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Color Vision for Road Following *

Charles Thorpe and Jill Crisman
Robotics Institute, Carnegie Mellon University
Pittsburgh, PA 15213

March 14, 1988

Abstract

This paper discusses the research conducted at CMU in several topic areas: increasing the
dynamic range of current cameras to better handle outdoor scenes, detecting roads in heavily
shadowed scenes and in rapidly changing illumination, and identifying intersections. This
research is necessary to add new capabilities to our road following vision system. We built
a new system, using the results from our research, that could identify roads and intersections

- in shaded scenes. We also transferred some of our algorithms tothe WARP, an experimental
supercomputer developed at CMU, to test the capabilities of current parallel machines.

1 Introduction

Our long-term objective is to create color vision systems capable of finding and following roads under all
conditions. Our ambitions include modeling and perceiving dirt roads, city streets, and expressways; handling
sunny days as well as rain, snow, or dark of stormy night; and both driving on familiar, well-mapped roads and
exploring new areas without the aid of a-map. -

In our navigation system, the vision module is just one of many modules Thc vision module is responsible
for detecting roads in the camera images. The pilot module uses the road position to plan a path for the vehicle
to travel. A map of the world is updated by the map update module. And the helm module is responsible for
sending driving commands to the vehicle. This paper is concemed only with the vision module and does not
discuss the functions of the rest of our navigation system.

Our previous research [1] has built the PARK I system capable of driving our Navlab robot van, shown
in Figure 1, on a narrow, twisting, asphalt path under a variety of lighting conditions, with no a priori map
knowledge but with a known road model. During the past year, we have concentrated on new capabilities in
four areas:

¢ Handling extremes of lighting (greater dynamic range than the capabilities of our cameras)

e Less reliance on a fixed road model, to allow us to track roads that change and curve

e Use of a map to predict intersection locations and shapes,-allowing us to recognize intersections and
successfully navigate a road network

Processing speed, using the CMU Warp supercomputer

Section 2 of this paper discusses our PARK I system, including both a description of processing and
a discussion of the points we decided to improve. Section 3 presents specific vision research towards our
objectives. . Several topics were researched in isolation, some of which were used in a PARK II system. In.
section 4, we describe the PARK II system incorporating the new vision algorithms, and its performance. This
section also discusses the WARP implementation of our PARK I system. And the final section lays out the plan
for our next round of research tasks.

*This research is sponsored by the Strategic Computing Initiative of DARPA, DoD, through ARPA Order 5351, and monitored by
the US Army. Engineer Topographic Laboratories under contract DACA76-85-C-0003, titled "Road Following".
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2 Previous Work

2.1 The PARK I Demo System

The PARK I demo system digitizes images and tries to find the best straight road in the image, using color
classification and a Hough voting scheme. This is done in five phases: System Interface, Pre-processing,
Labeling, Interpretation, and Model Update. The data and control flow between the phases is shown in Figure
2. The interface phase tells the pre-processing phase when to digitize an image. The pre-processing phase
transforms the camera data into reduced resolution color and texture images. These images are used by the
labeling phase to produce a road probability image, in which each pixel describes how well the color and texture
of that image pixel match known colors and textures of road pixels. This probability image is passed to the
interpretation phase that finds the best straight road in the image. The road location is back-projected onto the
ground plane and passed to the navigation system. The road location in the image plane is given to the model
update phase where the vision module’s idea of road and grass colors are updated. Each of these phases is
described in more detail below.

System interface The interface between the vision module and the navigation system defines the function of.
~the vision module. The navigation system tells perception where the vehicle should be when it takes the next
picture. The vision system continuously polls the navigation system for the vehicle position, and digitizes an
image when the vehicle is closest to the specified location. The image is then processed to determine the road
- location in the image.

The required output of the vision system is the location of the road on the ground plane. The ground is
assumed to be locally flat, with the vehicle sitting on the same plane as the road in the image. The coordinate
frame of the vision output is defined by the vehicle location when the image is digitized as shown in Figure
2. The road is assumed to be straight and of known width. It can therefore be represented as a rectangle on
the ground. Furthermore, this rectangle can be described completely by its center line. The location of this
rectangle on the ground plane can be described by two parameters, (x, ): the x position of the center line as
it crosses the x axis, and the angle at which the center line crosses this axis. These two parameters are the
description of the road that the vision module returns to the system.

Pre-processing The pre-processing phase transforms the camera data into images that can be processed by the
labeling phase. In our case, labeling cannot process the full size images from the camera due to time constraints.
Therefore, the pre-processing phase first reduces the color images from (480 X 512) to (30 X 32) pixels. This
is done in a serics of averaging reduction stages that create a pyramid of reduced resolution color images.

Preprocessing also calculates a texture value for each pixel in the (30 X 32) image, to give the labeling
phase another cue besides color. Texture is calculated by counting edges found by a high-resolution Robert’s
operator, normalized by local image intensity and large-scale edges. Normalizing by intensity assures that the
texture operator will have similar responses to similar textures regardless of the illumination of the textured
region. Normalization by large-scale edges reduces the response of the texture operator to shadow edges. Grassy
regions and trees tend to have many local variations, which produce many local edges, which in turn produce a
strong response in the texture operator. Road surfaces are usually more evenly colored, and evoke less response
from the texture operator.

At the end of this phase the four (30 X 32) images representing red, green, blue, and texture, are passed
to the labeling phase. ‘

Labeling The goal of labeling is to label each pixel as either road or grass and to record a confidence that the
pixel is correctly labeled. We compute the label and confidence by comparing each pixel’s color and texture with
road and grass appearance models. We have multiple models for road and for grass. For example, since sunny
and shaded road have very different colors, we need a separate color model for each illumination. Moreover,
since colors change gradually as the illumination changes from sunny to dark shadows, we have extra models
to represent these intermediate colors. We found that the system ran well using four road models and four grass
models. : '
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Labeling uses these color models in a standard pattern recognition technique. At each pixel, a likelyhood
is calculated for each model, and the model with the highest likelyhood is selected. The probability of this
model is recorded in the road-probability image. Positive probabilities in this image signify that one of the road
models had this highest probability, while neganve pixels s1gmfy one of the grass models. The road-probability
image is used by the interpretation phase.

Interpretation The interpretation: phase is responsible for transforming the road probabilities into a (x, 6)
interpretation. This ground plane interpretation can be transformed into the image plane resulting in an equivalent
set of parameters: ¢, the column position where the road centerline crosses the horizon row, and ¢, the angle
with which the centerline crosses the horizon row. These two image plane parameters, (c, ¢), are used in a
Hough space interpretation scheme. Each road pixel votes, using its probability, into the Hough accumulator,
for all road shapes that contain that road pixel. Each grass pixel votes, using its negative probability, against
all road shapes that contain that grass pixel. The best road location in the image is given by the coordinates of
the peak of the Hough space. This location is passed directly to the model update phase, and is transformed to
the ground plane and sent to the navigation system interface for path planning and vehicle guidance.

Model Update The model update phase is responsible for adjusting the statistical color model of the different
road and grass models. This adjustment is necessary when the illumination conditions are changing, or if the
road or grass colors change. The texture model is not adjusted, since texture remains constant regardless of the
lighting or the road or grass colors. After the road is found by the labeling phase, we know exactly which pixels
in the image are road pixels and which are grass pixels. Although we know the road/grass type of each pixel,
we use only those road and grass pixels that are not near the road edge for updating the model. This prevents

the corruption of the color model due to errors of modeling curved roads with straight road models. For each
of the road and grass regions, we perform a nearest mean clustering technique for all of the data in the road
and grass regions. This technique groups color data into a set of models where the color data in each individual
model is described by color means and covariances. The clustering technique selects the set of models whose
mean values are the most separated, and whose clusters are the most compact. The means and variances of the
resulting classes are then used by the labeling phase to label the next image. :

2.2 Lessons Learned from the PARK I Demo System

Under many conditions, the PARK I system was rather robust. On days when the light was fairly constant the
vision module worked perfectly almost all of the time. In the times that the solution was imperfect, it was
not far from the correct solution, so that the Navlab drove on the edge of the road instead of down the center.
However, there were some limitations with this system that needed to be addressed.

Increased Dynamic Range The need for an increased dynamic range in the camera is especially apparent on
bright sunny days, when the vehicle is in the sunlight and the vision module is processing images containing
dark shadows. In these dark shadows, the pixels have such low values that the road and grass pixel values
are indistinguishable. Likewise, when the vehicle is in the shade, sunlit regions of the image are saturated,
and again, road and grass are indistinguishable. We need some way of increasing the dynamic range of the
perception system to handle these difficult scenes.

Changing Illumination The labeling phase depends on knowing the colors of road and grass from the previous
image. At the end of each step, we determine new road and grass colors, so that the system can adapt to
changing conditions. When illumination changes gradually or when the system slowly enters shadowed regions
from sunny regions, the system can update the color model and successfully track the road. In this sense, the
system is capable of adapting to the environment. However, when the illumination changes rapidly, as when the
sun goes behind a cloud, the color model used for labeling can be inaccurate, and the road can be misclassified.
Therefore, we want reliable methods of distinguishing road from grass regions that do not solely rely on color
models derived from the previous image.
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Intersection Detection As in any vision system, the interpretation phase needs a model for the system to
match in the image. In the PARK I system, the model is implicitly coded as a straight road. We needed to add
models and algorithms to interpret intersections and curving roads.

3 Research and Algorithm Development‘

To address the problcms discussed above, and to expand our road following capabilities, we researched in the
following topics independently:

e As an attempt to increase the dynamic range of the cameras, we developed a two camera pre-processing
phase.

¢ Unsupervised learning was tried for dealing with rapidly changing lighting conditions. ‘

e Two different ideas for recognizing intersections, a convolution interpretation scheme and a region search-
ing algorithm, were developed. :

The algorithms that were successfully developed and that met speed and accuracy requirements were
integrated into a PARK II demo system.

3.1 Two cameras

Since the dynamic range of available video cameras is not large enough for bright sunny days with dark shadows,
we are trying a two camera system with fixed iris settings. One of the cameras has its iris open to peer into the
shaded areas of the scene. The other camera has a closed iris for the sunny regions. A closed iris image has an
average intensity less than the open iris image. We refer to it as the dark image, which is used for looking into

sunlit areas. Likewise, the image from the camera with the open iris is called the bright image, which is used
for looking into shadows. By combmmg the bright and dark images, we can 1nd1rectly increase the dynamic
range of the sensor. S

To test this idea, we replaced the pre-processing phase of the PARK I system with a new pre-processing
phase that digitizes two color images and produces one reduced resolution color image and a texture image.
These images receive some of their pixel data from the bright image and some of the1r p1xel data from the dark
image. This combined image is fed into the labeling phase. :

First the digitized images are reduced to form bright and dark color image pyramids. Next each image
pyramid is run separately through the texture subroutine producing a bright and dark texture image. Then, the
two color images are combined and the two texture images are combined. For each pixel in these combined
images, we select a value either from the dark i image or from the bnght image. This is better than trying to
do any sort of pixel-level averaging or combination since these techniques would distort color values of the
images. So the combination step chooses, for each pixel, which image to use, and gets the red, green, blue,
and texture values from that image. It also produces a mask image that records from which image, bright or
dark, each pixel was selected. ‘ ‘

For selecting which pixels should be placed in the combined images, we use a simple thresholding
technique. We first apply a threshold to each pixel in the dark image. If its pixel value is less than the threshold
value, then the data in the dark image is inadequate. Therefore, this combined pixel is copied from the bright
image. If the dark image pixel value is greater than the threshold, then this pixel is usable, and is copied
from the dark image into the combined image. A more sophisticated algorithm could perhaps improve system
performance by dividing the image into sunny and shaded pixels instead of just dark and bright pixels. However,
separating sunny from shaded may be just as difficult as the original problem of separating road from non-road.

By running this combination step, and carefully setting the threshold parameters, we are able to succeed
in increasing the dynamic range of cameras to handle images containing dark shadows and bright sunlight.
Unfortunately, these parameters need to be individually set for the conditions on each day that we run the
vehicle. Therefore, we would like this threshold to adapt automatically. Even with the correct threshold, there’

are problems with the colors changing within a shadow and with rapid and large illumination changes, such as o

the sun going behind a cloud. Sunlit areas are fairly evenly illuminated, and the same surface type produces
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approximately the same image colors. But shaded areas are illuminated by reflections from the sky, from
clouds, and from surroundings like trees and buildings. The color of the illumination, and thus the color of
the image pixels, changes noticeably depending on the color of the reflecting objects. More research, including
fundamental work in optics of materials, is needed to be able to properly classify road and nonroad under all
illumination conditions. ’

3.2 Unsupervised Learning Labeling

When the lighting conditions change rapidly, our PARK I system fails since it relies on color models from the
previous image. Because illumination can change rapidly and unpredictably outdoors, models calculated from
a previous image may not correspond to the colors in the next image. We would like to build a labeling phase
which does not rely on color models from the previous image.

The input to this labeling module is the same as the PARK I system, except, of course, there is no input
color model. The output should be a a set of regions in the image, a collection of which would completely and
exclusively cover the road in the image. Our basic approach is to use a standard clustering algorithm to group
regions that have similar colors {2].

’ To run this clustering algorithm, the number of classes in the image must be pre-selected. First the pixels
of the image are divided randomly into each of the classes. The mean color value is computed for each class.
Next each pixel is labeled as belonging to the class whose mean value is closest to its pixel value. The mean
color is then recomputed for each class. The sequence of label by closest mean and calculate mean is repeated
until few or no pixels change their class. In the first labeling step, the majority of pixels change their class,
however, in the second labeling step, only a minority of the pixels change. In successive steps, the number of
pixels that change classes continues to decrease. If run long enough, this will converge until no pixels change;
in practice, three iterations is adequate. Now all of the adjacent pixels, having the same class label, can be
grouped into regions using a connected components algorithm.

The biggest problem with this procedure is that the number of regions found in the image is quite large.
Searching for a road shape becomes impractical if there are too many regions. Simple methods for reducing the
number of regions, such as shrinking and growing or merging small regions, either still left too many regions
or. distorted the region contours to too great an extent. For unsupervised labeling to be applicable to real time
road following, we need to improve both the labeling and the searching methods (see Section3.4 below). This
segmentation system is not directly applicable in our PARK I system, since its interpretation phase depends on
road/grass labeled pixels. There are no semantic labels associated with the unsupervised learning scheme. We
are in the process of developing interpretation methods for this scheme.

3.3 Interpretation using Convolution

One of the main reasons for the robustness of the PARK I system was the road model fitting. We used a Hough
transform to calculate the globally most likely position of the road, regardless of local misclassifications.

We want to retain that robustness, but extend the class of shapes from just straight roads, in the earlier
system, to also include curved roads and intersections. For these more complicated shapes we replaced Hough
transforms-with convolution, using a template mask in the shape of the predicted road or intersection.

Each road segment or intersection is modeled, based on either map data or previous scene interpretations,
as a set of polygons. The vehicle planning system chooses the most likely set of roads and intersections in the
field of view, and passes those shape descriptions to the vision module. The vision module does not directly
search for those shapes in the image. As the distance changes between the vehicle and an intersection, for
instance, perspective projection will change not only the location of the intersection in the image but also its
size -and shape. So instead the pixels from the image are projected onto the ground, and the search for the
predicted shape-is carried out in ground coordinates.

The first input to this system is a probability image which contains positive probabilities for road and
negative probabilities for grass. The magnitudes of these probabilities correspond to the confidence that that
pixel iis actually road or grass. The second input is a shape description of the expected road or intersection in
the scene. The output of this system is the most likely location of the specified road shape.
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First, this algorithm back projects the road probability image onto the assumed ground plane. Then it
convolves a mask formed from the description of the road or intersection with the ground plane probability
image. For finding a straight road, only the x dimension and the angle of the road need to be found to describe
the position of the road, since the appearance does not change along the y direction. However, to locate an
intersection, the (x, y, §) position of the intersection on the ground plane are needed.

To test this idea, we replaced the interpretation module of the PARK I system. We provided test models
for the roads and intersections by selecting the borders of the road in out test images. These points are back-
projected onto the ground plane, giving us a perfect model of the intersection seen in the image. The results
are very good, matching to the road in almost all situations. Matching with distorted models, or with models
picked from a different view of the same scene, gave less accurate but still satisfactory results.

34 Region Searching Interpretation

The main motivation for this algorithm is to apply road information, such as edge shape, color, road shape, and
predicted location, to help decide the location of the road in the image. This scheme frees us from the exact
shape description that is required by the convolution interpretation scheme discussed above. In real navigational
situations, an exact model, in general, is unknown. This algorithm is an attempt to interpret road and intersection
scenes using general constraints, without knowing the exact shape of the roads.

The input to this algorithm is a list of regions. Each region includes the following information: road/grass
label, road probability, size, neighboring regions, and polygonal approximations. The output is the collection
of regions that make the best road. Best, in this case, is evaluated using geometric and heuristic information.
We search over various combinations of regions in the image to see which collection forms the best road. Each
collection of regions is called the candidate road. An exhaustive search over all candidate roads would be much
too expensive, so we use a Hill Climbing algorithm to constrain the search space.

This algorithm is tested by replacing the interpretation phase of the PARK I system. In the PARK 1
system, the labeling phase labels pixels in the image. This algorithm needs these pixels to be grouped into
regions, so we added a region growing step to the labeling phase to test this algorithm.

Region Growing Before we can apply the region searching technique, we first need to convert the classification
and probability images into a list of regions. This is done in the following steps: '

1. Use a connected components algorithm for region extraction.

2. Merge each small region into its most similar neighbor.

3. Approximate the remaining regions with polygons, retaining neighbor information.
4. Calculate descriptors, such as size and road/grass probability, for each region.

Region Searching Algorithm Searching starts by considering the initial candidate road, Co consisting of the
regions that were labeled as road in the input image. We first evaluate the cost, v of the initial candidate Co.
The algorithm proceeds by either adding neighboring grass regions to the candidate road or deleting road border
regions from the candidate road. A neighboring grass region touches the candidate road, and the road border
regions touch at least one grass region. The algorithm can be described as follows:

1. Try expanding road by evaluating the costs of all the candidate roads that can be formed by adding one
neighboring grass region to the initial candidate road, C;. Remember which of the grass regions G, when
added to the initial candidate, gave the lowest cost of vg.

2. Likewise, try shrinking road by evaluating the costs of all of the candidate roads that can be formed by
deleting one of the road border regions from the initial candidate road, C;. Remember which of the road
regions R, when deleted from the initial candidate, gave the lowest cost of vg.

3. If vg is lower than vg and v, then removihg one region from the road improves the road model fit.
Ci1=C;i—Rand v =vg. Goto 1.

4. If v is lower than vg and v, then adding a grass region to the road improves the model fit. Ci.1 = Ci+G
and v =vg. Go to 1. '

160




Color Vision for Road Following

5. Else v is lower than vg and vg, switching the label of any one region will not lower the cost, so exit.

The final result region Cying is the collection of regions in the image that form the best road.

Evaluation of Candidate Roads The confidence of a road interpretation can be determined by a combination
of the following constraints. Notice that each constraint tries to enforce a particular attribute.

e The confidence measure comes from color classification of the pixels, and their resulting road or grass
probabilities. It prefers regions that have high road probabilities.

The edge straightness metric prefers candidate roads whose edges form straight lines.

The road width constraint reinforces candidate roads that have the correct width.

The parallelness measure supports candidate road that have parallel edges.

The prediction constraint prefers candidate roads that are spatially close to the prediction.

Any deviation from the ideal for each of these features adds to the cost. We form a weighted linear combination
of these costs to calculate the total cost of the candidate road, v. The candidate road that is selected by the
region searching algorithm will have the best compromise between all of these constraints. This cost function
can be easily expanded if additional constraints are needed and available. '

Results This approach is very promising and powerful. When given good predictions, it successfully classified
all our test images except the single worst shaded intersection image. Its main drawback, and the reason it was
not incorporated into our demo system, is that it does not guarantee real-time performance. In clean scenes,
relatively few regions are produced by pixel labeling and region growing, and the initial candidate road is nearly
correct. Then the search proceeds quickly, goes through few iterations of generating and evaluating candidate
roads, and is quite efficient. In more complex situations, such as dappled sunlight or leaves scattered on the
road, it is possible to produce literally hundreds of separate regions. Searching over all those regions is not
very efficient. Merging small regions into their larger neighbors helps with search time, but at the expense of
distorting region boundaries and possibly corrupting the solution. This approach requires, and merits, further
work before it is practical in real-time road following, and to enable it to not to rely on good predictions.

4 Demo Systems

During the course of the year, we built two demo systems to test new capabilities of vision and the rest of the
Navlab navigation system. The first system was a reimplementation of the PARK I system using the WARP
machine. The second system was built to test some of the new algorithms discussed above.

4.1 Warp Demo System:

The PARK I system required about 10 seconds to complete one vision cycle on a Sun 3/160. This is much
slower than we would eventually like. Therefore, we wanted to run the PARK I system on the prototype wire
wrapped WARP machine, to get an idea of the speed we could get from the current supercomputer technology.
A prototype WARP was installed on the Navlab for this purpose [3]. The WARP is an experimental high speed
computer consisting of ’ ‘

an array of four cell processors that can perform parallel computations,

an interface unit to transfer data to and from the cell array,

three 68020 processors to perform higher level data processing and sequencing, and
a host computer that links high level programs to the WARP machine.

The WARP group provided software support to make this demo possible. Programs for the WARP machine
are specified in an Ada-like language called W2 [4] [5]. The W2 compiler produces code that runs in parallel
on the cells of the Warp. The warp_call() interface allows a C program running on a Sun host to call W2
functions on the parallel processing cells, and automatically handles all data transfer and format conversions.

We divided the vision program into modules that were consistent with the function of the WARP:
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o Roberts’ gradient operator

e Texture operator

e Color and texture classification
o Statistics collection '
Statistics class adjustment
Hough space voting

All of these modules, except for the Hough module, were implemented by dividing the input images into column
swatches. Each of the cells of the WARP array was responsible for one part of the image data. The results were
then merged when they were read from the array. For the Hough space module, the Hough space accumulator
was divided among the cells by column swatches. The input image was passed to all of the cells. Therefore,
each cell would look at each pixel in the input image and vote for all the road locations within the range of
angles described by its swatch of the Hough accumulator.

Recoding our algorithms for the Warp succeeded, and even on code that was not designed for parallel
processing we achieved a speedup of 2.5, from 10 seconds per image to 4. We learned several practical lessons:

o Designing for parallelism in the first place would have saved us much more time. The Warp is much better
at some things, such as regular computations. It is not so fast at others, such as conditional branching.
Efficient use of the WARP requires designing -algorithms with these constraints in mind.

¢ Even with the computing power of the Warp, standard coding optimizations such as unrolling 100ps and
folding constants are still important time savers. :

o The prototype Warp did not support constructs such as variable loop bounds. So we had to pad data to
maximum sizes, thereby wasting computation.

The production version of the Warp, which we have since mounted on the Navlab, helps solve those problems.

4.2 Park System II Vision Module

The PARK II demo system tested some of our experimental algorithms and tested the new PC WARP. Specif-
ically, we wanted a system that used the two camera pre-processing phase and the convolution interpretation
algorithm. The vision system would then be capable of recognizing intersections in even strong shadows.

An outline of this system can be seen in Figure 3. This system is based on the PARK I system with some
important changes. The pre-processing phase is replaced with the twd camera system that was discussed in
section 3.1. The labeling phase of the PARK I system then processes the combined images. The interpretation
phase of this system is the convolution interpretation scheme discussed in section 3.3. The location of the road is
then reported to the navigation system through the new interface phase, which is modified to transfer intersection
descriptions. The polygonal model of the road or intersection is passed to the model update phase, which updates
the bright and dark color models used for classifying the next image. The more detailed description of the
modifications to each of the modules is given below.

Calibration We expected to need calibration between the dark and bright cameras. By mounting the cameras
as close to each other as possible, and by careful bore sighting, we were able to get nearly perfect alignment.
For the ranges of interest, and at reduced resolution, typical errors between the two cameras were less than a
pixel. _

Calibrating the geometry between a camera and the vehicle became more important for this system. In the
PARK 1 system, vision only reported locations of straight roads, so calibration of distances along the road was
not crucial. In the PARK II system, vision had to report intersection locations as well, which required careful
calibration of all camera parameters. We developed and used a calibration scheme that uses two different views
of a grid of spots to deduce camera geometry [6].
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Resolution To identify intersections at reasonable distances, the (30 X 32) resolution of the road probability
images was not high enough. The branches of the intersection were typically smoothed over by the image
reduction. Therefore, we increased the image size to (60 X 64). We also developed a subroutine to digitize
from both of the cameras almost simultaneously by digitizing at reduced resolution into separate portions of

the frame buffer on successive camera frames. Our input color images were therefore (240 X 256) rather than
(480 X 512).

Convolution Interpretation The convolution algorithm is used for the interpretation phase of this system.
The navigation system predicts the shape of the road or intersection in the field of view, or of multiple possible
objects if vehicle position is imprecisely known. Each shape is matched to the road seen in the image. The
object with the best matching shape is retumed as the identified object, and its best fit position in the image is
projected onto the ground plane and returned to the navigation system. Thls shape description is also passed to
the model update phase.

The location of a road can be described with two parameters, namely (x, ). To describe the location
of an intersection we need three parameters (x, y, §). Unfortunately, when the dimension of the convolution
increases, the computation increases exponentially. In order to reduce the computation time for intersections,
we attempted to use an on board gyrocompass to localize the § dimension. Then the intersection convolution
reduces back to two dimensions, (x, y). The navigation system reads the gyro information, properly rotates the
intersection model before passing it to the interface phase. The intersection model is matched to the image data,
and the properly translated model is returned to the navigation system.

Results The system ran successfully through the three intersections on our test course. Each of the intersections
had different shapes and two of the intersections were in shaded areas of the site. The first intersection was
located on a curved section of the path and the branch exiting on the left was comprised of a different material
and was narrower than the two other branches. The second intersection was Y shaped located at the crest of a
hill. The third intersection was a T intersection where the approaching branch, the upright of the T, was angled.

Two of the results of our system are shown in figure 4, one showing the algorithm for heavily shaded road
interpretation, and the other showing intersection detection. Each result is shown in a cluster of four images.
The top two are the bright and dark images from the cameras. The lower left is the combined image. The result
of the segmentation is shown in the lower right. The position of the detected road or intersection is drawn on -
top of the dark image in the upper left.

We made many runs, including runs in a variety of lighting conditions and longer runs than any of our
previous systems made. The navigation system used perceived roads not only for navigation but also for map
building, and used intersections as landmarks. The final maps showed all of the bends and curves in our test
course, and correctly located the intersections. Along with our successes, we also discovered areas for further
work.

e Shape descriptions It is impractical to depend on exact shape descriptions of intersections. Moreover, .
if the shape descriptions are significantly incorrect, not only is the calculated location somewhat off,
but the statistics update phase may incorrectly update its model of road and nonroad colors, leading to
misclassifications in later scenes.

¢ Assumed ground plane The ground plane assumption is unusable for the second intersection of our test
site, where the intersection lies on the top of a hill. The perceived shape of the intersection changes
dramatically as the vehicle pitches forward at the top of the hill.

o Gyro problems We had difficulty using the gyro to orient the intersections. This was the first system
to attempt using the gyro on the Navlab. The device would drift in orientation to the point that dead
reckoning of the vehicle location provided better orientation information than did the gyro. Therefore,
when matching the intersection models to the intersections, we would often receive models incorrectly
oriented from the navigation system. Future systems will have to have better heading information, or will
have to search for intersections in x, y, and 6.
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5 Future and Continuing Work

Dur current research focuses on five areas: increasing camera dynamic range to an even greater extent, dealing
vith shadow fringes, using approximate shape models, getting improved ground plane models from direct 3-D
sensors, and improving unsupervised classification labeling. '

Because our two cameras each had a fixed iris setting, large changes in illumination could cause problems.
When the sun went behind a cloud, in some instances even the bright image was not bright enough to see into
the shadows. We are investigating computer controlled irises and computer controlled digitizer gains to try to
>xpand further the dynamic range of the vision system. _

Shadow fringes in conjunction with changing illumination also provide problems. The pixels that are
most often misclassified are those at the fringes of shadows, where the illumination changes from bright to
dark. These mixed pixels may not belong unambiguously to any one color class. In images where there is a
sharp shadow line, this causes problems in only a few pixels. In other images, however, with dappled sunlight
filtering through trees, a large portion of the image is composed of shadow fringe, and many pixels may be
misclassified. We are working on methods to detect shadow fringes and discard those unreliable labels.

In the current system, an exact intersection model is required by the interpretation phase of the vision
system. However, exact models are not realistic in real navigational situations. They are also impractical even
if the exact shape is measured. Therefore we would like to continue our research into the region searching
interpretation method. A parallel effort in our project has developed an expert system image interpreter that
finds roads and intersections in very difficult scenes and which has only weak shape models [7]. This expert
system, written in OPS, takes up to a half hour per image. If we can extract the most powerful heuristics
from this system and combine them with our experiments in region-based road finding, we can perhaps build a
powerful yet still not too slow system.

We would also like to improve our ground plane assumption in the vision system. In order to construct a
ground surface, we need three-dimensional information about the ground surface. Another effort in our project
is using a scanning laser range finder to build 3-D terrain maps. We are looking at methods for merging this
3-D data with our color images and using the combined data to give true intersection or road shape and location.

We are also continuing our work on the unsupervised classification method. This labeling algorithm should
be able to handle changing illuminations. The remaining problems are that the labeling scheme results in far too
many regions to be reasonably processed in real-time. We hope to develop some better interpretation methods
or region reduction algorithms.

6 Conclusions .

Our road following algorithms have made significant improvements, but there remains much work before we
achieve our goal of reliable, autonomous, road following. Specifically we believe the following:

1. Using 2 cameras with different apertures helps significantly with the problem of small dynamic range.
We continue to work on problems of rapidly changing illumination, and on changes of color at. shadow
fringes and within shadows. ,

2. Convolving an intersection template mask with classified image pixels, projected onto the ground plane,
works for recognizing intersections. We continue to research methods for finding intersections without
exact shape models. :

3. Region based road finding methods can help by using not just individual pixel probabilities by other

. geometry, such as edge straightness an parallel edges. Such heuristics are powerful but time consuming.

4. Unsupervised classification has promise for producing cleaner regions for region based methods. Since it
does not rely on matching with known color models, unsupervised clustering correctly models the colors
in each image, and produces cleaner region boundaries.

5. Other non-color factors are important, such as fusion with three-dimensional data to get accurate ground
shape models and planning for parallel implementation.
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Figure 1: The Navlab Vehicle

165



Thorpe/Crisman

Vision Module

i{

RGB Images
(480x512)
Pre-Processing I
n
RGBT b
Images e
(30x32) r
f
. a
Labeling c
e
Road .
RGBT ' Probability
Model - Image
(30x32)
. )
Interpretation
(c, 9
Model Update

Figure 2: The PARK I System

and the Véhicle Coordinate Frame

Rt € TR

166




Color Vision for Road Following

Open Iris Closed Iris

L

‘Bright RGB Image Dark RGB Image

240x256 240x256

Pre-Processing | Pre-Processing

Combination

Dark/Bright Mask Tmage | 0 “thonaty B

(60x64)

Labeling

i Road Probability
Image

Region Extraction ,
*.%.6)

OO O rFhH @ e 3 e

Interpretation

Polygon Model of
Road in Image

- Model Update

Figure 3: The PARK II System

\

167




Thorpe/Crisman

Figure 4: Results of PARK II System
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