned messages (read iface aligned[]); otherwise it simply reads data from the TDMA

bus (read iface[]). Jobs send messages by writing them into the write interface, which are

then copied and sent on the bus by the communication controller. The output interface of

the node module contains the job schedule (nodejob schedule) and the messages sent by

a job (write iface). The former is required by the alignment layer, and the latter is sent

directly on the bus or via alignment.

Alignment Module The alignment module is a consistency abstraction that implements

read and send alignment at every node. The input interface contains the current time, the

node’s internal schedule, the message to be sent, and the messages read on the TDMA

bus. Based on this information, the module outputs the aligned message of the node

(write iface aligned) to the TDMA module, and outputs the consistently aligned incom-

ing messages (read iface aligned[]) to the node module.

TDMA Module The TDMA module simulates the TDMA communication bus that

nodes use to send and receive messages. The input interface consists of the current time

and the message to be sent by each node, and the output interface returns the values of

delivered messages at each node (read iface[][]). The returned variable is a matrix of

messages where theith message in thejth row is the message that nodei receives from

nodej. Messages are passed between the node and TDMA modules either directly or via

the abstraction layer.

Fault Module The fault module extends the input and output interfaces of normal oper-

ation. As the modeling of correlated faults needs coordination between different system

elements, we assume that faults are implemented by a single module. The fault module

takes the current time as input and injects faults into nodes (nodefaults[]), the alignment

SECTION 6.4 I MPLEMENTATION WITH SAL L ANGUAGE 87

layer (align faults[]), and the communication bus (commfaults). Since the application

logic is system specific, the list of jobs (app[]) is passed to the fault module to derive

application faults.

The proposed overall model supports reusability and customization for varied TT func-

tionalities and applications. The implementation of the modules can be tailored to the

characteristics of an actual TT system. For example, when we verify fault-tolerance under

different fault conditions within the same TT application, only the fault module needs to

be modified. Note that more simplistic models can be proposed by assuming services like

alignment or membership. For example, it has been demonstrated that the frame-based

model can be used to model general TT systems if alignment is used [18]. In contrast, we

propose a realistic model in this dissertation that can also be used for the design of new

algorithms that exploit the characteristics of the TT architecture.

6.4 Implementation with SAL Language

This section provides a detailed walkthrough of our prototype implementation of the gen-

eral formal model described in Section 6.3. Although we concentrate on safety-critical

applications where jobs are replicated and each job executes the same program, our im-

plementation can easily be customized to describe any TT application.

We used the SAL (Symbolic Analysis Laboratory) language in our prototype imple-

mentation. The SAL language is a formal description language to specify concurrent

systems. The SAL model checker offers various tools based on BDD (Binary Decision

Diagrams) based symbolic and SAT (Satisfiability) based bounded model checkers, and

it also has auxiliary tools including a simulator, a deadlock checker, and an automated

test generator [21]. We focused on SAL language because of its expressiveness and high-

88 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

level constructs and also because a powerful execution environment is attached to the

language [33] that enables direct analysis, which will be explained in Section 6.5. Here,

we describe the implementation of each module and the composition of the modules. We

use a convention where the SAL code in the explanatory text is written initalics.

Snippet 1:Type declarations, auxiliary functions
1 tt{;N: natural, A: natural}: CONTEXT =
2 BEGIN
3 node: TYPE = [1..N];
4 discr time: TYPE = [0..N];
5 fault: TYPE ={nonfaulty, benign, symmetric, asymmetric};
6 fault vector: TYPE = ARRAY node OF fault;
7 error: natural = 2;
8 message: TYPE = [0..error];
9 messagearray: TYPE = ARRAY node OF message;

10 function:TYPE =[[messagearray,message,message]–> message];
11

12 %auxiliary definitions
13 fault counter(v: faultvector,e: fault,sum: [0..N],i: node):[0..N]=
14 IF i = 0 THEN sum ELSE
15 fault counter(v,e,sum+IF v[i]=e THEN 1 ELSE 0 ENDIF,i–1)
16 ENDIF;

SAL is a typed language and every SAL model begins with the definitions of types

and functions (Snippet 1). Our general system model containsN nodes (nodeat line

3), the usual communication faults (fault at line 5), and a binary message domain that is

augmented with an error value (messageat line 8). Time is modeled on a discrete scale

such that each clock tick corresponds to a slot (discr time at line 4). The main idea is

that the same clock tick triggers all operations in every module that are supposed to be

performed in a corresponding slot, i.e., scheduled jobs are executed (in node), messages

are written/read to/from the bus (in TDMA), messages are buffered (in alignment) and

faults are generated (in faults). A virtual slot is defined (with time value zero) to model

jobs that can read every message from the previous TDMA round and that are ready to

send in the current round from slot 1 on. The correctness of our discrete-time abstraction

stems directly from the assumption that the precision of the applied clock synchronization

algorithm allows agreement in the time slots. Otherwise, the discrete-time model needs

SECTION 6.4 I MPLEMENTATION WITH SAL L ANGUAGE 89

to be justified by users (e.g., [20]). Jobs execute applications (function at line 10) in

our model, which are functions taking a message received from each node, the current

local state, and an external event as inputs and returning the new value of the local state.

For simplicity, messages, states, and events share the same type. In addition, array types

define a value for each node (e.g.,messagearray at line 9). These basic definitions can be

customized by the user. For example, a simple counter function is defined (lines 13-16),

which returns the number of faults in an array.

Snippet 2:Controller module
17 controller: MODULE =
18 BEGIN
19 INPUT
20 inp ev vec: ARRAY node OF message
21 OUTPUT
22 time: discrtime,
23 fun: function,
24 ev vec: ARRAY node OF message
25 INITIALIZATION
26 time = 0;
27 DEFINITION
28 ev vec = inpev vec;
29 TRANSITION
30 [
31 time< N --> time’ = time + 1;
32 []
33 time = N --> time’ = 0;
34 []
35 ELSE-->
36]
37 END;

SAL is able to directly map the modules of the general model into modules of the

language. SAL modules define local variables, communicate with other modules via in-

put and output variables, initialize local and output variables, and define invariants and

guarded transitions. The controller module (Snippet 2) periodically adjusts the discrete

time, thus modeling an infinite sequence of TDMA rounds. The module also maintains

auxiliary operations in the SAL implementation, like the definition of the replicated ap-

plication logic and the distribution of node events. Assuming that a job is a replicated in-

stance of a safety-critical application, the application logic (funat line 23) can be defined

90 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

only once and passed on to each node. Sincefun is not initialized, SAL will arbitrarily

assign a function to it. Events are defined as external input variables (inp ev vecat line

20), which are passed to the nodes (ev vecat lines 24,28) for processing.

Snippet 3:Alignment module
38 alignment[id: node]: MODULE =
39 BEGIN
40 LOCAL
41 readiface buffered: messagearray,
42 write iface buffered: message
43 INPUT
44 time: discrtime,
45 job sched: discrtime,
46 readiface: messagearray,
47 write iface: message,
48 sendcurr roundvec: ARRAY node OF BOOLEAN
49 OUTPUT
50 readiface aligned: messagearray,
51 write iface aligned: message
52 DEFINITION
53 write iface aligned = %send alignment
54 IF FORALL (n: node): sendcurr roundvec[n]
55 THEN write iface ELSE
56 IF time> job sched %job exec. is modeled as atomic event
57 THEN write iface buffered ELSE writeiface
58 ENDIF
59 ENDIF;
60 readiface aligned = [[n:node] %read alignment
61 IF n < job sched
62 THEN readiface buffered[n] ELSE readiface[n]
63 ENDIF]
64 INITIALIZATION
65 readiface buffered = [[n:node] 0];
66 write iface buffered = 0;
67 TRANSITION
68 [
69 time> 0 -->
70 readiface buffered’[time] = readiface[time];
71 write iface buffered’ =
72 IF time = job sched
73 THEN write iface ELSE writeiface buffered
74 ENDIF;
75 []
76 ELSE-->
77]
78 END;

SAL allows the parameterized definition of modules. The parameters need to be de-

fined when the module definitions are used to compose the system. An alignment module

instance (Snippet 3) is defined for each node (id at line 38). We abstract the job schedule

of a node by defining at which discrete time instant the job starts executing (job schedat

SECTION 6.4 I MPLEMENTATION WITH SAL L ANGUAGE 91

line 45) and whether the nodes of the system are able to send the latest message in the

current TDMA round (sendcurr round vecat line 48). Local buffers are defined to store

values that were sent by other nodes (read iface bufferedat line 41) and that were com-

puted by the corresponding node (write iface bufferedat line 42) in the previous TDMA

round. The former is updated every time a remote node sends a message on the bus (line

70), and the latter only changes when the local node updates its local state and generates

a new message (lines 71-74). Send (lines 53-59) and read alignment (lines 60-63) can be

defined as invariants based on the current and buffered values. Definitions in SAL (labeled

DEFINITION) can be thought of as macros that use the values of other state variables.

Consequently, using SAL definitions is not only a logical way of modeling send and read

alignment but it can also save state space during analysis because definitions do not affect

the state transition relation of the system.

Note that we do not need read and send alignment in a particular solution, when we

design the system such that every node executes a job after the last communication slot in

a communication round, e.g., Slot 4 in Figure 6.2. In the proposed membership protocol

as indicated in Figure 3.4 in Section 3.3, process of the node status determination,det job,

is also executed at the end of each communication round, which can simplify the model

of TT systems.

The node module (Snippet 4) is also parameterized by the identifier of the node (id at

line 79). The job schedule is not initialized, which corresponds to an arbitrary schedule.

This is according to the premise that safety-critical services are not prioritized. Unrealis-

tic cases are ruled out such that a node is only able to send a fresh message in the same

TDMA round if it finishes execution before its sending slot (lines 93-94)†. We abstract

that an application is executed instantaneously when a job is scheduled (99-100). For

†We use SAL’sIN operator to non-deterministically assign a value from a set of constrained candidates.

The empty constraint is denoted by the BooleanTRUE.

92 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

Snippet 4:Node module
79 node[id: node]: MODULE =
80 BEGIN
81 INPUT
82 time: discrtime,
83 fun: function,
84 readiface aligned: messagearray,
85 ev: message
86 OUTPUT
87 write iface: message,
88 job sched: discrtime,
89 sendcurr round: BOOLEAN,
90 local state: message
91 INITIALIZATION
92 local state = 0;
93 sendcurr round IN{v: BOOLEAN |
94 IF job sched>= id THEN v = FALSE ELSE TRUE ENDIF};
95 DEFINITION
96 write iface = localstate;%assumption: node sends local state
97 TRANSITION
98 [
99 time = job sched-->

100 local state’ = fun(readiface aligned, localstate, ev);
101 []
102 ELSE-->
103]
104 END;

simplicity, it is assumed that the local state is sent as the node’s message (line 96). How-

ever, the message can generally be a function of the local state. Note that the domain of

discrete time instants[0..N] cannot cover the full generality of job scheduling. It cannot

be modeled that a node reads everything up to timei (including the message sent in sloti)

and immediately sends a message at time(i+1). For that, the model needs to be extended

such that an intermediate time instant is defined betweeni and(i + 1) where the appli-

cation computes the message to be sent. As such extensions can affect the complexity of

analysis, their use is only recommended if needed.

The TDMA module is responsible for modeling the communication of messages on

the bus (Snippet 5). Faults are generally defined and propagated by the fault module.

However, our SAL implementation reduces the number of transitions by directly injecting

communication faults into the TDMA module. The output of the module is a matrix

that indicates the value received by nodei from nodej after each tick. If nodej is

SECTION 6.4 I MPLEMENTATION WITH SAL L ANGUAGE 93

Snippet 5:TDMA module
105 TDMA: MODULE =
106 BEGIN
107 INPUT
108 time: discrtime,
109 write iface alignedvec: messagearray,
110 fv comm: faultvector
111 OUTPUT
112 readiface vec: ARRAY node OF messagearray
113 INITIALIZATION
114 readiface vec = [[n:node] [[m:node] 0]];
115 TRANSITION
116 [
117 time> 0 -->
118 readiface vec’ IN {v: ARRAY node OF messagearray|
119 FORALL (i, j: node):
120 IF j /= time THEN v[i][j]=read iface vec[i][j] ELSE (
121 IF fv comm[j] = nonfaulty
122 THEN v[i][j] = write iface alignedvec[j] ELSE (
123 IF fv comm[j] = benign
124 THEN v[i][j] = error ELSE (
125 IF fv comm[j] = symmetric
126 THEN FORALL(k: node):
127 v[i][j] = v[k][j] AND v[i][j] /= error ELSE
128 TRUE
129 ENDIF) ENDIF) ENDIF) ENDIF};
130 []
131 ELSE-->
132]
133 END;

not the sender in the slot then the value remains unchanged (line 120). Otherwise, non-

faulty and faulty cases are distinguished. If the sender is non-faulty, the correct value

that is determined by the alignment layer is sent (lines 121-122). In case of a benign

sender, every recipient receiveserror (lines 123-124)‡, while symmetric senders distribute

arbitrary but consistent and valid data (lines 125-127). Asymmetric senders can send any

value to any node (line 128).

Our prototype currently implements communication faults (Snippet 6), and other re-

quired system specific faults can be added by users. The number of faults that the applica-

tion is able to tolerate is usually limited. We explain how the number of communication

faults can be tuned in our model using the example of asymmetric faults. The number of

asymmetric faults is initially limited byA (lines 142-143), which is an input parameter

‡The definition can be modified such that the faulty sender can read its own message.

94 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

Snippet 6:Commfaults module
134 commfaults: MODULE =
135 BEGIN
136 INPUT
137 time: discrtime
138 OUTPUT
139 fv comm: faultvector
140 INITIALIZATION
141 %at most A asymmetric faults
142 fv comm IN{v: fault vector|
143 fault counter(v, asymmetric, 0, N)<= A};
144 TRANSITION
145 [
146 time = 0-->
147 fv comm’ IN {v: fault vector|
148 fault counter(v, asymmetric, 0, N)<= A};
149 []
150 ELSE-->
151]
152 END;

of the model (line 1).Transient faults, in addition to permanent faults, can be modeled

by periodically re-defining the fault vector at the beginning of each TDMA round (lines

147-148).

Note that model checking is a powerful method to verify the fault-tolerance of the sys-

tem as it exhaustively generates all fault combinations within the given condition. Hence,

we can find design bugs even though the system consists of a large number of nodes and

suffers from complex fault injection.

The previous modules can easily be composed together by wiring the corresponding

input and output variables (see Snippet 7). We use the synchronous composition operator

(||) so that modules canexecute transitions in parallel. This means, e.g., that the simulated

execution of an application occurs in parallel when a message is sent on the bus. Recall

that the use of the alignment module is generally optional, although it is “hard-wired” in

this prototype implementation.

SECTION 6.4 I MPLEMENTATION WITH SAL L ANGUAGE 95

Snippet 7:Synchronized composition ofN -node system
153 system: MODULE =
154 controller
155 | | (WITH INPUT readiface alignedvec:
156 ARRAY node OF messagearray
157 WITH INPUT ev vec: ARRAY node OF message
158 WITH OUTPUT write iface vec: messagearray
159 WITH OUTPUT job schedvec: ARRAY node OF discrtime
160 WITH OUTPUT sendcurr roundvec:
161 ARRAY node OF BOOLEAN
162 WITH OUTPUT local statevec: ARRAY node OF message
163 (| | (n: node): RENAME
164 readiface aligned TO readiface alignedvec[n],
165 ev TO evvec[n],
166 write iface TO writeiface vec[n],
167 job sched TO jobschedvec[n],
168 sendcurr round TO sendcurr roundvec[n],
169 local state TO localstatevec[n]
170 IN node[n]))
171 | | (WITH INPUT job schedvec: ARRAY node OF discrtime
172 WITH INPUT readiface vec:
173 ARRAY node OF messagearray
174 WITH INPUT write iface vec: messagearray
175 WITH OUTPUT readiface alignedvec:
176 ARRAY node OF messagearray
177 WITH OUTPUT write iface alignedvec: messagearray
178 (| | (n: node): RENAME
179 job sched TO jobschedvec[n],
180 readiface TO readiface vec[n],
181 write iface TO writeiface vec[n],
182 readiface aligned TO readiface alignedvec[n],
183 write iface aligned TO writeiface alignedvec[n]
184 IN alignment[n]))
185 | | commfaults
186 | | TDMA;

96 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

6.5 Example Use Cases: Design and Verification

We will now explain how the SAL model of TT systems can be used to verify the

properties of the system (Subsection 6.5.1) to find appropriate scheduling of jobs (Sub-

section 6.5.2) and to automatically generate test cases for specific test goals (Subsec-

tion 6.5.3). The different tools we use are all part of the SAL environment; thus, they can

directly work on the model described in the previous section. In every case, the execution

engine is amodel checkerthat performs exhaustive simulation of the system model [32].

We only assume that the model checker is able to explore all executions of the system

independently of the actual model checking algorithm. Therefore, we can safely state that

a property is true in a system if the model checker cannot find a counterexample. For sim-

plicity, we assume that the system contains four nodes (N = 4) if not specified. Note that

settingN to a constant value is necessary in classical model checking as it is impossible

to explore infinitely numerous states.

6.5.1 Verification

Task 1: Consistent Replica States Suppose we prove that send and read alignment

indeed implements the abstraction of dedicated communication paths and parallel job ex-

ecution. We consider an abstract application that is implemented by anarbitrary function

taking N messages and the local state as inputs and returning the new local state. All

values are ternary (0, 1 anderror) similarly to the type offun (see Snippet 1). The cor-

rectness of the abstraction can be shown by proving consistency, i.e., replica jobs have the

same state at the end of each round§:

§Auxiliary variableslocal state vec[i] (andlocal state prev vec[i]) are introduced to

denote the local state of jobi in the current and previous rounds.

SECTION 6.5 EXAMPLE USE CASES: DESIGN AND VERIFICATION 97

consistency: THEOREM

system |- G(time=0 => FORALL(i,j:node):

local_state_vec[i]=local_state_vec[j]);

Result 1: Consistency in Symmetric Systems In fact, the SAL model checker could

prove the property unless asymmetric faults were allowed in the system. Sincefun is

never explicitly initialized in the model, SAL assumes that it can be any function and

tries all possibilities. This corresponds to checking thatconsistency is true for any

application expressed byfun. Note that this is a special case of the general theorem that

states that consistency holds for any application with any number of replica nodes [18].

The model checker finds a counterexample if an asymmetric sender distributes different

messages to different nodes that then compute inconsistent local states. This means that

consistency can be proven forA = 0 and a counterexample is found ifA > 0, where

A is the number of asymmetric faulty nodes. In the latter case, consistency can only be

obtained through the use of a Byzantine agreement protocol [41].

Task 2: Proposed Membership Protocol We applied our customizable formal models

to our proposed membership protocols in the next step, including the clustering protocol

explained in Sections 3.3 and 5.3. We redesignedfunsuch that it could execute the mem-

bership protocol in the node module. We impose a fault condition,N > 2S + B + 1,

as given in Equation (3.1) in Section 3.2 in the commfaults module, whereN , S, and

B correspond to the number of nodes in the system, symmetric faulty nodes, and benign

faulty nodes¶. The fault condition in the clustering protocol isC > 2S + B + 1, whereC

is the number of nodes in a cluster.

¶In this chapter, capital letters are used to represent the numbers of nodes in the system and faulty nodes.

98 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

Result 2 With SAL BMC (Bounded Model Checker), we could prove thecorrectness,

completeness, andconsistencyproperties whereN = 4, 5, 6 in the original membership

protocol even though symmetric faults occurred. The BDD-based SAL SMC (Symbolic

Model Checker) could not prove the properties forN > 4 and we could not obtain results

even with the SAL BMC for more than six nodes because of state explosion.

The SAL BMC could prove these three properties for the clustering protocol for up

to N = 16 andC = 4, andN = 10 andC = 5 within a few tens of minutes on an

average laptop PC, while the SAL SMC could not prove them for such a large number of

nodes. Even the SAL BMC could not prove the property whenC was increased to six,

i.e.,N = 12 andC = 6, in our current model.

Before the protocol design was fixed, the SAL BMC actually exhibited a counterex-

ample for the correctness property, i.e., a correct node is never diagnosed as faulty by any

obedient nodes. After the counterexample was analyzed, we found a design bug in the

self-accusation mechanism discussed in Subsection 5.3.3.

In the original design, a node resets a self-accusation bit to 0 if its local syndrome

differs from the calculated health vector, as explained in Figure 5.5. This can be specified

in the SAL language as follows, where we definehv[i] andls prev[i] as the health

vector on nodei and the local syndrome denoting whether the message from nodei can

be correctly received in the previous communication round respectively:

IF (EXISTS(i: nodes): hv[i] /= ls_prev[i]) THEN 0 ELSE 1 ENDIF;

The model checker found a counterexample, where nodej is a symmetric faulty. All

nodes in this case receive the message from nodej correctly, i.e.,ls prev[j]=1 , al-

though the message is semantically incorrect. In the next round, as discussed in Sec-

tion 3.3, nodej is determined as faulty by the minority accusation because nodej’s mes-

sage is different from that of the other nodes in nodej’s cluster. Thus,hv[j] becomes 0.

SECTION 6.5 EXAMPLE USE CASES: DESIGN AND VERIFICATION 99

However, all nodes outside nodej’s cluster also have to accuse themselves by the self-

accusation sincehv[j] /= ls prev[j] , although they are non-faulty nodes. This

does not satisfy the correctness property. Therefore, we added a precondition such that

hv[j] /= 0 to execute the self-accusation, and then the correctness property was fi-

nally proven:

IF (EXISTS(i: nodes): hv[i] /= 0 AND hv[i] /= ls_prev[i]) THEN 0 ELSE 1 ENDIF;

Discussion Although we observed that it was computationally very expensive to con-

sider all possible fault conditions, we could successfully prove the properties within a few

tens of minutes with the SAL BMC. The proof took approximately 20 minutes running

on a single processor of a dual-core Intel Xeon 5130 at 2 GHz with 4 GBytes of memory.

SAL was installed on a Linux system with kernel version 2.6.17. We found that the BDD-

based SAL SMC turned out to be ineffective to prove the properties as it took a long time

(> 1 hour) to compute the BDD-representation of the model.

The next applications of the model described in the following subsections are based on

finding counterexamples that are in general computationally less complex than complete

verification. This is because only a portion of the state space needs to be explored. In

fact, proving consistency took the most time in our set of experiments.

We found that model checking was helpful especially for communication systems

with a large number of nodes and complex fault conditions, e.g., different kinds of faults

occurred simultaneously because it was very difficult to find bugs in these systems only

through manual verification. However, model abstraction techniques may become neces-

sary for more complex systems to avoid state explosion.

On a final note, we only modified the node and the commfaults modules in Task 2,

which means that our customizable generic formal model can effectively be tailored for

various TT applications and easily be handled by software engineers.

100 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

6.5.2 Scheduling of Jobs

Task: Schedule for Reduced Abstraction Delay We now present a proof-of-concept

example of how to use the model checker to find effective scheduling of replicated jobs

within the hosting nodes. We see that the delay induced by alignment abstraction can be

mitigated if all nodes are able to send a message in the same round when the message is

computed. The delay in this case is caused by read alignment and is one TDMA round.

In fact, the model checker can find an appropriate schedule that minimizes these delays.

We achieve this by stating that such a schedule does not exist and the model checker finds

a counterexample that is a required solution. To track the delay between when a message

is sent and when it is processed at a remote node, we extend the domain of messages and

define thatfun returns a special valueSPECVif all input messages are 1. The following

property states that it is never true that the local state in a round isSPECVand the local

state in the previous round is 1 in all nodes:

exist_schedule:

THEOREM system |-

G(NOT(time=0 AND FORALL(i:node):

local_state_prev_vec[i]=1 =>

EXISTS(j:node):local_state_vec[j]=SPECV));

Result: Early Scheduled Jobs The property cannot be proven and a counterexample

is provided where four jobs are executed “early”, at slots 0, 0, 1, and 1 respectively. We

can see that this schedule indeed allows every job to send a fresh message (value 1).

Therefore, the overall delay can be reduced in this proof-of-concept example. Note that

the same technique can be used to find appropriate mapping to deploy jobs on nodes even

if more complex constraints are specified.

SECTION 6.5 EXAMPLE USE CASES: DESIGN AND VERIFICATION 101

6.5.3 Test Generation

The idea of automated test generation is to construct a sequence of inputs (calledtest

cases) that will cause the system under test to exhibit some behavior of interest, called a

test goal. Model checkers can be naturally used to generate test cases such that Boolean

trap variablesare defined that are initially false and set to true by the program when

the corresponding test goal is reached. The model checker is instructed to prove that

the trap variables cannot become true; therefore, every counterexample is a valid test

case. However, the straightforward way of doing that can be ineffective. For example,

the strategy of generating one test case for each test goal might be redundant. More

sophisticated techniques leverage the model checker, e.g., by checking for paths that are

extensions (i.e., continuations) of already explored executions [36]. This technique is also

implemented by SAL’s ATG (Automated Test Generation) tool that integrates the BMC

and BDD model checkers of SAL by augmenting them with clever techniques required

for effective test generation.

Task: Tests for Specific Message PatternsWe used the ATG tool of SAL to generate

a sequence of events observed by a node that drives the system to a certain state. We

re-definefun suchthat it returnsSPECVif a node observes an external event of one. Let

the test goal be to reach a state where valueSPECVis sent on the bus as the message of

the 1st node. Therefore, we place the following assignment of trap variableatg trap

(newly added) in the TDMA module:

atg_trap’=IF EXISTS(n:node):

read_iface_vec[n][1]=SPECV THEN TRUE

ELSE FALSE ENDIF;

Result: Test Case Found By running SAL ATG, we find that node 1 has observed

event 1 and generatedSPECVbut it could not send it immediately because of the node

102 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

schedule. Therefore, the trap variable only becomes true in the second TDMA round

of the execution path that constitutes the test case. A sequence of events in the SAL

example, containing one event for every node, is returned by the tool for each slot until

the trap variable becomes true.

We have shown how our executable formal specification and trap variables can be

used to support model-based test generation. An important issue concerning testing is the

coverage of the obtained test cases, i.e., whether it is able to exercise the system to the

required extent, which is determined by the coverage metrics. However, a discussion on

test coverage in TT systems is beyond the scope of this dissertation.

6.6 Related Work

Formal methods have been successfully used to verify various TT applications. For exam-

ple, the membership protocol in the TTP/C time-triggered protocol suite was found to be

correct through manual proofs in [11], or automated theorem proving was applied to an-

alyze an agreement protocol in another time-triggered environment [19]. Other work has

used executable formal specifications to model check the startup protocol in TTP/C [20].

It is also possible to specify the system in an intermediate, preferably understandable and

easy-to-read, notation and translate it into the input language of the verification engine

(e.g., [42]). Our prototype implementation omits this intermediate step and specifies the

system directly in the input language of analysis. We argue that the modularity of the

proposed model of TT systems and the resemblance of its structure to a real system fulfill

the role of a precise though intuitive specification. Our approach mainly differs from pre-

vious work in that it proposes a skeleton model of the target systems that can be used as a

template for customized solutions and the specifications need not be created from scratch.

As part of the system integration process, deployment, allocation, and scheduling

SECTION 6.7 RELATED WORK 103

tasks can be uniformly thought of as restrictions with respect to the unconstrained space of

solutions. Different techniques such as constraint propagation, branch and bound, back-

tracking, or mixed integer programming have been proposed (e.g., [31,38,40]). However,

they require either the development of new computation engines (e.g., written in C [38]

or Java [40]) or the use of existing dedicated engines (e.g., [31]) to solve (or even op-

timize) the constraint problem. Although our method, when used for scheduling, might

be outperformed by other techniques, it uses the same system representation that is used

for other tasks. Therefore, the overall cost of design and analysis can be reduced. If the

constraint problem entails infeasible complexity with our executable formal model, the

application of other techniques is inevitable. However, it is possible that the combination

of our approach with other techniques will enhance quality and performance in finding

the best solution. Investigations into using model checking to integrate the system is part

of our ongoing work.

Testing of distributed systems deals withwhat to test andhowto test it. Our approach

is related to the former question because we generate test cases as opposed to actually

testing the system. The latter question is nontrivial in distributed systems due to issues

such as interoperability, synchronization, timing, and concurrency. Model-based testing

can support existing solutions to testing distributed systems like [30,49].

We applied the method of model-based test generation using a model checker [34,44]

to generate tests to validate TT systems. The main idea was to challenge the model

checker to find execution paths in the model of the system that reached specific test goals.

This was done by stating that no such paths exist and the counterexample returned by the

model checker could be directly used as a test case. As an alternative or a supplement to

the model-based approach, requirement-based test-case generation [43, 51] can be used,

where tests are generated by only analyzing the requirements. This can be useful if tests

are required to be independent of the unit under test.

104 FORMAL M ODEL OF T IME -TRIGGERED SYSTEMS CHAPTER 6.

6.7 Summary

We have proposed a formal but intuitive method to support the development of safety-

critical TT systems from design to verification and testing. The solution is general and

the core elements of the method (i.e., system characteristics, application logic, and fault

modes) can be customized by application developers. We have implemented a prototype

model of general safety-critical TT applications in our case study. This model has been

analyzed by model checkers, and simple verification, task scheduling, and test genera-

tion examples have been shown. We have also applied our customizable generic formal

model to real membership protocols for automotive brake-wire systems and demonstrated

that the model can effectively be reused for various TT applications. We used the SAL

language in our implementation, but other executable specification languages such as

NuSMV [48], SystemC [37] could also be applied equally well. However, additional

transformation steps might be needed to translate from the specifications to the language

of the execution engine (e.g., model checking of SystemC codes [35]). The main strength

of our method compared to the previous work is that it provides an all-in-one solution that

can be used for tasks that usually require multiple representations of the system.

SECTION 7.1 CONCLUSION 105

CHAPTER 7

CONCLUSION

7.1 Achievements

This dissertation has focused on safety-critical embedded distributed control systems and

taken emerging automotive X-by-Wire systems, where driving, steering, and braking are

electrically and electronically controlled synthetically, as an example application. Auto-

motive control systems, out of the various embedded control systems, impose particularly

severe restrictions on cost and available hardware resources because of the scale of mass

production. Therefore, the goal of this dissertation is to propose suitable solutions that

can fulfill not only high dependability but also cost-effectiveness for automotive safety-

critical systems.

We have first proposed a novel architecture that incorporates the concept of autonomous

decentralized systems to achieve this goal. This architecture allows all nodes in the sys-

tem including sensor and actuator nodes to obtain the shared information required for

vehicle control through the data field implemented with the communication network and

to autonomously execute backup control if some node in the system fails. Therefore, the

proposed architecture can tolerate the existence of failed nodes and thus does not need

106 CONCLUSION CHAPTER 7.

expensive fail-operational nodes with triple or more redundant hardware. This approach

with reduced-redundancy dependability has also been applied to the node level by taking

into consideration the node function. We have proposed a validity check method instead

of dual redundancy to detect faults in fail-silent actuator nodes. Our estimation revealed

that the system cost could be reduced by approximately from 20 to 30% due to the pro-

posed autonomous decentralized architecture and optimal node hardware architecture,

which contributes to a substantial cost reduction for automotive control systems.

Although the autonomous decentralized architecture satisfies competing demands, a

coordination scheme, i.e., an agreement protocol, is required in this architecture to accu-

rately identify failed nodes so that disagreements in the control mode can be avoided. To

resolve this challenge, we have proposed a membership protocol as an agreement protocol

for safety-critical distributed systems.

Each node in the proposed membership protocol locally evaluates the status of other

nodes in the system and exchanges a local view, which we call a local syndrome, with

all nodes. Then, every node identifies the failed node by voting on the exchanged local

syndromes. In contrast to related work, our membership protocol tolerates simultaneous

and non-fail-silent (Byzantine) faults and can flexibly be implemented in time-triggered

systems as a middleware component. In addition, a pipeline-like execution of the protocol

has been proposed to improve real-time capabilities, where a fault detected in a certain

communication round can be identified in the next round. Important properties such as

correctness, completeness, and consistency have been defined and proved by hand for the

proposed membership protocol.

With a widely used time-triggered communication network, i.e., FlexRay, in the auto-

motive industry, we developed a prototype Brake-by-Wire system employing the proposed

autonomous decentralized architecture and membership protocol in a realistic hardware

and software environment for automotive control systems. Although we demonstrated

SECTION 7.1 ACHIEVEMENTS 107

that the prototype system could persevere in practical use, the results obtained from eval-

uating the performance of this prototype system revealed that the computation overhead

for the membership middleware was prohibitively large. The overhead was 5.8% under

conditions where there were six nodes, a communication round of 5 ms, and a 40 MHz

CPU. It is ideal to assign as much CPU time as possible to control application programs

to achieve better driving performance and safety in automotive systems. Thus, it is not

practically acceptable to spend that much CPU time only for the membership service.

Furthermore, the execution time required for the voting process increases along with the

number of nodes in the system.

We have further proposed novel lightweight membership protocols, i.e., voting sharing

and clustering protocols, to address this problem. The main idea behind voting sharing is

to have each node vote for only one respective node and to share the voting results with

all nodes. In the clustering concept,n nodes are logically divided inton/c clusters, where

each cluster consists ofc nodes. Nodep sends a local syndrome only with respect to nodes

within the cluster to which nodep belongs to all the other nodes in the system. Proofs

of the same properties as the original protocol have been also done. Both approaches

can reduce the computation overhead for membership, and the clustering protocol can

also decrease the communication bandwidth, compared with the original protocol. Our

experiments revealed that the execution time for the voting process in the voting sharing

protocol was reduced by approximately 60% compared with the original protocol for eight

nodes.

We have investigated advantages and drawbacks of the three proposed membership

protocols in terms of computation and communication overhead, diagnosis latency, and

fault tolerance. Our analysis showed a tradeoff between the overhead and fault toler-

ance. The lightweight protocols incur degradation in diagnosis accuracy in exchange for

the reduction of the computational overhead. However, it can be mitigated with addi-

108 CONCLUSION CHAPTER 7.

tional mechanisms such as rotating voters, counter update algorithm, and self-accusation.

Drawbacks of the lightweight protocols also include the increase in the required commu-

nication bandwidth and diagnosis latency in the voting sharing protocol, and the decrease

in the tolerable number of faults in the clustering protocol. Despite these drawbacks, the

clustering protocol is well-balanced among these three protocols when the system con-

sists of large number of nodes, e.g., equal to or more than 8 or 10 nodes and the fault

condition is not so severe, e.g.,s = 0, b = 2 or s = 1, b = 1, wheres is the number of

symmetric Byzantine faulty nodes, andb is the number of benign faulty nodes.

Finally, we have proposed a customizable formal model of generic time-triggered

systems to support essential system design processes such as task scheduling, test case

generation, and verification. Our model is not restricted to any dedicated implementation

and can easily be used also by industrial practitioners who are not specialists in formal

methods. Because the proposed formal model has a modular architecture, it can be reused

and easily customized, which can reduce the model development costs. Users only need to

tailor corresponding modules to customize the general model. The prototype implemen-

tation of the formal model was carried out with the SAL language. We have demonstrated

the usability of our prototype with the SAL tool suite by presenting use cases of verifica-

tion, task scheduling, and test case generation based on one identical formal model. The

proposed membership protocols were model-checked in a use case of verification, and we

confirmed the design correctness of the protocols.

In conclusion, the overall achievement of the goal in this dissertation is to propose an

autonomous decentralized architecture and membership protocols that can be applied to

actual safety-critical automotive control systems. The key is that the proposed architec-

ture and protocols allow the system to be fail-operational even though it consists of only

inexpensive fail-silent components with limited computational capability.

SECTION 7.2 FUTURE WORK 109

7.2 Future Work

Future research directions include implementation and evaluation of the proposed ap-

proaches in actual products. Additional improvements to the lightweight membership

protocols to mitigate degradation in diagnosis accuracy remains as important outstanding

work. One of the most promising directions is to enhance a counter updating algorithm

for the voting sharing. It is worth considering a system-oriented method to cluster nodes

in the clustering protocol, where, for example, nodes in the same subsystem belong to

an identical cluster, to avoid latent symmetric Byzantine faults. We are also interested in

how we can solve the state explosion problem in model checking. Appropriate solutions

like abstraction techniques will be required to verify fault-tolerance in distributed control

systems with more nodes and more complex fault conditions.

BIBLIOGRAPHY

[1] K. H. Gaubatz, Progress of Automotive Electronics – Trends at Electronic Sys-

tems for Chassis Control, InProceedings of the 9th International Conference on

Automobil Elektronik, 2005.

[2] R. C. Hammett and P. S. Babcock, Achieving 10−9 Dependability with Drive-by-

Wire Systems, InProceedings of SAE 2003 World Congress, No. 2003-01-1290,

2003.

[3] C. Wilwert, Y. Song, F. Simonot-Lion, A. Charlois, and A. Gilberg, Impact of Fault

Tolerance Mechanisms on X-by-Wire System Dependability, InProceedings of SAE

2004 World Congress, No. 2004-01-0705, 2004.

[4] K. Mori, Autonomous Decentralized Systems: Concept, Data Field Architecture and

Future Trends, InProceedings of IEEE International Symposium on Autonomous

Decentralized Systems, pp. 28–34 (1993).

[5] FlexRay Consortium, FlexRay Communications System, Protocol Specification

Version 3.0.1, 2010.

[6] H. Kopetz and G. Grunsteidl, TTP – A Protocol for Fault Tolerant Real Time Sys-

tems,Computer, vol. 27, no. 1, pp. 14–23, 1994.

111

112 BIBLIOGRAPHY

[7] H. Kopetz et al., The Time-Triggered Ethernet (TTE) Design, InProceedings of

International Symposium on Object-Oriented Real-Time Distributed Computing, pp.

22–23, 2005.

[8] K. Hoyme and K. Driscoll, SAFEbus,IEEE Aerospace and Electronic Systems

Magazine, vol. 8, no. 3, pp. 34–39, 1993.

[9] AUTOSAR, http://www.autosar.org/, AUTOSAR Specification R4.1.2, 2013.

[10] P. D. Ezhilchelvan and R. Lemos, A Robust Group Membership Algorithm for

Distributed Real-Time Systems, InProceedings of Real-Time Systems Symposium,

pp. 173–179, 1990.

[11] G. Bauer and M. Paulitsch, An Investigation of Membership and Clique Avoidance

in TTP/C, InProceedings of Symposium on Reliable Distributed Systems, pp. 118–

124, 2000.

[12] C. Bergenhem and J. Karlsson, A Process Health Status Service for Safety Re-

lated Systems Using TT/ET Communication Scheduling, InProceedings of the

14th IEEE Pacific Rim International Symposium on Dependable Computing, pp.

122–131, 2008.

[13] H. Pfeifer, Formal Verification of the TTP Group Membership Algorithm, InPro-

ceedings of Joint International Conference on Formal Description Techniques for

Distributed Systems and Communication Protocols and Protocol Specification, Test-

ing and Verification, pp. 3–18, 2000.

[14] A. Bouajjani and A. Merceron, Parametric Verification of a Group Membership

Algorithm, Theory and Practice of Logic Programming, vol. 6, no. 3, pp. 321–353,

2006.

BIBLIOGRAPHY 113

[15] M. Serafini, P. Bokor, N. Suri, J. Vinter, A. Ademaj, W. Brandstätter, F. Tagliab̀o,

and J. Koch, Application-Level Diagnostic and Membership Protocols for Generic

Time-Triggered Systems,IEEE Transactions on Dependable and Secure Comput-

ing, vol. 8, no. 2, pp. 177–193, 2011.

[16] K. Sakurai, M. Matsubara, and M. Hoshino, Membership Middleware for Depend-

able and Cost-effective X-by-wire systems,SAE International Journal of Passenger

Cars - Electronic and Electrical Systems, vol. 1, no. 1, pp. 180–186, 2009.

[17] J. Rushby, Formal Methods and their Role in the Certification of Critical Systems,

TR SRI-CSL-95-1, SRI International, 1995.

[18] P. Bokor et al., Sustaining Property Verification of Synchronous Dependable Proto-

cols over Implementation, InProceedings of the 10th IEEE High Assurance Systems

Engineering Symposium, pp. 169–178, 2007.

[19] J. Rushby, Systematic Formal Verification for Fault-Tolerant Time-Triggered Algo-

rithms, IEEE Transactions on Software Engineering, vol. 25, no. 5, pp. 651–660,

1999.

[20] W. Steiner et al., Model Checking a Fault-Tolerant Startup Algorithm: From Design

Exploration to Exhaustive Fault Simulation, InProceedings of IEEE Dependable

Systems and Networks, pp. 189–198, 2004.

[21] SAL (Symbolic Analysis Laboratory), http://sal.csl.sri.com/.

[22] F. Kitahara, et al., The ATOS Tokyo Metropolitan Area Train Traffic Control Sys-

tem, HITACHI REVIEW, vol. 46, no. 2, 1997.

[23] International Standard, ISO 26262-5, Road vehicles – Functional safety –, Part 5:

Product development at the hardware level, Annex D, 2011.

114 BIBLIOGRAPHY

[24] N. Kanekawa, M. Nohmi, Y. Satoh, and H. Satoh, Self-Checking and Fail-Safe LSIs

by Intra-Chip Redundancy, InProceedings of the 26th International Symposium on

Fault-Tolerant Computing, pp. 426–430, 1996.

[25] FlexRay Consortium, FlexRay Communications System, Electrical Physical Layer

Specification, Version 2.1 Revision B, 2006.

[26] P. Lincoln and J. Rushby, A Formally Verified Algorithm for Interactive Consistency

under Hybrid Fault Models, InProceedings of the 23rd International Symposium on

Fault-Tolerant Computing, pp. 402–411, 1993.

[27] K. Driscoll, B. Hall, H. Sivencrona, and P. Zumsteg, Byzantine Fault Tolerance,

from Theory to Reality, InProceedings of the 22nd International Conference on

Computer Safety, Reliability, and Security, pp. 235–248, 2003.

[28] OSEK VDX, Operating System (Version 2.2.3), 2005.

[29] OSEK VDX, Time-Triggered Operating System (Version 1.0), 2001.

[30] G. A. Alvarez and F. Cristian, Simulation-Based Testing of Communication Proto-

cols for Dependable Embedded Systems,Journal of Supercomputing, 16(1-2), pp.

93–116, 2000.

[31] A. Balogh, A. Pataricza, and J. Rácz, Scheduling of Embedded Time-Triggered

Systems, InProceedings of Workshop on Engineering Fault Tolerant Systems, pp.

44–49, 2007.

[32] E. Clarke, O. Grumberg, and D. Peled,Model Checking, MIT Press, 2000.

[33] L. de Moura et al., SAL 2, InProceedings of Computer Aided Verification, pp.

496–500, 2004.

BIBLIOGRAPHY 115

[34] A. Gargantini and C. L. Heitmeyer, Using Model Checking to Generate Tests from

Requirements Specifications, InProceedings of European Software Engineering

Conference, pp. 146–162, 1999.

[35] A. Habibi and S. Tahar, An Approach for the Verification of SystemC Designs using

AsmL, In Proceedings of Automated Technology for Verification and Analysis, pp.

69–83, 2005.

[36] G. Hamon, L. de Moura, and J. Rushby, Generating Efficient Test Sets with a Model

Checker, InProceedings of Software Engineering and Formal Methods, pp. 261–

270, 2004.

[37] Open SystemC Initiative, http://www.systemc.org.

[38] S. Islam and N. Suri, A Multi Variable Optimization Approach for the Design of

Integrated Dependable Real-Time Embedded Systems, InProceedings of Embedded

and Ubiquitous Computing, pp. 517–530, 2007.

[39] R. M. Kieckhafer et al., The MAFT Architecture for Distributed Fault Tolerance,

IEEE Transactions on Computers, 37(4), pp. 398–405, 1988.

[40] K. Kuchcinski, Constraints-Driven Scheduling and Resource Assignment,ACM

Transactions on Design Automation of Electronic Systems, 8(3), pp. 355–383, 2003.

[41] L. Lamport, R. Shostak, and M. Pease, The Byzantine Generals Problem,ACM

Transactions on Programming Languages and Systems, 4(3), 1982.

[42] S. P. Miller et al., Proving the Shalls, InProceedings of Formal Methods Europe,

pp. 75–93, 2003.

116 BIBLIOGRAPHY

[43] A. Rajan, M. W. Whalen, and M. P. Heimdahl, Model Validation using Automati-

cally Generated Requirements-Based Tests, InProceedings of IEEE High Assurance

Systems Engineering Symposium, pp. 95–104, 2007.

[44] S. Rayadurgam and M. Heimdahl, Coverage based Test-Case Generation using

Model Checkers, InProceedings of Workshop on Engineering of Computer Based

Systems, pp. 83–91, 2001.

[45] J. Rushby, Bus Architectures for Safety-Critical Embedded Systems, InProceedings

of Embedded Software, pp. 306–323, 2001.

[46] K. Sakurai, M. Hoshino, Y. Morita, and Y. Takahashi, Design and Implementation

of Middleware for Network Centric X-by-Wire Systems, InProceedings of SAE

2006 World Congress, No. 2006-01-1326, 2006.

[47] M. Serafini et al., A Tunable Add-On Diagnostic Protocol for Time Triggered Sys-

tems, InProceedings of IEEE Dependable Systems and Networks, pp. 164–174,

2007.

[48] NuSMV Toolset, http://nusmv.irst.itc.it/.

[49] W. Tsai et al., Scenario-based Object-Oriented Test Frameworks for Testing Dis-

tributed Systems, InProceedings of Future Trends of Distributed Computing Sys-

tems, pp. 288–294, 2003.

[50] C. J. Walter, M. Hugue, and N. Suri, Continual On-Line Diagnosis of Hybrid Faults,

In Proceedings of the 4th Conference on Dependable Computing for Critical Appli-

cations, pp. 233–249, 1994.

BIBLIOGRAPHY 117

[51] M. W. Whalen, A. Rajan, M. P. Heimdahl, and S. P. Miller, Coverage Metrics for

Requirements-based Testing, InProceedings of Software Testing and Analysis, pp.

25–36, 2006.

