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Thesis Summary

In this study, a new and equally important theme in nonlinear time series analysis is considered
- the study of bifurcations. Tools needed to analyze bifurcation structures from time series have
been developed. The algorithms are based on a geometrical interpretation of the problem in
terms of projection region. In this formulation, the projection region is defined as the region in the
parameter space of a predetermined family of functions, which models the system, with similar
bifurcation structures as the system. For parameter values within this region, the dynamics of
the model is therefore the same as that of the given system. Thus, one can take the bifurcation
structure of the model in this region as that of the original system. This allows the reconstruction
of the bifurcation structure without knowing a priori the explicit form of the differential or
difference equations describing the dynamics. With this, time series at different parameter values
have been used to obtain a suitable family of predictor functions, which exhibit qualitatively

similar bifurcations as the given system.

Instead of having a large introductory chapter, the preparatory materials are divided into
three chapters. In chapter 1, a summary of the different themes of nonlinear time series analysis is
given. A brief literature survey of related works is also presented. The problem is then introduced
and defined. In chapter 2, several well-known techniques for the construction and quantification
of the attractor of a dynamical system from time series are briefly reviewed. In particular, the
estimation of the embedding dimension and the time delay is considered. A method to analyze
bifurcation structures of predictor functions and the classification of the different bifurcations
considered in this study are also given. In chapter 3, the different models used in this study are
introduced. The use of the likelihood function to estimate model parameters for chaotic time
scries and the application of the nonlinear autoregressive (NAR) models and neural networks are
discussed. A detection algorithm for nonlinear behavior in the observed data is also presented
as one important application of NAR models. The examples included are not intended for

comparison purposes but rather as specific examples of the model’s application.
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Chapters 4 to 7 contain the main results of the study. In chapter 4, the reconstruction
problem is defined more precisely. The basic assumptions of the problem are presented. The
concept of projection region is discussed and a reconstruction template is outlined. The linear
manifold approximation of the projection region is considered. An example of its application to
the reconstruction problem using the Hénon map is given at the end of the chapter.

In chapter 5, the conditions under which the linear manifold approximation holds are de-
termined numerically using several well-known dynamical systems. The results have indicated
that for a class of maps, referred to as linear-in-parameter (LIP) maps, the linear approximation
always holds. Moreover, the results showed that as long as the parameter values are not widely
apart, the LIP approximation is still valid even for non-LIP maps. A scheme is also developed
to distinguish time series generated by this class of maps.

In chapter 6, the feasibility of reconstruction is explored when the linear manifold approxi-
mation is insufficient. A more general one-dimensional reconstruction algorithm is considered.
The algorithm employed principal curves to approximate the one-dimensional projection region.
The algorithm is tested using time series from systems exhibiting stable limit cycles and stable
equilibrium points. In particular, the FitzHugh-Nagumo equations and the Lorenz equations
are used to illustrate the algorithm’s application. Possible extension to higher dimensional
reconstruction is also discussed in the later part of the chapter.

In chapter 7, the effect of noise in the reconstruction problem is investigated. In particu-
lar, the reconstruction of bifurcation diagrams using time series from randomly forced maps is
considered. Orthogonal polynomials are used as predictor functions. The proposed algorithm is
applied to the reconstruction of the bifurcation diagrams of different dynamical systems. The
results have indicated that the algorithm is robust to noise and works well even for a limited
number of time series.

Finally, the conclusion is presented in chapter 8. The results are summarized and the different
issues appearing in the course of the simulations are discussed. New interesting problems for
possible extension of this work are also noted. The success of the simulation promises potential
practical applications especially in the analysis of systems where first principle modeling is

extremely difficult if not impossible.
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Chapter 1

Introduction

Studies in nonlinear time series analysis have provided reliable techniques for the evaluation of
signals from dynamical systems. Some of these techniques are used to gain insights into the
unknown physical processes, to do prediction, as well as to determine invariants associated to
the dynamics of the system. Others are employed to determine whether irregularities in signals
are due to the intrinsic nonlinearity of the system or are caused by extrinsic random processes
impinging on the system. Several others are applied to build models capturing the dynamics
of the system from the observed data. In this study, new methods to uncover the underlying
mechanisms of dynamical systems using time series are introduced. This set of algorithms can
be used to evaluate how sensitive the system is to the values of its parameters and how the
system’s behavior changes as the parameters are varied. Since these issues are best explored by
means of bifurcation diagrams (BDs), this thesis describes the algorithms in constructing BDs

from time series.

Extracting physically interesting and useful information from the observed data is the pri-
mary goal of time series analysis. Nonlinear time series analysis has particularly provided addi-
tional tools for the characterization of irregular, broadband signals that are products of nonlinear
dynamical systems. Without these tools, these signals are incomprehensible observations rather
than vital sources of physically interesting information. Since these signals are prevalent in
nature, their evaluation is very important and relevant. A few examples include the electrical
activities within the brain, the beating of the heart, the spiking of neurons, the spread of epi-
demics, the swings in animal populations, and the changes in global climate. The analyses of
these signals can be loosely grouped into: 1) the reconstruction and quantification of attractors,

and 2) model-building and prediction, which includes parameter estimation using time series.
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CHAPTER 1. INTRODUCTION

Dissipative systems are typically characterized by the presence of attracting sets or attractors
in the phase space. An attractor is a bounded subregion of the phase space of a dynamical system
to where regions of initial conditions of nonzero volumes eventually converge with increasing
time. It can be a point in the phase space, of dimension equal to 0, or a closed curve, of
dimension equal to 1. Some other attracting sets can be very irregular and in fact, can have
a dimension which is not an integer value. Such sets are called fractals, and when they are
attractors they are referred to as strange attractors. Strange attractors can be characterized
by a spectrum of dimension values such as boz-counting dimension, information dimension,
and correlation dimension. The motion on a strange attractor can also display sensitivity to
initial conditions such that the distance between neighboring points on the attractor can grow
exponentially with time. This motion is referred to as being chaotic. The existence of chaos
means that small errors grow exponentially in time that long term prediction becomes impossible.
A quantitative description of the sensitivity to initial condition is provided by the Lyapunov
erponents, quantities characterizing the stretching of infinitesimal displacements in a strange

attractor.

The reconstruction of attractors by delay embedding [17, 36, 37, 48, 50, 65, 79], and their
quantification in terms of dimensions({30, 80], Lyapunov exponents{19, 28, 72, 85], among other
attractor invariants[35, 38] have yielded means of revealing intrinsic nonlinear behavior of a
dynamical system from time series[11, 51, 68, 70, 78]. For example, the presence of a positive
Lyapunov exponent or a fractional value of the attractor’s dimension affirms the nonlinear nature
of the system. These invariants can also be used to identify systems in a manner similar to
natural frequencies of some physical systems. These quantities, however, do not give a complete

description of the dynamics per se and thus, a different set of methods is required.

On the other hand, the goal of model-building is to construct a template of the dynamics
using the observed data. Loosely speaking, this can be done by obtaining an appropriate set
of coefficients in a predetermined class of functional forms such that the resulting function
captures the dynamics of the system under study. The model is used either to represent the
global behavior of the observed data or to describe the local dynamics in the reconstructed
attractor or a mixture of both. The use of nonlinear autoregressive models [4, 5, 23, 62, 63], the
measure-based functional reconstruction of Giona [34], radial basis functions[2, 22], and neural
networks [3, 14, 18, 54] are among the many functions that represent global models describing
the dynamics in the whole phase-space. On the other hand, local linear maps using neighboring

points [33], local averaging [66], and the use of higher-order polynomials [31] whose coefficients



are fitted using near neighbors are just a few of the many local modeling approaches. The
effectiveness of the model is measured by its prediction performance, defined as the ability of

the model to give accurate values at steps forward in time.

The description of dynamical systems in terms of invariants or sets of coefficients in a pre-
determined class of functions is already sufficient to solve many significant problems. However,
these invariants, though they remain constant with coordinate transformation, are not robust
to changes in system parameters. Model coefficients also vary from one observation to another
when observations are taken at different parameter values. Thus, problems that involve changes
in parameters require a broader framework than the above description. This framework is pro-
vided by the study of bifurcations. A bifurcation is a qualitative change in the dynamics, for
example from a stable behavior to an unstable behavior, which occurs as a system parameter
varies. The knowledge of the bifurcation structure of a dynamical system is therefore important
in order to understand the system’s response to the changes in parameter values. This is par-
ticularly necessary for the case of nonlinear systems where small perturbations, for parameter
values near critical points, can cause dramatic changes in the system’s output. The study of
bifurcations from time series, however, has received less attention in the past years. It is only
recently that this problem is addressed rigorously (7, 8, 9, 10, 22, 49, 81, 82]. The problem
is that the analysis requires a priori knowledge of the dynamics in the form of differential or
difference equations [39, 84] that can prove difficult to construct even for simple systems. This

makes the problem of reconstructing bifurcation structures from time series a formidable task.

In this thesis, a new and equally important theme in nonlinear time series analysis, the
study of bifurcations, is introduced. The tools developed can be used to analyze time series
measured at different parameter values. The motivation of the study is to unveil the bifurcation
structure of the system using the observed data. In particular, the study aims to: 1) know
the sequence of bifurcations that the system undergoes as the parameters are changed; and 2)
uncover behaviors of the system, which may be present but not readily observed. To achieve
these goals, the problem of reconstructing bifurcation diagrams is systematically investigated.
Methods to obtain qualitatively the same BD as that of the given system using time series
at a finite number of parameter values are presented. The reconstruction does not assume
any knowledge of the explicit form of the dynamical system (differential/difference equation).
Instead, time series at different parameter values are used to obtain a suitable family of predictor
functions, which exhibits qualitatively similar bifurcations as the given system. The BD of this

family of predictor functions on some parameter region, termed as projection region, is then
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regarded as the reconstructed BD. In other words, the projection region is the region in the
parameter space of the model with similar bifurcation structure as the system. For parameter
values within this region, the dynamics of the model is therefore the same as that of the given
system. Thus, one can take the BD of the model in this region as the reconstructed BD. The
problem therefore is to determine the projection region using parameter values computed from
the available time series.

In chapter 2, an overview of the different techniques to quantify and reconstruct attractors is
presented. These algorithms are readily available in several review papers[1l, 35] and published
materials[61] and thus, only the general idea of each algorithm is outlined. In chapter 3, the
different models used in the simulations are presented. In particular, the use of log-likelihood
function for parameter estimation, the use of neural networks and nonlinear autoregressive
models as parametrized predictor functions, and the detection of nonlinearities in noisy time
series are examined. In chapters 4 to 7, the main problem of the study - bifurcation analysis
using time series is tackled in depth and the necessary tools in reconstructing the BDs are
described in detail. Finally in chapter 8, the results are summarized and recommendations are

suggested.



Chapter 2

Overview

In this chapter, several well-known techniques for the reconstruction and quantification of the
attractor of a dynamical system from time series are briefly reviewed. In particular, the es-
timation of the embedding dimension and the time delay is considered. These are important
quantities in the BD reconstruction problem. A method to analyze bifurcation structures of
predictor functions and the classification of the different bifurcations considered in this study is

given in the last section.

2.1 Phase-Space Reconstruction

The basis of phase-space reconstruction is provided by Takens’ theorem [79]. Accordingly, one

can define an equivalent dynamics in terms of the observation {y;, 0 <t < 7} such that
Yira = F(Y) (2.1)

where F : R - R? is a diffeomorphism, ¥; = (y;, . . . »Yi—(d—-1)a) is a vector of delayed coordi-
nates, d is the dimension of the reconstructed phase-space (embedding dimension), and A is the
time delay. Note that the form of F(Y}) is such that all the components of the left hand-side
vector are completely determined by the components on the right-hand side. This allows Eq.

(2.1) to be written in the form

Yira = gy, Yt—a, ayt—(d—l)A) (2.2)

where g : R —» R! is called the predictor function.
Various approaches have been employed to approximate the predictor function ¢g(Y%). These

include local lincar approximations[31], linear interpolation [55], nonlinear autoregressive models
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[4, 5, 23, 62, 63], radial basis functions [2, 22], neural networks [3, 14, 18, 54], among others.
However, finding an appropriate model out of the huge number of possible candidates proves to
be extremely difficult. These issues will be explored in the next chapter.

The determination of the appropriate phase-space requires the proper choice of the embed-
ding dimension d and time delay A. This has been a subject of such an intense interest that
more reliable techniques are becoming available now. In the following, an overview of some of

these techniques are given.

2.1.1 Embedding dimension

In Takens’ theorem, the condition to have a diffeomorphism is that the embedding dimension d
must be greater than the attractor dimension d4, that is, d > 2d4 + 1. However, d 4 is usually
unknown and one should therefore be able to estimate the embedding dimension from the time
series themselves. There are many available approaches to do this. Three of the most commonly

used approaches are summarized below.

Singular-value decomposition. Suppose that the true embedding dimension necessary to
unfold the dynamics is given by d. Now suppose that the available time series is embedded in
a dg-dimensional reconstructed phase-space such that dg > d. The dg — d dimensions in this

space are only populated by noise. One can then form the sample covariance matrix given

1 & }
C== > (¥n = Yave) (Yn — Yaye) T (2.3)
n=1
with
1 N
Yae = & n; Y. (2.4)

This matrix will have d eigenvalues resulting from the real signal and dp — d eigenvalues due to
noise. If the contamination is relatively high, the noise may be seen as filling all these dg — d
dimension in a uniform manner. One can then examine where the eigenvalues start to plateau

and the number of eigenvalues before the plateau may be taken as the desired dimension d.

Saturation of system invariants. If the attractor is properly unfolded, then any property
associated to the attractor, which depends on the distance between two points lying on the at-
tractor, should not vary with further increase in the embedding dimension. One of the examples

is given by the number density, the number of points on the orbit within a radius r defined by

1 N
n(r.x) = 5 ,; B(r — |Yi — x|), (2.5)
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with 6(u) = 0 for u < 0 and 8{u) = 1 for u > 0. The average over all points of powers of n(r, x)

18
1

M
Colr) = 37 2_In(r,x;)] ™Y, (2:6)
=1

b~

One can then plot Cy(r) as a function of d and determine when the slope of its logarithm as a

function of log(r) becomes independent of d.

False nearest neighbors. This approach employs the basic question addressed in the em-
bedding theorem: at what embedding dimension will the orbit cease to cross itself? The basic
idea is thus to find the appropriate dimension where self intersection is not observed. This can
be done by examining false neighbors, that is, points which appear to be neighbors due to the
projection onto a lower dimensional space. By successively increasing the embedding dimen-
sion, these points will separate as the attractor is properly unfolded. The dimension where the

number of these points goes to zero is then considered as the desired embedding dimension.

2.1.2 Time delay

Another important parameter in reconstructing the phase-space is the time delay A. For very
small values of A, the coordinates y;4 (n41)a and ye+na are too close to each other that from any
practical point of view, they do not provide two independent coordinates. On the other hand,
too large values of A will make v, (n4.1)a and yi+na completely unrelated to each other. Thus,
an intermediate value of A is desired.

As a first approximation, the linear autocorrelation function given by

71\7 22;1 (yn+7— - g)(yn - )

Cr(r) = — (2.7)
N (yn — )2
where
Y= i iv: Yn (28)
N —

can be used to obtain a good hint for the choice of A. In this approach, the time delay A is
given by the value of 7 where C'(7) first passes through zero. The resulting delayed coordinates
are independent in a linear fashion.

To account for the nonlinearities, one can use the mutual information criterion. The mutual

information of two measurements a; and by is defined by

Pyp(a;,by) ] ’ (2.9)

Lap(ai, by) = log, [m
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where the probability of observing a out of the set of all A is P4(a), the probability of finding
b in a measurement of B is Pg(b), and the joint probability of the measurement of a and b is
P4p(a,b). The average mutual information between measurements of any value a; from system
A and bg from system B is the average of all possible measurements of I4p(a;, bx),
Iap = Y Papl(ai,bx)Iap(ai, be). (2.10)
aibr
One can think of set A as the sets of measurements y,, and set B as measurements at a later

time 7. In this way, the average mutual information can be defined as a function of the delay as

and I(7) > 0. A candidate time delay is given by the location of the first minimum of I(7) as a

N
I(r) = Z P(yn, yn++) logs

n=1

(2.11)

function of .

2.2 Bifurcation Analysis

When the dynamical system depends on some parameter ¢ € IR?, the time series output of the
system will also depend on ¢ and Eq. (2.1) can be rewritten to include explicitly the dependence
on the parameters:

Yiea = F(¥;ic). (2.12)

The predictor function g(Y’) also depends on c, i.e., g(Y; ¢). It is of interest to study the different
behaviors of g(Y'; ¢) as function of the parameters.

Consider a p-parameter family of maps of R¢ into IR?
Y —» F(Y,c), Y eR? cecR? (2.13)

where F is C” on some sufficiently large open set in R¢ x IRP. Equation (2.13) can be written

explicitly as follows:

Yt 9(Ys—n, ", Ye—da; €)
Yt—A _ Y- (2 14)
Yt—(d-1)A Ye—(d-1)A

The fixed points of Eq. (2.14) are given by the fixed points of g(Y’; ¢) which can be computed

for a given ¢ by finding the zeros of the function

)=y -9y, -,y ;c). (2.15)
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Now suppose that Eq. (2.14) has a fixed point at (Y, c) = (Yo, c,), i.e.,

F(Y,,co) =Y, (2.16)

To determine the stability of the fixed point, the associated linearized map is examined. This is

given by
£ = DyF(Y,, )¢, £ €RY (2.17)
Or explicitly,
9  _93 .., 99 99
& Oyt-a  OyYr—2a OYt_(d—1)a  OYi—da St-a
Et—n 1 0 c 0 0 Er_an
_ : S : : x : (2.18)
§t—(d—2)A 0 0 i 0 0 §i—(d-1)a
§t—(a—1)a 0 0 e 1 0 §t—da

where the partial derivatives of g(Y'; c) are evaluated at the fixed point (Y5, ¢c,). It can be shown
that the eigenvalues of D, F(Y,, c,), that is, det|DyF(Y;, c,) — | = 0, are equal to the roots of
a polynomial of degree d and coefficients which are equal to the partial derivatives of ¢g(Y’;c)

evaluated at the fixed point, that is,

d
P(y) = aiy*™" (2.19)
1=0

where ag = —1 and a; = 9g(Yp; ¢o)/0yi—in for i = 1,---,d. When the fixed point is hyperbolic,
that is, none of the roots of P(y) have unit modulus, the stability of the linearized equation
implies the stability of the predictor function. This means that if all the roots of P(v) lie within
the unit circle in the complex plane, the fixed point (Yo, ¢,) is stable; otherwise, it is unstable.
When the fixed point is nonhyperbolic, the stability of the map cannot be determined from the
stability of the linearized equation. Moreover, changes in ¢ can result to bifurcations. The

simplest ways in which a fixed point of a map can be nonhyperbolic are the following:

1. (%) has a single root equal to 1 with the remaining d — 1 roots having moduli not equal

to 1.

2. P(v) has a single root equal to -1 with the remaining d — 1 roots having moduli not equal

to 1.

3. P(~) has two complex conjugate roots having modulus 1 (which are not one of the first

four roots of unity) with the remaining d — 2 roots having moduli not equal to 1.
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In the following, the possible bifurcations that can take place when the above conditions
hold are enumerated. Without loss of generality, the analysis can be reduced to the study of a
parametrized family of maps on the one-dimensional center manifold. Refer to Wiggins [84] for

a detailed discussion.

The saddle-node bifurcation. A general one-parameter family of C” (r > 2) one-dimensional

maps = +— f(z,p), = €R', u€R! undergoes a saddle-node bifurcation at (z, ) = (0,0) if
g

f(0,0) = 0, (2.20)
of ~

50,0 = 1, (2.21)
9 0,00 # o, (2.22)
Op

2
%};(070) £ 0, (2.23)

The transcritical bifurcation. A general one-parameter family of C™ (r > 2) one-dimensional

maps = — f(z,p), =€ R} e R! undergoes a transcritical bifurcation at (x, 1) = (0,0) if
H g

(0,00 = 0, (2.24)
of B

50,0 = 1, (2.25)
0,00 = o, (2:26)
u

82f

50500 # 0 (2.27)
& f

530,00 # 0. (2.28)

The pitchfork bifurcation. A general one-parameter family of C” (r > 3) one-dimensional

maps = — f(z,1), = € R, p € R! undergoes a pitchfork bifurcation at (z, 1) = (0,0) if

£(0,0) = o, (2.29)
%(0,0) = 1, (2.30)
3—2(0,0) = 0, (2.31)
%(0,0) = 0, (2.32)

afgﬂ(o,m 4 0, (2.33)
&> f

53(0.0) # 0. (2.34)
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The period-doubling bifurcation. A general one-parameter family of C™ (r > 3) one-
dimensional maps  — f(z,u), = € R!, u € R! undergoes a pitchfork bifurcation at (z,p) =

(0.0) if

f(0,0) = o0, (2.35)
g—i(o,()) = -1, (2.36)
%];(0,0) = 0, (2.37)
%(0,0) = 0, (2.38)

gi{f;;(o,m # 0, (2.39)
%2{;(0,0) # 0, (2.40)

where f? denotes the second iterate of f.

The Naimark-Sacker (Hopf) bifurcation. Consider a one-parameter family of maps z —
flr,p), = € R? 5 € R! having a fixed point at (z,u) = (0,0), i.e., £(0,0) = 0, with the
matrix Dy f(0,0) having two complex conjugate eigenvalues A(0) and A(0), with [A(0)] = 1.

Moreover, let the eigenvalues satisfy
A0)*#1, n=1,2,3,4. (2.41)

Under these conditions, the truncated normal form of f(z, u) can be written in polar coordinates
as
o= 4 (du+ ar?)r,

0 — O+ do+ P+ bre. (2.42)

Note that 7 = 0 is a fixed point of Eq. (2.42) that is
asymptotically stable for du <0
unstable for dpu > 0
unstable foruy=40, a>0
asymptotically stable for p =0, a <0.

The following lemmas are proved in [84]:

a

Lemma 1: {(r, 0) e RT x Sty = :&4} is a circle which is invariant under the

dynamics generated by Eq. (2.42).
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Lemma 2: The invariant circle is asymptotically stable for a < 0 and unstable for

a>0.

Finally, the four possible cases for the bifurcation of an invariant circle from a fixed point are

listed below:

Case 1: d >0, a > 0. In this case, the origin is an unstable fixed point for p > 0
and an asymptotically stable fixed point for 4 < 0 with an unstable invariant

circle for u < 0.

Case 2: d >0, a < 0. In this case, the origin is an unstable fixed point for x > 0
and an asymptotically stable fixed point for 4 < 0 with an asymptotically stable

invariant circle for g > 0.

Case 3: d <0, a > 0. In this case, the origin is an asymptotically stable fixed point
for 4 > 0 and an unstable fixed point for 4 < 0 with an unstable invariant circle

for p > 0.

Case 4: d <0, a < 0. Inthis case, the origin is an asymptotically stable fixed point
for 4 > 0 and an unstable fixed point for 4 < 0 with an asymptotically stable

invariant circle for p < 0.

The two sections in this chapter outline the possible approach to analyze bifurcation structure
from time series. Roughly, the initial task is to reconstruct the phase-space of the dynamics.
This involves the estimation of the embedding dimension and the time delay. An appropriate
predictor function can then be used to specify the dynamics in the reconstructed phase-space.
The bifurcation structure of the predictor function is then analyzed. This means extracting the
bifurcation points and classifying these points according to the above definitions. A bifurcation
diagram can then be constructed to reflect the different bifurcations of the system. Note that
the resulting BD will depend on the predictor function employed. Choosing an appropriate

predictor function for the given time series will be the topic of the next chapter.



Chapter 3

Model Identification

3.1 Introduction

In the past decades, a wide range of theoretical models have been proposed and a number of
methods have been presented for the reconstruction of the system dynamics from observation
data. Several commonly used models include linear autoregression (AR) models, nonlinear
autoregressive (NAR) models, neural network (NN) models, radial basis function (RBF) models,
among others. Each of these models has its own advantages and disadvantages. In this chapter,
the different models used in this study will be introduced. The use of the likelihood function
to estimate model parameter values for chaotic time series will be investigated in section 3.2.
This method can be applied when a model is already known and it is desired to estimate the
associated parameters for the given time series. The application of the NAR and NN models as
predictor functions will be discussed in sections 3.3 and 3.4, respectively. In the last section, NAR
models are used for the identification of experimental data taken from the electrical discharge
of electric fish. The emphasis is on the detection of nonlinear behavior in the observed data.
The examples that follow for each model are not intended for comparison purposes but rather

as specific examples of the model’s application. Thus, different systems are used for each model.

3.2 The Likelihood Function

One important issue to consider in using the likelihood function for parameter estimation is
the behavior of the likelihood function itself. Note that the estimmate of the parameter by
maximum likelihood method is of questionable value unless the likelihood function is unimodal

and concentrated near the mode. The first thing to consider therefore is to examine if the

13
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likelihood function is indeed well-behaved near the true parameter values for chaos models. The
present claim so far is that “chaos models lead to chaotic likelihood functions”[13]. However in
this section, a counter example showing the contrary is presented. Numerical integration is done
by employing local linearization method [74, 75]. For the calculation of the likelihood function,
the innovations approach [33] is employed. Both the theoretical formalism based on [64] and
[33] and the results of the numerical simulations are presented.

The problem at hand can be posed as follows: Consider the continuous stochastic dynamical

system described by the vector (Itd) stochastic differential equation
dx(t) = f[x(¢), t|dt + G[x(¢),4)dB(t), t>t, (3.1)

where x(t) and f[x(t),] are n-vectors, G[x(¢),t] is an n x r matrix, and {8(¢), t > t,} is an
r-vector Brownian motion process with F [dﬂ(t)dﬂ(t)T] = Q(t)dt!. Suppose that continuous

observations are taken and is given by
dz(t) = h[x(t), t]dt + dn(t) (3.2)

where z(t) and h[x(t),] are m-vectors, and {n(t),t > ¢,} is a Brownian motion process with

E {dn(t)dn(t)T] = R(t)dt. Let Y(7) be a realization of the observation, that is,
Y(r) = {2(s), to <5 < 7}. (3.3)

The continuous estimation problem consists of computing an estimate of the unobserved state
x(t) based on the realization Y (7). Furthermore, for parametrized models, this can be extended
to estimating the parameters using the same observation data. The problem therefore is twofold:
to estimate the parameter values of the known model and to estimate the unobserved state of
the system.

The complete solution of the estimation problem can be obtained if the conditional probability
density p[x, t|Y (7)] of x(t), given Y (7), is known. This is because p[x,t|Y ()] embodies all
statistical information about x(¢) which is contained in the available observation and the initial
coudition p(x,t,). Note that for £ = 7, the problem is a filtering problem, for t < 7, a smoothing
problemn, and for ¢t > 7, a prediction problem. It is also well-known that the optimal estimate
for the unobserved state x(t) is given by the conditional mean X(t|7) = E [x(t)|Y ()] [47]. Thus

the estimation problem involves the determination of both the conditional probability density

'The notation E[-] will be used to denote statistical expectation, that is, if X is a random variable and f(z)

its density, then E{X] = [_x; af(x)dx.
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and the conditional mean. For nonlinear cases, it is difficult to obtain these two values since the
distribution of the observed data is not always known. However, a method called the innovations
approach will facilitate the computation of these two quantities from the observed data. This
will be discussed in the next subsection.

3.2.1 The innovations approach

Suppose that observations (data) of the form
z(t) = y(t) + v(t), 0 <t <T, (3.4)

where y(¢) and v(t) are m-dimensional statistically independent vector processes, are given.

Furthermore, v(t) is a white Gaussian noise with the following properties:

Elv(t)] = 0 (3.5)
E[v(t)vT(s)] = I§(t - s). (3.6)

Ely(t)] = 0, (3.7)
/OTE Wy ()] dt < oo, (3.8)

or more strictly
ly(t)| < M <oo, 0<t<T, (3.9)

As mentioned earlier, the estimation problem involves the approximation of a random process,

say x(t), satisfying Eq. (3.1) from the observation z(t). Also, x(t) is related to the signal process

y(t) via
y(t) = h{x(s), s < 1] (3.10)
and obeys the following properties:
Ex(®)] = 0 (3.11)
T Is
/ E [x(nx"(0)] dt < oo. (3.12)
Jo

The problem is to find the optimal estimate %(¢|7) of x(¢) given {z(s), 0 < s < 7 < T} which

is readily obtained from the conditional mean of x(¢), that is,

x(t|r) = Elx(t)|z(s), 0 < s < 7] (3.13)
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See for example Neveu [60] and Doob [27]. However, explicit formulas for %X(¢|7) are not readily
available since in general the distribution of y(¢) is not known. It is therefore important to find
more explicit formulas for an optimal estimate of x(¢).

In the innovations approach, the observation process z(t) is transformed into a white Gaus-
sian noise called the innovations process v(-). This transformation can be used to obtain the

estimate

Ex(t)v(s), 0 <s < 7] (3.14)

since the distribution of the innovations is known. Furthermore, the innovations process v(¢) and
the observation process z(t) are equivalent in the sense that there exists a causal and causally

invertible transformation from {z(s), 0 <s <7 < T} to {v(s), 0 < s <7 < T} such that

x(t|r) = PBx(t)|z(s), 0<s < 7] (3.15)

= Ex@)|v(s), 0<s< 7] (3.16)
The optimal estimate %X(¢|7) in terms of the innovations is now given by
x(t]7) = / E [x(t)/()|v(0), 0 < 0 < 5 v(s)ds (3.17)
0

where

v(t) =z(t) —y(tr), 0<t <7 (3.18)

and y(t[t) is the least-square estimate of y(¢) in terms of {z(s), 0 < s < 7}. Note that the

above integral is a special integral called an Ité integral. The proofs are discussed in [33].

3.2.2 Derivation

The use of the likelihood function in parameter estimation from observation data has been
widely known. The idea is that the observed data is fitted to a known model by varying the
model parameters. The parameters that yield the maximum likelihood are chosen to be the
best estimate. Thus, this approach involves the optimization of the likelihood function of the
observed data relative to the model parameters. However, it is always difficult to obtain the
likelihood function for a given observation since in most cases the distribution of the observed
data is not known. In this case, the use of the innovations approach becomes handy by converting
the observation process to the innovations process with a known distribution as discussed in the

previous subsection.
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A special case of Eq. (3.2) is when the observation process is linear in x(¢), that is, h[x(¢),¢] =

Cx(t) where C is called the observation matriz. Rewriting Eq. (3.2) yields
dz(t) = Cx(t) + ocdw,(t) (3.19)

where dw,(t) is Gaussian with unit variance. If dz(t;), dz(t2), -, dz(t,) are taken as samples
from this model, the probability density p(dz,,dzs, -, dz,|#), where 6 is some parameter, is
difficult to obtain since the distribution of z(#) is not known when f(-) in Eq. (3.1) is nonlinear.

However, using the relation
p(dzi,dza, - - -, dzn|0) = p(dzn|dzn—1, - ,dz1,0)p(dZn-1,d2n-2, - -, dz,|6) (3.20)

and taking the log of the probability density, a relation between the original density in terms of

the relative densities can be written as follows:
log p(dzy,dza, - - ,dz,|0) = Z log p(dzildzi-1,- - ,dzy,0). (3.21)

Upto this part, the derivation applies for a general case. Note that since the distribution of
z(t) is not known, it is difficult to obtain the explicit form of the relative probability densities on
the right hand side of Eq. (3.21) making the likelihood approach difficult to apply for nonlinear
cases. However, with the use of the innovations approach and Eq. (3.18), Eq. (3.19) can now

be written in terms of the innovation as
dz(t) = Cx(t|T)dt + dv(t) (3.22)

without affecting the problem in any way. dv(t) represents the innovation and Cx(t|r) is the
least squares estimate of Cx(¢|7) in terms of {z(s), 0 < s < 7}. With this, the distribution of
dz(t;), which is the sampled version of dz(t), can now be obtained. Since the term CX(#)dty is
by definition a constant, the mean is simply given by E[dz ()] = CX(tx)dtr and the variance is
also given by Var[dz(t)] = o2dt;.
Discretizing the above relation, one obtains

Zjp = ka‘ik—l —+ 143 (323)
where 2z, = Az(tg) which approximates dz(ty), Cxgp—1 = E[Cxg|zg-1,---,21] which ap-
proaches Cx(#)dty as At approaches zero, and vy is a discrete-time Gaussian white noise with

variance o3, , = FElz; — Cxpip_(]® which approaches o2dt; for very small At. The conditional
klk—1 klk—1 PP €

density of v can now be written as follows

9
(2 — Cxpip—1) } . (3.24)

[)(1/k|zk_l’...’zl,9)=——-——()———-exp {— 52
,/27r0,;|k_l 20k k—1
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Using the equivalence relation of z; and v, then

Z(—‘Z) logp(zg|zk—1,--,21,0) = Z(—‘Z) log p(ve|zk—1,- -+, 21,6) (3.25)

Equation (3.24) together with Eq. (3.25) can now be used to find more explicit formulas for the

relative probabilities of z;. This leads to the following relations

(_2) logp(ZhZQa'”?znle) = Z(_z) logp(zklzk_l,"‘,Z1,9)

(zk — Cxppr—1)?
= Z logor,%lk_1 + |

=2 +nlog2rw
kik~1

from which the likelihood function can be computed. For this result to be useful in estimating
the likelihood function, the conditional variance Ul?:[k—-l and mean X;_; should be estimated

first. To do this, a nonlinear Kalman filtering scheme is employed.

3.2.3 Local linearization scheme

The state representation of the stochastic process given by Eq. (3.1) can be written using local

linearization scheme [74] as

Xer1 = A(xe)x + B(x¢)ouWigr (3.26)
where
f 2 1
AGe) = 14+ 373t - X goagaiae g a bl (3.27)
X4 2x;
62J¢At —_ 1
B = 4 ————— .
(x¢) 57, (3.28)

To compute for the likelihood, one needs to find estimates of Xg|k—1 and a}€| x—1 denoted by

Xy k-1 and 6,2€|k_1 respectively. To do this, the relative expectation of Eq. (3.26) is taken:

Xklk—1 = /ka(xk\zk—l,"',mﬁ)dxk (3.29)

where p(xglzp_1,---,21,0) is the state prediction density function. This has no exact formula.

However, A(xg—1)Xg_1)4~1 could be taken as a reasonable estimate where
Xpo k-1 = /Xk—lp(xk—llzk—l»'"7Z1a9)dxk—l (3.30)
and p(Xg—1|zg_1, -, 21,80) is the filtered density. The estimate can now be written as

Xpfh—1 = A(Xp-1)Rp1)6—1 (3.31)
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and the innovation at a point k is
g = zg — CA(Xk—1)Xg—1j—1- (3.32)

A filtering procedure is used to carry out the approximation approach, that is, to obtain Xk

from the previous prediction X4;, and ¥ by using the relation
ik!k = ik|k—1 + Kl (3.33)

where Ky is the correction gain matriz obtained by minimizing the estimation error variance
of the state, that is, traceF [(x;g — Xg)k) (X — xk|k)T}. After several matrix manipulation, the

value of K which minimizes the variance is given by the relation
K, = P,CT(CP,CT +52)°! (3.34)

where P, = F [(x,C = Rppk—1) (X — kk[k_l)T]. Furthermore, let V, = F [(xk — Xp) (Xk — xk[k)T}
then

V; =Py — K, CP;. (3.35)

The evolution of the Py operator is obtained via

Pepiv = E [(xk-H = Rpep1je) (Xee+1 — f(lc+1|k)T]

= E [{A(Xk)(xk = Xijir) + B(xp)ow Wi HA(xe) (% — Rgp) + B(Xk)dekH}T} :
Assuming A(x) is constant on [k, k + 1) then
Piy1 = A(xk) VA ()" + B(xx) SuB(xi) T (3.36)

A(xy) and B(x) can be approximated by A (%) and B(Xg) respectively. Then the actual

value of the prediction estimate is calculated by using the following recursion relations:

Xerik = ARge)Xe (3.37)
Xele = Xppp—1 + Kelg (3.38)
K, = P.CT(CP,CT + %) (3.39)
P = ARw) VeA(Rkk)T + B(Fge) SwB (Repe) " (3.40)
V., = P, -K,CP, (3.41)

Spor = CPCT 407 (3.42)

with initial conditions z,), and V5. The variable  specifies the system parameters, system error

variance and observation error varlance.
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3.2.4 Example: the Lorenz equations

In this section, the method presented above is applied to estimate the parameters of the Lorenz

equation [57]:

dr n

o ar + ay

d

a—% = —zz+rTr—Y

d

d—i = zy-—bz (3.43)

given a time series generated from it. Integration was done by using the local linearization
scheme as given by Eq. (3.26). The system noise variance was set to zero. Noise was added
to the observation data with variance o, equal to 0.0001. The observation matrix is given by
C = (10 0)T to observe only the z-component of the signal. The values of the parameters used
were a = 10, b = 8/3, and r = 28. The observation data is shown in Fig. 3.1. The behavior
of the likelihood function near the true parameter values was investigated. This was done by
varying one parameter while fixing the value of the other parameters.

Although the state of the system was generated without system noise, the numerical algo-
rithm used in integrating Eq. (3.43) may possibly affect the computed state especially for chaos
models. To verify this, the behavior of the likelihood function as a function of the system noise
variance was investigated. This means identifying the preferred model of the maximum likeli-
hood approach when numerical errors are present. This was done by setting all other parameter
values to their true values and varying the system noise variance &, in estimating the likelihood
function. Ideally, the maximum is expected to occur at zero variance since the data was gen-
erated using this value. However, if artificial noise is introduced due to numerical integration,
then the likelihood will peak at a different value.

Figure 3.2 shows the behavior of the prediction error as a function of the approximated
noise variance. From the figure, as the variance of the system noise is increased, there is a
corresponding decrease in the prediction error especially near the initial position. This implies
that although the time series was generated without system noise, the maximum likelihood
approach prefers a model in which the system noise variance is nonzero. This behavior can be
attributed to the errors introduced by the numerical method used in integrating the differential
equation.

Aunother important issue to consider is the choice of the values of z, and v,|, which correspond

to the initial values in the iterative filtering scheme. The effect of the initial values is shown in
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Figure 3.1: Observation data used in the analysis generated from the Lorenz system with a = 10,
=8/3, and r = 28.
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Figure 3.3: Effects of the initial values. Top: The behavior of the predicted value when the initial values

of z, and v,|, are chosen inaccurately. Bottom: Difference between the observed series and the predicted

series shown in the top figure.
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Fig. 3.3. Figure 3.3(top) shows the behavior of the predicted value when the initial values of
T, and v,|, are chosen inaccurately. The difference, which i$ relatively significant, between the
time series and the predicted data is shown in Fig. 3.3(bottom). Since these two values also
affect the computation of the likelihood function and in most cases, are always unknown, then
these can be added as parameters to the system to be approximated using the same approach.

Figure 3.4 shows the log-likelihood function for different initial positions as the system noise
variance is varied. 1z, in the figure refers to the true initial position. Note that for initial
positions different from the true one, the log-likelihood function minimizes at different noise
variance. This means that poor choice of the initial position will lead to poor estimate of the
true system noise variance. However, a closer examination of the plot reveals that the true
initial value gave the most minimum log-likelihood. This is clearly evident in Fig. 3.5 where
the minima in Fig. 3.4 are plotted against the initial position. Here, the minimum occurs very
near to the true initial position value. Furthermore, a plot of the estimated variance vs. the
value of the initial position (Fig. 3.6) reveals that the minimum variance is very close to the
true variance and occurs at z,.

This section illustrates how to get the log-likelihood function for nonlinear systems. The
results are in complete agreement with the results of [64] also using the same example. They
demonstrate the applicability of the log-likelihood function to estimate the model parameters,
including the initial values of the state of the system and the system noise, even for chaotic

nonlinear systems.

3.3 Neural Networks

In this section, the neural network paradigm is discussed and its merits to approximate the
predictor function g(-) are closely examined. The use of neural networks is motivated by the

following reasons:

e Neural networks are inherently nonlinear. In general, time series data are generated by

nonlinear dynamical systems, therefore neural networks are good candidate models.

e Neural networks solve a given task by “learning” the solution [67] from a known set of
examples called the training set. In this case, the available time series will serve as the
training set and the network is tasked to learn the underlying mechanism that generates

the data.
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Figure 3.4: The log-likelihood as a function of system noise variance for different initial positions. The
is 1077,

y-axis is the value of the log-likelihood and the x-axis is the noise variance. The true value of the variance
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Figure 3.5: Locations of the minima in Fig. 3.4 as a function of initial values. The y-axis is the value
of the log-likelihood function and the x-axis gives the value of initial position. Each point corresponds to

different system variance. The minimum occurs at —10.73 which is very close to the true value equal to
—10.7266.
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o Neural networks are universal approzimators [44], which means that they can approximate

any continuous mapping to within a desired accuracy.

3.3.1 Mathematical formulation

A feedforward neural network transforms a set of input vériables into a set of output variables in
a nonlinear fashion. The precise form of the transformation is governed by a set of parameters
called the weights. The process of determining these parameters is called training or learning.
For a three-layer feedforward neural network (see Fig. 3.7), the output of the jth neuron in the

hidden layer is given by

d
2j = gHL (Z w}?m) (3.44)

i=1
where d is the number of neurons in the input layer, the w%{s are the interconnection weights
between input and hidden layer neurons and gur(-) is the activation function of the neurons in
the hidden layer. The output of the kth neuron in the output layer is expressed as
m
Yk = goL Z w?koz]' (3.45)
j=1
where gor.(+) is the activation function of this neuron, m is the number of neuréns in the hidden
layer, and the w]HkOs are the weight of interconnections between the neurons in the hidden layer
and that of the output layer.
Training or learning involves a minimization process of an error function usually of the form

N H
enn = O (yr —t7)? (3.46)

n=1 k=1

where [V is the number of examples used in training the network, H is the number of neurons in
the output layer, y; is the output of the kth neuron in the output layer during the presentation
of the nth example and #f is the desired output for that particular neuron. The set of weight
values that minimizes eyy represents the network solution to the problem. For convenience in
notation, these weight values are collected into a p x 1 vector w whose elements are (wg{ 1=

dig=1,,my whP i j=1,---,m; k=1,---,H) and p = m(d + H).

For a prediction problem, the output of the network is set to correspond to some future
value in a given time series whereas the inputs correspond to previous values of the said series.

Therefore for this case, Eq. (3.45) together with Eq. (3.44) will become

d
€T = ZU)]/‘ gHL z’w T ]
j=

= g(l"i-—lv' oy Ti-di W ) (347)
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Figure 3.7: Architecture of a three-layer fully-connected neural network.

Equation (3.47) can be used to approximate the predictor function g(-). Therefore, the problem
of finding g(-) is reduced to finding the appropriate parameters w minimizing the error function
eny in Eq. (3.46).

Two important quantities relating neural network to estimation problems are worth dis-
cussing here. The first is the training error defined as the value of the error function Eq. (3.46)
when training is stopped. Since the error function is the difference between the desired output
and the actual network output, this quantity provides a measure of the closeness of the net-
work’s output to the desired output. For noiseless data, the very small values of enn are desired
to reproduce the training set accurately. However for noisy data, zero values of exy will only
reproduce the noisy data. And thus, it is desirable to not let exn approach zero.

The second value of merit is the mean square difference defined by

5= 5/2ls0) — 40P (3.48)

where g(-) is the original map and §(-) is the neural network approximated map. This quantity
gives the difference between the map approximated by neural network and the actual map. Note
that even though the training error is zero for noiseless data, 3 may not be necessarily zero.
This is because the training error only represents the closeness of the network output to that of
the training set which is only a finite sample of the actual map. The closer the value of 3 to zero,

the closer the learned map to the actual map. This means a better generalization capability of
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the trained network which in turn produces better prediction. In the next two subsections, the

behavior of these two quantities as the noise variance increases will be examined.

3.3.2 The circle map

In the simulation conducted, time series were generated using well-known chaotic maps. The

first map used was the circle map which is given by

Ont1 = [On + p1 + p2sin(f,)] mod 2w + ep41. (3.49)

where £,41 is Gaussian white noise with variance o. The parameters p; and ps were set to 0.9
and 3.14 respectively. A three-layer fully-connected neural network was used. The number of
input units was set to 2 corresponding to 8, and a bias neuron with output always equal to 1.
The number of output neuron was set to one to correspond to 8,4;. The number of hidden units
was set to 22 since this gave the minimum training error for the noiseless time series. Several
time series, having 1000 data points, were generated corresponding to different noise variance.

One network was trained for each of them.

To compare the convergence of the error function [Eq. (3.46)] with respect to the noise
variance, the number of iteration was fixed to 1000. The initial values of the weights for each
training were randomly chosen between 1.0 and -1.0. For each time series, the training error is
obtained and plotted against the noise variance. This is shown in Fig. 3.8. From the figure,
it is obvious that as the noise variance is increased, the training error also increases. This is
due to the fact that the map to be approximated by the network becomes rougher as compared
with increasing noise. However, this does not mean that the approximated map, when the noise
variance is high, is no better compared to that when the noise variance is low. In fact, there
are instances when the opposite is true, that is, better approximation occurs when the variance
is high. This is clearly seen in Fig. 3.9 which shows the behavior of 3 as the noise variance o
is increased. From the figure, there are times when g falls as the variance is increased. This
indicates that the learned map is closer to the actual map. However, no direct relation between
generalization error and noise variance can be readily concluded. This is due to the fact that
the approximated maps vary considerably in regions not covered by the generated time series.
For example, in Fig. 3.10 when 8, > 255, the three maps coincide but for values less than

2.55, the three diverge away from each other.
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Training Error vs. Noise Variance : Circle Map
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Figure 3.8: The circle map. Training error as a function of noise variance. As the variance increases,

the convergence of the error function decreases corresponding to increasing error.
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Plot of Accuracy vs. Noise Variance : Circle Map
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NN Learned Map : Circle Map
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Figure 3.10: The functions learned by the network corresponding to the maximum and minimum training

errors as compared to the original function.
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3.3.3 The Hénon map

The second map is the Hénon map [43] which is given by
Tnt+1 = 1.0 —p1$,21 + P2Tp-1 + Wit (3.50)

where wp41 1s a Gaussian white noise with variance o. The values of p; and py used were 1.3
and 0.25, respectively. Twenty time series were generated corresponding to 20 different values of
the variance. Each time series has 1000 data points. Figure 3.11 shows a representative return
map of the generated time series. From this figure, it is obvious that the samples covered only a
small part of the entire map. A fully-connected feedforward neural network with 3 input units,
18 hidden units, and 1 output unit was used. The input units correspond to z,, zp—1 and 1
bias neuron and the output corresponds to z,4+1. The number of hidden units was chosen to

minimize the training error for the case when the variance is zero.

In the same manner as the circle map, the number of iteration was fixed to 1000 and the
initial weight values were the same for all the training sets. The resulting plot for the training
error as a function of the noise variance is shown in Fig. 3.12. Again, the same relation is
obtained as that of the circle map: an increasing training error with increasing noise variance.
The effect of noise on the generalization capability of the trained network is also investigated in
the same manner as the previous case. Here, the mean square difference 3 is defined to be the
volume between the two surfaces within the given domain of their respective variables. Again,
no direct relation can be obtained between the noise variance and generalization error 3 (Fig.
3.13). However, there are instances wherein higher noise variance yields better generalization
in the same manner as that of the circle map. A comparison of the NN learned map and the

actual map is shown in Fig. 3.14.

3.4 The Orthogonal Approach

Aside from neural networks, other parametrized families of predictor functions can be used to
approximate the dynamics in the reconstructed phase-space from the given time series. In this
section, the use of orthogonal basis functions, such as orthogonal polynomials, is considered.
The idea is to construct orthogonal functions from the given time series and use these functions

to span the desired predictor function.
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Figure 3.11: Three-dimensional return map of the time series. The surface is given by Eq. (3.50) with

p = 1.3.and p2 = 0.25.
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Training Error vs. Noise Variance : Hedca Map
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Figure 3.12: The Hénon map. Training error as a function of noise variance. As the variance increases,

the convergence of the error function decreases corresponding to increasing error.
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3.4.1 Orthogonal polynomials

Suppose that a time series Sy of length NV is given. The problem is to find a map with parameters
a: X — G(X;a), which evolves data points ¥;, — Y,4;. Following (1, 22, 34], G(X;a) can be
approximated by polynomials W, (X) which are orthogonal with respect to the natural invariant

measure p(X) associated to the time series Sy, that is,
/ 44X p(X)Wi(X)W;(X) = Nidi; (3.51)
and which can be determined by the conventional Gram-Schmidt procedure starting from
Wo(X) = 1. (3.52)
From this, G(X;a) is approximated to the Mth order as
M
G(X;a) =Y  amWn(X). (3.53)
m=0
The expansion coefficients (or parameters) are determined by

am = / X G(X;2) W (X)p(X)

= lim — S Yo WY 54
lmNZY+1 (Ya) (3.54)

by applying the ergodic theorem.

From Eq. (3.54), one can see the advantages of the approach. It eliminates the problem of
multiparameter optimization since the coefficients are readily computed from the time series.
Moreover, the estimates of the coefficients can be easily corrected when new data points are
available. But the best aspect of this method which makes it more promising in actual application
is its robustness to noise since computation of distances in the reconstructed phase-space is

unnecessary.

3.4.2 Nonlinear autoregressive models

From here on, only the component of G(X;a) that gives

Yo =g(Yn_1;a) (3.55)
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is considered. To approximate ¥y, a nonlinear autoregressive (NAR) model is used

calc

Un = g(Yn—l; a) + €

= a9+ aiYn-1+ -+ 0gYn—qg + ad+ly72;—1 + ag+2Yn—1Yn—2

+...+aMy7{cl_d+en (356)
M
= Z amzm(Yn—l) + €n (357)
m=0
where Y51 = (yn—1,Yn-2, -+, Yn—q) represents a vector in the reconstructed d-dimensional state

space (embedding space), the functional basis {z,,(X)} is composed of all the distinct combina-
tions of coordinates up to degree k, d is the delay which also corresponds to the dimension of the
embedding space, €, represents the random forcing of the system, and M + 1 = (k + d)!/(d'k!)
determines the number of coefficients to be computed.

One of the main difficulties of using Eq. (3.56) for function approximation is that the number
of parameters to be fitted grows very fast as soon as the phase-space dimension d and the degree
of the polynomial k becomes greater than one. Thus, multiparameter optimization becomes
unmanageable for large d and k. Moreover, there is the problem of determining which terms to
include in the model. Model-selection criteria such as the Akaike’s information criterion (AIC)[6]
that are valid for linear AR models may not apply to NAR models.

To circumvent these difficulties, auxiliary orthogonal functions are employed in estimating
the model parameters. To do this, the right-hand side of Eq. (3.57) is rearranged into a sum of

terms which are mutually orthogonal over the given time series:
M
9(X;a) = 3 bnwm(X) (3.58)
m=0

where wm(X') are orthogonal functions constructed from the z,,(X) using the Gram-Schmidt

orthogonalization procedure
m—1
wm(X) = Zm(X) - Z amrwr(X) (359)
r=0
and satisfy Eq. (3.51). The ay,, can be computed using

1
e = / X p( X )2 (X e (X), (3.60)

N,

/ d°X p(X) [wr (X)]2. (3.61)

The expansion coefficients, by,, are computed using the orthogonality of w,, (X)) and is given by

1

l\rn 3

b = 5~ | X g(X;@)um(X)p(X). (3.62)
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This procedure achieves a least-squares fit by minimizing the mean square error (eysg)

N M 2
EMSE = Z Ynt1 — Z brnwm (Yn) (3.63)
n=0 m=0
which can be rewritten in the form
N M N
EMSE = ) Uni1 — D b O [wm(Ya)]. (3.64)
n=0 m=0 n=0

From the above, the inclusion of a given orthogonal function w,(X) will reduce the eysg by an

amount equal to
N

Q(m) =02, > [wm (V)] (3.65)

n=0

This leads to a systematic way of selecting the terms a,, 2, (X) in Eq. (3.57). Terms with higher
@ (m) values can reduce the error significantly and must be included in the model. On the other
hand, terms with lower (J(m) values can be neglected since they will not contribute in reducing
the ense.

Another advantage of this formulation is that the explicit creation of the orthogonal functions
wm(X) in Eq. (3.59) is unnecessary. This can be done using Korenberg’s [52] algorithm with
a slight modification. The iterative procedure, as derived in Appendix A, to compute the

significant quantities, amr, bm, and Ny, is summarized by the following relations:

. ﬁmr = ) .Nj
Amr = N, ;}am]ar] A (3.66)
m—1
N = Bam— 9 02Ny, (3.67)
r=0
m—1
Tm Ny
bm = — — Omrbr , 3.68
N X ety (3.68)
where m=10,---,M,r=20,---,m—1, and
1 N
Bmr = Z zm(Yn)2r (Yn), (3.69)
N+1 =
1 N
Ym = Z yn+1zm(}/n)- (370)
N+17=

Equations (3.69) and (3.70) can be computed independently from the given time series. This
reduces the amount of computation required in obtaining the model parameters.

The original model parameters a,, can now be determined from the computed b,, and o,
o oWl
using the following relations:
M
am = »_ bV}, (3.71)

i=m
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where V,, =1 and

1—1
Vi==> oxV; (3.72)
T=m
fori=m+1,---, M. Moreover, @(m) can be easily evaluated from b,, and N,,, that is,
Q(m) = b2 Ny, (3.73)

3.4.3 Model selection

From the results of the previous section, one can see that Q(m), which quantifies the amount a
term zp,(X) can contribute in reducing the overall mean square error, plays an important rolé
in model selection. In this respect, terms which do not significantly reduce the error function
(small @Q(m) values) are not included in the optimal model. This criterion can be quantified
by defining a threshold below which the contribution of z,(X) becomes insignificant. In [23],
a 95% confidence interval (assuming a normal distribution) was used to determine significant

terms. For example, before a term z,,(X) is selected, it must satisfy

QM)

— > . (3.74)
ZTI:;O y727, - TAr/l,[:OI (m) \/N
Another criterion is given by the error reduction ratio (egrr) [4] defined by
Q(m
€ERR,, = ——-N( ) ) (3.75)
Zn:O Yn
where m = 0,---, M. The terms are then ordered according to their eggrr values. An optimal

number of terms are then selected by means of information criteria such as Akaike’s information
criterion, among others.
In the following, a criterion based on the multistep prediction performance of the resulting

model is described. The multistep prediction error is defined as

P)= > » = ¢/ (Yn;a)]? 3.76
C( )—IV+1§;[yn+]_g(naa)]’ ( )

where P is the number of steps to predict forward in time. The basic algorithm is as follows:
1. Initialize the values of d and k, the delay and degree of Eq. (3.56) respectively.

2. Add each term one by one to the model. For each time, evaluate the multistep prediction

error of the resulting model.

3. The number of terms that gives the minimum of e(P) for higher values of P will be included

mm the final model.
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Figure 3.15: Bifurcation diagram of the cubic map.

4. Recompute the coefficients a including only the selected terms.

The above list outlines the basic procedure in selecting the optimal model. This can still be
improved in a number of ways. For example, in step 2, one can rank first all the candidate terms
according to their Q(m) values before adding to the model starting from the most significant
to the least. Another way is adding the terms as they appear in Eq. (3.56) and then removing
those with insignificant Q(m) values. In this work, both approaches to determine the optimal

model are employed. The following examples will illustrate the orthogonal approach.

Example 1: the cubic map

An example of a one-parameter, one-dimensional forced map is given by
Tp+l = Ty + UTp — :vz + Kén (3.77)

where €, represents the random forcing of the system distributed uniformly between —1 to 1
and x represents the amount of forcing. When s = 0, the behavior of the system as a function
of the parameter u is quite simple. The system has fixed points at z, = 0 for all values of u
and vy = £,/p for p > 0. For p < 0, the origin is stable and globally attracting. A pitchfork
bifurcation occurs at g = 0 and the origin becomes unstable. This also gives rise to the two
stable fixed points 4. This is summarized in Fig. 3.15.

Ten time series, Sg, with 1000 data points for each parameter values py = 2—4(k—1)/10, k =
L,---.10 and for k = 0, were generated. These are shown in Fig. 3.16. Observe that for most

of the parameter values, the time series are almost constant except during transient. The few
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Figure 3.16: Time series for x = 0.0. The first 100 data points of S; to Sio (from top to bottom, left to
right).

exceptions are 51, S» and S3 corresponding to p = 2.0, ¢ = 1.6, p = 1.2, respectively. In S;, a
switching from one fixed point, x4, to the other, x_, can be observed. On the other hand, S3
exhibits a periodic solution. The rest of the time series converges to the stable fixed point z4

for 4 > 0 or z, for u < 0.

Equation (3.56) with & = 3 and d = 3, totalling to 20 model parameters to estimate, is used
as the starting model. More terms are included in modeling to exhibit the robustness of the
method described in subsection 3.4.2 in obtaining only the significant terms as compared to that
of the traditional least-squares approach. The estimated values are summarized in Table 3.1 for

some of the terms in the model. Terms not shown have parameter values equal to zero.

From the table, several observations are worth discussing. The first observation comes from
Sy, Sy, and Spp. In this case, the algorithm correctly determines the terms in the original
syvstem which are z,_; and :vz_l. Moreover, it also obtains the accurate values of the associated
parameters. This is due to the fact that the time series contain enough information of the
structure of the original system as can be seen in S; and S3. Next is the case of S3 and S,
wherein the model gives a constant function equal to the value of the fixed point of the map at

this particular parameter value. The last case comes from S7, Sg. and Sg. Here, the algorithm
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accurately determines the true value of the parameter associated with the linear part, z,_1,
though the cubic term is zero. This is because the values of the series are very close to zero
and thus only the linear part is significant. It is suspected that the algorithm determines the
linear part instead of the constant term because of the presence of transients which are more
significant compared to the long term value of the series. This is the opposite of the second case
where the long term values are more significant than the transient. This is more pronounced in
S10 where the algorithm detected the cubic term in spite of the fact that most of the data in
the series are constants with values close to zero. These results illustrate the reliability of the
algorithm in determining the best model for a given time series.

Next, the case when the forcing is not zero, in particular, when s = 0.2 was considered. Ten
time series were generated using the same parameter values as those of the unforced case. These
time series are shown in Fig. 3.17. S; and Syp are not shown since both time series diverged to
infinity with this amount of noise. The estimated parameters of the model are summarized in
Table 3.2. An interesting difference between Table 3.1 and Table 3.2 is seen in S3 and S4. In
the case of the forced system, the terms z,_; and z3_, are now determined correctly. Moreover,
the estimated parameter values of the model are very close to the true values. This is a case
where the presence of noise helps reveal the underlying structure of the given system as can be
seen in Fig. 3.17, S92 and S3 in particular.

From the analysis, it is seen that there are three competing models, namely:

y;:Lalc = ayp_1 — y2-1 (378)

modeling S, S3, and Sy;
Y = agn_1 (3.79)

for Sk’k:G,---,Q; and
Y2l = o + Byn—1 (3.80)

which models S5. Since all time series come from the same dynamical system, one of the above
models should be able to describe all the given time series. By inspection, it is obvious that Eq.
(3.78) represents the most probable model to use. This is because the other models can not take
into account the behavior of the other time series, for e.g. the behavior of S;. With this, the
parameter values were recomputed using Eq. (3.78) for Sk, k = 5,---.9. The new parameter
values are shown in Table 3.3. The behavior of this model with « as the parameter is shown in

Fig. 3.18.
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2 . 2
1.0 z,1 Tp_y Tp_1 Tp_1Tn-3

S T 00 3.0 0.0 -1.0 0.0
E 00 3.0 0.0 -1L0 0.0
Sy T 00 26 0.0 -1.0 0.0
E 00 26 0.0 -1.0 0.0
S; T 00 22 0.0 -1.0 0.0
E 141 00 0.0 0.0 -0.31
Sy T 0.0 1.8 0.0 -1.0 0.0
E 089 00 0.0 0.0 0.0
S T 0.0 14 0.0 -1.0 0.0
E 063 00 0.0 0.0 0.0
S¢ T 0.0 1.0 0.0 -1.0 0.0
E 00 102 -022 0.0 0.0
Sz T 00 06 0.0 -1.0 0.0
E 00 06 0.0 0.0 0.0
Sg T 00 02 0.0 -1.0 0.0
E 00 02 0.0 0.0 0.0
S T 00 -02 00 -1.0 0.0
E 00 -02 00 0.0 0.0
Spo T 00 -06 00 -1.0 0.0
E 00 -06 00 -1.0 0.0

Table 3.1: Cubic map. Estimated parameter values compared to the true values for k = 0. T = True

value, E = Estimnated value.



3.4. THE ORTHOGONAL APPROACH 47

L
A1 - - oo A2 s g AN, A

i

i ]

A - I NPy WS
EM’MW#NM‘&

zm,wm#www,w*mwwww 2

------------------------ S A A AR P

|
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Figure 3.18: Bifurcation diagram of Eq. (3.78) with a as the bifurcation parameter.
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1.0 xpey 225 23, 22 103
S5t T 0.0 3.0 0.0 -1.0 0.0
E - - _ - -
S, T 0.0 2.6 0.0 -1.0 0.0
E 0.0 2.6 0.0 -1.0 0.0
Sy T 0.0 2.2 0.0 -1.0 0.0
E 00 218 00 -1.0 0.0
Sy T 0.0 1.8 0.0 -1.0 0.0
E 003 177 00 -1.0 0.0
Ss T 0.0 14 0.0 -1.0 0.0
E 045 025 0.0 0.0 0.0
S T 0.0 1.0 0.0 -1.0 0.0
E 00 087 0.0 0.0 0.0
Sy T 0.0 0.6 0.0 -1.0 0.0
E. 00 0.5 0.0 0.0 0.0
S T 0.0 0.2 0.0 -1.0 0.0
E 00 0.0 0.0 0.0 0.0
Sy T 00 -0.2 0.0 -1.0 0.0
E 00 -028 0.0 0.0 0.0
So T 00 -06 0.0 -1.0 0.0
E - - - _ -

Table 3.2: Cubic map. Estimated parameter values compared to the true values for x = 0.20 (O =
0.05). T = True values, E = Estimated values, - = parameter values cannot be estimated because the

time series diverges with this amount of noise.

55 56 57 SS ‘59

True 1.4 1.0 0.6 0.2 -0.2
o 1.4 099 054 0.14 -0.25

Table 3.3: Cubic map. Estimated values of « in Eq. (3.78).
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Example 2: the Hénon map

In this example, a two-parameter, two-dimensional map given by the Hénon map is considered.
The map is given by
Tnp =1.0— plx%_l + PoTn_o + Kén (3.81)

where ¢, represents the random forcing of the system distributed uniformly between -1 to 1
and & represents the amount of forcing. Ten time series were obtained for ten different values
of (p1,p2) given by {0.12sin[27(¢ — 1)/10] + 1.346, 0.12cos[2x(: — 1)/10] + 0.2},7 = 1,---,10.
Equation (3.56) is used to model each time series with k¥ = 2 and d = 5. Again, a model with
more terms is used. Table 3.4 shows the estimated model parameters for the case where x = 0.
Observe how accurately (up to the third decimal place) the algorithm estimated the parameter
values of each terms included in the model. Terms not shown have zero parameter values.
When the forcing is not zero, in particular for k = 0.1, four out of the ten time series
diverged. Increasing the amount of noise further will cause all of the time series to diverge. For
the six nondiverging time series, the estimated parameter values are shown in Table 3.5. In spite
of the presence of random forcing, the correct terms (1.0, Tp—o and z2_,) and their associated
parameter values were still obtained. A working model can be obtained using the table and it
is given by
Tn=ag+a1ZTp-3 + agmi_l, (3.82)

which is exactly the Hénon map.

3.5 Testing for Nonlinearities

In this section?, nonlinear autoregressive models (subsection 3.4.2) are used to detect the pres-
ence of nonlinearities in time series. The data are the recorded electric organ discharges (EOQOD)
of resting Gymmnotus carapo specimens. See Appendix C for the experimental preparations.
The EOD consists of brief electric pulses separated by comparatively longer intervals of
silence (for review see [12]). In general, the variability of the inter-EOD interval depends on be-
havioral conditions. For example, in Gymnotus carapo, the variability increases due to shortening
of some of the intervals i) in response to sensory stimulation, i.e. the novelty response, ii) after

pharmacological treatments with serotonergic agents [20], iii) during the interaction between

*The results presented in this section also appear in Capurro A, Longtin A, Bagarinao E, Sato S, Macadar
0, and Pakdaman K, Variability of the electric organ discharge interval duration in resting Gymnotus carapo,

submitted for publication.
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1.0 zp_1 ZTp-2 Tpz3 T

TS, T 1.0 00 0320 0.0 -1.346
E 10 00 0320 0.0 -1.346
TS, T 1.0 00 0297 00 -1.416
E 10 00 0297 0.0 -1416
TS; T 1.0 00 0237 00 -1460
E 10 00 0.237 00 -1.460
TSy T 10 00 0163 0.0 -1.460
E 10 00 0163 0.0 -1.460
TS T 1.0 00 0103 0.0 -1.416
E 1.0 0.0 0103 00 -1.416
TSs¢ T 10 0.0 0.080 0.0 -1.346
E 10 00 008 00 -1.346
rTs; T 10 0.0 0103 0.0 -1.275
E 10 00 0103 00 -1.275
TSy T 1.0 00 0163 0.0 -1.232
E 10 00 0163 0.0 -1.232
TSy T 10 0.0 0237 00 -1.232
E 10 00 0237 00 -1.232
TSypy T 10 0.0 0297 0.0 -1.275
E 10 00 0297 0.0 -1.275

Table 3.4: Hénon map. Estimated parameter values compared to the true values for k = 0.0. T = True

values, E = Estimated values.
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1.0 In—-1 Tp-2 Tpn-3 Tp—1

TS, T 1.0 0.0 0320 0.0 -1.346
1D - - - - -
7Sy T 1.0 0.0 0.297 0.0 -1.416
E - - - - -
TS T 1.0 0.0 0.237 0.0 -1.460
E - - - - -
7S¢y T 1.0 0.0 0.163 0.0 -1.460
E — - - — -
TS; T 1.0 0.0 0.103 0.0 -1.416
E 1.0 0.0 0.103 0.0 -1.416
TSs T 1.0 0.0 0.080 0.0 -1.346
E 1003 00 0.080 0.0 -1.353
TS T 1.0 0.0 0103 0.0 -1.275
E 1002 00 0.101 00 -1.278
TSy T 1.0 0.0 0.163 0.0 -1.232
E 1002 00 0.165 00 -1.237
TSy T 1.0 0.0 0237 0.0 -1.232
E 1001 00 0237 00 -1.234
TS,y T 1.0 0.0 0.297 0.0 -1.275
E 1.0 0.0 0.298 0.0 -1.276

Table 3.5: Hénon map. Estimated parameter values compared to the true values for £ = 0.1 (O7y =
0.05). T = True values, E = Estimated values, — = parameter values cannot be estimated because the

time series diverges with this amount of noise.
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Figure 3.19: (a) Time series of the inter EOD intervals of a resting Gymnotus carapo, 40 seconds of
recording of fish 1. Abscissa: Interval order. Ordinate: Noise amplitude (msec.). (b) Autocorrelation
function of the time series shown in (a). Abscissa: Interval order. Ordinate: Autocorrelation (dimen-

sionless).

two fish [21], iv) in the active moments of the circadian cycle [15], v) during the reproductive

social behavior [41} and vi) during the escape response [29].

Figure 3.19 shows an example of the sequence of inter-EOD intervals and their autocorrela-
tion function. These intervals display some variability around their mean value. The purpose
of the present section is to determine the nature of these fluctuations: whether the fluctuations
in the inter-EOD intervals have a deterministic component or whether they are predominantly
stochastic. This is achieved by using an approach based upon the comparison of best fitted
linear and nonlinear ARs, in order to test for the presence of nonlinearities. The technique is
particularly effective for time series heavily contaminated with noise, and which, furthermore,
dircctly compares the performance of linear AR models with nonlinear ones. Following this

analysis, a statistical model for the sequence of inter-EOD intervals is developed.

The basic idea is to compare the best linear model (£ = 1) and nonlinear model (& > 1) for

cach data set [11]. The best linear model is obtained by searching for ¢ which gives the first
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fish ocar onar Ucuc Usos

fishl 0.133 0.125 1.766 1.645
fish2 0.115 0.113 0.665 1.645
fish3 0.192 0.185 0.876 1.645
fish4 0.289 0.283 0.428 1.645
fish5 0.171 0.144 3.438 1.645

Table 3.6: Comparison of the best AR and the best NAR model. 045 is the standard deviation of the
residuals of the AR model, onag is the standard deviation of the residuals of the best NAR model, U.qic

represents the estimated squared ranks statistics, and Up g5 is the value of U at 0.05 significance level.

minimum of Akaike’s information criterion with ¥ = 1. Repeating the same procedure for values
of k > 1 yields the best nonlinear model. For each data set and each value of k¥ and d, the AR and
NAR coefficients a; were estimated using the method presented in the previous section. For each
of the resulting models, the residuals were computed, and the standard deviations of each of the
series of residuals were estimated. The presence of nonlinear determinism is established when
the best nonlinear model is more predictive than the best linear model, i.e., oy 4R is significantly
smaller than o 4g, where oy and o4 are the standard deviations of the residuals of the best
NAR and best AR, respectively. Practically, the competing models were compared using the
nonparametric squared ranks test for variances[25].

The results are summarized in Table 3.6 which compares the calculated test statistics (U-
value) with the theoretical value at 5% significance level. The U-values indicate that the non-
linear models are not significantly better than the linear ones for fish 2, 3, and 4. Surprisingly,
for fish 1 and 5, the U-test indicates that the NAR is a better one step predictor than the AR.
This seems to contradict the results of previous studies. However, in the following, it will be
shown that the reason for this apparent discrepancy is not the presence of nonlinearities that
went undetected with the previous methods but rather, it is due to the fact that the assumption
about the noise in the AR models is not appropriate.

In order to establish this, the data is modeled by a linear AR subject to a combination of

both Gaussian and shot noise. The model is of the form:

d k
Yn =0+ Y arYn—r + b Pl + 0y, (3.83)

r=I r=1

where P represents an innovational outlier (1I0) equal to 1 if n = T, and 0 if n # T}, k is the
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total number of outliers in the series, and b, is the amplitude of the rth outlier. To fit this model
to the data, i.e., to estimate the parameters, the scheme of Box, et al. [16] is used. To detect the
timing of the outliers, the model is first estimated assuming no outliers are present. The residuals
are computed and the maximum of their absolute values is obtained. If this maximum is larger
than three standard deviations, then it is an outlier and the time of occurrence is recorded. A
new series of residuals is then obtained by setting the maximum value to zero and the standard
deviation is re-estimated. This procedure is repeated until the maximum value of the residual
series is less than three times the standard deviation. After all the outliers are detected, the
coefficients in Eq. (3.83) are reestimated using the fast Korenberg algorithm. A revised set of
residuals is obtained using this new set of coefficients. The same iterative procedure described
above is applied to revised residual series until no new outliers are detected.

The resulting AR+IO models were compared to the best AR models as well as the best
NAR models. Comparisons based on the one step prediction performance of the models were
performed. The nonparametric squared ranks test for variances is used to test whether the
best NAR models are performing significantly better than the AR+IO models. Furthermore,
the residuals for the best fit AR and AR+IO were tested whether they form a sequence of
independent Gaussian random variables. To this end, the first one hundred autocorrelation
coefficients of the residuals were estimated and the Ljung and Box statistics[56] was used to test
for the lack-of-fit of the model. The standard deviations of the best fit ARs were compared to
that of the AR+I0O models. Tables 3.7 and 3.8 summarize the results. The U-values indicate
that the NARs are not significantly better than the AR+IOs. In fact, the performance of the
AR+IO model as one step predictor is significantly better than the best NAR model for the
case of fish 5 which has the largest number of outliers. Furthermore, the residual time series of
the ARs with I0s are completely free of outliers as compared to that of the AR alone. These
result in a significant decrease of the standard deviations of the residuals. Furthermore, for the
AR+IO, all lack-of-fit tests of the autocorrelation of the residuals were satisfactory. For the
standard ARs, this was not the case for fish 3.

These results show that the AR+IOs perform better or as well as the best NARs and the
best ARs. Furthermore, the residuals of the AR+IOs, in contrast with some of those of the
best ARs and best NARs, successfully pass all the tests pertaining to their independence and
Gaussian distribution. This is illustrated in Fig. 3.20 which shows the residuals of the best fit
AR, NAR, and AR+IO models for fish 5. The AR coefficients of the final models are given in
Table 3.9.
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Ut
Ut

fish oar+io onar  Ucace Udos

fishl 0.124 0.125 0.780 1.645
fish2 0.106 0.113 -0.711 1.645
fish3 0.180 0.185 -0.092 1.645
fish4 0.262 0.283 -1.024 1.645
fishb 0.132 0.144 -0.242 1.645

Table 3.7: Comparison of the AR+IO and the best NAR model. o0ar470 is the standard deviation of
the residuals of the AR+IO model, onag is the standard deviation of the residuals of the best NAR

model, Ugqic represents the squared ranks statistics, and U os is the value of U at 0.05 significance level.

fish  model N p SD @ Qeit DSD[%] NO
fishl AR 2055 5 0.133  87.847 129.97 - 16
AR+IO 2055 5 0.124  93.571 12997 7.1 0

fish?2 AR 1940 6 0.115 98.759 128.80 - 21
AR+IO 1940 6 0.106 97.021 128.80 7.8 0

fish3 AR 1875 6 0.192 133.123 128.80 - 13
AR+IO 1875 7 0.180 126.647 127.63 6.2 0

fishd AR 1775 3 0.289 100.931 132.31 - 21
AR+IO 1775 3 0.262  98.139 132.31 9.3 0

fish5 AR 1587 4 0.171 86.409 131.14 - 27
AR+IO 1587 7 0.132 100.678 127.63 22.8 0

Table 3.8: Comparison of the AR and the AR+IO. NV is the number of residuals used in the analysis,
SD is the standard deviation of the residuals of the model, @ is the estimated Ljung and Box statistics,
Qerit = Xi00—p: a=0.01 gives the value of @ at 0.01 significance level, DSD is the decrease in the standard
deviation computed as DSD = (SDag — SDagr+ro0)/SDar where SD 45 is the standard deviation of the
residuals of the AR model and SD 4p4 70 is the standard deviation of the AR+IO model, and NO is the

number of outliers present in the residual series.
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Figure 3.20: Residuals of fish 5 models: AR (top), NAR (middle), and AR+IO (bottom). Abscissa is

interval order and ordinates is residual (msec).
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fish

ag a1 as as a4 as ag ar
1 0.000942 0.671543 0.203362 0.237763 -0.036813 -0.076328
2 0.005311 0.491533 0.314534 0.283100 -0.052195 -0.008962 -0.048943
3 0.007252 0.503950 0.287591 0.249927 0.015180 0.024365 -0.071875 -0.031984
4 0.012477 0.777074 0.025463 0.176697
5 0.013912 0.784023 0.089700 0.047697 0.009994  0.090963  0.012050  -0.070122

Table 3.9: AR coefficients of the final models.

o7



Chapter 4

Bifurcation Reconstruction

4.1 Introduction

Analysis of experimentally measured time series has been used to gain insights into the under-
lying physical processes, to do prediction, as well as to determine invariants associated to the
dynamics such as Lyapunov exponents, correlation dimension, among others. When time series
measured at different values of the system parameters are given, additional information about
the system’s behavior becomes available. This extra information can be exploited to reveal the
different bifurcations the system undergoes as the parameters are changed, as well as to uncover
behaviors of the system which may be present but not readily observed. The goal of bifurcation
diagram reconstruction is to address this problem by obtaining a BD qualitatively similar to
that of the given system using time series measured at a finite number of parameter values. It
is only recently that the BD reconstruction problem has received considerable attention. This
is brought about by the development of new algorithms for estimating predictor functions at
fixed parameter values and the increasing need to characterize the different behaviors of systems
with unknown dynamics using observations. The different methods to solve this problem will

be discussed in the remaining chapters of this work.

4.2 The Reconstruction Problem

Suppose that K time series Sy = {yF, 0 < t < 7} of length N are measured at different
parameter values of an unknown dynamical system. The point of interest is to know, using
Sk, the qualitative behavior of the system as a function of the parameter set c. The basis of

reconstruction is provided by Takens’ theorem[79] which states that it is possible to reconstruct

58
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the dynamics of an unknown system using its time series output. Accordingly, for a given time
series corresponding to a particular parameter value ¢, one can find a predictor function f(- ;c)

such that
Yiga = f(Yic) (4.1)

where f : R¢xIR* — IR, ¢ € R¥, k is the number of system parameters, Y; = {ye, - 77Jt—(d—1)A}
represents an observation from 0 to 7, A is the time delay and d is the embedding dimension.

The prediction problem as defined in Eq. (4.1) deals with time series corresponding to a single
parameter value. This does not take into account the changes in the behavior of the system as
the parameter c is varied. For example, in some neuronal models such as the FitzZHugh-Nagumo
equation, the system can behave as either excitable or oscillating depending upon the value of
the parameters involved([83].

The BD reconstruction problem using time series is an extension of the prediction problem.
This extended problem does not only aim to reconstruct the dynamics of the system for fixed
parameter values but also to interpolate the changes in the behavior of the system when some
of its parameters are changed and to estimate the bifurcation points where these changes take

place. More precisely, the problem is defined as follows: it is assumed that

1. the equation describing the dynamical system and the dependence of the system parame-

ters are unknown;
2. the predictor function f(-; ¢) is also unknown and needs to be approximated;

3. a finite number of time series S, k = 1,---, K at different parameter values ¢c{,---,cg
are available; and
4. the values of ¢y, - -, cg may or may not be known.
Thus, the time series are the only source of information regarding the dynamics of the system.
Under these assumptions, it is desired to reconstruct the bifurcation diagram of the given system.

The term reconstruction is used here in the sense described in [81, 82], that is, finding a suitable

parametrized function which exhibits the same bifurcation sequence as the original system.

4.3 The Projection Region

The keyv idea that makes possible the analysis of bifurcation structure from time series is the

concept of projection region. The projection region is defined as the region in the parameter
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space of the model with similar bifurcation structure as the system. Thus for parameter values
within this region, the dynamics of the model is therefore the same as that of the given system.
The bifurcation structure of the system can now be analyzed using that of the model on the
projection region. The problem therefore is to determine the projection region using the available
time series.

To understand this, suppose that f(X;c) represents the dynamics of the given system and
f: R4 x R* —» RY, where d represents the dimension of X and k the number of system
parameters. Suppose further that there exists a family of functions g(X; w), parametrized by
w € IRP, such that the behavior of g(X; w) in some region of its parameter space, denoted as 2,
is similar to that of f(X;c) for some region in its parameter space denoted as I'. The subspace
Q is referred to as the projection region of I'. Furthermore, it can be assumed that there exists
a function h : I' —  such that if ¢; € ' and w; € Q then w; = h(c;) and g(X;w;) behaves
similarly as f(X;c;). Note that h(-) determines the projection region Q2 and depends on the
chosen family of functions g(X;w). When h(‘) is linear, then the projection region is referred
to as a linear manifold in the parameter space of the model. Otherwise when h(-) is nonlinear,
the resulting projection region is a nonlinear manifold.

In most applications, however, only a finite number of time series S5;, ¢« = 1,---, K, cor-
responding to a finite number of parameter values c¢;, are available. Moreover, the function
g(X;w) is predetermined. Thus, the problem is to find wy,...,wg such that g(X; w;) approx-
imates f(X;c;) for the ith time series. In this case, the projection region is the region where
the set {w;} is located. In other words, the projection region is the region in the parameter
space of g(X; w) defined by the set of points {w;} corresponding to all possible time series that
can be generated by varying the system parameters ¢ within I'. The problem is to determine §2
fbr' the chosen g(X'; w) using the finite set of points {w'} computed from the given time series.
This problem will be addressed in the succeeding chapters.

To compare the bifurcation structures on I' and €2, some criteria are needed to determine
their similarities. These criteria are defined as follows: Suppose that for any system parameter
c € I there exists a w = h(c) € Q such that || f(X;c) — g-(X;w) ||< ¢ for some small €, for X
in some compact set, and for some appropriate norm, then the bifurcation diagram of g.(X'; w)

is similar to that of f(X;c) if the following conditions hold:
1. Let us assume that X* is a fized point of f(X;c), for a given c, then there is a fized point
X* of g(X;w) such that X*=X*+ O(e), except possibly for a parameter set of measure

O(2). Furthermore, X* and X* have the same stability.
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2. To make sure that g(X;w) does not introduce spurious stable equilibria, we need also to
assume that for all ¢, except possibly on a set of measure O(e), f(X;c) and g(X;w) have

the same number of stable equilibria in || X ||< M.

3. Finally, we need g(X;w) to reproduce the various dynamics displayed by f(X;c), so that
we assure that if f(X;c) undergoes a bifurcation at c*, then g(X;w) undergoes a similar

bifurcation at w* = h(c*) + O(e).

Although in general, (1) — (3) are only useful when the said quantities (bifurcation points
and fixed points of the original system) are known, these criteria are significant in clarifying
the meaning of similar bifurcation diagrams. In the following section, a general reconstruction
algorithm is introduced. This acts as the template algorithm where the algorithms in the

remaining chapters are based.

4.4 A Reconstruction Template

The general approach to reconstruct bifurcation diagrams can be summarized into four major
steps. The first step is to choose a parametrized function, say ¢(X;w) with w € RP, that
best approximates the predictor function f(X;c). Like any other modeling problems, finding
an appropriate g(X;w) is always a difficult task especially with the extra requirement that
g(X; w) should also model other time series in the set {Si,---,Sk}. In this work, a three-layer
fully-connected feedforward neural network and nonlinear autoregressive models are employed.
The former is used for noiseless case while the latter deals with time series corrupted with noise.

The use of neural networks is motivated by the fact that neural networks are universal ap-
proximators [44], in the sense that they can approximate any continuous mapping (section 3.3).
Moreover, neural networks can have an unlimited number of parameters by simply changing
the number of units in the hidden layer without affecting the number of input and output vari-
ables. This allows more degrees of freedom in obtaining better function approximation without
affecting the number of input variables which is dictated by the embedding dimension. On the
other hand, the NAR model has been applied effectively in obtaining predictor functions for a
number of systems (maps and flows), detecting nonlinearities in noisy time series (observation
and dynamical noise), estimation of dynamical invariants, among others.

With this, the approximating function ¢(- ; w) for the NN-case takes the form

Ynrt = 9Wn s Une(d=1); W)
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s d )
= > W?Q(Z W Yn_(i-1) + Yo0;) (4.2)
=1

i=1

where d is the embedding dimension, w € IRP, p = (d + 2)s, represents the weight vector

with the interconnection weights (w?,w{- , and 6;) between neurons as its elements, s is the
number of hidden units, y; is the bias neuron, and ¢(-) is the activation function of the hidden
layer neurons. The output neuron has a linear activation function. For the NAR-case, the

approximating function g(- ;a) takes the form

Yn = g(yn-h"'yyn—d;a)
M
= Z amzm(n) + €n (43)
=0

where {zm(n)} is composed of all the distinct combinations of the embedding space coordinates
(Yn—1,Yn—2," ", Yn—q) up to degree k [Eq. (3.56)].
The second step is to “project” each time series in the set {S1,---, Sk} into the parameter

space of the approximating function g(- ; w). This means finding a w; that minimizes || 32, 11—

g(yg,‘--,yg_(d_l);w) | for some specified norm. Denote this w; by w . . Here, an error
function of the form N
e(w) = [yi—glyi-1,» Yiea; W)]% (4.4)
i=d

where N represents the number of data points in each time series, is used. For K time series,
K corresponding wﬁnins, each representing a point in the parameter space of the approximating
function, will be obtained. These points can then be employed to obtain the projection region.
This is the third step of the reconstruction algorithm. The success of the reconstruction de-
pends on how well the projection region is approximated by {w®. }. One way to do this is to
approximate the projection region by a linear manifold and obtain basis vectors from {w? }
using principal component analysis (PCA). This will be discussed in the next section.

The final step is to take the bifurcation structure of the approximating function in the

projection region as the reconstruction of the bifurcation structure of the given system. One

can employ the methods described in section 2.2.

4.5 Linear Manifold Approximation

A key observation by Tokunaga, et al.[82] and Tokuda, et al.[81] was that if the covariance matrix
of the estimated parameter values are formed and the eigenvalues of this matrix is computed, the

number of significant eigenvalues corresponds to the number of system parameters. Moreover,
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the bifurcation structure on the space span by the eigenvectors associated to the significant
eigenvalues is qualitatively similar to that of the original system. Thus using PCA, they were
able to reconstruct the bifurcation diagram of an unknown system from time series data.

This finding can be explained using the concept of projection region. In fact, this is the case
when the projection region is a linear manifold in the parameter space of the model. In order
to obtain an expression for this linear manifold, principal component analysis was employed.
The dimension of the subspace was determined from the number of significant eigenvalues of the
covariance matrix of {w' } and the subspace itself was spanned in terms of the eigenvectors
associated with these eigenvalues.

Specifically, the sample covariance matrix of the p-dimensional data vectors {wfmn}, 1=
1,---, K given by

K
C=> dwiow!, (4.5)

i=1
where dw; = anin —w and W represents the mean, is formed. The eigenvalues of this matrix is
then computed and the eigenvectors obtained. The number of nonzero eigenvalues corresponds
to the number of system parameters. Moreover, the space spanned by the eigen\.fectors associated
with the ¢ significant eigenvalues defines a linear subspace which can then be taken as a linear
approximation of the projection region. With this, any point on the projection region can be

estimated using

q
wpr(Q) = D i + W (4.6)

i=1
where the ¢;’s are the dominant eigenvectors, which can be taken as the new basis vectors,
and the a;s are the expansion coefficients, which can be taken as the effective parameters. A
qualitatively similar BD is then reconstructed with the expansion coefficients a;s as the new

bifurcation parameters.

In general, the problem of obtaining the projection region is identified as a problem of

i
min

interpolating h(-) using the computed w! . s. The linear manifold approximation means a linear

approximation of h(-), that is,

h(c) =u,+Tc+e 4.7)

where T is a p x k matrix and e represents the error term. PCA can then be used to estimate

the matrix T from the wfnms and thus, the number of significant eigenvalues of C, which gives
the dimension of the projection region, can correspond to the number of bifurcation parameters

of the system which is given by the dimension of c.
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100} ' ]

Figure 4.1: Significant eigenvalues of the covariance matrix formed by the weight vectors wi . ’s

min
obtained after training the network. The y-axis is the relative value in percentage, that is,
abs(eigenvalue) /> (eigenvalues). The number of significant eigenvalues is equal to 2 which corresponds

to the number of system parameters.

To illustrate this, consider again the well-known Hénon map:

Tp4l = g(znsxn—l; A)

= 1-p122 +peTn_1 (4.8)

where A = (p;,p2). Using Eq. (4.8), ten time series were generated each of length N = 100 for

parameter values

P 0.135cos[2n(j — 1)/10] + 1.346

p2 = 0.135sin[27(5 — 1)/10] + 0.2

i o= 1,---,10. (4.9)

A neural network with an input-output function given by Eq. (4.2) was employed in ap-
proximating the map. The network parameters were as follows: d = 2, s = 7, y, = 1, and
q(x) = 1/[1 + exp(—z)].

The network was trained using backpropagation. Minimization of the error function given by
Eq. (4.4) was done using the BFGS algorithm[69]. After computing the set of weights {w? 1},
the covariance matrix [Eq. (4.5)] was set up. The significant eigenvalues of this matrix together

with their respective eigenvectors were then computed. The eigenvalues are shown in Fig. 4.1.
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From the figure, the number of significant eigenvalues is the same as the number of system
parameters. This suggests that the dimension of the projection region is equal to the number
of bifurcation parameters and thus, establishing the correspondence between the two parameter
sets. Any point on the projection region can be expressed in terms of the significant eigenvectors
associated with the significant eigenvalues and is given by Eq. (4.6). Using Eq. (4.6), the BD of
the approximating network on this region can be constructed by varying the o;s. This BD then
serves as the reconstruction of the BD of the original map. See for example [82] for the actual

BD reconstruction of the Hénon map using this approach.



Chapter 5
Linear-In-Parameter Maps

5.1 Introduction

In general, the linear manifold approximation presented in the previous chapter is not always
valid for any system. It is imperative, therefore, to know 1) when there is an appropriate
linear manifold and 2) how it can be systematically located. The purpose of this chapter® is
to provide partial answers to such questions. More precisely, it will be shown that there is
a class of maps, henceforth referred to as linear-in-parameter (LIP) maps, for which a linear
manifold of dimension equal to the number of bifurcation parameters and bifurcation structure
that is qualitatively similar to that of the map can always be found in the weight space of
the approximating network. The problem of recognizing time series generated by this class of
maps is also discussed. Finally, an algorithm is proposed to reconstruct BDs of LIP maps using
predictor functions obtained by neural networks. This algorithm is flexible so that other classes

of predictors, apart from neural networks, can be used in the reconstruction.

5.2 An LIP Map: An Illustration

In this section, the Hénon map example in section 4.5 is used to illustrate the reconstruction
of LIP maps from time series. It is supposed that g(z,,z,_1; A) is known at three parameter
values Al = (pl,ps), A% = (p?,p3), and A3 = (p},p3). Denote these maps as g1, go, and ga,

respectively. With this, Eq. (4.8) takes the form

g = g(@n rn-1;A) =1-pi2k + pian_, (5.1)

*The contents of this chapter also appear in Bagarinao, et al., 1999 {8].
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ge = g(xnaxn—ﬁ AQ) =1~ p%.’l?% +p%$n—1 (52)
g3 = g(zn,xn_1; A3) =1- p?a:i +p%a;n_1. (5.3)

The goal of the new reconstruction scheme is to approximate Eq. (4.8) using the three functions

g1, g2, and g3. To do this, one can take the function

9(2n, Tn-1;0,0) = g1 + alg1 — g2) + B(g1 — 93)- (5.4)

The new set of parameters (o, 3) is related to the old set (p;,p2) via the relation

p1 = p}+alpl —p?)+Blpl —pl) (5.5)
p2 = pi+a(ph—p3)+ B(py — p3) (5.6)

From this, the BD of the Hénon map can be reconstructed using Eq. (5.4) by varying o and 3.
Thus, only three predictor functions are needed to realize the reconstruction. This requirement
can be easily met by using the given time series to approximate g, g2, and g3.

The most compelling question at hand is how to use Eq. (5.4) in finding a linear subspace
in the weight space of the approximating network. To answer this, one can rewrite Egs. (5.1),

(5.2), and (5.3) in the form similar to Eq. (4.2), that is,

o= g(iwh
s d L
= wig(D> w7l T i1y + zb0;) (5.7)
7=1 =1
g = g5 w?)
s d )
= wiq(D> wil T, i1y + zo63) (5.8)
j=1 =1
g3 = §(5v°)
s d y )
= D wiqdw; ma(im1) + 205) (5.9)
j=1 i=1

where §1, g2, and g3 are the network approximations of g, g2, and g3, respectively. In terms of

the g;'s, Eq. (5.4) can be written as follows:

g(xn, znor;0,08) = (1 +a+ B)§1 — ags — 833. (5.10)

Equation 5.10 can be interpreted as a composite network made up of the three networks

4, and g3. Sce Fig. 5.1(A). Since (1 + o + 3), ¢, and § are multiplicative factors of the

-t

gt ¢

J1- Go. and gz, respectively, their variation only affects the hidden-to-output (outer) weights of
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Figure 5.1: (A) The composite network made up of the three predictor functions §i, g2, and 3. The
inner weights are unchanged while the outer weights are given by Eq. (5.11). (B) When the inner weights
of the three networks are the same, the composite network can be trimmed to make the number of hidden

units cqual to that of the predictor functions. For this case, the outer weights are given by Eq. (5.12).
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the network while the input-to-hidden (inner) weights remain unchanged. From Eq. (5.10), the

outer weights of the composite network can be written as follows:
we=(1+a+pfw @ (—a)w*? & (—f)w’ (5.11)

where w2 € IR?* represents the outer weights of the composite network, wo' € IR® represents
the outer weights of §;=12,3 and @ denotes a direct sum.

Equation (5.11) defines a linear subspace in the space of the outer weights of the composite
network. This subspace is generated by varying the parameters « and 3. The dimension is equal
to the number of parameters (two for this case) and the bifurcation structure of the network on
this subspace is qualitatively the same as that of the Hénon map since the composite network
approximates Eq. (5.4). Equation (5.11) thus locates the desired linear manifold without using
PCA. All it requires are the outer weights of the three networks g1, go, and g3.

Further simplification of the above results can be attained by assuming that the inner weights
of all three networks are equal. This assumption is justifiable when one thinks of the g;s as
composed of subnetworks each approximating the functions Hi(zn, Zn—)) = x%, Hy(zp,2p-1) =
ZTn-1, and H3(zn,xp-1) = 1 of the Hénon map. Following the same line of reasoning as above,
each p; being multiplicative factors of the H;(-) can affect only the outer weights of the g;’s. Thus,
with an appropriate choice of the number of hidden units and training algorithm, it is possible to
keep the inner weights equal for all the trained networks. In the simulation, a grouping of hidden
units was observed for the case of the Hénon map. Four hidden units collectively approximate
the function z2, two hidden units do not contribute to the input-output function (outer weights
are zero), and the remaining one hidden unit approximates the rest of the terms. This is shown
in Fig. 3.2.

With this assumption, the composite network can be trimmed so that the number of hidden
units will be the same as that of the §;’s, that is, equal to s [see Fig. 5.1(B)]. The linear
subspace can still be located in the outer weights’ space. This subspace is spanned by the
1

vectors (w?! — w??) and (w>! — w%3). Any point on this subspace is given by

wh = wol 4 a(w"’1 - w°’2) + ﬁ(w"’1 — w°’3) (5.12)

where wi € IR represents the outer weights of the trimmed network and w € IR® represents
the outer weights of §;=12.3.

Equation (5.11) or (5.12) defines the desired linear subspace in terms of the computed outer
weight values of the predictor functions. [t guarantees the existence of this subspace in the

weight space of the network for the case of the Hénon map.
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Figure 5.2: The estimated weight values of the trained network. Observed how the weights are dis-

tributed to attain the different functions in the original Hénon map.
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Figure 5.3: Reconstructed bifurcation diagram of the Hénon map on the linear subspace defined by Eq.

(5.11) in the parameter region p; € [1.15,1.548] and p, € [0.0,0.398]. See Table 5.1 for the color coding.

To reconstruct the bifurcation diagram, three predictor functions were used. The func-
tions were approximated by neural networks and corresponded to parameter values A! =
(1.388,0.328), A? = (1.211,0.2), and A® = (1.388,0.072). Equation (5.11) is used in the re-
construction. The parameters o and 8 are varied from [aj,as] and [by, by, respectively, such
that p; € [1.15,1.548] and py € [0.0,0.398]. The reconstructed BD using this scheme is shown
in Fig. 5.3. Table 5.1 summarizes the color code used in the figure. From the figure, it is
evident that the new scheme captures the different dynamics of the Hénon map (See [82] for the
BD, both original and reconstructed using the PCA-based approach discussed in the previous

chapter, of the Hénon map on the same parameter region).

5.3 Definition and BD Reconstruction

The reason why the reconstruction using Eq. (5.4) works for the case of the Hénon map is that
the Hénon map belongs to a large class of maps called LIP maps. An LIP map is a map that

can be written in the following manner:
k
g(z; A) = Z MNiH;(z) + Haux () (5.13)
t=1
where g : R x R¥ — R', z € RY, A = (A, Xo,---,\,) € R are the parameters, and the

functions H;(x) are linearly independent. The functions H;(z) are linearly independent if the
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COLOR COMMENTS

blue period 1 or 8 or 15
red period 2 or 9 or 16
magenta period 3 or 10 or 17
cyan period 4 or 11 or 18
brown period 5 or 12 or 19
yellow period 6 or 13 or 20
white periocd 7 or 14 or 21
black period greater than 21
quasi-periodic region

chaotic region

Table 5.1: Color code used in Fig. 5.3.

only solution to the equation
,
> aiHi(z) =0 (5.14)
=1

is the trivial solution «; = 0 for all values of 7.

To reconstruct the BD of an LIP map, it is assumed that at least k + 1 predictor functions
gi(z) = g(z; A*) for fixed parameter values A%, i = 1,---,k + 1, are known. Two possible cases
can arise. The first case is when Hj,ux(z), the last term in Eq. (5.13), is zero. Under this

condition, g(x; A) can be approximated by the equation

k
9(z,8) =Y _ Bigi(). (5.15)
i=1

The second case is when Hyx () is not equal to zero. For this case, Eq. (5.15) cannot be used
since it will introduce parameters to the term Hyyx(z) of each g;(z) which should not vary with

parameters. To remedy this situation, the following equation is employed:

k
9(z,B) = g1(x) + Y _ Bilg1(z) — gis1()]. (5.16)

i=1
By taking the difference between two predictor functions before multiplying by the new param-
cters, the contribution of H,ux(x) in each predictor function is effectively canceled out. This

removes the possibility that Haux(z) is made to vary with the new parameters. Equation (5.4)
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is an example of Eq. (5.16). In both equations [Eqgs. (5.15) and (5.16)], the §;s serve as the new
bifurcation parameters.

When the g;’s are approximated using neural networks, a linear subspace can be found in the
space defined by the outer weights of the approximating network. For the composite network,

this subspace is given by
k .
Wg = @ Biwo’l (5.17)
=1

for the case when Hyx(z) is zero and wl € RFs represents the outer weights of the composite

network. For the case when Haux(z) is not zero, w2 has the form
k k ]
wo = (1 +3 ﬁi> wo & P(—-F)wH (5.18)

where w? € IR*+Ds represents the outer weights of the composite network, w°* € IR® represents
the outer weights of the known predictor functions, and & denotes direct summation. Similarly

for the trimmed network, the outer weight vector is given by
k -
wh =wol 4> Bi(w! — woth (5.19)
1=1
for the case when H,,x(z) is not zero, or

k
wh = Z B;wor (5.20)
=1

for the case when H,,«(z) is zero. Here, wf. € IR’ represents the outer weights of the trimmed
network, w®* represents the outer weights of each predictor functions, and the §’s are the new
bifurcation parameters.

The preceding four equations defined the desired linear subspace which can be generated
by varying the new parameters (3. The dimension of this subspace is equal to the number of
bifurcation parameters. Moreover, the BD of the network on this subspace is qualitatively the
same as the BD of the LIP map. Using either one of these equations, one can reconstruct the
BD of the LIP map from the given time series. Two important issues remain to be considered:
1) how to determnine the number of bifurcation parameters & from the time series themselves;

and 2) how to know if indeed the time series are generated from an LIP map. These issues are

explored in the next section.
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5.4 Identifying LIP Maps

Suppose that g(z, A) [Eq. (5.13)] is known at K different values of A, say A*, i=1,..-, K. Let
gi(x) = g(z, A*). The goal is to determine the number of parameters k using g;(x). To do this,

a function X%¥(z) is defined such that

XU(z) = gi{=z) - g;(z) (5.21)
k
= Y (= M)H() (5.22)
r=1
k
= Zainr(:c) (5.23)
r=1

where o/ = (A% — \]). This effectively cancels the Hayx(z) of each g;(z). A vector Vf{[ is formed

by evaluating X% (z) at M discrete values of x:

VI = [XY(zy),-, X (zy)]T - (5.24)
i =1,---,K—-1

j =i+l K

The vector V;JI is therefore X% (z) evaluated at discrete points T,,, m = 1,---, M. Similarly,
the vector hy can be defined as Hg(z) evaluated at the same discrete points z,,, m=1,---, M.

From Eq. (5.23), Vﬁ‘], can also be written as

Vi =Y oih,. (5.25)

r=1

The vectors h,’s are in general independent since the H,(z)’s are independent functions [Eq.
(5.14)]. These vectors can then be thought of as basis vectors for Vihjl spanning a k-dimensional
subspace of R . Therefore, the vectors VI}\J,.[ can only be found on this subspace which can be
generated by varying the parameters o/. Thus, if a finite number of vectors Vx, are known,
PCA can be used to determine the dimension of the space occupied by these vectors. This would
yield the important result that the number of significant eigenvalues of the covariance matrix
formed by the Vf{[ would be equal to the number of parameters k.

In terms of the eigenvectors associated with the significant eigenvalues of the covariance

matrix, VlA][ can be written as
k

Vi =Vu+ > 74, (5.26)

r=1
where v9’s represent the expansion coefficients, Vs is the mean of the {V%,} and the ¢,s are the

eigenvectors. These eigenvectors can be interpreted as an orthonormalization of the independent
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vectors h,. One can also think of the continuous equivalent of ¢, denoted as ®,(z). In terms of

these functions, Eq. (5.13) can be written as

k
g(:z:,I‘) = Z'VT(I)T(m) + (Paux(x) (5.27)
r=1
where T = (v1,---,7v) represents some effective parameter. If the h,’s or the H.(z)’s are

themselves mutually orthogonal, an idea of the functional form of the original H,.(z)’s can be
extracted from the ¢, or ®.(x).

With these results, the number of bifurcation parameters, together with the functional form
of g(x;T'), can be determined from the time series. This can be done by approximating the
g;(z)’s using predictor functions g;(z) obtained via neural networks or some other approach.
Once the g;(z) are known, the difference between each §;(z) can be estimated and the difference
function X¥(z) [Eq. (5.23)] can be obtained. The set of vectors {V%,} is then generated by
evaluating X% (z) at M different values of z. After which, the covariance matrix [Eq. (4.5)]
of these vectors is formed and the eigenvalues and their corresponding eigenvectors computed.
The number of significant eigenvalues is equal to the number of bifurcation parameters if the
time series comes from an LIP map. The associated eigenvectors are related to the original map
via Eq. (5.27).

To use these results in identifying time series generated from LIP maps, one can take subsets
of the set of vectors {Vf\][} The membership of each subset can be chosen randomly from the
original set. For each subset, PCA is applied and the number of significant eigenvalues and
the associated eigenvectors are determined. For LIP maps, the result should be the same, that
is, the same number of significant eigenvalues and the same eigenvectors should be obtained.
Otherwise the map is non-LIP. This will be illustrated in the examples considered (section 5.5).

Finally for the case where the As in Eq. (5.13) are functions of parameters rather than the

parameters themselves, a generalized LIP (GLIP) map can be defined as follows:

glz; A) = fi( A)Hi(z) (5.28)
i=1
where A = (A, -, \¢) € R¥ are the parameters and the f;(A)s are functions of the parameters

and are linearly independent, that is, they satisfy Eq. (5.14). For GLIP maps, the results in the
previous section and the current one should still apply for f;(A) rather than A. This means that
istead of the number of actual parameters &, the method will determine the number of indepen-
dent functions f;(A), which is equal to r. Also, the reconstructed BD is relative to the parameter

i[= fi(A)] rather than to the A;s. This was illustrated in sections 4.5 and 5.2 using the Hénon
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map. Observe that the time series were generated using parameter values p; = r,cos(6) + c;
and p2 = r,sin(#) + c2. In the example, 6 was varied while keeping the other variables (r,, ¢,
and ¢y) fixed to some values in generating the time series. This effectively reduces the number
of parameters to one, which is §. However, the method detected the parameters p; = f;(6) and
p2 = f2(0). And since these two parameters were detected, the reconstruction was based on p;

and ps rather than on 6.

5.5 Examples

In this section, the procedure in reconstructing BDs of LIP maps will be illustrated via some
examples. In all the examples, a three-layer neural network with input-output function given
by Eq. (4.2) was used to approximate the predictor functions. For each of the system, first, the
number of parameters is discerned from the significant eigenvalues of the covariance matrix of
{Vﬁ\][}, then the functional form of the map is determined from the eigenvectors associated with
the significant eigenvalues, and finally, the BD is reconstructed.

To get the functional form of the map using Eq. (5.27), one also needs to specify ®aux(z)
which can not be obtained directly from the eigenvectors. To do this, first each g;(z) is
evaluated at M values of = (the same values used in obtaining Vj&) and the vector G; =
(Gi(z1), -+, §i(xar)]T is formed. Then each vector is projected onto the eigenvectors ¢y. From

this, a discrete equivalent of the function ®,,,(z) is given by the equation
Gaux = Gi — Z 'Y;Qbr (5.29)
r=1

where ¢aux is the discretized equivalent of ®,.x(x) and 42 is the projection of the vector G; onto

the rth eigenvector ¢,. This equation is the discrete equivalent of Eq. (5.27).

The Hénon map

An cexample of a LIP map is the Hénon map. It is given by the following equations:

. — 2
T4l = 1"".7)11n+.7/n

Yn+l = DP2Tn (5.30)

with

St

Hi(zp,2p-1) = =
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Figure 5.4: Significant eigenvalues of the covariance matrix form by the vector V, ,3 Same unit (in
percentage) as in Fig. 4.1. (A) The first group with five predictor functions §; to §s. (B) The second
group with gg to §1p. (C) The third group with g;, ¢ even. (D) The ten predictor functions. In all cases,

there are two significant eigenvalues indicating that the time series were generated from an LIP map.

filp,p2) = m

H2($n1$n~l) = ZTn-1
falp1,p2) = po
Haux(xnal'n—l) = 1

The ten predictor functions obtained in section 4.5 were used in the analysis. From these
predictor functions, 4 groups were formed: the first group was composed of the predictor func-
tions g, to §s; the second was from §g to gio; the third group was composed of §;, ¢ even;
and the last group was composed of the entire ten predictor functions. For each group, the
function X’"j(.r) was evaluated on a square grid given by z, = —2.5 + 5i/20, i = 1,---,20 and
apo] = —2.54+55/20, 7 =1,---,20 to generate the set of vectors {Vf\j,:mo}. The eigenvalues,

and their associated eigenvectors, of the covariance matrix of {Vij,} were then computed. Fig-
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Figure 5.5: The eigenvectors of the Henon map. (A) The eigenvector associated with the first significant
eigenvalue. This is parabolic in z,,. (B) The eigenvector associated with the second significant eigenvalue.
This is linear in z,.1. (C) ®,.(x). The surface is almost flat and approximately equal to one except

near the edges where it drops sharply.
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Figure 5.6: Significant eigenvalues of the covariance matrix form by the vectors {1/, ,C}} Same unit (in
percentage) as in Fig. 4.1. (A) Logistic map. (B) Cubic map. (C) Delayed logistic map. The number of

significant eigenvalues is equal to the number of system parameters for all the systems considered.

ure 5.4 shows the significant eigenvalues to be equal to two for all groups (A)-(D). Since this
number is the same for all groups, it can be concluded that the time series were generated from
an LIP map. The normalized eigenvectors are shown in Fig. 5.5. Figure 5.5(A) is the first
priucipal eigenvector which corresponds to the parabolic term of the map. In Fig. 5.5(B), the
surface is almost planar corresponding to the term z,-) and in (C), the @, (x)-surface is close
to one except near the boundaries. Thus, all the terms in the Hénon map are clearly identified.

The reconstructed BD is shown in Fig. 5.3.
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Figure 5.7: The logistic map. (A) The eigenvector associated with the only significant eigenvalue of the

covariance matrix of {V}7}. The curve is parabolic. (B) @, (z) is zero for = € [0.1,0.75], consistent with
Eq. (5.31).
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The logistic map

The logistic map
Tny1 = 4pxn (1 — zp) (5.31)

is an LIP map with

Hi(zy) = 4z,(1 —z,)

fiw) = p
Hyyx(zn,) = 0.

Ten time series of length T = 100 were generated for the parameter values p; = 1 — 5(5 —
1)/10, 5 =1,---,10. The network parameters used in approximating Eq. (5.31) were as follows:
d=1 =6, y, =1, and g(z) is sigmoidal. The BFGS algorithm was used to minimize the
error function.

After computing the §;s, X9 (), i=1,---,10, j = i + 1, was evaluated at different values
of x, given by =z, = (i — 1)/100, ¢ = 1,---,101, then the vector V%l was formed, and the
principal components computed. Figure 5.6(A) shows one significant eigenvalue corresponding
to the only bifurcation parameter of the logistic map. A plot of the normalized eigenvector
is shown in Fig. 5.7(A). The eigenvector does exhibit the parabolic form of the logistic map.
Moreover, ¢aux(zn) is almost zero for z € [0.1,0.75], as shown in Fig. 5.7(B). This is consistent
with Eq. (5.31). The BD of the logistic map was reconstructed using Eq. (5.15) since ¢aux(z)
is zero. For this case, the equation has the form §(z,;8) = B§1(z,). Figure 5.8(A) shows the
reconstructed BD for 8 € [0,1]. Evidently, the reconstructed BD exhibits the period doubling

route to chaos behavior, among others, of the logistic map.

The cubic map

Another example of an LIP map is the cubic map given by

Tpil = Tn + p&n — T (5.32)
with
Hl(IEn) = In
filw) = n
HElllX(I1l) = In — -77?1
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Figure 5.8: Reconstructed BD of (A) the logistic map and (B) the cubic map using the proposed

algorithm.
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Figure 5.9: The cubic map. (A) The eigenvector associated with the only significant eigenvalue of the
covariance matrix of {V;7}. This is the linear term in Eq. (5.32). (B) The ®..«(z) of the ten predictor

functions g;. All @,,,(x) are the same.
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For this example, ten time series with 100 data points each were generated for the parameter
values u; = 2—4(j—1)/10, j =1,---,10. The interesting feature of this example is the pitchfork
bifurcation at x4 = 0. The trained network has the following parameters: d = 1, s = 5, y, = 0,
and ¢(z) = tanh(z). For this system, X (z) was evaluated at z = —2 + 4(i — 1)/100, i =
1,---,101; thus, M = 101. Figure 5.6(B) shows one significant eigenvalue which is consistent
with the expected result. The normalized eigenvector and ®,,,(z) are shown in Fig. 5.9. The
eigenvector is linear as expected and ®,u(z) is cubic, which is the same for all the predictor

functions. In this case, ®uue(z) =~ 2.4z — 23

is not exactly equal to Huuc(z) = z — 23. The
BD was reconstructed using the equation §(zn; 8) = §1(zn) + B[§1(zn) — g2(z,)]. The result is
shown in Fig. 5.8(B) for 8 € [—10, 10]. The reconstructed BD exhibits the pitchfork bifurcation

of the original map.

The delayed logistic map

Another example of an LIP map studied in [82] is the delayed logistic map given by

Tny1 = Pi1(l =Zn)Zn +p2yn +03(1 — Yn)zn
Yn+1 = In (5.33)
with
Hl(-'rn’l'n-—l) = (]-“flfn)xn

filpr,p2,p3) = m

HQ(-'L'n,-Tn—l) = Tp-1
f2(p1,p2,p3) = p2
HS(In’xn—l) = (1 _-Tn—l)l'n

falpr,p2a,p3) = p3

Hyux(p1,p2,p3) = 0

The same parameters as in [82] were used in deriving the results here. These parameter

values are given by

P = 1.0
p2 = 0.11lsin(w(j — 1)/5) +0.224

p3 = 0.08cos(n(j—1)/5)+1.85
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for 7=1,---,11
o= 1.25
pe = 0.11sin(m(j — 12)/5) + 0.224
ps = 0.08cos(m(j —12)/5) + 1.85
for j =12,---,22
Here, X% (z) was evaluated on a square area given by z, = 1.54/20, i = 1,---,20 and 2,1 =
1.55/20, 7 = 1,---,20; thus M = 400. The significant eigenvalues of the covariance matrix

of {Vf{bo} are shown in Fig. 5.6(C). There are three significant eigenvalues corresponding to
the three bifurcation parameters (py,po, p3). Moreover, the normalized eigenvectors capture the
form of the different terms in the original map as can be seen in Fig. 5.10. Figure 5.10(A) shows
the first eigenvector which is planar corresponding to the term (z,—1), (B) shows the second
eigenvector representing the parabolic term (1 — z,,)z,, and (C) shows the third eigenvector for
the term (1 — zp—1)zn. The surface of @, (z) shown in Fig. 5.10(D) is flat and close to zero.

The reconstructed BD is not shown here.

The Lorenz equations

As a final example, a continuous system given by the Lorenz equation is considered. The

differential equation has the form

dx

E - U(y - IL'),

dy .
il T — Y — T2, (5.34)
dz

il xy — bz,

where o, b and r are the parameters. Qualitatively different dynamics can be observed from
this svstem by changing the parameters across critical values. A detailed description of the
bifurcation structure of the Lorenz equations with respect to the parameter r will be presented
inscetion 6.4. What is of interest in this example is the pitchfork bifurcation at » = 1 which gives
rise to two stable equilibrium points and makes the origin unstable. The bifurcation diagram
with respect to r is shown in Fig. 6.8.

The motivation of including this example is to examine the general applicability of the

proposed approach. In this example, 40 time series were generated for the parameter values
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Figure 5.10: The normalized eigenvectors of the delayed logistic/coupled logistic map. (A) The first
principal eigenvector. This eigenvector represents the term z,_; in Eq. (5.33). (B) The eigenvector
associated with the second significant eigenvalue. It is parabolic in z, and thus represents the term
(1=x,)xn. (C) The third eigenvector has a functional form similar to that of the third term (1—xz,,_;)z,.

(D) ®..x is approximately zero which is consistent with Eq. (5.33).
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ri = 0.5, i =1,---,40, 0 = 10, and b = 8/3. The 4th-order Runge-Kutta method was used in
integrating Eqs. (5.34) with a time step set to 0.001. The time delay A computed using mutual
information is 0.1{1] and the embedding dimension d is equal to 3. The network parameters
were as follows: s = 5, ¢, = 0, and ¢(z) = tanh(0.5z).

The first task is to check if the obtained predictor functions belong to a family of LIP maps.
To do this, the predictor functions {§;} were divided into six subsets: the first subset was
composed of the first five predictor functions {g,-- -, §s}; the second was composed of the first
ten {g1, -+, g10}; the third had 20 predictor functions {1, --,J20}; the fourth, 30 predictor
functions {§i,-- -, gs0}; the fifth, the entire 40 predictor functions {gi, -, dao}; and the last, 8
predictor functions {g;, 7 = 3,10, 15,20, 25,30, 35,40}. Note that the range of r increases from
the first group to the fifth group, that is, r ranges from 0.5 to 2.5 in the first group and 0.5 to
20 in the fifth group.

For each set, the vectors V?\J/.I=12SS were generated and the significant eigenvalues of the
covariance matrix formed by these vectors were computed. Figure 5.11 summarizes the result.
From the figure, as the range of r increases from (A) to (E), the number of significant eigenvalues
also increases. For example, for 0.5 < r < 2.5 (the first group), there is only one significant
eigenvalue [Fig. 5.11(A)]. While for 0.5 < r < 5 (the second group), the number of significant
eigenvalues becomes two [Fig. 5.11(B)] and increases further for wider range of r [Fig. 5.11(C-
E)]. This is different from the results obtained with the Hénon map. This clearly indicates that
the time series were generated by a non-LIP map.

This can be seen by considering the discretization of Eqgs. (5.34):

Tntl = ZIn+ [U(yn - xn)]At
Yntl = Ynt (TTn —Yn — Tnzn)At
Zn+1 = Zn+ (Tnyn — bzn)At

or wnyy = f(wn; A) where wy = (Zn, Yn, 2n) € IR® represents the discretized state of the system,
f:IR? x R? — IR? is a map that brings wy, to wpy1, A = (r,0,b) € IR? are the parameters,
and At is the discretization time. The above equation is linear-in-parameter for the given
discretization time A¢. However, the observation time (= 0.1) is not equal to the discretization
time (= 0.001) such that the effective predictor function g(-) is a composition of f(-), that is,
glwn; \) = f(- - (f(wy;A))). This causes g(-) to have higher order terms in A making it a GLIP
rather than a LIP. This suggests that the number of significant eigenvalues corresponds to the

nmunber of significant f;(\)'s rather than A.
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Figure 5.11: The significant eigenvalues (%). (A) The first group composed of predictor functions
{31,---,Gs} - (B) The second group with {gi, --,gi0}. (C) The third group with {gi, -, G20} (D)
The fourth group with {g;,---,730}. (E) The fifth group with {§;, -, 340}. (F) The last group with
{3, i = 5,10,15,20,25,30,35,40}.
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Figure 5.12: Reconstructed bifurcation diagram of the Lorenz equation around » = 1 where a pitchfork

bifurcation occurs. The new parameter 3 ranges from [—2,1].

However, a closér investigation of the figure reveals that for 0 < r < 2.5, the obtained
map resembles an LIP map. This is because the number of significant eigenvalue is the same
as the number of parameter - that is, one. To examine this further, the BD of the map was
reconstructed within this parameter region using the proposed approach. Equation (5.16) was

used in the reconstruction. In particular, the fixed points of the equation
§(z; B) = gs(z) + Blgs(z) — G3(z)] (5.35)

for § € [-2,1] and = = (zn, ZTn—1,Tn-2) was computed. The reconstructed BD is shown in Fig.
5.12. The pitchfork bifurcation of the Lorenz equation at r = 1 is reconstructed. In spite of the
fact that the system is not LIP, the result suggests that the method is still applicable as long as
reconstruction is confined to small parameter regions. This is evident when one considers the

Taylor expansion of a general map g(z;r) around some bifurcation point r,, that is,

dg(x;r,) + (AT)? 8%g(z; 7o)

g(z;7re + A1) = g(z;710) + Ar o 5 52

which resembles a GLIP map with parameter Ar.

To summarize, this subsection shows how to detect time series generated by non-LIP maps.
Furthermore, the general applicability of the proposed algorithm is exhibited for the case of the
Lorenz system. As long as the parameters considered are confined to a small region, then the

above approximation still hiolds for non-LIP maps.
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5.6 Discussion

For dynamical systems that can be written in the form given by Eq. (5.13), it is shown that a
correspondence exists between the number of parameters and the number of significant eigenval-
ues of the covariance matrix formed by either the weight vectors w? . or the vectors V;J/[ For
the former, this means that in the weight space of the approximating network, a linear manifold
can be found such that on this manifold the behavior of the network is qualitatively similar to
that of the given LIP map. With this, the reconstructed BD of the original map is given by the

BD of the approximating network on this linear manifold. For the latter, this correspondence

can be used to recognize if the given time series are generated from an LIP map.

The definition of the difference function X% (z) and the associated vector V;ﬂ, leads to a
scheme that can be employed to determine the number of bifurcation parameters from the
predictor functions. It is also shown numerically that the number of parameters as well as the
functional form of the unknown map can be determined by this scheme and thus, the unknown
map can be completely specified. In line with these ideas, a new reconstruction algorithm is
presented. This algorithm can be summarized as follows: The first step is to obtain predictor
functions using the given time series. Next, the number of bifurcation parameters are determined
using the significant eigenvalues of the covariance matrix formed by the vectors V;&I Once the
number of parameters k£ are known, the map is approximated using k£ + 1 predictor functions
and Eq. (5.15) or (5.16). Finally, the reconstruction follows by varying the parameters [5; in

either of the two equations.

The new approach is different from the one presented in [7, 81, 82] in the following aspects:
First, the reconstruction is based not on the parameter space of the approximating predictor
functions but rather on the predictor functions themselves, as given in Egs. (5.15) and (5.16).
Second, the method requires only few predictor functions (approximately the same as the num-
ber of bifurcation parameters) to reconstruct the BD, whereas the previous approach requires
more w! . s to obtain a good projection region. Thus, the number of time series required to re-

construct the BD of the given system is reduced. However, to determine accurately the number

of bifurcation parameters, more time series may be needed.

The result in the reconstruction of the pitchfork bifurcation of the Lorenz equation exem-
plifies the general applicability of the new approach. As long as the parameter values are not
too wide apart, the LIP-approximation still holds. This is due to the fact that even though the

original map is not linear-in-parameter, it can be written in a form similar to Eq. (5.13) by
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using Taylor expansion.

The results in [81] showed that the BD of a given system can be reconstructed even if the
time series were corrupted with observation noise. This implies that predictor functions which
approximate the given system for fixed parameter values can still be obtained. Since the current
approach is based on the predictor functions themselves, it follows that the proposed algorithm
should still work in the presence of observation noise. For the case of dynamical noise, finding
the appropriate predictor functions for the noisy time series becomes an important issue because
such perturbations can cause drastic changes in the dynamics of the system. The use of neural
networks in this case may be difficult since neural networks do not incorporate dynamical noise in
its learning scheme. Other predictor functions such as nonlinear autoregressive models (section
3.4) may prove useful in this case. Once the appropriate (robust to noise) predictor functions
are obtained, the reconstruction follows immediately from Egs. (5.15) and (5.16). This problem

will be addressed in more details in the following chapters.



Chapter 6

Nonlinear Methods

6.1 Introduction

In the previous chapters, the reconstruction is based on the approximation that in the parameter
space of the predictor function there exists a linear manifold on which the bifurcation structure is
similar to that of the original. Under this apprbximation, the number of bifurcation parameters
corresponds to the dimension of this linear manifold. Basis vectors of the manifold can then be

obtained from a known set of discrete points using principal component analysis.

In this chapter?, the feasibility of reconstruction is explored when the linear manifold approx-
imation of the previous method is insufficient, thus entailing a more general approach. Moreover,
under this condition, the correspondence between the number of bifurcation parameters and the
number of basis vectors obtained by PCA is lost. As a consequence, the number of bifurcation
parameters is undetermined. It is therefore natural to start with a one-parameter BD recon-
struction. In this regard, a generalized one-parameter BD reconstruction algorithm using time
series is considered. Possible extension to higher dimensional reconstruction is also discussed in
the later part of the chapter.

The algorithm is tested using time series from systems exhibiting stable limit cycles and
stable equilibrium points. Surprisingly, these systems require a more general approach for the
reconstruction of their BDs. The following section will cover the algorithm which is based on
principal curves as approximated by piecewise linear curves. Numerical results on the FitzHugh-
Nagumo equations and the Lorenz equations are presented to illustrate the effectiveness of the

approach.

'The contents of this chapter also appear in Bagarinao, et al., (1998) [7].

92
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6.2 Principal Curves

The problem of obtaining the projection region from the computed {w?; } is related to the
problem of finding lower dimensional manifolds (the projection region) in a high dimensional
space (model’s parameter space) which can be solved using several well-established approaches.
In this section, the case for £ = 1 (only one bifurcation parameter) is considered.

A natural generalization of Eq. (4.7) is to consider h(-) as a nonlinear function of c. With
this, h(-) defines a one-dimensional curve, say C, in the parameter space of the predictor function.

i .
min

The problem is to obtain an approximation Capp to this curve using the computed wy; s. Letting
A represents the curvilinear abscissa along Capp, then for each w € C,pp, the parameter w can be
expressed as a function of A, that is, w = h(\) where h : R! — C,,,(C IRP) is nonlinear. The
BD of the predictor function along Capp with A as the effective bifurcation parameter is then
taken as the reconstruction of the BD of the given system.

The curvilinear curve C,pp is approximated using the principal curve of the data points

i .
min

{w!,}. Principal curves as defined in [40] are smooth curves that are self-consistent for a
distribution or data set. This means that the average of all the data that project onto a point
on the curve coincides with the same point on the curve. For data sets, the curve Cupp is
represented by K discrete points {h;|/h; = h(A;)} joined by a line from h; to h;;; in increasing
order of ;. Clearly, the shape of Ca,, depends only on the order, not on the actual values of
the A;s. Assuming that the h;’s are sorted in increasing order of A and using the arc-length
parameterization such as in [40], one can assign A; = 0 and A; equal to the arc length along the
curve from h; to h;. In the simulation, the principal curve is approximated by piecewise linear
curves

i i-1

i %%\Z—Tm()\ = Xi-1) (6.1)
where ¢ = 2,-- -, K.

The algorithm to compute the principal curve as described in [40] is composed of two basic
steps; namely, the projection step and the conditional-expectation step. As an initialization,
the principal curve at the zeroth iteration, denoted as h?, is given by the first linear principal
component of the given data set {x?}. Each of the {x'} is then projected onto h’, the projection
being the point on hY closest to {x'}. Denote this as h?. This gives an ordering of the {x'}
along h®. The curvilinear abscissa A for each h? can now be defined as follows. The endmost h?,

denoted as h*, is set to have a value of \; =0 and all other values of \; is defined as the distance

of hY from h* along h®. Thus, for each {x'} is an associated ); and the curve is represented by
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N number of (A;, h?) joined up linearly in increasing order of X to form a polygon. This serves

as the projection step.

L
R

To get the next approximation of the principal curve, that is, hl, all the points x* in the
sample, whose associated A; is close to JA;, are averaged. This average value is then taken as
the estimate of h}. This is the conditional-expectation step. For local averaging methods, see
for example spline smoothers[76] and locally weighted running-line smoother[24], among other
methods. Once all the h}s are obtained, new estimates of the A;s associated to these new h}s
are computed. To get the new estimate, define d;; as the distance between x* and its closest
point on the line segment joining each pair (h}, hi +1)- Then set A; to correspond to the smallest
value of d;, that is, A; = min d;,. Corresponding to each ); is an interpolated h;. Using these
values to represent the curve, replace A; by the arc length from h* to h;. Finally, the procedure

is iterated until the relative change in h{ is below some threshold. Refer to [40] for a more

complete description of the algorithm. The complete algorithm is summarized below.
Initialization: Set h(®()\) = X+ a), where a is the first linear principal component
of the given data set {x}. Set A0 (x) = X\ o) (x).
Repeat: Over the counter j

1. Conditional-expectation step.
2. Projection step.

3. Evaluate the change in h/.

Until: The change in h’ is below some threshold.

6.3 Example 1: The FitzHugh-Nagumo Equations

In this section, the reconstruction algorithm using principal curve is applied to time series of

the FitzHugh-Nagumo (FHN) equation [32, 59], which is given by

l,
6% = —v(v—0.5)(v—1.0) —w+ Lox
((%) = v—w-—b (6.2)

This is a simple mathematical model which mimics to some extent the excitability of a neuron.
For some range of Iy, the model behaves as an excitable membrane. Whereas for some other

parameter values, it behaves as an oscillating membrane defining a stable limit cycle. This gives
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Figure 6.1: Bifurcation diagram of the FHN-system. It is characterized by two stable fixed point regions,

a stable limit cycle region, and two subcritical Hopf bifurcations.

a good example of a simple system which can either have a stable fixed point or a stable limit
cycle depending on the value of the parameter[83].

The bifurcation diagram of Eq. (6.2) is shown in Fig. 6.1. In this figure, the bifurcation
parameter is the applied external current Iy and the other parameters are fixed (e = 0.005, b =
0.13). As Iy is increased, the stable equilibrium point becomes unstable and a subcritical Hopf
bifurcation occurs at ley ~ 0.112 giving rise to the stable limit cycle. As the current is increased
further, another subcritical Hopf bifurcation takes place at Iyt =~ 0.588 and the stable limit cycle
disappears.

The FHN-system is used to illustrate the applicability of the proposed algorithm since it has
a well-defined sequence of bifurcation points and a bifurcation structure that can be analyzed in
detail. Moreover, it also presents some fundamental issues and difficulties to the reconstruction
problem which are not obvious if the system is chaotic. Take for example the case with the
stable equilibrium points of the FHN equations. For this case, the corresponding time series is a
constant in time and therefore, does not contain any information of the system dynamics at all
except during transient. It is therefore inferable that finding a suitable §(-) would be easier in
this case than the case of chaotic time series. Unexpectedly, this ease in obtaining the predictor
function does not translate to easier reconstruction of the bifurcation diagram.

The first task is examined if the simple BD of FHN can be reconstructed by using the PCA-
based algorithm, that is, by a linear approximation of h(-) [see Eq. (4.7)]. To do this, 65 time

series of the variable v were generated by integrating Eq. (6.2) using fourth-order Runge-Kutta
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I.xt Pred. Error

0.00 0.00

0.10 8.23 x 10~12
0.20 9.49 x 1070
0.30 2.10 x 1079
0.40 9.90 x 10797
0.50 1.69 x 10796
0.60 1.14 x 1079
0.70 2.30 x 10713

Table 6.1: One step prediction error of the obtained predictors for some values of I.y;.

method with the time step set to 0.001 and initial value (v = 0.0,w = 0.0). The corresponding
parameter values were given by It , = 0.011(i—1), i = 1,---,65. To account for all the transient
behavior which varies from one parameter to another and for uniformity, the number of data
points per time series is set to N = 1000 with sampling interval A = 0.2. The false nearest
neighbor algorithm (FNN) is used to determine the embedding dimension d, and this value was
found to be equal to 2. The computation of the {w’. } started with the time series having
the most complex behavior. The initial weights were set randomly between [—1.0,1.0], and the
error was minimized using the BFGS algorithm. For the remaining time series, the computed
wmin Of the preceding time series was used as the initial weight value. The activation function
employed for the hidden units was the usual sigmoidal function given by ¢(z) = 1/[1 +exp(—z)].
The output of the bias neuron was set to 1 (y, = 1.0). Different numbers of time series (e.g.
K =5,10,19,37, and 65) were used in reconstructing the BD of FHN. Here, the case for N = 65
and s = 13 (the number of hidden units) represents the best possible reconstruction using the
method based on PCA. Table 6.3 shows the value of the error function, Eq. (4.4), for some
representative values of Ioy;. As can be observed, the prediction error for each time series is
really small. This confirins the observation that finding a suitable predictor function for each of

the time series of the FHN is relatively trivial.

The PCA results suggest that the obtained {w',} is nonlinear in Io. This is evident in

Fig. 6.2 which shows the significant eigenvalues of the sample covariance matrix of {wi; }.

From the figure, the number of significant eigenvalues is roughly equal to 8 representing 95.75%
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Figure 6.2: Significant eigenvalues of the sample covariance matrix for the 65 weight vectors obtained

after training the network.

of the total eigenvalues. Obviously, this is much greater than the expected one corresponding
to lext. Note that for other values of K, the same observation holds; that is, the number of
significant eigenvalues is always greater than one. The nonlinearity can be further observed by
taking the projection [i.e. the ;s in Eq. (4.6)] of each w? . onto the associated eigenvectors of
the sample covariance matrix and plotting the computed values against the original parameter.
The resulting curve should be roughly linear when the wfnins lie on a linear manifold. A linear
curve thus indicates the validity of the linear manifold approximation. Figure 6.3 shows the

computed a1 23s of the obtained wfnins for the first three eigenvectors. From the figure, the

resulting curve is not linear. This indicates that h(et) is nonlinear in Joys.

Figure 6.4 shows the two dimensional BD of §(- ; w) in the vicinity of the projection region.
The z- and y-axis correspond to the axes spanned by the first and second eigenvectors ¢ and
¢ in Eq. (4.6)], respectively. The scattered points indicate the projection of the wi; s onto
this principal plane. PS and SFP correspond to regions of (pseudo-) periodic solutions and
stable fixed point solutions, respectively. The arrows indicate the w’ s associated with the
constant time series (stable equilibrium of the system). The projection of these points into the
PS region in the figure is an artifact since only two out of the eight significant eigenvectors

arc used. Observe the parabolic-like distribution of the scattered points in the vicinity of the

projection region, another manifestation of the nonlinearity of h(Z..:).

Finally for the PCA-based algorithm, a one-dimensional BD was constructed using the first
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Figure 6.3: Projections of the set {w’ . } onto the eigenvectors of the first three significant eigenvalues

min

of the sample covariance matrix.
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Figure 6.4: The local bifurcation structure of §(- ; w) relative to the first two eigenvectors of the sample
covariance matrix. The 1, - axis is spanned by the first eigenvector while the z, - axis is spanned by the
second eigenvector. PS denotes region of (pseudo -) periodic solutions and SFP denotes region of stable

fixed point solutions. The scattered points are the projections of the time series onto this principal plane.

principal axis (shown as dashed line in Fig. 6.4). The choice of the first principal axis is dictated
by the fact that the projection of {anin} onto this axis has maximum variance. The fixed points

of §(- ; w) were computed for a given w by finding the zeros of

z2(y) =y—g(y, -, y;W). (6.3)

To evaluate the local stability of the fixed points, the characteristic equation associated with
(- ;w) is defined as a polynomial of degree d (embedding dimension) with coefficients equal to

the partial derivatives of §(- ; w) evaluated at the fixed point, that is,

d
P(\) =) a;\ (6.4)
—
where ag = —1 and a; = 9g(y, - - -,y ; w)/yi—;a evaluated at the fixed points (see section 2.2).

Figure 6.5 shows the reconstructed BD. It can be seen that the reconstructed diagram has
qualitatively similar bifurcations as compared to the one depicted in Fig. 6.1 for = € [—4.0,3.0].
In particular, the fixed point region, followed by the limit cycle region, then by another fixed
point region, is preserved in the reconstruction. Furthermore, the two Hopf bifurcations bound-

ing the stable limit cycles of the original system are also present. However, the reconstructed
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Figure 6.5: Reconstructed bifurcation diagram relative to the first principal axis. The reconstruction
preserves the two fixed point regions, the limit cycle region and the two Hopf bifurcations. However, it
also exhibits extra fixed points and bifurcations which are not present in the original system. Note that

z) does not directly correspond to Ioxs.

BD also exhibits extra fixed points such as the saddle and upper stable node branches and extra

bifurcations such as the three saddle-node bifurcations.

After establishing the need for an alternative approach, the algorithm presented in the pre-
vious section was employed to reconstruct the BD of the FHN-system. Twenty time series
were generated using the same conditions mentioned previously for parameter values It =
—0.1+0.05( — 1), i = 1,---,20. In this case, 20 time series were used, instead of the 60
employved, in order to have a rough comparison of the data requirements between the two al-

gorithms. To compute {wfnin}, the same procedure mentioned earlier was applied. Different

number of hidden units (s = 7,13, 19,25, 31) were used in training the network.

The results indicated that the fidelity of the reconstructed BD depends on the number of
hidden units, that is, the more hidden units, the better the reconstruction. Figure 6.6 shows
the reconstruction for s = 7 while Fig. 6.7 shows the reconstruction for s = 31. The difference
is obvious in the two reconstructed BDs. This result is consistent with the fact that the more
hidden units the network has, the better its approximation capability. The results also suggest
that the projection region should be a connected region in the parameter space to avoid unwanted

behavior such as the intervening stable equilibrium region within the limit cycle region of the



6.3. EXAMPLE I: THE FITZHUGH-NAGUMO EQUATIONS 101

p! T T T

25 | ‘\ unstable ;

maximum

:]Cé) 1
% 05 + \ ..... o \ Hopf
> bifurcation

- ~_ minimum e, 1
stable
-15 = L

0] 0.2 0.4 0.6 0.8
external current

I 1 L

Figure 6.6: Piecewise linear reconstruction with s = 7.
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Figure 6.7: Piecewise linear reconstruction with s = 31. All the features of the original FHN bifurcation

diagram are preserved. The arrow indicates some extraneous fixed points of the obtained map.
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reconstructed BD as shown in Fig. 6.6.

Figure 6.7 shows the reconstructed BD for s = 31 and Iy € [—0.1,0.85]. The fixed points
and their associated stability were obtained using the methods presented in section 2.2. This
time, a better reconstruction of the BD of FHN is obtained. From the figure, the locations
of the fixed points correspond well with the locations of the fixed points of the FHN-system.
The two Hopf bifurcations of the FHN-system also appear in the reconstructed BD occurring at
Ters ~ 0.118 (0.112 for FHN) and I = 0.581 (0.588 for FHN), respectively. The stable limit
cycle region is preserved. The number of fixed points for a given parameter value is the same

except in the narrow interval indicated by an arrow in the figure.

6.4 Example 2: The Lorenz Equations

The other system used in the simulation is the Lorenz system. This is one of the most well-
known systems in the study of chaos and is used to model the unpredictable behavior usually
associated with weather phenomenon. The point of interest here is not particularly the chaotic
aspect of the system but rather the transition of its behavior from the fixed point region to the

chaotic region as the parameters vary. The equations are given below:

dz

P oly — )

2—2 = rr—y—zz (6.5)
dz

- = - bz.

where o, b and r are the parameters.

The origin (z = y = z = 0) is an equilibrium point for any parameter values. For b = 8/3,
o =10, and 0 < r < 1, the origin is stable and globally attracting. At r = 1, a pitchfork
bifurcation occurs and the origin becomes unstable. This also gives rise to two more stable

equilibrium points given by Cx = (£/b(r — 1), £/b(r — 1),r — 1) which remain stable until

7 =~ 24.74 where a subcritical Hopf bifurcation occurs. Beyond this value, all equilibrium points
are unstable. Figure 6.8 summarizes the behavior of the Lorenz equations as a function of the
parameter r. The presence of a homoclinic orbit at r ~ 13.93 causes some of the trajectories
originating from the positive x-axis to converge to C_ and vice versa as shown in the lower
middle figure. Furthermore, as r approaches 24.74, some trajectories wander from one stable
fixed point to another but still converge to either Cy or C_ after a long time. For a detailed

analysis of the bifurcation of the Lorenz equations, see for example [77].
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Figure 6.8: Bifurcation diagram of the Lorenz equations with 7 as the bifurcation parameter. In region
I, the origin is stable and globally attracting. In region II, all trajectories move towards either C or C_.
In region III, some of the trajectories in the positive x-axis converges to C_. and vice versa. Region IV
is usually associated with the chaotic behavior of the system. Three main bifurcations are present - the
pitchfork at r = 1, the homoclinic at r ~ 13.93 and the Hopf at r ~ 24.74. The lower figures show some

representative trajectories for each region in the embedded space.
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Figure 6.9: Projections of the set {w’ . } onto the eigenvectors of the first three significant eigenvalues

min

of the sample covariance matrix.

In the simulation, both b and o (values given above) were fixed. Time series were obtained
by integrating Eqs. (6.5) using the 4th-order Runge-Kutta method with time step equal to 0.001
and parameter values r; = 0.5+0.5(: — 1), i = 1,---,60. Sixty time series of the variable z were
used to make r equally sampled from 0.5 to 30 at 0.5 interval and to have two time series to
represent the case where the origin is globally attracting (r = 0.53,1.0). These two time series are
necessary for the reconstruction of the pitchfork bifurcation at » = 1. Again, each time series
was composed of 1000 data points to account for long transient behavior. The time delay A,
obtained by mutual information, is equal to 0.1 and the embedding dimension, calculated using

the FNN, is equal to 3.

To approximate the predictor function, Eq. (4.2) with s = 100, y, = 0.0 and ¢(z) =
[1 — exp(—2z)]/[l + exp(—2z)] was employed. The use of hyperbolic tangent as the activation
function of the hidden unit neurons was dictated by the symmetry of the original system as

observed in the available time series. The {w!; } were computed in the same manner used in

the FHN case and minimization of Eq. (4.4) was performed using the BFGS algorithm. Again,

the PCA results suggest that the w' s are ponlinear in r. This is evident in Fig. 6.9 which

shows the plot of the projection aj 23 of the obtained {w? } onto the first three significant

eigenvectors versus the original parameter r. Since the resulting curve is nonlinear in r, then the
{w..,} cannot lie on a line. It follows that the linear manifold approximation, or equivalently,
the use of the PCA-based algorithm would be insufficient. This agrees with the results in the

previous chapter. Moreover, this implies that the BD of the Lorenz system for » € [0.5,30] is
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Figure 6.10: Piecewise linear reconstruction of the bifurcation diagram of the Lorenz equations. The
fixed points and their corresponding stability are reconstructed accurately except near » = 1. The Hopf
bifurcation is also preserved. However, it also exhibits extra saddle points near z = 0. The lower figures

show some representative orbits of the obtained map.

best reconstructed by using the generalized algorithm.

Figure 6.10 shows the reconstructed BD using the proposed algorithm for r € [0.5,30]. The
reconstruction does capture the important features of the original BD. From the figure, it is
evident that the fixed points of the reconstructed system are very close to that of the Lorenz
system. The associated stability of the fixed points are the same as the stability of that of the
original system except in the region close to » = 1. Furthermore, the reconstructed system
also undergoes Hopf bifurcation in both stable branches at r ~ 24.6 (r ~ 24.74 in the original
diagram). Moreover, the symmetry of the location of the fixed points in the BD with respect to
r = () is also preserved.

The reconstructed system also exhibits the same sequence of behavior as the original system
with respect to the changes in the bifurcation parameters. To illustrate, representative trajec-
tories of the reconstructed system at different parameter values are shown in the lower figures

of Fig. 6.10. The leftmost figure shows representative trajectories in the range of » where orbits
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Figure 6.11: The profile of the function f(y:) for r = 2.

starting from the positive side converge to the positive stable fixed point and orbits starting
from the negative side converge to the negative stable fixed point. This is region II in the
original system. The middle figure shows representative trajectories in the region where orbits
starting from the positive side converge to the negative fixed point and vice versa. This is region
III in the original system. And lastly, the rightmost figure shows the Lorenz attractor where
trajectories wander from one fixed point to the other. This is region IV in the original system.

Finally, one can see that the presence of extra unstable fixed points near x = 0 affects the
reconstruction of the pitchfork bifurcation at r = 1 and the homoclinic orbit at » ~ 13.93. To
examine the source of these extra fixed points, the function 2(y), Eq. (6.3), was plotted for
y € [—5.0,5.0]. This is shown in Fig. 6.11. From the figure, the curve is almost cubic in y far
from y = 0; however, it is distorted near y = 0. This distortion is evidently the source of the

extra fixed points close to = 0 in the reconstructed BD.

6.5 Other Nonlinear Approaches

The use of principal curves in one-dimensional BD reconstruction offers the possibility of ex-
tending the algorithm to the two-parameter case. For a two-dimensional BD reconstruction, the
algorithm will be based on the idea of principal surfaces [40]. Principal surfaces are defined in
the same manner as principal curves in that they are self-consistent for a distribution or data
set. This means that each point on a principal surface is the average of all the points that

project there. Thus, a two-dimensional parameterized surface f: A — IRP for A C IR?, where f
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is a vector of continuous functions:

fi(A,A2)

fa(A1,22)

£(A) = (6.6)

fp(Ah)‘?)

is a principal surface if it is self-consistent.

The results also offer interesting insights into the different issues regarding bifurcation dia-
gram reconstruction using time series that still need to be addressed in future research. The first
of these is the proper choice of the predictor function, which is as stated, the most difficult task
for modelers. For the neural network approach, this is related to the question of the appropriate
number of hidden units, activation function, and network architecture, among others. From the
results, what appears to be more important in the reconstruction is the localization of {w? ; }

in some connected region in the parameter space of g(- ; w).

6.6 Discussion

In this chapter, the need to extend the PCA-based approach (linear manifold approximation)
to nonlinear cases especially for systems with stable fixed points and limit cycles has been
demonstrated. As the results suggest, even for systems with simple bifurcation structure such as
the FHN, the linear approximation may not hold under the given condition. This can manifest
in the reconstructed BD as extra bifurcations which cannot be found in the original system.
On the other hand, the proposed nonlinear algorithm based on principal curves shows very
promising results. Using this approach, a high fidelity reconstruction of the original BDs was
achieved. The reconstruction preserves the important features of the bifurcation diagrams of the
original systems such as the Hopf bifurcations of the two systems, the limit cycle of the FitzHugh-
Nagumo equations, and the symmetry of the fixed points of the Lorenz equations, among others.
Furthermore, the reconstructed systems also exhibit the same sequence of behavior as the original
systems with respect to the changes of the bifurcation parameters. This is evident in the
reconstructed BDs of the FHN system and the Lorenz system. For the FHN system, the sequence
is as follows: first, the fixed point region, then the Hopf bifurcation, followed by the limit cycle
region, then another Hopf bifurcation, and finally, the other fixed point region. For the Lorenz
svstem, the reconstructed BD contains region II, followed by region III and then by region IV.

The use of principal curves has a number of merits. Aside from being a good nomnlinear

approximator, principal curves reduce to the first linear principal component when the linear
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approximation holds. Thus, the reconstruction is the same in principle as that of the PCA-
based algorithm for one-parameter BD reconstruction. For higher dimensional cases, the princi-
pal curve-approach is generalized as principal surfaces, nonlinear principal component analysis,
bottle-neck neural networks (NNs), among others [26, 40, 45, 53, 73].

In conclusion, the feasibility of reconstructing 6ne-parameter BD using time series has been
demonstrated. The reconstruction algorithm works even for the case where the linear manifold
approximation of the projection region is insufficient. In the simulation, the reconstructed BD
of the local bifurcation structures of the FitzHugh-Nagumo equations and the Lorenz equations
preserved the critical bifurcations of the original systems. Moreover, the global behavior of the

original systems are also preserved in the reconstructed diagrams.



Chapter 7

NAR-Based Reconstruction

7.1 Introduction

In this chapter®, the reconstruction of bifurcation diagrams using time series from randomly
forced maps will be investigated. Orthogonal polynomials, as discussed in section 3.4, are
employed as predictor functions. However, for this formulation to be applicable to the BD
reconstruction problem, a slight modification is needed. The needed modification will take into
account the fact that the same model will be used for time series at different parameter values.

Given K time series Sy measured at different parameter values of an unknown dynamical
system, the problem is to find a map with parameters a : X — G(X;a), which evolves data
points Y, — Y,4+. Following section 3.3, G(X;a) is approximated by polynomials W,,(X)
which are orthogonal with respect to the natural invariant measure p(X) associated to each

time series S. For the kth time series, G(X;a*) is approximated to the Mth order as
M
G(X;a%) = 3~ af,Wh(X), (7.1)
m=0

where the superscript denotes the time series number. Using the orthogonality property of

W (X)), the expansion coefficients (or parameters) are determined by

dho= o [ EXOGG W), (7.2)
NE .

ok
N

[ @ p OO (7.3)

Since cach time series may be characterized by different pg(X), the orthogonal polynomials

{1k (X)} obtained using the Gram-Schmidt procedure may differ from time series to time series.

*The materials in this chapter also appear in Bagarinao, et al. (1999) [9] and Bagarinao, et al. (2000) [10].

109
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This makes the reconstruction of G(X;a) from the G(X;a*) difficult since each of the G(X;aF)
is spanned by different basis functions. To circumvent this difficulty, G(X;a) is expressed
using the same basis functions. The orthogonal polynomials are then used as auxiliary basis to
compute the expansion coefficients. In this way, the advantages of using orthogonal polynomials
are retained. At the same tiﬁ1e, it would be possible to interpolate the functional dependence

of G(X;a) with respect to a from the estimated G(X;a*).

The results of this chapter are obtained by employing nonlinear autoregressive (NAR) models
with polynomial terms as predictor functions. The use of this model is motivated by the fol-
lowing: NAR models are particularly effective for modeling noisy time series; their dependence
on the parameters, i.e., coefficients of the polynomial, is linear which makes the structure of
the model simple; and most importantly, an efficient scheme to compute the model parameters
exists. This scheme makes possible the construction of parsimonious models necessary in the

BD reconstruction problem.

More precisely, the NAR given by Eq. (3.56) is used as the predictor function g(X;a). The

equations are rewritten below:

yPred = g(Yn_1;2) + €n

= ap+aiYn-1+- "+ 04Yn-d + ad+1y3,—1 + Gd+2Yn—1Yn—2

+--+ aMys—d + €, (7.4)
M
= Z amzm(Yn—1) + €5 (7.5)
m=0
where Y1 = (yn—1, ", Yn—a) represents a vector in the d-dimensional reconstructed state

space, the functional basis {z,(X)} is composed of all the distinct combinations of the coordi-
nates up to degree k, a = (ag, - - -, apr) represents the parameter set, e, accounts for the random
forcing of the system, and M + 1 = (k + d)!/(d'k!) determines the number of coefficients to be
computed. The problem is to find al,--- a’ such that g(X;a?) is a predictor function for the
ith time series. To do this, the methods discussed in section 3.4 are used to get the optimal
number of terms in Eq. (7.5) and to compute the values of their associated coefficients, that is,
the set {a’}. Moreover, the predictors of all time series should have the same structure, i.e., the

same terms should be present in all of them. This is discussed in the next section.
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7.2 Model Selection

The criteria for model selection used in this chapter follows the model selection algorithm de-
scribed in section 3.3 except for a slight modification. This modification arises due to the
requirement that the predictor function for each time series should have similar structures or
similar terms. Since it is assumed that all time series come from the same dynamical system,
then there should only be one working model for all of the time series differing only in their re-
spective parameter values. Once an appropriate working model is chosen, its bifurcation diagram
is constructed relative to the model parameter that changes from one time series to another.

To take this into account, let ecg(P) be the cumulative multistep prediction error given by
K

ece(P) = ) ex(P) (7.6)

k=1
where e (P) is the multistep prediction error for each time series as defined in Eq. (3.76). The

model selection algorithm can now be modified as follows:
1. For each time series:

(a) Initialize the values of d and k, the delay and degree of Eq. (7.5) respectively.

(b) Add each term one by one to the model. For each time, evaluate the multistep

prediction error of the resulting model.

(c) Add the multistep error of this time series to the cumulative multistep error.

2. The number of terms that gives the minimum of ecg(P) for higher values of P will be

included in the final model.

3. Recompute the coefficients a* for all the time series and include only the selected terms.

Again, this only lists the basic approach to select the appropriate terms in the final model. This

can still be enhanced in a number of ways using the suggestions mentioned in subsection 3.4.3

The Rossler equations

To illustrate the above procedure, consider the following set of equations originally suggested
by Rossler [71]

dzx

E = _("L‘+Z)a

d

E‘% = x+ ay, (7.7)
dz

= br—cz+zxz,

dt
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where a, b, and ¢ are the system parameters. Twelve time series of the y-component were
generated by integrating Eqs. (7.7) using Euler’s method with time step A = 0.001. The

following parameter values were used:

b = 0.3,
¢ = 0.7sin[27(i — 1)/12] + 5.0,

a = 0.03cos[2r(i —1)/12] +0.33,

where i = 1,---,12.

From these time series, the goal is to obtained an optimal model for the Rossler system.
Figure (7.1) shows the different plots of the multistep prediction error for different values of
sampling time 7. The delay d and degree k were initially set at 3 and 5, respectively. For higher
values of T [Fig. 7.1(A) and (B)], the multistep prediction error has a minimum after the eighth
term was added to the model. Addition of more terms to the model makes it unstable as can be
seen in very large prediction errors. On the other hand, for lower values of 7 [Fig. 7.1 (C) and
(D)], the minimum occurred after the addition of the tenth term. These results indicate two
candidate models for the Rossler system depending on the value of the sampling time 7. These

are given by

MODEL 1:
y%alc = a9+ a1Yn-1 + A2Yn—-2 + A3Yn—-3 + 04%21—1
+a5Yn—1Yn—2 + C6Yn—1Yn—3 + a7y121—2
+asyn—2Yn—3, (78)
MODEL 2:
YR = @y 4 a1yn_1 + aoYn_2 + A3Yn-3 + asyi_;

+a5Yn—1Yn-2 + AG6Yn—1Yn-3 + a7y,21_2

+agyn—2yn—3 + agyfl_3 + aloyg—h (7.9)

for higher and lower values of 7, respectively.

Figure 7.2 shows sample time series of the above models (left side) and the time series used
to estimate the model parameters (right side). For higher values of 7, some of the identified
models [e.g. Fig. 7.2(A)] behaved differently as compared to the original system. On the other
hand, for smaller values of 7, all the models behaved similarly as the original system. This is

illustrated in Fig. 7.2(E) where the time series is similar to that of Fig. 7.2(F).
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Figure 7.1: Multistep prediction error. (A) 7 = 0.8. (B) r = 0.5. (C) 7 = 0.1. (D) = = 0.05. The
x-axis is the number of terms included in the model in the order given by Eq. (3.56). The minimum is

indicated by the arrow.

The Lorenz equations

Another familiar set of differential equations is the Lorenz equation given by

d

Ty

d

d_z = pr—y—zZ2, (7.10)
d

d_; = xy—ﬂz,

where o, p, and 3 are the parameters of the system. Time series of the z-variable were generated
at different parameter values: o = 10, § = 8/3, and p = 0.5¢, i = 45, --,60. Moreover, time
series with dynamical noise of intensity « added to the z-variable were also generated. The
integration of Eq. (7.10) was carried out using Euler’s method with time step A = 0.001. The
sampling time 7 was set at 0.1 and three different values of k were used.

The multistep prediction errors of the generated time series were evaluated with d = 3 and
kE = 7 as the initial delay and degree, respectively. The results are summarized in Fig. 7.3. For
different values of &, different number of significant terms were obtained. Thus, three different
models were identified for the Lorenz system depending on the value of the noise intensity &

Figure 7.4 shows the behavior of the identified models in comparison to that of the original
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Figure 7.2: Sample time series generated by the obtained models (left side) and the corresponding time

series used in estimating the parameter values of the models. (A)-(D) 7 =0.8. (E) and (F) 7 = 0.1.
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system. At the left side are the time series generated from these models, while at the right side
are those used in estimating the model parameters. For higher values of noise, time series of the

identified models appear periodic rather than chaotic [Fig. 7.4(C)].

7.3 Bifurcation Parameter Identification

In general, the model given by Eq. (7.5) has more parameters than the original system. To
determine the bifurcation parameters, the computed coefficients of each predictor function are
collected to form the set of parameter vectors {a® = (a,---,a%,)}, i =1,---,K. The set of
points {a’} are then used to locate the projection region.

In many situations, the projection region is well-approximated by a linear subspace of the
parameter space of the model (section 4.5). This is the case when dealing with a small parameter
region, reconstructing specific bifurcations, or the given system is an LIP map (chapter 5). Under
these conditions, PCA provides a computationally efficient method to determine a satisfactory
approximation of the projection region. Recall that in the PCA-based approach, the number
of significant eigenvalues of the sample covariance matrix gives the dimension of the projection
region and hence corresponds to the number of bifurcation parameters of the system. Moreover,
the eigenvectors associated to the significant eigenvalues span the required projection region.

Thus any point in this region can be expressed as

P
apr(p) =&+ ) _ pie; (7.11)
=1
where the e;’s are the eigenvectors associated with the P significant eigenvalues, u = (u1,---, pp)

represent the expansion coefficients, and a represents the mean of {a‘}. The BD of the model
(X; 1) = g(X;apr(p)) on the projection region can then be taken as the reconstructed BD with
1 as the effective bifurcation parameter.

Going back to the Lorenz system, one can see from Fig. 7.3 that the resulting NAR model
has 15, 11, and 13 coefficients for k = 0.0, x = 0.01, and x = 1.0, respectively. The number of
coefficients is thus larger compared to the actual number of varying bifurcation parameters which
is just p. To determine the actual number of system parameters, PCA is employed. To do this,
the estimated coeflicients are collected, the covariance matrix is formed, and the eigenvalues are
then computed. These are shown in Fig. 7.5. From the figure, a good correspondence between
the number of system parameters and the number of significant eigenvalues can be observed.

This implies that under the conditions mentioned above, the number of system parameters can
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Figure 7.4: Sample time series generated by the obtained models (left side) and the corresponding time

series used in estimating the parameter values of the models. (A&B) k = 0.0. (C&D) x = 0.01. (E&F)
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be readily obtained from the number of significant eigenvalues of the covariance matrix of the

estimated coefficient values.

7.4 Example 1: The Sine Map

In this section, a map which is nonpolynomial is considered and the applicability of using Eq.
(7.5) as a working model is investigated. In particular, the reconstruction of the BD of the sine

map with a Gaussian white noise input is studied. The map is given by
ZTp = sin(azn_1) + B + Ken (7.12)

where o and B are the system parameters. The behavior of Eq. (7.12) as a function of the
parameter 6 is characterized by a period-doubling route to chaoé followed by period-doubling
reversal as can be seen in Fig. 7.6.

Ten time series were generated with 1000 data points for parameter values given by §; =
0.75 4 0.55/10, j = 1,---,10 and a = 2. Equation (7.5) with d = 3 and k = 6 was used as the

initial search space. For x = 0, the following optimal model was obtained for the ten time series:
Ty =ag+ Q1Tp-1 + agx%_l -+ (13.’132_1 + awi_l + asm,sl_l + aﬁmg_l + €. (7.13)

To determine which of the seven parameters vary with the time series, the estimated values of
the model parameters were analyzed using PCA. The eigenvalues are shown in Fig. 7.7. One
eigenvalue is significant indicating that changes in the parameters are oriented along a single
direction. The presence of the other nonzero eigenvalue can be attributed to the estimation
errors. This is evident in the plot of the projections of the estimated parameter values onto the
eigenvectors associated with the two nonzero eigenvalues as shown in Fig. 7.8. The projections
onto the first eigenvector clearly follow a linear relation whereas those of the second eigenvector
fluctuate around zero.

To reconstruct the BD of the unforced sine map, the BD of Eq. (7.13) is constructed by
changing the model parameters along the direction defined by the first eigenvector, that is,
apr = a + pje; where a is the mean of the estimates of the model parameters, e is the first
cigenvector and i, serves as the new bifurcation parameter. As shown in Fig. 7.9, the similarity
between the two BDs is apparent. This illustrates the applicability of Eq. (7.5) for the BD
reconstruction problem even for non-polynomial maps.

Consider now the case which takes into account the presence of random forcing. Three values

of the noise amplitude, given by £ = 0.01, K = 0.1 and & = 0.5, were investigated. For all cases,
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Figure 7.9: Reconstructed BD of the unforced sine map.
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Figure 7.10: Sample time series from the sine map. Abscissas and ordinates are dimensionless.

ten time series with 10000 data points were éenerated using the same parameter values as that
in the unforced case. Some of these are shown in Fig. 7.10. A mere visual examination of the
given time series does not reveal any significant difference in the behavior of the system. It is
therefore necessary to distinguish the different behaviors by unraveling the putative bifurcations
that separate them, as well as to uncover possible behaviors of the system not readily observed
in the available time series. This should be done without the explicit knowledge of the system

equations and the number of parameters.

Following the same approach as for the case without noise, the initial search space was set
with d = 3 and £ = 6. For all noise amplitudes under study, the same model given by Eq.
(7.13) was obtained. The PCA analysis of the estimated parameters yielded the same result
as that of the unforced case (Fig. 7.7) characterized by two nonzero eigenvalues where one
being more significant than the other. The projections of the estimated parameter values onto
the cigenvectors associated with the two nonzero eigenvalues also behave similarly as that of
the unforced case. Thus in spite of the presence of random forcing, the number of bifurcation
parameters in the original map can still be obtained. The bifurcation diagram was reconstructed

along the direction defined by the first eigenvector. The resulting BD is shown in Fig. 7.11.
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It can be observed that for low noise amplitude, the reconstructed BD closely resembles that
of the original BD. For higher noise values, some regions in the original BD disappear in the
reconstruction. This is more evident in the period three region which is preserved at low noise
forcing {Fig. 7.11 (A)] but completely disappears for higher noise amplitudes [Fig. 7.11 (B &
Q).

Similar experiments were conducted for the bifurcation of the sine map with respect to «
while keeping B constant and equal to 1. Ten time series for parameter values a; = 1.8 +
70.4/10, 7 = 1,---,10 were generated. The initial search space was d = 3 and £ = 6 and the
obtained model is again given by Eq. (7.13). Figure 7.12 shows the eigenvalues. For k = 0, there
is only one significant eigenvalue consistent with the number of bifurcation parameter. However,
for k = 0.5, three significant eigenvalues appear when N = 1000. By increasing the number
of data points (N = 10000 and N = 20000), the number of significant eigenvalues decreases as
can be seen in Fig. 7.12 (C)-(D). From this, one can conclude that the other eigenvalues are
due to estimation errors. This was verified by the plot of the projections of the estimates onto
the first eigenvector where a linear relation was observed. The reconstructed BD along the first

eigenvector is shown in Fig. 7.13.

Finally, a two-parameter reconstruction of the sine map is considered. The ten time series
with varying « were combined with the ten time series with varying 3, giving a total of twenty
time series. Again the resulting model is given by Eq. (7.13). This model has seven coefficients.
Therefore, twenty parameter vectors of order seven from which to estimate the projection region
are accessible. The PCA of this set of vectors yields two significant eigenvalues as shown in
Fig. 7.14. This suggests that two system parameters were varied when the given time series
were generated. This corresponds exactly to the two parameters in the original system. The
projection region is now given by Eq. (7.11) with P = 2, and e; and ey are the eigenvectors
associated to the two significant eigenvalues. The effective bifurcation parameters are given by
w1 and po.

To show the correspondence between the two parameter sets, {@, 8} and {u1, u2}, are plotted
in Fig. 7.15 (B). Here, y; and uy are the projections of {a’} onto the projection region. These
projections are computed by taking the inner product between {a’} and the two eigenvectors e;
and e;. The figure shows that the distribution of these points follows that of the original param-
eters {«, 8}. Figure 7.15 also illustrates the effects of noise on the reconstruction process. From
a computational point of view, noise generally corrupts the estimation of the model parameters.

This would affect the location of the projected points in the parameter space which, in turn,
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Figure 7.11: Reconstructed BD of the randomly forced sine map. (A) x = 0.01. (B) x = 0.1. (C)

~ = 0.5.
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Figure 7.12: Eigenvalues. (A) k = 0. (B)x = 0.5 and N = 1000. (C) x = 0.5 and N = 10000. (D)
k= 0.5 and N = 20000.

would affect the determination of the projection region. The proposed algorithm is robust to
such effects, as illustrated in Fig. 7.15, which shows similar distribution of the two parameter

sets in spite of the presence of strong dynamical noise.

7.5 Example 2: The FHN Equations

In this section, the forced FitzHugh-Nagumo (FHN) equation is considered. The set of equations

is given by
dr - v+
— = c T — —
di Yy 3 UR
dy = —(z—a+by
- e (7.14)

where 7 represents the random driving force. The z-variable represents excitability while the
y-variable represents refractoriness. z represents the external applied current and a, b, and ¢
are the system parameters. For some range of z, the model behaves as an excitable membrane
whereas for some other z values, it behaves as an oscillating membrane defining a stable limit
cycle. In the absence of noise, the behavior of Eq. (7.14) as a function of the parameter z is
summarized in Fig. 7.16. From the figure, as z is increased, the stable equilibrium point becomes
unstable and a subcritical Hopf bifurcation occurs at z &~ —1.40 giving rise to the stable limit
cycle. As the current is increased further, another subcritical Hopf bifurcation takes place at
z ~ —0.346 and the stable limit cycle disappears.

Ten time series were generated by integrating Eq. (7.14) using Euler’s method with At = 0.15
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(A)

(B)

(C)

Figure 7.13: Bifurcation diagram of the sine map with respect to a. (A) Original BD. (B) Reconstructed
with £ = 0. (C) Reconstructed with £ = 0.5.
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Figure 7.14: Eigenvalues (in decreasing order) expressed in relative units Ry = (Ag/ Z;":l A;) x 100

where )\, represents an eigenvalue and k represents the order. Abscissas and ordinates are dimensionless.

for parameter values z; = 0.5 — (i — 1)3.0/10.0, i« = 1,---,10. The other parameters were fixed
at the following values: a = 0.7, b = 0.8, and ¢ = 3.0. Using Eq. (7.5) with k =3 andd =3
as the initial search space, an optimal model for each time series was obtained. The estimated
parameter values are shown in Table 7.1. From the table, one can see a good correspondence
between the estimated and the true values. Here the true values were obtained by solving
explicitly the terms in the Euler’s expansion and computing the associated parameters from the
known values of a, b, and c.

To generate time series with system noise, Euler’s method was used in differentiating Eq.

(7.14). In particular, the following scheme was employed:

Tnt1 = Tn+ [(Zn,yn) At + VAL Kkep (7.15)
Yntl = Yn +9(Tn,yn) AL (7.16)
where
IL‘3
flz,y) = C($+y—§+z) (7.17)
r—a+b
glz,y) = ———C———y (7.18)

and e, is a Gaussian white noise with unit variance. With this, ten time series for k = 2.0 where
generated using the same parameter values used in the unforced case. These time series are
plotted in Fig. 7.17. The same number of terms, as in the case without noise, was used. The

estimated model parameter values are shown in Table 7.2.
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Figure 7.15: (A) Parameter values used in generating the twenty time series. (B) Projections of the
computed {a‘} onto the projection region spanned by the eigenvectors associated with the two significant
eigenvalues. The z-axis is spanned by the first eigenvector and the y-axis is spanned by the second

eigenvector. Units: dimensionless.
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TS 1.0

Tn-1 Tp-2 Tn-3 Tp_1 Tpy  Tpo2

1 T 0.025 2410 -1410 0.0 0.0 -0.150 0.144
E 0.036 2370 -1420 0.0 0.039 -0.160 0.144

2 T 0.019 2410 -1410 0.0 0.0  -0.150 0.144
E 0.026 2.384 -1417 0.0 0.027 -0.157 0.144

3 T 0.014 2410 -1410 0.0 0.0 -0.150 0.144
E 0.018 239 -1416 0.0 0.016 -0.154 0.144

4 T 0.008 2410 -1410 0.0 0.0 -0.150 0.144
E 0.008 2418 -1437 0.012 0.0 -0.149 0.146

5 T 0.003 2410 -1410 0.0 0.0 -0.150 0.144
E 0.002 2409 -1416 0.0 0.0 -0.149 0.144

6 T -0.002 2410 -1410 0.0 0.0 -0.150 0.144
E -0.003 2412 -1418 0.0 0.0 -0.150 0.144

7 T -0.008 2410 -1.410 0.0 0.0 -0.150 0.144
E -0.007 2413 -1421 0.002 0.0 -0.150 0.144

8 T -0.013 2410 -1410 0.0 0.0 -0.150 0.144
E -0.013 2412 -1420 0.002 0.0 -0.150 0.144

9 T -0.018 2410 -1410 0.0 0.0 -0.150 0.144
E -0.018 2413 -1422 0.003 0.0 -0.150 0.144

10 T -0.024 2410 -1410 0.0 0.0 -0.150 0.144
E -0.023 2413 -1.424 0.004 0.0 -0.150 0.144
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Table 7.1: FHN system. Estimated parameter values compared to the true values for £ = 0.0. T = True

values and E = Estimated values.
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TS 1.0 Tp-1 Tn-2 Tn-3 Ti_y To_; T3 _,
1 T 0.025 2410 -1.410 0.0 0.0 -0.150 0.144
E 0.029 2401 -1.416 0.0 0.0 -0.150 0.147
2 T 0.019 2410 -1.410 0.0 0.0 -0.150 0.144
E 0.019 2425 -1433 0.0 0.0 -0.152 0.148
3 T 0.014 2410 -1.410 0.0 0.0 -0.150 0.144
E 0012 2418 -1423 0.0 0.0 -0.151 0.146
4 T 0.008 4 2.410 -1.410 0.0 0.0 -0.150 0.144
E 0.008 2413 -1.419 0.0 0.0 -0.150 0.143
5 T 0.003 2410 -1.410 0.0 0.0 -0.150 0.144
E 0.003 2417 -1422 0.0 0.0 -0.151 0.146
6 T -0.002 2410 -1410 0.0 0.0 -0.150 0.144
E -0.003 2419 -1.426 0.0 0.0 -0.154 0.150
7 T -0.008 2410 -1.410 0.0 0.0 -0.150 0.144
E -0.008 2404 -1.406 0.0 0.0 -0.151 0.147
8 T -0.013 2410 -1.410 0.0 0.0 -0.150 0.144
E -0.011 2404 -1409 0.0 0.0 -0.147 0.141
9 T -0.018 2.410 -1.410 0.0 0.0 -0.150 0.144
E -0.015 2426 -1429 0.0 0.0 -0.153 0.147
10 T -0.024 2410 -1.410 0.0 0.0 -0.150 0.144
E -0.021 2.401 -1410 0.0 0.0 -0.149 0.145

Table 7.2: FHN system. Estimated parameter values compared to the true values for k = 2.0 (QOry =

0.009). T = True values and E = Estimated values.
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Figure 7.16: Bifurcation diagram of the FitzHugh-Nagumo equation. The other parameters are fixed:

a=0.7,b=0.8, and ¢ = 3.0.

From the results, it can be seen that all the time series can be modeled with the following
NAR equation

Tn =ap+ a1Tn_1 + a2Tp_2 + (131‘2_1 + a4x§,~2 + € (7.19)

where a;, ¢ = 0,---,4 are the model parameters. However, it is noted that for other noise
intensities, for example k = 5.0, some time series is modeled with a different NAR equation as
can be seen from Table 7.3. For this case, there are two competing models that can be deduced

from the table. The first model describing S; and S, is given by
Tp =ap+ a1Tpn-1+ @2Tp-3 + agmi_l + Q4Tn-1Tn—2Tn-3 + asl'n_2$31_3 -+ €n. (7.20)

The second model describing the remaining time series is given by Eq. (7.19). In the following,
Eq. (7.19) is used as the working model for this system.

To reconstruct the BD of the FHN system, it is necessary to determine which of the five
model parameters in Eq. (7.19) represent the actual bifurcation parameters. To do this, PCA
was applied to the estimated values of the model parameter in the same manner as the sine map.
The eigenvalues of the covariance matrix formed by these estimated values are shown in Fig.
7.18. The figure suggests that there are two significant directions in which the parameters are
changed from one time series to the other. This is greater than the actual number of bifurcation
paramcter, that is, one. In fact, only parameter a¢ is changed from one time series to the
other. This is consistent with the results in section 6.2 where the linear manifold approximation

(PCA-based reconstruction) is insufficient to get the actual number of bifurcation parameters.
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Figure 7.17: Sample time series. First 1000 data points of the time series used in reconstructing the BD

of the FHN system. The presence of noise causes spiking events even for parameter values corresponding

to the excitable region of the model.
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TS 1.0 Tn—1 Tp-2 Tn—3 xf’l_l Tn1Zn—2Tn_3 zf’z_Q CL‘n_z.’L‘%_?’

1 T 0.025 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E 0.029 1818 0.0 -0.827 -0.141 0.064 0.0 0.072

2 T 0.019 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E 0.024 1.806 0.0 -0.805 -0.141 0.066 0.0 0.067

3 T 0.014 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E 0.013 2409 -1.409 0.0 -0.151 0.0 0.144 0.0

4 T 0.008 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E 0011 2419 -1.425 0.0 -0.151 0.0 0.146 0.0

5 T 0.003 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E 0.003 2414 -1.418 0.0 -0.152 0.0 0.147 0.0

6 T -0.002 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E -0.002 2408 -1.410 0.0 -0.150 0.0 0.144 0.0

7 T -0.008 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E -0.006 2383 -1.379 0.0 -0.148 0.0 0.140 0.0

8 T -0.013 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E -0.008 2402 -1.401 0.0 -0.152 0.0 0.145 0.0

9 T -0.018 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E -0.013 2425 -1424 0.0 -0.154 0.0 0.147 0.0

10 T -0.024 2410 -1.410 0.0 -0.150 0.0 0.144 0.0
E -0.017 2407 -1.403 0.0 -0.151 0.0 0.143 0.0
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Table 7.3: FHN system. Estimated parameter values compared to the true values for K = 5.0 (Ory =

0.009). T = True values and E = Estimated values.
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Figure 7.18: Eigenvalues of the covariance matrix form from the estimated parameter values in relative

values |eigenvalue|/ Y eigenvalue x 100 %.

—
80}
60 L
a0l
20! ]
O %46 & 10 72 14 16 18 20

Figure 7.19: Eigenvalues of the covariance matrix form from the estimated parameter values in relative

values |eigenvalue|/ Y eigenvalue x 100 % and N = 40000.

However, by increasing the number of data points in the time series, the relative value of the
second eigenvalue decreases as shown in Fig. 7.19. This behavior is similar to the one shown
in Fig. 7.12. Assuming a one-parameter reconstruction relative to ag, the reconstructed BD is
shown in Fig. 7.20. The reconstructed BD captures all the important features of the original

system.

7.6 Example 3: The Onchidium Pacemaker Neuron Model

As a final example, a neuron model that reproduces the discharge pattern of a pacemaker

neuron is considered. This pacemaker neuron is localized in the esophageal ganglia of the
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Figure 7.20: Reconstructed BD of the FHN-system as a function of ag.

marine pulmonate mollusk Onchidium verruculatum and the model was proposed by Hayashi

and Ishizuka [42]. The 8-variable model is given by

CV‘EE‘ = gNam3h(V - VNa) - gKn4(V - Vk)
_gNa,mshs(V - VNa)
—gk,ns(V — Vi) — gx.ne (V — Vi)
—g[(V - Vl) — Ip + Tort (7.21)
du Uoo (V) —u
— —_— = h 7.22
dt Crra(v) > 4T T (7.22)
dw Weo (V) —w _
G O T e (7:23)
dn, Nroo(V) — 1y
o G . (7.24)

For this case, oyt represents the bifurcation parameter of the system and the other parameters
are fixed (see Appendix B). The time series used in the analysis are the maximum values of
the membrane potential V. The observed maximum values exhibit period doubling bifurcation
followed by the chaotic bursting regime relative to the variation of Ie . The chaotic regime is at
the lower bound of the period doubling scheme and the model’s firings become irregular except
in some Igxy windows in which the bursting is periodic with 7 spikes per period (2 = 5,7,---).
As the external current is decreased below some critical value, the chaotic bursting is replaced
by periodic bursting with three spikes (see Fig. 4a of Maeda, et al. [58]).

Ten time series for fexy = —2.25 —0.025, 7 = 1,---, 10 were used in the succeeding analysis.

Figure 7.21 shows the multistep prediction error as a function of the number of terms included



136 CHAPTER 7. NAR-BASED RECONSTRUCTION

(A) 10000 . (B) 10000 .
H Pat1o— -—
Lo Pa4 { i Bziz
i Pa7a i i P=7a.
7500} ! 7500 . !
i '.’.’, i
N R S - H
& 5000} I & 5000
oY 3, i L3 S — '
- N\ L N [
~ -
2500] )(' 2500} ,\/\' |
\ A \/,_,...- \ " T
[¢] - [
(s} 1 2 3 4 5 B 7 o 1 2 3 4 s 6 7
Number of terms in the model Number of terms in the mode!

Figure 7.21: Multistep prediction error. (A) Order k = 7, and (B) order £ = 8. The delay d = 1. The

minimum is indicated by the arrow.

in the model. Different initial values of the delay d and degree k were studied but only the case
where d = 1, k = 7 are shown in [Fig. 7.21 (A)] and k = 8 [Fig. 7.21(B)], respectively. The
other cases had minimum values occurring at the constant term and diverges when more terms

were added. From the figure, five terms are significant. The identified models are:

MODEL 1:

yflalc =ag+ alyﬁ_l + azyﬁ_l + asy3_1 + aqyn—1 + asyf{_1 + €n, (7.25)
MODEL 2:
Y = ag + aryd_q + ayl i +azyl_y + asyao1 + asyl_, + en. (7.26)

Figure 7.22 shows the identified models (solid line) together with the return map (points) of
the time series for the chaotic case (left side) and the period three case (right side). The data
fitted well with the identified maps. To analyze the bifurcation structure of the original system,
the identified models are used. The analysis started with the determination of the projection
region associated with the given set of time series. This is done by collecting the estimated
coeflicients and performing PCA on the resulting parameter vectors.

The significant eigenvalues are shown 7.23. Surprisingly, there is a good agreement between
the number of significant eigenvalues of the covariance matrix and the number of system param-
cters that were changed to generate the time series. Since there is only one significant eigenvalue,
the projection region can be determined by the eigenvector associated with this eigenvalue. Any

point in the projection region is approximated by

apr(p) = m + pe, (7.27)
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Figure 7.22: Map obtained by the identified model for the given time series. Continuous line: identified

map. Discrete points: original data. (A) and (B) MODEL 1. (C) and (D) MODEL 2.
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Figure 7.23: Significant eigenvalues (in relative values |eigenvalue|/ 3 eigenvalues x 100) of the covariance

matrix formed by the estimated coefficients {@min}. (A) MODEL 1, and (B) MODEL 2.
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where p serves as the effective bifurcation parameter and e is the eigenvector of the only signif-
icant eigenvalue. To construct the bifurcation diagram, the map is iterated many times, after
which the transient behavior is removed from the time series, and the data are plotted as a
function of the effective parameter u. The resulting BDs are shown in Figs. 7.24 (A) and (B).
Both BDs show some kind of period-doubling bifurcation route to chaos. Figure 7.24 (B) is
closest to the original BD. However, it does not have the period three behavior right after the

chaotic regime.

7.7 Discussion

The examples illustrate the different issues in reconstructing bifurcation diagram using time
series from dynamical systems driven by noise. One of these issues is the appropriate choice of
the approximating function g(- ; a) that will be used to model the given time series. For the case
of using a NAR model such as in Eq. (7.5), it is observed that different models can appear in
spite of the fact that all the time series come from the same dynamical system. Since competing
models describe individual time series only, some of them may perform badly (for example, in a
one-step prediction task) when used with the other time series. This can be used as a criterion
in selecting an appropriate model for the unknown dynamical system and is the basis of the
criterion discussed in section 7.2 for model selection.

After an appropriate model is obtained, it remains to be determined which among the model
parameters represents the actual bifurcation parameters or the system parameters that changed
from one time series to another. To resolve this, the PCA of the estimated parameter values
was used. The number of significant eigenvalues determines the number of system parameters
that changed from one time series to another if the linear manifold approximation holds and the
variation of the system parameters are larger than the model parameter estimation error. When
the variation are less than the estimation error, PCA will detect the estimation error instead.
Also, when the projection region is a nonlinear manifold, the number of significant eigenvalues
will exceed the actual number of bifurcation parameters. For a more general derivation, the
nounlinear methods discussed in chapter 6 can be applied.

The performance of the algorithm as described in the preceding sections was also demon-
strated in several other dynamical systems. The algorithm worked equally well with the Hénon
map, the cubic map, and the logistic map. For these systems which are described by polyno-

mial equations, the algorithm determined the correct terms in the polynomial. For continuous
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systems such as the FHN, the algorithm preserved the different bifurcations of the given system
in the reconstructed BD.

The use of NAR models in this reconstruction algorithm is more advantageous than the
NN-based approach. The efficacy of the NAR model has been demonstrated in a variety of
problems, particularly in the analysis of noisy time series[4, 23, 52]. The NAR model has been
applied effectively in obtaining predictor functions for a number of systems (maps and flows),
detecting nonlinearities in noisy time series (observation and dynamical noise), estimation of
dynamical invariants, among others. Furthermore, NAR models with appropriate number of
terms can also capture bifurcation structures as shown in [4]. Aside from polynomials, NAR
models can also have other basis functions.

The algorithm is also computationally efficient in a number of ways. In obtaining predictor
functions using Korenberg’s scheme, the problem of multiparameter optimization is eliminated
by employing auxiliary polynomials which are orthogonal with respect to the natural invariant
measure of the time series[l, 34]. With this, the parameters are readily obtained from the
time series. This scheme also leads to robust-to-noise estimation of the parameters since no
distances in the reconstructed state space need to be computed. Moreover, the construction of
parsimonious models becomes possible since the contribution of each orthogonal term in reducing
the error function can be computed from the time series.

Finally, the effect of noise can be deduced from the results. Noise enhances the detection
of the hidden nonlinear structure of the unknown dynamical system. This can be seen in
the FHN-system example. In the latter, the addition of noise generates some spikes which
cannot be observed in the absence of the random forcing. This positive effect of noise, together
with Korenberg’s algorithm, makes possible the determination of the nonlinear structure of the
unknown system from the observed time series. This in turn improves the obtained model which
is critical in the reconstruction process.

In summary, an algorithm in reconstructing BDs from noisy time series is presented. The
algorithm consists in finding a parametrized predictor function whose bifurcation structure is
qualitatively similar to that of the given system. To account for the effects of noise, NAR models
are used as predictor functions. The use of Korenberg’s algorithm makes possible the construc-
tion of parsimonious models which is advantageous in the reconstruction problem. The algorithm
is robust to noise making it more suitable when dealing with noisy time series. Moreover, the

algorithm also works well even for a limited number of time series.



Chapter 8

Conclusions

The study of bifurcations from time series was systematically investigated. Several dynamical
systems with well-known bifurcation diagrams were included in the simulations. Time series at
different parameter values were used to reconstruct the BDs of these systems. The reconstruction
assumed that the values, or even the number of parameters, were unknown. The approach used
in this study is based on a geometrical interpretation of the reconstruction problem. In this
viewpoint, a region in the model’s parameter space exhibits the same bifurcation structure as
that of the given system. This region is referred to as the projection region. For parameter values
within this region, the model’s behavior is similar to that of the system. The available time
series are then used to determine the location of the projection region in the model’s parameter

space.

The above interpretation leads to methods of reconstructing bifurcation diagrams from time
series. With this, several reconstruction algorithms were formulated depending on the projection
region. For linear manifolds, the PCA-based approach is effective in obtaining the BD of the
original system. On the other hand, for more general cases (nonlinear manifolds), principal
curves can be used for one-dimensional BD reconstruction. In general, any algorithm that solves
the BD reconstruction problem will be based on the following steps: 1) choosing the appropriate
family of predictor functions; 2) projecting the given time series onto the parameter space; 3)
identifying the projection region using the estimated parameter values; and 4) constructing the
bifurcation diagram of the predictor function on the projection region. The resulting bifurcation
diagram can then be taken as the reconstruction of the bifurcation structure of the unknown
system. Each step is associated with some degree of difficulty and the quality of the reconstructed

BD depends on the information known a priori.

141
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Two classes of predictor functions were chosen for the simulations: neural networks (NN) and
nonlinear autoregressive (NAR) models. For the NN-based approach, a three-layer feedforward
architecture was employed. The networks were trained using backpropagation and minimization
of the error function was done using BFGS algorithm. For the NAR-based approach, the space of
candidate terms was set by specifying initial delay d and order k [refer to Eq. (3.56)]. The model
coefficients were estimated using the fast orthogonal approach of Korenberg. For both models,
the principal components of the estimated parameters determined the projection region when the
linear manifold approximation holds. The principal curve approximated the projection region
for one-dimensional nonlinear manifold. Several issues appeared in the course of the simulations

and these are summarized in the following paragraphs.

The choice of the predictor function. One of the important issues in reconstructing BDs
using time series is the appropriate choice of the predictor function g(- ;a). The success of any
reconstruction algorithm depends on the structure of the chosen g(- ;a). The main requirement
for the choice of g(- ;a) is the presence of projection regions in its parameter space. Under this
condition, the use of neural networks in the reconstruction problem comes naturally. Neural
networks are nonlinear and known for being universal approximators. Moreover, the number
of parameters in the network can be adjusted by simply changing the number of hidden units
without affecting the number of input and output units. Thus, in this higher-dimensional weight
space, it 1s safe to assume that there exists a region where the network’s bifurcation structure

is the same as that of the given system.

Nonlinear autoregressive models are more suitable when dealing with time series corrupted
by noise. The coefficients (model parameters) can be computed with the help of auxiliary
orthogonal polynomials instead of the traditional least-squares approach through an optimization
procedure. This does not only speed up the computation but also makes the approach robust
to noise. Moreover, the approach made possible the construction of parsimonious model by
including only the terms that reduced the error function significantly. With this, the model’s

parameter space can be constructed progressively, adding extra dimension only when required.

The choice of predictor functions is not limited to these two models. For instance, radial
basis functions may do as well in the reconstruction process. The algorithms described in this

study can be applied using other functions as long as appropriate projection regions exist.
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The projection region. The problem of obtaining the projection region from the computed
model parameters {a’ } is related to the problem of finding lower dimensional manifolds in
a high dimensional space which can be solved using several well-established approaches. Thus
when the projection region is a nonlinear curve in the parameter space of the model, principal
curves can be employed to approximate this region. This approach was considered in section 6.2
for one-dimensional BD reconstruction. For higher dimensional cases, this approach is general-
ized as principal surfaces, nonlinear principal component analysis, bottle-neck neural networks,

among others.

In many situations, the projection region is well-approximated by a linear subspace of the
model’s parameter space. This is the case when dealing with small parameter regions, recon-
structing specific bifurcations, or the given system is an LIP map. Under these conditions, PCA
provides a computationally efficient method to determine a satisfactory approximate of the pro-
jection region. The dimension of the projection region corresponds to the number of system
parameters. This can be obtained from the number of significant eigenvalues of the covariance
matrix formed by the estimated model parameters. Moreover, the eigenvectors associated to the

significant eigenvalues span the required projection region.

There are two possible problems in obtaining the projection region using {a‘  }. First, it
is possible that the {a’. } will be scattered in the model’s parameter space instead of being
localized on the desired projection region. This is especially true when several regions in the
parameter space have similar bifurcation structures. Several cases were encountered during
simulations when dealing with stable fixed point solutions of the dynamics. The time series, in
this case, contained no information about the dynamics of the system except during transient.
Moreover, several regions in the model’s parameter space have fixed points and thus, the obtained
al ;. did not locate the desired projection region. This situation can be avoided by using the
sequential approach, as discussed in chapter 6, in obtaining the a’; s. Moreover, one should
start with the time series exhibiting the most irregular behavior so that the simpler ones, such

as fixed point solutions, will be projected in neighboring regions.

A second possible problem is when the projection region is not compact in the parameter
space but rather exists in patches of smaller regions. This situation can occur even though the
cost function is minimized for all of the time series in {Y;*}. This simply means that the different
behaviors of the original system are projected at different locations in the model’s parameter

space. In this case. the projection region is not appropriate and the model should be changed.
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Effects of noise. Another important issue in the reconstruction problem concerns the effects
of both observation and system noise. Measurement noise can introduce errors in the estimation
of the model parameters. This can be viewed as a displacement of {a’;; } from their ideal
locations by an amount which may depend on the noise intensity. However, the displaced
{al,;,} will still remain in the same bifurcation region as the noiseless case. The effect of this
in approximating the projection region can be minimized by preprocessing the data to suppress
measurement noise.

For dynamical noise, the situation is quite different. Its presence can cause drastic changes
in the values of the associated model parameters especially near bifurcation points. This, in
turn, will affect the location of {a’; } in the parameter space. The displaced {a’; } may be
located in other bifurcation regions. This will introduce additional difficulties in obtaining an
appropriate projection region using the estimated model parameters. To avoid these difficulties,
parameter estimation techniques which are robust to noise should be used. In this study, this is
achieved by using Korenberg'’s fast orthogonal algorithm in estimating the NAR coefficients.

An illustration is shown in Fig. 8.1. A circle in the system’s parameter space remains a circle
in the projection region in the absence of noise [Fig. 8.1 (B & C)]. In the presence of dynamical
noise, the estimated weights for each trained network are scattered in the weight space as can be
seen in their projections onto the two principal eigenvectors [Fig. 8.1 (E)]. The projection region
is ill-defined for the NN model. On the other hand, the NAR-based approach still obtained the

correct projection region as shown in Fig. 8.1 (E).

This study also opens new interesting problems. First, a rigorous investigation of the type
of bifurcations that can be reconstructed in the presence of perturbations is necessary. Some
types of bifurcations are not persistent when the system is perturbed and their detection from
time series may be more difficult. The reconstruction of these bifurcations may require ektra
information. An insight from the results is that Hopf bifurcations were easily reconstructed as
compared to pitchfork and homoclinic bifurcations. A detailed study of this problem can reveal
the possible bifurcations the present algorithm can detect from the time series. Second, deter-
mining the functional relationship between the two sets of parameters (system and model) is also
interesting and worth exploring. In the present case, this is possible when the number of system
parameters and their values are known and the linear manifold approximation holds. When
these two conditions are met, the model parameters can be expressed as a linear combination

of the system parameters and vice versa. Bifurcation points can be predicted and localized in
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Figure 8.1: Parameter sets used in generating the time series (A & D). Projections of the estimated
model parameter values onto the two principal eigenvectors for NN-based (B & E) and NAR-based (C &
).
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the parameter space of the system rather than that of the model. Finally, the extension of the
current approach to higher dimensional nonlinear cases remains an open problem. The study of
this problem is important to address cases when the PCA-based approach is insufficient. The
relevant questions are: 1) how to get the dimension of the nonlinear manifold; and 2) how to
express this manifold in terms of the discrete points obtained from the time series. The PCA
can provide an upper bound for the dimension of the nonlinear manifold. If the dimension is
known, the principal curve and the principal surface of the discrete points can represent the
required one- and two-dimensional manifold, respectively.

The numerical results of the study were quite remarkable. Even for a limited number of time
series (or equivalently, a few parameter values), the BD of the system was reconstructed over
a relatively wider parameter region. The reconstructed BD captured the important features of
the bifurcation structure of the system. The period doubling of the maximum potential of a
pacemaker neuron, the two subcritical Hopf bifurcations of the FitzHugh-Nagumo equations,
the period doubling and period doubling reversal of the sine map, the pitchfork bifurcation
of the Lorenz equations and the cubic map, and the two-parameter bifurcation structure of
the Hénon map, are few examples of the type of bifurcations recovered using the algorithm.
The reconstruction algorithm also worked well even when the time series were corrupted by
observation or dynamical noise. The success of the simulations promises potential practical
applications especially in the analysis of systems where first principle modeling is extremely
difficult if not impossible.

With the BD reconstructed, it is easy to know the sequence of bifurcations the system
undergoes as the parameters are changed. Unobserved behaviors can be determined by simply
examining the reconstructed BD. Critical parameter values become apparent and the system’s
dependence on its parameters are completely unfolded. All these information are drawn directly
from the time series measured at different parameter values, thereby removing the difficult task
of constructing differential equations that describe the dynamics of the system. This makes the
BD reconstruction algorithm an important tool to uncover the underlying mechanism of the

system under study from time series.



Acknowledgment

I would like to acknowledge all the help and encouragement I received from the following persons

during the development and towards the completion of this work:

Prof. Shunsuke Sato — for giving me the opportunity to study in his laboratory at Osaka
University under the Monbusho scholarship, for his constant supervision in my research,

and for his unfailing support during my stay in Japan;

Prof. Toshimitsu Ushio and Prof. Hajime Maeda — for serving as judges for the thesis

panel, for their valuable time in reviewing the thesis, and critical evaluation of this work;

Dr. Taishin Nomura — for introducing me to the problem of reconstructing bifurcation
diagrams using time series, for being the first reviewer of my papers and spending many
hours for discussion in refining each paper; and also, for being a member of the thesis

panel;

Dr. Khashayar Pakdaman — for showing me the rigorous way of doing research, for all the
precious hours spent reviewing and correcting my papers including this thesis, for all the

valuable suggestions in writing styles, and for sharing his infectious vigor for research;
Dr. Alberto Capurro — for the EOD data of the electric fish Gymnotus carapo;

Members of the Sato Laboratory — past and present members, for their assistance in my
day-to-day life inside and outside the lab, especially for their patience in helping me learn

the Japanese language;
My Nanay — for her constant prayers, love, and encouragement;

and last but not the least, Katherine D. Develos — for encouraging me in my graduate
study here in Japan, and above all, for serving as my inspiration not only in my research

hut my whole life as well; this is for you, Meow-dudes.



Appendix A

Recursion Relations

In this section, the recursive relations in estimating qypy, Np,, and b, are derived. The derivation
is based on the orthogonal property Eq. (3.51) and other relations established in Chap. 3, Sec.
3.4.

To compute an,, iteratively, one can use Eq. (3.59) to rewrite Eq. (3.60), that is,

Oy = Ni / 42X p(X) 2 (X) e (X), (A.1)

= & [ @ XpX)m ()

r—1
- Z QrjWj (X)} ’ (AQ)

/ X p(X ) 2 (X ) 20 (X)) — Za_r, / dpr(X)zmwj(X)}, (A.3)

N,
= —/dpr X)zm(X)z (X) — —Zarjam] i (A.4)
N;
Qmr = Zam]a”’-]—\}-— (“XS)
where
e = [ X p(X) 2 (X)22(X). (A.6)

In the same manner, one can compute Ny, iteratively by using Eq. (3.59) to rewrite Eq.

(3.61) in the form

N = / 4N p( X)) [ ()2 (A7)

m—1 2
- / 4’ X p(X) {zm X) = Y cmetnn X):l , (A.8)

r=0

m—1 2
/dd‘\ p(X) {[zm(J\ ] -2z, E amrwr (X)) + {Z mrwr (X )} } , (A.9)

r=0 r=0
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m—1
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where Egs. (3.60) and (3.51) are used in deriving line (A.11) from line (A.10).
Finally, to get the equation for b,,, Eqgs. (3.62) and (3.59) are used; that is,

1 ey
b = 5 [ dUXPX)g(Xsa)um (),
Nom
1 m—1
= = { / d*X p(X)g(X;a) lzm(X) -3 amer(X)} }
mo r=0
1 1 m-—1
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m~—1
A/m, ZVT
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where
Y = / d*Xp(X)g(X;2)2m(X).

To summarize, the following iterative equations are obtained:

r—1
. er Nj
Qmr = N "'Zamjarjﬁv
r J 0 r

Np = Bmm*zaszr,

N,
bn = V_m_zamrbr"-r“

where
Bur = [ dXp(X)zm(X) 2 (X),
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The above integrals can be evaluated by applying the ergodic theorem:
Brr = lim > m(Ya)ze (Ya), (A.25)
.1
Ym = lim — Zg(Yn;a)zm(Yn),

N
= I&E»nw]—V—T;]y"Hzm(Yn)' (A.26)
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Activation/Inactivation Functions

Neo(V) = an(V)/[an(V) + Bn (V)]

™w(V) = 1/[an(V)+ Bn5(V))]

where N = m, h, n, m,, hs, ns, and n,. Rate constants are as follows:

am(v)

ap(V)
)

0.1(20 + V) /[1 — exp{—(20 + V') /10}]
0.07 exp{—(V + 45)/20}

0.01(20 + V)/[1 — exp{—(20 + V')/10}]

an(V
am, (V) 0.1(26 + V) /{1 — exp{—(26 + V')/10}]
ap, (V) 0.07 exp{—(V + 51)/20}
an, (V) 0.01(50 + V')/[1 — exp{—(50 + V') /10}]
o, (V) 0.01(100+ V') /[exp{(100 + V')/10} — 1]
Bm (V) 4exp{—(V +45)/18}
Br(V) 1/[1 + exp{—(15 + V))/10}]
Ba(V) 0.125 exp{—(V + 30)/80}
B, (V) dexp{—(V +51)/18}
B, (V) 1/[1 + exp{—(21 + V) /10}]
B, (V) 0.125 exp{—(V + 60)/80}
B, (V) 0.125 exp{—(V" + 90)/80}]

Maximum conductances values: gy, = 60[uS], gx = 10[pS], gnve, = 1.40[nS], gk, = 0.18[uS]
gr, = 0.20{nS], and g; = 0.063[;S]. Values of equilibrium potentials of channels: Vi, = 50[mV]
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Vi = =70[mV], and V; = =70[mV]. Values of the membrane capacitance: Cy = 20[nF]. Values
of dimensionless constants: Cy = 10, Cs = 100, and C, = 800.



Appendix C

Experimental Preparation

Five specimens of Gymnotus carapo, gathered from Laguna del Sauce a lake in Departamento de
Maldonado in Southeastern Uruguay, of a length ranging from 7 to 10 cm were selected for the
experiments. The fish were placed in separate tanks. Each tankvcontained a plastic tube open
at both ends, with carbon electrodes to record the EOD. The tube was the preferred position
of the fish during most of the light phase (which is the resting phase) of the circadian cycle,
so that no constraint was necessary to make the animal enter into the tube or remain in there.
All experimental procedures were performed during the light phase of the circadian cycle, when
the variability in the duration of the intervals is lowest. The voltage of the EOD was digitally
recorded at equal time intervals of 0.05 milliseconds (i.e. sample frequency of 20 kHz) and saved
as ASCII files with the value of time in the first column and voltage in the second column. A C
program calculated the EOD discharging times and the intervals between successive discharges
from the digital file of the EOD recording. This program wrote the discharge times and the
EOD interval that ended in that discharging time in two columns of an ASCII file. We checked
that the appreciation in the value of the discharge times was the same as the sample interval of
the voltage vs time file that was directly recorded from the fish.

Since novel stimuli (such as weak mechanical vibrations or electric fields) as well as small
movements of the fish induce transient frequency increases in the EOD (e.g. Capurro et al., 1994,
and references therein), we controlled visually that the fish was at rest during the recordings i.e.
even small macroscopic movements of the fins were absent. Furthermore, the recordings were
done in a silent room with no changes in the lighting level and using an anti-vibration table.
Digital recordings contaminated by electric fields due to external sources of induced current were

discarded.
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