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MODULES OVER DEDEKIND PRIME RINGS liI

Hiperosu:t MARUBAYASHI

(Received Novermber 9, 1973)

Let R be a Dedekind prime ring with the quotient ring Q. Let F be any
right additive topology (cf. [11]). Then R is a topological ring with elements
of F as the neighborhoods of zero. Let M be a topological right R-module with
submodule neighborhoods of zero. M is called F-linearly compact if

(a) it is Hausdorff,

(b) if every finite subset of the set of congruences x=m, (mod N,), where
N, are closed submodules of M, has a solution in M, then the entire set of the
congruences has a solution in M.

The purpose of this paper is to study the algebraic and topological properties
of F-linearly compact modules.

After discussing some properties on R which need in this paper, we show, in
Section 2, that the Kaplansky’s duality theorem holds for F-linearly compact
modules (Theorem 2.12). By using the duality theorem we determine, in
Section 3, the algebraic and topological structures of F-linearly compact modules
when F is bounded. Moreover we define the concepts of F-pure injective and
F~-pure injective modules, and investigate the relations of between these concepts
and F-linearly compact modules.

I wish to express my appreciation to the referee for his adequate advice.

1. Topologies on Dedekind prime rings

Throughout this paper, R will denote a Dedekind prime ring which is not
artinian, and Q will denote the quotient ring of R. We will denote the (R, R)-
bimodule Q/R by K. A subring of Q containing R is called an overring of R.
For any essential right ideal I, the left order of I is defined by 0,(I)={q= Q|
gI<1}. We define the inverse of I to be I-'={q=Q|IqI &1}. Then we obtain
II"'=0,(I) and I7* I=R. Let I be a right ideal of R. By Theorem 1.3 of [1],
R/I is an artinian R-module if and only if [ is an essential right ideal of R. For
any right ideal I and any element a of R, we define a ' I={r&R|arcI}. Let M
be a (right R-) module. M is said to be torsion if, for every me M, mI=0 for
some essential right ideal /. We say that M is divisible if MJ=M for every
essential left ideal J of R. Let F be any (right additive) topology (cf. [11]). We
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say that me M is an F-torsion element if O(m)={r=R|mr=0}< F, and denote
the submodule of F-torsion elements by M. If M;=0, then we say that M
is F-torsion-free. A topology F is trivial if all modules are F-torsion or F-
torsion-free. If F={R}, then it is clear that all modules are F-torsion-free.
Assume that F contains a non essential right ideal I of R, then F-torsion module
R/I is a direct sum of a torsion module and a non-zero projective module C by
Theorem 2.1 cf [1]. By Theorem 2.4 of [1], a finite copies of C contains R as
right modules and so R is F-torsion. Hence all modules are F-torsion. So if F
is a non-trivial topology, then F consists of essential right ideals. Conversely a
topology F consists of essential right ideals, then it is non-trivial, because R is
F-torsion-free and R/I is F-torsion (I F).

From now on, F will denote a non-trivial topology. We define Qz=1lim I,
where I ranges over all elements of F. Clearly Q is an overring of R. __)

Proposition 1.1 (i) The mapping F— Qp is one-to-one correspondence
between all non-trivial topologies and all overrings of R properly containing R.

(i1) A module M is F-torsion if and only if M QQ ,=0.

(iii) For any module M, M p="Tor(M, Qz/R).

Proof. By Corollary 13.4 of [11], F is perfect. Hence (ii) and (iii) follow
from Exercise 2 of [11, p. 81].

(1) Let O, be an overring of R properly containing R. Then it is well
known that Q, is R-flat and that the inclusion map: R—Q, is an epimorphism
(cf. [11, p. 75]). Hence, by Theorem 13.10 of [11], F,={I[IQ,=Q,, I is a right
ideal} is a topology. Since Q,QQ,=0, and Q, is R-flat, we have O,/RRQQ,=0.
Hence 03=0Q,/R is F-torsion. It is evident that R is not F,-torsion. Hence F,
is non-trivial. Thus (i) follows from Theorem 13.10 of [11].

Let {S,|a=A} be the representative class of simple modules which are
non-isomorphic mutually. For any subset T of A, we denote the set of R and
of essential right ideals I such that any composition factor of the module R/I is
isomorphic to S, for some y=T" by F(T).

Proposition 1.2. A non-empty family of right ideals of R is a non-trivial
topology if and only if it is of the form F(T) for some subset T' of A.

Proof. First we shall prove that F(T') is a non-trivial topology. (i) If I
F(T) and a=R, then a ' I F(T), because Rja"I=(aR-+I)/I. (ii) Let I be a
right ideal of R. Assume that there exists J=F(T") such that a~*IF(T) for
every a< J. Again, since Rfa *I=(aR+1)/I for every ac J, we obtain that
(I4J)/1 is a torsion module. Hence R/I is also torsion and so [ is an essential
right ideal. By Theorem 3.3 of [1], I+ /=aR-+1I for some ac J, and thus
RjaI=(I4])/I. Therefore I F(T). Thus F(T) is a topology. Since F(T")
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consists of essential right ideals, it is non-trivial. Conversely let F be any
topology and let ’={y= A |Sy,=~R/I for some I F}. From Lemma 3.1 of [11],
we have I'+=¢. We shall prove that F=F(T"). For an essential right ideal I of
R, I=F if and only if R[IQQ =0 by Proposition 1.1 and so F 2F(T). Assume
that FRF(T). Then there is I € F such that some composition factor of R/ is
isomorphic to S, for some a A—T'. So there are right ideals J,2 J,27 such
that J,/J,=S,. Take ac ], with ad J,. Then we get: Rla™'],~ J,[],=S,.
Hence, since a™'J,= F, we have a =T, which. is a contradiction.

Corollary 1.3. The lattice of all overrings of R is a Boolean lattice.

The family F, of left ideals J of R such that Q;J=0/ is a left additive
topology. We call it the left additive topology corresponding to F. F), is also non-
trivial by Proposition 1.1. Thus F, consists of essential left ideals of R. We put

r,=lim J7(J€F,). Amodule M is said to be F,-divisible if M J=M for every
JEF,. In asimilar way, we define the concepts of F,-torsion and F-divisible for
any left module.

Proposition 1.4. (i) Qr=0F, and so Qr is (F, F))-divisible.

(i) Kp=Kp=0Qr/R, where K=0Q[R. Thus Ky is also (F, F)-divisible.

(ii1) Let I be an essential right ideal of R. Then I F if and only if I7*|R is
F-torsion.

Proof. (i) follows from Proposition 1.1 of [10] and the definitions. (ii) is
clear.

(iii) Since Q is flat as R-modules, the sequence 0—Qr—QrQI ' —
OrQI*[R—0 is exact. Further, since QrQQr=Qp, we obtain that I F if
and only if Q-QI*/R=0. So IF if and only if I7'/R is F-torsion.

2. Duality theorem for F-linearly compact modules

Let F be any non-trivial topology. We define R,=lim R/I (IeF)and
I?FI= lim R/J(JE F,). Itis easy to see that both Ry and R F, are rings contain-

ing R (cf. §4 of [10]). Let M be an F-torsion module. Then M is an R -module
as follows: For me M, i':([r,—l—I])EIéF, we define mr=mr;, where JSO(m).
Similarly, an F,-torsion left module is an IQF -module.

Lemma 2.1. A module is F-linearly compact in the discrete topology if and
only if it is F-torsion and artinian.

Proof. The sufficiency follows from Proposition 5 of [13]. Conversely
assume that M is F-linearly compact in the discrete topology. Take me M.
Then, by the continuity of multiplication, there exists /€ F such that mI/=0.
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Thus M is F-torsion. By Lemma 2.3 of [9], M is finite dimensional in the
sense of Goldie. So the socle S(M) of M is finitely generated and M is an
essential extension of S(M). Let N be any submodule of M. Then, since N
is an open and closed submodule, M=M|N is also F-linearly compact in the
discrete topology by Proposition 2 of [13]. Thus the socle S(M) of M is also
finitely generated and M is an essential extension of S(M). This implies that
M is an artinian module by Proposition 2* of [12].

Corollary 2.2. Let M be F-linearly compact and let N be a submodule.
Then N is a neighborhood of zero if and only if M|N is F-torsion and artinian.

Proof. If N is a neighborhood of zero, then M/N is F-linearly compact in
the discrete topology. So the necessity follows from Lemma 2.1. Conversely,
assume that M/N is F-torsion and artinian. Let {M,} be the set of submodule
neighborhoods of zero. Since the topology is Hausdorff, N M,=0, and so
NM,=0 in M=M|N. Therefore there are finite submodules M,, M,
such that N}_,M, =0, i.e., N?_,M, SN. Thus N is open.

Corollary 2.3. If a module is F-linearly compact in two topologies, then
these topologies coincide.

Lemma 2.4. A module is F-linearly compact if and only if it is an inverse
limit of F-torsion and artinian modules.

Proof. The sufficiency follows from Proposition 4 of [13] and Lemma 2.1.
To prove the necessity let {IV,} be the set of submodule neighborhoods of zero.
Then the modules M/N, with the natural maps: [m+N,]— [m+Ng], where
N,& Ng, form an inverse system. Write M=lim M|N,. Thenitisa topological
module; each M/N, has the discrete topolt)gy and the product topology on
IIM/N, induces a subspace topology on M. Since N N,=0, the canonical map
f: M— M s a monomorphism. It is easy to see that f is a topological isomorphism
from M onto f(M) and that f(M) is dense in M. On the other hand, M is
complete by Proposition 8 of [13] and so f(M)=M. Further M|N, is F-torsion
and artinian by Corollary 2.2.

Following [11], a module D is F-injective if Ext(R/I, D)=0 for every I F.
By Proposition 6.2 of [11], D is F-injective if and only if Ext(T, D)=0 for every
F-torsion T. Further, since every F-torsion module T can be embedded in an
exact sequence 0—T—>>PK, with sufficiently many copies of K, D is F-
injective if and only if Ext(K;, D)=0. For any module M, we denote the
injective hull of M by E(M) and denote the F-injective hull of it by E (M) (cf.

[11)).
Lemma 2.5. (i) A module is F-injective if and only if it is F-divisible.
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(ii) Let M be a module with M ;=0. Then E (M)=MQQ .

Proof. (i) Assume that D is F-injective. Let J=F,. Then J7'/Ris F-
torsion by Proposition 1.4 and so the necessity follows from Proposition 3.2 of
[10]. Conversely assume that D is F,-divisible. Let I be any element of F.
Then I7'/R=3_,BR|], for J,=F,. By Proposition 3.3 of [10], we have

R/I=Hom(I7'/R, K )=>%_ PHom(R/];, Kz)=>_,®J7'/R, and so Ext
(R/1, D)y=3_ DExt(J;'|R, D)=>Y_ . @®D|D]J,=0. Therefore D is F-injective.

(i1) By Proposition 1.1, M .=Tor(M, K,). Hence from the exact sequence
0—-R—Q—K;—0 we get an exact sequence 0>M—->MQQ ,—~M QK — 0.

By Proposition 1.4 and (i), M @Q . is F-injective and so M QQ =E (M).

Corollary 2.6. Let M be a module. Then MQQy and MQK are both
F-injective.
For a module M, we define MF1=lim MIMJ(JF)). MF, isan ﬁpl-module
(cf. §4 of [10]). Similarly, for a left mmule N, we can define a left R -module
.
Lemma 2.7. Let M be a module with M .=0. Then there are commutative
diagrams:
My, = Hom (K, MQK ) = Ext(Kz, M)
Ja |e
M = M = M

where a(m)(7)=mQg (ncM, g K ;) and 3 is the connecting homomorphism.

Proof. From the exact sequence 0>R—Q—K—0, we get an exact
sequence:

(1) 0 = Tor(M, K;)—>M—>MQQ,—> MK 0.

Hence the assertion of the first diagram follows from the similar way as in
Theorem 4.4 of [10]. Applying Hom(K, ) to the sequence (1), we obtain the
exact sequence:

Hom(K z, M®Q p)—Hom(K z, M QK z)—>Ext(K z, M)—Ext(K z, MQQF).
The first and last terms are zero, because M @ Q - is F-torsion-free and F-injective.
Hence Hom(K z, M QK )=~ Ext(K 5, M). We consider the following commutative
diagram with exact rows and columns:

0 0
0—>I:I4—>M%QF—> MQ%KF—>0
0> M- EM) —>E(1&)/M—>0
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If [x+M]I=0, where x= E(M) and I F, then x]ISM and so x& M QO by
Proposition 6.3 of [11] and Lemma 2.5. Hence [x+M]eM QK . This implies
that (E(M)/M) ;=M Q@K . Itis evident that E(M),=0. Thus we have Ext
(K, M)=Hom(K, E(M)[M)=Hom(K r, MQK ). Now it is easy to see that
a=g.

Corollary 2.8. (i) Rg/R is F-divisible.
(i) R/I=R|/IR; for every IEF.

Proof. (i) Applying Lemma 2.7 to the left module R, we get an isomor-
phism: IQF/R&' Ext(Q, R). Since Ext(Qg, R) is a left Qg-module, it is F-
divisible and so I?F/R is also F-divisible.

(i) Itis evident that IR, N R=1I. Hence (ii) follows from (i).

By Lemma 2.4, R » is an F-linearly compact module in the topology which
is defined by taking as a subbase of neighborhoods of zero the set {z7*(0)N R,
I F}, where z;: [IR/I—-R/I is the projection. Further we have

Corollary 2.9. (i) =;*(0)N Ry=1IR for every IF.
(ii) Ry is a complete topological ring in the topology which has the set {I R,
I F} as neighborhoods of zero.

Proof. (i) Clearly z~*(0)N R.2IR,. By Corollary2.8, there exists a right
ideal J2I such that J/I=[z7'(0)N RF/IRz, i.c., z7'(0)N Re=IR+]J=] R,
because z7'(0)N R - 1S an Re-module. From this fact we easily obtain that /=1
and so z7'(0) N Ry=IR;.

(i) For any £& Ry, we define £~ (I Ry)={#< R;| ##<IR;}, where IEF.

Then we have the natural isomorphisms Iép/ﬁ“(lkp)i(H@H—II?F)/II?F;) JiI
for some J21. Define pf([1+ £~ (IRz)]=[a+I](ac J). Then J—aR+I and

L) ]/I;R/a“I, where #n([a+I])=[1+a 'I]. Therefore we get the natural
isomorphisms Ry/£-(IRz)=R/a~'1 z]ép/(a“l )Rz. Thus we have (aI)Rp—
£ kp). This implies that Ry is a topological ring. 'The completeness of Ry
follows from Proposition 8 of [13].

Let F={IRz|IcF}. For any Rr-module, we can define the concept of
F-linearly compact modules.

Proposition 2.10. A4 module is F-linearly compact if and only if it is an R p-
module and is F-linearly compact.

Proof. Assume that M is F-linearly compact. By Lemma 2.4, M is an Ry
module. Let N be a closed submodule of M. Then N is F-linearly compact by
Proposition 3 of [13], and so it is an Rz-submodule. Hence it is enough to
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prove that M is a topological Ry-module. TakemeM, <= Ry. Then we define

m'N={4c Ry|méc N} for any submodule neighborhood N of zero. Since
M|N is F-torsion, we have m—NF. Further we have (m+N)(#+m~N )Cmr
+Nandso M is a topologxcal Re-module. Conversely assume that M is F-
linearly compact as an Rp-module. Let {N,} be the set of submodule neigh-
borhoods of zero. Then, by a similar way as in Lemmas 2.1, 2.4 and Corollaries
2.2, 2.8, we have M. =(lir_r_1 MJ|N, and M|N, is F-torsion and artinian. Thus M

is F-linearly compact.

Let M be F-linearly compact. M * will mean the module of all continuous
homomorphisms from M into K, where K has been awarded the discrete to-

pology. It is evident that an element f& Hom(M, K) is continuous if and only
if Ker f is open.

Lemma 2.11. Let M be F-linearly compact. Then

(i) M*isan Rpl-module

(i) Let N* be a finitely generated left I@Fl-submodule of M* and let g
Hompiy (M*, Kr). Then there exists an element me M such that (f)g=f(m) for
every f & N*.

Proof. (i) For fe M* and 7 épl, we have Ker(7f) 2Ker fand so 7f = M*.

We shall prove (ii) by Miiller’s method (cf. Lemma 1 of [8]). Write N*=
Ry fit--+Rg, f,, where f,eN*, and let W={(f(m), --, f(m))|meM}<
S™PKp. Assume that x=((f.)g, '+, (f)g)EW. Then O(z)={r=R|zr=0}
€F, where =[x+ W] in 2P K,/W. Hence there exists a map §: XR—K
with (%)%0. Since K is F-injective, the map 6 is extended to the map §:
SYPK/W—-Ky. Hence there exists a map @: > *PK—>Kp with ¢(x)=0.
From Lemma 2.7 we have Hom(3> P K, Kr)= ZEBﬁF and so @=(7#, -+, 7,)
for some 7,&R;. Thus we get: 0 @p(x)=3""_, 7,[(f; )g] >w-i(7:f;)g and so
S fi=%0. On the other hand, 0=¢(w)=2’;=17’,- fi(m) for every w=/(f,(m),
«++, f+(m)), where me M. Hence >%_7;f;=0, a contradiction.

Let G be a left R " l-module. We denote the right module HomieFl(G, Ky)
by G* and define its finite topology by taking the submodules Anng#(IN)=
{f=G* (N)f=0} as a fundamental system of neighborhoods of zero, where N
ranges over all finitely generated R r,-submodules of G. The following theorem
was proved by I. Kaplansky [4] for modules over commutative, complete
discrete valuation rings.

Theorem 2.12. Let M be an F-linearly compact module. Then M is
isomorphic to M*¥ as topological modules.

Proof. Let o be the canonical homomorphism from M into M** which is
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defined by a(m)(f)=f(m), where me M and f & M*.

(i) First we shall prove that ¢ is a monomorphism. To prove this, we
assume that q(m)=0 and O=me& M. Then there exists an open submodule N
with N$pm. Let wi=[m+N]in M/N. Then O(m)=F by Lemma 2.1. So we
can define a homomorphism f: mR—K . with f(m)=0. This map can be ex-
tended to a homomorphism g from M/N into K. Let h: M—M]|N be the
natural homomorphism. Then g-h=M* and (g-k)(m)=0. This implies that
a(m)=+0, a contradiction, and so ¢ is a monomorphism.

(ii) Secondly, we shall prove that « is an epimorphism. Let x be any
element of M**. Then, for every f & M*, there exists an element m .M such
that (f)x=f(m,) by Lemma 2.11. We consider the congruences

(1) x=m(Ker f) .

Again, by Lemma 2.11, any finite number of congruences (1) have a solution.
Further Ker f is open and so it is closed. By F-linearly compactness of M, there
exists a solution me M. Hence (f)x=f(m )=f(m) for every f&M* and so x=
a(m).

(iif) Finally we shall prove that « is a topological isomorphism. Let S be
any submodule neighborhood of zero in the finite topology. Then S=Ann,(f,)
N -+ N Annye(f,), where f,e M*. It is evident that S=Ker f,N --- N Ker f, in
M and so it is open in the orginal topology. Conversely, let N be any open
submodule in the orginal topology. Then M|N is F-torsion and artinian. So

M|N can be embedded in an exact sequence 0 —M/N —i S"PK with finite
copies of K. Let z,;: "B K—K  be the projection (1<7/=<n) and let »: M
—M|N be the natural map. Then we have N=N"}_Ker g,, where g,==,;-0-7
eM* and so N is open in the finite topology.

3. In case F'is bounded.

A topology F is said to be bounded if, for every I F, there is an nonzero
ideal 4 such that I 2 4. When F is bounded, we shall determine, in this section,
the algebraic and topological structures of F-linearly compact modules. Let P
be a prime ideal of R and let Fp={I|I 2P* for some n, I is a right ideal of R}.
Then Fp is a bounded atom in the lattice of all topologies. Fp-linearly compact
modules is called P-linearly compact. Write' Rp=lim R/P". Then it is evident

that IA?FP=IA€P:IA3<FP)I as rings. It is well-known that IAEP is a prime, principal

ideal ring and that P=PR=RpP, where P is the unique maximal ideal of Rp.

In this section, we shall use the following notations: Qp=0Qp,; Kp=Kr, ; R(P")

=eRpleP™; R(P")I=ﬁpe/ﬁ”e; R(P~)=lim eRpleP™; R(P~),=lim Rpe| P"e, where
. —_ —_

e is a uniform idempotent in Rp. First we shall study P-linearly compact mo-

dules.
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Lemma 3.1. Q®R, is the quotient ring of Rp.

Proof. From the exact sequence 0—>R—Rp—Rp/R—0, we get the exact
sequence: 0=Tor(Kp, Rp|R)»K,—>KpQRp—>KpQRp/R=0, since Rp/R is
P-divisible and has no P-primary submodules, and so Kp=K,@Rp. Hence we
have the exact sequence 0—>IA2P—>Q®§P—>KP—>O. Thus Q® R is an essential
extension of Rp as a right Rp-module. Since Pr=P'Rp=R,P" and R, is
bounded, local, we obtain that Q®1A?P is divisible as an Rp-module. Hence
OQRp is an Ry-injective hull of R,. By Theorem of [2, p 69], it is the maximal
quotient ring of R, in the sense of [2] and so it is the quotient ring of Rp.

For an Rp-module M, we let M *=Homp, (M, Kp).

Lemma 3.2. (i) R(P*)*=~R(P"),.
(i) R(P~)f=Rpe.

(iii) (eRp)'=R(P~),.

(iv) [(QRKp)=(QRDRp)e.

These modules are all P-linearly compact.

Proof. (i) is evident. (ii) R(P‘”)‘*—[hm R(P“)]‘~11m R(P™),= ~ Rpe.

(ii1) R(P~), is Fp-torsion and artinian, Hence it is P- hnearly compact and
s0 R(P~),= [R(P~),JF=(lim R(P"))**=(lim R(P"))'=(eRz).

(iv) From the exact sequence 0—>e1ép—>e(Q®IA€P)—>R(P°")—>O, we get the
exact sequence 0— R Pe—>[e(Q®RP)]*—>R(P°°) ,—0 as left Rp-modules. Let f be
any element of [((QRRp)]. Assume that P*f=0 for some #. Then P*f(e(Q®
Rp)=0 implies that O—f(e(Q®RP))P"—-f(e(Q®RP)) and so f=0. Hence
[((QR R is torsmn-free as a left Rp-module. Thus [¢(QQR P)]" is an
essential extension of Rpe Hence we may assume that RPeC[e(Q@)RP)]’C
(ORRp)e. From Lemma 3.2 of [6], we casily obtain that [¢(QQR,)Ji=
(O Rp)e. |

By Lemma 2.1, R(P*) and R(P*~) are P-linearly compact in the discrete
topology. By Lemma 2.4 and Corollary 2.9, eR, is P-linearly compact in the
P-adic topology. e(Q®Rp) is a topological module by taking as neighborhoods
of zero the submodules {eﬁ"|n=0, +1, 42, ---}. Further the exact sequence
0—>eIA€P—>e(Q®RéP)—>R(P°°)—>O satisfies the assumption of Proposition 9 of [13]
and so e(Q®R%) is P-linearly compact in the above topology.

Lemma 3.3. Let 0—>L—>M-—>N—0 be an exact sequence of Rp-modules.
If the sequence is P°-pure in the sense of [7], then the exact sequence 0—N*—M*—
L¥*—0 is also P*-pure.

Proof. Since R, is a principal ideal ring, the proof of the lemma is similar
to the one of Proposition 44.7 of [3] (see, also Lemma 1.1 of [7]).
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Theorem 3.4. (i) A module is P-linearly compact if and only if it is isomor-
phic, as topological modules to a direct product of modules of the followmg types:
R(P*), R(P%), eRp, (QQRy), where ¢ is a uniform idempotents in Ry and the
topologies of these modules are defined in the proof of Lemma 3.2.

(i1) A module M is P-linearly compact, then M* is isomorphic to a direct sum
of modules of the followmg types: R(P™),, R(P~),, Rpe, (Q@I%p)e, where e is a
uniform idempotent in Rp.

Proof. (i) Since each of these modules does admit a P-linearly compact
topology, the sufficiency is evident from Proposition 1 of [13]. Conversely, let
M be P-linearly compact. 'Then M* is a left Rp-module and Rp is a complete
g-discrete valuation ring in the sense of [6] (cf. p. 432 of [6]). So M* possesses
a basic submodule B by Theorem 3.6 of [6]. Further any finitely generated
module and any injective module over a Dedekind prime ring are both a direct
sum of indecomposable modules. Hence, from the definition of basic submodules,
Corollary 4.4 of [6] and Lemma 3.1 we have B=>", P> PR(P”) /BIDRpe and
M*[B=3"®R(P~),®3B(Q®Rp)e. By Theorem 1.5 of [7] and Lemmas 3.2,
3.3, the exact sequence 0—(M*/B)*—M**—B*—( splits and so, from Theorem
2.12 and Lemma 3.2, we get:

(1) ME L IIR(PY) D TIR(P*)D [1eRr B TTe(QRRy) .

The right sided module is P-linearly compact and so, by Corollary 2.3, ¢ is an
isomorphism as topological modules.

Since the topology of the left sided of (1) is the product topology, (ii) follows
easily from Lemma 3.2.

From Theorem 1.5 of [7], Theorem 3.4 and definitions, we have the follow-
ing chain of implications;
(P™-pure injective)
(Pe-pure injective) = (P=-pure injective).
(P-linearly compact) e

Let F be a bounded topology and let M be F-linearly compact. Then we
know from Lemma 2.4 that M=Ilim M,, where M, is F-torsion and artinian.
—

By the same way as in Theorem 3.2 of [5], we have M,=>PM;p, where M ;p=
{xe M;|xP*=0 for some n} and P ranges over all prime ideals contained in F.
Write M P:li(__m M. Then Mp is P-linearly compact and M is isomorphic
naturally to [TMp as topological modules, where T[M, will carry the product
topology. It is evident that K,=> P Kp, where P ranges over all prime ideals
in F. Further we can easily prove that M*=> PM¥ and that M**=T[ M},
where M# consists of all continuous maps of Mp into K. Thus, from Theorem
3.4, we have
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Theorem 3.5. Let F be a bounded topology. Then

(1) A module is F-linearly compact if and only if it is isomorphic as topological
modules to a direct product of modules of the following types: R(P"), R(P~), epRp,
ep(I%@)IA? p), where P ranges over all prime ideals in F and ep is a uniform idempotent
in Rp.

(1) If M s F-linearly compact, then M* 1is isomorphic to a direct sum of
modules of the following types: R(P");, R(P~);, Rpep, (QQRp)ep.

Let F be any topology. A short exact sequence
(E): 0>L—->M—-N—-0

is said to be Fe-pure if MJ N L=L] for every JeF,. (E)is said to be F~-pure
if the induced sequence 0—L—M—Nr—0 is splitting exact. A module is
called Fe(F=)-pure injective if it has the injective property relative to the class of
Fe(F~)-pure exact sequences. The structure of F~-pure injective modules is
investigated in the forthcoming paper.

Lemma 3.6. Let F be a bounded topology. Then (E) is F-pure if and only
if (E) is P-pure for every prime ideal P F.

Proof. For any prime ideal P, it is clear that P F if and only if PEF,.
So the necessity is evident. Conversely assume that (E) is P*-pure for P F.
Let J be any element of F,. Then there is a nonzero ideal A with J24. Write
A=P{'---P,", where P; are prime ideals. Then P,eF and X/XA=X/XP{'®
-+ @X/XP," for every module X. Hence by Lemma 1.1 of [7] the sequence
0—L/LA—>M|MA—N|NA—O is splitting exact. Hence MJNL=L]J and so
(E) is Fe-pure.

From the same ways as (1.2), (1.4), (1.5) of [7] and Lemma 3.6 we have

Proposition 3.7. Let F be a bounded topology. Then a module G is F*-pure
injective if and only if it is isomorphic to the module E(GF*)®11pGp, where P
ranges over all prime ideals in F, GF*=NGJ(JF,) and Gp=Ilim G|/GP".

Let F be a bounded topology. Then from Theorem 3.5, Proposition 3.7
and definitions, we get the following chain of implications;

(F-linarly compact) = (F-pure injective) = (F*-pure injective).
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