THE GENERIC FINITENESS OF THE m-CANONICAL MAP
FOR 3-FOLDS OF GENERAL TYPE

LEI ZHU

(Received June 4, 2004)

Abstract

Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. We study the generic finiteness of the m-canonical map for such 3-folds. Suppose $P_k(X) \geq 2$ and $q(X) \geq 3$. We prove that the m-canonical map is generically finite for $m \geq 3$, which is a supplement to Kollár’s result. Suppose $P_3(X) \geq 5$. We prove that the 3-canonical map is generically finite, which improves Meng Chen’s result.

0. Introduction

Throughout the ground field is always supposed to be algebraically closed of characteristic zero. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. For all integer $m > 0$, one may define the so-called m-canonical map ϕ_m, which is nothing but the rational map corresponding to the complete linear system $|mK_X|$. Many authors have studied the generic finiteness of ϕ_m in quite different ways.

In 1986, J. Kollár presented the following theorem in his paper.

Theorem 0.1 (Theorem (6.2) of [6]). Let X be a smooth projective 3-fold of general type with $q(X) \geq 4$. Then ϕ_k is generically finite for $k \geq 3$.

Meanwhile, he pointed out that the bound is the best possible. During our study of generic finiteness of m-canonical map for threefolds, we find we get a better bound if we suppose $P_3(X) \geq 2$. We also improve a result of Meng Chen.

Theorem 0.2 (Theorem 3.9 of [1]). Let X be a projective minimal Gorenstein threefold of general type. Then ϕ_3 is generically finite whenever $P_3(X) \geq 39$.

The following is our main theorem.

Main Theorem. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. If ϕ_m is not generically finite whenever $m \geq 3$, then
(1) $P_g(X) \leq 1$ whenever $m \geq 6$;
(2) either $P_g(X) \leq 1$ or $q(X) \leq 2$ if $m = 3$ or 4;
(3) either $P_g(X) \leq 1$ or $q(X) \leq 1$ if $m = 5$.

As a direct corollary, the following is a supplement to Kollár’s result.

Corollary 1. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. If $P_g(X) \geq 2$ and $q(X) \geq 3$, then ϕ_m is generically finite whenever $m \geq 3$.

Corollary 2 improves Theorem 0.2.

Corollary 2. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. ϕ_3 is generically finite whenever $P_g(X) \geq 5$ or $P_g(X) = 4$ and $q(X) \geq 2$.

As an application of our method, we will present more detailed results of the m-canonical map for 3-folds of general type.

1. Preliminaries

(1.1) Kawamata-Ramanujam-Viehweg vanishing theorem. We always use the vanishing theorem in the following form.

Vanishing Theorem ([7] or [9]). Let X be a smooth complete variety, $D \in \text{Div}(X) \otimes \mathbb{Q}$. Assume the following two conditions:
(i) D is nef and big;
(ii) the fractional part of D has supports with only normal crossings. Then $H^i(X, \mathcal{O}_X(K_X + \lceil D \rceil)) = 0$ for all $i > 0$.

Most of our notations are standard within algebraic geometry except the following which we are in favor of: \sim_{lin} means linear equivalence while \sim_{num} means numerical equivalence and $\equiv_{\mathbb{Q}}$ means \mathbb{Q}-numerical equivalence.

(1.2) Set up for canonical maps. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. Suppose $P_g(X) \geq 2$, we study the canonical map ϕ_3 which is usually a rational map. Take the birational modification $\pi: X' \to X$, according to Hironaka [5], such that
(1) X' is smooth;
(2) $|K_X|$ defines a morphism;
(3) the fractional part of $\pi^*(K_X)$ has supports with only normal crossings. Denote by g the composition of $\phi_3 \circ \pi$. So $g: X' \to B \subseteq \mathbb{P}^{P_g(X) - 1}$ is a morphism. Let $g: X' \xrightarrow{f} B' \xrightarrow{s} B$ be the Stein factorization of g. We can write $K_{X'} \sim_{\text{lin}} \pi^*(K_X) + E$
and $K_{X'} \sim_{\text{lin}} M_1 + Z_1$, where M_1 is the movable part of $|K_{X'}|$. E is an effective \mathbb{Q}-divisor which is a \mathbb{Q}-linear combination of distinct exceptional divisors. We can also write $\pi^*(K_X) \sim_{\text{lin}} M_1 + E'$, where $E' = Z_1 - E$ is actually an effective \mathbb{Q}-divisor.

If $\dim \phi_1(X) = 2$, we see that a general fiber of f is a smooth projective curve of genus $g \geq 2$. We say X is canonically fibered by curves of genus g.

If $\dim \phi_1(X) = 1$, we see that a general fiber S of f is a smooth projective surface of general type. We say that X is canonically fibered by surfaces with invariants $(c_1^2, P_g) = (K_{S_0}^2, P_g(S))$. Denote by $\sigma: S \to S_0$ to be the contraction onto the minimal model.

2. Proof of Main Theorem

Let the notation be as in (1.2) throughout this section. We study ϕ_m according to the value $d := \dim \phi_1(X)$ and $b := g(B)$. Obviously $1 \leq d \leq 3$.

Theorem 2.1. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. If ϕ_m is not generically finite whenever $m \geq 6$, then $P_g(X) \leq 1$.

Proof. We suppose $P_g(X) \geq 2$ and try to prove ϕ_m is generically finite for all integers $m \geq 6$.

The case $d = 2$. Denote by S_1 the general member of $|M_1|$. So S_1 is a smooth projective surface of general type. We have

$$|K_{X'} + \gamma(m - 2)\pi^*(K_X)^\gamma + S_1| \subseteq |mK_{X'}|.$$

Using (1.1), we have

$$|K_{X'} + \gamma(m - 2)\pi^*(K_X)^\gamma + S_1|_{S_1} \supseteq |K_{S_1} + \gamma(m - 2)L|$$

where $L := \pi^*(K_X)|_{S_1}$. According to [10], we can reduce to the problem on surface S_1 since

$$K_{X'} + \gamma(m - 2)\pi^*(K_X)^\gamma$$

is effective. Since $d = 2$, we have $h^0((m - 2)L) \geq 3$. We know $|K_{S_1} + \gamma(m - 2)L|$ gives a generically finite map by [2]. So does ϕ_m.

The case $d = 1$ and $b > 0$. Because $b > 0$, the movable part of $|K_X|$ is already base point free on X and $M_1 \sim_{\text{num}} aS$ with $a \geq 2$. So one always has $\pi^*(K_X)|_S = \sigma^*(K_{S_0})$. Obviously we have

$$|K_{X'} + \gamma(m - 2)\pi^*(K_X)^\gamma + M_1| \subseteq |mK_{X'}|$$
and
\[|K_{X'} + \gamma(m - 2)\pi^*(K_X)\gamma + M_1|_S = |K_S + \gamma(m - 2)L\gamma|_S \]
where \(L' = \pi^*(K_X) \) by (1.1). According [8], we can reduce to the system \(|K_S + \gamma(m - 2)L\gamma|_S \) on \(S \) since
\[K_{X'} + \gamma(m - 2)\pi^*(K_X)\gamma \]
is effective and \(a \geq 2 \). While
\[|K_S + \gamma(m - 2)L\gamma|_S \supseteq |K_S + \gamma(m - 2)L'\gamma|_S \]
by Lemma 2.2 in [3], we see
\[|K_S + \gamma(m - 2)L\gamma|_S = |K_S + (m - 2)\sigma^*(K_S)|_S \].
The right system defines a generically finite map on \(S \) by [12]. So does \(\phi_m \).
The case \(d = 1 \) and \(b = 0 \). According to [6], we have
\[\mathcal{O}(1) \leftrightarrow f_*\omega_{X'}^2 \]
and denote by
\[\varepsilon := f_*\omega_{X'/\mathbb{P}^1}^2 \leftrightarrow f_*\omega_{X'}^b. \]
The local sections of \(f_*\omega_{X'/\mathbb{P}^1}^2 \) give the bicanonical map of the fiber \(S \) and they extend to global sections of \(\varepsilon \) because \(\varepsilon \) is generated by global sections. On the other hand, \(H^0(\mathbb{P}^1, \varepsilon) \) can distinguish different fibers of \(f \) because \(\text{deg}(\varepsilon) > 0 \). So \(H^0(\mathbb{P}^1, \varepsilon) \) gives a generically finite map on \(X' \) and so does \(\phi_b \), which means \(\phi_m \) is generically finite whenever \(m \geq 6 \).

Theorem 2.2. Let \(X \) be a projective minimal threefold of general type with only \(\mathbb{Q} \)-factorial terminal singularities. If \(\phi_m \) is not generically finite where \(m = 3 \) or \(4 \), then either \(P_g(X) \leq 1 \) or \(q(X) \leq 2 \).

Proof. We assume \(P_g(X) \geq 2 \). Since \(|3K_{X'}| \subseteq |4K_{X'}| \), we study \(\phi_3 \) according to \(d \) and \(b \).

The case \(d = 2 \). Choose a 1-dimensional subsystem \(\Lambda \subseteq |K_{X'}| \) while taking a birational modification \(\pi_1 : X' \to X \) such that the pencil \(\Lambda \) defines a morphism \(g_1 : X' \to \mathbb{P}^1 \). We can even take further modification to \(\pi_1 \) so that \(\pi_1^*(K_X) \) has supports with only normal crossings. Taking the stein factorization \(p : X' \to W' \). We note that this fibration is different from the one which was defined in (1.2). Denote \(b_1 := g(W') \). Let \(M \) be the movable part of the pencil. We obviously have \(M \leq K_{X'} \).

We can write \(M \sim_{\text{lin}} \sum_{i=1}^a F_i \) where \(a \geq 1 \) and \(F_i \) is a fiber of \(p \) for all \(i \).
Suppose $b_1 > 0$. We consider the system

$$[2K_X + M] \subseteq [3K_X].$$

Now M contains at least 2 components F_1 and F_2. By (1.1), we have a surjective map

$$H^0(X', K_X + M) \to H^0(F_1, 2K_{F_1}) \oplus H^0(F_2, 2K_{F_2}).$$

This means $\phi_{[2K_X + M]}$ can distinguish F_1 and F_2 and the restriction to F_i is at least a bicanonical map. Then ϕ_3 is generically finite.

Suppose $b_1 = 0$. Now $M \sim_{\text{lin}} F$. Still by (1.1) and since $b_1 = 0$, we consider the following system

$$[K_F + \pi^*(K_X)]_F.$$

Assume $P_g(F) \geq 2$ and $[K_F]$ is composed of pencils otherwise $q(F) \leq 1$ or ϕ_3 is generically finite. If $q(F) \leq 1$, then $q(X) \leq 1$ by virtue of Corollary 2.3 in [4]. If $[K_F]$ is composed of pencils, then $q(F) \leq 2$ according to [11]. So $q(X) \leq 2$.

The case $d = 1$ and $b > 0$. Now we have

$$[K_X + \pi^*(K_X) + M] \subseteq [3K_X].$$

One can replace m with 3 in the corresponding proof of Theorem 2.1 and derive that ϕ_3 is generically finite.

The case $d = 1$ and $b = 0$. In this case we have

$$\pi^*(K_X) = aS + E'$$

where $a = P_g(X) - 1 \geq 1$ and

$$\left| K_X + \left(2\pi^*(K_X) - \frac{E'}{a} \right)_S \right| = \left| K_S + \left(2 - \frac{1}{a} \right)\pi^*(K_X) \right|_S.$$

If ϕ_3 is not generically finite, nor is the map defined by the right system above. We suppose $P_g(S) \geq 2$. Then $[K_S]$ is composed of pencils and $q(S) \leq 2$ according to [11]. Thus $q(X) \leq 2$ by [4].

Theorem 2.3. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. If ϕ_5 is not generically finite, then either $P_g(X) \leq 1$ or $q(X) \leq 1$.

Proof. We suppose $P_g(X) \geq 2$.

The case $d = 2$. One can replace m with 5 in the corresponding proof of Theorem 2.1 and derive that ϕ_5 is generically finite.
The case $d = 1$ and $b > 0$. The proof of Theorem 2.2 implies that ϕ_S is generically finite since $|3K_X| \subseteq |5K_X|$.

The case $d = 1$ and $b = 0$. We can write $\pi^*(K_X) = aS + E'$ where $a = P_g(X) - 1$ and

$$\left| K_{X'} + 4\pi^*(K_X) - \frac{E'}{a} \right| \subseteq |5K_{X'}|.$$

For the same reason, we consider the system

$$\left| K_S + \left(4 - \frac{1}{a}\right)\pi^*(K_X) \right|_S = \left| K_{X'} + 4\pi^*(K_X) - \frac{E'}{a} \right|_S$$

on surface S. If $P_g(X) \geq 3$, then we have

$$\mathcal{O}(2) \hookrightarrow f_*\omega_{X'}$$

and

$$f_*\omega_{X'/P^1}^2 \hookrightarrow f_*\omega_{X'}^4.$$

Thus ϕ_t is generically finite for the same reason given in the proof of Theorem 2.1. So is ϕ_S.

Next we suppose $P_g(X) = 2$ and then $a = 1$. By [6],

$$\mathcal{O}(1) \hookrightarrow f_*\omega_{X'}$$

and

$$f_*\omega_{X'/P^1}^2 \hookrightarrow f_*\omega_{X'}^6.$$

We assume $P_g(S) \geq 2$ and then denote by G the movable part of $|\sigma^*(K_S)|$, we have $6\pi^*(K_X)|_S \geq 2G$ since $|2\sigma^*(K_S)|$ is base-point-free for $P_g(S) > 0$. Furthermore, we suppose $|K_S|$ is composed of pencils otherwise ϕ_S is generically finite. Then we can write

$$\sigma^*(K_S) \sim_{\text{num}} bC + Z$$

where C is a general fiber of the canonical map of S and $b \geq P_g(S) - 1 \geq 1$. If $|K_S|$ is composed of irrational pencils, then $b \geq P_g(S) \geq 2$. Denote by M' the movable part of

$$|7K_{X'} + S| \supseteq |K_{X'} + 6\pi^*(K_X) + S|.$$

Thus we have $M'|_S \geq 3G$ by Lemma 2.7 in [3]. Now we consider the subsystem

$$|K_{X'} + (7K_{X'} + S) + S| \subseteq |10K_X|.$$
From Theorem 2.1, we know ϕ_7 is generically finite. Then M' is nef and big. By (1.1), we have surjective map

$$H^0(X', K_{X'} + M' + S) \to H^0(S, K_S + M'|_S).$$

Then we see that $M_{10}|_S \geq 4G$ and thus $10\pi^*(K_X)|_S \geq 4G$. Pick up a general member C of $|G|$. Then we can write

$$3\pi^*(K_X)|_S - C - H \sim_{num} \frac{1}{2}\pi^*(K_X)|_S,$$

where H is an effective divisor or zero. Since

$$|K_S + (3\pi^*(K_X))|_S| \supseteq |K_S + (3\pi^*(K_X))|_S - H|,$$

by (1.1) we have a surjective map

$$H^0(S, K_S + (3\pi^*(K_X))|_S - H) \to H^0(K_C + D)$$

where

$$D := (3\pi^*(K_X))|_S - H - C|_C.$$

Whether $|K_S|$ is composed of rational pencils or irrational pencils, we can reduce to the curve C. Since C is nef on S, $\deg D > 0$. Thus $|K_C + D|$ gives a finite map and ϕ_S is generically finite. Then we can derive that if ϕ_S is not generically finite then $P_g(S) \leq 1$ and thus $q(S) \leq 1$. By virtue of Corollary 2.3 in [4], we have $q(X) \leq 1$. So we are done.

3. Generic finiteness of ϕ_m

In this section we will keep the same notation as in (1.2) and denote $d := \dim_0(X)$ and $b := g(B)$.

Corollary 3.1. Let X a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. If $P_g(X) \geq 2$, then ϕ_m is generically finite for all integers $m \geq 6$.

Proof. This is a direct result from Theorem 2.1.

Corollary 3.2. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. Assume $P_g(X) \geq 3$. Then ϕ_m is generically finite when $m = 4$ or 5.
Proof. The proof of Theorem 2.3 implies the case \(m = 5 \). As for \(m = 4 \)
the case \(d = 2 \). One can still derive it from the proof of Theorem 2.1;
The case \(d = 1 \) and \(b > 0 \). The proof of Theorem 2.1 also implies \(\phi_4 \) is generically
finite as long as replacing \(m \) with 4 there.
The case \(d = 1 \) and \(b = 0 \). From proof of Theorem 2.3, we know this corollary is
true. \(\square \)

In the following, we will study \(\phi_3 \) and then present several probabilities.

Corollary 3.3. Let \(X \) be a projective minimal threefold of general type with only
\(\mathbb{Q} \)-factorial terminal singularities. Assume \(P_g(X) \geq 5 \). Then \(\phi_3 \) is generically finite.

Proof. The case \(d = 2 \). Denote by \(S_1 \) the general member of \(|M_1| \) where \(M_1 \) is
the movable part of \(|K_X| \). We have
\[
|K_X + \pi^*(K_X) + S_1| \subseteq |3K_X|
\]
and
\[
|K_X + \pi^*(K_X) + S_1|_{S_1} = |K_{S_1} + L|
\]
where \(L := \pi^*(K_X)|_{S_1} \). Since \(K_X + \pi^*(K_X) \) is effective, we can reduce to the
problem on the surface \(S_1 \) by [10]. Obviously \(h^0(L) \geq P_g(X) - 1 \geq 4 \). Then \(|K_{S_1} + L| \)
gives a generically finite map by [2], so does \(\phi_3 \).

The case \(d = 1 \) and \(b > 0 \). The proof of Theorem 2.2 implies this is true.
The case \(d = 1 \) and \(b = 0 \). Then
\[
\mathcal{O}(4) \hookrightarrow f_6\omega_{X'}
\]
and
\[
f_6\omega_{X'/\mathbb{P}^1}^{2} \hookrightarrow f_6\omega_{X'}^{3}.
\]
Thus \(\phi_3 \) is generically finite for the same reason given in the proof of Theorem 2.1. \(\square \)

Corollary 3.4. Let \(X \) be a projective minimal threefold of general type with only
\(\mathbb{Q} \)-factorial terminal singularities. Assume \(P_g(X) = 4 \) and \(d = 2 \). Then \(\phi_3 \) is generically
finite.

Proof. One can easily derive it from above since \(h^0(L) \geq 3 \) in this case. \(\square \)

Corollary 3.5. Let \(X \) be a projective minimal threefold of general type with only
\(\mathbb{Q} \)-factorial terminal singularities. Assume \(P_g(X) \geq 2 \) and \(d = 1 \) and \(b > 0 \). Then \(\phi_3 \)
is generically finite.
Proof. This is just one part of the proof of Theorem 2.2. \qed

Corollary 3.6. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. Assume $P_g(X) = 3$ and $d = 2$. Then ϕ_3 is generically finite except $q(S_1) = 1$ or 2 and $[L]$ is composed of a rational pencil of genus $g = q(S_1) + 1$ where S_1 is the general member of $|M_1|$ and $L := [\pi^*(K_X)]_{S_1}$.

Proof. We only need to consider the system $[K_S + L]$. One can easily derive this result from Proposition 2.1 and 2.2 in [2]. \qed

Proposition 3.7. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. Assume $P_g(X) = 4$ and $d = 1$ and $b = 0$. Then ϕ_3 is generically finite if $P_g(S) \geq 2$.

Proof. One can easily see that we only need to study the system

$$
\left| K_S + \left[\frac{5}{3} \pi^*(K_X) \right]_S \right| = \left| K_{S'} + \left[\frac{5}{3} \pi^*(K_X) - \frac{E'}{3} \right]_S \right|
$$

since

$$\pi^*(K_X) = 3S + E'.
$$

Because

$$\mathcal{O}(S) \leftrightarrow f_S \omega_{S'},$$

we have

$$f_S \omega^{S'}_{X'/p_1} \leftrightarrow f_S \omega^{S'}_{S'}.
$$

Suppose $P_g(S) \geq 2$ and denote by G the movable part of $|\sigma^*(K_S)|$. Then we have $5\pi^*(K_X)|_S \geq 3G$ since $\beta \sigma^*(K_S)|_S$ is base point free. Denote by \overline{M} the movable part of

$$|6K_{S'} + S| \supseteq |K_{S'} + \gamma 5\pi^*(K_X) + S|.
$$

We know $\overline{M}|_S \geq 4G$ from Lemma 2.7 in [3]. Denote by \overline{M} the movable part of $|2(6K_{S'} + S)|$. Now we consider the subsystem

$$|K_{S'} + 2(6K_{S'} + S) + S| \subseteq |14K_{S'}|.
$$

Since ϕ_{12} is generically finite, \overline{M} is nef and big. By (1.1), we have a surjective map

$$H^0 \left(X', K_{S'} + \overline{M} + S \right) \rightarrow H^0 \left(S, K_S + \overline{M} \right)_{S'}.$$
Obviously we have $\overline{M}_S \geq 2\overline{M}_S$. So $M_{14}|_S \geq 9G$ by Lemma 2.7 in [3]. Thus $14\pi^*(K_X)|_S \geq 9G$. Then we can write

$$\frac{5}{3} \pi^*(K_X)|_S - G - H \sim_{\text{num}} \frac{1}{3} \pi^*(K_X)|_S$$

where H is an effective divisor or zero. Pick up a general member C of $[G]$. Then we have a surjective map

$$H^0 \left(S, K_S + \frac{\gamma}{3} \pi^*(K_X) \right) \to H^0(C, K_C + D)$$

by (1.1) where $D := (\gamma(5/3)\pi^*(K_X)|_S - C - H)|_C$. Since C is nef on S, $|K_C + D|$ gives a finite map. Thus ϕ_3 is generically finite.

\begin{proposition}
Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. Assume $P_s(X) = 3$ and $d = 1$ and $b = 0$. Then ϕ_S is generically finite when $P_s(S) \geq 3$.
\end{proposition}

Proof. In this case, we have

$$\pi^*(K_X) = 2S + E'.$$

Then one can reduce to the system $[K_S + \gamma(3/2)\pi^*(K_X)|_S]$ since

$$\left| K_S + \frac{\gamma}{2} \pi^*(K_X) \right|_S = \left| K_{S'} + \frac{\gamma}{2} \pi^*(K_X) - \frac{E'}{2} \right|_S$$

by (1.1).

If $[K_S]|_S$ is not composed of pencils, then ϕ_3 is generically finite.

If $[K_S]|_S$ is composed of pencils, then we can write $K_S \sim_{\text{num}} bC + Z''$ where $b \geq P_s(S) - 1 \geq 2$. Since

$$\mathcal{O}(2) \hookrightarrow f_*\omega_{S'},$$

and

$$f_*\omega_{S'/\mathbb{P}^1}^3 \hookrightarrow f_*\omega_{S'}^6,$$

we have $6\pi^*(K_X)|_S \geq 3G$ where G is the movable part of $|\pi^*(K_S)|$. By Lemma 2.7 in [3] and (1.1) considering the system $|K_{S'} + \gamma 6\pi^*(K_X) + S|$, we have $M'|_S \geq 4G$ where M' is the movable part of $|7K_{S'} + S|$. Then considering the subsystem

$$|K_{S'} + (7K_{S'} + S) + S| \subseteq |9K_{S'}|,$$
by (1.1), we have a surjective map

$$H^0(X', K_{X'} + M' + S) \rightarrow H^0(S, K_S + M'|_S).$$

Denote by M'' the movable part of $[K_{X'} + (7K_{X'} + S)]$. Then $M''|_S \geq 5G$. So

$$9\pi^*(K_X)|_S \geq 5G.$$ Then we can write

$$\frac{3}{2}\pi^*(K_X)|_S - C - H \sim_{\text{num}} \frac{3}{5}\pi^*(K_X)|_S$$

where H is an effective divisor or zero. Thus we can reduce to the problem on the smooth curve C of $g \geq 2$. Then we are done.

Proposition 3.9. Let X be a projective minimal threefold of general type with only \mathbb{Q}-factorial terminal singularities. Assume $P_g(X) = 2$ and $d = 1$ and $b = 0$. Then ϕ_3 is generically finite when $P_g(S) \geq 4$.

Proof. We can write $\pi^*(K_X) = Q S + E'$ and reduce to the problem on the system $[K_S + \pi^*(K_X)]|_S$ on surface S.

If $|K_S|$ is not composed of pencils, then we are done.

If $|K_S|$ is composed of pencils, we can write $\sigma^*(K_S) \sim_{\text{num}} bC + Z''$ where $b \geq P_g(S) - 1 \geq 3$. Now

$$O(1) \leftrightarrow f_s\omega_{X'}$$

and

$$f_s\omega_{X'/P}^2 \leftrightarrow f_s\omega_{X'}^5.$$ Then we see that $M'|_S \geq 3G$ where M' is the movable part of $[7K_{X'} + S]$ and G the movable part of $\sigma^*(K_S)$. Then consider the subsystem

$$[K_{X'} + (7K_{X'} + S) + S] \subseteq [10K_{X'}].$$

Denote by M'' the movable part of the left system above. By (1.1) we have a surjective map

$$H^0(X', K_{X'} + M' + S) \rightarrow H^0(S, K_S + M'|_S)$$

and then $M''|_S \geq 4G$. Thus $10\pi^*(K_X)|_S \geq 4G$. We can write

$$\pi^*(K_X)|_S - C - H \sim_{\text{num}} \frac{1}{6}\pi^*(K_X)|_S$$

where H is an effective divisor or zero. Then we can consider the system $[K_C + D]$ on curve C where $D \sim_{\text{num}} (\frac{1}{6}\pi^*(K_X)|_S)|_C$. So we are done.
ACKNOWLEDGMENT. I am indebted to Meng Chen who gives me a lot of encouragement and guidance.

References

Department of Applied Mathematics
Tongji University
Shanghai 200092, P.R. China
e-mail: lzhued@hotmail.com

Current address:
Doctor 05 Grade One
Institute of Mathematics
Fudan University
Shanghai 200433, P.R. China
e-mail: 051018003@fudan.edu.cn