
Title Modules over Dedekind prime rings. III

Author(s) Marubayashi, Hidetoshi

Citation Osaka Journal of Mathematics. 1974, 11(3), p.
547-558

Version Type VoR

URL https://doi.org/10.18910/3499

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Marubayashi, H.
Osaka J. Math.
11 (1974), 547-558

MODULES OVER DEDEKIND PRIME RINGS III
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(Received Novermber 9, 1973)

Let R be a Dedekind prime ring with the quotient ring Q. Let F be any
right additive topology (cf. [11]). Then R is a topological ring with elements
of F as the neighborhoods of zero. Let M be a topological right ϋ-module with
submodule neighborhoods of zero. M is called i^-linearly compact if

(a) it is Hausdorff,
(b) if every finite subset of the set of congruences x = mΛ (mod JVΛ), where

Na are closed submodules of M> has a solution in M, then the entire set of the
congruences has a solution in M.

The purpose of this paper is to study the algebraic and topological properties
of F-linearly compact modules.

After discussing some properties on R which need in this paper, we show, in
Section 2, that the Kaplansky's duality theorem holds for F-linearly compact
modules (Theorem 2.12). By using the duality theorem we determine, in
Section 3, the algebraic and topological structures of iMinearly compact modules
when F is bounded. Moreover we define the concepts of Fω-pure injective and
ί^-pure injective modules, and investigate the relations of between these concepts
and IMinearly compact modules.

I wish to express my appreciation to the referee for his adequate advice.

1. Topologies on Dedekind prime rings

Throughout this paper, R will denote a Dedekind prime ring which is not
artinian, and Q will denote the quotient ring of R. We will denote the (Λ, R)-
bimodule QjR by K. A subring of Q containing R is called an overring of R.
For any essential right ideal /, the left order of /is defined by Oι(I)={q^Q\
qIS-1}. We define the inverse of / to be I~1={q^Q\/#/£/}. Then we obtain
Π'1=0^I) and 7"1 I=R. Let I be a right ideal of R. By Theorem 1.3 of [1],
Rjl is an artinian i?-module if and only if / is an essential right ideal of R. For
any right ideal /and any element a of R, we define a~1I={r^R\ ar^I}. Let M
be a (right R-) module. M is said to be torsion if, for every m e M , ml=θ for
some essential right ideal 7. We say that M is divisible if MJ=M for every
essential left ideal/ of R. Let F be any (right additive) topology (cf. [11]). We
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say that m<=M is an F-torsion element if O(m)={r<=R\mr=0}(= F, and denote
the submodule of F-torsion elements by MF. If MF=0, then we say that M
is F-torsίon-free. A topology F is trivial if all modules are F-torsion or F-
torsion-free. If F={R}, then it is clear that all modules are F-torsion-free.
Assume that F contains a non essential right ideal / of R, then F-torsion module
R/I is a direct sum of a torsion module and a non-zero projective module C by
Theorem 2.1 cf [1]. By Theorem 2.4 of [1], a finite copies of C contains R as
right modules and so R is F-torsion. Hence all modules are F-torsion. So if F
is a non-trivial topology, then F consists of essential right ideals. Conversely a
topology F consists of essential right ideals, then it is non-trivial, because R is
F-torsion-free and Rjl is F-torsion ( / G F ) .

From now on, F will denote a non-trivial topology. We define QF=lim 7"1,

where / ranges over all elements of F. Clearly Q F is an over ring of R.

Proposition 1.1 (i) The mapping F^QF is one-to-one correspondence
between all non-trivial topologies and all overrings of R properly containing R.

(ii) A module M is F-torsion if and only if M®QF=0.
(iii) For any module M, MF=Ύor(M, QF/R).

Proof. By Corollary 13.4 of [11], F is perfect. Hence (ii) and (iii) follow
from Exercise 2 of [11, p. 81].

(i) Let Qo be an overring of R properly containing R. Then it is well
known that Qo is i?-flat and that the inclusion map: R-*Q0 is an epimorphism
(cf. [11, p. 75]). Hence, by Theorem 13.10 of [11], FQ={I\IQ0=Q0, / is a right
ideal} is a topology. Since Q0®Q0^Q0 and Qo is jR-flat, we have QQIR®Qo=0.
Hence 0φ£)0/i? is F0-torsion. It is evident that R is not F0-torsion. Hence F (

is non-trivial. Thus (i) follows from Theorem 13.10 of [11].
0

Let {^lαEϊΛ} be the representative class of simple modules which are
non-isomorphic mutually. For any subset Γ of Λ, we denote the set of R and
of essential right ideals I such that any composition factor of the module Rjl is
isomorphic to Sy for some γ G Γ by F(Γ).

Proposition 1.2. A non-empty family of right ideals of R is a non-trivial
topology if and only if it is of the form F(Γ) for some subset Γ of Λ.

Proof. First we shall prove that F(Γ) is a non-trivial topology, (i) If
F(Γ) a n d α e ί , then α- χ /eF(Γ), because R/a-1I^(aR+I)II. (ii) Let / be a
right ideal of R. Assume that there exists / e F ( Γ ) such that α"7GF(Γ) for
every a^J. Again, since R/a~1I~(aR-{-I)/I for every aEzJ, we obtain that
(/+/)// is a torsion module. Hence R/I is also torsion and so / is an essential
right ideal. By Theorem 3.3 of [1], I+J=aR+I for some α E / , and thus
R/a-1!^ (/+/)//. Therefore 7 < Ξ F ( Γ ) . Thus F(Γ) is a topology. Since F(Γ)
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consists of essential right ideals, it is non-trivial. Conversely let F be any
topology and let Γ = { γ G Λ | S^RjI for some / G F } . From Lemma 3.1 of [11],
we have TΦφ. We shall prove that F=F{T). For an essential right ideal / of
R, / G F if and only if R/I®QF=0 by Proposition 1.1 and so FSF(Γ). Assume
that F^F(T). Then there is / e f such that some composition factor of Rfl is
isomorphic to SΛ for some « G Λ - Γ . SO there are right ideals J^J2^I such
that JJJf^Sa. Take αG Jt with αή=/2. Then we get: Rla'ιJ2

Hence, since a~xJ2^F, we have αGΓ, which is a contradiction.

Corollary 1.3. The lattice of all overrings of R is a Boolean lattice.

The family Fι of left ideals J of R such that QFJ=QF is a left additive
topology. We call it the left additive topology corresponding to F. F, is also non-
trivial by Proposition 1.1. Thus Fι consists of essential left ideals of R. We put
QF^ n m J'^J^Ft). A module M is said to be Frdivisible if MJ=M for every
/•eF;. In a similar way, we define the concepts of Frtorsion and F-divisible for
any left module.

Proposition 1.4. (i) QF=QFι and so QF is (F, F^-divisible.
(ii) KF-=KF=QF\R, where K=Q/R. Thus KF is also (F, F^-divisible.
(iii) Let I be an essential right ideal of R. Then I^F if and only if I~xjR is

Frtorsion.

Proof, (i) follows from Proposition 1.1 of [10] and the definitions, (ii) is
clear.

(iii) Since QF is flat as i?-modules, the sequence 0 - ^ ^ F - > ^ F ® / " 1 - ^
ρF(g)7"7i?->0 is exact. Further, since QF®QF=QF> we obtain that / G F if
and only if ρF®/-1/JR=O. So I<=F if and only if I^/R is ^-torsion.

2. Duality theorem for jP-linearly compact modules

Let F be any non-trivial topology. We define &F=limRII(I^F) and

ήFι= lim R[J(J^ F/). It is easy to see that both ήF and RFι are rings contain-

ing R (cf. §4 of [10]). Let M be an F-torsion module. Then M is an ^-module

as follows: For m^My r=([rj-\-I])^RF, we define mr=mrJy where /£O(m).

Similarly, an jFrtorsion left module is an ^

Lemma 2.1. A module is F-linearly compact in the discrete topology if and
only if it is F-torsion and artinian.

Proof. The sufficiency follows from Proposition 5 of [13]. Conversely
assume that M is .F-linearly compact in the discrete topology. Take m e M .
Then, by the continuity of multiplication, there exists 7 G F such that ml=θ.
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Thus M is F-torsion. By Lemma 2.3 of [9], M is finite dimensional in the
sense of Goldie. So the socle S(M) of M is finitely generated and M is an
essential extension of S{M). Let N be any submodule of M. Then, since N
is an open and closed submodule, M=M/N is also F-linearly compact in the
discrete topology by Proposition 2 of [13]. Thus the socle S(M) of M is also
finitely generated and M is an essential extension of S(M). This implies that
M is an artinian module by Proposition 2* of [12].

Corollary 2.2. Let M be F-linearly compact and let N be a submodule.

Then N is a neighborhood of zero if and only if MjN is F-torsion and artinian.

Proof. If N is a neighborhood of zero, then MjN is .F-linearly compact in
the discrete topology. So the necessity follows from Lemma 2.1. Conversely,
assume that M/N is F-torsion and artinian. Let {Ma} be the set of submodule
neighborhoods of zero. Since the topology is Hausdorff, (~)Ma=0, and so
Γ\MΛ="0 in M=M/N. Therefore there are finite submodules Λfrtl, •••, MΛn

such that Π i-iMfl, = 0 , i.e., Π Ϊ^M^N. Thus N is open.

Corollary 2.3. If a module is F-linearly compact in two topologies, then

these topologies coincide.

L e m m a 2.4. A module is F-linearly compact if and only if it is an inverse

limit of F-torsion and artinian modules.

Proof. The sufficiency follows from Proposition 4 of [13] and Lemma 2.1.
To prove the necessity let {Na} be the set of submodule neighborhoods of zero.
Then the modules MjNa with the natural maps: [tn-\-NΛ]->[tn-\-Nβ], where
NΛQNβy form an inverse system. Write M==lim M/NΛ. Then it is a topological
module; each MjNΛ has the discrete topology and the product topology on
ΐ[MjNΛ induces a subspace topology on il2Γ. Since (Ί Noύ=0f the canonical map

/: Λί—>Mis a monomorphism. It is easy to see that/ is a topological isomorphism
from M onto f(M) and that f(M) is dense in ΛΪ. On the other hand, M is
complete by Proposition 8 of [13] and so f(M)=M. Further MjNΛ is F-torsion
and artinian by Corollary 2.2.

Following [11], a module D is F-injective if Έxt(R/I, D)=0 for every
By Proposition 6.2 of [11], D is F-injective if and only if Ext(Γ, D)=0 for every
F-torsion T. Further, since every F-torsion module T can be embedded in an
exact sequence Q~^T^^]φKF with sufficiently many copies of KFy D is F-
injective if and only if Ext(ϋΓF, D)=0. For any module M, we denote the
injective hull of M by E(M) and denote the F-injective hull of it by EF(M) (cf.

Lemma 2.5. (i) A module is F-injective if and only if it is F^divisible.
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(ii) Let Mbea module with MF=0. Then EF(M)=M®QF.

Proof, (i) Assume that D is jF-injective. Let J<=F;. Then J'^R is F-
torsion by Proposition 1.4 and so the necessity follows from Proposition 3.2 of
[10]. Conversely assume that D is ^-divisible. Let / be any element of F.
Then /-7i?=Σ3?=iθi?// t for J^Fr By Proposition 3.3 of [10], we have

i?//-Hom(/-7i?, ίΓ F )^l]? = i eHom(i?// t , Λ ^ Σ i - i θ / Γ 1 / ^ and so Ext
(R/I, D ) ^ Σ L i θ E x t ( / Γ /#> O ) ^ Σ l ^ i θ ΰ / J 5 / ~ 0 . Therefore D is F-injective.

(ii) By Proposition 1.1, MF=Ύor(M, KF). Hence from the exact sequence
0->R->QF->KF-+0 we get an exact sequence 0->M-*M®QF-+M®KF->0.

By Proposition 1.4 and (i), M®QF is F-injective and so M®QF=EF(M).

Corollary 2.6. Let M be a module. Then M®QF and M®KF are both
F-injective.

For a module M, we define ikf^^lim MjMJίJ^Fj). ΛdΓF/ is an J^F/-module

(cf. §4 of [10]). Similarly, for a left module JV, we can define a left J?F-module

Lemma 2.7. Let M be a module with MF=Q. Then there are commutative
diagrams:

UFι « Hom(ί:F, M®KF) « Ext(ί:F, M)

1 I- I"
M = M = M ,

eϋÂ r̂  a(m){q)=m®q (m^M, q^KF) and β is the connecting homomorphism.

Proof. From the exact sequence 0-+R->QF->KF->0, we get an exact
sequence:

( 1 ) 0 = Tor(M, KF)->M->M®QF->M®KF->0 .

Hence the assertion of the first diagram follows from the similar way as in
Theorem 4.4 of [10]. Applying Hom(^ F , ) to the sequence (1), we obtain the
exact sequence:

Hom(ϋ:F, M®QF)->Hom(KF, M®KF)->Ext(KF, M)->Ext(KF, M®QF).
The first and last terms are zero, because M® QF is .F-torsion-free and F-injective.
Hence Hom(i£F, M®KF) ^ Έxt(KF, M). We consider the following commutative
diagram with exact rows and columns:

0 0
1 I

0->M->M®QF^ M®KF->0
II i I

0-*M^ E(M) -> E{M)jM-> 0 .
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If [x+M]I=O, where x<=E(M) and I<=F, then xlQM and so x(=M®QF by
Proposition 6.3 of [11] and Lemma 2.5. Hence [x+M]^M®KF. This implies
that (E(M)/M)F=M®KF. It is evident that E(M)F=0. Thus we have Ext
(KF, M)=Hom(KFy E(M)/M)=ΐίom(KF, M®KF). Now it is easy to see that
a=β.

Corollary 2.8. (i) RFfRίs F-divisible.
(ii) Rjl^&F/lήF for every / E F .

Proof, (i) Applying Lemma 2.7 to the left module i?, we get an isomor-
phism: &F/R^Ext(QF, R). Since Έxt(QF, R) is a left ρ^-module, it is in-
divisible and so ήF/R is also F-divisible.

(ii) It is evident that lήF (Ί R=I. Hence (ii) follows from (i).

By Lemma 2.4, jfeF is an .F-linearly compact module in the topology which
is defined by taking as a subbase of neighborhoods of zero the set {πj\0) (Ί KF \

}, where 7Γ7: YίRβ-^RjI is the projection. Further we have

Corollary 2.9. (i) πj\0) Π &F=I&F for every I(=F.
(ii) ί£F is a complete topological ring in the topology which has the set {IRF \

as neighborhoods of zero.

Proof, (i) Clearly π~\ΰ) Π &F 2 / $ F . By Corollary 2.8, there exists a right
ideal J^I such that / / / = [TΓJ^O) Π &F]/I&F, i.e., πT\0)n &F=I&+J=J&F>
because πj\0) Π RF is an i?F-module. From this fact we easily obtain that / = /
and so πj\0) Π &F=IRF.

(ii) For any i e j£F, we define χ-\lήF)={rζΞRF\ xr£Ξl&F}, where 7 E F .

Then we have the natural isomorphisms J^F/i"1(/^F)^(i^F+/^ jp)//J^ j P^7//
for some/2/. Define φθ([l + Jt-\lήF)]=[a+I](a^J). Then J=aR+I and

so JjI^Rja'1^ where η([a+I])=[ί+a~1I]. Therefore we get the naturalJ j j ( [ ] ) [ ] g
isomorphisms ^ / i - X / J ^ ^ ^ / ί / α - ' / ^ ^ / ί α - 1 / ) ^ . Thus we have {a~xI)kF=
όc~\I^R.F). This implies that RF is a topological ring. The completeness of &F

follows from Proposition 8 of [13].

Let ft={lί£F\I^:F}. For any j^F-module, we can define the concept of
i^-linearly compact modules.

Proposition 2.10. A module is F-linearly compact if and only if it is an RF-
module and is F-linearly compact.

Proof. Assume that M is F-linearly compact. By Lemma 2.4, M is an RF-
module. Let N be a closed submodule of M. Then N is F-linearly compact by
Proposition 3 of [13], and so it is an l?F-submodule. Hence it is enough to
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prove that M is a topological ^-module. Take m e M , r^ήF. Then we define
m " W = { i e R F \ m § ^ N } for any submodule neighborhood N of zero. Since
M/N is F-torsion, we have r W e F . Further we have (mH-Λf)(r+m~W)Cmr
-\-N and so M is a topological jR^-module. Conversely assume that M is F-
linearly compact as an Ic^-module. Let {Na} be the set of submodule neigh-
borhoods of zero. Then, by a similar way as in Lemmas 2.1, 2.4 and Corollaries
2.2, 2.8, we have M=lim M/Na and MjNΛ is jF-torsion and artinian. Thus M

is F-linearly compact.

Let M be F-linearly compact. M* will mean the module of all continuous
homomorphisms from M into KF, where KF has been awarded the discrete to-
pology. It is evident that an element / e Hom(M, KF) is continuous if and only
if Ker/is open.

Lemma 2.11. Let M be F-linearly compact. Then
(i) Λf * is an RF-module.
(ii) Let iV* be a finitely generated left RF-submodule of M* and let g^

HomRFι(M*y KF). Then there exists an element m^M such that (f)g=f(m) for

Proof, (i) F o r / e M * and r^RFr we have Ker(r/) 3Ker/and so
We shall prove (ii) by Mailer's method (cf. Lemma 1 of [8]). Write JV*=

+ ^ Λ , where /,€=#*, and let W={{fx{m\ - , fn(m))\mtaM}G
Assume that x^dfjg, -,(fn)g)£W. Then O(x)={rtΞR\xr=0}

where x=[x+W] in Σ®KF/W. Hence there exists a map θ: xR->KF

with #(#)φθ. Since KF is jF-injective, the map θ is extended to the map ff:
*ΣXBKFIW-*KF. Hence there exists a map φ: ^n®KF-^KF with ^ ( ^ φ O .
From Lemma 2.7 we have H o m ^ φ X ^ , ί ^ Σ θ ^ and so φ=(flf •••, rM)
for some r t e ^ F / . Thus we get: 0 # = ^ ( Λ ) = Σ ? . 1 rί[(Λ)ff]=Σ3ϊ-i(rί/ί)^ and so
Σjί-Λ/f + O On the other hand, 0=(p(w)=Σ?= 1r ί //(m) f° r every w=(f1(m)y

••-,/„(/«)), where m^M. Hence Σ?-i^ί/f==0, a contradiction.

Let G be a left i?F/-module. We denote the right module Hom&F/(G, KF)
by G*, and define its finite topology by taking the submodules AnnG*(Λ/)=
{/GG'|(iV)/=0} as a fundamental system of neighborhoods of zero, where N
ranges over all finitely generated i?F/-submodules of G. The following theorem
was proved by I. Kaplansky [4] for modules over commutative, complete
discrete valuation rings.

Theorem 2.12. Let M be an F-linearly compact module. Then M is
isomorphίc to M** as topological modules.

Proof. Let a be the canonical homomorphism from M into M** which is
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defined by a(m)(f)=f(m), where m<=M a n d / e M * .

(i) First we shall prove that a is a monomorphism. To prove this, we

assume that a(m)—0 and OφraeM. Then there exists an open submodule N

with JVφm. Let m=[m+N] in M/N. Then O(m)<=F by Lemma 2.1. So we

can define a homomorphism/: inR->KF with /(m)Φθ. This map can be ex-

tended to a homomorphism g from M/Λ/̂  into iΓF. Let h: M-^MjN be the

natural homomorphism. Then g h<^M* and (g./*)(ra)φθ. This implies that

α(/w)Φθ, a contradiction, and so a is a monomorphism.

(ii) Secondly, we shall prove that a is an epimorphism. Let x be any

element of M**. Then, for every/eJlί*, there exists an element mf^M such

that (f)χ=f(mf) by Lemma 2.11. We consider the congruences

( 1) ^ m / K e r / ) .

Again, by Lemma 2.11, any finite number of congruences (1) have a solution.

Further Ker / is open and so it is closed. By JP-linearly compactness of M, there

exists a solution tn^M. Hence (f)x=f(mf)=f(in) for every / G M * and so x=

a(m).

(iii) Finally we shall prove that a is a topological isomorphism. Let S be

any submodule neighborhood of zero in the finite topology. Then S=AnnM**(/1)

Π Π AnnM*#(/n), where /,.e M*. It is evident that S= Ker fλ (Ί Π Ker /„ in

M and so it is open in the orginal topology. Conversely, let N be any open

submodule in the orginal topology. Then M/N is F-torsion and artinian. So
β

M/N can be embedded in an exact sequence 0-+M/N -> ̂ n®KF with finite

copies of KF. Let π{: *ΣnQ)KF^KF be the projection (l^i^n) and let ^: M

->M/N be the natural map. Then we have iV= (Ί ?=iKer £,., where gi=πi θ 'n

e M * and so iV is open in the finite topology.

3. In case F is bounded.

A topology F is said to be bounded if, for every / G F , there is an nonzero

ideal A such that / 2 A When F is bounded, we shall determine, in this section,

the algebraic and topological structures of jP-linearly compact modules. Let P

be a prime ideal of R and let FP={I\I^Pn for some n> I is a right ideal of R}.

Then JPP is a bounded atom in the lattice of all topologies. FP-linearry compact

modules is called P-linearly compact. Write j?P=Km R/Pn. Then it is evident

that RFP=^P=RCFP^
 a s rings. It is well-known that RP is a prime, principal

ideal ring and that P=PR=RPP, where P is the unique maximal ideal of RP.

In this section, we shall use the following notations: QP—QFP\ KP=^KFp; R(Pn)

=eRPlePn; R(P»)=RPelPne;R(P~)=\im eRP\ePn\ R(P~) =\im RPe\Pne, where

e is a uniform idempotent in RP. First we shall study P-linearly compact mo-

dules.
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Lemma 3.1. Q®RP is the quotient ring of jRP.

Proof. From the exact sequence 0-»i?->J?P^i?P//?-^0, we get the exact
sequence: 0=Ύor(KPy RPIR)->KP^KP®RP^KP®$PIR=O, since RPjR is
P-divisible and has no P-primary submodules, and so KP^KP®RP. Hence we
have the exact sequence 0->RP^>Q®RP->KP^0. Thus Q®RP is an essential
extension of RP as a right /?P-module. Since Pn=PnήP=RPP

n and RP is
bounded, local, we obtain that Q®&P is divisible as an j&p-module. Hence
Q®RP is an i?P-injective hull of i?P. By Theorem of [2, p 69], it is the maximal
quotient ring of RP in the sense of [2] and so it is the quotient ring of RP.

For an J?P-module M, we let M*=Hom£p(M, KP).

Lemma 3.2. (i)
(ii) R(P~)*^RPe.
(iii) (eήPy<*R(P-),.
(iv) [e(Q®RP)]*^(Q®RP)e.
These modules are all P-lίnearly compact.

Proof, (i) is evident, (ii) JR(PTO)*-[limi?(Pn)]*^lim

(iii) R(P°°)ι is jFF-torsion and artinian. Hence it is P-linearly compact and
so Λ(Poo)/^[P(Poo)/]**=(lim P(PΛ)/)**^(lim R(Pn))*^(eRP)*.

(iv) From the exact sequence 0-^eήP-+e(Q®RP)^R(P°°)->0, we get the
exact sequence 0->ήPe->[e(Q®RP)]*^R(Poo)ι-^0 as left i?P-modules. Let / be
any element of [e(Q®RP)f. Assume that Pnf=0 for some n. Then Pnf(e(Q®
i?P))=0 implies that O=f(e(Q®RP))Pn=f(e(Q®RP)) and so / = 0 . Hence
[e(Q®RP))f is torsion-free as a left i?P-module. Thus [e(Q®&P)]* is an
essential extension of RPe. Hence we may assume that RPeξZ[e(Q®RP)]*Si
(Q®&P)e. From Lemma 3.2 of [6], we easily obtain that [e(Q®RP)]*=
{Q®RP)e.

By Lemma 2.1, R(Pn) and R(P°°) are P-linearly compact in the discrete
topology. By Lemma 2.4 and Corollary 2.9, eRP is P-linearly compact in the
P-adic topology. e(Q®RP) is a topological module by taking as neighborhoods
of zero the submodules {ePn\n—Oy ± 1 , ± 2 , •••}. Further the exact sequence
0^eRP->e(Q®RP)->R(Poo)->0 satisfies the assumption of Proposition 9 of [13]
and so e(Q®RP) is P-linearly compact in the above topology.

Lemma 3.3. Let 0->L-*M^N-^0 be an exact sequence of RP-modules.
If the sequence is Pω-pure in the sense of [7], then the exact sequence 0^ΛΓ*->M*^
L*-^0 is also Pω-pure.

Proof. Since RP is a principal ideal ring, the proof of the lemma is similar
to the one of Proposition 44.7 of [3] (see, also Lemma 1.1 of [7]).
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Theorem 3.4. (i) A module is P-linearly compact if and only if it is isomor-

phic y as topologίcal modules to a direct product of modules of the following types:

R(Pn), R(P°°), eRPi e{Q®RP)y where e is a uniform idempotents in RP and the

topologies of these modules are defined in the proof of Lemma 3.2.

(ii) A module M is P-linearly compact^ then M * is isomorphic to a direct sum

of modules of the following types: R(Pn)h R(P°°)ly &Pey (Q®ήP)ey where e is a

uniform idempotent in RP.

Proof, (i) Since each of these modules does admit a P-linearly compact
topology, the sufficiency is evident from Proposition 1 of [13]. Conversely, let
M be P-linearly compact. Then M* is a left j?p-module and RP is a complete
g-discrete valuation ring in the sense of [6] (cf. p. 432 of [6]). So M* possesses
a basic submodule B by Theorem 3.6 of [6]. Further any finitely generated
module and any injective module over a Dedekind prime ring are both a direct
sum of indecomposable modules. Hence, from the definition of basic submodules,
Corollary 4.4 of [6] and Lemma 3.1 we have ΰ = Σ « θ Σ θ P C P w ) / Θ Σ ! θ # p * a n d

M*/J3=Σθ#(P~)/θΣθ(£?®$p)e . By Theorem 1.5 of [7] and Lemmas 3.2,
3.3, the exact sequence 0->(M*/β)*-^M**-^JB*-^0 splits and so, from Theorem
2.12 and Lemma 3.2, we get:

( 1 ) M S ILIIR(PM)ΘΠ#(P°°)ΘIleRpθUe(Q®RP).

The right sided module is P-linearly compact and so, by Corollary 2.3, φ is an
isomorphism as topological modules.

Since the topology of the left sided of (1) is the product topology, (ii) follows
easily from Lemma 3.2.

From Theorem 1.5 of [7], Theorem 3.4 and definitions, we have the follow-
ing chain of implications

(Pn-pure injective) % ^
(Pω-ρure injective) ==> (P°°-ρure injective).

(P-linearly compact) ^r

Let F be a bounded topology and let M be F-linearly compact. Then we
know from Lemma 2.4 that M=lim M , where M£ is P-torsion and artinian.

By the same way as in Theorem 3.2 of [5], we have Mi=^φMiPy where MiP=
{x^Mi\xPn=0 for some n} and P ranges over all prime ideals contained in F.
Write Mp=lim MiP. Then MP is P-linearly compact and M is isomorphic

naturally to ΐ[MP as topological modules, where ΐlMP will carry the product
topology. It is evident that ^ F = Σ Θ - ^ F , where P ranges over all prime ideals
in F. Further we can easily prove that M * = Σ φ M $ a n d t n a t M**=J\Mp,
where M% consists of all continuous maps of MP into KP. Thus, from Theorem

3.4, we have
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Theorem 3.5. Let F be a bounded topology. Then

(i) A module is F-linearly compact if and only if it is isomorphic as topological

modules to a direct product of modules of the following types: R(Pn), R(P°°)y ePRPy

eP{Q®RP)y where P ranges over all prime ideals in F and eP is a uniform idempotent

in RP.

(ii) If M is F-linearly compact, then M* is isomorphic to a direct sum of

modules of the following types: R(Pn)ly R{P°°)h RPePy (Q®RP)eP.

Let F be any topology. A short exact sequence

(E): 0->L->M^iV->0

is said to be Fω-pure if MJ Π L=LJ for every J^F^ (E) is said to be F°°-pure
if the induced sequence 0—>LF-+MF^>NF-+0 is splitting exact. A module is
called Fω(F°°)-pure injectίve if it has the injective property relative to the class of
-Fω(jF°°)-pure exact sequences. The structure of i^-pure injective modules is
investigated in the forthcoming paper.

Lemma 3.6. Let F be a bounded topology. Then (E) is Fω-pure if and only
if (E) is P™-pure for every prime ideal

Proof. For any prime ideal P, it is clear that P^F if and only if
So the necessity is evident. Conversely assume that (E) is Pω-pure for
Let J be any element of Fr Then there is a nonzero ideal A with JSA. Write
i4=p;i . . p ; , where Pf. are prime ideals. Then P^F and XjXA^XjXP^®

for every module X. Hence by Lemma 1.1 of [7] the sequence
IMA-*N/NA^0 is splitting exact. Hence MJf]L=LJ and so

(E) is i^-pure.
From the same ways as (1.2), (1.4), (1.5) of [7] and Lemma 3.6 we have

Proposition 3.7. Let F be a bounded topology. Then a module G is Fω-pure
injective if and only if it is isomorphic to the module E(GFω)φJ[P6Py where P
ranges over all prime ideals in Fy GFω= Π GJ{J^Ft) and 6P=\im G/GPn.

Let F be a bounded topology. Then from Theorem 3.5, Proposition 3.7
and definitions, we get the following chain of implications

(F-linarly compact) =#> (.Fω-ρure injective) =Φ (ί^-pure injective).
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