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                                Abstract 

     In this thesis, we study von Neumann algebras associated with 

measurable groupoids of type  IIl. The aim of our study is to give 

approaches to the study of factors associated with actions of 

subgroups of SL(n,  2) on the n-torus by linear automorphisms. 

This thesis consists of three parts. The first part is devoted to 

preliminaries.  In  "the second part, we introduce the notion of an 

action of a semigroup on a Borel space and construct a  homomorphism  • 

of a semigroup into the semigroup of  infective  endomorphisms of 

the associated von Neumann algebra. We study conjugacy problems 

for subalgebras associated with the above homomorphism. As an 

application, we construct countably infinite  non-conjugate 

subalgebras of the full factor of type  Hi associated with the 

action of  SL(n,  Z) on the n-torus. In the third part, we study 

full factors of type  IIl associated with the actions of some 

subgroups of SL(2,  2E) on the 2-torus. We construct minimal 

periodic automorphisms of these factors with various Connes' 

outer invariants. For every possible value of the invariant, we 

can find an automorphism with it among above automorphisms. 

                                                                                                             •
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Introduction. 

     The notion of measurable groupoids was first introduced by G. W. 

Mackey for the study of the ergodic  theory'[23]. Since then this 

notion has played important roles in various fields in mathematics, 

in particular, in the commutative ergodic theory and in the theory of 

operator algebras. In the theory of von Neumann algebras, the close 

relation to the ergodic theory has been known since Murray and von 

Neumann gave the group-measure space  construction.in  [24]. This 

construction was generalized by W.  Krieger [21], and then by  J.  Feldman 

and C. C. Moore  [14]. In terms of the groupoid theory, they studied 

about principal measured groupoids with countable orbits. P. Hahn 

unified these constructions and showed the way to construct von 

Neumann algebras from more general measured groupoids  [17]. By 

introducing the notion of transverse measures, A. Connes gave a new 

formulation for the groupoid theory [5]. 

      In  1943, Murray and von Neumann showed the uniqueness of the 

hyperfinite factor of type  Hi in [25]. Corresponding to their result, 

H. A. Dye showed that measure preserving ergodic actions of singly 

generated groups on a non-atomic  probability. space are weakly 

equivalent [10, 11]. It should be noted that equivalence relations 

associated with weakly equivalent actions are isomorphic as measured 

groupoids. Recently, A. Connes, J. Feldman and B. Weiss showed that, 

for any amenable nonsingular countable equivalence relation  RCS x S, 

there exists a nonsingular transformation T of S such that, up to a 

null set, R =  {(t,  Tnt);  tES,  n  eZ. [6]. It follows that a
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   principal, amenable and ergodic measured  groupoid.of type  IIl is unique 

   up to isomorphism. As an opposite notion of amenability, K. Schmidt 

   introduced the notion of strong ergodicity of measure-preserving 

   actions of countable groups  ([34], see also [7]). One of important 

   examples of strongly  ergodic actions is the action of  SL(n,  Z) on the 

   n-torus by linear automorphisms for n = 2, Let G
n be the 

   associated measured groupoid of this action. R. J. Zimmer showed that 

   {Gn;•n = 2, 3,...} are not isomorphic with each other [38]..Let Ptn 

   be the full factor of type  II1 associated with  Gn. It seems to be 

   very difficult to answer whether {) n;•n = 3, 4,-1 are isomorphic 
   or not. (By using Property T, it can be shown that  J  2 is not 

   isomorphic  to At for n > 3.) Actions of  now-amenable subgroups of 

   SL(2,  2!) on the 2-torus are also strongly ergodic.[33]. It is not 

   known whether groupoids associated with these actions are isomorphic 

   or  not This thesis is an attempt to understand well these groupoids 

    and factors. 

        The organization of this thesis is as follows: Chapter  I is a 

 preliminary.  part. We review well-known facts about  groupoids  and von 

   Neumann algebras. In Chapter II, we study cojugacy problems for 

    subalgebras of von Neumann algebras associated with measurable groupoids. 

    In Section 2.1, we introduce the notion of an action  o1 a semigroup 

   on a Borel space. This notion generalizes that of normalizer of a 

    full group of a groupoid. For a measure-preserving action of a 

    countable  group  C on a measure space (S,  u), we consider a semigroup B 

    containing C such that elements of B correspond to Borel maps of S 

    onto itself normalizing, in a sense, an action of C. The normalizing
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    condition involves that an action of B is non-singular with respect 

    to a transverse measure  of a measurable groupoid associated with an 

    action of C. Let EndA(H) be a von Neumann algebra associated with an 

    action of C. We construct a homomorphism  (I) of a semigroup B into the 

    semigroup of injective endomorphisms of EndA(H). Thus we get a family 

    {(I)b(EndA(H));  bE  B} of  subalgebras of EndA(H). We shall study 

    conjugacy problems for this family. We prove a necessary condition 

    for (I)b
l(EndA(H)) and()b2(EndA(H))  (b1, b2EB) to be inner conjugate. 

    This condition is stated in terms of orbits of b1 and b2'In Section 

                                               1 

    2.2, we impose a one more condition on elements of B. Under this 

    condition, we can calculate the coupling constants of associated 

    subalgebras and show a sufficient condition for two subalgebras not 

    to be conjugate. In Section 2.3, we apply the general argument in 

    above sections to the action of SL(n,  2E) on  1-n. Let  itn be the 

    factor of type  Hi obtained from this action by the group-measure 

    space construction. Then we construct subalgebras{/(k; ke NI ofPtn 
    which are not conjugate with each  other. For every  kG  IN  Ark is 

    isomorphic  ton and its relative commutant  inn is trivial. We 

    remark that the index [itnk: Arn] defined by V. Jones in [20] is kn. 

          In Chapter III, we construct periodic automorphisms with various 

    Connes' outer invariants for full factors of type  Ill associated with 

    actions of certain subgroups of SL(2,  2z ) on the 2-torus.  Outer 

     invariants of periodic automorphisms of factors of type  IIl were 

 introduced by A. Connes and he showed that they are the complete 

     invariants for the outer conjugacy classes of the periodic automorphisms 

    of the hyperfinite factor of type  IIl  [4]. V. F. R. Jones developed



   Connes' idea and gave a complete classification up to conjugacy of the 

   actions  Of a finite group on the hyperfinite  Hi factor [19]. 

   Recently, A. Ocneanu gave the classification up to outer conjugacy of 

   of the actions of discrete amenable groups on the hyperfinite factor 

   of type  Hi [26]. In non-hyperfinite cases, however, the problem of 

   classifying periodic automorphisms is still open. Let F2(n) be the 

         20    subgroup of SL(2,Z) generated by (101n) and (21n1) for a natural 
   number n. Then,  F2(n) is isomorphic to the free group on two 

   generators. We denote by  ,Aln  tne factor obtained by the crossed 

    product from the action of F2(n) on the  2-torus  by linear  automorphisms. 

 Then' n is a full factor of type  II1'  (It is not known whether 

 fj,n's are isomorphic or not.) In Section 3.1, we construct a 

   periodic automorphism 'an,poff'(. with period p if p is a divisor of 

                                       n 

    2n. In Section 3.2, by making use of an
,p' we construct a minimal 

 .periodic automorphism pn ,p,iofdqnwith Connes' outer invariant 
 (p,  y'), where y =  exp(2ffiI7p). Therefore, for each couple (p,  y)E 

       x  C with  yP  = 1, we can find a periodic automorphism with Connes' 

    outer invariant (p, y) in  WAut(1(.n); n = 1,  2,...}. It also 

    follows that, if  (p,  i) i') for divisors p,  p' of 2n and i, 

   = p - 1, then  p  . and  p
n,p',i' are  not outer conjugate 

 [4, Proposition  1.4].  SinceiNtn is full,  An  0 R is not isomorphic 
                                                                                                         -.- 

 ton, where R is the hyperfinite factor of type  III . [3, Corollary 

    2.3]. Therefore the construction of pn
,p,iare essentially different 

    from that of  sY discussed in  [4, Proposition 1.6]. Finally we remark 

 a  few facts. Let  Fn be the free group on n generators (n = 2,  3,..., 

 00) and A be its left regular representation. In [30], J. Phillips
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constructed, for (p, y)  e  M  x with  yP = 1, an automorphism  aY of 

A(Fp+1)" with Connes' outer invariant (p, y). He then defined an 

automorphism of  A(Fw)" with Connes' outer invariant (p, y) for every 

(p, y)  E  114  ><C, with  yP = 1. His construction, however, does not 

apply to X(F2)". We also remark that, if  A(F2)" is considered 

canonically as a subalgebra of  it  n, then X(F2)" is not globally 

invariant under pn
,p,i.
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Chapter I. Preliminaries for measurable groupoids. 

     In this chapter, we shall establish definitions and notations 

about measurable groupoids and associated von Neumann algebras. 

The notion of measurable groupoids was first introduced by G. W. 

Mackey in  [23], and then studied by many authors. There have been 

changes in terminology and notations during the development of the 

theory. We shall mainly use terms and notations given by A. Connes 

in [5]. The expositions in this chapter are taken from the 

following: A. Ramsay [31], P. Hahn [16], J. Feldman,  P.  'Hahn and 

C. C. Moore [12], J. Renault [32] and A. Connes  [5]. 

1 1.1. Measurable groupoids. 

      In this section, we shall establish basic definitions and 

notations about measurable groupoids. 

Definition 1.1. ([16, Definition 1.1.]) A groupoid is a set G, 

together with a distinguished subset  G(2)  c: G x G, and maps (y, 

 G (2)1-,----7yyG  (product  ) and y G G-1G  (  inverse  ) such that 

 (1) (Y-1)-1  =  Y5 

 (ii)  (y,  Y?)  E  G(2) and (y',  y")  GG(2) ec4(2), 

 (yt,  ill")  EG(2) and  (Y1')Y" = Y(Y'Y"), 

 (iii)  (y-1,  y)E  G(2) and if (y,  yl)eGW, then  y-1(yy') =  y', 

 (iv) (y,  y-1)  EG(2)  and  if (y',  y)GG(2), then (y1y)Y-1 = Y'•
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     For  yeG, s(y) =  y-ly is the source of y and r(y)  =  yy-1 is the 

range of y. The pair  (y, y') belongs to G(2) if and only if s(y) = 

r(y'). As we have ys(y) = y and r(y)y =  y, the set  G") = s(G) = r(G) 

is called the unit space of G. If A and B are subsets of G, one may 

form the following subsets of G; 
               -1           A =  {yEG;  y-1E  A} , 

          AB =  {y"E  G;  ye  A,  y'E  B, y" =  yy'}. 

A groupoid G is called principal if the map (r, s):  ye  GI---“r(y), s(y)) 

  (0 EG)X  G(0) is  one -to-one , and it is called transitive if (r, s) is 

onto. Let G be a groupoid, E a subset of G(0). We set 

 GIE =  {ye G;  r(y)GE and  s(y)  EE}. 

Then  GIE becomes a  groupoid  with units E if we define  (GE)(2) = 

 G(2)()  (GIE x  GIE). The groupoid  GIE is called the reduction of G 

 by  E. 

     For u,  veG(0), we set Gu= r-1(u)'  G
v = s-1(u) and  Gu =  GurIGv 

Two points  u,  vGG(0) are called equivalent with respect to  Gy  if 

there exists  ye  G such that r(y) =  u  and s(y) = v. If u and v are 

equivalent we write u  ti v. This equivalence relation is just the 

equivalence relation (r, s)(G) on G(0). Its equivalence classes are 

called orbits  (or G-orbits) and the orbit of u is denoted by [u], that 

is, [u] =  {ye  G(0); u  et, v}. For a subset E of G(0), the saturation 

    of E is the set  {veG(0); for some  ueE, v  ti u}. If E =  [E], 

then E is  said(to  be-saturated. 

Example 1.2. Let S be a set and  RC S x S be an equivalence 

relation on S. Let  R(2) =  {((t, u), (v,  w))e  R x R; u = v}. With
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product (t, u)(u, w) = (t, w) and inverse (t,  u)-1 = (u, t), R is a 

principal groupoid.  Theunit space R'(0) = {(s, s);  s  E  S} may be .‘ 

identified with S, and we have r(t, u) = t and s(t, u) = u. 

Conversely if G is a principal groupoid, by identifying G with 

(r, s)(G), G may be considered as an equivalence relation on  G(0). 

Definition 1.3. Let G1 and  G2 be groupoids. A map p:  G1--->G2 is 

a homomorphism if (p(y),  p(y'))  EG2(2) and  p(y)p(y1) =  p(yy') 

whenever (y,  fir')  GG1(2). We denote by  p(0) the restriction of p to 

G1(0). It is clear that  p(o)  is a map into G2(0) 

     We now  consider a Borel structure on a groupoid. By a Borel 

space we mean a set S, together with a a-algebra  63(S) of subsets of 

S, called Borel sets. A map from one Borel space into another is 

itself called Borel if the inverse image of every Borel set is Borel. 

A one-to-one onto map which is Borel in both directions is called a 

Borel isomorphism. The Borel sets of a complete separable metric 

space are taken to be the a-algebra generated by the open sets. A 

Borel space is called standard if it is Borel isomorphic to a Borel 

subset of a complete separable metric space. For a Borel space 

 (8,  63(S)), if  fulee(s) for all  u  ES, we say that S  is separated. 

If there exists a countable subfamily  {ai} of  0(S) which generates 

a separated sub a-field of  63(S), we say that S is countably  

separated, and if there exists  {ai} as above separating S which also 

generates  63(S), we say that S is countably generated. One says 

that S is analytic if it is countably generated and there exists a
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 standard space S' and a Borel map f of S' onto S. The Borel sets of 

 any subset of a Borel space are taken to be the relative Borel sets. 

 If f is a  one-to-one Borel map of an analytic space  Si into a 

 countably generated space S2, then f is a Borel isomorphism of  Si onto 

 f(S1). If S1 is standard, then f(S1) is a Borel subset of  S2  [1' 

 Chapter!I, Proposition 2.5]. 

 Definition  1.4. Let G be a groupoid such that the underlying space 

 is also endowed with a Borel structure. If G(2) is a Borel set in the 

 product structure on G x G, and (y,  y'  )  E  G(2)1----*yy'eG and  y 

 y-1 G are Borel maps, then G is called a measurable groupoid. 

       Note that the maps r and s are Borel. Two measurable groupoids 

 G and G' are said  to be isomorphic if there exists a Borel  isomorphism 

 p of G onto G' such that p and  p-1 are algebraically homomorphisms. 

  §1.2. Measures on groupoids. 

       In this section, we define the notions of transverse functions 

  and transverse  Measures which are introduced by A. Connes [5]. 

  Definition 1.5. Let G be a measurable groupoid. A map v of  G(0) 

  into the space of positive measures on G is called a transverse  

  function on G if it satisfies the following properties; 

  (i) for all  UEG(0),  vu is supported by  Gu, 

  (ii) 'for every Borel set A of G, a map  ul---vu(A)  E  [0,  +00]  is Borel,
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  (iii) for all  y  eGvs(y)vr(y) 

  where  yvs(y)(A) =  vs(y)(y-1A) for every  Borel set A of G. 

       A transverse function v is called proper if G is a union of an 

  increasing sequence  {A
n}nea4 of Borel subsets of G such that the 

  function  u  eG  vu(An) is bounded for all  ne  N . Let  6+ = 6+(G) 
  denote the space of proper transverse functions on G. The order in 

  a+ is defined by the following; for  v1' v2  E  a+'1 < v2 if 

  v2u -  v1u is a positive measure for all  u  e  G(0). A map  A of G(0) 

  into the space of positive measures on G is called a kernel on G if 

  it satisfies the conditions (i), (ii) of Definition 1.5. For a  Borel 

                     op-L 
 space S+           3(S) denotes the space of non-negative Borel functions  on.  S. 

  Definition 1.6.  ([5, Chapter II, Definition 1])  A  i  linear map A 

      ca   ofinto [0,  4.c.] is called transverse measure of module  S on G if 

                                               A 

  it satisfies the following properties; 

  (a) A is normal, i.e. A(sup  vn) = sup  A(vn) for every increasing 

  sequence  {v
n} inc,for which there exists  vEc+ such that  vn <-v 

  for all  n  E  IN  , 

  (b) A is of module(S, i.e. forevery pair  v, v'+and every kernel 

 A such that  Xu(G) = 1 for all  ue G(0) 

 v*Sv =  v' implies  A(v) = A(v'), 

                                                                        r 

  where  (v*SX)u(f)=f(yy1)6(y1) dXs(y)(y')dvu(y) for every  u  E  G(o) 

                     0L   and every f-1-(G). 

       A transverse measure A is called semifinite if, for all  vE 6 +f
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 we have A(v) = sup {A(v'); v' < v,  A(v1) <  +001, and it is called 

 c-finite if there  exists a faithful transverse function v of the form 

 v = sup  vn,  A(vn) < +00. A transverse measure A is called unimodular  

 if  6 = 1. 

      Let A be a transverse measure on G. For vat+t+ and f7 (G(0)) 

 we define an element (fos)v of  t+ by  [(fos)v]u(g) =  iig(y)f(s(y))  dvu(y) 
 for  tie  G(0)              and  gE  (G). The equality  Av(f) = A((fos)v) defines a 

 positive measure  Av on G(0). Then we have the following important 

 result due to A. Connes. 

 Theorem 1.7.  ([5, Chapter II, Theorem 3]) Let v be a faithful 

 proper transverse function on G. (A transverse  function'v  isicalled 

 faithful if  vu  / 0 for  ue-G(0)  .  ) The map  A  H  Av is a  bijection 

 between the set of transverse measures of module  6 on G and the set 

 of positive measures p on G(0) satisfying the following conditions; 

         ))  f(Y-1)6(Y-1)  dvu(Y)dP(Y) =  ,5)  f(Y)  dvu(i)dO(Y) 
 for all fejot7+ (G). 

       Let p be a measure on a Borel space S. The measure class of p 

 is denoted by [p]. For a Borel subset E of S, E is said to be null  

 if p(E) =  0*and it is said to be conull if p(S - E) =b. The 

  characteristic function of E is denoted  by  XE. 

       Let  v be a proper transverse function on a measurable groupoid G 

  and A be a transverse measure of module 6 on G. We define a measure 

 A on G by 
cS  A(f) =  f(y)  dvu(y)dA

v(u) for  re  57+(G) JJ 
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The pair (G, [A]) is called a measured groupoid. For a  A
v-conull set 

E of  G(o),  GIE is  called an inessential reduction of (G, [A]). 

     Let E be a saturated Borel set of  G(0). If E is  Av-null for all 
VE E,+, then E is called a A-null set. Let  v  e  C be faithful. For 

a saturated Borel set E of  G(o), E is  A
v-null if and only if E is 

A-null  E5, Chapter II, Proposition 8]. A saturated Borel  set E  Of 

G(0)      is called a A-conull set if  G(0) - E is A-null. 

§1.3. Von Neumann algebras associated with groupoids. 

     In this section, we define regular representations of measurable 

groupoids and then construct von Neumann algebras from them. All 

results in this section are due to A.  Connes  [5]. 

     Let G be a measurable groupoid and H be a measurable field of 

Hilbert spaces on G(o) 

Definition 1.8. A representation U of G in H is the object such 

that, for all  ye  G, U(y) is an isometry  of  Hs(y) onto Hr(y) satisfying; 

(a)  U(y1-1y2)  =  U(y1)-1U(y2) for all  yi,  y2EG,  r(Y1) =  r(y2), 

 (b) for every pair  E,  71 of Borel sections of H, the function  (E,  11) 

on G defined below is Borel; 

             11)(Y) =  <yy),  U(Y)11s(y)> for all  y  E  G. 

     Let  V  G  E + be a transverse function on G. For every u eG(o) , 

 L2(Gu,  vu) = Hu is a Hilbert space and, for  y  e  G, we define an 

isometry  Lv(y) of  H
s(y) onto Hr(y) by
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 (0)(Y)f)(YT) =  f(Y-1Y') for  f  e  Hs  (y  ) and  y  GI") 

The field  Hv = (H
u)  In\  is endowed with the unique measurable  u€G 

structure for which the following sections are measurable;  u  H  f  I  Gu, 

where f is a Borel function on  G such  thatf  12  dvu <  00 for all 

u E G(0) and  f  I  Gu is the restriction of f to Gu. The representation 

 (Hv,  ,  Lv) defined above is called the left regular representation  

associated with  v. 

     Let (H, U) and  (H',  U') be  two  representations of G. Let T = 

 (Tu) (0) be a measurable family of bounded operators Tu of Hu into 
   u G 

H'u  (u  e  G(0))  . A family  T  is called an intertwining  operator  of 

(H, U) to  (H',  U') if it satisfies the following conditions; 

    1) sup 
uG‘fnII Tu <  co, 

    2) for all  y  eG,  (y)Ts(y) = Tr(y)U(y). 

We denote by EndG(H) the vector space of intertwining operators of 

(H, U) to  itself. 

     Let (H, U) and  (H',  U') be representations of  G. If H'u is a 

closed subspace of Hu for all  u  e  G(0) and the restriction of U(y) to 

       is  U'(y) for all  y  E  G, then  (H',  U') is called a sub-H'
s(y) 

representation of (H,  U)  . The direct sum (H  H', U  e  U') of 

representations (H, U) and  (H',  U') is defined by (Hu=Hu H'u 

for  u  6  G(0) and (U  Q)  111)(i) = U(y)  U'  (y) for  y  6  G. Two representations 

 (H, U) and  (H'  ,  U') are called equivalent if there exists an 

intertwining operator T of (H, U) to  (H',  U') such that Tu is an 

isometry of Hu onto  H'u for all  u  e  G(0)  . Let v e+be a faithful 

transverse function on G. A representation (H, U) is said to be
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square-integrable if it is equivalent to a subrepresentation of the 

direct sum of countably infinite copies of  (HV,  LV). 

     Let A be a transverse measure on G. 

Definition 1.9. Let (H, U) be a square-integrable representation 

of G. Two elements T, T'E EndG(H) are said to be equivalent if there 

exists a A-conull set E of G(0) such that Tu= T'ufor all u6E. 

The vector space of equivalence classes of EndG(H) is denoted by 

EndA(H). Elements of EndA(H) is called random operators. 

    For  TE EndA(H), we set  fiTIL = ess sup  IITuIt . This definition 
                               A has a sense because the function II  Tull is measurable and 

constant on every orbits of G(0) 

Theorem 1.10.  ([5, Chapter V, Theorem 2]) For every square-

integrable representation (H, U) of G, the involutive normed algebra 

EndA(H) is a von Neumann algebra. 

 §1.4. Principal groupoids with countable orbits. 

     In the following chapters we only consider principal groupoids 

with  countable orbits, so we recall facts about them. 

     A groupoid G is said to have countable orbits if the orbit of u 

is a countable set for all  ue  G(0). In the following, we suppose that 

G is a principal measurable groupoid with countable orbits and that 

G and  G(0)             are standard spaces. We set S =  G(0). Since (r, s) is a
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one-to-one Borel map of G into S x S, it follows from §1 that (r, s) 

is a Borel isomorphism of G onto (r, s)(G). Therefore we may 

consider G as an equivalence relation on S, which is a groupoid as in 

Example 1.2. Let v be a transverse function on G such that 

vt({(t,  u)}) = 1 for all  tes and (t,  u)EGt. We call such a 

transverse function the transverse function of counting measures. 

Let A be a transverse measure on G. We set p  =  A
v and define a 

measure A on G by A =  S  vs dp(s). We mean by a transformation of a 
Borel space S a Borel isomorphism of S onto itself.  .A transformation 

g of a measure space  (S, p) is said to be non-singular  if,,for every 

Borel set E of  S, p(E) =  04==>p(gE)  = 0. The full group [G] of a 

measured groupoid (G, [A]) is the group of non-singular transformations 

g of (S, p) such that [gt] =  [t] for almost all  t  E  S. The normalizer 

 N[G] of  [G] is the group of non-singular transformations g of (S, p) 

such that  [gt] =  g[t] for almost all  t  ES. 

     The  following result is important. 

Theorem  1.11..  ([13, Theorem 1]) Let G be a principal measurable 

groupoid with countable orbits. Suppose that G and  G(0) are standard 

spaces. Then there exists a countable group C of transformations  of 

G(0) such that G and the equivalence relation {(t,  gt);  tEG(0),  g  EC} 

on G(0) are isomorphic as measurable groupoids. 

Example 1.12. Let C be a countable group of transformations of a 

standard space S. We set G =  {(t, gt);  t  E  S,  gec}. Then G is a 

                                                 (0) principal measurable groupoid with countable orbits such that G_- S.
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Since  {(t, gt);  teS} is a Borel subset of S x  S for each  geC [1, 

Chapter I, Proposition 2.2],  G is a Borel subset of  S x  S. It 

follows that  G is a standard space. The groupoid  G is called the 

orbit groupoid of an action of C on S. Let p be a probability measure 

on S. Suppose that elements of C preserve the measure  p, i.e. p(gE) 

p(E) for every Borel subset E of S and  g  eC. For the transverse 

function v of counting measures on  G, it follows from Theorem 1.7 that 

there exists a unique unimodular transverse measure A on  G such that 

p =  Av. 

     Now, let  G be an  arbitary principal measurable groupoid with 

countable orbits such that G and  G(0) are standard. Let v be the 

transverse function of counting measures on  G and A be a unimodular 

transverse measure on  G such that p =  Av is a  probability  measure on 

S =  G(0). We set X  =  vt dp(t). In this case, every element of the 

full group [G] of  (G, [X]) preserves p [13, Corollary'l of Proposition 

2.2]. Let  L2(0, X) be the  Hilbert space of square-integrable 

functions on  G with respect to X. We set = L2(G,  A). The von 

Neumann algebra of all bounded linear operators on  dt is denoted by 

 k(a). We define a homomorphism U of  [0]  into  the unitary group of 

 L(R  )  by 

 (U(g)E)(s, t) =  E(s,  g-1  t) 

for  g[G],  Eex and  A-a.a. (s,  t)e  G. We also define a  *-homomorphism 

 Tr of the von Neumann algebra  Lc°(S, p) into  04L(X) by 

 (ff(f)E)(s, t) =  f(t)E(s, t) 

for f  E  L°3(S,  p  )  ,  Ecle and (s,  t)  E  G. Let  A(G) be a von Neumann
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algebra on  g generated by {U(g);  g  E  [G]l and  Iff(f);  fGL")(S,  p)}. 

We set  A(G) =  Iff(f);  feL°°(s,  p)1, which is a maximal abelian 

subalgebra of  PUG). We shall call  A(G) the von Neumann algebra 

associated with (G, [A]). Note that  A(G) is finite because A is 

unimodular and  p is finite. Let  (HY,  LY) be the left regular 

representation of G associated with v. By a standard argument, one 

can show that  PL(G) is  *-isomorphic to  EndA(HV). 

      If, for every saturated Borel set A of GC),  A  is A-null or 

A-conull, then (G, A) is called ergodic. If this is the case, 

EndA(H) is a factor for every square-integrable representation (H, L) 

 [5, §V, Corollary 8]. In the situation of the previous paragraph, 

 it(G) is a factor of type  II1 if (G, A) is ergodic and  p is  non-

atomic. 

     We set C1  =  {z€ C ;  1z1 =  1}. A Borel map  a:1 is called 

a cocycle on G if there exists an inessential reduction G' of 

(G, [A]) such that a(y1y2) =  a(yl)a(y2) for every (y1, 2)e G'(2) 

A cocycle a is called a coboundary if there exists a Borel map 

b:  G(0)1 such that a(s, t) = b(s)b(t) for  A-a.a. (s,  t)  E  G. We 

denote by Z1(G, C1) the group of cocycles on G into C1 and by 

 B1(G, C1) the group of coboundaries on G. Two functions on G are 

identified if they coincide A-almost everywhere. 

 §1.5. Von Neumann algebras. 

      In this section, we recall some facts about Takesaki's duality 

theorem and Connes' invariants for periodic automorphisms. The



                            18 

expositions in this section are taken from  [37] and  [4]. 

1. Takesaki's duality theorem. 

     Let be a von Neumann algebra acting on a  Hilbert space  gt and 

C be a locally compact  abelian group whose Haar measure is denoted by 

dg. The group of all  *-automorphisms  on  PC is denoted by  Aut(A). 

A continuous action of C  on  A is a homomorphism a:  C  a  ag  C 

 AUt  (frt  ) such that for each fixed  x  C-frt, the map;  ge  C  a  (x) 

is  a-strongly* continuous. Let L2(C,  g) denote the Hilbert space 

of square-integrable functions of C into  X with respect to dg. For 

a continuous action a of C on  PC, we define representations  Tia of  At 

and  Ua of C  on  L2(C,  d-t) as  follows; 

 (ffa(x)0(b) =  ah-1(x)“h), 

 (Ua(g))(h)  =  (g-lh) 

for h,  gG  C and  EE  L2(C,  x). The von Neumann algebra on  L2(C,  y) 

generated by  Tra(Pt)  andHUNC) is called the crossed product of  A by 

the action a of C, and denoted by  R(/.'t,  a). 

     Let  8 be the dual group of C. We fix Haar measures dg in  C  and 

dp in C so that the Plancherel formula holds. Define a unitary 

       AA                                                                4n 

representationUofCon L2 (C,d-c) by 
          AA 

          U(P)Vg)<g, P>“g) for E L2(C, ',1-e  ),  g  e  C,  p  E  C, 

                                        A where <g, p> denotes the value of p  c C at g  C. We can define a 

                    A 
continuous action /a of C on  OCLit, a) by 

    /•A A           a(x) =  U(p)xU(-p) for x E (R(n, a),  p  E  C. 

We call  ra the dual action of  C on  R(At, a). Then we have



                             19 

         A 

          a(Uet(g)) = <g,  p>Ua(g) for  g  EC,  p  EC, 

A^      a(x) = x for xe, pC 

Theorem 1.13.  ([37, Theorem  4.5]) The crossed product 

 (ft((R(it, a), a) is  *-isomorphic to the tensor product  A ® (L2(C)), 

where  k(L2(C)) is the von Neumann algebra of all bounded linear 

operators on L2(C). 

2. Connes' invariants for automorphisms. 

     Let  X be a factor and a be a  *-automorphism of  /1. The outer 

period  po(a) of a is a natural number such that  ai is outer for i = 
                    Po(a) 

1,..,  po(a) - 1 and a is inner. The outer period of a is zero 

if all the non-zero powers of a are outer. Let U be a unitary 
                       Po(a) 

operator inItsuch that a= Ad U, where Ad U(x) = UxU for all 

 xEn. Then, the complex number y(a) is defined by a(U) =  y(a)U. 

We see that y(a) is a complex number of modulus 1, independent of the 
       Po(a) P,(a) 

choice of U such that a= Ad U, and satisfying y(a)= 1. 

Two automorphisms a and of  ivt. are called outer conjugate if there 

exists a  GE  AUtPt such that  (3 and  ciao*-1 have the same image in 

Out  Pt =  Aut  ,tt /Int  , where  Int  ,M denotes the  group  of all inner 

automorphisms of  Pt. If a and  P, are outer conjugate then  po(a) = 

 Po  Y(a) =  Y(C. The pair  (po(a), y(a)) is called Connes' outer  

invariant of a. 

     In the following,  tit is a factor of type  II1 with canonical 

trace T  (T(1) = 1). Let a = Ad U be a periodic inner automorphism
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with period p. As  UP is a scalar  X0, U is a finite linear combination 

of its spectral projections corresponding to the pth roots  aj of A0' 

say U =  E1,;'=1 ajej' where  ej is the spectral projection of U 
corresponding to  la  1. We define now the inner invariant  e(a) to be 

the probability measure E  T(ej)c a  ' determined up to rotation on C1 = 

 -NEC ;  IZI  = where  e
a  is the Dirac measure at a point a. For a 

periodic automorphism  a of  Pt with outer invariant  (po, y), we put 
                                       pm 

pm = po•Order y and we put e(a) = e(a). This  e(a) is called Connes'  

inner invariant of  a. The number  pm(a) =  po(a)•Order  y(a) is called 
the minimal period of  a. For a periodic automorphism a of  At  , if the 

period of a is equal to the minimal period of a, then a is called a 

minimal periodic automorphism.



                               21 

Chapter II. Subalgebras of von Neumann algebras. 

     By a subalgebra of a von Neumann algebra  /{, we mean a weakly 

closed  *-subalgebra of  Pt containing the identity of  /L't. For 

subalgebras  if'1'  A(2  of  /t,  Ar1 and  A(2 are called to be conjugate if 

there exists a  *-automorphism  a of  A. such that  a(A/) =  A/-2' and 

they are called to be inner conjugate if there exists an inner 

automorphism  a  offri  such that  a(Ar1) =  A(2• In this chapter, we 

study conjugacy problems for certain subalgebras of von Neumann 

algebras associated with measurable groupoids. In particular we show 

that, for some full factor  Ill of type III, there exists a countable 

family of subalgebras  of,M, which are  *-isomorphic  ton., such that 

they are not conjugate with each other. All results in this chapter 

are taken from [27]. 

 §2.1. Actions of semigroups on Borel spaces. 

      In this section, we introduce the notion of an action of a  seti-

group on a Borel space and study an inner conjugacy problem for 

certain subalgebras of von Neumann algebras associated with actions 

of semigroups. 

      Let A be a group, B be a sub-semigroup of  A  "and C be a countable 

discrete normal subgroup of A which is contained in B. For a 

standard Borel space  S,  B(S)  denotes the set of Borel maps of S onto 

itself which send Borel subsets of S to Borel subsets of S. For  4,  * 

 e  63(S), the  pr,duct  *0* of  * and  i is defined by  *0*(x) = *(*(x))
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 E  S)  . Then  03(S) becomes a semigroup. Let  a be a homomorphism of 

the semigroup B into the  semigroup  15(S) such that a(e) is the 

identity map on  S, where e is the unit of A. We write xb instead of 

 a(b)(x)  (x  E  S,  b  EB). Then S is a Borel C-space with respect to the 
                                                 G= 

restriction of the above action to C anclrS x C becomes a measurable 

groupoid, that is,  ( (x,  c1),  (y,  c2))  e  G(2) if and only if y = xc1 

and we have (x,  c1)(xc1, c2) = (x,  c1c2)  . Note that G(0) is identified 

with S. We assume  thaavtion of C on S is free, that  is .,  for every  the 
 x  6  S,  {c  C; xc = x} =  {e}. Note that the orbit  [x] of x is {xc;  c  EC}. 

The following lemma is clear. 

Lemma 2.1.  ' If b is an element of B, then [xb] = [x]b for every 

 x  E  S. 

     We define an equivalence relation  i‘j, on S  by the following;  for  x, 

 ye  S, x  by if and  only if xb  ti yb, where  ‘1, denotes the equivalence 

relation with respect to G. Put  G•b  =  { (x,  y)  E S x S; x  ir‘:/  y}  . As in 
Example 1.2, G•b becomes a measurable groupoid. Note that G can be 

considered as a subgroupoid of G•b by the injection (x,  (x, xc) 

 ( (x,  c)  G)  . The saturation of E with respect to  G•b is denoted by 

 [E]b. 

Lemma  2  .  2  . (i) If E is a saturated set with respect to G, then 

for every b, Eb and  Eb-1 are saturated with respect to G, where 

 Eb-1  =  Ix  e  S;  xb  E  E}  . 

(ii) For  b  G  B and  x  E  S, put F =  {y  E  S;  yb =  xb}  . Then [x]b is a 

disjoint union of {[y]lye F•
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Proof. (i) By Lemma 2.1, it is clear that [Eb] = Eb. For  x  e  [Eb-1], 

there exists yE Eb-1 such that x  (1, y. As we have xb  r^-• yb and  yb  EE, 

xb belongs to E. It follows that  [Eb-1] =  Eb-1. 

(ii) It is clear that  Uy  E  F [y] C  [x]b. For  y  [x]b' there exists 

 c  E  C such that xb = ybc. Then, for some  ci  E  C, we have xb =  ycib and 

yc1belongs to  F. Thus we have  [x  ]bC  UyEF  [y]  . Now, suppose that, 

for  y1,  y2E  F, y1 belongs  to  [y2]. There exist  cl,  c2  E  C such that 

y1 = y2c and cb = bc1.We have 

           xb =  y1b =  y2bc1 =  xbc1. 

Since the action of C is free, this implies that c = c1 = e. It 

follows that y1=  y2, and this means that {[y]}
yF are  disjoint. 

Q.E.D. 

Definition 2.3. Let (A, B, G) be as above and A be  a  cr-finite 

transverse measure on G. A quartet (A, B, G, A) is called an action 

of B on S if it satisfies the following condition; for a  G-saturated. 

Borel set E of S, if E is A-null, then Eb and Eb-1 are A-null for 

every  b  E  B. 

     From now on we assume that (A, B, G, A) is an action of B on S. 

Let  v be the transverse function of counting measures on G and 

(H, L) = (HY, LY) be the left regular representation of G. We 

construct the von Neumann algebra EndA(H) as in §1.3. We sometimes 

consider elements of EndA(H) as elements of  EndG(H)  . Let b be an ' 

element of B. For every x  E S, define an isometry  4 xb
,x  =  (1)13xb,x of  Hx 

onto Hxb by
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          ()xbx(f)(xb, c) = f(x, bcb-1) 

                       , for every  f  e  Hx and (xb,  c)  E  Gxb. 

Lemma 2.4. If c is an element of c, then 

          L(xb,  b-lcb)  12.xcbxc  =  (I)xbx°L(x, c) 

 for every  xe  S. 

Proof. Note that, as C is a normal  subgroup of A,  bcb-1 and  b-lcb 

belong to C for every  b  e  B. Since we have 

 (xb)(b-lcb) =  x(bb-lcb) = xcb, 

we have s(xb,  b-1cb) = xcb. For every  fElixe and  c'E  C, we have 

          L(xb,  bcb)04,
xcb,xc(f)(xb, c') 

            = f(xc ,  c-lbc'b-1) 

           ()xbxL(x, c)(f)(xb,  c'). Q.E.D.      =

, 

Proposition 2.5. For an element T =  (Tx)xe  S of  EndA(H), put 

           (Db(T)
x = chxb,xeTxbocpxb,x for every x  ES, 

then  0b(T)  = (4)b(T)x)xG Sis an element of EndA(H). 

Proof. Define a Borel structure for the field H' = (H)of                                                         xbxE S 

 Hilbert spaces by the following (c.f. [8,  p.142, Definition 1]); 

 if =  (1x)  (i  =  1, 2,...) is a fundamental sequence for the Borel 

structure  of  H, then(xbi)xe S(i = 1'2,...) is a fundamental 

sequence for H'. Let f be a Borel function on G such that 

 SlfI2  dvx <  +co for all  x  E  S. The restriction of f to  Gx is denoted 
by  f x. Note that  (fx) is a Borel section of H and the Borel
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structure of H is determined by the set of sections of this form (see 

§1.3). Then  ((I)xbx(fx))xe S is a Borel section of H'. For Borel 

sections  (fx) and  (gx) of H of the above form, we have 

          <(1)
p(T)xfx' gx>  = <Tx0xb,x(fx)' (Pxb,x(gx)>. 

This implies that  Ob(T) is a Borel field of operators for H. 

     Let y = (x,  c0) be an element of G. For (x,  c)EG and fEH ____,                                                      "
0 

we have 

          (L(y)Ob(T)___f)(x, c)                 "0 

          = (T
xc0b04)xc0bxc0(f))(xc0b,  b-1c0-1cb) 

          = (L(xb, b-lc
0b)0Txc0b0()xc0bxc0(f))(xb,  b-lcb) 

          =  (T
xboL(xb, bulc_b)06xc b,xc(f))(xb,  b-1cb)•                   00 

By Lemma  2.4, we have 

          (L(-00b(T).._f)(x, c)                 "0 

 =T
xbo(1)xbx0L(x, c0)(f)(xb,  b-lcb) 

         =  (0
b(T)xoL(y)f)(x,  c). 

It follows  thatb(T) is an intertwining operators of (H, L) to itself. 

If T and T' are intertwining operators of (H, L) which coincide with 

each other A-almost everywhere, then  Ob(T) and  Ob(T') coincide with 

each other A-almost everywhere by the assumption of  (PL B, G, A). 

Therefore  0b(T) is well-defined as an element of EndA(H). (H). Q.E.D. 

                                                         In the above proposition, we have constructed a map  (Dip of EndA(H) 

into itself. The following lemma shows that  Ob is an injective 

endomorphism of EndA(H) and that the map  bl--->Ob is a homomorphism
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of the semigroup B into the semigroup  of endomorphisms of EndA(H). 

                                              5 Lemma 2.6. (i) If b1and b2 are element,of B, then, for every  Te 

EndA(H),(1)(T) =()b
lb2(T).          b1b2 

 (ii) If c is an element of C,  (1)c is an inner automorphism  of  EndA(H). 

(iii) For  bE B, the  map  '4)10 is an isometric  *-homomorphigism of EndA(H) 

into EndA(H). 

Proof.  (i) It is clear by an easy calculation. 

(ii) Define  a  unitary operator  Ux on  Hx by 

 (Uxf)(x, c') = f(x,  cic-1) for  fe  Hx and (x,  c')GGx. 

Then U  =  (Ux) is a unitary element of EndA(H) and we have  (1)c(T) = 

 - U1TU for every  T  E  EndA(H) 

(iii) It is clear that  4)b is a  *-homomorphism. Let T be an element 

of  EndA(H). For  a€  IR  , we set Ea(T) =  S;  Tx  11 a}, which is 
a saturated Borel set. We have Ea(4)b(T)) = Ea(T)b-1 by the equation 

 (1)b(T)x  11  =  Txbil Thus  Ea(T) is A-null  if and only if  Ea(4)10(T)) 
is A-null. Recall that the norm of T is defined by 

 11Thi  co  --I inf  fete  IR+;  Ea(T) is  A-null}. 

Hence we have  11(1)10(T)  11 =  11Th. Q.E.D. 

     If  (x, y) is an element of  G•b, there exists a unique pair 

(x0,c)ESxCsuch that x0b = yb andx=x0cby Lemma 2.2. Define 

                                             an isometryL(x,y) = Lb(x, y) of Hy onto  Hx by 

 L(x, y) =  L(xo, c)-1ocl)bx b x-1                                             0(1)yb                                                            b
,y*                                    0 ' 0
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Then we have the following: 

Proposition 2.7. If b is an element of B, then (H, Lb) is a 

representation of  Gob. 

Proof. For (x,  y)  EG•b with  xob = yb and x =  xoc, we write  Cx, y) 

for  c. We have, for  fEH and (x,  c)  EG, 

          (Lb(x, y)f)(x, c) = f(y,  Cx,  y)c)• 

Note that  *-1({c}) is a Borel subset of  G•b for every  cE  C. Let f and 

g be a Borel functions on G as in the  probf of Proposition 2.5. Then 

the function (x, y,  Cx, y)c)g(x, c) is Borel on  G•b  x C. 

Since we have 

         <Lb(x,  y)fy'  gx> =  Sf(y,  Cx, y)c)g(x, c)  dvx(x, c), 
the function  (x,b(x,  y)f

y'  gx> is Borel on  G•b. 

     Let (x, y) and (y, z) be elements of  G•b such that x  =  xoCx, y), 

y  =  yoCy, z),  xob = yb and  yob = zb. We have 

          x0Cy' z)-lb= (x0b)(b=1Cy,  z)-1b) =  y(y,  z) lb = zb. 

By putting  xl  =  xoCy,  z)-1, we have  x1b = zb and  x1  (y,  z)Cx, y) = x. 

It follows that  i(x, z) =  Cy,  z)i(x, y). Similarly we have  Cy, x) = 

i(x, y)-1. The equation Lb((y, x)-1(y, z)) = Lb(y, x)-1Lb(y, z) 

follows immediately from the above equations. 

     The following theorem characterizes the von Neumann algebra 

(I)b(EndA(H))•
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Theorem 2.8. Let b  be  an element of B. For  T  EEndA(H)' T belongs 

to  (Db(EndA(H)) if and only if there exists a G•b-saturated A-null set 

E of S such that, for x,  yES  - E, x  b y implies that 

         Lb(x,  y)T =  TxLb(x, y). 

Proof. Let T be an element of  (I)b(EndA(H)) with T =  (I)b(T1) (T' 

EndA(H)). For (x,  y)EG•b with x0b = yb and x = x0'c we,have 

 (P-1                      "
YID,Y°TY= Tx04),xowyb,y.              x0b,x0-1                             0x0b0 

This implies that Lb(x,  y)T =  TxLb(x, y) for every (x,  y)e  G•b. 
     Since S is a standard space, by [22, Theorem 6.3], there exist 

a  !Iv-null Borel set N of S and a Borel set S0 of S such that the 

restriction b0of b to S0is a one-to-one Borel map of  So onto S - N. 

If we put N' =  (U  n=0  n=0  [N]bn)U(Lri.:=1  [N]b-n), then N' is a A-null 
saturated Borel set and b0is a one-to-one Borel map of S0- N' onto 

S - N'. Therefore we may assume that  b0 is a one-to-one Borel map of 

S0onto S.Note that the inverse map b1= b0-1of b0is Borel. For 

 xE  S, the image of x under  b1 is denoted by  xb1. Now, suppose that 

an element T = (Tx) of EndA(H) and a A-null set E of S satisfy the 

condition of the theorem. We set 

         T'x=xxbT          00for xS. 
                    '1xb()1x,xb-11 

As in the proof of Proposition 2.5, one can prove that T' = (T'x)xes 

is a Borel  field  .of operators with respect to H. Moreover if  T1 and 

T2 are intertwining operators of (H, L) which coincide with each 

other A-almost everywhere, then  T1' and T2' constructed as above
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 coincide with each other A-almost everywhere. Let x be an element of 

 S - Eb and y = (x, c)  be.an element of G.  If c' is an element of C 

 such that b-1cb =  c', then we have 

            xb1cb = xb1bc' = xc', 

 and there exists  ye  So such that  xbicb = yb i.e.  xc'b1 = y. By Lemma 

 2.4, we have 

          L(x,                      c')''''th                        xc"xb
1c=(1)2('xb1oL(xbi, c). 

 This implies that 

                                                  -1   L(
x, cl)cP xc''xb1c"yb,xb1c °Td,                                                ylD,Y 

              O
x'xbl° Lb(xbl'  y)  . 

                                        - 

 The equation 0'xb
1cxc00yb,xb c                                1100yb,y=xc',y implies that 

           L(x, c')othxc„y=Ox,xb:Lb(xbi,  y). 
 As  Eb, we have 

            L(x,  c'  )1"xcl 

           =O
xxb oLb(xbi, y)0Tyo                                                     •xc',y                                                      -1     'th 1 

             =  T'  oL(x, c'). 

 Therefore T' can be considered as an element of EndA(H) as Eb is A-

                                                                                 d, 

                                            xb,xbbi: 
 null. Note that Lb(x,  xbb,)•xb ,x-1Then,  for  qE, we have 

        =`F 

 0b(T')x = Lb(x, xbbi)T„..kb Lb(x, xby-1                                             ") 1 
                      = T

x 

 Thus T belongs to  (Db(EndA(H)). Q.E.D. 

 For the transverse function  v of counting measures  on G, we set 

 A =  1vx  dAv(x),  v(H) =SHxdAv(x) and, for  TE  EndA(H)' v(T) =
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V!  Tx  dAv(x). Then  Pt = v(EndA(H)) is a von Neumann algebra on  v'(H) 
which is isomorphic to EndA(H)  [5, p.86, Theorem  11]. For  bG  B, put 

 Arb =  v(4)3(EndA(H)). Let C be a uniformly separable  C*-subalgebra 
of  Arlo which is weakly dense in  .  The direct integral decomposition 
of the identity representation  i of  C is denoted by 

            = R  dA
v(x  )  [9, Lemma 8.3.1]. 

Note that, for  v(T)G  e , we have  R(v(T)) =  Tx for  Av-a.a. x. As for 
the following proposition, compare with [18, 36]. 

Proposition 2.9. In the above situation, there exists a A-null 

set N of S such that, for  x,  yE  S - N,  R and  9 are unitary equivalent 

if and only if x  by. 

Proof. Let {T.}c°i=1be a uniformly dense subset of C . By Theorem 
2.8, there exists a A-null set N1 such that, if x, y S - N1 and 

x br‘,Lythen Lb(x,y)9(Ti) = R(T.)b(x, y) for everyThis means      y, 

that, for x,  ye S - N1 with x  1'1
), y,  R and  9 are unitary equivalent. 

     Since S is a standard Borel space, we may assume  that  'S has a 

compact metric topology which is compatible with the Borel structure 

of S. Let C(S) be the  C*-algebra of all continuous functions on S. 

Let be a uniformly dense subset of C(S). For every bounded 

Borel function g on S, define an operator  on  1-1;-by 

         (gxf)(y) = g(s(y))f(y) for  fe  Hx and yE Gx. 

Then g = (gx)xE Sbelongs to EndA(H) and we have()b(A) = (bg)", where 
bg is a Borel function on S defined by (bg)(x) = g(xb) for  every :x  E  S.
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By  [36, Theorem 1.1], we may suppose that  fv((bgi)-)17=1 is contained 
in  C  . There exists a A-null set N2 such that, for  xes -  N2, 

 R(v((bgi)")) =  (bgi); for every i. Suppose that, for x,  y  E  S - N2, 

R and  9 are unitary equivalent by means of an isometry VJof HcX ionta A
y. 

Then we have, for every i and fEH
x, 

 Sgi(xcb)lf(x,  c)  12  dvx(x, c)         =  Sgi(ycb)  1  (Vf)(y, c)12dvy,(y, c). 
Since  Igil is uniformly dense in C(S), this implies that, for a Borel 

set E of  S,  Eb-1 is  s*(vx)-null if and only if it is  s*(vY)-null, 

where s*(vx) is a measure on S defined by s*(vx)(E) = vx(s-1(E)). 

As [x]b =  [x]bb-1 and  s*(vx)([x]b) > 0, we  have,,s*(vY)([x]b) > 0. 

Since  s*(v57) is supported by  [y], it follows that  [x]b =  brit ,. If 
we put N =  N1L)N2, then  the proposition follows. Q.E.D. 

 Theorem 2.10. Let b land b2 be elements of B. If there exists an 

inner automorphism  a  of EndA(H) such that 

         a((Db (EndA(H))) = 013 (EndA(H)),   1 2 

then [x]b = [x]b for A-a.e.  xE  S. 
   1 2 

Proof. Let U =  (Ux) be a unitary element of EndA(H) such that a = 

Ad U. Let A( = v(4)(EndA(H)))  (i = 1, 2) and G,  be,a uniformly 
                  bi 

separable  C*-subalgebra of  Arl which is weakly dense  in  A,(1. We set 

C2=  v(U)Civ(U)*. For  xeS,  Ri denotes the representation of  (31 
 on  Hx defined as above  (i = 1, 2). The isomorphism of C1onto C2
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associated with  a is also denoted by  a. Then we have U
xRiUx* =  R20a 

for A-a.a. x. It follows that, for A-a.a.  x, y,  Ri and  91 are unitary 

 equivalent  by-means of an isometry V of  H
x onto  Hy if and only if 

 (UyVUx*)(R20a)(UyVUx*)* =  920a. The last equation means that  R2 and 

92 are unitary equivalent. Therefore, by Proposition 2.9, there 

 exists  a  A-null set Nsuch that,for x,yeS-Nxrk, y  if and   1b
1 

only if x uy. Note that [N,],is A-null by the condition of   2"1 

Definition 2.3. We set N = [[N-IL]b  , which is a A-null set. For 
                                  -L"1  2 

x  eS - N, [x],is contained in S - N1 and [x]
bis contained in   [x]b"2 

S - N.  From the above argument, we have [x],= [x], „.Q.E.D.                         u
l"2 

Remark 2.11. Suppose that (G, A) is ergodic [see  §1.4], then for 

every  beB, the relative commutant of  Ob(EndA(H)) in EndA(H) is the 

algebra of scalars. 

 2.2.  Conj'ugacy of subalgebras. 

     In this section, we give a sufficient condition for two subalgebra 

0(EndA(H)) and 0b(EndA(H))  (b1, b2eB) not to be conjugate by any b
l2 
 *-automorphism of  End

A(H). 

     Let  (A, B, G, A) be an  action'of B on S.  Thxoughout this section, 

we assume that A is unimodular and that p =  Av is a probability 

measure on S for the transverse function v of counting measures. 

If this is the case, EndA(H) is finite.
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Definition 2.12. An element b of B is said to be homogeneous of 

degree k if it satisfies the following conditions; 

 (i) there exists a Borel partition  {Si}i.1 of S such that, for each i, 
the  restriction  bi of b to  Si is a Borel isomorphism of  S onto  S, 

(ii)  if  pi is the restriction of  p to  S ,and pi.(b.bj-1) is a measure 

                                                          ., on  Sj defined by pi.(b.bj-1RE) =P(CxE S•xbijbleEl) for every 

Borel set E of  Sj' then pi.(b.bj-1) =  p (i,j =k). 

Lemma 2.13. Let b be homogeneous of degree k. 

(i) If  p•b  is a measure on S defined by  p•b(E) =  p(Eb-1) for every 

Borel set E of S, then  p•b is equivalent to p. 

 (ii) If p.b-1is a measure on  Sdefined by p-b-1(E) =  p(Eb  ) for 

every Borel set E of  Si' then p-b-1 is equivalent to  p  (i =  1,...,k). 

(iii) The equation d((p.b).b-1)/dp = k holds  (i =  k), 

Proof.  (i) Note that, as C is a countable discrete group, for a 

Borel set E of  S, E is  u-null if and only if [E] is A-null. It 

follows that  p•b.< p. Suppose that E is  p•b-null, that islEb-1 is 

 p-null. Since  [Eb-1] is A-null,  [Eb-1]13 is also A-null. Since E is 

contained in  [Eb-1]b, E is a p-null set. Thus we have  p_<  p•b. 

(ii) This can be proved by the same method as that of#the proof of 

 (i). 

(iii) This follows from a straightforward calculation. Q.E.D. 

Remark 2.14.  ' If b is homogeneous, then the representation  (H,  Lb)
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of  G•b defined in Section 2.1 is a square integrable representation 

(see §1.3). 

    The measure  3vx  dp(x) on G is denoted by X. We  set = 
v(EndA(H)),  Arb =  v(4)b(EndA(H)))  and  =,v(H). The  Hilbert space R 

can be identified with L2(G, X). Define a partial isometry U = Ub on 

le by 
                                  -1/2 

        U(f)(x, c)  = (d(lal; (xb)f(xb,  b-lcb) 
for  fER and (x,  c)E G. 

Lemma 2.15. Let b be homogeneous of degree k and e be the final 

projection of Ub. 

 (i) The space  edt consists of all elements  f =  (fx) of  x which 

satisfy the following; there exists a saturated null set N = Nf of S 

such that  f  = Lb(x,  y)f
y if xb = yb and x,  yes - N. 

(ii) The projection e belongs to the commutant  Arb' of  Arb. 

Proof.  (i) Let  mo be the space consisting of all elements which 

satisfy the condition of (1). We write U for Ub. If xb = yb, then 

we have, for  fGH, 

 (Lb(x,  y)(Uf)  )(x,  c)  =  (Uf)  (y, c) 
                                 =  (Uf)x(x, c). 

Hence  eJt is contained  incr Conversely, let f be an element in 

Ro. For x,  ys -  Nf with xb = yb, we have f(x, c)  = f(y, c) for 
all  cE  C. Fix an integer i with 1 < i < k and define an element g
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 of  x  by                     d(rbi-1))-1/2 
        g(x, c) = k1/2(  dp (xb-1)1,(3.-1, bcb-1) 

((x,  c)  E  G)  . Then we have, for (x, c)  EG, 

    U(g)(x, c) 
                                    1)-1/2 

   = k1/2( d
p /dp           d(p)          •to-1/2td(p•bi1                     (xb)  (xbb.)f(xbb.-1, c). 

On the other hand, we have, for  u-a.a.  xES, 

                   13\d(p.b.1)       d(p.b)(x                          dp .1 (xbb  -1)            dp 

 d((p.b).b  )  1 

         dp (xbb.)= k.                  i 

It follows that U(g)(x, c) =  f(xbbi-1, c) for p-a.a.  xe  s and all  ce 

C. Since  we  have  f(xbbi-1, c) = f(x, c) for  xfNfUNfbib-1, we have 

U(g) =  f. Hence  ilto is contained in  eJ. 

(ii) Let T be an element of  Kb and f be an element of  eat. For 

x,  y  E  S - Nf with xb = yb, we have 

          Lb(x, y)Tyfy=TxLb(x,y)fy= Txfx. 

Therefore Tf belongs to  ejt and e is an element of  A(.13'. Q.E.D. 

Lemma 2. 16. Let e be as in Lemma 2.15 and  gk be a k-dimensional 

Hilbert space whose complete othonormal system is  {yi=1. For 

f  sie  eX.  0dt  k, define an element  p(f  0  Si)  oftg by the following; 

 Cf060xisk1/2f3cifx6S.andisOifqS..Then  IP can be 
extended to an  isometrg%  of  eJ  0  ICI( onto  jt, which is denoted  again 

by  4'. Moreover the von Neumann algebras  (Arb)e  Ck  and  Kb are 

spatially isomorphic by means of  where  C  k is the algebra of scalar
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operators on Xk. 

 Proof. For  fE  eje, we have 

       gcr 6i)11 2 
        = k  Ss. lifx2 dpi(x) 

           Ej=1SLb(xbibj-1, x)fxh2 dpi(x) 

  k2 

                  , 

         =1L
i=1 Sfx IId(pi•(bibi-1))(x) (Lemma  2.15) 

        =  II  f  II  2 

It follows that  i can be extended to an isometry of  ejt 0  lek into g. 

Let  fo be an element of  Je such that <f0' f> = 0 for all f  E 

 p(e  X0  k). For  fge, define an element  fi of  edt by  fi(x, c) = 

f(xbjb.-1'c) for  xE  Sj and  c  E  C=k). Then we have 

     k1/2S‹f f- <-PA.)> 
          S. OX?'X"‘1" "f                      1 

                                               = O. 

Since f and i are arbitrary, we have  fo = 0. Hence  ip is onto. 

     Let T be an element of  (A () e. There exists an element T' of 
 /lb such that  T'e  = T. For  f  0  die  e  0X  k, we have 

Ip((T 0  1)(f 0  oi))
x =  (Tilp(f  0  61.))x for a.a.  x  ES. It follows that 

 Ip(T 0  I) =  T'tp.. Therefore the map  T  (T  EP  I)11)-1 is an 

isomorphism of  ('16)e  0q;  k onto  Arb. Q.E.D. 
                                                                                                                                                                                       ...- 

Lemma 2.17. Let U and e be as in Lemma 2.15. The von Neumann 

algebras  (A(b)e  andiAt are spatially isomorphic by means of  U.
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Proof. For  TE  (Arb)e, there exists a unique element T'  of  11. such 
that 0b)e= T. As we  have,for fege, 

 u(f)x = (d(b))-1/2(xb)cpxb,x-1(fxb)' 
we have 

 (TUf)x  =  Ob(TI)xU(f)x 

                                -1/2 
                (d(p

dpb)                                    (xb)()xb,x-1(T'xbfxb) 
                  =  U(T'f)

x. 

It follows that T'  = U*TU. Q.E.D. 

 le  se- From the above lemmas, we get the following theorem. 

Theorem 2.18. If b is homogeneous of degree k, then  A0  ek and 

 firb are spatially isomorphic. 

Corollary 2.19. Suppose that (G, A) is ergodic. Let  bi be 

homogeneous of degree  ki (i = 1, 2). If  ki  k2, then there are no 

automorphisms of EndA(H) which send 0,(EndA(H)) onto 013(EndA(H)).        ul 2 

Proof. By the ergodicity  of  (G, A),  if and  /b .  (i = 1, 2) are 
factors.  Since  A is standard, the coupling constant ofArb . is  ki 

 (i = 1, 2)  [35, Corollary 7.22]. It follows that Af,andAr,cannot                           ul"2 
be spatially isomorphic if  ki k2 [35, Theorem 8.3]. On the other 

hand, any automorphism  of P1 is spatial [8, p.268, Corollary]. 

Therefore there are no automorphisms of  /I which send Arb
1ontoffb2. 

Q.E.D.
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 §2.3. An example. 

     In this section, we apply the results of the previous sections 

to the action of the special linear group SL(n,  2) of degree n on 

the n-dimensional torus  Tri (n > 2).  Let  A be the normalizer of 

SL(n,  -2E) in the general linear group GL(n, Q), and B be the 

semigroup consisting of all elements of A whose coefficients are 

integers. Note that B contains the elements of the form kI  (ke 

2Z -  {0}), where I is the unit matrix. We set C = SL(n,  2!) and S = 

 Tn. The action of b =  (bij)  E  B on x = (x1xn)6 S is defined by 

           " 

                   n 
                       =1          xb =(EbxEnj =1bjnxj) (mod  Zr).       jjlj" 

Let  Gn be the groupoid S x C associated With the above action and A 

be the transverse measure on  Gn such that  Av is the Lebesgue measure 
 p on S for the transverse function  y  of counting measures. Note 

that A is unimodular and ergodic. Since the action of C on S is 

 essentially  free, (A, B, G, A) can be considered as an action of B on 

S. Let  Pt n be the von Neumann algebra  v(EndA(H)) associated with 
the left regular representation  (HY,  LY) of  Gn.  Thenit  n is a full 

factor of type  II1, which coincides with the  factor obtained by the 

group-measure space construction. For  kG  -  {0}, the element kI 

of B is homogeneous of degree  IkIn. We  setiVrin,c =  v(01,c(EndA(H))). 
The following theorem summarizes properties  of Arkwhich are 
obtained from the results of the previous sections. 

Theorem 2.20.  (i) The subfactor  irk  ofri is spatially 

isomorphic to //noc,.-  {0}). 
                 lkin



 39 

 ( ii) Elements of the familyl‘, are not  conjugatewith                               kkelry 

each other by any automorphism of ?tn.
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Chapter III. Connes' invariants of periodic automorphisms. 

     In this chapter we calculate Connes'  invariants for certain 

automorphisms of full factors of type  IIi. In what follows, 

automorphisms of von Neumann algebras always mean  *-preserving ones. 

Let SL(2,  2E) be the group of 2 x 2 matrices with integral entries 

and determinant 1, and F2(n) be the subgroup of SL(2,  Z) generated 

by (112n)           and (1n 1) '(21                             where n is a natural number. Then, for  02 

every n, F2(n) is isomorphic to the free group on two generators. 

                           ff12,72 Let S be the 2-torusIN/AL , and p be the normalized Lebesgue 

measure on S. The natural action of  SL(2,  Z) on (S, p) is defined 

as follows; 

         fab\                            (ax + by , cx + dy) (mod.2.7_2)            c di  (x,  y)  = 

for  bd)             SL(2,  Z) and (x, y)  ES.  Annaction of F2(n) on (S, p) 

is obtained by restricting the  Above action to F2(n). We denote by 

 11.n the factor obtained by the crossed product from the above 

action of F2(n) on  (S, p). Using  [33, Proposition 3.5], we can show 

that the action of F2(n) on  (S, p) is strongly ergodic. It follows 

from [2]  thatAn is a full factor of type  IIl' For every  divitor p 

 (if 2n and i  = p - 1, we shall construct a minimal periodic 

automorphism  pn
,p,i  oft/n with Connes' outer  invariant  (p,  yi), 

where y =  exp(2ffil-1.7p) (see 51.5, 2). All results in this chapter 

are taken from [28, 29].
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§3.1. Construction of periodic automorphisms of 71n. 

     Let n be a natural number and p be a divisor of 2n. In this 

section, we construct a periodic automorphism  an
,p  ofn with 

period p. 

     Let SL(2,  37_), F2(n) and (S,  u) be as above. We denote by  10  , 

 F2(n, p) the subgroup of SL(2,  Z) generated by (1 2n/p)                                                                  and                                              k0 1 

           and by C(n, p) the subgroup of SL(2,Z) generated by Upn 1 J' 
F2(n) and  F2(n, p). Define an automorphism  iP =  *n p of C(n, p) by 

           (1°D0)c101P)      ~(c)  =for  cGC(n, p). 

Then we have  *2 = id.  andf*(F2(n)) = F2(n, p). Actions of F2(n) and 

 F2(n, p) on (S,  p) are defined  as the restrictions of the natural 

action of SL(2, 1) on (S, p) to F2(n) and F2(n, p) respectively. 

Note that these  ac4s of F2(n) and F2(n, p) are ergodic, measure-
preserving and essentially free. Let  * = * be a Borel map of S onto 

itself defined by  *p(x, y) = (y, px) for (x,  y)G S. The following 

property is important; 

 *  (cs)  = *n ,p(6)* (s) 

for every c  E  C(n, p) and s  S. 

     We define a measurable groupoids Gn and Hnp as follows; 

       , 

 Gn  =  f(s,  cs)E-S x S;  cGF2(n)}, 

 Hn,p = {(s,  cs)  GS x S;  cGF2(n, p)}. 

 (.see Example 1.2). Let  v (resp. v') be the transverse function of 

counting measures of  Gn (resp.  Hn
,p) and A (resp. A') be the 

unimodular transverse measure of  Gn (resp.  Hnp) such that A = p 

 (resp: = p). For left regular  representations  Lv) and 

 (Hy',  Lvt) of  Gn and Hn,p respectively, we set  nn =  EndA(Hv) and
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An,p = End(Hv ). We define a measure  A (resp. A') on  Gn (resp. 

Hn,p)byA=Sys  dp(s)  (resp.  X'• =dp(s)). Let  a-edenote 
the  Hilbert space L2(GA) andKdenote the  Hilbert space 

         n'n,p 

L2(Hn,p' A').. We may consider An and Al n,p as algebras of operators 
 onn and  Kn ,p  respectively, as in Section  1.4. Let U (resp. U') 

be the  homamorphism of  [G
n] (resp,  EHnp1) into the unitary group of 

 An  (resp.  gn ,p) and let  it (resp.  Tr') be the  *-homomorphism of 
  co L(S,  into  An (resp21.1np1-), which are defined as in Section 1.4. 

                             We set  A  -  Tr  (_Lc°  cs  lin and  63 =  7rt(Lc°(S,  p)). 

     An action of the cyclic group  W =  7/pZ on (S, p) is defined 

by  =  w  s  for  i  EW  ' and  s  e  S, where  w is an automorphism of S 

such that  w  (x,  y) = (x + y) for (x,  y)E  S. Since  w commutes 

with  elements- of C(n,  p) _, we can define an action of  Dn ,p = F2(n, p) 

x  W on  (S,  p)  by 

         (c, = cis for  (c,  Dn ,p and  s  E  S. 

The  action, of D
n,pergodic, measure-preserving and essentially 

                                     on X.by 
  P' n,p 

 (iVilssf)fs,  t) = 

for  fe  Kn ,p'  (.s'  t)n,p. Then, we can define an action of  W 
 on M.n,pby$.= Ad V.'eWp1. Let R(ffn,p,13) be the crossed 

product  of Ain,pby13 (see §1.5, 1).It is  isomorphic  'to the  factor  • 
 R  (_i4c°(  s  ,  p),  Dn,p) obtained by the crossed product from the action 

of  Dn
,p on  (.S,  11), 

      Throughout this section we fix n  and  p,nand we omit indices 

 n and p  if there is no  confusion..
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       Let  H0 denote the measurable groupoid {(s,  ds)  E  S x  S;  dED
n,p} 

  and  vo be the transverse function of counting measures on  Ho. We 

  define a measure A0on H0by A0= Sv0s dp(s). Let  Ibe the 
                                    transitive groupoid {0, p -  1} x {0, p -  1} (see  §1.1) 

  and  Al denote the counting measure on  I  .  ,Define a Borel partition 

  {S.}13-1of S by          =0 

           S =  [1P-1,  (1 +  1)P-1) x 1r, 

 where  ir  oza_. is a 1-torus. For i = p - 1, let  (0i be the 

  inverse of the restriction of  (I) to  Si. It is clear that  (pi is a 

  Borel isomorphism of S onto  Si. Then there exists a Borel isomorphism 

  of the groupoid  H0 onto the groupoid  Gn x  Ip.such that 

          u(s, t) =  ((4(s),  (I)(t)), (i, j)) 

 for  (s,  t)  EH°,  s  E  Si,  t  E  Si  . The inverse of u is given by 

 1((s
,t),(1,j))=(4)-(0,  (P,(t)) 

  for ((s, t),  (i,  tine  Gn x  Ip. As the measure class of  A0 is sent to 

  that of A x  X1 by u, the factors associated with (H0,  [AO) and 

 (Gn x  Ip' [A x A1]) are isomorphic. The factors associated with 

  (H0'[A0]) and (Gnx Ip'[A x A1]) are6t(Lcn(S, Dn,p) and 
  ',LI  Mp respectively , where  Mp is the algebra of all p x p  complex 

  matrices. Therefore  factorsAtn  0  Mp and  R(A/,  13) are  isomorphic. 

            For  cEF2(n)' let  {E  (c) =  E  (c.  n p)}1D-1 be a Borel                                                                  =0 

 partitiOn of S such that  Ei(c) =  1(4)(c)Si(lS0). Define a projection 

 ei(c) =  ei(c; n, p) in  A by  ei(c) = ff(xE()) for i =p - 1 
                                                                    1` 

 and  c  eF2(n), where  XE .(c) is a characteristic function of  Ei(c). 

  The family  {ei(c)}Pi:3 is a partition of the identity in  A. Let
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   leij'•i,j =p -  1}  be  a system of matrix units  in  M. For 

 i = p - 1, we define a unitary  operator  ui  in  M
p.by  ui = 

     p-1    E
j=0ei+j,j' where  i + j means  i + j modulo p. LetIFbe the 

   canonical isomorphism of  Arn,p into  R(/r,  0) and  0 be the 
   canonical representation of  W into the group of unitary  operators in 

 khrn ,p,  0) (see §1.5, 1). By straightforward calculations, we 
   can prove the following. 

   Lemma  3.11 There exists a unique isomorphism  T of 
gyp, , 0) 

                                         r 

   onto  fln  42)  Mp with the following  properties; 

 (i)  T(113(71-' (h))) = EP-1 ff(hc)e.. for  h  ELw(S,  p),                                i=0 

 (ii)  T(TrI3(Uc1)) = i                         EP-1 (e( 11)(c))Uip(c)) u.*                 i=0 

   for  c  GF2(n'  p)' 

   (iii)  T(0) = 1 0  u. for  i  E  W  . 

A A 
        Let  W be the dual group of  W  . We consider  W as the group 

   1y E : yP =  l}. Then we have  <i, y> =  y'. Let be be the dual 

   action of  g  (§1.5, 1). For y =  exp(2ffilT/p), by restricting the 

   automorphismTo0^yoT-1  of  //(n  Mp  tos/ttn, we have the following 

    proposition. 

   Proposition 3.2. Let n be a natural number and p  be a divisor  of 

    2n. If y  =  exp(271-^-1/p), then there is a  unique'automorphism an ,p 
 ofjvin such that 

 (i)  an,p(X)  = X for XE54, 
 (ii)  arl

,p(ei(c;n,p)Uc)=y-ie.(c;-n,  p)Uc 

    for  c  E  F2(n) and  i =  0,..., p - 1.
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§3.2. Connes' invariants of certain automorphisms. 

     In this section we construct a minimal periodic automorphism 

pn ,p,i of  Al  n with Connes' outer invariant  (p,  exp(21TV:Ii/p)) for 
every divisor p of 2n and i = p - 1. 

     Let  r be the Borel automorphism of S such that  r  (x, y) = 

(x, y l/p) for (x,  y)eS. Then,  r commutes with every element of 

F2(n). We define a unitary operator  V on  g n by 
 (V  f)(s, t) =  f(r  -1(s)  r  -1(t)) 

for  fejt n, (s,  t)EGn. We write  T for the automorphism Ad  V of 

 Mn. For  S  E  S, let  [s] be the  orbit of s with respect to F2(n), that 

is,  [s] =  {cs;  ce  F2(n)}. Since we have  Er  (s)]  [s] for p-a.a. 

 seS, it follows from [15, §8] that  T is an outer automorphism 

for i = p - 1. 

     Now, we can state the main theorem. 

Theorem 3.3. Let n be a natural number and p be a divisor of 2n. 

For i =  p  -  1,  define an automorphism  p
n,p,i  of  /4.n by 

 pn
,p,i  =n,pTp 

Then, the Connes' outer invariant of  p
n,p,i is (p,  y'), where  y = 

 exp(2ff/p), and its  Connes/inner invariant is  el, where  El is the 

Dirac measure on C1 supported by  {1}. In  particular'  p
n,p,i is 

minimal periodic. 

     To prove the theorem, we will need two lemmas. In what follows,
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we write p,  a and T for  p
n,p,i'  an,p and  Tp respectively. 

• Lemma  3.4. Let q be the order of T-i. For  t = q - 1, 

define a Borel set  Et of S by 

         E =  1r x  [tq-1,  (t  1)q-1). 

If h is an element of  1.7(S, p) such that 

               q-1rt           h = E
t=0YXE 

where r = pq-1, then  pp = Ad  ir(h). 

                                           1 0) Proof. For a  while, let c be the fixed element                                            (2n 1J  of  F2(n). 
Then, the Borel set  E0(c) defined in Section 3.1 is the union of 

the following Borel sets; 

 l(x,  y)  S;  0<x<(2n)-1y,  0<y<1}, 

 {(x,  y)E:s;  (2n)-1(y+pk-1)<x<(2n)-1(y+pk),  0<y<11 

(k = (2n/p) - 1), 

 {(x,  y)  ES;  (2n)-1(y4.2n-1)<x<1,  0<y<11, 

and, for  j  = p - 1,  Ei(c) is the union of Borel sets 

 {(x,  y)E:S;  (2n)-1(y+pk-(j+1))<x<(2n)-1(y+pk-j),  0<y<1} 

(k = 2n/p). We define  a  Borel partition {A(k); k  = 

2n -  1} of S by the following; A(0) is the union of the following 

two sets 

 y)  es;  0<x<(2n)y,  0<y<11, 

 {(x,  y)  e  s;  (2n)-1(y+2n-1)<x<1,  0<y<1}, 

and, for k = 2n - 1, A(k) is the set 

          {(x,  y)ES;  (2n)-1(y+k-1)<x<(2n)-1(y+k),  0<y<1}.
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For k = 2n - 1, let m(k) be an element of  11,...,  p} such that 

m(k) = k (mod p).  Then,  Ej(c) is the union of sets A(k) with m(k) = 

p - j. Therefore we have 

          a(Uc) = E2kn-01kn(y                 =-A(k))uc. 

As we have  T(Uc) =  Uc and a(X) = X for  x  eA, we have 
 pP(Uc)  =  ll (El2cn-ulykT-ii(ffi                                     ``XA(k)fluc' 

As the number of  {je  {0,  .  . p -  1}; j = ju (mod  q)} is r for ju = 

0,..., q - 1, we have 

         pP(uc)11'1:76(Elcn-1 ykT-ij(_(                                    knOKA(k)))ru 

                       11-1 (z2n-1 _krffi_                                     -ij
A(k))1Jc 

Define an element h' in  1_7(S,  p)by 

              q-1 2n-1 kr                  =n .     h'(E                 J=0k=0 Y
r -ijA(k)•                              p 

It is clear that  pP(U
c)  =  ir(h')Uc 

     Since the order of  rpi is q, there exists a natural number io 

relatively prime with q  such  thatiVp =  i0/q. For j  = q - 1, 

let  OW be an element of {0,..., q -  1} such that  OW =  i0j  (mod  q). 

If we define a Borel isomorphism  w of S onto itself by w(x, y) = 

(x  (2nq)-1, y), then, by a straightforward  calculation, we know 

that 

 r  -liA(k)n  Eo =  036(i)A(k)nE0 

for j  = q - 1, k = 0,... 2n - 1. Notice  that the set 

{we(j); j  = q -  1} coincides with  {wj; j = q -  1}. 

It follows that, for  seE0, 

 h,(s) 119.-1(z2-1kr                   J=0`k=n0
w0(j)A(k)
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              q-(,2n-1           =, 'j =01"lc=0YkrX j(1) 
                        wA(k) 

We define a partition {B(k, k = 2nq - 1,  Q = 0,.., q - 1} 

of S by the following; for each  t, B(0,  t) is the union of the 

following two sets 

 {(x,y)ES;  0<x<(2n)-  1(y-t(4-1),  2(4-1<y<(R„4.1)q-11, 

 {(x,y) S;  (2n)-  1(y+(2nq-t-1)q-1)‹x<1,  tc1-1<y<(Q,1.1)(4-1}, 

and, for k  = 2nq - 1, B(k,  t) is the set 

          f(x,y)ES; (2n)-1(y+(k-t-1)q1)<x<(2n)-1(y+(k-t)q-1), 

                     - 

               tq1<y<(t+l)q-1}. 

It is clear that w(B(k,  t)) = B(k + 1,  t), where  k + 1 means k + 1 

modulo 2nq. For  k = 2nq - 1, if  k satisfies that 

(m -  1)q <  k < mq - 1 (m =  n),  we have 

         B(k,  0)(=  wiA(m) for j = k - ((m -  1)q + 1), 

 B(k,  0)  C  wiA(m - 1) for j =  k - (m - 1)q,..., q - 1. 

Therefore, for s€  B(k, 0) with (m -  1)q  < k < mq - 1, we have 

 hi  (s)  = (Rj =0k-((m-1)q+1)                        Yx(s)) x 
                              LeA(M), 

                      c
ji=k-(m-1)q(m-1)rX                                            w-A(m-1)(s)) 

 kr  =  1 

Since {B(k, 0);  k = 2nq - 1} is a partition of E0, we have 

                   ,2nq-1  kr           h'IE0 ='k=0  XB(k
,0)* 

It is clear that the following equations hold; 

 WO'  is) =  h'  (s) for all  sE  S, 

 r  ijB(k, = B(k,  0(j)) 

for j  = q - 1,  k = 2nq - 1. Fore each  t = q - 1,



                        49 

there exists an element  j(t) in  {0,..., q -  1} such that  G(jM) = Q. 

For every  seE as  r  -ijMs is in E0,we have 

 h'(s) =  bi(r  -ii(t)s) 

             = EYX . '2"-(s)              kij()                             B(k
,O) 
 kr  =

kY XB(k,t)(s). 

Thus we have 

          h,  zq-1  z2nq-1  kr  Q=0  k=0 XB(k ,t)* 
     On the other hand, as the set  cEt is 

        Uk2n0l(x,y)GS; (2n)-1(y+k-(t+l)q-1)<x<(2n)-1(y+k-tq-1), 

             = 

 0<x<1,  0<y<11, 

                                   12- the set Et() cEt' isL .)k=n01 B(qk -  ti +  t,  t) if  t  >  t', and is 
  2n 
(.4.1  B(qk - +  t,  t) if  9, < For s  e  EtncEt  „ we have 

 h(s)h(c-ls) = y(9,-M)r 

and for  sEB(qk  -  t'  t), we have 

          h'(s)  = y(t-ti)r 

This implies that 

 h'(s) =  h(s)h(c-is) for all  s  e  S. 

Therefore we have, for  f  E  X II and (s,  t)E-Gh, 

         (Ad  ff(h)(Uc)f)(s, t) =  h(t)h(c-it)f(s,  c-lt) 

                             =  (ff(h')U
cf)(s, t). 

It follows that Ad  Tr(h)(Uc) =  pP(Uc), where c =  Un  1) • 
         Next, let c be the element  (10  2in)                                               of F2(n). As  e0(c) = 1 

and  ei(c) = 0 for i = p - 1, we have  a(U
c) =  Uc. Furthermore 

we have T(Uc) =  Uc. It follows that  p(U c) =  Uc. On the other hand, 

as  cE =  Et for  t = q - 1, we have  h(c-is) = h(s) for all  sE.S.
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This implies that Ad  ff(h)(U
c) =  Uc. Hence we have  Ad  ff(h)(Uc) = 

pP(Uc), where c = /12n)                    l01J. 

As  T(54)  =y4 and  a(X) = X for  X  EA-, we have  pp(X) =  T-ip(X) = X 

for all  XEA . It follows that Ad  ff(h)(X) =  pp(X) for all XE54 • 

 Since  itn is generated  by/4 and  1Uc;  c  = fl 0) (12n)1                                    2n 11 '1j 
the assertion of the lemma follows. Q.E.D. 

Lemma 3.5.               For j = p - 1,  p, is an outer automorphism. 

Proof. Let q be the order of  Ti. Notice that we have  pJ(X) = 

 T-ij(X) for all  XEA- . If j is not a multiple of q, then  pj is an 

outer automorphism because  T-iiiiS outer  (c.f.[15, 58]). 

     Now, we assume that j =  mq with m < r, where r =  pq-1. 

Suppose that  pj is inner and we will show that this leads us to a 

contradiction. Then,  since  pj(X) = X for all  X  EA,  there  exists an 

element h in  Le°(S, p) with  Ihi = 1 such that  pj = Ad  ir(h).  Notice 

that we have, for  ceF2(n),  fE  di n and (s,  t)  eGn, 
          (Ad  ff(h)(Uc)f)(s, t) =  h(t)h(c-it)f(s,  c-lt). 

                                      )First, let c be the element (012nof F2(n). In this case, 
as we have  pj(Uc) = Uc, we have 

           h(t) =  h(c-it) for  p-a.a.  t  ES. 

Let  u be the normalized Lebesgue measure on the 1-torus  11. Since the 

map x 2ny is an ergodic transformation on  (1-,  (11.1) for every 

irrational numbery,we know that,for  YET,  h  iis constant 

% p-almost everywhere on  1-, where  h is the Borel function on  1r such
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that  h  (x) = h(x, y) for (x, y)  e S. 

     Next, let c be the element  (2n  of F2(n). We define an 
element h' of  Lc°(S, p) by h'(s) =  h(s)h(c-is) for s  ES. It is clear 

that  pi(U c) =  ir(h')Uc. As in the proof of Lemma  3.4, we can show that 
            h' = Eq-1v2nq-1                 Q=0L'k=0YkmXB(k ,t)  p-a.e. (2) 

Thus, we have h(s) =  h(c-is) for p-a.a.  sE  B(0,  R.)  (SC = q - 1). 

Therefore there exist a  p-conull Borel set S' of S, a  '111-conull Borel 

set A of IF and a Borel map a of ir into C1 such that 

 (i)  S'  y is empty if y  A, where S'  y =  {x€1-; (x,  E  St}, 

(ii)  ) = 1 for all  y  EA, 

(iii) h(x, y)  =  a(y) for all (x,  y)ES', 

(iv) h(s) =  h(c-is) for all  s  GB(0,  t)()S' = q - 1). 

For every  yoE  T with  kq-1 <  y0 <  (2,  1)q-1, there exists a positive 

number  E such that, if we put D =  {(x,  y)E S, 0 < x <  6,11Y  Yol < El, 

then D is contained in B(0,  t). Define Borel subsets D+,  D of S 
   + - and D0 'D0ofTby the following; 

          D+ = [0,  E) x Cy0'Y0E), 

          D  = [0,  E) x  (Y0 - E, Yo], 

         D0= Cy0'y0E)  n A, 

          D0= (y0 - E,  y0] n A. 

We set F =  c-1(D+()  S')()  (D  (lS') and  Y =  c-1e()D-1 It is clear 

that  pa1 - F) = 0. Then, there exists a Borel subset  Bo- of  D0 

with j.ji(Do - Bo-) = 0 such that 

           ) =) = E/2n for all yeB 
  Sr0 • 

For  y6 we denote by  R
y  the set of  y'E  Do+ for which there exists
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an element (x', y') of  D-1-()  S' such that  c-1(x',  y')G  Fn where 

 L =  {(x,  y)  SI; 0 < x <  c}. Let 8 be the Borel isomorphism of 

[y0,y0+ 6) onto F=  [(2n)-1(-Y +  y0),  (2n)-1(-Y +  y0 +  c)) such 

that  8(y')  =  (2n)-1(y1 - y). As we have  8(R 
y) = FY'we have 

                     r‘, 

          p(R) = 2np(F) = E. 

We fix an element y in  Bo- For every  y'  E  R and  (x',  y  )  E  st 

 1 with  c  (x  , yi) E Fr\ L
Y'we have 

 a(y') = h(x', y') 

                 =  h(c-1(x' ,  y')) =  a(y). 

Moreover, for every VE B-there exists an elementy" inRn     0 'Ryi 
because  p(R  ) = p(R

Y1) = E, and we have 
 a(y') =  a(y") =  a(y). 

Since  R  U  Bo- is a subset  of .  (y0 -  6' y0 +  E) such that  1.t(R
y() Bo-) 

=  2E, a is constant  1%1-almost everywhere on  (y
0 -  E,  y0 + c). It 

                              % follows that a is constantp-almost everywhere on (kq-1,+ 1)q-1) . 

This implies that  h'is constant  p-almost everywhere on  E
t  (k = 

q - 1). Therefore there exist complex numbers  at  (k = q - 1) 

such that 

           h = Eq-1              k =0akXE u-a.e. 

Thus, for a.a.  sEE0, the  value h'(s) is in  fete°, 

On the other hand, by (2), for every k =  Order(ym) - 1,  h' 

takes the value  ymk on a subset of  E0 with a positive measure. Since 

the order of  1m is strictly greater than q, we get a contradiction. 

Q.E.D.
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Proof of Theorem 3.3. It follows from Lemmas  3.4 and 3.5 that the 

outer period of p is p. Let i' be a non-negative integer such that 

i' and q are relatively prime and such that i/p =  i'/q. Then we have 

rPiEt =Ek+i" where  t + i' means  k + i' modulo q. As we have 

 p(Tr(h)) =  T-i(Tr(h)), we have, for  f  ege and a.a. (s, t)  EGn, 

 (p(ir(h))f)(s, =  h(r  it)f(s, t). 

On the other hand, we have 

 h(r  it) = Eci=-1 yrkx(t)                    k0 
                                 r—1E                   Pt 

                      ri'1r(k-i')                = Y(E
t=oYXEt -i(t)) 

                                                                        ' 

                   =  y'h(t) . 

It follows that  p(ir(h)) =  yiff(h). Therefore the Connes' outer 

invariant of p is (p,  y'). The remainder of the assertion of the 

theorem is clear. Q.E.D.
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