<table>
<thead>
<tr>
<th>Title</th>
<th>Modules over Dedekind prime rings. III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Marubayashi, Hidetoshi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 11(3) P.547–P.558</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1974</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/3499</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/3499</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
Let R be a Dedekind prime ring with the quotient ring Q. Let F be any right additive topology (cf. [11]). Then R is a topological ring with elements of F as the neighborhoods of zero. Let M be a topological right R-module with submodule neighborhoods of zero. M is called F-linearly compact if

(a) it is Hausdorff,

(b) if every finite subset of the set of congruences $x \equiv m_a \pmod{N_a}$, where N_a are closed submodules of M, has a solution in M, then the entire set of the congruences has a solution in M.

The purpose of this paper is to study the algebraic and topological properties of F-linearly compact modules.

After discussing some properties on R which need in this paper, we show, in Section 2, that the Kaplansky’s duality theorem holds for F-linearly compact modules (Theorem 2.12). By using the duality theorem we determine, in Section 3, the algebraic and topological structures of F-linearly compact modules when F is bounded. Moreover we define the concepts of F^ω-pure injective and F^ω-pure injective modules, and investigate the relations of between these concepts and F-linearly compact modules.

I wish to express my appreciation to the referee for his adequate advice.

1. Topologies on Dedekind prime rings

Throughout this paper, R will denote a Dedekind prime ring which is not artinian, and Q will denote the quotient ring of R. We will denote the (R, R)-bimodule Q/R by K. A subring of Q containing R is called an overring of R. For any essential right ideal I, the left order of I is defined by $0_I(I) = \{q \in Q | qI \subseteq I\}$. We define the inverse of I to be $I^{-1} = \{q \in Q | IqI \subseteq I\}$. Then we obtain $II^{-1} = 0_I(I)$ and $I^{-1} I = R$. Let I be a right ideal of R. By Theorem 1.3 of [1], R/I is an artinian R-module if and only if I is an essential right ideal of R. For any right ideal I and any element a of R, we define $a^{-1} I = \{r \in R | ar \in I\}$. Let M be a (right R-) module. M is said to be torsion if, for every $m \in M$, $mI = 0$ for some essential right ideal I. We say that M is divisible if $M/J = M$ for every essential left ideal J of R. Let F be any (right additive) topology (cf. [11]). We
say that \(m \in M \) is an \(F \)-torsion element if \(O(m) = \{ r \in R \mid mr = 0 \} \subseteq F \), and denote the submodule of \(F \)-torsion elements by \(M_F \). If \(M_F = 0 \), then we say that \(M \) is \(F \)-torsion-free. A topology \(F \) is trivial if all modules are \(F \)-torsion or \(F \)-torsion-free. If \(F = \{ R \} \), then it is clear that all modules are \(F \)-torsion-free. Assume that \(F \) contains a non essential right ideal \(I \) of \(R \), then \(F \)-torsion module \(R/I \) is a direct sum of a torsion module and a non-zero projective module \(C \) by Theorem 2.1 of [1]. By Theorem 2.4 of [1], a finite copies of \(C \) contains \(R \) as right modules and so \(R \) is \(F \)-torsion. Hence all modules are \(F \)-torsion. So if \(F \) is a non-trivial topology, then \(F \) consists of essential right ideals. Conversely a topology \(F \) consists of essential right ideals, then it is non-trivial, because \(R \) is \(F \)-torsion-free and \(R/I \) is \(F \)-torsion (\(I \in F \)).

From now on, \(F \) will denote a non-trivial topology. We define \(Q_F = \lim_{\longrightarrow} I^{-1} \), where \(I \) ranges over all elements of \(F \). Clearly \(Q_F \) is an overring of \(R \).

Proposition 1.1

(i) The mapping \(F \to Q_F \) is one-to-one correspondence between all non-trivial topologies and all overrings of \(R \) properly containing \(R \).

(ii) A module \(M \) is \(F \)-torsion if and only if \(M \otimes Q_F = 0 \).

(iii) For any module \(M \), \(M_F = \text{Tor}(M, Q_F/R) \).

Proof. By Corollary 13.4 of [11], \(F \) is perfect. Hence (ii) and (iii) follow from Exercise 2 of [11, p. 81].

(i) Let \(Q_o \) be an overring of \(R \) properly containing \(R \). Then it is well known that \(Q_o \) is \(R \)-flat and that the inclusion map: \(R \to Q_o \) is an epimorphism (cf. [11, p. 75]). Hence, by Theorem 13.10 of [11], \(F_o = \{ I \mid Q_o \otimes Q_o = Q_o, I \text{ is a right ideal} \} \) is a topology. Since \(Q_o \otimes Q_o \simeq Q_o \) and \(Q_o \) is \(R \)-flat, we have \(Q_o \otimes R \otimes Q_o = 0 \). Hence \(0 \neq Q_o/R \) is \(F_o \)-torsion. It is evident that \(R \) is not \(F_o \)-torsion. Hence \(F_o \) is non-trivial. Thus (i) follows from Theorem 13.10 of [11].

Let \(\{ S_\alpha \mid \alpha \in \Lambda \} \) be the representative class of simple modules which are non-isomorphic mutually. For any subset \(\Gamma \) of \(\Lambda \), we denote the set of essential right ideals \(I \) such that any composition factor of the module \(R/I \) is isomorphic to \(S_\gamma \) for some \(\gamma \in \Gamma \) by \(F(\Gamma) \).

Proposition 1.2. A non-empty family of right ideals of \(R \) is a non-trivial topology if and only if it is of the form \(F(\Gamma) \) for some subset \(\Gamma \) of \(\Lambda \).

Proof. First we shall prove that \(F(\Gamma) \) is a non-trivial topology. (i) If \(I \in F(\Gamma) \) and \(a \in R \), then \(a^{-1} I \in F(\Gamma) \), because \(R/a^{-1}I \simeq (aR+I)/I \). (ii) Let \(I \) be a right ideal of \(R \). Assume that there exists \(J \in F(\Gamma) \) such that \(a^{-1} I \subseteq F(\Gamma) \) for every \(a \in J \). Again, since \(R/a^{-1}I \simeq (aR+I)/I \) for every \(a \in J \), we obtain that \((I+J)/I \) is a torsion module. Hence \(R/I \) is also torsion and so \(I \) is an essential right ideal. By Theorem 3.3 of [1], \(I+J = aR+I \) for some \(a \in J \), and thus \(R/a^{-1}I \simeq (I+J)/I \). Therefore \(I \in F(\Gamma) \). Thus \(F(\Gamma) \) is a topology. Since \(F(\Gamma) \)
consists of essential right ideals, it is non-trivial. Conversely let F be any topology and let $\Gamma = \{ \gamma \in \Lambda | S_\gamma \simeq R/I \text{ for some } I \in F \}$. From Lemma 3.1 of [11], we have $\Gamma \neq \phi$. We shall prove that $F = F(\Gamma)$. For an essential right ideal I of R, $I \in F$ if and only if $R/I \otimes Q_F = 0$ by Proposition 1.1 and so $F \supseteq F(\Gamma)$. Assume that $F \supseteq F(\Gamma)$. Then there is $I \in F$ such that some composition factor of R/I is isomorphic to S_α for some $\alpha \in \Lambda - \Gamma$. So there are right ideals $J_1 \supseteq J_2 \supseteq I$ such that $J_1/J_2 \simeq S_\alpha$. Take $a \in J_1$ with $a \notin J_2$. Then we get: $R/a^{-1}J_2 \simeq J_1/J_2 \simeq S_\alpha$. Hence, since $a^{-1}J_2 \in F$, we have $\alpha \in \Gamma$, which is a contradiction.

Corollary 1.3. The lattice of all overrings of R is a Boolean lattice.

The family F_Γ of left ideals J of R such that $Q_\Gamma J = Q_\Gamma$ is a left additive topology. We call it the *left additive topology corresponding to F*. F_Γ is also non-trivial by Proposition 1.1. Thus F_Γ consists of essential left ideals of R. We put $Q_\Gamma = \varprojlim(J \in F_\Gamma)$. A module M is said to be F_Γ-divisible if $MJ = M$ for every $J \subseteq F_\Gamma$. In a similar way, we define the concepts of F_Γ-torsion and F-divisible for any left module.

Proposition 1.4.

(i) $Q_\Gamma = Q_\Gamma$ and so Q_Γ is (F, F_Γ)-divisible.

(ii) $K = K_\Gamma = Q_\Gamma/R$, where $K = Q/R$. Thus K_Γ is also (F, F_Γ)-divisible.

(iii) Let I be an essential right ideal of R. Then $I \in F$ if and only if I^{-1}/R is F_Γ-torsion.

Proof. (i) follows from Proposition 1.1 of [10] and the definitions. (ii) is clear.

(iii) Since Q_Γ is flat as R-modules, the sequence $0 \longrightarrow Q_\Gamma \longrightarrow Q_\Gamma \otimes I^{-1} \longrightarrow Q_\Gamma \otimes I^{-1}/R \longrightarrow 0$ is exact. Further, since $Q_\Gamma \otimes Q_\Gamma \approx Q_\Gamma$, we obtain that $I \in F$ if and only if $Q_\Gamma \otimes I^{-1}/R = 0$. So $I \in F$ if and only if I^{-1}/R is F_Γ-torsion.

2. **Duality theorem for F-linearly compact modules**

Let F be any non-trivial topology. We define $\hat{R}_F = \varprojlim R/I (I \in F)$ and $\hat{R}_\Gamma = \varprojlim R/J (J \in F_\Gamma)$. It is easy to see that both \hat{R}_F and \hat{R}_Γ are rings containing R (cf. §4 of [10]). Let M be an F-torsion module. Then M is an \hat{R}_F-module as follows: For $m \in M$, $\hat{r} = (r + I) \in \hat{R}_F$, we define $mr = mr_\Gamma$, where $J \subseteq O(m)$. Similarly, an F_Γ-torsion left module is an \hat{R}_Γ-module.

Lemma 2.1. A module is F-linearly compact in the discrete topology if and only if it is F-torsion and artinian.

Proof. The sufficiency follows from Proposition 5 of [13]. Conversely assume that M is F-linearly compact in the discrete topology. Take $m \in M$. Then, by the continuity of multiplication, there exists $I \in F$ such that $mI = 0$.

Thus M is F-torsion. By Lemma 2.3 of [9], M is finite dimensional in the sense of Goldie. So the socle $S(M)$ of M is finitely generated and M is an essential extension of $S(M)$. Let N be any submodule of M. Then, since N is an open and closed submodule, $\bar{M}=M/N$ is also F-linearly compact in the discrete topology by Proposition 2 of [13]. Thus the socle $S(\bar{M})$ of \bar{M} is also finitely generated and \bar{M} is an essential extension of $S(\bar{M})$. This implies that M is an artinian module by Proposition 2* of [12].

Corollary 2.2. Let M be F-linearly compact and let N be a submodule. Then N is a neighborhood of zero if and only if M/N is F-torsion and artinian.

Proof. If N is a neighborhood of zero, then M/N is F-linearly compact in the discrete topology. So the necessity follows from Lemma 2.1. Conversely, assume that M/N is F-torsion and artinian. Let $\{M_\alpha\}$ be the set of submodule neighborhoods of zero. Since the topology is Hausdorff, $\cap M_\alpha=\emptyset$, and so $\cap \bar{M}_\alpha=\emptyset$ in $\bar{M}=M/N$. Therefore there are finite submodules M_α, \ldots, M_β such that $\cap \cap_{i=1}^\beta M_\alpha=\emptyset$, i.e., $\cap \cap_{i=1}^\beta M_\alpha\subseteq N$. Thus N is open.

Corollary 2.3. If a module is F-linearly compact in two topologies, then these topologies coincide.

Lemma 2.4. A module is F-linearly compact if and only if it is an inverse limit of F-torsion and artinian modules.

Proof. The sufficiency follows from Proposition 4 of [13] and Lemma 2.1. To prove the necessity let $\{N_\alpha\}$ be the set of submodule neighborhoods of zero. Then the modules M/N_α with the natural maps: $[m+N_\alpha] \rightarrow [m+N_\beta]$, where $N_\alpha\subseteq N_\beta$, form an inverse system. Write $\hat{M}=\lim M/N_\alpha$. Then it is a topological module; each M/N_α has the discrete topology and the product topology on $\prod M/N_\alpha$ induces a subspace topology on \hat{M}. Since $\cap N_\alpha=0$, the canonical map $f: M \rightarrow \hat{M}$ is a monomorphism. It is easy to see that f is a topological isomorphism from M onto $f(M)$ and that $f(M)$ is dense in \hat{M}. On the other hand, M is complete by Proposition 8 of [13] and so $f(M)=\hat{M}$. Further M/N_α is F-torsion and artinian by Corollary 2.2.

Following [11], a module D is F-injective if $\text{Ext}(R/I, D)=0$ for every $I \in F$. By Proposition 6.2 of [11], D is F-injective if and only if $\text{Ext}(T, D)=0$ for every F-torsion T. Further, since every F-torsion module T can be embedded in an exact sequence $0 \rightarrow T \rightarrow \sum \oplus K_F$ with sufficiently many copies of K_F, D is F-injective if and only if $\text{Ext}(K_F, D)=0$. For any module M, we denote the injective hull of M by $E(M)$ and denote the F-injective hull of it by $E_F(M)$ (cf. [11]).

Lemma 2.5. (i) A module is F-injective if and only if it is F_F-divisible.
(ii) Let M be a module with $M_F = 0$. Then $E_F(M) = M \otimes Q_F$.

Proof. (i) Assume that D is F-injective. Let $J \subseteq F$. Then J^{-1}/R is F-torsion by Proposition 1.4 and so the necessity follows from Proposition 3.2 of [10]. Conversely assume that D is F_I-divisible. Let I be any element of F. Then $I^{-1}/R = \sum_{i=1}^n \oplus R/J_i$ for $J_i \in F_I$. By Proposition 3.3 of [10], we have $R/I \cong \text{Hom}(I^{-1}/R, K_F) \cong \sum_{i=1}^n \oplus \text{Hom}(R/J_i, K_F) \cong \sum_{i=1}^n \oplus J_i^{-1}/R$, and so $\text{Ext}(R/I, D) \cong \sum_{i=1}^n \oplus \text{Ext}(J_i^{-1}/R, D) \cong \sum_{i=1}^n \oplus D/J_i = 0$. Therefore D is F-injective.

(ii) By Proposition 1.1, $M_F = \text{Tor}(M, K_F)$. Hence from the exact sequence $0 \rightarrow R \rightarrow Q_F \rightarrow K_F \rightarrow 0$ we get an exact sequence $0 \rightarrow M \rightarrow M \otimes Q_F \rightarrow M \otimes K_F \rightarrow 0$.

By Proposition 1.4 and (i), $M \otimes Q_F$ is F-injective and so $M \otimes Q_F = E_F(M)$.

Corollary 2.6. Let M be a module. Then $M \otimes Q_F$ and $M \otimes K_F$ are both F-injective.

For a module M, we define $\hat{M}_{F_i} = \lim M/MJ (J \in F_I)$. \hat{M}_{F_i} is an \hat{R}_{F_i}-module (cf. §4 of [10]). Similarly, for a left module N, we can define a left \hat{R}_F-module \hat{N}_F.

Lemma 2.7. Let M be a module with $M_F = 0$. Then there are commutative diagrams:

$$
\begin{array}{ccc}
\hat{M}_{F_i} & \approx & \text{Hom}(K_F, M) \\
\uparrow & & \uparrow \alpha \\
M & = & M \\
\end{array}
$$

$$
\begin{array}{ccc}
M & = & M \\
\downarrow \beta \\
\hat{M}_{F_i} & \approx & \text{Ext}(K_F, M) \\
\end{array}
$$

where $\alpha(m)(q) = m \otimes q$ ($m \in M$, $q \in K_F$) and β is the connecting homomorphism.

Proof. From the exact sequence $0 \rightarrow R \rightarrow Q_F \rightarrow K_F \rightarrow 0$, we get an exact sequence:

$$
0 = \text{Tor}(M, K_F) \rightarrow M \rightarrow M \otimes Q_F \rightarrow M \otimes K_F \rightarrow 0.
$$

Hence the assertion of the first diagram follows from the similar way as in Theorem 4.4 of [10]. Applying $\text{Hom}(K_F, _)$ to the sequence (1), we obtain the exact sequence:

$$
\text{Hom}(K_F, M \otimes Q_F) \rightarrow \text{Hom}(K_F, M \otimes K_F) \rightarrow \text{Ext}(K_F, M) \rightarrow \text{Ext}(K_F, M \otimes Q_F).
$$

The first and last terms are zero, because $M \otimes Q_F$ is F-torsion-free and F-injective. Hence $\text{Hom}(K_F, M \otimes K_F) \approx \text{Ext}(K_F, M)$. We consider the following commutative diagram with exact rows and columns:

$$
\begin{array}{ccc}
0 & \rightarrow & 0 \\
\downarrow & & \downarrow \\
0 & \rightarrow & M \rightarrow M \otimes Q_F \rightarrow M \otimes K_F \rightarrow 0 \\
\downarrow & & \downarrow \\
0 & \rightarrow & E(M) \rightarrow E(M)/M \rightarrow 0.
\end{array}
$$
If \([x+M]I=0\), where \(x\in E(M)\) and \(I\in F\), then \(xI\subseteq M\) and so \(x\in M\otimes Q_F\) by Proposition 6.3 of [11] and Lemma 2.5. Hence \([x+M]\in M\otimes K_F\). This implies that \((E(M)/M)_{\infty}=M\otimes K_F\). It is evident that \(E(M)_{\infty}=0\). Thus we have \(\text{Ext}(K_F, M)\cong \text{Hom}(K_F, E(M)/M)\cong \text{Hom}(K_F, M\otimes K_F)\). Now it is easy to see that \(\alpha=\beta\).

Corollary 2.8. (i) \(\hat{R}_F/R\) is \(F\)-divisible.

(ii) \(R/I\cong \hat{R}_F/I\hat{R}_F\) for every \(I\in F\).

Proof. (i) Applying Lemma 2.7 to the left module \(R\), we get an isomorphism: \(\hat{R}_F/R\cong \text{Ext}(Q_F, R)\). Since \(\text{Ext}(Q_F, R)\) is a left \(Q_F\)-module, it is \(F\)-divisible and so \(\hat{R}_F/R\) is also \(F\)-divisible.

(ii) It is evident that \(I\hat{R}_F\cap R=I\). Hence (ii) follows from (i).

By Lemma 2.4, \(\hat{R}_F\) is an \(F\)-linearly compact module in the topology which is defined by taking as a subbase of neighborhoods of zero the set \(\{\pi^{-1}(0)\cap \hat{R}_F\mid I\in F\}\), where \(\pi_I: \prod R/I\rightarrow R/I\) is the projection. Further we have

Corollary 2.9. (i) \(\pi^{-1}(0)\cap \hat{R}_F=I\hat{R}_F\) for every \(I\in F\).

(ii) \(\hat{R}_F\) is a complete topological ring in the topology which has the set \(\{I\hat{R}_F\mid I\in F\}\) as neighborhoods of zero.

Proof. (i) Clearly \(\pi^{-1}(0)\cap \hat{R}_F\supseteq I\hat{R}_F\). By Corollary 2.8, there exists a right ideal \(J\supseteq I\) such that \(J/I\cong [\pi^{-1}(0)\cap \hat{R}_F]/I\hat{R}_F\), i.e., \(\pi^{-1}(0)\cap \hat{R}_F=I\hat{R}_F+J=J\hat{R}_F\), because \(\pi^{-1}(0)\cap \hat{R}_F\) is an \(\hat{R}_F\)-module. From this fact we easily obtain that \(J=I\) and so \(\pi^{-1}(0)\cap \hat{R}_F=I\hat{R}_F\).

(ii) For any \(\hat{x}\in \hat{R}_F\), we define \(\hat{x}^{-1}(I\hat{R}_F)\equiv \{\hat{v}\in \hat{R}_F\mid \hat{x}\hat{v}\in I\hat{R}_F\}\), where \(I\in F\).

Then we have the natural isomorphisms \(\hat{R}_F/\hat{x}^{-1}(I\hat{R}_F)\cong (\hat{x}\hat{R}_F+I\hat{R}_F)/I\hat{R}_F\cong J/I\) for some \(J\supseteq I\). Define \(\varphi_0[1+\hat{x}^{-1}(I\hat{R}_F)]=a+I\) \((a\in J)\). Then \(J=aR+I\) and so \(J/I\cong R/a^{-1}I\), where \(\gamma([a+I])=[1+a^{-1}I]\). Therefore we get the natural isomorphisms \(\hat{R}_F/\hat{x}^{-1}(I\hat{R}_F)\cong R/a^{-1}I\cong \hat{R}_F/(a^{-1}I)\hat{R}_F\). Thus we have \((a^{-1}I)\hat{R}_F=\hat{x}^{-1}(I\hat{R}_F)\). This implies that \(\hat{R}_F\) is a topological ring. The completeness of \(\hat{R}_F\) follows from Proposition 8 of [13].

Let \(\hat{F}=\{I\hat{R}_F\mid I\in F\}\). For any \(\hat{R}_F\)-module, we can define the concept of \(\hat{F}\)-linearly compact modules.

Proposition 2.10. A module is \(F\)-linearly compact if and only if it is an \(\hat{R}_F\)-module and is \(\hat{F}\)-linearly compact.

Proof. Assume that \(M\) is \(F\)-linearly compact. By Lemma 2.4, \(M\) is an \(\hat{R}_F\)-module. Let \(N\) be a closed submodule of \(M\). Then \(N\) is \(F\)-linearly compact by Proposition 3 of [13], and so it is an \(\hat{R}_F\)-submodule. Hence it is enough to
prove that M is a topological \hat{R}_F-module. Take $m \in M, \hat{r} \in \hat{R}_F$. Then we define $m^{-1}N=\{s \in \hat{R}_F | ms \in N\}$ for any submodule neighborhood N of zero. Since M/N is F-torsion, we have $m^{-1}N \in \hat{F}$. Further we have $(m+N)(\hat{r}+m^{-1}N) \subseteq m\hat{r}$ + N and so M is a topological \hat{R}_F-module. Conversely assume that M is F-linearly compact as an \hat{R}_F-module. Let $\{N_\alpha\}$ be the set of submodule neighborhoods of zero. Then, by a similar way as in Lemmas 2.1, 2.4 and Corollaries 2.2, 2.8, we have $M=\lim\cdots M/N_\alpha$ and M/N_α is F-torsion and artinian. Thus M is F-linearly compact.

Let M be F-linearly compact. M^* will mean the module of all continuous homomorphisms from M into K_F, where K_F has been awarded the discrete topology. It is evident that an element $f \in \text{Hom}(M, K_F)$ is continuous if and only if $\text{Ker} f$ is open.

Lemma 2.11. Let M be F-linearly compact. Then

(i) M^* is an \hat{R}_F-module.

(ii) Let N^* be a finitely generated left \hat{R}_F-submodule of M^* and let $g \in \text{Hom}_{\hat{R}_F}(M^*, K_F)$. Then there exists an element $m \in M$ such that $(f)g=f(m)$ for every $f \in N^*$.

Proof. (i) For $f \in M^*$ and $\hat{r} \in \hat{R}_F$, we have $\text{Ker}(\hat{r}f) \supseteq \text{Ker} f$ and so $\hat{r}f \in M^*$.

We shall prove (ii) by Muller's method (cf. Lemma 1 of [8]). Write $N^*=\hat{R}_F f_1 + \cdots + \hat{R}_F f_n$, where $f_i \in N^*$, and let $W=\{(f_1(m), \ldots, f_n(m)) | m \in M\} \subseteq \sum^n \oplus K_F$. Assume that $x=((f_1)g, \ldots, (f_n)g) \in W$. Then $O(x)=\{r \in F | \bar{r}r=0\} \subseteq F$, where $x=[x+W]$ in $\sum \oplus K_F/W$. Hence there exists a map $\theta: xR \rightarrow K_F$ with $\theta(x) \neq 0$. Since K_F is F-injective, the map θ is extended to the map $\theta': \sum \oplus K_F \rightarrow K_F$. Hence there exists a map $\varphi: \sum^n \oplus K_F \rightarrow K_F$ with $\varphi(x) \neq 0$. From Lemma 2.7 we have $\text{Hom}(\sum \oplus K_F, K_F)=\sum \oplus \hat{R}_F$ and so $\varphi=(\hat{r}_1, \ldots, \hat{r}_n)$ for some $\hat{r}_i \in \hat{R}_F$. Thus we get: $0 \neq \varphi(x)=\sum^n_{i=1} \hat{r}_i [(f_i)g]=\sum^n_{i=1} \hat{r}_i f_i g$ and so $\sum^n_{i=1} \hat{r}_i f_i g \neq 0$. On the other hand, $0=\varphi(w)=\sum^n_{i=1} \hat{r}_i f_i (m)$ for every $w=(f_1(m), \ldots, f_n(m))$, where $m \in M$. Hence $\sum^n_{i=1} \hat{r}_i f_i =0$, a contradiction.

Let G be a left \hat{R}_F-module. We denote the right module $\text{Hom}_{\hat{R}_F}(G, K_F)$ by G^*, and define its finite topology by taking the submodules $\text{Ann}_{\hat{R}_F}(N)=\{f \in G^* | (N)f=0\}$ as a fundamental system of neighborhoods of zero, where N ranges over all finitely generated \hat{R}_F-submodules of G. The following theorem was proved by I. Kaplansky [4] for modules over commutative, complete discrete valuation rings.

Theorem 2.12. Let M be an F-linearly compact module. Then M is isomorphic to M^{**} as topological modules.

Proof. Let α be the canonical homomorphism from M into M^{**} which is

defined by $\alpha(m)(f)=f(m)$, where $m \in M$ and $f \in M^*$.

(i) First we shall prove that α is a monomorphism. To prove this, we assume that $\alpha(m)=0$ and $0 \neq m \in M$. Then there exists an open submodule N with $N \ni m$. Let $\bar{m}=[m+N]$ in M/N. Then $O(\bar{m}) \in F$ by Lemma 2.1. So we can define a homomorphism $f: \bar{m}R \rightarrow K_F$ with $f(\bar{m})=0$. This map can be extended to a homomorphism g from M/N into K_F. Let $h: M \rightarrow M/N$ be the natural homomorphism. Then $g \cdot h \in M^*$ and $(g \cdot h)(m)=0$. This implies that $\alpha(m)=0$, a contradiction, and so α is a monomorphism.

(ii) Secondly, we shall prove that α is an epimorphism. Let x be any element of M^*. Then, for every $f \in M^*$, there exists an element $m_f \in M$ such that $(f)x=f(m_f)$ by Lemma 2.11. We consider the congruences

$$x \equiv m_f (\ker f).$$

Again, by Lemma 2.11, any finite number of congruences (1) have a solution. Further $\ker f$ is open and so it is closed. By F-linearly compactness of M, there exists a solution $m \in M$. Hence $(f)x=f(m_f)=f(m)$ for every $f \in M^*$ and so $x=\alpha(m)$.

(iii) Finally we shall prove that α is a topological isomorphism. Let S be any submodule neighborhood of zero in the finite topology. Then $S=\Ann_{M^*}(f)$ and $S \subseteq \ker f$, where $f \in M^*$. It is evident that $S=\ker f \cap \cdots \cap \ker f_n$ is open in M and so it is open in the original topology. Conversely, let N be any open submodule in the original topology. Then M/N is F-torsion and artinian. So M/N can be embedded in an exact sequence $0 \rightarrow M/N \rightarrow \sum_i \oplus K_F$ with finite copies of K_F. Let $\pi_i: \sum_i \oplus K_F \rightarrow K_F$ be the projection $(1 \leq i \leq n)$ and let $\eta: M \rightarrow M/N$ be the natural map. Then we have $N=\cap_i \ker g_i$, where $g_i=\pi_i \cdot \eta \in M^*$ and so N is open in the finite topology.

3. In case F is bounded.

A topology F is said to be bounded if, for every $I \subseteq F$, there is a nonzero ideal A such that $I \subseteq A$. When F is bounded, we shall determine, in this section, the algebraic and topological structures of F-linearly compact modules. Let P be a prime ideal of R and let $F_P=\{I|I \supseteq P^n\}$ for some n, I is a right ideal of R. Then F_P is a bounded atom in the lattice of all topologies. F-linearly compact modules is called P-linearly compact. Write $\hat{R}_P=\lim R/P^n$. Then it is evident that $\hat{R}_P,F_P=\hat{R}_P=\hat{R}_{(F_P)}$, as rings. It is well-known that \hat{R}_P is a prime, principal ideal ring and that $\hat{P}=P\hat{R}=\hat{R}_P P$, where \hat{P} is the unique maximal ideal of \hat{R}_P. In this section, we shall use the following notations: $Q_P=Q_{F_P}$; $K_P=K_{F_P}$; $R(P^n)=e\hat{R}_P/e\hat{P}^n$; $R(P^n)=e\hat{R}_P/e\hat{P}^n$; $R(P^n)=\lim e\hat{R}_P/e\hat{P}^n$, where e is a uniform idempotent in \hat{R}_P. First we shall study P-linearly compact modules.
Lemma 3.1. $Q \otimes \hat{R}_p$ is the quotient ring of \hat{R}_p.

Proof. From the exact sequence $0 \to R \to \hat{R}_p \to \hat{R}_p/R \to 0$, we get the exact sequence: $0 = \text{Tor}(K_p, \hat{R}_p/R) \to K_p \to K_p \otimes \hat{R}_p \to K_p \otimes \hat{R}_p/R \to 0$, since \hat{R}_p/R is P-divisible and has no P-primary submodules, and so $K_p \simeq K_p \otimes \hat{R}_p$. Hence we have the exact sequence $0 \to \hat{R}_p \to Q \otimes \hat{R}_p \to K_p \to 0$. Thus $Q \otimes \hat{R}_p$ is an essential extension of \hat{R}_p as a right \hat{R}_p-module. Since $\hat{R}_p^n = \hat{R}_p^n \hat{R}_p = R^n$ and \hat{R}_p is bounded, local, we obtain that $Q \otimes \hat{R}_p$ is divisible as an \hat{R}_p-module. Hence $Q \otimes \hat{R}_p$ is an \hat{R}_p-injective hull of \hat{R}_p. By Theorem of [2, p 69], it is the maximal quotient ring of \hat{R}_p in the sense of [2] and so it is the quotient ring of \hat{R}_p.

For an \hat{R}_p-module M, we let $M^t = \text{Hom}_{\hat{R}_p}(M, K_p)$.

Lemma 3.2. (i) $R(P^n)^t \simeq R(P^n)^l$.
(ii) $R(P^n)^t \simeq R(P^n)^e$.
(iii) $(e\hat{R}_p)^t \simeq R(P^n)^l$.
(iv) $[e(Q \otimes \hat{R}_p)]^t \simeq (Q \otimes \hat{R}_p)^e$.

These modules are all P-linearly compact.

Proof. (i) is evident. (ii) $R(P^n)^t = \lim R(P^n)^t \simeq \lim R(P^n)^l \simeq \hat{R}_p e$.

(iii) $R(P^n)_l$ is F_p-torsion and artinian. Hence it is P-linearly compact and so $R(P^n)_l \simeq [R(P^n)_l]^t \simeq \lim R(P^n)_l^t \simeq \lim R(P^n)^t \simeq (e\hat{R}_p)^t$.

(iv) From the exact sequence $0 \to e\hat{R}_p \to e(Q \otimes \hat{R}_p) \to R(P^n) \to 0$, we get the exact sequence $0 \to \hat{R}_p e \to [e(Q \otimes \hat{R}_p)]^t \to R(P^n)^l \to 0$ as left \hat{R}_p-modules. Let f be any element of $[e(Q \otimes \hat{R}_p)]^t$. Assume that $P^nf = 0$ for some n. Then $P^nf(e(Q \otimes \hat{R}_p)) = 0$ implies that $0 \simeq f(e(Q \otimes \hat{R}_p)) = f(e(Q \otimes \hat{R}_p)) = 0$. Hence $[e(Q \otimes \hat{R}_p)]^t$ is torsion-free as a left \hat{R}_p-module. Thus $[e(Q \otimes \hat{R}_p)]^t$ is an essential extension of $\hat{R}_p e$. Hence we may assume that $\hat{R}_p e \subseteq [e(Q \otimes \hat{R}_p)]^t \subseteq (Q \otimes \hat{R}_p)^e$. From Lemma 3.2 of [6], we easily obtain that $[e(Q \otimes \hat{R}_p)]^t = (Q \otimes \hat{R}_p)^e$.

By Lemma 2.1, $R(P^n)$ and $R(P^n)$ are P-linearly compact in the discrete topology. By Lemma 2.4 and Corollary 2.9, $e\hat{R}_p$ is P-linearly compact in the P-adic topology. $e(Q \otimes \hat{R}_p)$ is a topological module by taking as neighborhoods of zero the submodules $\{e\hat{P}^n | n = 0, \pm 1, \pm 2, \cdots \}$. Further the exact sequence $0 \to e\hat{R}_p \to e(Q \otimes \hat{R}_p) \to R(P^n) \to 0$ satisfies the assumption of Proposition 9 of [13] and so $e(Q \otimes \hat{R}_p)$ is P-linearly compact in the above topology.

Lemma 3.3. Let $0 \to L \to M \to N \to 0$ be an exact sequence of \hat{R}_p-modules. If the sequence is P^u-pure in the sense of [7], then the exact sequence $0 \to N^t \to M^t \to L^t \to 0$ is also P^u-pure.

Proof. Since \hat{R}_p is a principal ideal ring, the proof of the lemma is similar to the one of Proposition 4.1 of [3] (see, also Lemma 1.1 of [7]).
Theorem 3.4. (i) A module is P-linearly compact if and only if it is isomorphic, as topological modules to a direct product of modules of the following types: $R(P^n)$, $R(P^\omega)$, $e\hat{R}_P$, $e(Q\otimes\hat{R}_P)$, where e is a uniform idempotents in \hat{R}_P and the topologies of these modules are defined in the proof of Lemma 3.2.

(ii) A module M is P-linearly compact, then M^* is isomorphic to a direct sum of modules of the following types: $R(P^n)$, $R(P^\omega)$, \hat{R}_Pe, $(Q\otimes\hat{R}_Pe)$. where e is a uniform idempotent in \hat{R}_P.

Proof. (i) Since each of these modules does admit a P-linearly compact topology, the sufficiency is evident from Proposition 1 of [13]. Conversely, let M be P-linearly compact. Then M^* is a left \hat{R}_P-module and \hat{R}_P is a complete g-discrete valuation ring in the sense of [6] (cf. p. 432 of [6]). So M^* possesses a basic submodule B by Theorem 3.6 of [6]. Further any finitely generated module and any injective module over a Dedekind prime ring are both a direct sum of indecomposable modules. Hence, from the definition of basic submodules, Corollary 4.4 of [6] and Lemma 3.1 we have $B=\sum_i\bigoplus R(P^n)i\bigoplus \hat{R}_Pe$ and $M^*B=\sum_iR(P^n)i\bigoplus (Q\otimes\hat{R}_Pe)$. By Theorem 1.5 of [7] and Lemmas 3.2, 3.3, the exact sequence $0\rightarrow (M^*/B)^*\rightarrow M^*/B^*\rightarrow 0$ splits and so, from Theorem 2.12 and Lemma 3.2, we get:

$$M \cong \prod_i R(P^n)\bigoplus \prod_i R(P^\omega) \bigoplus \prod_i \hat{R}_P \bigoplus \prod_i (Q\otimes\hat{R}_P).$$

The right sided module is P-linearly compact and so, by Corollary 2.3, φ is an isomorphism as topological modules.

Since the topology of the left sided of (1) is the product topology, (ii) follows easily from Lemma 3.2.

From Theorem 1.5 of [7], Theorem 3.4 and definitions, we have the following chain of implications;

$(P^\omega$-pure injective) \Rightarrow $(P^\omega$-pure injective) $\Rightarrow (P$-linearly compact).

Let F be a bounded topology and let M be F-linearly compact. Then we know from Lemma 2.4 that $M=\lim M_i$, where M_i is F-torsion and artinian. By the same way as in Theorem 3.2 of [5], we have $M_i=\sum_i\bigoplus M_{ip}$, where $M_{ip}=\{x\in M_i | xP^n=0 \text{ for some } n\}$ and P ranges over all prime ideals contained in F. Write $M_p=\lim M_{ip}$. Then M_p is P-linearly compact and M is isomorphic naturally to $\prod M_p$ as topological modules, where $\prod M_p$ will carry the product topology. It is evident that $K_F=\sum_i K_{ip}$, where P ranges over all prime ideals in F. Further we can easily prove that $M^*=\sum_i M^*_p$ and that $M^{**}=\prod M^{**}_p$, where M^*_p consists of all continuous maps of M_p into K_p. Thus, from Theorem 3.4, we have
Theorem 3.5. Let F be a bounded topology. Then

(i) A module is F-linearly compact if and only if it is isomorphic as topological modules to a direct product of modules of the following types: $R(P^n)$, $R(P^\infty)$, $e_P\hat{R}_P$, $e_P(Q\otimes\hat{R}_P)$, where P ranges over all prime ideals in F and e_P is a uniform idempotent in \hat{R}_P.

(ii) If M is F-linearly compact, then M^* is isomorphic to a direct sum of modules of the following types: $R(P^n)$, $R(P^\infty)$, \hat{R}_Pe_P, $(Q\otimes\hat{R}_P)e_P$.

Let F be any topology. A short exact sequence

$$0 \to L \to M \to N \to 0$$

is said to be F^ω-pure if $MJ \cap L = LJ$ for every $J \in F$, and (E) is said to be F^ω-pure if the induced sequence $0 \to L_F \to M_F \to N_F \to 0$ is splitting exact. A module is called $F^\omega(F^\omega)$-pure injective if it has the injective property relative to the class of $F^\omega(F^\omega)$-pure exact sequences. The structure of F^ω-pure injective modules is investigated in the forthcoming paper.

Lemma 3.6. Let F be a bounded topology. Then (E) is F^ω-pure if and only if (E) is P^ω-pure for every prime ideal $P \in F$.

Proof. For any prime ideal P, it is clear that $P \in F$ if and only if $P \in F_1$. So the necessity is evident. Conversely assume that (E) is P^ω-pure for $P \in F$. Let J be any element of F_1. Then there is a nonzero ideal A with $J \supseteq A$. Write $A = P_1^P \cdots P_n^P$, where P_i are prime ideals. Then $P_i \in F$ and $X/XA \cong X/XP_1^P \oplus \cdots \oplus X/XP_n^P$ for every module X. Hence by Lemma 1.1 of [7] the sequence $0 \to L/LA \to M/MA \to N/NA \to 0$ is splitting exact. Hence $MJ \cap L = LJ$ and so (E) is F^ω-pure.

From the same ways as (1.2), (1.4), (1.5) of [7] and Lemma 3.6 we have

Proposition 3.7. Let F be a bounded topology. Then a module G is F^ω-pure injective if and only if it is isomorphic to the module $E(GF^\omega) \oplus \prod P \hat{G}_P$, where P ranges over all prime ideals in F, $GF^\omega = \bigcap G(J \in F_1)$ and $\hat{G}_P = \lim \to G/PG^\omega$.

Let F be a bounded topology. Then from Theorem 3.5, Proposition 3.7 and definitions, we get the following chain of implications:

$(F$-linearly compact) \Rightarrow $(F^\omega$-pure injective) \Rightarrow $(F^\omega$-pure injective).

OSAKA UNIVERSITY

References