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Thesis Summary

In this study, a new and equally important theme in nonlinear time series analysis is considered

- the study ofbifurcations. Tools needed to analyze bifurcation structures from time series have

been developed. The algorithms are based on a geometrical interpretation of the problem in

t,erms ofprol'ection region. In this formulation, the projection region is defined as the region in the

parameter space of a predetermined family of functions, which models the system, with similar

bifurcation structures as the system. For parameter values within this region, the dynamics of

the model is therefore the same as that of the given system. Thus, one can take the bifurcation

st,ructure of the model in this region as that ofthe original system. This allows the reconstruction

of the bifurcation structure without knowing a priori the explicit form of the differential or

difference equations describing the dynamics. With this, time series at different parameter values

have been used to obtain a suitable family of predictor functions, which exhibit qualitatively

similar bifurcations as the given system,

   Instead of having a large introductory chapter, the preparatory materials are divided into

t,hree chapters. In chapter 1, a summary ofthe different themes of nonlinear time series analysis is

g'iven. A briefliterature survey ofrelated works is also presented. The problem is then introduced

and defined. In chapter 2, several well-known techniques for the construction and quantification

of the attractor of a dynamical system from time series are briefly revie"'ed. In particular, the

estimat,ion of t,he embedding dimension and the time delay is considered. A method to analyze

l)ifurcation struct,ures of predictor functions and the classification of the diff'erent bifurcations

considered in this study are also given. In chapter 3, the different models used in this study are

int,roduced. The use of the likelihood function to estimate model paramet,ers for chaotic time

series and the application of t,he nonlinear autoregressive (1 AR) models and neural networks are

dis(;ussed. .t)L detection algorithm for nonlinear behavior in the observed data is also presented

as one important applicat,ion of NAR models. The examples included are not intended for

('oinparison purposes but, rat,her as specific examples of the inodel's application.
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   Chapters 4 to 7 contain the main results of the study. In chapter 4, the reconstruction

problem is defined more precisely. The basic assumptions of the problem are presented. The

concept of projection region is discussed and a reconstruction template is outlined. The linear

manifold approximation of the projection region is considered. An example of its application to

the reconstruction problem using the H6non map is given at the end of the chapter.

   In chapter 5, the conditions under which the linear manifold approximation holds are de-

t,ermined numerically using several well-known dynamical systems. The results have indicated

t,hat for a class of maps, referred to as linear-in-parameter (LIP) maps, the linear approximation

akvay. s holds. tN/Ioreover, the results showed that as long as the parameter values are not widely

apart,, the LIP approximation is still valid even for non-LIP maps. A scheme is also developed

to distinguish time series generated by this class of maps.

   In chapter 6, the feasibility of reconstruction is explored when the linear manifolcl approxi-

mation is insufficient. A more general one-dimensional reconstruction algorithm is considered.

The algorithm employed principal curves to approximate the one-dimensional projection region.

The algorithm is tested using time series from systems exhibiting stable limit cycles and stable

equilibrium points. In particular, the FitzHugh-r agumo equations and the Lorenz equations

are used to illustrate the algorithm's application. Possible extension to higher dimensional

reconstruction is also discussed in the later part of the chapter.

   In chapter 7, the effect of noise in the reconstruction problem is investigated. In particu-

lar, t,he reconstruction of bifurcation diagrams using time series from randomly forced maps is

considered. Ort,hogonal polynomials are used as predictor functions. The proposed algorithm is

appliecl to the reconstruct,ion of the bifurcation diagrams of different dy. namical systems. The

results have indicated that the algorithm is robust to noise and works svell even for a limited

nurnber of time series.

   Finally, the conclusion is presented in chapter 8. The results are summarized and the difi'erent

issues appearing in the course of the simulations are discussed. New int,erest,ing problems tbr

possible extension of this work are also noted. The success of the simulation promises potential

pract,ical applications especially in the analysis of systems xvhere first principle modeling is

extrcmely difflcult, if not impossible.
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Chapter 1

Introduction

Studies in nonlinear time series analysis have provided reliable techniques fbr the evaluation of

signals from dy. namical systems, Some of these techniques are used to gain insights into the

unknown physical processes, to do prediction, as well as to determine invariants associated to

the dynamics of the system. Others are employed to determine whether irregularities in signals

are due to the intrinsic nonlinearity of the system or are caused by extrinsic random processes

impinging on the system. Several others are applied to build models capturing the dynamics

of the system from the observed data. In this study, new methods to uncover the underlying

mechanisms of d,ynamical systems using time series are introduced. This set of algorithms can

be used to evaluate how sensitive the system is to the values of its parameters and how the

system's behavior changes as the parameters are varied. Since these issues are best explored by

means of bifurcat,ion diagrams (BDs), this thesis describes the algorithms in constructing BDs

from time series.

   Extracting physically interesting and useful information from the observed data is the pri-

mary goal of time series analysis. Nonlinear time series analysis has particularly provided addi-

tional tools for the characterization of irregular, broadband signals that are products of nonlinear

dynamical systems. X•XXithout these tools, these signals are incomprehensible observations rather

than vital sources of physically interesting information. Since these signals are prevalent in

nature, their evaluation is very important and relevant. A few examples include the electrical

ac.t,ixrit,ies wit,hin the brain, the beating of the heart, the spiking of neurons, t,he spread of epi-

demics, the sxvings in animal populat,ions, and the changes in global climate. The analyses of

t,he.s'e. signals can be Ioosel.v grouped into: 1) the reconstruction and quantification of attractors,

and L)) }nodel-building and prediction, which includes pararr}eter est,iniation using tin}e series.

                                        1



2 CHAPTERI. INTRODUCTIO.N
   Dissipative systems are typically characterized by the presence of attracting sets or attractors

in the phase space. An attractor is a bounded subregion of the phase space of a dynamical system

to where regions of initial conditions of nonzero volumes eventually converge with increasing

time. It can be a point in the phase space, of dimension equal to O, or a closed curve, of

dimension equal to 1. Some other attracting sets can be very irregular and in fact, can have

a dimension which is not an integer value. Such sets are called fractals, and xvhen they are

attrac:tors the.v are referred to as strange attractors. Strange attractors can be characterized

by a spectrum of dimension values such as box-counting dimension, information dimension,

and correlation dimension. The motion on a strange attractor can also display sensitivity to

initial condz'tions such that the distance between neighboring points on the at,tractor can grow

exponentially with time. This motion is referred to as being chaotic. The existence of chaos

means that small errors grow exponentially in time that Iong term prediction becomes impossible.

.A quantitative description of the sensitivity to initial condition is provided by the Lyapunov

e.7;ponents, quantities characterizing the stretching of infinitesimal displacements in a strange

attractor.

   The reconstruction of attractors by delay embedding [17, 36, 37, 48, 50, 65, 79], and their

quantification in terms of dimensions[30, 80], Lyapunov exponents[19, 28, 72, 85], among other

attractor invariants[35, 38] have yielded means of revealing intrinsic nonlinear behavior of a

dynamical s.vst,em from time series[11, 51, 68, 70, 78]. For example, the presence of a positive

Lyapunov exponent or a fractional value of the attractor's dimension aflirms the nonlinear nature

of t,he system. These invariants can also be used to identify systems in a manner similar to

natural frequencies of some ph.vsical systems. These quantities, however, do not give a complete

description of the dynamics per se and thus, a different set of methods is required.

   On the other hand, the goal of model-building is to construct a template of the dynamics

using the obserxred data. Loosely speaking, this can be done by obtaining an appropriate set

of coefficients in a predet,ermined class of functional forms such that t,he resulting function

c;aptures the dynamics of the system under study. The model is used eit,her to represent the

global behavior of tlie observed data or to describe the local dynainics in t,he reconstructed

attract,or or a inii t,ure of bot,h. The use of nonlinear autoregressive models [4, 5, 23, 62, 631, the

nieasure-based functional reconstrnction of Giona [34], radial basis functions. [2, 22], and neural

net,xvorks [:3. 14• , 18, 54] are among the many functions that represent, global models describing

the dynainics in the xvhole phase-space. On the other hand, local linear niaps us. ing neighboring

points [55], local averaging [66], and t,he use of higher-order polyno!nials [31] xvhose coeflicients



                                                                               3

are fitted using near neighbors are just a few of the many local modeling approaches. The

effectiveness of the model is measured by its prediction performance, defined as the ability of

the model to give accurate values at steps forward in time.

   The description of dynamical systems in terms of invariants or sets of coeMcients in a pre-

determined class of functions is already sufficient to solve many significant problems. However,

these invariants, though they remain constant with coordinate transfbrmation, are not robust

to changes in system parameters. Model coeflicients also vary from one observation to another

when observations are taken at different parameter values. Thus, problems that involve changes

in parameters require a broader framework than the above description. This framework is pro-

vided by the stud.x.r of bijurcations. .A bifurcation is a qualitative change in the dynamics, for

example from a stable behavior to an unstable behavior, which occurs as a system parameter

varies. The knoxvledge of the bifurcation structure of a dynamical system is therefore important

in order to understand the system's response to the changes in parameter values. This is par-

ticularly necessary for the case of nonlinear systems where small perturbations, for parameter

values near critical points, can cause dramatic changes in the system's output. The study of

bifurcations from time series, however, has received less attention in the past years. It is only

recently that this problem is addressed rigorously [7, 8, 9, 10, 22, 49, 81, 82]. The problem

is that the analy. sis requires a priori knowledge of the dynamics in the form of differential or

difference equations [39, 84] that can prove difficult to construct even for simple systems. This

makes the problem of reconstructing bifurcation structures from time series a formidable task.

   In this t,hesis, a new and equally important theme in nonlinear time series analysis, the

stud?J of bifarcations, is introduced. The tools developed can be used to analyze time series

n}easured at different parameter values. The motivation of the study is to unveil t,he bifurcation

structure of t,he s.ystem using the observed data. In particular, the study aims to: 1) know

the sequence of bifurcations that the system undergoes as the parameters are changed; and 2)

uncover behaviors of the system, ivhich may be present but not readily observed. To achieve

t,hese goals, the problem of reconstructing bifurcation diagrams is systematically investigated.

Methods to obtain qualitatively the same BD as that of the given system using time series

at a finite number of parameter values are presented. The reconstruction does not assume

any kriowledge of tlie explicit form of the dynamical system (differential/diff'erence equation).

Instead, tiine se.ries at diff'erent parameter values are used to obt,ain a suitable t'amily of predictor

functions, xvhich exhibits qualit,atively similar bifurcations as the given s>rsteni. The BD ofthis

fainil)' of predictor funct,ions on soine parameter region, terined as prol'ect7jon reg'ion, is then
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regarded as the reconstructed BD. In other words, the projection region is the region in the

parameter space of the model with similar bifurcation structure as the system. For parameter

values within this region, the dynamics of the model is therefore the same as that of the given

system. Thus, one can take the BD of the model in this region as the reconstructed BD. The

problem therefore is to determine the projection region using parameter values computed from

the available time series.

   In chapter 2, an overview of the different techniques to quantify and reconstruct attractors is

presented. These algorithms are readily available in several review papers[1, 35] and published

materials[61] and thus, only the general idea of each algorithm is outlined. In chapter 3, the

different models used in the simulations are presented. In particular, the use of log-likelihood

function for parameter estimation, the use of neural networks and nonlinear autoregressive

models as parametrized predictor functions, and the detection of nonlinearit,ies in noisy time

series are examined. In chapters 4 to 7, the main problem of the study - bifurcation analysis

using time series is tackled in depth and the necessary tools in reconstructing the BDs are

described in detail. Finally in chapter 8, the results are summarized and recommendations are

suggested.



Chapter 2

Overview

In this chapter, several well-known techniques for the reconstruction and quantification of the

attractor of a d>rnamical system from time series are briefly reviewed. In particular, the es-

timation of the embedding dimension and the time delay is considered. These are important

quantities in the BD reconstruction problem. A method to analyze bifurcation structures of

predictor functions and the classification ofthe different bifurcations considered in this study is

given in the last section.

2.1 Phase-SpaceReconstruction

The basis of phase-space reconstruction is provided by Takens' theorem [79]. Accordingly, one

can define an equivalent dynamics in terms of the observation {yt, O S t g T} such that

                                  Yt+A=F(Yt) (2.1)
where F : IR.(t - Rd is a diffeomorphism, Yt = (yt,...,yt-(d-i)A) is a vector of' delayed coordi•-

nates, d is the dimension of the reconstructed phase-space (embedding dimension), and A is the

time delay. 1Tote that, the form of F(Yt) is such that all the components of the left hand-side

ve(;tor are completely determined by the components on the right-hand side. This allow•s Eq,

(2.1) t,o be written in the forin

                          Yt+A = .9(!Jt, IJt- A,•••,Yt-(d- 1)A) (2.2)

"'he,re g : IR,(i - R,L is called tlie pred71ctor ftLnction.

   X'tirious approache.s have been employed to approximate the predict,or function g(Yt). These

include Iocal linear approxiinations[31], Iinear interpolation [55], nonlinear autoregressive inodels
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[4, •5', 23, 62, 63], radial basis functions [2, 22], neural networks [3, 14, 18, 54], among others.

However, finding an appropriate model out of the huge number of possible candidates proves to

be extremely difficult. These issues will be explored in the next chapter.

   The determination of the appropriate phase-space requires the proper choice of the embed-

ding dimension d and time delay A. This has been a subject of such an intense interest that

more reliable techniques are becoming available now. In the folloxving, an overview of some of

these techniques are given.

2.1.1 Embeddingdimension

In Takens' theorem, the condition to have a diffeomorphism is that the embedding dimension d

must be greater than the attractor dimension dA, that is, d ) 2dA + 1. However, dA is usually

unknosvn and one should therefore be able to estimate the embedding dimension from the time

series themselves. There are many available approaches to do this. Three ofthe most commonly

used approaches are summarized below.

Singular-value decomposition. Suppose that the true embedding dimension necessary to

untbld the dynamics is given by d. rlNqTow suppose that the available time series is embedded in

a dE-dimensional reconstructed phase-space such that dE > d. The dE - d dimensions in this

space are only populated by noise. One can then form the sample covariance matrix given

                                 N•                         C= +t 2(Yn-Yave)(Yn-Yave)T ' (2.3)
                                n=1
wit,h

                                 yave=Iilli liS yn• (2•4)
                                         n=1
This matrix will have d eigenvalues resulting from the real signal and dE - d eigenvalues due to

noise. If the contamination is relatively high, the noise may be seen as filling all these dE - d

dimension in a imiform manner. One can then examine where the eigenvalues start to plateau

an(I t,he number of eigenvalues before the plateau may be taken as the desired dimension d.

Saturation of system invariants. Ifthe attractor is properly unfolded, t,hen any property

associat,ed to t,he attractor, which depends on t,he distance between t,wo point,s lying on the at-

tractor. shoiild not vary xvith further increase in the embedding dirnension. One ofthe e: aniples

is gix'en b.y' t,he nuinber densit.v, t,he ntnnber of points on t,he orbit, within a radius r defined by

                           7?J('r:x) == itlliT lilS e(r-IYk--xl), (2.s)

                                     k=1
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xvith e(?i) = O fbr 7i < O and e(?t) = 1 for u > O. The average over all points of powers of n(r, x)

is

                            Cq(r)= It,i SI) [n(r, xJ•)](q-i). (2.6)

                                   ' j'=1

One can then plot, Cq(r) as a function of d and determine when the slope of its logarithm as a

function of log(r) becomes independent of d.

False nearest neighbors. This approach employs the basic question addressed in the em-

bedding theorem: at what embedding dimension will the orbit cease to cross itself? The basic

idea is thus to find the appropriate dimension where self intersection is not observed. This can

be done by examining false neighbors, that is, points which appear to be neighbors due to the

projection onto a lower dimensional space. By successively increasing the embedding dimen-

sion, these points will separate as the attractor is properly unfolded. The dimension xvhere the

number of-these points goes to zero is then considered as the desired embedding dimension.

2.1.2 Timedelay

Another important parameter in reconstructing the phase-space is the time delay A. For very

small values of A, t,he coordinates yt+(.+i)A and yt+.A are too close to each other that from any

prac;tical point of view, they do not provide two independent coordinates. On the other hand,

too large values of A xviII make yt+(.+i)A and yt+.A completely unrelated to each other. Thus,

an intermediate value of A is desired.

   .tXs a ftrst approximation, the linear autocorrelation function given by

                                 kZn"--i(yn+r - y-)(yn - g)
                         CL(')= le, E."=,(y.-y-)2 (2'7)

"rhere

                                  ij=+t Si) y. (2.8)
                                        n=1
can be used to obtain a good hint for the choice of A. In this approach, the time delay A is

givcn b>' the xralue of T where CL(7') first passes through zero. The result,ing delayed coordinates

are independent in a linear fashion.

   To account fbr the nonlinearities, one can use the nzutual informatz'on criterion. The mutual

inforination of t"ro nieasurenients ai and bk is defined by

                          L4i, (ai,bk) = iog2 [pl.IIi"(.B,lai kb(kbl.)], (2.g)



where the probability of observing a out of the set of all A is PA(a), the probability of finding

b in a measurement of B is PB(b), and the joint probability of the measurement of a and b is

PAB(a, b). The average mutual information between measurements of any value ai from system

A and bk from system B is the average of all possible measurements of IAB(ai, bk),

                         IAB=2 PAB(ai, bk)JAB(ai, bk)• (2.10)
                              ai,bk '                                                  '
One can think of set A as the sets of measurements yn, and set B as measurements at a later

time T. In this svay, the average mutual information can be defined as a function of the delay as

                    i(')=.2"=,P(yn,yn+r)iog2[pli6.YYfj\"y'.i).)], (2•n)

and I(T) ) O. A candidate time delay is given by the location of the first minimum of I(T) as a

function of T.

2.2 BifurcationAnalysis

W• hen the dynamical system depends on some parameter cE IRP, the time series output of the

sFist,em xvil1 also depend on c and Eq. (2.1) can be rewritten to include explicitly the dependence

on the parameters:

                                Yt+A=F(Yt;c). (212)
The predictor function g(Y) also depends on c, i.e., g(Y; c). It is of interest to study the different

behaviors of .g(Y; c) as function of the parameters.

   Consider a p-parameter family of maps of IRd into IRd

                          YeF(Y,c), YEIRd, cEIR" (2.13)

where F is C" on some sufficiently large open set in IRd Å~ IRP. Equation (2.13) can be written

explic:itl.v as tbllo"rs:

                          2Jt g(IJt-A,•••,IJt-dAiC)

                                           IJt-A                         ltlt-A                                 = . (2.14)
                          --
                       117t - (d- t) A 'Jt t- (d- 1) A

The fixed points of Eq. (2.14) are given by the fi.xed points ofg(Y;c) svhich can be computed

fbr a given c bF' finding the zeros of the function

                             -7• (IU)=!J -9(iJ,• ny •, iJ ;C). (2.15)
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Noiv suppose that Eq. (2.14) has a fixed point at (Y, c) = (Yo,co), i.e.,

                                  F( Yoi Co)=Yo• (2.16)

To determine the stability of the fixed point, the associated linearized map is examined. This is

                            CF--> D,F(Y.,c.)C, CEIRd. (2.17)

Or explicitly,

                     -LOc -gOa-m                                       io La         c,                                                               Ct-A                            OYt-2A ''' OYt-(d"!)A                                                 OYt-dA                      O!Yt-A

        Ct-A 1 O •- O O Ct-2A
          l =I I '•. i I Å~ I (2.18)
      Ct-(d-2)A O O ''' O O Ct-(d-1)A
      Ct-(d-1)A O O ••• 1 O Ct-dA
xvhere the partial derivatives of .g(Y; c) are evaluated at the fixed point (Y., c.). It can be shown

that the eigenvalues of D,yF(Y.,c.), that is, detlDyF(Y.,c.) - or1 = O, are equal to the roots of

a polynomial of degree d and coefficients which are equal to the partial derivatives of g(Y;c)

evaluated at the fixed point, t,hat is,

                                        d
                                P(ry) =2ai ord-i (2.19)
                                       i=o
where ao = -1 and ai = e.g(Y.;co)/aiLlt-iA for i = 1,•••,d. NVhen the fixed point is h?y2)erbolic,

t,hat, is, none of the roots of P(A/) have unit modulus, the stability of the linearized equation

implies the stabilit,y of the predictor function. This means that if all the roots of P('>t) lie within

tiie unit circle in the complex piane, the fixed point (Y.,c.) is stable; otherwise, it is unstable.

When the fixed point is nonhyperbolic, the stability of the m' ap cannot be determined from the

st,a})ilit,y of the linearized equation. ?.y•Ioreover, changes in c can result to bifurcations. The

s.implest ways in which a fixed point, of a map can be nonhyperbolic are the following:

  1. P(A/) has a single root equal to 1 with the remaining d - 1 root,s having moduli not equal

     to 1.

  L). Ii'(ax) has a siiigle root, equal to -1 with the remaining d- 1 roots haxring moduli not equal

     to 1.

  3. P(tt') has txvo coniplex conjugate root,s having rriodulus 1 (which are not one of the first

     lbur roots of unit,v) xvith t,he re-.n}aining d- 2 roots having moduli not, equal to 1.
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   In the following, the possible bifurcations that can take place when the above conditions

hold are enumerated. Without loss of generality, the analysis can be reduced to the study of a

parametrized family of maps on the one-dimensional center manifold. Refer to Wiggins [84] for

a cletailed discussion.

The saddle-node bifurcation. A general one-parameter family of C' (r 2 2) one-dimensional

maps :v F-> f(x,/",), x E IRL, pa E IRi undergoes a saddle-node bifurcation at (x,pa) = (O,O) if

                                  f(O, O) = O, (220)
                                of                                bT. (OiO) = 1, (221)
                                of                                b7I(O,O) I O, (2.22)
                                02f
                                   (O,O)#O, (2.23)                                0x2

The transcritical bifurcation. A general one-parameter family of Cr (r 2 2) one-dimensional

maps D e> f(x,pa), .T E IR,i, pa E IRi undergoes a transcritical bifurcation at (x,pa) = (O,O) if

                                  f(O, O) - O, (2.24)
                                 0f                                 zF. (Oi O) = 1, (2.25)
                                 of                                 bll(O,O) = Oi (2.26)
                                o2f
                                    (O, O) I O, (2.27)                               0xOpa
                                g2.f, (o,o) l o. (2.2s)

The pitchfork bifurcation. A general one-parameter family of C" (r }) :3) one-dimensional

maps xe f(.z',lt), .7; E IRi, /t E IRi undergoes a pitchfork bifurcation at (x,lt) = (O,O) if

                                   f(e,o) = o, (2.2g)
                                 0f                                 bl.I;. (O,O) = 1, (2.3o)
                                 of                                 b7i(O,O) = O• (2.31)
                                 e2f
                                 a,.2 (O, O) = O: (2•32)
                                02f
                                    (0, O) i O, (2.33)                               0.[I)0IL
                                 0']f
                                    (O, O) I O. (2.34)                                 O.x•3
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The period-doubling bifurcation. A general one-parameter family of C" (r ) 3) one-

dimensional maps x s f(x,pa), x E IRi, pt E IRi undergoes a pitchfork bifurcation at (x,p) =

(o.o) if

                                   f(O, O) = O, (2.35)
                                  0f                                 E5T.(O)O) = -1) (2.36)
                                 of2
                                    (O, O) = O, (2.37)                                 opa
                                o2f2
                                    (O, O) =O, (2.38)                                0x2
                                02f2
                                    (O, O) IO, (2.39)                               axoLt
                                o3f2
                                    (O, O) IO, (2.40)                                0x:s

xvhere fL' denotes the .second iterate of f.

The Naimark-Sacker (Hopf) bifurcation. Consider a one-parameter fainily of maps x e

f(:r,/t), x E IR.L', /L E IR.i having a fixed point at (x,LL) = (O,O), i.e., f(O,O) = O, "'ith the

niatrix D.f(O,O) having two complex conjugate eigenvalues A(O) and A(O), xvith 1,>t(O)i == 1.

X. IoreoNrer, let the eigenvalues satisfy

                              A(O)" 7! 1, n= 1,2,3,4. (2.41)

Under these conditions, the truncated normal form of f(x, pt) can be written in polar coordinates

as

                             r e r+ (dpa + ar2)r,

                             ee e+ ipo+diipa+br2. (2.42)

Note tl)at r = O is a fixed point, of Eq. (2.42) that is

                       asymptotically stable fbr dl/L < O

                       unstable for (LIIL >O

                       unstable fbr li =O, a>0
                       asyinptoticall.y stable t'or tL = O, a < 0•

Th{, folloxvinfg lemmas }ire provecl in [84]:

     Lemnia 1: ((r', e) E ll;il+ Å~ Silr' == =iY, E!d} /Js a c'ircle 'wh/;ch t;s t:nva,7'ia,nt 'ttnder the

         (iy7i,a7ni(Js y(tne7'ate(l b.i/ Eq. (2.42?.



     Lemma 2: The invariant circle is asymptotically stable for a < O and unstable for

         a> O.

Finally, the fbur possible cases for the bifurcation of an invariant circle from a fixed point are

listed below:

                                                       '
     Case 1: d > O, a > O. In this case, the origin is an unstable fi: ed point for pa > O

         and an asymptotically stable fixed point for pa < O with an unstable invariant

         circle fbr pa < O.

     Case 2: d> O, a < O. In this case, the origin is an unstable fixed point for pa > O

         and an asymptotically stable fixed point for pa < O with an asymptotically stable

         invariant circle for Lt > O.

     Case 3: d < O, a > O. In this case, the origin is an asymptotically stable fixed point

         for Ii > O and an unstable fixed point for pa < O with an unstable invariant circle

         for y, > O.

     Case 4: d < O, a < O. Inthis case,the origin is an asymptotically stable fixed point

         {br tt > O and an unstable fixed point for lt < O with an asymptotically stable

         invariant circle fbr pa < O.

   The two sections in this chapter outline the possible approach to analyze bifurcation structure

from time series. Roughly, the initial task is to reconstruct the phase-space of the dynamics.

This involves the estimation of the embedding dimension and the time delay. An appropriate

predictor function can then be used to specify the dynamics in the reconstructed phase-space.

The bifurcation structure of the predictor function is then analyzed. This means extracting the

bifurcation point,s and classifying these points according to the above definitions. A bifurcation

diagram can then be constructed to reflect the different bifurcations of the system. I ote that

the resulting BD will depend on the predictor function employed. Choosing an appropriate

predict,or funct,ion for the given time series will be the topic of the next chapter.



Chapter 3

Model Identification

3.1 Introduction

In the past decades, a wide range of theoretical models have been proposed and a number of

methods have been presented for the reconstruction of the system dynamics from observation

data. Several commonly used models include Iinear autoregression (AR) models, nonlinear

autoregressive (NAR) models, neural network (NN) models, radial basis function (RBF) models,

among others. Each of these models has its own advantages and disadvantages. In this chapter,

the different models used in this studv wiIl be introduced. The use of the likelihood function
                                v
to estimate model parameter values for chaotic time series will be investigated in section 3.2.

This method can be applied when a model is already known and it is desired to estimate the

associated parameters for the given time series. The application ofthe Nl AR and NNI models as

predictor functions xvill be discussed in sections 3.3 and 3.4, respectively. In the last section, NAR

models are used fbr the identification of experimental data taken from the electrical discharge

of electric fish. The emphasis is on the detection of nonlinear behavior in the observed data.

The examples that follow for each model are not intended for comparison purposes but rather

as specific exarnples of the model's application. Thus, different syst,ems are used for each model.

3.2 The Likelihood Function

One important, issue to consider in using' the likelihood function fbr parameter estimation is

t,he behavior of the likelihood function itself. Iote t,hat the estimate of t,he parameter by

maximum likeiihood method is of questionable value unless the likelihood function is unimodal

a,nd concentrat,ed near the inode. The first thing to consider theretbre is to exainine if the

                                       13
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likelihood function is indeed well-behaved near the true parameter values for chaos models. The

present claim so far is that `tchaos models lead to chaotic likelihood functions"[13]. However in

this section, a counter example showing the contrary is presented. Numerical integration is done

by employing local linearization method [74, 75]. For the calculation of the likelihood function,

the innovations approach [33] is employed. Both the theoretical formalism based on [64] and

[33] and the results of the numerical simulations are presented.

   The problem at hand can be posed as follows: Consider the continuous stochastic dynamical

system described by the vector (It6) stochastic differential equation

                      dx(t) == f[x(t),t]dt+G[x(t),t]d6(t), t2t. (3.1)

where x(t) and f[x(t),t] are n-vectors, G[x(t),t] is an n Å~ r matrix, and {6(t), t > to} is an

7'-vector Brownian motion process with E [d5(t)d6(t)T] == (?(t)dti. Suppose that continuous

obsemrations are taken and is given by

                             dz (t) =h[x (t), t] dt+dn(t) (3.2)

xvhere) z(t) and hlx(t),t.] are m-vectors, and {n(t),t }l to} is a Brownian motion process Nvi'th

E] [tl•rl(t)dop(t)T] = R(t)dt. Let Y(T) be a realization of the observation, that is,

                             Y(T)={z(s), t. fi{sf{ 7}. (3.3)

The continuous estimation problem consists of computing an estimate of the unobserved state

x(t) based on the realization Y(T). Furthermore, for parametrized models, this can be extended

to estimating the parameters using the same observation data. The problem therefore is twofold:

to estimate the parameter values of the known model and to estimate the unobserved state of

t,he svstem.
    -1
   The complete solution of the estimation problem can be obtained ifthe conditional probability

(le7ts'ity p[x,tlY(T)] of x(t), given Y(7), is known. This is because p[x,tlY(T)] embodies all

sta,tist,ical intbrmation about x(t) which is contained in the available observation and the initial

condit,ion p(x, t.). Not,e that for t = T, t,he problem is a .filtering probleTn, fbr t < 7, a smoothing

p7'oblc7tt,, and fbr t > T, a pre(l?iction probteTn,. It is also well-knoxvn that t,he optiinal estimate

fbr the unobserved stat,e Å~(t) is given by the condz'tional rnean X(tl7) = E [x(t)IY(7)] [47]. 'i[ihus

the est,imation probleni involves the determination of both the condit,ional probabilit.v density

   LTIie notation E[•] will be used to denote statistical expectation, that is, if X is a random variable and f(x)

its deiisit,.v, then E[-X:] = .Lt".. :t;f(x)d•:i;•
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and the conditional mean. For nonlinear cases, it is difficult to obtain these two values since the

disti'ibution of the observed data is not always known. However, a method called the innovations

approach will facilitate the computation of these two quantities from the observed data. This

will be discussed in the next subsection.

3.2.1 The innovations approach

Suppose that observations (data) ofthe form

                          z(t) == y(t) +v(t), OStS T, (3.4)

where y(t) and v(t) are m-dimensional statistically independent vector processes, are given.

Furthermore, v(t) is a ivhite Gaussian noise with the following properties:

                                E[v(t)] -O (3.5)
                           E[v(t)vT(s)] = I6(t-s). (3.6)

.iXlso, the signal process, y(t), which is not necessarily Gaussian, is characterized by the following:

                                     E[y(t)] - O, (3.7)
                           f,7E[y(t)yT(t)] dt < oo, (3•8)

or more strictlv
            -i

                           ly(t)1SM< oo, OSt -< T. (3.9)

As mentioned earlier, the estimation problem involves the approximation of a random process,

say x(t), sat,isfying Eq. (3.1) from the observation z(t). Also, x(t) is related to the signal process

y(t.) vja

                              y(t) == h[x(s), sS t] (3.10)

and obeys the following properties:

                                     E[x(t)l =o (3.n)
                           /,T.E [x(t)xT(t)] dt < oo. (3•12)

Tl}e probleni is to find the optimal estimat,e 5Z (tlT) of x(t) given {z(,s), O E{ .g < r :E{{ T} xvhich

is readily obt,ained froin the conditional mean of x(t), that is,

                         5t (tl7) = E[Å~ (t) lz(s), O s{ s< 7]. (:3 .13)
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See for example Neveu [60] and Doob [27]. However, explicit formulas for X(tlT) are not readily

available since in general the distribution of y(t) is not known. It is therefore important to find

more explicit formulas for an optimal estimate of x(t).

   In the innovat,ions approach, the observation process z(t) is transformed into a white Gaus-

sian noise called the inno'vations process u(•). This transformation can be used to obtain the

estimate

                              E[x(t)Iy(s), OSs< 7] (3.14)

since the distribution ofthe innovations is known. Furthermore, the innovations process u(t) and

t,he o})servation process z(t) are equivalent in the sense that there exists a causal and causally

invertible transfbrmation from {z(s), O f{ s < T g T} to {u(s), O S s < T E{I T} such that

                         5k(t[T) i E[x(t)lz(s),Of{s<T] (3.15)

                                = E[x(t)[u(s), OSs<7]. (3.16)

The optimal estimate k(t]7) in terms of the innovations is now given by

                   st (t[T) = f,'E [x(t)uT(s)Iu(a), o f{ a< s] u(s)ds (3.17)

xvhere

                           u(t) =z(t) -Y(tl •r), O s[l t<T (3.18)

and Y(tlt) is the least-square estimate of y(t) in terms of {z(s), O f{ s < T}. 1 ote that the

above integral is a special integral called an It6 integral. The proofs are discussed in [33].

3.2.2 Derivation

The use of the likelihood function in parameter estimation from observation data has been

widely knoxvn. The idea is that the observed data is fitted to a known model by varying the

model parameters. The parameters that yield the maximum likelihood are chosen to be the

1)est estimat,e. Thus, this approach imrolves the optimization of the likelihood function of the

o})served dat,a relat,ix'e t,o the niodel parameters. However, it is akvays difficult to obtain the

likelihood frmct,ion tbr a gjven observation since in most cases the distribution of the observed

dat,a is not knoxvn. In this case, the use of the innovations approach beconies handy. by converting

t'he ol)servation process to the innovations process xvit,h a knosvn distribution as discussed in the

I)i'(}vioiiE subsection.
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   A special case ofEq. (3.2) is xvhen the observation process is linear in x(t), that is, h[x(t), t] =

Cx(t) where C is called the observation matrix. Rewriting Eq. (3..?.) yields

                             dz(t)=Cx(t)+u,dw.(t) (3.19)

where dw.(t) is Gaussian with unit variance. If dz(ti),dz(t2),•••,dz(t.) are taken as samples

from this model, the probability density p(clzi,dz2,•••,dznle), where e is some parameter, is

diffic;ult to obtain since the distribution of z(t) is not known when f(•) in Eq. (3.1) is nonlinear.

However, using the relation

      p(dzi, dz2,•••,dznle) = p(dznldzn-i,•••,dzi, e)p(dzn-i, dzn-2,•••,dzile) (3.20)

and taking the log of the probability density, a relation between the original density in terms of

                                                              '
t,he relative densities can be written as follows:

                iogp(dzi,dz2,•••,dz.le)=21ogp(dzildzi-i,••-,dzi,e). (3.21)

   Upto this part, the derivation applies for a general case. ITote that since the distribution of

z(t) is not known, it is difl}cult to obtain the explicit form of the relative probability densities on

t,he right hand side of Eq. (3.21) making the likelihood approach difficult to apply tbr nonlinear

cases. Hoxvever, xvith the use ofthe innovations approach and Eq. (3.18), Eq. (3.19) can now

be xvritten in terms of the innovation as

                             dz(t)=C5k(tlT)dt+du(t) (3.22)

xvithout aff'ect,ing the problem in any way. du(t) represents the innovation and C5k(t[7') is the

l(tast scluares est,imate of Cx(tl7) in terms of {z(s), O ff{ s < 7}. NVith this, t,he distribution of

(lz(tk), which is the sampled version of dz(t), can now be obtained. Since the term C5C(tk)dtic is

by (lefinition a constant, the mean is simply given by E[dz(tk)] = Cft(tk)dtk and the variance is

also given by. Var[dz(tlt-)] = a,2dtk.

   Discretizing the above relation, one obtains

                                Zk == CXkik-1+Uk (3.23)

"rhere zk = Az(tk) which approximates dz(tk), Cxkik.i = E[Cxk-lzk.i,•••,zi] iiv'hich ap-

proa(:ltes Ci51(t.k-)dtk, as :Xt a'pproaches zero, and uk is a discrete-t,irne Gaussian white noise with

variarice cTitllk-t == E[zk - Cxklk-i]2 xvhich approaches o`2dtk for very g.maH At. The conditional

density of uk, can noxv be xvritten as follows

               1'("klZk-! Zt' e) = ?.,,:liz.lk-l eXP [- (Zk -2.Ck21tkif'-L)2] (3 24)
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Using the equivalence relation of zk and yic, then

            2(-2) logp(zklzk-i,•••,zi,e) == 2(-2) logp(uklzhd,•••,zi,e) (3.25)

Equation (3.24) together with Eq. (3.25) can now be used to find more explicit formulas for the

relative probabilities of zk. This leads to the following relations

                                                       '
       (-2)iogp(zi,z2,''',znie) :: lili([-/,2g)iifl,ikP-(,ZttZ(kikililciikx'il/[-ei)2] +niog2T

from which the likelihood function can be computed. For this result to be useful in estimating

the likelihood function, the conditional variance aZIlemi and mean xklk.i should be estimated

first. To do this, a nonlinear Kalman filtering scheme is employed.

3.`OJ.3 Local linearization scheme

The state representation of the stochastic process given by Eq. (3.1) can be written using local

lz'nea7't;zation scheme [74] as

                          xt+i=A(xt)xt+B(xt)awwt+i (3.26)

xvhere

            A(x,) =i+J,m i{eJtAt - i}f(.X,t) +J,-2{eJtAt -i- JtAt} as2v.H,t (3.27)

                                      e2JtAt - 1
                             B(xt)
                                         2Jt

   To compute for the likelihood, one needs to find estimates of xklk-i

5? A;ve-i and bZek."i respectively. To do this, the relative expectation of Eq.

                       Xklk-1 =fXkP(XkIZk-1,•••,Zl,e)dXk

xvhere p(xklzk-i,•••,zi,e) is the state prediction densit?J function. This

Hoxveve•r, A(xAJ.i)xk•-ilk..i could be taken as a reasonable estimate where

                   Xk--11 k--l = / Xk--IP(Xk-1 IZk•-l, • • • , Zl, e) dXk"1

and p(xk--tlzk-i,•••,zi,e) is the .filtered densitiL/. The estimate can noxv be written as

                            Xk-lk-1 = A(Xk--1)Xk-11k--1

             (3.28)

and aklk.-i denoted by

 (3.26) is taken:

              (3.29)

has no exact formula.

              (:3.30)

(3.31)
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and the innovation at a point k is

                         0k = zk-CA (xk-i)Xk-qk-i• (3.32)

   A filtering procedure is used to carry out the approximation approach, that is, to obtain ftklk

from t,he previous prediction Xklk"i and Dk by using the relation

                            Xklk=ftklk-i+KkDk (3.33)

where Kk is the correction gain matrix obtained by minimizing the estimation error variance

of the state, that is, traceE [(xk - xklfo)(xk - xklk)T] . After several matrix manipulation, the

value of Kk which minimizes the variance is given by the relation

                         Kk=PhCT(CPkCT+a?)"i (3.34)
where Pk = E (xk - kk k-i)(xk - Xk k-i)T . Furthermore, Iet Vk = E (xk - xk k)(xfo - xkEk)T]

then

                             Vk =Pk -Kfo CPk. (3.35)
The exrolution of the Pk operator is obtained via

  Pk+1 = E[(xk+1-Xh+llk)(xk+1-kk+11k)T]

       = E [{A(xh)(xk -Rksk) +B(xk)awwk+i}{A(xic)(xk - ftklk) +B(xk)awwh+i}T] .

Assurning A(xk.) is constant on [k,k+ 1) then

                   Pk+i=A(xk)VkA(xk)T+B(xk)Åí.B(xk)T. (3.36)

A(xL,) and B(xk) can be approximated by A(Xklk) and B(Xklk) respectively. Then the actual

value of the prediction estimate is calculated by using the following recursion relations:

                Rk+ilK- = A(Xiclk)kklk (3.37)
                  51klk- = ]Rklk-i+Kki)k (3.3s)
                  Kk = PicCT(CPkCT+a?)-i (3.39)
                 Pk+i == A(Xklk)VkA(ftklh)T+B(Xklk)Z,.B(kklk)T (3.40)

                  Vk =Pk -Kk CPk (3.41)
                6klgk-L = CPk- CT+a,2 (3.42)
wit,h initial conditions .fv'.1. and I/' .. The x'ariable e specifies the syst,em paraineters, systeni error

x'tu"i?ul(:e alld oi)servatioll el'1'ol' val'iallce.
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3.2.4 Example: the Lorenz equations

In this section, the method presented above is applied to estimate the parameters of the Lorenz

equation [57]:

                               dx
                               Zi7t = -ax+ay

                               dy
                               iiTt = -Xz+rx -y .
                               dz                               Tt =xy-bz (3.43)

given a time series generated from it. Integration was done by using the local linearization

scheme as given by Eq. (3.26). The system noise variance was set to zero. Noise was added

to t,he observation data with variance a, equal to O.OOOI. The observation matrix is given by

C = (1 O O)T to observe only the z-component of the signal. The values of the parameters used

were a = 10, b = 8/3, and r = 28. The observation data is shown in Fig. 3.1. The behavior

of the likelihood function near the true parameter values vv'as investigated. This was done by

varying one parameter while fixing the value of the other parameters.

   Alt,hough the state of the system xvas generated wi'thout system noise, the numerical algo-

rit,hm used in integrating Eq. (3.43) may possibly affect the computed state especially for chaos

models. To verify this, the behavior of the likelihood function as a function of the system noise

variance was investigated. This means identifying the preferred model of the maximum likeli-

hood approach when numerical errors are present. This was done by setting all other parameter

values to their true values and varying the system noise variance a. in estimating the Iikelihood

funct.ion. Ideally, the maximum is expected to occur at zero variance since the data Nvas gen-

erat,ed using this value. However, if artificial noise is introduced due to numerical integration,

t,hen the Iikelihood will peak at a different value.

   Figure 3.2 shows the behavior of the prediction error as a function of the approximated

noise variance. From t,he figure, as the variance of the system noise is increased, there is a

corresponding decrease in the prediction error especially near the initial position. This implies

t,hat, although the time series was generated without system noise, the maximum likelihood

approach prefers a inodel in which the system noise variance is nonzero. This behavior can be

at,tributed to t,he errors introduced by the numerical method used in integrating the differential

(?•(IUatlOll.

   .TXnother important issue to consider is the choice of the values of .rvo and v.1. which correspond

to the initial values in the iterative filtering scheme. The effect of the initial values is sho"'n in
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Figure 3.1: Observation

b= 8/3, and r == 28.

data used in the analysis generated from the Lorenz system with a = 10,
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Figure 3.2: PiJediction error with varying noise variance. a, = 10-4, a. = O.O, and x. = -10. Top:

(i,. = 10-8. rlvliddle: a., = lo-4. Bottom: o,. = lo-2.
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Figure 3.3: Effects of the initial values. Top: The behavior ofthe predicted value when the initial values

of :no and v.l. are chosen inaccurately. Bottom: Difference between the observed series and the predicted

series shown in t,he top figure.
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Fig. 3.3. Figure 3.3(top) shows the behavior of the predicted value when the initial values of

xo and v.l. are chosen inaccurately. The difference, which iS relatively significant, between the

time series and the predicted data is shown in Fig. 3.3(bottom). Since these two values also

affect the computation of the likelihood function and in most cases, are always unknown, then

these can be added as parameters to the system to be approximated using the same approach.

   Figure 3.4 shows the log-likelihood function for different initial positions as the system noise

variance is varied. x. in the figure refers to the true initial position. Note that for initial

positions different, from the true one, the log-likelihood function minimizes at different noise

variance. This means that poor choice of the initial position will lead to poor estimate of the

true system noise variance. However, a closer examination of the plot reveals that the true

initial value gave the most minimum log-likelihood. This is clearly evident in Fig. 3.5 where

the minima in Fig. 3.4 are plotted against the initial position. Here, the minimum occurs very

near to the true initial position value. Furthermore, a plot of the estimated variance vs. the

value of the initial position (Fig. 3.6) reveals that the minimum variance is very close to the

true variance and occurs at xo.

   This section illustrates how to get the log-likelihood function for nonlinear systems. The

results are in complete agreement with the results of [64] also using the same example. They

demonstrate the applicability of the log-likelihood function to estimate the model parameters,

including the initial values of the state of the system and the system noise, even for chaotic

nonlinear systems.

3.3 NeuralNetworks

In t,his section, the neural network paradigm is discussed and its merits to approximate the

predictor funct,ion g(•) are closely examined. The use of neural networks is motivated by the

fbllowing reasons:

   . Neural networks are inherently nonlinear. In general, time series data are generated by

     nonlinear dynamical syst,ems, therefore neural networks are good candidate models.

   e Neural networks solve a given task by `tlearning" the solution [67] from a known set of

     examples ct/ 11ed t,he traini,ng set. In this case, the available time seric}s will serve as the

     training set and t,he network is tasked to learn the underlying mechanism that generates

     the data.
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The log-likelihood as a function. of system noise variance for different initial positions. The

value of the iog-likelihood and the x-atxis is the noise variance. The true value of the variance
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   e 1 eural netNvorks are universal approximators [44], which means that they can approximate

    any continuous mapping to within a desired accuracy.

3.3.1 Mathematicalformulation

A feedforward neural network transforms a set of input variables into a set of output variables in

a nonlinear fashion. The precise form of the transformation is governed by a set of parameters

called the weights. The process of determining these parameters is called training or learning.

For a three-layer feedfomvard neural network (see Fig. 3.7), the output of the j'th neuron in the

hidden layer is given by.

                              ZJ = 9HL (Åí., u)l•,H• xi) (3.44)

where d is the number of neurons in the input layer, the ivl•iH• s are the interconnection weights

bet,ween input and hidden layer neurons and gHL(•) is the activation function of the neurons in

the hidden layer. The output of the kth neuron in the output layer is expressed as

                             yk=goL (:ll) wJH•icO zj> ' (3.4s)

                                     NJ'=i /
where goL(•) is the activation function of this neuron, m is the number of neurons in the hidden

layer, and the wjHkOs are the weight of interconnections between the neurons in the hidden layer

and that ofthe output layer.

   Tra,ining or learning inv•olves a minimization process of an error fu,nction usually of the form

                                   NH                             eNN-2)Z(yk"-tZ)2 (3.46)
                                  n=1k=1
"/ here N is the number of examples used in training the network, H is the number of neurons in

the output layer, ?ykn. is the output ofthe kth neuron in the output layer during the presentation

of t,he nth example and tZ. is the desired output for that particular neuron. The set of weight

values that minimizes eNN represents the network solution to the problem. For convenience in

notation, these xveight values are collected into a p Å~ 1 vector w whose elements are (zvl•jH• : i =

1,•••,(1; a'  =1,-••,m,; woHkO :1'  =1,•••,m; k=1,•••,H) andp=m(d+H).

   For a prediction problem, the output of the network is set to correspond to some future

value in a given t,ime series xvhereas the inputs correspond to previous values of the said series.

rll]herefbre tbr this case, Eq. (3.45) together with Eq. (3.44) will become

                      i i = goL (Åí ivjHkO gHL( Sl) u) l.JH .z•,-j) N)

                                Nk=1 J'=1 /
                         = b(tT•i-i,•••,x'i-d;w)• (3.47)
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Figure 3.7: .4Xrchitecture of a three-layer fully-connected neural network.

Equation (3.47) can be used to approximate the predictor function g(•). Therefore, the problem

of finding g(•) is reduced to finding the appropriate parameters w minimizing the error function

eN-N i' n Eq. (3.46).

   Two important quantities relating neural network to estimation problems are worth dis-

cussing here. The first is the training error defined as the value of the error function Eq. (3.46)

xvhen training is stopped. Since the error function is the difference between the desired output

and t,he actual network output, this quantity provides a measure o{- the closeness of the net-

work's output to the desired output. For noiseless data, the very small values of eNN are desired

to reproduce the training set accurately. However for noisy data, zero values of el N xvill only

reproduce the noisy data. And thus, it is desirable to not Iet eNN approach zero.

   The second value of merit is the mean square difference defined by

                              5-+t 2[g(•)-g(•)]2 (3.4s)

xvherei g(•) is the original map and g(•) is the neural network approximatecl map. This quantity

gix'es tiie difference bet,xveen tlie map approximated by neural network and t,he act,ual map. r Tote

t•hat, even t,hough the training error is zero for noiseless data, 6 may not be necessarily zero.

This is because the t,raining error only represents the closeness of the network output to that of

the trainii'ig- set "'hich is only a finite sainple ofthe actual niap. The closer t,he. value of 5 to zero,

tlie ('Ioser tlie learnecl inap to the. actual inap. This ineans a better generalizat,ion capabilit>r of
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the trained network which in turn produces better prediction. In the next two subsections, the

behavior of these two quantities as the noise variance increases will be examined.

3.3.2 Thecirclemap

In the simulation conducted, time series were generated using well-known chaotic maps. The

first map used was the circle map which is given by

                     en+i = [en+pi+p2 sin(en)] mod 2T+6.+i. (3.49)

where en+i is Gaussian white noise with variance cr. The parameters pi and p2 were set to O.9

and 3.14 respectively. A three-layer fu11y-connected neural network was used. The number of

input units was set to 2 corresponding to e. and a bias neuron with output always equal to 1.

The number ofoutput neuron was set to one to correspond to e.+i. The number of hidden units

was set to 22 since this gave the minimum training error for the noiseless time series. Several

time series, having 1000 data points, were generated corresponding to different noise variance.

One netsvork was trained for each of them.

   To compa,re the convergence of the error function [Eq. (3.46)] with respect to the noise

variance, the number of it,eration xvas fixed to 1000. The initial values of the weights for each

training were randomly chosen between 1.0 and -1.0. For each time series, the training error is

obtained and plotted against the noise variance. This is shown in Fig. 3.8. From the figure,

it is obvious that as the noise variance is increased, the training error also increases. This is

due to t,he fact, thatthe map to be approximated by the network becomes rougher as compared

with increasing noise. However, this does not mean that the approximated map, when the noise

variance is high, is no bet,ter compared to that when the noise variance is lo"r. In fact, there

a•re instances when the opposite is true, that is, better approximation occurs when the variance

is high. This is clearly seen in Fig. 3.9 which shows the behavior of 6 as the noise variance a

is increased. From the figure, there are times when ?(3 falls as the variance is increased. This

indicates that the learned map is closer to the actllal map. Hoxvever, no direct relation betxveen

generalization error and noise variance can be readily concluded. This is due to the fact that

t,he approximated maps var.v considerably in regions not covered by the generat,ed time series.

For e] ample, in Fig. 3.10 when 0. > 2.55, the three maps coincide but for values less than

2.r/ •o"' , the three diverge awa.y froin each other.
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Training Error vs, Noise Variance : Circle Map
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Plot of Accuracy•vs, Noise Variance : Circle Map
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NN Learned Map : Cirde Map
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3.3.3 TheH6nonmap

The second map is the H6non map [43] which is given by

                         Xn+1=1•O-PIXk+p2xn-1+wn+1 (3•50)

where cv.+i is a Gaussian white noise xvith variance a. The values of pi and p2 used were 1.3

and O.25, respectively. Txxrenty time series were generated corresponding to 9.0 different values of

the variance. Each time series has 1000 data points. Figure 3.11 shows a representative return

map of the generated time series. From this figure, it is obvious that the samples covered only a

small part of the entire map. .4N fu11y-connected feedforward neural network with 3 input units,

18 hidden units, and 1 output unit was used. The input units correspond to xn, xn-i and 1

bias neuron and the output corresponds to x.+i. The number of hidden units was chosen to

minimize the training error for the case when the variance is zero.

   In the same manner as the circle map, the number of iteration was fixed to 1000 and the

initiahveight values xvere the same for all the training sets. The resulting plot for the training

error as a function of the noise variance is shown in Fig. 3.12. Again, the same relation is

obt,ained as that of the circle map: an increasing training error with increasing noise variance.

The eff'ect of noise on the generalization capability of the trained network is also investigated in

the same manner as the previous case. Here, the mean square difference 5 is defined to be the

volume betxveen the tsvo surfaces within the given domain of their respective variables. Again,

no direct relation can be obtained between the noise variance and generalization error 5 (Fig.

3.13). However, there are instances wherein higher noise variance yields better generalization

in t,he same manner as that of the circle map. A comparison of the NN learned map and the

actual map is shown in Fig. 3.14.

3.4 The Orthogonal Approach

Aside froni nenral networks, other parainetrized farriilies of predictor functions can be used to

approxiniate the d.vnainics in the reconstructed phase-space from the given t,ime series. In this

se(;tion, the use of orthogonal basis functions, such as orthogonal polynomials, is considered.

                           'The idea is to construct ort,hogonal functions frorn the given tiine series and use these functions

t,o span the desired predictor fui}ction.
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Training Error vs, Noise Variance : Aeaon Mar
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3.4.1 Orthogonalpolynomials

                                                                  '
Suppose that a time series SN of length fV is given. The problem is to find a map with parameters

a : N -> G(X;a), which evolves data points Y. - Yn+i. Following [1, 22, 34], G(X,' a) can be

approximated by polynomials Wm(X) which are orthogonal with respect to the natural invariant

measure p(X) associated to the time series SN, that is,

               '
                         fddxp(x)vvi(x)vvj(x) == Ni6ij (3.51)

and which can be determined by the conventional Gram-Schmidt procedure starting from

                                  Wo(X) == 1. (3.52)

From this, G(X; a) is approximated to the IVfth order as

                                     rvf
                            G(X; a) =2 a. W. (X). (3.53)
                                    m=O

The e: pansion coefllcients (or parameters) are determined by

                       a. I fddxG(x;a)vv.(x)p(x)

                                     N-1                           = Nl'LM..[ii 2G(Yn;a)wm(y.)

                                     n=O
                                     N-1 ,                           = "'Lm.. lk72Yn+iWm(Yn) (3•s4)
                                     n=O
             '
by applying the ergodic theorem.

   From Eq. (3.54), one can see the advantages of the approach. It eliminates the problem of

multiparameter optimization since the coefficients are readily computed from the time series.

Moreover, the estimates of the coefflcients can be easily corrected when new data points are

available. But the best aspect ofthis method which makes it more promising in actual application

is its robustness to noise since computation of distances in the reconstructed phase-space is

unnecessary.

3.4.2 Nonlinear autoregressive models

From here on, only the component of G(iY;a) that gives

                                ?Jn == g(l'n-i; a) (3.55)
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is considered. To approximate y., a nonlinear autoregressive (NAR) model is used

            ?lgalC = g( Y.-1; a) + En

                 == ao + alYn-1 + ' ' ' + adYn-d + ad+IYZ"1 + ad+2Yn-IYn-2

                    +'''+aMyfi-d+En (3.56)
                     rvf
                 =2amZm(Yn-1)+En (3•57)
                    m=O
where Yn-i = (yn-i,ynm2,•••,yn.d) representsavector in the reconstructed d-dimensional state

space (embedding space), the functional basis {z.(X)} is composed of all the distinct combina-

tions of coordinates up to degree k, d is the delay which also corresponds to the dimension of the

embedding space, E. represents the random forcing of the system, and M + 1 = (k + d)!/(d!k!)

determines the number of coefficients to be computed.

   One ofthe main difliculties of using Eq. (3.56) for function approximation is that the number

of parameters to be fitted grows very fast as soon as the phase-space dimension d and the degree

of the polynomial k becomes greater than one. Thus, multiparameter optimization becomes

unmanageable for large d and k. Moreover, there is the problem of determining which terms to

include in the model. Model-selection criteria such as the Akaike's information criterion (AIC)[6]

that, are valid fbr linear AR models may not apply to NAR models.

   To circumvent these difficulties, auxiliary orthogonal functions are employed in estimating

the model parameters. To do this, the right-hand side of Eq. (3.57) is rearranged into a sum of

terms which are mutually orthogonal over the given time series:

                                      M
                             .g (X; a) =Z bm illm (X) (3.58)
                                     m==O
xvhere w.(X) are orthogonal functions constructed from the z.(X) using the Gram-Schmidt

ort,hogonalization procedure '
                                        m-1
                         wm(X)=zm(X)-Eamrwr(X) (3•59)
                                         r =O
and satisfy Eq. (3.51). The at.. can be computed using

                       armr = tt fddXp(X)xm(X)zv'r(X), (3.60)

                        !Vr = ./ddXp(X)[uJr(X)]2. (3•61)

The expansion coefficients, b,., are computed using the orthogonality of w,.(X) and is given by

                      b,n= Al,., ,/ ddX9(Xla)wm(N)p(X)• (3.62)
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This procedure achieves a least-squares fit by minimizing the mean square error (eMsE)

                       eMsE=.2N.o[yn+i-tY.obrnwm(yn)]2 (3.63)

which can be reNvritten in the form

                             N MN                      eMsE == 2YZ+i-2 b;i 2[u]rn(Yn)]2• (3.64)
                             n=O m=O n=O
From the above, the inclusion of a given orthogonal function w.(X) will reduce the eMsE by an

                     'amount equal to
                                      N
                            Q(7n)=bk 2[wm (Yn )]2• (3.65)
                               ' n=O
This Ieads to a systematic way of selecting the terms amzm(X) in Eq. (3.57). Terms with higher

(2(m) values can reduce the error significantly and must be included in the model. On the other

hand, terms with lower (?(m) values can be neglected since they will not contribute in reducing

the eMsE•

   Another advantage of this formulation is that the explicit creation of the orthogonal functions

uJTn(N) in Eq. (3.59) is unnecessary. This can be done using Korenberg's [ro2] algorithm with

a slight modification. The iterative procedure, as derived in Appendix A, to compute the

significant quantities, amr, bm, and IVm, is summarized by the following relations:

                         amr = EiMG.r-illiamjarjmXi', (3.66)

                                       m-1
                          IVrn = 6mm-2orkrlVr, (3•67)
                                       r=O
                                       m-1                          bm == ftM.-.2=,amrbrllvV.r, (3.68)

xvliere m= O, •••,M, r= O, •••,m- 1, and

                        5mr = iv l+i.2N=ozm(Yn)zr(}i)7 (3•6g)

                                      N                                  1                         "IM = iv+1.2.-oiYn+iimOin)• (3.70)

E(luat,ions (:3.69) and (3.70) can be computed independently from the given time series. This

reduces the amount, of comput,ation required in obtaining the model parameters.

   The original model parameters a,,. can noNv be determined from the computed brn and ormr
                                      •t/'-'.Nf"t-f
using t,he folloxvi-ng relations:

                                      IL•f
                                 aJm == Ebi Vz, (3.71)
                                     i=m
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where V. =1 and
                                      i-1
                                Vi =-Z air Vr (3•72)
                                     r=m
for i = m+ 1,•••,M. Moreover, Q(m) can be easily evaluated from bm and N., that is,

                                e(m)=bkN.. (3.73)

3.4.3 Modelselection

From the results of the previous section, one can see that Q(m), which quantifies the amount a

term z.(X) can contribute in reducing the overall mean square error, plays an important role

in model selection. In this respect, terms which do not significantly reduce the error function

(small Q(m) values) are not included in the optimal model. This criterion can be quantified

by defining a t,hreshold below Nvhich the contribution of zm(X) becomes insignificant. In [23],

a 95Yo confidence interval (assuming a normal distribution) was used to determine significant

terms. For example, before a term z.(X) is selected, it must satisfy

                         [Åí."=, yk g(:M:Åí.llT;,i Q(.)]> k' (3 74)

   .4Lnother criterion is given by the error reduction ratio (eERR) [4] defined by

                                        Q(m)
                               eERRrn =2.N., yn, (3•75)

where m = O, • • • ,M. The terms are then ordered according to their eERR values. An optimal

number of terms are then selected by means of information criteria such as Akaike's information

criterion, among others.

   In the following, a criterion based on the multistep prediction performance of the resulting

model is described. The multistep prediction error is defined as

                                   NP                               1                      e(P) = iv +i22[yn +j -gi' (Yn; a)]2, (3.76)
                                  n=O J' =1

where P is the number of st,eps to predict forward in time. The basic algorithm is as follows:

  1. Initialize the Nralues of' d and k, the delay and degree of Eq. (3.56) respectively.

  `-). Add each term one by one to the model. For each time, evaluate the multistep prediction

     error of the resulting inodel.

  :3. The number ofterms t,hat gives the minimum ofe(P) for higher values of P will be included

     in tl]e. final moclel.
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                    Figure 3.15: Bifurcation diagram of the cubic map.

  4. Recompute the coeflicients a including only the selected terms.

The above list outlines the basic procedure in selecting the optimal model. This can still be

improved in a number of ways. For example, in step 2, one can rank first all the candidate terms

according to their q(m) values before adding to the model starting from the most significant

to t,he least. Another way is adding the terms as they appear in Eq. (3.56) and then removing

those svi'th insignificant q(m) values. In this work, both approaches to determine the optimal

moclel are employed. The following examples Nvill illustrate the orthogonal approach.

Example 1: the cubic map

An example of a one-parameter, one-dimensional forced map is given by

                            •Z'n+1= :n+ILXn -Xh3 +KEn (3.77)

xvho.re E. represents the random forcing of the system distributed uniformly bet,ween -1 to 1

and ti represents the amount of forcing. "VXJhen K = O, the behavior of the system as a function

of the. parameter p, is quite simple. The system has fixed points at x. = O for all values of pa

?md .z'Å} = Å}vX][T fbr It ;}r O. For LL < O, the origin is stable and globally attracting. A pitchfork

bifurcation occurs at I.L = O and the origin becomes unstable. This also gives rise to the two

                                                              'stable. fixed points :vÅ}. This is summarized in Fig. 3.15.

   Ten time series, Sk-, xvit,h 1000 data points for each parameter values tik = 2-4(k;-1)/10, k' =

1.•••.10 and fbr tt = O, ivere generated. These are shown in Fig. 3.16. 0bserve that for most

of th(i paraineter values, the t,iine series are almost constant e.xcept during transient. The fe"r
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Figure 3.16:

right).

Time series for K = O.O. The first 100 data points of Si to Sio (from top to bottom, left to

exceptions are Si, S2 and S3 corresponding to pt = 2.0, pa == 1.6, pa = 1..7., respectively. In Si, a

swit,ching from one fixed point, x+, to the other, x-, can be observed. On the other hand, S3

exhibit,s a periodic solution. The rest of the time series converges to the stable fixed point x+

fol' /i. )O or x. fol' pa < O.

   Equation (3.56) with k = 3 and d = 3, totalling to 20 model parameters to est,imate, is used

as the starting model. More terms are included in modeling to exhibit the robustness of the

method described in subsection 3.4.2 in obtaining only the significant terms as compared to that

of t,he traditional least-squares approach. The estimated values are summarized in Table 3.1 for

sonie of the terms in the model. Terms not shown have parameter values equal to zero.

   From the table, several observations are worth discussing. The first observation comes from

Si, S2, and Sio. In this case, the algorithm correctly determines the terms in the original

system which are :un-i and x"h3-i. A'Ioreover, it also obtains the accurate values of the associated

parameters. This is due to t,he fact t,hat the time series cont,ain enough information of the

st,ructure of t,he original system as can be seen in Si and S2. Next is t,he case of S4 and Ss,

"'herein the model gives a constant function equal to the value of the fixed point of the map at

this particular paraniet,er value. The last case conies from S7, Ss, and Sg. Here, the algorithin
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accurately determines the true value of the parameter associated with the linear part, xn-i,

though the cubic term is zero. This is because the values of the series are very close to zero

and thus only the linear part is significant. It is suspected that the algorithm determines the

linear part instead of the constant term because of the presence of transients which are more

significant compared to the long term value of the series. This is the opposite of the second case

where the long term values are more significant than the transient. This is more pronounced in

Sio where the algorithm detected the cubic term in spite of the fact that most of the data in

the series are constants with values close to zero. These results illustrate the reliability of the

algorithm in determining the best model for a given time series.

   N'ext, the case when the forcing is not zero, in particular, when K == O.2 was considered. Ten

time series xvere generated using the same parameter values as those of the unforced case. These

time series are shown in Fig. 3.17. Si and Sio are not shown since both time series diverged to

infinity with this amount of noise. The estimated parameters of the model are summarized in

Table 3.2. An interesting difference between Table 3.1 and Table 3..P. is seen in S3 and S4. In

the case of the forced system, the terms xn-i and x2-i are now determined correctly. Moreover,

the estimated parameter values of the model are very close to the true values. This is a case

where the presence of noise helps reveal the underlying structure of the given system as can be

seen in Fig. 3.17, S2 and S3 in particular.

   From the analysis, it, is seen that there are three competing models, namely:

                                calc                                             3                               Yn =aYn-lhYn-1 (3•78)
                                                            '

modeling S2, S3, and S4;

                                   calc                                      =ayn-i (3.79)                                  IYn

for Sk , k -- 6, • • • , 9; and

                                !ygalC =a+ 5y.-i (3.80)

xvhich models Ss . Since all time series come from the same dynamical sy, stem, one of the above

models should be able to describe all the gi'ven time series. By inspection, itis obvious that Eq.

(3.78) represents the most probable model to use. This is because the other models can not take

int,o account the behavior of the other time series, for e.g. the behavior of S2. X•Vith this, the

pararneter values "'ere recomputed using Eq. (3.78) for Sk,k = 5,•••,9. Tiie new parameter

values are shown in Table 3.:3. The behavior of t,his model with cv as t,he parainet,er is shown in

Fig,. 3.18.
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1•O xn-1 XZ-3 X'3n-1 2
Xn-IXn-3

Si T O.O 3D
  E O.O 3.0

O.O -1.0

O.O -1.0

o.o

o.o

S2 T O.O 2.6
  E O.O 2.6

O.O -1.0

OO -1.0

o.o

o.o

S3 T O.O 2.2
  E 1.41 O.O

O.O -1.0

o.o o.o

o.o

-O.31

S4 T O.O 1.8
  E O.89 O.O

O.O -10
o.o o.o

o.o

o.o

Ss T O.O 1.4
  E O.63 O.O

O.O -1.0

o.o o.o

o.o

o.o

S6 T O.O 1.0 O.O -1.0
  E O.O 1.02 -O.22 O.O

o.o

o.o

S7 T O.O O.6
  E O.O O.6

O.O -1.0

o.o o.o

o.o

o.o

Ss T O.O O.2
  E O.O O.2

O.O -1.0

o.o o.o

oo
o.o

Sg T O.O -O.2 O.O -1.0
  E O.O -O.2 O.O O.O

o.o

o.o

Sio T O.O -O.6 O.O -1.0

  E O.0 -O.6 O.O -1.0

o.o

o.o

Table 3.1: Cubic map. Estimated parameter values compared to the true values for A; = O.

value, E = Est,iinat,ed value.

T = True



3.4. THE ORTHOGONALAPPR OA CH 47

Xn
2L

.;I

mu-,m,l,,s,v-

 LJ.--.--."-L--.--.--.--.-.-
 I 'ii.,.,)F,IK-,""t"-F.iww1}

'22 Lt

Mi lrliS h'

i

iidsi-
ifirllww

Itl

v 114

,W)bt,eRtv",v,N"t,ny,-tstr-wwt,`-r

2

-2

2

-2

2

f

-" ,i!tMv

pmww

-2

2t

 INts.L`t,s".vwwtvt.L-w,t,LpwvAmurw

 :-2["-'-'--------'-"----'

-2r

2

tt,,I.-iNa--.-•A-twfi--dtA-.i -4--,f

-2
400 n 6oo 400 n 600

Figure :3.17: Time series for rt = O.2.

top t,o bottom, Ieft to right).
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1.0 xn-i XZ-3 x2-i xZ-lxn-3

Sl T
E

o.o 3.0 o.o -1.0 o.o

S2 T
E

o.o

o.o

2.6

2.6

o.o

o.o

-1.0

-1.0

o.o

oo
S3 T

E

o.o

o.o

2.2

2.18

o.o

o.o

-1.0

-1.0

o.o

o.o

S4 T
E

O.O 1,8

O.03 1.77

o.o

o.o

-1.0

-1.0

o.o

o.o

S5 T

E
OO 1.4
O.45 O.25

o.o

o.o

-1.0

o.o

o.o

o.o

S6 T

E

oo
o.o

1.0

O.87

o.o

o.o

-1.0

o.o

o.o

o.o

S7 T
E

oo
o.o

O.6

O.5

o.o

o.o

-1.0

o.o

o.o

o.o

S8 T
E

o.o

o.o

O.2

o.o

o.o

o.o

-1.0

o.o

o.o

o.o

S9 T
E

O.O -O.2

O.O -O.28

o.o

o.o

-1.0

o.o

o.o

o.o

Slo T

    E

o.o -O.6 o.o -1.0 o.o

Table 3.2: Cubic map. Estimated parameter values compared to the true values for rc = O.20 (eTH =

O.05). T == True va}ues, E = Estimated values, - = parameter values cannot be estimated because the

t,ime g. e.ries diverges with this amount of noise.

S5 S6 S7 S8 S9

True

 a

1.4 ID
1.4 O.99

O.6

O.54

O.2

O.14

-O.2

-O.25

Table 3.3: Cubic map. Estimated values of a in Eq. (3.78).
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Example 2: the H6non map

In this example, a two-parameter, two-dimensional map given by the H6non map is considered.

The map is given by

                          Cn == 10-PIX:1+P2Xn-2+KEn (3.81)

xvhere E. represents the random tbrcing of the system distributed uniformly. between -1 to 1

ancl h; represents the amount of forcing. Ten time series were obtained for ten different values

of (pt,p2) given b.x.' {O.12sin[2T(i - 1)/10] + 1.346, O.12cos[2T(i - 1)/10] + O.2},i = 1,•••,10.

Equation (3.56) is used to model each time series with k = 2 and d = 5. Again, a model with

more t,erms is used. Table 3.4 shows the estimated model parameters tbr the case where K == O.

Observe how accurately (up to the third decimal place) the algorithm estimated the parameter

values of each terms included in the model. Terms not shown have zero parameter values.

   XVhen the tbrcing is not zero, in particular for K = O.1, four out of the ten time series

diverged. Increasing the amount of noise further will cause all of the time series to diverge. For

t,he six nondixrerging time series, the estimated parameter values are shown in Table 3.•5' . In spite

of the presence of random forcing, the correct terms (1.0, xn-2 and xZ-i) and their associated

parameter values were still obtained. A working model can be obtained using the table and it

is given by

                            xn =ao +aixn-2+a2xZ-i, (3.82)

xvhich is exactly the H6non map.

3.5 Testing for Nonlinearities

In t,his section2, nonlinear autoregressive models (subsection 3.4.2) are used to detect the pres-

ence of nonlinearities in time series. The data are the recorded electric organ discharges (EOD)

of resting Gymnot?ts carapo specimens. See Appendix C for the experimental preparations.

   The EOD consist,s of brief electric pulses separated by comparatively longer intervals of

silence (for review see [12]). In general, the variability of the inter-EOD interval depends on be-

havioral conditions. For e).cample, in Gymnotus carapo, the variabilit.v increases due to shortening

of sonie of t,he interxrals i) in response t,o sensory stimulation, i.e, the novelt,y response, ii) after

pharniacolos,ical t,reatinents with serotonergic agents [f-)O], iii) during the int,eraction between

  -The result,s preseiited m t,!tis section also appear in Capurro .A., Longtin ."L, Bagarinao E, Sato S, rivlacadar

O, ;uid Pakdaman I<, X'ariabilit,y of the electric organ discharge interN'al duration in resting Gymnotus carapo,

sul)mitted for pul)lication,
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1•O Xn-1 Xn-2 Xn-3 XXI

TSi T
   E

1.0 O.O O.320 O.O

1.0 O.O O.320 O.O

-1.346

-1.346

TS2 T
   E

1.0 O.O O.297 O.O

1.0 O.O O.297 O.O

-1.416

-1.416

TS.3 T

   E
1.0 O.O O.237 O.O

1.0 O.O O.237 O.O

-1.460

-1.460

TS4 T
   E

1.0 O.O O.163 O.O

1.0 O.O O.163 O.O

-1.460

-1.460

TSs T
   E

1.0 O.O O.103 O.O

1.0 O.O O.103 O.O

-1.416

-1.416

TS6 T
   E

1.0 O.O O.080 O.O

1.0 O.O O.080 O.O

-1.346

-1.346

TS7 T
   E

1.0 O.O O.103 O.O

1.0 O.O O.103 OO

-1.275

-1.275

TSs T
   E

1.0 O.O O.163 O.O

1.0 O.O O.163 O.O

-1.232

-1.232

TSg T
   E

1.0 O.O O.237 O.O

1.0 O.O O.237 O.O

-1.232

-1.232

TSIo T

   E
1.0 O.O O.297 O.O

1.0 O.O O.297 O.O

-1.275

-1.275

Tal)le :S.4: Hetion rnap. Estimated parameter values compared to the true values fbr K = O.O.

values. E = Estiinated values.

T = True
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1.0 Xn-1 Xn-2 Xn-3 XZ-i

TSi T
E

110 o.o O.320 o.o -1.346

TS2 T
E

1.0 o.o O.297 o.o -1.416

TS3 T
E

1.0 o.o O.237 o.o -1.460

TS4 T
E

1.0 o.o O.163 o.o
-- 1.460

TS:, T
E

1.0

1.0

o.o

o.o

O.103

O.103

o.o

o.o

-1.416

-1.416

TS6 T
E

 1.0

1.003

o.o

o.o

O.080

O.080

o.o

o.o

-1.346

-1.353

TS7 T
E

 1.0

1.002

o.o

oo

O.103

O.101

oo
o.o

-1.275

-1.278

TSs T
E

 1.0

1.002

o.o

o.o

O.163

O.165

o.o

o.o

-1.232

-1.237

TSg T
E

 1.0

1.001

o.o

o.o

O.237

O.237

o.o

o.o

1.232

1.234

TSIo T
E

1.0

1.0

o.o

o.o

O.297

O.298

o.o

o.o

-1.275

-1.276

Table :3.5: H6non map. Estimated parameter values compared to the true values for K. = O.1 (<E)TH =

O.05). T = True values, E = Estimated values, - = pararneter values cannot be estimated because the

t,inie series diverges with tliis ainount of noise.
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Figure 3.19: (a) T

recording of fish 1.

t'unct.ion of the t.ime

sionless).

ime series of the

Abscissa: Interval

 series shown in

045 io m ee 4o so
             Order

inter EOD intervals of a resting Gymnotus carapo, 40 seconds of

 order. Ordinate: Noise amplitude (msec.). (b) Autocorrelation

(a). Abscissa: Interval order. Ordinate: Autocorrelation (dimen-

txvo fish [21], iv) in the active moments of the circadian cycle [15], v) during the reproductive

social })ehavior [41] and vi) during the escape response [29].

   Fig.ure 3.19 shows an example of the sequence of inter-EOD intervals and their autocorrela-

tion function. These intervals display some variability around their mean value. The purpose

of- the present, sect,ion is to determine the nature of these fluctuations: "rhet,her the fluctuations

in tlie inter-EOD intervals have a det,erministic component or whether they are predominantly

stochast,ic. This is achieved by using an approach based upon the comparison of best fitted

lin(iar and nonlinear .ÅÄ)LRs, in order to test for the presence of nonlinearit,ies. The technique is

parti(:ularly effective fbr t,iine series heavily contaminated with noise, and Nvhich, furthermore,

directl,v conipar-es t,he perforinance of linear .AR models with nonlinear ones. Follosving this

?u}alysis, a st,at,isti(:al inodel fbr t,he sequence of inter-EOD intervals is deve.loped.

   The basic idea is t,o coinpare the best linear inodel (k = 1) and nonlinear inodel (A: > 1) fbr

(ia('h data set, [11]. The best, linear inodel is obt,ained by searching for (l xvhich s.ives t,he first
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fish aAR aNAR Ucalc Uo .os

fishl O.133

fish2 O.115

fish3 O.192

fish4 O.289

fish5 O.171

O.125 1.766

O.113 O.665

O.185 O.876

O.283 O.428

O.144 3.438

1.645

1.645

1.645

1.645

1.645

Table 3.6: Comparison of the best AR and the best NAR model. aAR is the standard deviation of the

residuals of the AR model, aNAR is the standard deviation of the residuals of the best riNIAR model, U,.t.

represents the estimated squared ranks statistics, and Uo.os is the value of U at O.05 significance level.

minimum of Akaike's information criterion with k = 1. Repeating the same procedure for values

of k > 1 yields the best nonlinear model. For each data set and each value of k and d, the AR and

NAR coefficients ai were estimated using the method presented in the previous section. For each

of the resulting models, the residuals Nvere computed, and the standard deviations of each of the

series of residuals were estimated. The presence of nonlinear determinism is established when

the best nonlinear model is more predictive than the best linear model, i.e., aivAR is significantly

smaller than aAR, where cFNAR and aAR are the standard deviations of the residuals of the best

NAR, and best AR, respectively. Practically, the competing models were compared using the

nonparametric squared ranks test for variances[25].

   The results are summarized in Table 3.6 which compares the calculated test statistics (U-

value) Nvith the theoretical value at 591o significance level. The U-values indicate that the non-

linear models are not significantly better than the linear ones for fish 2, 3, and 4. Surprisingly,

fbr fish 1 and 5, the U-test indicates that the NAR is a better one step predictor than the AR.

This seems to contradict the result,s of previous studies. However, in the following, it will be

shown that the reason for this apparent discrepancy is not the presence of nonlinearities that

xventhindetect,ed with t,he previous methods but rather, it is due to the fact that the assumption

about t,he noise in the AR models is not appropriate.

   In order to establish tliis, the data is modeled by a linear AR sub.ject to a combination of

bot,h Gaussian arid shot noise. The model is of the form:

                                 dk-                       11n == ao +Åíariyn-r+ZbrP.T" +aT'Vn (3.83)
                                r=1 r=1
xvhere P,T, " represent,s an t;nnovatt;on,al outlz'er (IO) equal to 1 if n, = T. and O if 'n 7E Tr, k is the
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total number of outliers in the series, and b, is the amplitude of the rth outlier. To fit this model

to the data, i.e., to estimate the parameters, the scheme ofBox, et al. [16] is used. To detect the

timing ofthe outliers, the model is first estimated assuming no outliers are present. The residuals

are computecl and the maximum of t•heir absolute values is obtained. If this maximum is larger

than three standard deviations, then it is an outlier and the time of occurrence is recorded. A

new series of residuals is then obtained by setting the maximum value to zero and the standard

deviation is re-estimated. This procedure is repeated until the maximum value of the residual

series is Iess than three times the standard deviation. After all the outliers are detected, the

coefficients in Eq. (3.83) are reestimated using the fast Korenberg algorithm. A revised set of

residuals is obtained using this new set of coefficients. The same iterative procedure described

above is applied to revised residual series until no new outliers are detected.

   The resulting AR+IO models were compared to the best AR models as well as the best

NAR models. Comparisons based on the one step prediction performance of the models were

perfbrmed. The nonparametric squared ranks test for variances is used to test whether the

best NAR models are performing significantly better than the AR+IO models. Furthermore,

the residuals {br t,he best fit AR and AR+IO were tested whether they form a sequence of

independent, Gaussian random variables. To this end, the first one hundred autocorrelation

coefficients ofthe residuals were estimated and the Ljung and Box statistics[56] was used to test

fbr the lack-of-fit of the model. The standard deviations of the best fit ARs were compared to

that, of the AR+IO models. Tables 3.7 and 3.8 summarize the results. The U-values indicate

that the Nt ARs are not significantly better than the AR+IOs. In fact, the perfbrmance of the

AR+IO model as one step predictor is significantly better than the best 1 AR model for the

case of' fish 5 xvhich has the largest number of outliers. Furthermore, the residual time series of

t,he ARs with IOs are completely free of outliers as compared to that of the AR alone. These

result, in a significant decrease of the standard deviations of the residuals. Furthermore, for the

.4LR+IO, all lack-of-fit, tests of the autocorrelation of the residuals were sat,isfactory. For the

standard ARs, this xvas not the case for fish 3.

   These results show t,hat the .4XR+IOs perform better or as well as the best N.4XRs and the

best, ARs. Furthermore, the residuals of the .4LR+IOs, in contrast with some of those of the

best .tXRs ancl be.st lT.ARs, successfully pass all the tests pertaining to their independence and

Gaussian distribution. This is illustrat,ed in Fig. 3.20 which shows the residuals of the best fit

AR, NAR, and AR+IO models for fish 5. The AR coefflcients of the final models are gi'ven in

T'able :3.9.
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fish aAR+Io aNAR Ucatc Uo .os

fishl

fish2

fish3

fish4

fish5

O.124

O.106

O.180

O.262

O.132

O.125 O.780

O.113 -O.711

O.185 -O.092

O.283 -1.024

O.144 -O.242

1.645

1.645

1.645

1.645

1.645

Table 3.7: Comparison of the AR+IO and the best NAR model. aAR+Jo is the standard deviation of

the residuals of the AR+IO model, aNAR is the standard deviation of the residuals of the best l AR

inodel, U..i. represents the squared ranks statistics, and Uo.os is the value of U at O.O•o' significance level.

fish model Nl p SD ([l} (2crit DSD[oro] NO

fishl AR 2055 5 O.133
      AR+IO 2055 5 O.124

8Z847 129.97

93.571 129.97 7.1

16

o

fish2 AR 1940 6 O.115
      AR+IO 1940 6 O.106

98.759 128.80

97.021 128.80 7.8

21

o

fish3 AR 1875 6 O.192 133.123 128.80

      AR+IO 1875 7 O.180 126.647 127.63 6.2

13

o

fish4 AR 1775 3 O.289 100.931 132.31

      AR+IO 1775 3 O.262 98.139 132.31 9.3

21

o

fish5 AR 1.587 4 O.171 86.409 131.14

      AR+IO 1587 7 O.132 100.678 127.63 22.8

.9.7

o

Table. 3.8: Comparison of t,he AR and the AR+IO. N is the number of residuals used in the analysis,

SD ig. the standard deviation of the residuals of the model, (? is the estimated Ljung aiid Box statistics,

(2crtt = ,y"i`'oo-p, ,,..o.oL givegL the value of (? at 0.01 significance level, DSD is the decrease in the standard

deviat,ion comput,ed as DSD = (SD.,u{ - SDAR+io)/SD,m where SDAR is t,he standard deviation of the

residuals of the AR model and SD.! R+io is the standard deviation of the AR+IO model, and NO is the

nuinber of out,liers present, in t,he residual series.
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Fig'ure 3.20: Residuals of fish 5 models: AR (top), NAR (middle), and AR+IO (bottom).
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fish ao al aL) a3 a4 as a6 a7

1

2

3

4

5

O.OO0942

O.OO•oi 311

O.OO72bV 7..

0.012477

O.O13912

O.671543

O.491.5• 33

O..D"039o-O

O.777074

O.784023

O.203362

O.314534

O.287591

O.025463

O.089700

O.237763

O.283100

O.249927

O.176697

O.047697

-O.036813

-O.052195

O.O15180

O.O09994

-O.076328

-O.O08962

O.024365

O.090963

-O.048943

-O.07187o'•'

O.O12050

-O.031984

-O.070122

Table 3.9: AR coeflicients of the final models.



Chapter 4

Bifurcation Reconstruction

4.1 Introduction

Analysis of experimentally measured time series has been used to gain insights into the under-

lying physical processes, to do prediction, as well as to determine invariants associated to the

dynamics such as Lyapunov exponents, correlation dimension, among others. When time series

measured at different values of the system parameters are given, additional information about

the system's behavior becomes available. This extra information can be exploited to reveal the

diff'erent bifurcations the system undergoes as the parameters are changed, as well as to uncover

behaviors of the system which may be present but not readily observed. The goal of bifurcation

diagram reconstruction is to address this problem by obtaining a BD qualitatively similar to

t,hat of the given system using time series measured at a finite number of parameter values. It

is only recently that t,he BD reconstruction problem has received considerable attention. This

is brought about by the development of new algorithms for estimating predictor functions at

fixed parameter values and the increasing need to characterize the different behaviors of systems

with unknown dy. namics using observations. The different methods to solve this problem will

be discussed in the remaining chapters ofthis work.

4.2 TheReconstructionProblem

Suppose that K time series Sk = {ytk", O g t S T} of length N are measured at different

parameter values of an unkno"rn dynamical system. The point of interest is to kno"r, using

Slt, t,he qualit,at,ive- behavior of the system as a function of the paraineiter set, c. The basis of

re('onstruct,ion is provided by Takens' t,heorem[79] which states that it is possible to reconstruct

                                     58
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the dynamics of an unknown system using its time series output. Accordingly, fbr a given time

series corresponding to a particular parameter value c, one can find a predictor function f(• ; c)

such that

                                 Yt+A= f(Ytl c) (4.1)
where f : IR.dxlRk - IRd, c E Rk, k is the number ofsystem parameters, Yt = {?Jt, • • ' , ?yt-(d-i)A}

represents an observation from O to T, A is the time delay and d is the embedding dimension.

   The prediction problem as defined in Eq. (4.1) deals with time series corresponding to a single

parameter value. This does not take into account the changes in the behavior ofthe system as

the parameter c is varied. For example, in some neuronal models such as the FitzHugh-Nagumo

equation, the system can behave as either e: citable or oscillating depending upon the value of

the parameters involved[83].

   The BD reconstruction problem using time series is an extension of the prediction problem.

This extended problem does not only aim to reconstruct the dynamics of the system for fixed

parameter values but also to interpolate the changes in the behavior of the system when some

of its parameters are changed and to estimate the bifurcation points where these changes take

place. More precisely, the problem is defined as follows: it is assumed that

  1. the equation describing the dynamical system and the dependence of the system parame-

     ters are unknown;

  2. the predictor function f(•; c) is also unknown and needs to be approximated;

  :3. a finite number of time series Sk, k = 1,•••,K at different parameter values ci,•••,cK

     are available; and

  4. t,he values of ci,•••,cK may or may not be known.

Thus, the time s. eries are the only source of information regarding the dynamics of the system.

Under these assumptions, it is desired to reconstruct the bifurcation diagram of' the given system.

The t,erm reconstructz'on is used here in the sense described in [81, 821, that is, finding a suitable

parametrized funct,ion which exhibits the same bifurcation sequence as the original system.

4.3 The Projection Region

The ke.x.' idea. tliat makes possible the analysis of bifurcation structure from

coHcel)t of' p7'o.7'ection reg'i,on. The projection region is defined as t,he region

time series is the

in tlie parameter
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space of the model with similar bifurcation structure as the system. Thus for parameter values

within this region, the dynamics of the model is therefore the same as that of the given system.

The bifurcation structure of the system can now be analyzed using that of the model on the

projection region. The problem therefore is to determine the projection region using the available

tlme serles.

   To understand this, suppose that f(X; c) represents the dynamics of the given system and

f: R,d Å~ IRk - IRd, where d represents the dimension of X and k the number of system

parameters. Suppose further that there exists a family of functions g(X;w), parametrized by

w E IR,P, such that the behavior of g(X; w) in some region of its parameter space, denoted as st,

is similar to that of f(X;c) for some region in its parameter space denoted as r. The subspace

9 is referred to as the projection region of r. Furthermore, it can be assumed that there exists

a function h : I" - S) such that if ci E Ir and wi E S2 then wi = h(ci) and g(X;wi) behaves

similarly as f(X;ci). I ote that h(•) determines the projection region 9 and depends on the

chosen family of functions g(X;w). When h(-) is linear, then the projection region is referred

to as a linear manifold in the parameter space of the modeL Otherwise "rhen h(•) is nonlinear,

t,he resulting projection region is a nonlinear manifold.

   In most applications, however, only a finite number of time series Si, f, == 1,•••,K, cor-

responding to a finite number of parameter values ci, are available. Moreover, the function

.cy(N;w) is predetermined. Thus, the problem is to find wi,...,wK such that .g(X;wi) approx--

irnates f(X;ci) fbr the ith time series. In this case, the projection region is the region where

the set {wi} is Iocated. In other words, the projection region is the region in the parameter

space of g(X;w) defined b}r the set of points {wi} corresponding to all possible time series that

can be generated by varying the system parameters c within r. The problem is to determine 9

fo. r t,he chosen .cy(X;w) using the finite set of points {wi} computed from the given time series.

This problem wi11 be addressed in the succeeding chapters.

   To compare the bifurcation structures on r and 9, some criteria are needed to determine

their similarities. These criteria are defined as follows: Suppose that for any system parameter

c (i Ir there exists a w= h(c) E S-2 such that ll f(X;c) - g,(X;w) ll< E for some small e, for X

in soine conipa(:t, set, and fbr some appropriate norm, t,hen the bifurcation diagrain of .ge(.X';w)

is siinilar to t,hat, of ,f'(i\; c) if the following conditions hold:

   1. Let u,s a,ss'tt,7ne tha,t .X" is a !ila;ed po/;nt off(tX';c), for a gt;ven c, th,en there is a .fiixed point

     N' ofg(`IY'; Nv) s•u,ch that ;" = .)•(" +O(E), e.xcept possibly for a, param,eter set of meas'ttre

     C)(s). 1;iu,7'thcr7itore, .X-* and .\' have the sam,e stabilit?Lx.
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  2. To make s'ure that g(X;w) does not introduce spurious stable eg'uilibria, we need also to

     assume that for all c, exceptpossibly on a set of measure O(e), f(X;c) andg(X;w) have

     the same number of stable equilibria in li X ll< rvf.

  ,9. Iiiinally, twe need .g(X;w) to reprodttce the various dynamics displayed bJ? f(X;c), so that

     -tve assure that i.ff(X;c) undergoes a bifurcation at c', then g(X;w) ?tndergoes a similar

     bifurcation at W* = h(c') + O(E).

   Although in general, (1) - (3) are only usefu1 when the said quantities (bifurcation points

and fixed points of the original system) are known, these criteria are significant in clarifying

the meaning of similar bifurcation diagrams. In the following section, a general reconstruction

algorithm is introduced. This acts as the template algorithm where the algorithms in the

remaining chapters are based.

4.4 AReconstructionTemplate

The general approach to reconstruct bifurcation diagrams can be summarized into four major

st,eps. The first step is to choose a parametrized function, say g(X;w) with w E IRP, that

best, approximates the predictor function f(X;c). Like any other modeling problems, finding

an appropriate g(X;w) is always a difficult task especially with the extra requirement that

g(X;w) should aiso model other time series in the set {Si,•••, SK}. In this work, a three-layer

fully-connected feedfbrward neurai network and nonlinear autoregressive models are employed.

The fbrmer is used for noiseless case while the latter deals with time series corrupted with noise.

   The use of neural networks is motivated by the fact that neural networks are universal ap-

proximators [44], in the sense that they can approximate any continuous mapping (section 3.3).

Moreover, neural networks can have an unlimited number of parameters by simply changing

the number of units in the hidden layer without affecting the number of input and output vari-

ables. This allows more degrees of freedom in obtaining better function approximation without

affecting the number of input variables which is dictated by the embedding dimension. On the

ot,her hand, the NAR model has been applied effectively in obtaining predictor functions for a

number of s:rsteins (inaps and flows), detecting nonlinearities in noisy time series (observation

and dynainical noise), estiination ofd.vnamical invi}riants, among others.

   XVith this, t,he approxiniating function g(-;w) for theII -case takes t,he form

                       Y,}+1 = SJ(llYni''',Yln-(d-1)iW)
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                               sd                            = 2w,O•q(Zw;7y..(i-i)+ybej-) (4.2)
                              2'=1 i=1
where d is the embedding dimension, w E RP, p = (d + 2)s, represents the weight vector

with the interconnection weights (w20•,u]{, and ej•) between neurons as its elements, s is the

number of hidden units, yb is the bias neuron, and q(•) is the activation function of the hidden

layer neurons. The output neuron has a linear activation function. For the NAR-case, the

approximating function g(• ; a) takes the form

                           Yn = g(Yn-1,''',Yn-d;a)
                                   M
                               =2amzm(n)+En (4.3)
                                  m=O
where {z.(n)} is composed of all the distinct combinations of the embedding space coordinates

('Yn-i;iJn-2,''',yn-d) up to degree k [Eq. (3.56)].

   The second step is to "project" each time series in the set {Si,•••,SK} into the parameter

space of the approximating function g(• ;w). This means finding a wi that minimizes 11 yk+i -

g(!y.t,•••,yk-(d-i);w) Il for some specified norm. Denote this wi by wfui.. Here, an error

function ofthe fbrm
                              N
                       e(w) == 2[yi-g(yi-i,•••,yi-d;w)]2, (4.4)
                              i=d
xvhere IV represents the number of data points in each time series, is used. For K time series,

K corresponding wfui.s, each representing a point in the parameter space of the approximating

function, will be obtained. These points can then be employed to obtain the projection region.

This is the third step of the reconstruction algorithm. The success of the reconstruction de-

pends on how well the projection region is approximated by {wf.i.}. One xvay to do this is to

approximate the pro.jection region by a linear manifold and obtain basis vectors from {wfii.}

using principal component analysis (PCA). This will be discussed in the next section.

   Tl}e final step is to take the bifurcation structure of the approximating function in the

projection region as the reconstruction of the bifurcation structure of the given system. One

can employ the methods described in section 2.2.

4.5 LinearManifoldApproximation

.r)L ke.>' observation by Tokunaga, et al.[82] and Tokuda, et al.[81] was that if the covariance matrix

of t,he estimated parameter values are formed and the eigenvalues of this matrix is computed, the

number of significant eigenvalues corresponds to the number of systeni paranieters. iLX,Ioreover,



4.b-'. LllNEAR MA:VIFOLD APPROXIMATIOIV 63
the bifurcation structure on the space span by the eigenvectors associated to the significant

eigenvalues is qualitatively similar to that of the original system. Thus using PCA, they were

able to reconstruct the bifurcation diagram of an unknown system from time series data.

   This finding can be explained using the concept of projection region. In fact, this is the case

when the projection region is a linear manifold in the parameter space of the model. In order

to obtain an expression for this Iinear manifold, principal component analysis was employed.

The dimension of the subspace was determined from the number of significant eigenvalues of the

covariance matrix of {wfui.} and the subspace itself was spanned in terms of the eigenvectors

associated ivith these eigenvalues.

   Specifically, the sample covariance matrix of the p-dimensional data vectors {wfui.}, i =

1, • • • ,K given by

                                    K
                               c=26w,6w7•', (4.s)
                                   i=1
where 6wi = w%i. - W and W represents the mean, is formed. The eigenvalues of this matrix is

then computed and the eigenvectors obtained. The number of nonzero eigenvalues corresponds

to the number ofsystem parameters. Moreover, the space spanned by the eigenvectors associated

with t,he q significant eigenvalues defines a linear subspace which can then be taken as a linear

approximation of the projection region. With this, any point on the projection region can be

estimated using
                                       q                             wpR(a) =2ai ipi +w (4.6)
                                      i=1
where the ipi's are the dominant eigenvectors, which can be taken as the new basis vectors,

and t,he ais are the expansion coefficients, which can be taken as the effective parameters. A

qualitatively similar BD is then reconstructed with the expansion coeflicients ais as the new

bifurcation parameters.

   In general, the problem of obtaining the projection region is identified as a problem of

interpolating h(•) using the computed w%i.s. The linear manifold approximation means a linear

approximation of h(•), that is,

                               h(c)=u.+Tc+e (4.7)
where T is a p Å~ k; matrix and e represents the error t,erm. PCA can then be used to estimate

the matrix T t'rom the wl.i.s and thus, the number of significant eigenvalueg. of C, which gives

t,he dimension of the projection region, can correspond to the number of bifurcation parameters

of t,he systein which is given by t,he diinension of c.
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1OO

                  o                            1 2 3 4
Figure 4.1: Significant eigenvalues of the covariance matrix formed by the weight vectors wli.'s

obtained after training the network. The y-axis is the relative value in percentage, that is,

abs(eigenvalue)/Åí(eigenvalues). The number of significant eigenvalues is equal to 2 which corresponds

to the number of system parameters.

   To illustrate this, consider ag'ain the well-known H6non map:

                            Xn+1 = g(XniXn-1;A)

                                 = 1-pixR +p2xn-i (4.8)

where A == (pi,p2). Using Eq. (4.8), ten time series were generated each of length IV = 100 for

parameter values

                        pi = O.135cos[2T(1'-1)/10]+1.346

                        p2 = O. 135 sin[2T(]' - 1)/10] + O.2

                        .i=1,•••,10. (4.9)
.4L neural netxvork "ith an input-output function given by Eq. (4.2) xv•as employed in ap-

proximating the map. Tl)e network parameters were as follows: d = 2, s = 7, Tyb = 1, and

q(:t:) = 1/[1 + e.xp(-x)].

   The net,worl"vas trained using backpropagation. rlvlinimization of the error function given by

Eq. (4.4) xvas done using the BFGS algorithm[69]. After computing the set of weights {w3.i.},

t,he covariance matrix [Eq. (4.5)] was set up. The significant eigenvalues of t,his matrix together

ivith their respective eig,."envectors xvere then coniputed. The eigenvalues are shown in Fig. 4.1.
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From the figure, the number of significant eigenvalues is the same as the number of system

parameters. This suggests that the dimension of the projection region is equal to the number

of bifurcation parameters and thus, establishing the correspondence between the two parameter

sets. Any point on the projection region can be expressed in terms of the significant eigenvectors

associated with the significant eigenvalues and is given by Eq. (4.6). Using Eq. (4.6), the BD of

the approximating network on this region can be constructed by varying the ais. This BD then

serNres as the reconstruction of the BD of the original map. See for example [821 for the actual

BD reconstruction of the H6non map using this approach.



Chapter 5

Linear-In-Parameter Maps

5.1 Introduction

In general, the linear manifold approximation presented in the previous chapter is not always

valid fbr any system. It is imperative, therefore, to know 1) when there is an appropriate

linear manifold and 2) how it can be systematically located. The purpose of this chapter3 is

to provide partial answers to such questions. More precisely, it will be shown that there is

a class of maps, henceforth referred to as linear-in-parameter (LIP) maps, for which a linear

manifb}d of dimension equal to the number of bifurcation parameters and bifurcation structure

t,hat is qualitatively similar to that of the map can always be found in the weight space of

the approximating network. The problem of recognizing time series generated by this class of

maps is also discussed. Finally, an algorithm is proposed to reconstruct BDs of LIP maps using

predictor functions obtained by neural networks. This algorithm is flexible so that other classes

of predictors, apart from neural networks, can be used in the reconstruction.

5.2 An LIP Map: An Illustration

In this section, t,he H6non map example in section 4.5 is used to illustrate the reconstruction

of LIP maps from time series. It is supposed that g(x.,x..i;A) is known at t,hree parameter

values Ai = (f)l,p.2i), A2 = (p2i,p3), and A3 = (p?,p32). Denote these maps as gi, .g2, and g3,

respectively.'. XVith this, Eq. (4.8) takes the form

                     ,ql = 9(Z'n,•cL'n-1;Al)=1-plxZ+p21x'n-1 (5.1)

  :'The cont,ents of this chapter also appear in Bagarinao, et al., 1999 [8].

                                      66
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                    g2 = g(xniXn-1;A2)=1-p?xk+p;xn-1 (o-.2)

                    .93 == g(Xn,Xn-i;A3)=1-p?xZ+p3xn-i• (5.3)

The goal of the new reconstruction scheme is to approximate Eq. (4.8) using the three functions

gi, g2, and .g,3. To do this, one can take the function

                   9(Xn7 Xn-iP, rs) =gi +a(gi -g2)+6(gl -g3). (5.4)

The new set of parameters (a,5) is related to the old set (pi,p2) via the relation

                        pi - pl+a(pl-p?)+6(pl-p?) (s.s)
                          '                        p2 - p5+a(p5-p3)+6(p5-p;) (s•6)

From this, the BD of the H6non map can be reconstructed using Eq. (5.4) by varying a and 6.

Thus, only three predictor functions are needed to realize the reconstruction. This requirement

can be easily met by using the given time series to approximate gi, g2, and .g,3•

   The most compelling question at hand is how to use Eq. (5.4) in finding a linear subspace

in the weight space of the approximating netNvork. To answer this, one can rewrite Eqs. (5.1),

(5.2), and (•5.3) in the form similar to Eq. (4.2), that is,

                      .ai == g(•;wi)

                              sd                          = 2w,iq(2 wi• 'Jx.-(i-i)+xbe,i) (5.7)
                             J' =1 i=1
                       tv2 = .(i(•l.2)

                              sd                          == 2wj2•q(Zw,2•'J'x.m(i-i)+xbej2) (5.8)
                             J' =1 i=1
                       .ij:3 == g(-1w3)

                              sd                          = Zw,3• q(Z w?'J'x.-(i-i)+xbe?) (5.9)
                             j=1 i=1
where t7i, g2, and .ij:3 are t,he network approximations of gi, g2, and g3, respect,ively. In terms of

t•he /vi's, Eq. (5.4) can be writ,ten as follows:

                    .9(:i;n, •Tn-i; a, 6) u (1 +a+ 6)gi -ag2 - 6g:]. (s.lo)

   Equation 5.10 can be interpreted as a composite network ma(le up of the three rietworks

i7L, ,("1'2, and .(']':s. See Fig. 5.1(A). Since (1 + cv +5), av, and 5 are inultiplicatiNre factors of the

t7i. il•-). and .('1':i, respectix'ely, tlieir variation only affects the hidden-to-output (outer) weights of
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Figure 5.1: (A) The composite network made up of the three predictor functions tvi, .ijL), and g3. The

inner xveights are unchanged xvhile the outer weights are given by Eq. (5.11). (B) XVhen the inner weights

of t,he t,hree net"rorks are tlie same, the composite network can be trimmed to make the number of hidden

units equal t,o that of tlie predictor functions. For this case, the outer weights are given b}r Eq. (5.12).
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the network while the input-to--hidden (inner) weights remain unchanged. From Eq. (5.10), the

outer weights of the composite netxvork can be written as follows:

                     wg = (1 +a+ s) wO•i o(- cM)wO•2 e (-s)wO•3 (s.n)

xvhere w.O E IR,:3S represents the outer weights of the composite network, wO'i E RS represents

the outer weight,s of .iji..i,2,3 and (II) denotes a direct sum.

   Equation (5.11) defines a }inear subspace in the space of the outer weights of the composite

network. This subspace is generated by varying the parameters a and 6. The dimension is equal

to the number of parameters (two for this case) and the bifurcation structure of the network on

this subspace is qualitatively the same as that of the H6non map since the composite netNvork

approximates Eq. (5.4). Equation (5.11) thus locates the desired linear manifold without using

PCA. AII it requires are the outer weights of the three networks gi, g2, and .ij3.

   Further simplification of the above results can be attained by assuming that the inner weights

of all three net,xvorks are equal. This assumption is justifiable when one thinks of the gis as

composed of subnetworks each approximating the functions Hi(xn,xn-i) == xZ; H2(xn,xn-i) =

xn-i, and H3(xn,xn-i) = 1 of the H6non map. Following the same line of reasoning as above,

each pi being multiplicative factors ofthe Hi(•) can affect only the outer weights ofthe gi's. Thus,

with an appropriate choice of the number of hidden units and training algorithm, it is possible to

keep the inner weights equal for all the trained networks. In the simulation, a grouping of hidden

unit,s xvas observed for the case of the H6non map. Four hidden units collectively approximate

the function x'- r.7  , two hidden units do not contribute to the input-output function (outer weights

are zero), and the remaining one hidden unit approximates the rest of the terms. This is shown

in Fig. 5.2.

   With this assumption, the composite network can be trimmed so that the number of hidden

units will be the same as t,hat of the gi's, that is, equal to s [see Fig. 5.1(B)]. The linear

subspace can still be located in the outer weights' space. This subspace is spanned by the

vectors (wO,i - w`',2) and (wO,i - wO,:3). Any point on this subspace is given by

                     ws = wo,1 +a(wo,1 - wo,2)+s(wo,1 -wo,3) (s.12)

xvhere w[li E IRi represents the outer "reights of the trimmed network a,nd w",i E IR.S represents

the out,er xveights of .iji=i,2,:i•

   Equation (5.11) or (5.12) clefines the desired linear subspace in terms of the computed outer

iveig'ht va. lues of t,he predictor funct,ions. It guarantees t,he existence ot' this subspace in the

xveit.vhr spa(:e of t,he ne.t,"'ork f-or the case of the H6non inap.
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Figure 5.2: The estirbated weight values of the trained network.

t,ril)ut,ed to attain t,he different functions in the original Henon map.

Observed how the weights are dis-
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Figure 5.3: Reconstructed bifurcation diagram of the H6non map on the linear subspace defined by Eq.

(5.11) in the paramet,er region pi E [1.15,1.548] and p2 E [O.O,O.398]. See Table 5.1 for the color coding.

   To reconst,ruct, the bifurcation diagram, three predictor functions were used. The func-

t,ions were approximated by neural networks and corresponded to parameter values Ai =

(1.388,O.328), A2 = (1.211,O.2), and A3 = (1.388,O.072). Equation (5.11) is used in the re-

const,ruction. The parameters a and fi are varied from [ai,a2] and [bi,b2], respectively, such

t•hat pi E [1.15,1.548] and p2 E [O.O,0.398]. The reconstructed BD using this scheme is shown

in Fig. 5.3. Table 5.1 summarizes the color code used in the figure. From the figure, it is

evident that the new scheme captures the different dynamics of the H6non map (See [82] for the

BD, both original and reconstructed using the PCA-based approach discussed in the previous

chaptJer, of t•he H6non map on the same parameter region).

5.3 Definition and BD Reconstruction

The reason why t,he reconstruct,ion using Eq. (5.4) works for the case of t,he H6non map is that

t,he H6non map belongs to a large class of maps called LIP maps. An LIP map is a map that

can be written in the following manner:

                                  h
                         9(•T; A) =2Ai Hi (x)+Haux (x) (5•13)
                                 i=1
where g : IR.d Å~ IR,k e IR,i, x E IRd, A = (Ai,A2,•••,Ak) E Ric are t,he parameters, and the

funct,ions Hi(x) are linearly independent. The functions Hi(x) are linearly independent if the
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                           COLOR COMMENTS

                           blue periodlor8or 15

                           red period2or9or 16

                           magenta period3or 10 or 17

                           cyan period4 or ll or 18

                           brown period5or 12 or 19

                           yellow period 6 or 13 or 20

                           white period 7 or 14 or 21

                           black period greater than 21

                                    quasi-periodic region

                                    chaotic region

                          Table 5.1: Color code used in Fig. 5.3.

only solution to the equation
                                    r                                   2ai Hi (x) =O (s.14)
                                   i=1
is the trivial solution cui = 0 for all values of i,

   To reconstruct, the BD of an LIP map, it is assumed that at least k + 1 predictor functions

gi(cv) == .q(.x;Ai) for fixed parameter values Ai, i = 1,•••,k+ 1, are known. Two possible cases

(:an arise. The first case is when H...(x), the last term in Eq. (5.13), is zero. Under this

condition, g(x; A) can be approximated by the equation

                                          k
                                 g(x, 6) =: 26i gi (x)• (s.ls)
                                         i:=1

The second case is when H...(x) is not equal to zero. For this case, Eq. (5.15) cannot, be used

since it, will introduce parameters to the term Hau.(x) of each gi(x) which should not vary with

parameters. To remedy this situation, the following equation is employed: '

                                         k
                         g(x, P) =gi (x) + E) 6i [gi (x) -gi+i (x)]. (5.16)
                                        i=1

By taking the difference between two predictor functions before multiplying by the new param--

et,ers, the contribution of H...(x) in each predictor function is effectively canceled out. This

removes the possibility that, H...(x) is made to vary with the new parameters. Equation (5.4)
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is an example ofEq. (•i16). In both equations [Eqs. (5.15) and (5.16)], the 5,is serve as the new

bifurcation parameters.

   "rhen the gi's are approximated using neural networks, a linear subspace can be found in the

space defined by the outer weights of the approximating network. For the composite network,

t,his subspace is given by

                                       h
                                 w.o =e si wo•i (s.17)
                                      i=1

fbr t,he case when Haux(x) is zero and wg E IRkS represents the outer weights of the composite

network. For the case when H...(x) is not zero, w,O has the form

                       wg= (i+Åí,=pi) wo,i e) s.II?=,(-6i)wo,i+i (s.is)

where w,O E IR,(k'+i)S represents the outer weights ofthe composite network, wO'i E RS represents

t,he outer xveights of the known predictor functions, and CD denotes direct summation. Similarly

for the trimmed network, the outer weight vector is given by

                                      k
                          .s. =.o•1 +2 rsi (.o•1 -.o,i+1) (s.lg)
                                     i =1

fbr t,he case when Haux(x) is not zero, or

                                       k
                                 w8•=26,wO•i (s.2o)
                                       i=1

fbr the case xvhen H.,,.(a;) is zero. Here, w8 E IRS represents the out,er xveights of the trimmed

network, wO'i represents the outer weights of each predictor functions, and t,he fi's are the new

bifiircation parameters.

   The preceding four equations defined the desired linear subspace which can be generated

b.y varying t,he new parameters 5. The dimension of this subspace is equal to the number of

bifurcation parameters. Moreover, the BD of the network on this subspace is qualitatively the

same as the BD of' t,he LIP map. Using either one of these equations, one can reconstruct the

BD of the LIP map from the given t,ime series. Two important issues remain to be considered:

1) hoxv to det,ennine the number of bifurcation parameters k from the t,ime series themselves;

and L)) hoxv t,o know if indeed t,he time series are generated from an LIP map. These issues are

(hNplore-d in t,he next, section.
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5.4 IdentifyingLIPMaps

Suppose that .g(x,A) [Eq. (5.13)] is known at K different values of A, say Ai, i = 1,•••,K. Let

gi(:v) = g(x,AZ). The goal is to determine the number of parameters k using gi(x). To do this,

a funct,ion XZJ (x) is defined such that

                          XZ2(x) = gi(x)-gj(x) (5.21)
                                     k
                                 - 2(Ag-A'.')H.(x) (5.22)
                                    rii

                                 - 2agi' H. (x) (s.23)
                                    r=1
xvhere orY' = (At,' -AJ,'). This effectively cancels the Ha..(x) ofeach gi(x). A vector VIIi is formed

by, eNraluating Nij' (.cv) at AI discrete values ofx:

                         VZ.i = [.Xij(xi),•••,XiJ'(xM)]T . (5.24)

                              i =1,•-,K-1

                              j =i+1,•••,K

The vector VIJi is therefore Xij'(x) evaluated at discrete points xm, m = 1,•-•,M. Similarly,

t,he vector hk can be defined as Hk(x) evaluated at the same discrete points xm, m = 1,• • • , IU.

From Eq. (ro.23), Vkl' i can also be written as

                                      k
                                VZ., =2ofi'h.. (5.25)
                                     r=1
The vectors h,'s are in general independent since the Hr(x)'s are independent functions [Eq.

(5.14)l. These vectors can then be thought of as basis vectors for VZMt spanning a k-dimensional

subspace of IR.At. Therefore, the vectors Vt Mi can only be found on this subspace which can be

generated by varying the parameters aY'. Thus, if a finite number of vectors Vt: are known,

PCA can be used to determine the dimension ofthe space occupied by these vectors. This would

>rield the important result that the number of significant eigenvalues of the covariance matrix

fbrmed by the Vi//f would be equal to the number of parameters k.

   Ir) t,erms of the eigenvectors associated with the significant eigenvalues of the covariance

inat,riN, VZ Iif can be Nvritten as

                                         h
                              Vl,Ii == VAtf +Z"yY' 4), (5.26)
                                         r=1
xvhere xi.j's represent, the expansion coefficients, VM is the mean ofthe {VZiJf' } and the ip.s are the

eig,em'ectors. The.se eigenvectors can be interpreted as an orthonormalization of the independent
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vectors h.. One can also think of the continuous equivalent of Åë. denoted as ().(x). In terms of

these functions, Eq. (5.13) can be written as

                                    k
                           g(x, r) =2orr Åër (x) +Åëaux (x) (5.27)
                                   r=1
where T = (ori,•••,ett) represents some effective parameter. If the hr's or the Hr(x)'s are

themselves mutually orthogonal, an idea ofthe functional form of the original H.(x)'s can be

extracted from the ipr or Åër(x)•

   Wi'th these results, the number of bifurcation parameters, together with the functional form

of g(.T.;D, can be determjned from the time series. This can be done by approximating the

gi(.7;)'s using predictor functions gi(x) obtained via neural networks or some other approach.

Once the gi(x) are known, the difference between each gi(x) can be estimated and the difference

function Xij' (x) [Eq. (5.23)] can be obtained. The set of vectors {VZMt} is then generated by

evaluating Xij' (x) at M different values ofx. After which, the covariance matrix [Eq. (4.5)]

of' these vectors is formed and the eigenvalues and their corresponding eigenvectors computed.

The number of significant eigenvalues is equal to the number of bifurcation parameters if the

time series comes from an LIP map. The associated eigenvectors are related to the original map

via Eq. (5.27).

   To use these results in identifying time series generated from LIP maps, one can take subsets

of the set of vectors {VI/,[ }. The membership of each subset can be chosen randomly from the

original set. For each subset, PCA is applied and the number of significant eigenvalues and

the associated eigenvectors are determined. For LIP maps, the result should be the same, that

is, the same number of significant eigenvalues and the same eigenvectors should be obtained.

Otherxvise the map is non-LIP. This will be illustrated in the examples considered (section 5.5).

   Finally for the case where the As in Eq. (5.13) are functions of parameters rather than the

parameters themselves, a generalized LIP (GLIP) map can be defined as follosvs:

                                             '                                       r                              g(.T; A) =2 fi (A) Hi (x) (5.28)
                                      i=L
xvhere A = (AL, • • • ,Ak•) E Rk are the parameters and the fi(A)s are functions of the parameters

and are Iinearl.y independent, tl}at is, they satisfy Eq. (5.14). For GLIP maps, t,he results in the

previous section and the current one should still apply for fi(A) rather than A. This means that

inst,e.ad ofthe nuinber ofactual parameters k, the method will determine the mnnber ofindepen-

dent, fimctions fi(A), xvhich is equal to r. .iXlso, the reconstructed BD is relat,ive t,o the parameter

'ts'L'i,[= f,(A)] ratlier than to the .>Lis. This was illustrat,ed in sections 4.•oV iincl DV.2 ttsing the H6non
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map. Observe that the time series were generated using parameter values pi = r. cos(e) + ci

and p`-, = r. sin(e) + c2. In the example, e was varied while keeping the other variables (r., ci,

and c2) fixed to some values in generating the time series. This effectively. reduces the number

of parameters to one, which is e. However, the method detected the parameters pi == fi(e) and

p2 = f2(e). And since these two parameters were detected, the reconstruction xvas based on pi

and pL) rather than on e.

5.5 Examples

In this section, the procedure in reconstructing BDs of LIP maps will be illustrated via some

examples. In all the examples, a three-layer neural network with input-output function given

by Eq. (4.2) xvas used to approximate the predictor functions. For each of the system, first, the

number of parameters is discerned from the significant eigenvalues of the covariance matrix of

{VZAjf}, then the functional form of the map is determined from the eigenvectors associated with

t,he significant eigenvalues, and finally, the BD is reconstructed.

   To get the functional form of the map using Eq. (5.27), one also needs to specify Åëaux(x)

which can not be obtained directly from the eigenvectors. To do this, first each .iji(x) is

evaluated at Adi values o{' x (the same values used in obtaining V]ti) ) and the vector Gi =

[.lyz(,Ti),•••,jtz(.z'tv)]T is formed. Then each vector is projected onto the eigenvectors ipk. From

t,his, a discrete equivalent of the function Åë...(x) is given by the equation

                                         k
                              ipaux=ei -E 7g ipr (5.29)
                                        r=1

"'here ipa.. is the discretized equivalent of Åëa.x(x) and fir3 is the projection of the vector Gi onto

t,he rth eigenvector ip.. This equation is the discrete equivalent of Eq. (5.27).

The H6non map

.4Ln example of a LIP map is the H6non map. It is given by the following equations:

                             'T n+1 = 1- 1)lx' 2n + ?Jn

                             11n+1=P2•Tn (5.30)
wit,h

                              Hl(iX'ni:L'rt-1) = .T'.2
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Figure 5.4: Significant eigenvalues of the covariance matrix form by the vector VX}'. Same unit (in
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g'roup with .ij6 to .ijio. (C) The third group with gi, i even. (D) The ten predictor functions. In all cases,

there are two significant eigenvalues indicating that the time series were generated from an LIP map.

                                   fi(Pi,P2) = Pi

                                H2(•Tn,Xn-1) = •Tn-1

                                   f2(Pi,P2) = P2

                              Haux(Xn,Xn-1) = 1

   The ten predictor functions obtained in section 4.5 were used in the analysis. From these

prc}(lictor funct,ions, 4 groups were formed: the first group was composed of the predictor func-

tions .c- 1' i to .at•); the sc}cond xvas from ,ij6 t,o gio; the t,hird group was composed of gi, zi even;

a,nd t,he last, group was composed of the entire ten predictor funct,ions. For each group, the

func;tion Ni•7(.i:) xvas evaluated on a. square grid given by xn = -2.5 + 5i/L)O, i = 1,•••,20 and

n:n-i == -2.5 + 5.i/20, .i = 1,•••,20 to generate the set of vectors {ViSi=4oo}. The eigenvalues,

and their asso('iated eigens'ectors, of the covariance niatri.x of {Vl{)o} xvere tlien coinputed. Fig-
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significant eigenvalues is equal to the number of system parameters for all the systems considered.

ure 5.4 shoxvs t,he significant eigenvalues to be equal to two for all groups (A)--(D). Since this

miml)er is the same {br all groups, it can be concluded that the time series were generated from

}m LIP map. The normalize(l eigenvectors are shown in Fig. 5.5. Figure 5.5(A) is tlie first

principal eigenvect,or xvhich corresponds to the parabolic term of the map. In Fig. 5.5(B), the

surfa('e is alinost, planar corresponding to the tenn z'n.i and in (C), t,he (I)aux(aJ)-surface is close

to one except, near the boundaries. Thus, all the terins in the H6non inap are clearly identified.

The r(x('onstruct,ecl BD is .shoxvn in Fis,. 5.3.
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The logistic map

The logjstic map

                              Xn+1=4paXn(1-Xn) (5.31)
is an LIP map with

                             Hl (Xn) == 4Xn(1 - Xn)

                              fi(pa) = pa

                                        '                           Haux(xn) = O•

Ten time series of length T = 100 were generated for the parameter values paJ• = 1 - 5(1' -

1)/10, .7' -- 1, • - • , 10. The network parameters used in approximating Eq. (5.31) were as follows:

d = 1, s = 6, ?lb = 1, and q(x) is sigmoidal. The BFGS algorithm was used to minimize the

error function.

   After computing the .ijis, Xij'(xn), i -- 1,•-•,10, 1' -- i+ 1, was evaluated at different values

of .x'n. gi'ven by .ccn = (i - 1)/100, i = 1,•••,101, then the vector Vk'jo' i was formed, and the

principal components computed. Figure 5.6(A) shows one significant eigenvalue corresponding

to t,he only bifurcation parameter of the logistic map. A plot of the normalized eigenvector

is shoxvn in Fig. bV.7(A). The eigenvector does exhibit the parabolic form of the logistic map.

Moreover, ipaux(x.) is almost zero for x E [O.1,O.75], as shown in Fig. 5.7(B). This is consistent

ivith Eq. (•5.31). The BD of the Iogistic map was reconstructed using Eq. (•5.15) since ipaux(x)

is zero. For this case, the equation has the form g(x.;5) = 5gi(x.). Figure 5.8(A) shows the

reconstructed BD fbr 5 E [O, 1]. Evidently, the reconstructed BD exhibits the period doubling

route to chaos behavior, among others, of the logistic map.

The cubic map

Another example of an LIP map is the cubic map given by

                             tTn+1=Xn+ILLXn-x2 (5.32)

Ns,rit,h

                               Hl(Xn) = -Tn

                                fi(l-`) = l•L

                             Haux(•z'n) = xn-x9i



82 CHAPTER 5.LINEAR-IIV-PARAMETER MAPS

{A)

 1

O.8

O.6

xn

O.4

02

 e

(B)

2.5

1.5

O,5

xn

-O.5

-1.5

-2.5

l

    s

o O.2 o,4 p o.6 O.8 t

Figure 5.8:

algorithm.

stable

/
/

pitchfork

biturcatlon

unstable

/

        -10 -6

Reconstructed BD of (A)

   -2 2 6      5

the logistic map and (B)

   10

the cubic map using the proposed



.5.5. EXAMPLES 83

(A)

O.2

O.1

o

-O.1

-O.2

'

1

1

1

d

l

t

'

1

1

1

1

i

t

t

1

1

1

(B)

 3

-2 -1 o
xn

1 2

1

-t

-3

                    i
                    l

 "" L.,z• ...
   " 1" -- ---!:-------------st"-------------g.---     -- ""1 -"      "'v ii ""
                    l-                    1-                    1-                                         .

-2 -1 o
xn

1 2

Figure -i9: The cubic map. (A) The ei.ffenvector associated with the only

covariance matrix of {Vke'}. This is the linear term in Eq. (5.32). (B) The

f-unct,ions gi. All (I)...(x) are the same.

significant eigenvalue of the

Åëaux(a)) of the ten predictor



84 CHAPTER 5. LINEAR-IN-PARAIVIETER MAPS
   For this example, ten time series with 100 data points each were generated for the parameter

values paj• = 2-4(]' -1)/10, 2' = 1,•••,10. The interesting feature ofthis example is the pitchfork

bifurcation at pa = O. The trained network has the following parameters: d =: 1, s = 5, yb = O,

and q(x) = tanh(x). For this system, Xij(x) was evaluated at x= -2+4(i - 1)/100, i=

1,•••,101; thus, 114 = 101. Figure 5.6(B) shows one significant eigenvalue which is consistent

with the expected result. The normalized eigenvector and Åëa.x(x) are shown in Fig. 5.9. The

eigenvector is linear as expected and Åëaux(x) is cubic, which is the same for all the predictor

functions. In this case, Åëaux(x) ks 2.4x - x3 is not exactly equal to H...(x) = x - x3, 'II]he

BD xvas reconstructed using the equation g(x.;6) = gi(x.) + fi[gi(x.) - g2(x.)]. The result is

shown in Fig. 5.8(B) for 5 E [-10, 10]. The reconstructed BD exhibits the pitchfork bifurcation

of the original map.

The delayed logistic map

Another example of an LIP map studied in [82] is the delayed logistic map given by

                    Xn+1 = Pl (1 - Xn)Xn + P2 Yn + P3 (1 - Yn )Xn

                    Yn+1= Xn (5•33)
with

                           Hl(Xn,Xn-1) = (1-Xn)Xn

                           fi(Pi,P2,P3) = Pi

                           H2(XniXn-1) = Xn-1

                           f2(Pi,P2,P3) = P2

                           H3 (•Tn, Xn-1) = (1 - Xn-1)Xn

                           f3(Pl,P27P3) = P3

                         Haux(pl,p2,p3) -- O

   The same parameters as in [82] were used in deriving the result,s here. These parameter

values are given by

                        pl = 1.0

                        p2 = O.11 sin(T(3' - 1) /5) + O.224

                        1) :3 = O.08 cos(T(j' - 1)/5) + 1.85
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for j' =1,•••,11

                        pi = 1.25

                        p2 = O.11 sin(T(1' - 12)/5) + O.224

                        n3 = O.08 cos (T(J' - 12)/5) + 1.85

                               for 1'=12,•••,22

Here, XiJ' (x) was evaluated on a square area given by xn = 1.5i/20, i = 1,•••,20 and xn-i ==

1.•oV ,i/20, .7' = 1,•••,20; t,hus rvf = 400. The significant eigenvalues of the covariance matrix

of {Vl'/o' o} are shown in Fig. •5.6(C). There are three significant eigenvalues corresponding to

the t,hree bifurcation parameters (pi,p2, p3). Moreover, the normalized eigenvectors capture the

form of the different terms in the original map as can be seen in Fig. 5.10. Figure 5.10(A) shows

t,he first eigenvector which is planar corresponding to the term (xn-i), (B) shows the second

eigenvector representing the parabolic term (1 - x.)x., and (C) shows the third eigenvector for

the term (1 - .x'n.i)xn. The surface of Åëaux(x) shown in Fig. 5.10(D) is flat and close to zero.

The reconstructed BD is not shown here.

The Lorenz equations

As a final example, a continuous system given by the Lorenz equation is considered. The

differential equation has the fbrm

                               dx
                               iTt = U(y-x),

                               d?1
                               Ett = rX-IJ-XZ, (5.34)
                               dz
                               T/ = xy-bz,

xvhere a, b and r are the parameters. Qualitatively different dynamics can be observed from

t,his s.vstem 1).y changing t,he parameters across critical values. A detailed description of the

1)ifurcation struc;ture of the Lorenz equations xvith respect to the parameter r will be presented

in section 6.4. "'hat is ofinterest in this example is the pitchfork bifurcat,ion at r = 1 xvhich gives

rise to t,xvo g. table e-.quilibrium points and makes the origin unstable. The 1)jfurcation diagram

"'ith respect t,o 'r is shoxvn in Fig. 6.8.

   The inotivation of including this example is to examine the general applicability of the

propo: ed approach. In this exarnple, 40 tiine series Nvere generated fbr the paranieter values
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Figure 5.10: The normalized eigenvectors of the delayed logisticlcoupled logistic map. (A) The first

principal eigenvector. This eigenvector represents the term x.-i in Eq. (5.33). (B) The eigenvector

associated with the second significant eigenvalue. It is parabolic in x. and thus represents the term

(1-:i;.):c.. (C) The third eigenvect,or has a functional form similar to that of t,he third t,erm (1-x.-i)x..

(D) (I>a,,x is appro: imately zero which is consistent with Eq. (5.33).
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ri = O.5i, i = 1,•••,40, a = 10, and b = 8/3. The 4th-order Runge-Kutta method xvas used in

integrating Eqs. (5.34) with a time step set to O.OOI. The time delay A computed using mutual

information is O.1[1] and the embedding dimension d is equal to 3. The network parameters

were as fo11ows: s = 5, yb == O, and q(x) = tanh(O.5x).

   The first task is to check if the obtained predictor functions belong to a family of LIP maps.

To do this, the predictor functions {,iji} were divided into six subsets: the first subset was

composed of the first five predictor functions {gi, • • • , gs}; the second was composed of the first

ten {.iji,•••,gio}; the third had 20 predictor functions {gi,•••,g2o}; the fourth, 30 predictor

functions {gi,•••,g3o}; the fifth, the entire 40 predictor functions {gi,•••,g4o}; and the last, 8

predictor functions {.gi, i = 5, 10, 15,20,25,30, 35,40}. Note that the range ofr increases from

the first group to the fifth group, that is, r ranges from O.5 to 2.5 in the first group and O.5 to

?"O in the fifth group.

   For each set, the vectors VZMj =i2ss were generated and the significant eigenvalues of the

covariance matrix formed by these vectors were computed. Figure 5.11 summarizes the result.

From the figure, as the range ofr increases from (A) to (E), the number ofsignificant eigenvalues

also increases. For example, for O.5 -< r -< 2.5 (the first group), there is only one significant

eigenvalue [Fig. 5.11(A)]. While for O.5 s{ r f{; 5 (the second group), the number of significant

eigenvalues becomes two [Fi'g. 5.11(B)] and increases further for wider range ofr [Fig. •ill(C-

E)]. This is different from the results obtained with the H6non map. This clearly indicates that

the time series xvere generated by a non-LIP map.

   This can be seen by considering the discretization of Eqs. (5.34):

                         Xn+l = Xn + [a(yn ff xn)]At

                         ?Yn+1 = Yn + (rXn - yn - Xn Zn)At

                         Zn+1 = Zn + (XnYn - bzn)At

or ivn+i = f(ivn', A) Nvhere wn = (xn,gyn,zn) E IR3 represents the discretized state ofthe system,

J' : IRii Å~ IR.:] -> IRi3 is a map that brings w. to w.+i, A = (r,a,b) E IR.3 are the parameters,

and At is t,he discretization time. The above equation is linear-in-pararneter for the given

discretization time At. Howexrer, the observation time (= O.1) is not equal to t,he discretization

t,ime (= O.OOI) such that the effective predictor function g(•) is a coniposition of f(•), that is,

,q(tt;n,; .Y) = f(• • • (f(wn; .Y))). This causes g(•) to have higher order terms in A making it a GLIP

rathe.r t,han a LIP. This suggests that the number of significant eigenvalues corresponds to the

nuniber of significant fi, (A)"s rather than A.
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Figure 5.11: The significant eigenvalues (%). (A) The first group composed of predictor functions

{tvi,•••,,ar.} . (B) The second group with {gi,•••,gio}. (C) The third group xvith {.iji,•••,ij2o}. (D)

The fourth s.roup with {.iji,••-,b3o}. (E) The fifth group with {bi,•••,.ij4o}. (F) The last group with

{i7i, i = •D"', 10, 15, 20, 25, 30, 35, 40}.
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Figure 5.12: Reconstructed bifurcation diagram of the Lorenz equation around r = 1 where a pitchfork

bifurcation occurs. The new parameter 6 ranges from [-2, 1].

   Hoxvever, a closer investigation of the figure reveals that for O S r S 2.5, the obtained

map resembles an LIP map. This is because the number of significant eigenvalue is the same

as t,he number of parameter-that is, one. To examine this further, the BD of the map was

reconstructed within this parameter region using the proposed approach. Equation (5.16) was

used in the reconstruction. In particular, the fixed points of the equation

                          g(xi rs) = gs (x) +s[gs (x) -g3 (x)] (s.3s)

for 5 E [-2, 1] and x = (xn, r.n"i,xn"2) was computed. The reconstructed BD is shown in Fig.

5.12. The pitchfork bifurcation of the Lorenz equation at r = 1 is reconstructed. In spite of the

{'act, that the system is not LIP, the result suggests that the method is still applicable as long as

reconstruction is confined to small parameter regions. This is evident when one considers the

Taylor e: pansion of a general map g(x; r) around some bifurcation point ro, that is,

                                                (Ar)2 02g(x; r.)                                      Og(x; r.)
              g(x;ro+Ar) :g(x;ro)+Ar o. + 2 o.2 +''' (5'36)

xvhicli resembles a GLIP map wit,h parameter Ar.

   To summarize, t,his subsection shows how to detect time series generated b.x,r non-LIP maps.

Furthermore, the generai applicability of the proposed algorithm is exhibited fbr the case of the

Lorc;inz syst,em. As Iong as the parameters considered are confined to a small region, then the

abox'e approxiination st,ill liolds for non-LIP maps.
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5.6 Discussion

For dynamical systems that can be written in the form given by Eq. (5.13), it is shown that a

correspondence exists between the number of parameters and the number of significant eigenval-

ues of the covariance matrix formed by either the weight vectors wfui. or the vectors ViMj . For

the fbrmer, this means that in the weight space ef the approximating network, a linear manifold

can be found such that on this manifold the behavior of the network is qualitatively similar to

that of the given LIP map. With this, the reconstructed BD of the original map is given by the

BD of the approximating network on this linear manifold. For the latter, this correspondence

can be used to recognize if the given time series are generated from an LIP map.

   The definition of the difference function XZj(x) and the associated vector VZfutf leads to a

scheme that can be employed to determine the number of bifurcation parameters from the

predictor functions. It is also shown numerically that the number of parameters as well as the

functional form of the unknown map can be determined by this scheme and thus, the unknown

map can be completely specified. In line with these ideas, a new reconstruction algorithm is

presented. This algorithm can be summarized as follows: The first step is to obtain predictor

functions using the given time series. I ext, the number ofbifurcation parameters are determined

using the significant eigenvalues of the covariance matrix formed by the vectors VZ hatf. Once the

number of parameters k are known, the map is approximated using k + 1 predictor functions

and Eq. (5.15) or (5.16). Finally, the reconstruction follows by varying the parameters 6i in

either of the tNvo equations.

   The new approach is different from the one presented in [7, 81, 82] in the following aspects:

First, the reconstruction is based not on the parameter space of the approximating predictor

functions but rather on the predictor functions themselves, as given in Eqs. (5.15) and (5.16).

Second, the method requires only few predictor functions (approximately the same as the num-

ber of bifurcation parameters) to reconstruct the BD, whereas the previous approach requires

more w%i.s to obtain a good projection region. Thus, the number oftime series required to re-

const,ruct the BD of the given system is reduced. However, to determine accurately the number

of bifurcation parameters, more time series may be needed.

   The result in t,he reconstruction of the pitchfork bifurcation of the Lorenz equation exem-

plifies the general applicability of the new approach. As long as the parameter values are not

too "'icle apart,, the LIP-approximation still holds. This is due to the fact t,hat, even though the

orig'inal map is not Iinear-in-parameter, it can be Nvritten in a form similar to Eq. (5.13) by
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using Taylor expansion.

   The results in [81] showed that the BD of a given system can be reconstructed even if the

time series were corrupted svith observation noise. This implies that predictor functions which

approximate the given system for fixed parameter values can still be obtained. Since the current

approach is based on the predictor functions themselves, it follows that the proposed algorithm

should still work in the presence of observation noise. For the case of dynamical noise, finding

the appropriate predictor functions for the noisy time series becomes an important issue because

such perturbations can cause drastic changes in the dynamics of the system. The use of neural

networks in this case may be difficult since neural networks do not incorporate dynamical noise in

its learning scheme. Other predictor functions such as nonlinear autoregressive models (section

3.4) may prove useful in this case. Once the appropriate (robust to noise) predictor functions

are obtained, the reconstruction folloxvs immediately from Eqs. (5.15) and (5.16). This problem

xvill be addressed in more details in the following chapters.



Chapter 6

Nonlinear Methods

6.1 Introduction

In the previous chapters, the reconstruction is based on the approximation that in the parameter

space of the predictor function there exists a linear manifold on which the bifurcation structure is

similar to that o{' the original. Under this approximation, the number of bifurcation parameters

corresponds to the dimension of this linear manifold. Basis vectors of the manifold can then be

obtained from a known set of discrete points using principal component analysis.

   In t,his chapter4, the feasibility ofreconstruction is explored when the linear manifold approx-

imation of the previous method is insufficient, thus entailing a more general approach. Moreover,

under this condition, the correspondence between the number of bifurcation parameters and the

number of basis vectors obtained by PCA is lost. As a consequence, the number of bifurcation

parameters is undetermined. It is therefore natural to start Nvith a one-parameter BD recon-

struction. In this regard, a generalized one-parameter BD reconst,ruction algorithm using time

series is considered. Possible extension to higher dimensional reconstruction is also discussed in

the Iat,er part of' the chapter.

   The algorit,hm is test,ed using time series from systems exhibiting stable Iimit cycles and

st,able equilibrii.tm points. Surprisingly, these systems require a more general approach for the

reconstruction of their BDs. The following section Nvill cover the algorithrn xvhich is based on

principal curves as ?ipproxiinated by piecewise linear curves. 1 urrierical results on the Fit,zHugh-

Nassiumo equations and the Lorenz equations are presented to illustrate t,he eff'ectiveness of the

?ipproach.

   iThe contents of this chapter also appear in Bagarinao, et al., (1998) [7].

                                       92
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6.2 Principal Curves

The problem of obtaining the projection region from the computed {wki.} is related to the

problem of finding lovv'er dimensional manifolds (the projection region) in a high dimensional

space (model's parameter space) which can be solved using several w'ell-established approaches.

In this section, the case for k = 1 (only one bifurcation parameter) is considered.

   A natural generalization of Eq. (4.7) is to consider h(•) as a nonlinear function of c. "iith

this, h(•) defines a one-dimensional curve, say e, in the parameter space of the predictor function.

The problem is to obtain an approximation Capp to this curve using the computed w%i.s. Letting

A represents the curvilinear abscissa along eapp, then for each w E eapp the paramet,er w can be

expressed as a function of A, that is, w = h(A) where h : IRi - e.pp(c IRP) is nonlinear. The

BD of the predictor function along eapp with A as the effective bifurcation parameter is then

taken as the reconstruction ofthe BD ofthe given system.

   The curvilinear curve Capp is approximated using the principal curve of the data points

{wini.}. Principal curves as defined in [40] are smooth curves that are self-consistent for a

distribution or data set. This means that the average of all the data that project onto a point

on t,he curve coincides with the same point on the curve. For data sets, the curve eapp is

represented by K discrete points {hilhi = h(Ai)} joined by a line from hi to hi+i in increasing

order of Ai. Clearly, the shape of e.pp depends only on the order, not on the actual values of

the A,:s.. Assuming that the hi's are sorted in increasing order of A and using the arc-length

parameterization such as in [40], one can assign Ai = O and Ai equal to the arc length along the

curve from hi to hi. In the simulation, the principal curve is approximated by piecewise linear

curNres

                                      i i-1                       w(A) =wlh-ik+ WAM,l n--.>,;. I-lliin (A-A,-,) (6.1)

xvhere i = 2, •••, K•

   The algorithm to compute the principal curve as described in [40] is composed of two basic

st,eps; namely, the projection step and the conditional-expectation step. .As an initialization,

t,he pi-incipal curve at the zeroth iteration, denoted as hO, is given by the first linear principal

c:omponent of' t,he given clata set, {xi}. Each of the {xi} is then project,ed onto hO, the projection

being the point on hO closest to {xi}. Denote this as h9•. This gives an ordering of the {xi}

along hO. The curvilinear abscissa A for each h9• can now be defined as follows. The endmost h9• ,

denoted as h*, is set to have a value of Ai = O and all other values of ,>tz is defined as the dist,ance

of h:•} froin h' along. hO. Thus, for each {xi} is an associated Ai and the curve is represented by
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N number of (Ai, h9- ) joined up linearly in increasing order of A to form a polygon. This serves

as the projection step.

   To get the next approximation of the prihcipal curve, that is, h,i•, all the points xk in the

sample, whose associated Aic is close to Ai, are averaged. This average value is then taken as

t,he estimate of h;• . This is the conditional-expectation step. For local averaging methods, see

for example spline smoothers[76] and Iocally weighted running-line smoother[24], among other

methods. Once all the h,i•s are obtained, new estimates ofthe Ais associated to these new h,i•s

are computed. To get the new estimate, define dik as the distance between xZ and.its closest

point on the line segment joining each pair (hk, hk+i). Then set Ai to correspond to the smallest

value of dik, that is, Ai = min dik. Corresponding to each Ai is an interpolated hi. Using these

values to represent the curve, replace Ai by the arc length from h' to hi. Finally, the procedure

is iterated until the relative chang'e in h:1 is below some threshold. Refer to [40] for a more

complete description of the algorithm. The complete algorithm is summarized below.

     Initialization: Set h(O)(A) = X+aA, where a is the first linear principal component

         of the given data set {x}. Set A(O)(x) = Ah(o)(x).

     Repeat: Over the counter 1'

          1. Conditional-expectation step.

          2. Projection step.

          3. Evaluat,e the change in hj'.

     Until: The change in hj' js be!oxv some threshold.

6.3 Example 1: The FitzHugh-Nagumo Equations

In t,hjs section, the reconstruction algorithm using principal curve is applied to time series of

the FitzHugh-Nagumo (FHI ) equation [32, 59], which is given by

                       dv
                      E?ITt = -V (V - Oi5) (v - 1.0) - u) + I..,

                      d?v                      -?iTt -- •v-w-b• (6.2)
This is a simple mat,l}ematical modekvhich mimics to some extent the ei cit,abilit,y of a neuron.

For some rangc} of Iext, the model behaves as an excit,able membrane. XVhereas for some other

paraineter values, it be.haves as an oscillating inembrane defining a stable liniit cycle. This gives
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Figure 6.1: Bifurcation diagram ofthe FHr -system. It is characterized by two stable fixed point regions,

a stable limit cycle region, and txvo subcritical Hopf bifurcations.

a good example of a simple system which can either have a stable fixed point or a stable limit

cycle clepending on the value of the parameter[831.

   The bifurcation diagram of Eq. (6.2) is shoxvn in Fig. 6.1. In this figure, the bifurcation

parameter is the applied external current Je.t and the other parameters are fixed (E = O.O05, b ==

O.Io' ). As Iext is increased, the stable equilibrium point becomes unstable and a subcritical Hopf

bifurcation occurs at Ie.t ft O.112 giving rise to the stable limit cycle. As the current is increased

further, another subcritical Hopfbifurcation takes place at I,.t t O.588 and the stable limit cycle

disappears.

   The FHI -system is used to illustrate the applicability of the proposed algorithrr} since it has

a xvell-defined sequence of bifurcation points and a bifurcation structure that can be analyzed in

detai1. Moreover, it also presents some fundamental issues and difficulties to the reconstruction

problem which are not obvious if the system is chaotic. Take for example the case with the

st,able equilibrium points of the FHNi equations. For this case, the corresponding time series is a

const,ant in time and therefore, does not contain any information of the syst,em dynamics at all

except, during transient. It is therefore inferable that finding a suitable g(•) would be easier in

t,his case thari t,he case ofchaotic time series. Unexpectedly, this ease in obt,aining the predictor

funct,ion does not, translate to easier reconstruct,ion of the bifurcation diagram.

   The first t,ask is examiried if the simple BD of FHI can be reconstructed by using the PCA-

l)ased alg-orithni, t,hat is, by a linear appr'oximation of h(•) [see Eq. (4.7)]. To do t,his, 65 time

series of t,he variable v were generated by integrating Eq. (6.2) using fourth-order Runge-Kutta
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Table 6.1: One

                         CHAPTER 6. NONLINEAR METHODS

            Iext Pred. Error

            o.oo o.oo

            O.10 8.23 Å~ lo- i2

            O.20 9.49 Å~ lo-05

            O.30 2. 10 Å~ lo-06

            O.40 9.90 Å~ lo-07

            O.50 L69 Å~ lo-06

            O.60 L14 Å~ lo-08

            O.70 2.30 Å~ lo- 13

                           '

step prediction error of the obtained predictors for some values of I..t.

method with the time step set to O.OOI and initial value (v = O.O,w = O.O). The corresponding

parameter values were given by Jg.t = O.Oll(i-1), i = 1, • • • , 65. To account for all the transient

behavior xvhich varies from one parameter to another and for uniformity, the number of data

point,s per time series is set to N = 1000 with sampling interval A = O.2. The false nearest

neighbor algorithm (FNN) is used to determine the embedding dimension d, and this value was

found to be equal to 2. The computation of the {wfui.} started with the time series having

the most complex behavior. The initial weights were set randomly between [-1.0,1.0], and the

err-or was minimized using the BFGS algorithm. For the remaining time series, the computed

wrnin of the preceding time series was used as the initial weight value. The activation function

employed for the hidden units was the usual sigmoidal function given by q(.cc) = 1/[1+exp(-x)].

The output of the bias neuron was set to 1 (yb =: 1.0). Different numbers of time series (e.g.

K = tj, 10, 19, 37, and 65) were used in reconstructing the BD of FHN Here, the case for N == 65

and s -- 13 (the number of hidden units) represents the best possible reconstruction using the

method based on PCA. Table 6.3 shows the value of the error function, Eq. (4.4), for some

representative values of Iext. As can be observed, the prediction error for each time series is

re;tll.x.' small. This confirms t,he observat,ion that finding a suitable predictor function fbr each of

t,lre t,ime series of the FHN is relatively trivial,

   The PC."X re.sult,s suggest, t,hat the obtained {wl.i.} is nonlinear in I,.t. This is evident in

Fig. 6.2 which shows the significant eigenvalues of the sample covariance matri: of {w:,i.}•

From t,he figure, t,he number of significant eigenvalues is roughly equal to 8 representing 95.7591o
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Figure 6.2: Significant eigenvalues of the sample covariance matrix for the 65 weight vectors obtained

after training the network.

of the total eigenvalues. Obviously, this is much greater than the expected one corresponding

to lext. Note that for other values of K, the same observation holds; that is, the number of

significant eigenvalues is always greater than one. The nonlinearity can be further observed by

taking the projection [i.e. the ais in Eq. (4.6)] of each wfui. onto the associated eigenvectors of

the sample covariance matrix and plotting the computed values against the original parameter.

The resulting curve should be roughly linear when the wfui.s lie on a linear manifold. A linear

curve thus indicates the validity of the linear manifold approximation. Figure 6.3 shows the

computed ai,2,3s of the obtained w%i.s for the first three eigenvectors. From the figure, the

resulting curve is not linear. This indicates that h(Ie.t) is nonlinear in Jext.

   Figure 6.4 shows the two dimensional BD ofg(• ;w) in the vicinity of the projection region.

The x- and y-a: is correspond to the axes spanned by the first and second eigenvectors [ipi and

ip2 in Eq. (4.6)], respectively. The scattered points indicate the projection of the whi.s onto

this principal plane. PS and SFP correspond to regions of (pseudo-) periodic solutions and

stable fixed point solutions, respectively. The arrows indicate the wi.i.s associated with the

const,ant time series (stable equilibrium ofthe system). The projection of these points into the

PS region in the figure is an artifact, since only two out of the eight significant eigenvectors

are used. Observe the par-abolic-like distribution of the scattered points in the vicinity of the

projection region, anot,her manifestation of the nonlinearity of h(Iext).

   Finall.v fbr the PCA-based algorithm, a one-dimensional BD was construct,ed using the first
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fixed point solutions. The scattered points are the projections of the time series onto this principal plane.

  Xl

w) relative to the first two eigenvectors of the sample

                                        e
) periodic solutions and SFP denotes region of stable

principal axis (shown as dashed line in Fig. 6.4). The choice of the first principal axis is dictated

by the fact that the projection of {wt.' i.} onto this axis has maximum variance. The fixed points

of .ij(• ;w) were comptited for a given w by finding the zeros of

                             z(?J) == y-g(y,•••,y; w). (6.3)

To evaluate the local stability of the fixed points, the characteristic equation associated with

.ij(• ; w) is defined as a poly. nomial of degree d (embedding dimension) with coefficients equal to

the partial derivatives of g(• ;w) evaluated at the fixed point, that is,

                                        d
                                 p(A) == ZaiAd'z (6.4)
                                       i=o

xvhere ao = -1 and ai = eg(y,•••,2y ;w)/0yt-iA evaluated at the fixed points (see section 2.2).

   Figure 6.oi shoxvs the r-econstructed BD. It can be seen that t,he reconstructed diagram has

qualit,atively similar bifurcations as compared to the one depicted in Fig. 6.1 tbr .fc'i E [-4.0, 3.0].

In part,icular, the fixed point region, lblloxved by the limit cycle region, tlien by another fixed

I)oint region, ig. preg. erved in the reconst,ruction. Furthermore, the t,"ro Hopf bifurcations bound-

infg the st,able Iiinit, cycles of the original systein are also present. However, the reconst,ructed
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preserves the two fi: ed point regions, the limit cycle region and the two Hopf bifurcations. However, it

a}so eNhibits extra fixed points and bifurcations which are not present in the original system. Note that

xi does not directly correspond to I..t.

BD also exhibits extra fixed points such as the saddle and upper stable node branches and extra

bifurcations such as the three saddle-node bifurcations.

   After establishing the need for an alternative approach, the algorithm presented in the pre-

vious section was employed to reconstruct the BD of the FHN-system. Twenty time series

were generated using the same conditions mentioned previously for parameter values J8.t =

-O.1 + O.O•o' (i - 1), i = 1,•••,20. In this case, 20 time series w'ere used, instead of the 60

employed, in order to have a rough comparison of the data requirements between the two al-

gorithms. To compute {wZ.' i.}, the same procedure mentioned earlier xvas applied. Different

number of hidden units (s = 7, 13, 19, 25, 31) were used in training the network.

   The result,s indicated that the fidelity of the reconstructed BD depends on the number of

hidden units, tl}at is, the more hidden units, the better the reconstruction. Figure 6.6 shows

t,1ie reconst,ruction fbr s = 7 while Fig. 6.7 shows the reconstruct,ion for s = 31. The difference

is o})vious in the t,wo reconstructed BDs. This result is consistent with the fact that the more

hidden unit,s the network has, the bet,ter its approximation capability. The results also suggest

t,hat the projection region should be a connected region in the parameter space to avoid unwanted

behai'ior su('h as t,he intervening stable equilibrium region within the limit, c.vcle region of the
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reconstructed BD as shown in Fig. 6.6.

   Figure 6.7 shows the reconstructed BD for s = 31 and Je.t E [-O.1,O.851. The fixed points

and their associated stability were obtained using the methods presented in section 2.2. This

time, a better reconstruction of the BD of FHN is obtained. From the figure, the locations

of the fixed points correspond well with the locations of the fixed points of the FHN-system.

The two Hopf bifurcations of the FHN-system also appear in the reconstructed BD occurring at

I,.t '-v O.118 (O.112 for FHNI ) and Iext = O.581 (O.588 for FHN), respectively. The stable limit

cycle region is preserved. The number of fixed points for a given parameter value is the same

except in the narrow interval indicated by an arrow in the figure.

6.4 Example 2: The Lorenz Equations

The other system used in the simulation is the Lorenz system. This is one of the most well-

known systems in the study of chaos and is used to model the unpredictable behavior usually

associated with weather phenomenon. The point of interest here is not particularly the chaotic

aspect of the system but rather the transitign of its behavior from the fixed point region to the

chaot,ic region as the parameters vary. The equations are given below:

                              dx                              7t = a(y-x)

                              dy                              7t =rx -y- xz (6.5)
                              dz
                              7t = Xy-bi.

where a, b and r are the parameters.

   The origi'n (x = ly = z = O) is an equilibrium point for any parameter values. For b = 8/3,

a = 10, and O S r S 1, the origin is stable and globally attracting. At r = 1, a pitchfork

bifurcation occurs and the origin becomes unstable. This also gives rise to two more stable

equilibrium points given by CÅ} == (Å} b(r-1), Å} b(r-1),r-1) which remain stable until

7' "-v 24.74 where a subcritical Hopf bifurcation occurs. Beyond this value, all equilibrium points

are imstable. Figure 6.8 summarizes the behavior of the Lorenz equations as a function of the

parameter r. The preg.ence of a homoclinic orbit at r : 13.93 causes some of the trajectories

originating from the positive .fr.-axis to coniu'erge to C- and vice versa as shown in the lower

middle figure. Furt,hermore, as r approaches 24.74, some trajectories wander from one stable

fixed point, to another but still converge to either C+ or C- after a Iong time. For a detailed

analysis of t,he bifurcat,ion of the Lor-enz equations, see for example [77].
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of the sample covariance matrix.
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} onto the eigenvectors of the first three significant eigenvalues

   In the simulation, both b and a (values given above) were fixed. Time series were obtained

b.v, integrating Eqs. (6.5) using the 4th-order Runge-Kutta method with time step equal to O.OOI

and parameter values ri = O.5+O.5(i -1), i == 1,•• ny , 60. Sixty time series ofthe variable x were

used to make r equally sampled from O.5 to 30 at O.5 interval and to have two time series to

represent the case where the origin is globally attracting (r = O.5, 1.0). [[hese two time series are

necessary for the reconstruction of the pitchfork bifurcation at r = 1. Again, each time series

xvas composed of 1000 data points to account for long transient behavior. The time delay A,

obtained by mutual information, is equal to O.1 and the embedding dimension, calculated using

the FNI,is equal to 3.

   To approximate the predictor function, Eq. (4.2) with s = 100, yb = O.O and q(x) =

[1 - exp(-2x)]/[1 + exp(-2x')] xvas employed. The use of hyperbolic tangent as the activation

function of the hidden unit neurons was dictated by the symmetry of the original system as

observed in the available time series. The {whi.} were computed in the same manner used in

t,he FHN case and minimization of Eq. (4.4) was performed using the BFGS algorithm. Again,

the PCA results suggest that the wf.i.s are nonlinear in r. This is evident in Fig. 6.9 which

.shoxvs the plot, of tl}e projection ai,2,3 ofthe obtained {wKi.} onto the first three significant

eis,envectors versus the original parameter r. Since the resulting curve is nonlinear in r, then the

{w:' ,,i,,} cannot lie on a line. It follows that the Iinear manifold approximation, or equivalently,

t,he use of the PCA-based algorithm would be insufficient. This agrees with the results in the

I)rex'ioug. chapter. 1•Ioreover, t,his implies that the BD ofthe Lorenz systein fbr r E [O.5,30] is



6.4. EXAMPLE2:

 10

  6

  2
 x

 -2

 -6

-- 1O

THE LORENZ EQ UATIONS

Hopf /
bifurcation

-----t-4---t-------e--------

---tt-------------

-dA-i"----------dJ- .d........".`.... ::lllt:::::::::::::::::::::::.
-----1---d--d-----i---

stable

branch

-l----t--lt-----l---ttt--i---tt--d-----

   Nk.

         --   ---1-ttt--l!-
   -------------
   -----t--t--       -- ---

unstable

branch
N

 ----t--i--t--t----

o
II

10 r

m
20

rv

:
 t

 t
 I
 t

30

105

y
n

                                         Yn-1

Figure 6.10: Piecewise linear reconstruction of the bifurcation diagram of the Lorenz equations. The

fixed points and their corresponding stability are reconstructed accurately except near r = 1. The Hopf

bifurcation is also preserved. However, it also exhibits extra saddle points near x = O. The lower figures

show some representative orbits of the obtained map.

best, reconstructed by. using the generalized algorithm.

   Figure 6.10 shows the reconstructed BD using the proposed algorithm t'or r E [O.5, 30]. The

reconst,ruction does capture the important features of the original BD. From the figure, it is

e.vident that the fi: ed points of the reconstructed system are very close to that of the Lorenz

system. The associated stability of the fixed points are the same as the st,ability of that of the

original system except in the region close to r = 1. Furthermore, the reconstructed system

also undergoes Hopf bifurcation in both stable branches at r f! 24.6 (r or 24.74 in the original

diagrain). A•Ioreover, t,he symmetry of the location of the fixed points in the BD with respect to

:i; = O is also preserved.

   The reconst,ructed sy. stem also exhibits the same sequence of behavior as t,he original system

witl} respect to the changes in t,he bifurcation parameters. To illustrate, representative t,rajec-

t•ories of tlie reconstructed syst,em at different parameter values are shown in the Iower figures

of Fig. 6.10. The: leftinost figure shows representative trajectories in the rang,e of 7- where orbits
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starting from the positive side converge to the positive stable fixed point and orbits starting

from the negative side converge to the negative stable fixed point. This is region II in the

original system. The middle figure shows representative trajectories in the region where orbits

starting from the positive side converge to the negative fixed point and vice versa. This is region

III in the original system. And lastly, the rightmost figure shows the Lorenz attractor where

tra.jectories xvander from one fixed point to the other. This is region IV in the original system.

   Finally, one can see that the presence of extra unstable fixed points near x = O affects the

reconstruction of the pitchfork bifurcation at r = 1 and the homoclinic orbit at r 2t 13.93. To

examine the source of these extra fixed points, the function z(y), Eq. (6.3), was plotted for

yE [-E.O,5.0]. This is shown in Fig. 6.11. From the figure, the curve is almost cubic in y far

frorn ?/ = O; however, it is distorted near zl = O. This distortion is evidentl>r the source of the

extra fixed points c;Iose to r. = O in the reconstructed BD.

6.5 OtherNonlinearApproaches

Thc use of principal curves in one-dimensional BD reconstruction offers the possibility of ex-

t,ending the algorithm to the two-parameter case. For a t,wo-dimensional BD reconstruction, the

algorithm will be based on the idea of principal surfaces [40]. Principal surfaces are defined in

t,he same manner as principal curves in that they are self--consistent for a distribution or data

set. This means that each point on a principal surface is the average of all the points that

projoct/ there. Thus, a two-dimensional parameterized surface f : A - IR.i' fbr A g IR2, where f



is a vector of continuous functions:

                                       fi (Ai,A2)

                                       f2(Ai,•)k2)
                               f(A)= .                                                                            (6.6)

                                       fp (Ai,A2)

is a principal surface if it is self-consistent.

   The results also offer interesting insights into the different issues regarding bifurcation dia-

gram reconstruction using time series that still need to be addressed in future research. The first

                                            'of' these is the proper choice of the predictor function, which is as stated, the most difficult task

for modelers. For the neural network approach, this is related to the question of the appropriate

number of hidden units, activation function, and network architecture, among others. From the

results, what appears to be more important in the reconstruction is the localization of {w%i.}

in some connected region in the parameter space of g(• ;w).

6.6 Discussion

In this chapt,er, the need to extend the PCA-based approach (linear manifold approximation)

to nonlinear cases especially for systems with stable fixed points and limit cycles has been

demonstrated. As the results suggest, even for systems with simple bifurcation structure such as

the FHN- T, the linear approximation may not hold under the given condition. This can manifest

in the reconstructed BD as extra bifurcations which cannot be found in the original system.

On the other hand, the proposed nonlinear algorithm based on principal curves shows very

promising results Using this approach, a high fidelity reconstruction of the original BDs was

achieved. The reconstruction preserves the important features ofthe bifurcation diagrams ofthe

original systems such as the Hopf bifurcations ofthe two systems, the limit cycle ofthe FitzHugh-

Nagumo equations, and the symmetry of the fixed points of the Lorenz equations, among others.

Furthermore, the reconstructed systems also exhibit the same sequence of behavior as the original

systems with respect to the changes of the bifurcation parameters. This is evident in the

reconstructed BDs of t,he FHN system and the Lorenz system. For the FHI system, the sequence

is as follows: first,, the fixed point region, then the Hopf bifurcation, followed by the limit, cycle

region, t,hen anot,her Hopf bifurcation, and finally, the other fixed point region. For the Lorenz

syst,em, the reconstruct,ed BD contains region II, followed by region III and then by region IV.

   The use of principal curxres has a number of merits. .Aside from being a good nonlinear

approxiinator, principal curxres reduce to the first linear principal component svhen the linear



108 CHAPTER 6.NONLIN[EAR IMETHODS

approximation holds. Thus, the reconstruction is the same in principle as that of the PCA-

based algorithm for one-parameter BD reconstruction. For higher dimensional cases, the princi-

pal curve-approach is generalized as principal surfaces, nonlinear principal c6mponent analysis,

bottle-neck neural networks (1 1 s), among others [26, 40, 45, 53, 73].

   In conclusion, the feasibility of reconstructing one-parameter BD using time series has been

demonstrated. The reconstruction algorithm works even for the case where the linear manifold

approximation of the pro.jection region is insuMcient. In the simulation, the reconstructed BD

of the local bifurcation structures of the FitzHugh-Nagumo equations and the Lorenz equations

preserved the critical bifurcations of the original systems. Moreover, the global behavior of the

original systems are also preserved in the reconstructed diagrams.



Chapter 7

NAR-Based Reconstruction

7.1 Introduction

In t,his chapterO, the reconstruction of bifurcation diagrams using time series from randomly

forced maps will be investigated. Orthogonal polynomials, as discussed in section 3.4, are

employed as predictor functions. However, for this formulation to be applicable to the BD

reconst,ruction problem, a slight modification is needed. The needed modification will take into

account the f-act that the same model wi11 be used for time series at different parameter values.

   Given K time series Sk measured at different parameter values of an unknown dynamical

system, the problem is to find a map with parameters a : X e G(X;a), which evolves data

points Y. e Y.+i. Following section 3.3, G(X;a) is approximated by polynomials LV.(X)

which are orthogonal with respect to the natural invariant measure p(X) associated to each

t•ime series Sk•. For the kt,h time series, G(iY'; ak) is approximated to the AIth order as

                                      fut
                           G(X; ah)= Ea: VVza (X), (7.1)
                                     m=O

where the superscript denotes the time series number. Using the orthogonality property of

I•V.(;r), the expansion coefficient,s (or parameters) are determined by

                     a•,k. = ,vl.,fddNpic(X)G(X;ak)VVza(X), (7.2)

                     A"nLl = ./ddXpk(X)[IiVrkn(X)l2• (7'3)

Sinc;e each t,ime series may be characterized by different pk(X), the orthogonal polynomials

{TI',Sl(N)} obtainecl using t,he Gram-Schmidt procedure may differ from t,ime series to time series.

  5Tlte inat,erials in tliis chapter also appear in Bagarinao, et al. (1999) [9] and Bagarinao, et al. (2000) [10].

                                     109
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This makes the reconstruction of G(X; a) from the G(X; ak) diflicult since each of the G(X; ak)

is spanned by different basis functions. To circumvent this difliculty, G(X;a) is expressed

using the same basis functions. The orthogonal polynomials are then used as auxiliary basis to

compute the expansion coeMcients. In this way, the advantages of using orthogonal polynomials

are retained. At the same time, it would be possible to interpolate the functional dependence

of G(X; a) with respect to a from the estimated G(X; ak).

   The results ofthis chapter are obtained by employing nonlinear autoregressive (NAR) models

with polynomial terms as predictor functions. The use of this model is motivated by the fol-

lowing: l AR models are particularly effective for modeling noisy time series; their dependence

on the parameters, i.e., coeficients of the polynomial, is linear which makes the structure of

the model simple; and most importantly, an eMcient scheme to compute the model parameters

exists. This scheme makes possible the construction of parsimonious models necessary in the

BD reconstruction problem.

   More precisely, the Nl AR given by Eq. (3.56) is used as the predictor function g(X;a). The

equations are rewritten below:

?y.P red = g(M. -1; a) + Cn

     = ao + alyn-1 + • • • + adyn-d + ad+lyn-1 + ad+2yn-Iyn-2

         +'''+aMdi-d+En
         fuI
     == 2 amim (Yn-i) + En
         m=O

(7.4)

(7.5)

xvhere Yn-i = (/yn-i,••-,yn-d) represents a vector in the d-dimensional reconstructed state

space, the functional basis {z.(X)} is composed of all the distinct combinations of the coordi-

nates up to degree k, a == (ao,••-,aM) represents the parameter set, En accounts for the random

{brcing of the s}rst,em, and AI + 1 = (L" + d)!/(d!k!) determines the number of coefficients to be

computed. The problem is to find ai,•••,aK such that g(X;ai) is a predictor function for the

i.th time series. To do this, the methods discussed in section 3.4 are used to get the optimal

number of terms in Eq. (7.5) and to compute the values of their associated coefficients, that is,

the set {ai}. Moreover, the predictors of all time series should have the same structure, i.e., the

simie terins should be present in all of them. This is discussed in the next, section.
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7.2 ModelSelection

The criteria for model selection used in this chapter follows the model seiection algorithm de-

scribed in section 3.3 except for a slight modification. This modification arises due to the

requirement that the predictor function for each time series should have similar structures or

similar terms. Since it is assumed that all time series come from the same dynamical system,

then there should only be one working model for all of the time series differing only in their re-

spective parameter values. Once an appropriate working model is chosen, its bifurcation diagram

is constructed relative to the model parameter that changes from one time series to another.

   To take this into account, let ecE(P) be the cumulative multistep prediction error given by

                                       K
                              ecE(P) =2ek(P) (7.6)
                                      k=1
xvhere ek(P) is the multistep prediction error for each time series as defined in Eq. (3.76). The

model selection algorithm can now be modified as follows:

  1. For each time series:

     (a) Initialize the values of d and k, the delay and degree of Eq. (7.5) respectively.

     (b) Add each term one by one to the model. For each time, evaluate the multistep

         prediction error of the resulting model.

      (c) Add the multistep error of this time series to the cumulative multistep error.

  ?". The number of terms that gives the minimum of ecE(P) for higher values of P will be

     included in the final model.

  3. Recomput,e the coefficients ak for all the time series and include only the selected terms.

                                                      'Again, this only lists the basic approach to select the appropriate terms in the final model. This

can st,ill be enhanced in a number of vv'ays using the suggestions mentioned in subsection 3.4.3

The Rossler equations

To illustrate the above procedure, consider the following set of equations originally suggested

by Rossler [71]

                              d.T                              7t == -(X+Z),

                              dy                              Tt =X+aiJ, (7.7)
                              d.7.
                              Tt = bx-cz+xz,
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Nvhere a, b, and c are the system parameters. Twelve time series of the y-component were

generated by integrating Eqs. (7.7) using Euler's method with time step A = O.OOI. The

following parameter values were used:

                         b = O.3,

                         c = O.7 sin[2T(i - 1)/12] + 5.0,

                         a = O.03 cos[2T(i - 1)/12] + O.33,

where i = 1, • • • , 12.

   From these time series, the goal is to obtained an optimal model for the Rossler system.

Figure (7.1) shows the different plots of the multistep prediction error for different values of

sampling time 7. The delay d and degree k were initially set at 3 and 5, respectively. For higher

values of T [Fig. 7.1(A) and (B)], the multistep prediction error has a minimum after the eighth

term was added to the model. Addition of more terms to the model makes it unstable as can be

seen in very large prediction errors. On the other hand, for lower values of 7 [Fig. 7.1 (C) and

(D)], the minimum occurred after the addition of the tenth term. These results indicate two

candidate models for the Rossler system depending on the value of the sampling time 7. These

are given by

   MODEL 1:

                   yaalC == ao + ai y.-i + a2yn-2 + a3Yn-3 + a4 YZ-i

                            +asyn-lyn-2 + a6yn-lyn-3 + a7yn-2

                            +asYn-2Yn-3, (7•8)
   .N•IODEL 2,

                   ly:alC = ao + al yn"1 + a2 Yn-2 + a3Yn-3 + a4YZ-1

                            +asyn-lyn-2 + a6yn-lyn-3 + a7yn-2

                            +as!]n-2Yn-3+agYZ-3+aloyfi-1, (7.9)

fbr iiigher and loxver values of 7-, respectively.

   Fis.ure 7.2 sliows sample time series ofthe above models (left side) and the time series used

to est,imate the model parameters (right side). For higher values of T, some of the identified

models [e.g. Fig-. 7.2(A)] behaved differently as compared to the original system. On the other

han(l, fbr smaller values of 7, all the models behaved similarly as the original system. This is

illust•rated in Fig. 7.2(E) where the time series is similar to that of Fig. 7.2(F).
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The Lorenz equations

Anot,her familiar set of differential equations is the Lorenz equation given by

                               dx
                               Tt = a(y-x),

                               diy                               Tt = PX-iJ-XZ, (7.10)
                               dl
                               Tt = xy-fiz,

xvhere a, p, and 5 are the parameters of the system. Time series of the x-variable were generated

at, different parameter values: a = 10, 5 = 8/3, and p == O.5i,i= 45,•••,60. Moreover, time

series with dynamical noise of intensity K added to the x-variable were also generated. The

integration of Eq. (7.10) was carried out using Euler's method with time step ZX = O.OOI. The

sampling time T "ras set at O.1 and three different values of K were used.

   Tlie multistep prediction errors of the generated time series were evaluated with d = 3 and

k; = 7 as the init,ial delay and degree, respectively. The results are summarized in Fig. 7.3. For

diftbrent values of' h:, diff'erent number of significant terms Nvere obtained. Thus, three different

models were identified tbr the Lorenz system depending on the value of the noise intensity K.

Fi{rure 7.4 shoxvs tlie behavior of the identified models in coinparison to that of the original
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system. At the left side are the time series generated from these models, while at the right side

are those used in estimating the model parameters. For higher values of noise, time series of the

identified models appear periodic rather than chaotic [Fig. 7.4(C)].

7.3 Bifurcation Parameter ldentification

In general, the model given by Eq. (7.5) has more parameters than the original system. To

determine the bifurcation parameters, the computed coeMcients of each predictor function are

collected to form the set of parameter vectors {aZ = (aZo,•••,aiM)}, i = 1,•••,.K. The set of

points {aZ} are then used to locate the projection region.

                                              '   In many situations, the projection region is well-approximated by a linear subspace of the

parameter space of the model (section 4.5). This is the case when dealing with a small parameter

region, reconstructing specific bifurcations, or the given system is an LIP map (chapter 5). Under

these conditions, PCA provides a computationally eficient method to determine a satisfactory

approximation of the projection region. Recall that in the PCA-based approach, the number

of significant eigenvalues of the sample covariance matrix gives the dimension of the projection

region and hence corresponds to the number ofbifurcation parameters of the system. Moreover,

the eigenvectors associated to the significant eigenvalues span the required projection region.

Thus any point in this region can be expressed as

                                          P
                              apR(pa)=a+21Liei (7.11)
                                         i=1

where the ei's are the eigenvectors associated with the P significant eigenvalues, JtL = (LLi, • • • , iup)

represent the expansion coefflcients, and a represents the mean of {ai}. The BD of the model

(.X'; pa) --> g(X; apR(pa)) on the projection region can then be taken as the reconstructed BD with

LL as the effective bifurcation parameter.

   Going back to the Lorenz system, one can see from Fig. 7.3 that the resulting NAR model

has 15, 11, and 13 coefficients for rc = O.O, K = O.Ol, and K = 1.0, respectively. The number of

coeflicients is t,hus larger compared to the actual number of varying bifurcation parameters which

is just p. To determine t,he actual number of system parameters, PCA is employed. To do this,

the estimated coefficients are collected, the covariance matrix is formed, and the eigenvalues are

then comput,ed. These are shown in Fig. 7.5. From the figure, a good correspondence betsveen

the number of s.ystem parameters and the number of significant eigenvalues can be observed.

This implies that under the conditions mentioned above, the number ofsyst,em parameters can
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be readily obtained from the number of significant eigenvalues of the covariance matrix of the

estimated coefficient values.

7.4 Example 1: The Sine Map

In this section, a map which is nonpolynomial is considered and the applicability of using Eq.

(7.5) as a working model is investigated. In particular, the reconstruction of the BD of the sine

map "rith a Gaussian white noise input is studied. The map is given by

                           Xn =Sin(aXn-1) +6+ KEn (7.12)

where a and 5 are the system parameters. The behavior of Eq. (7.12) as a function of the

parameter 5 is characterized by a period-doubling route to chaos followed by period-doubling

reversal as can be seen in Fig. 7.6.

   Ten time series were generated with 1000 data points for parameter values given by 6o• =

O.75 +O.5j' /10, .7 -- 1,••;,10 and a = 2. Equation (7.5) with d=3 and k = 6 was used as the

initial search space. For K = O, the following optimal model was obtained for the ten time series:

       '                                                     '       xn = ao + alxn-1 + a2xg-1 + a3x2-! + a4xXl + asxa-1 + a6xgml + c.. (7.13)

To determine which of the seven parameters vary with the time series, the estimated values of

the model parameters were analyzed using PCA. The eigenvalues are shown in Fig. 7.7. 0ne

eigenvalue is significant indicating that changes in the parameters are oriented along a single

direction. The presence of the other nonzero eigenvalue can be attributed to the estimation

errors. This is evident in the plot of the projections of the estimated parameter values onto the

eigenvectors associated with the two nonzero eigenvalues as shown in Fig. 7.8. The projections

onto t,he first eigenvector clearly follow a linear relation whereas those of the second eigenvector

flucttiate around zero.

   To reconstruct the BD of the unforced sine map, the BD of Eq. (7.13) is constructed by

changing the model parameters along the direction defined by the first eigenvector, that is,

apR == a+ ILiei xvhere a is the mean of the estimates of the model parameters, ei is the first

eigenvector and ILi serves as the new bifurcation parameter. As shown in Fig. 7.9, the similarity

betxveen the tsvo BDs is apparent. This illustrates the applicability of Eq. (7.5) for the BD

rec:onstruction problem even for non-polynomial maps.

   Consider now t,he case xvhich takes into account the presence ofrandom forcing. Three values

of t,he noise amplitude, given by K = O.Ol, tt = O.1 and tc = O.5, xvere investigated. For all cases,
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ten time series with 10000 data points were generated using the same parameter values as that

in the unforced case. Some of these are shown in Fig. 7.10. A mere visual examination of the

given time series does not reveal any significant difference in the behavior of the system. It is

therefbre necessary to distinguish the different behaviors by unraveling the putative bifurcations

that separate them, as well as to uncover possible behaviors of the system not readily observed

in t,he available time series. This should be done without the explicit knowledge of the system

equations and the number of parameters.

   Following the same approach as for the case without noise, the initial search space was set

with d = 3 and k" = 6. For all noise amplitudes under study, the same model given by Eq.

(7.13) was obtained. The PCA analysis of the estimated parameters yielded the same result

as that of the unforced case (Fig. 7.7) characterized by two nonzero eigenvalues where one

being more significant than the other. The projections of the estimated parameter values onto

the eigenvectors associated with the two nonzero eigenvalues also behaNre similarly as that of

the. unforced case. Thus in spite of the presence of random forcing, t,he number of bifurcation

parameters in the original map can still be obtained. The bifurcation diagram was reconstructed

along the direction defined by the first eigenvector. The resulting BD is shoivn in Fig. 7.11.
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It can be observed that for low noise amplitude, the reconstructed BD closely resembles that

of the original BD. For higher noise values, some regions in the original BD disappear in the

reconstruction. This is more evident in the period three region which is preserved at Iow noise

fbrcing [Fig. 7.11 (A)] but completely disappears for higher noise amplitudes [Fig. 7.11 (B &

                                              'C)].

   Similar experiments were conducted for the bifurcation of the sine map with respect to a

while keeping 5 constant and equal to 1. Ten time series for parameter values ai• = 1.8 +

]'O.4/10, ]' = 1,•••,10 were generated. The initial search space was d = 3 and k = 6 and the

obtained model is again given by Eq. (7.13). Figure 7.12 shows the eigenvalues. For rc = O, there

is only one significant eigenvalue consistent with the number of bifurcation parameter. However,

for K = O.5, three significant eigenvalues appear when Ar = 1000. By increasing the number

of data points (N = 10000 and IV = 20000), the number of significant eigenvalues decreases as

can be seen in Fig. 7.12 (C)-(D). From this, one can conclude that the other eigenvalues are

due to estimation errors. This was verified by the plot of the projections of the estimates onto

the first eigenvector where a linear relation was observed. The reconstructed BD along the first

eigenvector is shown in Fig. 7.13.

   Finally, a t,wo-parameter reconstruction of the sine map is considered. The ten time series

xvith varying cy were combined with the ten time series with varying P, giving a total of twenty

time series. Again the resulting model is given by Eq. (7.13). This model has seven coeMcients.

Therefbre, twenty parameter vectors of order seven from which to estimate the projection region

are accessible. The PCA of this set of vectors yields two significant eigenvalues as shown in

Fig. 7.14. This suggests that two system parameters were varied when the given time series

were generated. This corresponds exactly to the two parameters in the original system. The

projection region is now given by Eq. (7.11) with P = 2, and ei and e2 are the eigenvectors

associated to the two significant eigenvalues. The effective bifurcation parameters are given by

pai and pa2.

   To shoxv the correspondence between the two parameter sets, {cy, 6} and {pai, pa2}, are plotted

in Fig. 7.15 (B). Here, pai and pt2 are the projections of {aZ} onto the projection region. These

projections are computed b}r t,aking the inner product between {aZ} and the two eigenvectors ei

and e2. The figure shoxvs that the distribution of these points follows that of the original param-

et•ers {cy,6}. Figure 7.15 also illustrates the efEbcts of noise on the reconstruction process. From

a computat,ional point, of view, noise generally corrupts the estimation of the model parameters.

This xvou}d aff'ect, the location of the pro.jected points in the parameter space which, in turn,
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K. = O.5 and Ar = 20000.

would affect the determination of the projection region. The proposed algorithm is robust to

such effects, as illustrated in Fig. 7.15, which show's similar distribution of the two parameter

sets in spite of the presence of strong dynamical noise.

7.5 Example 2: The FHN Equations

In this section, the forced FitzHugh-Nagumo (FHN) equation is considered. The set of equations

is given by

                                          x3                           dx
                           Tt = c(y +x- ff + z) +n,

                           dy -(x -a+ by)                           nt'= c ' (7.14)
where n represents the random driving force. The x-variable represents excitability while the

tJ-variable represents refractoriness. z represents the external applied current and a, b, and c

are the system parameters. For some range of z, the model behaves as an excitable membrane

"rhereas for some other z values, it behaves as an oscillating membrane defining a stable limit

cycle. In the absence of noise, the behavior of Eq. (7.14) as a function of the parameter z is

summarized in Fig. 7.16. From the figure, as z is increased, the stable equilibrium point becomes

unstable and a subcritical Hopf bifurcation occurs at i Rs -1.40 giving rise to the stable limit

cycle.. .rXs the current is increased further, another subcritical Hopf bifurcation takes place at

z A-J' -O.346 and the stable limit cycle disappears.

   Ten time series xvere generated by integrating Eq. (7.14) using Euler's method ivith At = O.15
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                          '
for parameter values zi = O.5 - (i - 1)3.0/10.0, i = 1, • • • , 10. The other parameters were fixed

at the following values: a == O.7, b= O.8, and c= 3.0. Using Eq. (7.5) Nvi'th k=3 and d=3

as the initial search space, an optimal model for each time series was obtained. The estimated

parameter values are shown in Table 7.1. From the table, one can see a good correspondence

between the estimated and the true values. Here the true values were obtained by solving

explicitly the terms in the Euler's expansion and computing the associated parameters from the

known values of a, b, and c.

   To generate time series with system noise, Euler's method was used in differentiating Eq.

(7.14). In particular, the tbllowing scheme was employed:

                        xn+1 = xn+f(xniyn)At+vl2Ii rcEn (7.15)

                        Yn+1 = Yn +g(Xn,Yn)At (7•16)

where

                                              x3
                           f(X,iY) = C(•T+Y- -Er+Z) (7.17)
                                       x-a+ by                            g(X, IJ) =- (7.18)
                                           c

and Erz is a Gaussian white noise with unit variance. With this, ten time series for K == 2.0 where

generated using the saine parameter values used in the unforced case. These time series are

plott,ed in Fig. 7.17. The same number of terms, as in the case xvithout noise, was used. The

estiinat,ed model parameter values are shown in Table 7.2.
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TS 1.0 Xn-1 Xn-2 Xn-3 XZ-i x2-i x2.2

1 T O.025

E O.036

2.410

2.370

-1.410

-1.420

o.o

o.o

o.o

O.039

-O.150

-O.160

O.144

O.144

2 T O.O19

E O.026

2.410

2.384

-1.410

-1.417

o.o

o.o

o.o

O.027

-- O.15O

-O.157

O.144

O.144

:3 T O.O14

E O.O18

2.410

2.395

-1.410

-1.416

o.o

o.o

o.o

O.O16

-O.150

-O.154

O.144

O.144

4 T O.O08

E O.O08

2.410

2.418

-1.410

-1,437

o.o

O.O12

o.o

o.o

-O.150

-O.149

O.144

O.146

rl T O.O03

E O.O02

2.410

2.409

-1.410

-1.416

o.o

o.o

o.o

o.o

-O.150

-O.149

O.144

O.144

6 T -O.O02

E -O.O03

2.410

2.412

-1.410

-1.418

o.o

oo

o.o

o.o

-O.150

-O.150

O.144

O.144

7 T -O.O08

E -O.O07

2.410

2.413

-1.410

-1.421

o.o

O.O02

o.o

o.o

-O.150

-O.150

O.144

O.144

8 T -O.O13

E -O.O13

2.410

2.412

-1.410

-1.420

o.o

O.O02

o.o

o.o

-O.150

-O.150

O.144

O.144

9 T -O.O18

E -O.O18

2.410

2.413

-1.410

-1.422

o.o

O.O03

o.o

o.o

-O.150

-O.150

O.144

O.144

10 T -O.024

E -O.023

2.410

2.413

-1.410

-1.424

o.o

O.O04

o.o

o.o

-O.150

-O.150

O.144

O.144

Table

values

Zl:

and

FHIT system. Estimated parameter values compared to the true values for N = O.O. T =

E = Estiinated values.

True
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TS 1.0 Xn-1 Xn-2 Xn-3 xz-, xg-, xg-,

1 T
E

O.025 2.410

O.029 2.401

-1.410 O.O

-1.416 O.O

o.o

o.o

-O.150 O.144

-O.150 O.147

2 T
E

O.O19 2.410

O.O19 2.425

-1.410 O.O

-1.433 O.O

o.o

o.o

-O.150 O.144

-O.152 O.148

3 T

E

O.O14 2.410

O.O12 2.418

-1.410 O.O

-1.423 O.O

oo
o.o

-O.150 O.144

•- O.151 O.146

4 T
E

O.O08 2.410

O.O08 2.413

-1,410 O.O

-1.419 O.O

o.o

o.o

-O.150 O.144

-O.150 O.143

5 T
E

O.O03 2.410

O.O03 2.417

-1.410 O.O

-1.422 O.O

o.o

o.o

-O.150 O.144

-O.151 O.146

6 T
E

-O.O02 2.410

-O.O03 2.419

-1.410 O.O

-1.426 O.O

o.o

o.o

-O.150 O.144

-O.154 O.150

7 T
E

-O.O08 2.410

-O.O08 2.404

-1.410 O.O

-1.406 OD

o.o

o.o

-O.150 O.144

-O.151 O.147

8 T
E

-O.O13 2.410

-O.Oll 2.404

-1.410 O.O

-1.409 O.O

o.o

o.o

-O.150 O.144

-O.147 O.141

9 T
E

-O.O18 2.410

-O.O15 2.426

-1.410 O.O

-1.429 O.O

o.o

o.o

-O.150 O.144

-O.153 O.147

10 T
E

-O.024 2.410

-O.021 2.401

-1.410 O.O

-1.410 O.O

o.o

o.o

-O.150 O.144

-- O.149 O.145

Table

O.O09).

7.2:

T=
FHI

True

system.

values

 Estimated parameter values compared to the true values for K, = 2.0 (<E)TH =

and E = Estimated values.
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Figure 7.16: Bifurcation diagram of the FitzHugh-rlXlagumo equation. The other parameters are fixed:

a= O.7, b= O.8, and c= 3.0.

   From the results, it can be seen that all the time series can be modeled with the following

NAR equation

                  Xn=ao+alXn-1+a2Xn-2+a3Xi-1+a4xX2+En (7.19)

xvhere ai, i = O,•••,4 are the model parameters. However, it is noted that for other noise

intensities, for example K = 5.0, some time series is modeled with a different Y! AR equation as

can be seen from Table 7.3. For this case, there are two competing models that can be deduced

from the table. The first model describing Si and S2 is given by

      Cn =: ao + alXn-1 + a2Xn-3 + a3Xg-1 + a4Xn-IXn-2Xn-3 + asXn.2XZ-3 + cn• (7.20)

The second model describing the remaining time series is given by Eq. (7.19). In the following,

Eq. (7.19) is used as the working model for this system.

   To reconstruct the BD of the FHN system, it is necessary to determine which of the five

model parameters in Eq. (7.19) represent the actual bifurcation parameters. To do this, PCA

was applied to the estimated values of the model parameter in the same manner as the sine map.

The eigenvalues of the covariance matrix formed by these estimated values are shown in Fig.

7.18. The figure suggests that, there are two significant directions in which the parameters are

changed from one t,ime series to the other. This is greater than the actual number of bifurcation

parameter, t,hat is, one. In fact, only parameter ao is changed from one time series to the

other. This is consistent with the results in section 6.2 where the linear inanifold approximation

(PCA-based reconstruction) is insuficient to get the actual number of bifurcation parameters.
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Figure 7.17: Sample time series. First 1000 data points of the time series used in reconstructing the BD

of t,he FHN syst,em. The presence of noise causes spiking events even for parameter values corresponding

to the excitable region of the model.
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TS 1.0 Xn-1 Xn-2 xn-3 x2-i Xn-IXn-2Xn-3  3Xn-2 xn-2XZ-3

1 T
E

O.025

O.029

2.410 -1.410 O.O -O.150

1.818 O.O -O.827 -O.141

o.o

O.064

O.144

o.o

oo
O.072

2 T
E

O.O19

O.024

2.410 -1.410 O.O -O.150

1.806 OO -O.805 -O.141

o.o

O.066

O.144

oo

o.o

O.067

3 T

E

O.O14

O.O13

2.410 -1.410 O.O

2.409 -1.409 O.O

-O.150

-O.151

o.o

o.o

O.144

O.144

o.o

o.o

4 T
E

O.O08

O.Oll

2,410 -1.410 O.O

2.419 -1.425 O.O

-O.150

-O.151

o.o

o.o

O.144

O.146

o.o

o.o

5 T
E

O.O03

O.O03

2.410 -1.410 O.O

2.414 -1.418 O.O

-O.150

-O.152

o.o

o.o

O.144

O.147

o.o

o.o

6 T
E

-o.oo.p.

-O.O02

.P..410 -1.410 O.O

2.408 --1.410 O.O

-O.150

-O.150

o.o

o.o

O.144

O.144

o.o

o.o

7 T

E

-O.O08

-O.O06

2.410 -1.410 O.O

2.383 -1.379 O.O

-O.150

-O.148

o.o

o.o

O.144

O.140

o.o

o.o

8 T
E

-O.O13

-O.O08

.9..410 -1.410 O.O

2.402 -1.401 O.O

-O.150

-O.15.9.

o.o

o.o

O.144

O.145

o.o

o.o

9 T
E

-O.O18

-O.O13

2.410 -1.410 O.O

2.425 -1.424 O.O

-O.150

-O.154

o.o

o.o

O.144

O.147

o.o

oo
10 T

E

-O.024

-- O.O17

?".410 -1.410 O.O

2.407 -1.403 O.O

-O.150

-O.151

o.o

o.o

O.144

O.143

o.o

oo

Table

O.009).

7.3:

T=
FHN s.}rstem. Estimated parameter values compared to the true values for K = 5.0 (eTH =

True values and E = Estimated values.
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Figure 7.18: Eigenvalues of the covariance matrix form from the estimated parameter values in relative

values leigenvaluell Åí eigenvalue Å~ 100 9o.
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Figure 7.19: Eigenvalues of the covariance matrix form from the estimated parameter values in relative

values Ieigenvaluel/Zeigenvalue Å~ 100 % and IV = 40000.

                                              '

However, by increasing the number of data points in the time series, the relative value of the

seconcl eigenvalue decreases as shown in Fig. 7.19. This behavior is similar to the one shown

in Fig. 7.12. Assuming a one-parameter reconstruction relatlve to ao, the reconstructed BD is

shosvn in Fig. 7.20. The reconstructed BD captures all the important features of the original

systelll.

7.6 Example 3: The 0nchidium Pacemaker Neuron Model

As a final example, a neuron model t,hat reproduces the discharge pattern of a pacemaker

nem-on is considered. This pacemaker neuron is localized in the esophageal ganglia of the
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Figure 7.?-O: Reconstructed BD of the FHI -system as a function of ao.

marine pulmonate mollusk Onchidium verruculatum and the model was proposed by Hayashi

and Ishizuka [42]. The 8-variable model is given by

                      dV                   CV -llTt = 9NaM3h(V - VNa) - gKn4 (V - Vk)

                             -9Na.Mshs(V - VNa)

                             -9K. ns (V - VK) - 9K. nr (V - VK)

                             -9t(V-Vt)-Jp+Iext (7.21)
                      du u. (V) -u                      Tt = cf..(v) i' U=m,h,n (7.22)
                      dw iv..(V)-u)                      LiTt = c, 7.(v) i UJ=Ms, hs, ns (7.23)
                     dnr nroo(V) in nr                      dt= CrTn. ' (7'24)
For t,his case, Je.t represents the bifurcation parameter of the system and the other parameters

are fixed (see Appendix B). The time series used in the analysis are t,he maximum values of

tlie membrane potential V. The observed maximum values exhibit period doubling bifurcation

followed by the chaotic bursting regime relative to the variation of I,.t. The chaotic regime is at

t,he loxver bound of the period doubling scheme and the model's firings become irregular except

in some Iext windows in which the bursting is periodic with i spikes per period (i = b-,7, •• •).

As the external current is decreased below some critical value, the chaotic bursting is replaced

l).s periodic bursting wit,h three spikes (see Fig. 4a of IVIaeda, et al. [58]).

   Ten time series fbr l,.t = -2.25 -O.02J', o' = 1,• ••, 10 were used in the succeeding analysis.

Figure 7.21 shoxvs t,he mult,istep predicnion error as a function of the number of t,erms included
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Figure 7.21: Multistep prediction error. (A) Order k = 7, and (B) order k = 8. The delay d = 1. The

minimum is indicated by the arrow.

in the model. Different initial values of the delay d and degree k were studied but only the case

where d = 1, k :7 are shown in [Fig. 7.21 (A)] and k = 8 [Fig. 7.21(B)], respectively. The

other cases had minimum values occurring at the constant term and diverges when more terms

svere added. From the figure, five terms are significant. The identified models are:

   MODEL 1:

              y:aiC = ao + aiyK- + a2y2-i + a3yn-i + a4yn-i + asya-i + En, (7•25)

   MODEL 2:

              3yfiaiC = ao + aiyfimi + a2yZ-i + a3yfi-i + a4yn-i + asyn-i + En• (7•26)

                                             '
   Figure 7.22 shows the identified models (solid line) together with the return map (points) of

the time series for the chaotic case (left side) and the period three case (right side). The data

fitted well with the identified maps. To analyze the bifurcation structure of the original system,

the identified models are used. The analysis started with the determination of the projection

region associated xvith the given set of time series. This is done by collecting the estimated

coefficients and performing PCA on the resulting parameter vectors.

   The significant eigenvalues are shown 7.23, Surprisingly, there is a good agreement between

t,he number of significant eigenvalues of the covariance matrix and the number of system param-

eters t,hat were changed to generate the time series. Since there is only one significant eigenvalue,

the projection region can be determined by the eigenvector associated with this eigenvalue. Any

po. int, in the projection region is approximated by

                                  apR(pa)=m+ue, (7.27)
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where lt serves as the effective bifurcation parameter and e is the eigenvector of the only signif-

icant eigenvalue. To construct the bifurcation diagram, the map is iterated many times, after

which the transient behavior is removed from the time series, and the data are plotted as a

function of the effective parameter pa. The resulting BDs are shown in Figs. 7.24 (A) and (B).

Both BDs show some kind of period-doubling bifurcation route to chaos. Figure 7.24 (B) is

closest to the original BD. However, it does not have the period three behavior right after the

chaotic regime.

7.7 Discussion

The examples illustrate the different issues in reconstructing bifurcation diagram using time

series from dynamical systems driven by noise, One of these issues is the appropriate choice of

the approximating function g(• ; a) that will be used to model the given time series. For the case

of using a Ni AR model such as in Eq. (7,5), it is observed that different models can appear in

spite of the fact that all the time series come from the same dynamical system. Since competing

models describe individual time series only, some of them may perform badly (for example, in a

one-step prediction task) when used with the other time series. This can be used as a criterion

in selecting an appropriate model for the unknown dynamical system and is the basis of the

criterion discussed in section 7.2 for model selection.

   After an appropriate model is obtained, it remains to be determined which among the model

parameters represents the actual bifurcation parameters or the system parameters that changed

from one time series to another. To resolve this, the PCA of the estimated parameter values

was used. The number of significant eigenvalues determines the number of system parameters

that changed from one time series to another if the linear manifold approximation holds and the

variat,ion of the syst,em parameters are larger than the model parameter estimation error. When

the variation are less than the estimation error, PCA will detect the estimation error instead.

Also, when the projection region is a nonlinear manifold, the number of significant eigenvalues

xsrill exceed the actual number of bifurcation parameters. For a more general derivation, the

nonlinear methods discussed in chapter 6 can be applied.

   The performance of the algorithm as described in the preceding sect,ions was also demon-

strat,ed in sexrert 1 other dynamical systems. The algorithm worked equally well with the Henon

map, t,he cubic map, and the logistic map. For these systems which are described by polyno-

mial e.quations, the algoritlim determined the correct terms in the polynomial. For continuous
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systems such as the FHN, the algorithm preserved the different bifurcations of the given system

in the reconstructed BD.

   The use of l AR models in this reconstruction algorithm is more advantageous than the

Nl -based approach. The efficacy of the NAR model has been demonstrated in a variety of

problems, particularly in the analysis of noisy time series[4, 23, 52]. The NAR model has been

applied effectively in obtaining predictor functions for a number of systems (maps and flows),

detecting nonlinearities in noisy time series (observation and dynamical noise), estimation of

dynamical invariants, among others. Furthermore, NAR models with appropriate number of

terms can also capture bifurcation structures as shown in [4]. Aside from polynomials, NAR

models can also have other basis functions.

   The algorithm is also computationally eMcient in a number of ways. In obtaining predictor

functions using Korenberg's scheme, the problem of multiparameter optimization is eliminated

by employing auxiliary polynomials which are orthogonal with respect to the natural invariant

measure of the time series[1, 34]. With this, the parameters are readily obtained from the

time series. This scheme also leads to robust-to-noise estimation of the parameters since no

distances in the reconstructed state space need to be computed. Moreover, the construction of

parsimonious models becomes possible since the contribution of each orthogonal term in reducing

the error function can be computed from the time series.

   Finally, the effect of noise can be deduced from the results. Noise enhances the detection

of the hidden nonlinear structure of the unknown dynamical system. This can be seen in

the FHI -system example. In the latter, the addition of noise generates some spikes which

c.annot be observed in the absence of the random forcing. This positive effect of noise, together

with Korenberg's algorithm, makes possible the determination of the nonlinear structure of the

unknown system from the observed time series. This in turn improves the obtained model which

is critical in the reconstruction process.

   In summary, an algorithm in reconstructing BDs from noisy time series is presented. The

algorithm consists in finding a parametrized predictor function whose bifurcation structure is

qualitatively similar to that of the given system. To account for the effects of noise, NAR models

are used as predictor functions. The use of Korenberg's algorithm makes possible the construc-

t,ion of parsimonious models which is advantageous in the reconstruction problem. The algorithm

is robust to noise making it more suitable w'hen dealing with noisy time series. ]lvloreover, the

algorit,hm also works xvell eNren for a limited number of time series.



Chapter 8

Conclusions

The study of bifurcations from time series was systematically investigated. Several dynamical

systems with well-known bifurcation diagrams were included in the simulations. Time series at

different parameter values were used to reconstruct the BDs ofthese systems. The reconstruction

assumed that the values, or even the number of parameters, were unknown. The approach used

in this study is based on a geometrical interpretation of the reconstruction problem. In this

viewpoint, a region in the model's parameter space exhibits the same bifurcation structure as

that of the given system. This region is referred to as the projection region. For parameter values

within this region, the model's behavior is similar to that of the system. The available time

series are then used to determine the location of the projection region in the model's parameter

space.

   The above interpretation leads to methods of reconstructing bifurcation diagrams from time

series. XVith this, several reconstruction algorithms were formulated depending on the projection

region. For Iinear manifolds, the PCA-based approach is effective in obtaining the BD of the

original system. On the other hand, for more general cases (nonlinear manifolds), principal

curves can be used for one-dimensional BD reconstruction. In general, any algorithm that solves

the BD reconstruction problem xvill be based on the following steps: 1) choosing the appropriate

ftamily of predictor functions; 2) projecting the given time series onto the parameter space; 3)

identifying the pro.jection regjon using the estimated parameter values; and 4) constructing the

bifurcation diagram of the predictor function on the projection region. The resulting bifurcation

diagram can then be t,aken as the reconstruction of the bifurcation structure of the unknown

g. yg. t•em. Each step is associated with some degree ofdifliculty and the quality ofthe reconstructed

BD de.pends on tlie infbrmation knoxvn a priori.

                                      141
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   Two classes of predictor functions were chosen for the simulations: neural networks (NN) and

nonlinear autoregressive (l AR) models. For the NN-based approach, a three-layer feedforward

architecture was employed. The networks were trained using backpropagation and minimization

of the error function was done using BFGS algorithm. For the NAR-based approach, the space of

candidate terms was set by specifying initial delay d and order k [refer to Eq. (3.56)]. The model

coeflicients were estimated using the fast orthogonal approach of Korenberg. For both models,

the pr'incipal components of the estimated parameters determined the projection region when the

linear manifold approximation holds. The principal curve approximated the projection region

for one-dimensional nonlinear manifold. Several issues appeared in the course of the simulations

and these are summarized in the following paragraphs.

The choice of the predictor function. One of the important issues in reconstructing BDs

using time series is the appropriate choice of the predictor function g(• ; a). The success of any

reconstruction algorithm depends on the structure of the chosen g(• ; a). The main requirement

tbr the choice ofg(•;a) is the presence ofprojection regions in its parameter space. Under this

condition, the use of neural networks in the reconstruction problem comes naturally. Neural

networks are nonlinear and known for being universal approximators. Moreover, the number

of parameters in the netvv'ork can be adjusted by simply changing the number of hidden units

without affecting the number of input and output units. 'Thus, in this higher-dimensional weight

space, it is safe to assume that there exists a region where the network's bifurcation structure

is the same as that of the given system.

   Nonlinear autoregressive models are more suitable when dealing with time series corrupted

by. noise. The coefficients (model parameters) can be computed with the help of auxiliary

orthogonal polynomials instead of the traditional least-squares approach through an optimization

procedure. This does not only speed up the computation but also makes the approach robust

to noise. Moreover, the approach made possible the construction of parsimonious model by

including only the terms that reduced the error function significantly. W'ith this, the model's

parameter space can be constructed progressively, adding extra dimension only when required.

   The choice of predictor functions is not limited to these two models. For instance, radial

basis functions may do as well in t,he reconstruction process. The algorithms described in this

st,udy can be applied using other functions as long as appropriate projection regions exist.
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The projection region. The problem of obtaining the projection region from the computed

model parameters {aih' i.} is related to the problem of finding lower dimensional manifolds in

a high dimensional space which can be solved using several well-established approaches. Thus

when the projection region is a nonlinear curve in the parameter space of the model, principal

curves can be employed to approximate this region. This approach was considered in section 6.2

for one-dimensional BD reconstruction. For higher dimensional cases, this approach is general-

ized as principal surfaces, nonlinear principal component analysis, bottle-neck neural networks,

among others.

   In many situations, the projection region is well-approximated by a linear subspace of the

model's parameter space. This is the case when dealing with small parameter regions, recon-

                                                                       'structing specific bifurcations, or the given system is an LIP map. Under these conditions, PCA

provides a computationally efficient method to determine a satisfactory approximate of the pro-

jection region. The dimension of the projection region corresponds to the number of system

parameters. This can be obtained from the number of significant eigenvalues of the covariance

matrix formed by the estimated model parameters. Moreover, the eigenvectors associated to the

significant eigenvalues span the required projection region.

   There are txvo possib!e problems in obtaining the projection region using {al.i.}. First, it

is possible that the {aZ.' i.} will be scattered in the model's parameter space instead of being

localized on the desired projection region. This is especially true when several regions in the

parameter space have similar bifurcation structures. Several cases were encountered during

simulations when dealing Nvith stable fixed point solutions of the dynamics. The time series, in

this case, contained no information about the dynamics of the system except during transient.

Moreover, several regions in the model's parameter space have fixed points and thus, the obtained

ali. did not Iocate the desired projection region. This situation can be avoided by using the

sequential approach, as discussed in chapter 6, in obtaining the afui.s. Moreover, one should

start. with the time series exhibiting the most irregular behavior so that the simpler ones, such

as fixed point, solutions, will be projected in neighboring regions.

   A second possible problem is xvhen the projection region is not compact in the parameter

space but rather exists in patches of smaller regions. This situation can occur even though the

cost, function is minimized for all of the time series in {}i.i}. This simply means that the different

behaxriors of tlie origi-nal syst,em are pro.jected at different locat,ions in the model's parameter

space. In this case, the projection region is not appropriate and the model should be changed.
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Effects of noise. Another important issue in the reconstruction problem concerns the effects

of both observation and system noise. Measurement noise can introduce errors in the estimation

of the model parameters. This can be viewed as a displacement of {a:.i.} from their ideal

locations by an amount which may depend on the noise intensity. However, the displaced

{aZ.' i.} will still remain in the same bifurcation region as the noiseless case. The effect of this

in approximating the projection region can be minimized by preprocessing the data to suppress

measurement nolse.

   For dynamical noise, the situation is quite different. Its presence can cause drastic changes

in the values of the associated model parameters especially near bifurcation points. This, in

tum, will affect the location of {afti.} in the parameter space. The displaced {a;.i.} may be

located in other bifurcation regions. This will introduce additional dificulties in obtaining an

appropriate projection region using the estimated model parameters. To avoid these difficulties,

parameter estimation techniques which are robust to noise should be used. In this study, this is

achieved by using Korenberg's fast orthogonal algorithm in estimating the NAR coeficients.

   An illustration is shown in Fig. 8.1. A circle in the system's parameter space remains a circle

in the projection region in the absence of noise [Fig. 8.1 (B & C)]. In the presence of dynamical

noise, the estimated weights for each trained network are scattered in the weight space as can be

seen in their projections onto the two principal eigenvectors [Fig. 8.1 (E)]. The projection region

is ill-defined for the r IT model. On the other hand, the NAR-based approach still obtained the

correct, pro.jection region as shown in Fig. 8.1 (E).

  This study also opens new interesting problems. First, a rigorous investigation of the type

of bifurcations that can be reconstructed in the presence of perturbations is necessary. Some

types of bifurcations are not persistent when the system is perturbed and their detection from

time series may be more diflicult. The reconstruction of these bifurcations may require extra

information. An insight from the results is that Hopf bifurcations were easily reconstructed as

compared to pitchfork and homoclinic bifurcations. A detailed study of this problem can reveal

the possible bifurcations the present algorithm can detect from the time series. Second, deter-

mining the functional relationship betsveen the two sets ofparameters (system and model) is also

interesting and worth exploring. In the present case, this is possible when the number of system

parameters and their xralues are known and the linear manifold approximation holds. When

t,he.se t,wo conditions are met, the model parameters can be expressed as a linear combination

of the sy. stem paramet,ers and vice versa. Bifurcation points can be predicted and localized in
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the parameter space of the system rather than that of the model. Finally, the extension of the

current approach to higher dimensional nonlinear cases remains an open problem. The study of

this problem is important to address cases when the PCA-based approach is insuMcient. The

relevant questions are: 1) how to get the dimension of the nonlinear manifold; and 2) how to

express this manifold in terms of the discrete points obtained from the time series. The PCA

can provide an upper bound for the dimension of the nonlinear manifold. If the dimension is

knoNvn, the principal curve and the principal surface of the discrete points can represent the

required one- and two-dimensional manifold, respectively.

   The numerical results of the study were quite remarkable. Even for a limited number of time

series (or equivalently, a few parameter values), the BD of the system was reconstructed over

a relatively wider parameter region. The reconstructed BD captured the important features of

the bifurcation structure of the system. The period doubling of the maximum potential of a

pacemaker neuron, the two subcritical Hopf bifurcations of the FitzHugh-Nagumo equations,

the period doubling and period doubling reversal of the sine map, the pitchfork bifurcation

of the Lorenz equations and the cubic map, and the two-parameter bifurcation structure of

the H6non map, are few examples of the type of bifurcations recovered using the algorithm.

The reconstruction algorithm also worked well even when the time series were corrupted by

observation or dynamical noise. The success of the simulations promises potential practical

applications especially in the analysis of systems where first principle modeling is extremely

difficult if not impossible.

   With the BD reconstructed, it is easy to know the sequence of bifurcations the system

undergoes as the parameters are changed. Unobserved behaviors can be determined by simply

examining the reconstructed BD. Critical parameter values become apparent and the system's

dependence on its parameters are completely unfolded. All these information are drawn directly

from the time series measured at different parameter values, thereby removing the dificult task

of constructing differential equations that describe the dynamics of the system. This makes the

BD reconstruction algorithm an important tool to uncover the underlying mechanism of the

system under study from time series.
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Appendix A

Recursion Relations

In this section, the recursive relations in estimating a.., IV., and b. are derived. The derivation

is based on the orthogonal property Eq. (3.51) and other relations established in Chap. 3, Sec.

  To compute a.. iteratively, one can use Eq. (3.59) to rewrite Eq. (3.60), that is,

       am. = 7e fddXp(X)z.(X)iv.(X), (A.1)
          = 17Å} f ddxp( X)zm (x) [zr (x) - illi arj zvj (x )] , (A.2)

           : ie [f ddXp(X) zm (X)zr (X) - il li a.j f ddXp(x)z. zvj (x)] , (A.3)

                                  r-1          = I7e fddxp(X)z.(X)z.(X)-illr].{ii.,arjamjiVj, (A•4)

                 r-1       amr=Iik'illZr-j2.=oamiari'-Xj,', (A'5)

where

                   5mr =fddXp(X)z. (X)z.(X'). (A.6)

  In the same manner, one can compute Nm iteratively by using Eq. (3.59) to rewrite Eq.

(3.61) in the form

N. == fddXp(X)[iv.(2X')l2. (.A.7)
    = ./ d(`xp(x) [z.(;T) --- 'iEr.ia...w.(.y• )]2, (A.s)

    = fddNp(x) ([z.(.x')]2 -2z,. 'ilri:1,i cvmrwr(x)+ [TIII)8 cumrwr(x)]2), (A-g)
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     + .2=o .lll.iio am'amr' / ddxp(x)wr(x)w.t (x),

                 m-1 m-lm-1   = ./ ddXp(X)[zm(X)]2 -2 .2.o cumrormrNr + .2=o .E.oamramr'IVr6rr',

                 m-1   = /' ddXp(X) [zm (X)12 - .2=, akr Nr ,

         m-1!Vm == 67nrn-2agzrlVri

         r=O
where Eqs. (3.60) and (3.51) are used in deriving line (A.11) from line (A.10).

  Finally, to get the equation for b,., Eqs. (3.62) and (3.59) are used; that is,

   brn " [itGiIfddXp(tX')g(X;a)uJm(X)i

      =sk(/ [ :o'            ddxp(X)g(X`, a) z.(X) - 2 amrwr(X)] ) ,

                          m-1      ,= [iel ; f ddxp(x)g(X1 a) zm (X) - 7illl il.li",

                          m-1      = IEtel f ddxp(x)g(x; a) zm (x) - 17el I III.lli-, amr bT Nr ,

           m-1   b'n = Ii/lllilJM -.2=oamrbrlÅíVlkr,

xv he re

                or. = fddXp(X)g(X;a)z.(X).

  To summarize, the following iterative equations are obtained:

                a.,=E;'g}r-i=-iamjarj-iNvii,

                        m-1                IVm = 6mm-2a:rNr,
                        r=O
                        m-1                bm == [illi'ii:-.E=oormrbr[i(llll';i

xvhere

               Smr = ./ddXp(X)zm(X)zr(X),

               "trn == ./ ddXp(X )g (X; a) zm (X).

f ddxp(x) ( [zm (x)]2 - 2 Tl.:,i crmr zm (x)wr (x) + Tlil)8 M.il.]I amramr' u'r(x)u)r' (x)

            m-1f ddxp(X)[zm (X)]2 - 2 .Z.,              cifmr f ddXp(X)zm (X)wr (X)

 m-1m-1
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(A.10)

(.4X..11)

(A.12)

(A.13)

(A.14)

(A.15)

a.. f ddXp(X)g(X; a)uJr(X), (A•16)

                (A.17)

                (A.18)

(A.19)

(A.20)

(A.21)

(A.22)

(A.23)

(A.24)
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The above integrals can be evaluated by applying the ergodic theorem:

               6mr = ".im,.,ilill"lll=,zm(yn)zr(yn), (A•2s)

               orm = .iiLm..iliIi"l=,g(yn;a)zm(yn),

                  = .i.im,.lil}ll"lll.,yn+izm(Yn)• (A.26)



Appendix B

Activation /Inactivation Functions

               N..(V) = aN(V)/[aN(V)+6N(V)]

               7N(V) = 1/[aN(V)+6N(V)]

where N = m, h, n, ms, hs, ns, and n,. Rate constants are as folloNvs:

            a.(I/) =r O.1(20+V)/[1-exp{-(20+V)/10}]

            ah(V) = O.07exp{-(V+45)/2e}

            a. (V) = O.Ol(20 + V)/[1 - exp{-(20 + V)/10}]

           a.. (V) = O.1(26 + V)/ll - exp{- (26 + V)/10}]

           ah.(V) = O.07exp{-(V+51)/20}

           a.. (V) = O.Ol(50 + V)/[1 - exp{-(50 + V)/10 }]

           crn. (V) = OOI(100 + V)/[exp{(100 + V)/10} - 1]

            5.(V) = 4exp{-(V+45)/18}

            6h (V) = 1/[1 + exp{-(15 + V)/10}]

            5n(V) = O.125exp{-(V+30)/80}

           5m.(V) = 4exp{-(V+51)/18}

            5h. (V) == 1/[1 + exp{-(21 + V)/10}]

            5n.(V) == O.125exp{-(V+60)/80}

            6n.(I') == O•125exp{-(V+90)/80}]

I.XIa.ximum conductances values: g,-"•. = 60[peS], gK = 10[LLS], giva. = 1•40[ILS], gi<. = O•18[peS]

gi". = O.20[/.t,S], andgi == O.063[xLS]. Valuesofequilibriumpotentials ofchannels: V,v. = 50[mVl
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VK = -70[mVj, and Vt = -70[ml/]. Values ofthe membrane capacitance: Cv == 20[nF]. Values

of dimensionless constants: Cf = 10, Cs = 100, and Cr = 800.



Appendix C

Experimental Preparation

Five specimens of Gymnotus carapo, gathered from Laguna del Sauce a lake in Departamento de

Maldonado in Southeastern Uruguay, of a length ranging from 7 to 10 cm were selected for the

experiments. The fish were placed in separate tanks. Each tank contained a plastic tube open

at both ends, with carbon electrodes to record the EOD. The tube svas the preferred position

of the fish during most of the light phase (which is the resting phase) of the circadian cycle,

so that no constraint was necessary to make the animal enter into the tube or remain in there.

All experimental procedures were performed during the light phase of the circadian cycle, when

the variability in the duration of the intervals is lowest. The voltage of the EOD was digitally

recorded at equal time intervals of O.05 milliseconds (i.e. sample frequency of 20 kHz) and saved

as ASCII files xvith the value of time in the first column and voltage in the second column. A C

program calculat,ed the EOD discharging times and the intervals between successive discharges

from the digital fiIe of the EOD recording. This program wrote the discharge times and the

EOD interval t,hat ended in that discharging time in two columns of an ASCII file. We checked

that the appreciation in the value ofthe discharge times was the same as the sample interval of

the voltage vs time file that xvas directly recorded from the fish.

   Since novel st,imuli (such as weak mechanical vibrations or electric fields) as well as small

inovements of t,he fish induce transient frequency increases in the EOD (e.g. Capurro et al., 1994,

ancl references therein), we controlled visually that the fish was at rest during the recordings i.e.

everi small macroscopic movements of t,he fins were absent. Furthermore, t,he recordings were

done in a silent, room xvit,h no changes in the lighting Ievel and using an anti-vibration table.

Digi't,al recordings cont,aminated by electric fields due to external sources of induced current were

discarded.
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