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Abstract
Let X be a projective minimal threefold of general type withyori)-factorial
terminal singularities. We study the generic finiteness h& i -canonial map for
such 3-folds. Supposg,(X) > 2 and¢(X) > 3. We prove that then -canonical map
is generically finite form > 3, which is a supplement to Kdlt's result. Suppose
P,(X) > 5. We prove that the 3-canonical map is generically finite, Whioproves
Meng Chen’s result.

0. Introduction

Throughout the ground field is always supposed to be algedihaiclosed of char-
acteristic zero. LetX be a projective minimal threefold ohegel type with only
Q-factorial terminal singularities. For all integet > 0, onexyyndefine the so-called
m-canonical mapp,, , which is nothing but the rational map cquoesling to the com-
plete linear systenimKyx| . Many authors have studied the geneiterfess ofg,, in
quite different ways.

In 1986, J. Kolar presented the following theorem in his paper.

Theorem 0.1 (Theorem (6.2) of [6]). Let X be a smooth projectiv8-fold of
general type withy(X) > 4. Then¢, is generically finite fok > 3.

Meanwhile, he pointed out that the bound is the best possilleing our study
of generic finiteness oft  -canonical map for threefolds, we fire get a better bound
if we supposeP, X > 2. We also improve a result of Meng Chen.

Theorem 0.2 (Theorem 3.9 of [1]). Let X be a projective minimal Gorenstein
threefold of general typeThen¢s is generically finite wheneveP,(X) > 39.

The following is our main theorem.
Main Theorem. Let X be a projective minimal threefold of general type with

only Q-factorial terminal singularitiesIf ¢,, is not generically finite wheneven > 3,
then
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(1) P;(X) < 1 whenevermn > 6;
(2) either P,(X) <lor g(X)<2if m=3or 4
(3) either P,(X) <lorg(X)<lif m=5.

As a direct corollary, the following is a supplement to Kol result.

Corollary 1. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularities. 1P, X » 2 and X( 3 3, thef, igreerically
finite whenevern > 3.

Corollary 2 improves Theorem 0.2.

Corollary 2. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularities¢s is generically finite whenevelP, X( > 5 or
Py(X) =4 andg X )> 2.

As an application of our method, we will present more dethitesults of the
m-canonical map for 3-folds of general type.

1. Preliminaries

(1.1) Kawamata-Ramanujam-Viehweg vanishing theoremWe always use the
vanishing theorem in the following form.

Vanishing Theorem ([7] or [9]). Let X be a smooth complete varietpp €
Div(X) ® Q. Assume the following two conditians
(i) D is nef and big
(i) the fractional part of D has supports with only normal croggn Then
H(X,Ox(Kx+"™D7)=0for all i > 0.

Most of our notations are standard within algebraic geometgept the following
which we are in favor of~, meanslinear equivalencewhile ~,,n, meansnumerical
equivalenceand =z meansQ-numerical equivalence.

(1.2) Set up for canonical maps.Let X be a projective minimal threefold of
general type with onlyQ-factorial terminal singularities. Suppog®g X (>) 2, we study
the canonical mag; which is usually a rational map. Take the birational modifaa
. X' — X, according to Hironaka [5], such that
(1) X’ is smooth;

(2) |Kx:| defines a morphism;
(3) the fractional part ofr* Kx ) has supports with only normabssings. Denote
by g the composition ofp; o 7. So g: X' — B < P! is a morphism. Let

g X i> B’ > B be the Stein factorization of . We can writ€y ~jin 7*(Kx) + E
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and Ky, ~jin My + Z;, where M; is the movable part ofKx/| E is an effective
Q-divisor which is aQ-linear combination of distinct exceptional divisors. Wancalso
write 7*(Kx) ~in M1 + E’, whereE’ =Z; — E is actually an effectiveQ-divisor.

If dim ¢1(X) = 2, we see that a general fiber ¢f is a smooth projectiveecofv
genusg > 2. We sa is canonically fibered by curves of genus

If dim¢1(X) = 1, we see that a general fib8r ¢f is a smooth projective sur-
face of general type. We say that is canonically fibered byasas with invariants
(2, Pg) = (K2, Py(S)). Denote bys :S — So to be the contraction onto the minimal
model.

2. Proof of Main Theorem

Let the notation be as in (1.2) throughout this section. Wlysty,, according to
the valued :=ding1(X) andb =g (B). Obviously xd < 3.

Theorem 2.1. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularitiesIf ¢,, is not generically finite whenever > 6, then
Py,(X) < 1.

Proof. We suppose?, X( ¥ 2 and try to proysg, is generically finite dt
integersm > 6.

The cased = 2. Denote b§; the general member df;]. So S; is a smooth
projective surface of general type. We have

|KXr +r(m — 2)7T*(KX)1+S1| g |mKX'| .
Using (1.1), we have
|er +I_(m — 2)7T*(KX)—‘ +S]_| |S1 2 |K51 +I_(m - 2)L—l|

whereL :=z* Kx )s,. According to [10], we can reduce to the problem on surfsice
since

KX/ + '—(m — 2)7T*(I()()~I

is effective. Sinced = 2, we have®((m — 2)L) > 3. We know |Ks, + " (m — 2)L7|
gives a generically finite map by [2]. So dogg

The cased =1 and > 0. Because> 0, the movable pafiKgf is already
base point free orX andf; ~pym aS with ¢ > 2. So one always have* K |s) =
0*(Ks,). Obviously we have

|Kx+"(m — 2)n* (Kx )"+ M| € |mKx|
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and

|Kx +7(m — 2" (Kx)" + My| |, = |Ks +"(m — 2)L" ||

[l

where L’ =x* Kx ) by (1.1). According [8], we can reduce to the systémy +
T(m — 2)L'"g| on S since

Kx +"(m — 2)7*(Kx)"
is effective anda > 2. While
|Ks+ "(m—2)L"7|¢| 2 |Ks+"(m —2)L'|s|
by Lemma 2.2 in [3], we see
|[Ks+7(m —2)L'|s7| = |Ks + (m — 2)0* (Ks,)]| -

The right system defines a generically finite map$n by [12].dS8es¢,, .
The cased =1 and =0. According to [6], we have

o) — f*a)i,
and denote by
e = ﬁﬁa)i,ﬂp1 — f*wg,.

The local sections off,w?, /Pt give the bicanonical map of the fibér and they extend
to global sections ot becauge is generated by global section the other hand,
HO(P!, ¢) can distinguish different fibers of because deg{ ) 0.FB{P?, ¢) gives

a generically finite map orX’ and so dogg which meansp,, is generically finite
wheneverm > 6. ]

Theorem 2.2. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularities If ¢,, is not generically finite wheren = 3 or 4,
then eitherP,(X) <1 or ¢(X) < 2.

Proof. We assume?, X( & 2. SindeK%| €| K4| , we stuglyaccording to
d andb.

The cased = 2. Choose a 1-dimensional subsystent |Ky| while taking
a birational modificationr;: X’ — X such that the pencih defines a morphism
g1: X’ — PL We can even take further modification tq so thatr;(Kx) has sup-
ports with only normal crossings. Taking the stein factation p: X' — W’. We
note that this fibration is different from the one which wadired in (1.2). Denote
b1 := g(W’). Let M be the movable part of the pencil. We obviously ha¥e< Ky .
We can writeM ~ji, > i, F; wherea > 1 andF; is a fiber op for all
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Supposeb; > 0. We consider the system
|2Kx + M| C |3Kx/|.
Now M contains at least 2 componerfig and F». By (1.1), we have a surjective map
HY(X', Ky + M) — H°(F1, 2K1,) ® H(F», 2K 1,).

This meanspx,,+1) can distinguishF; and F, and the restriction taF; is at least a
bicanonical map. Theis is generically finite.

Supposeb; = 0. Now M ~j, F. Still by (1.1) and sinceb; = 0, we consider the
following system

|Kr+"n*(Kx)7|F|.

AssumeP, ¢ )> 2 andKrp| is composed of pencils otherwjs& &)  lppiis

generically finite. Ifg ¢ )< 1, theny X )< 1 by virtue of Corollary 2.in [4]. If

|Kr| is composed of pencils, thep F(Q 2 according to [11].H& £ ) 2.
The cased =1 and > 0. Now we have

|Kx + T (Kx) "+ My| € 13K x| .

One can replace: with 3 in the corresponding proof of Theorema®ld derive that
¢3 is generically finite.
The cased =1 and =0. In this case we have

7T*(Kx) =Q aS+E’

wherea =P, ¥ )— 1> 1 and

r /7

Kx + 2n*(Kx)— "

r 1 il
= ‘KS"' (2——) m*(Kx)
a

N N

If ¢3 is not generically finite, nor is the map defined by the righdéteyn above. We
supposeP, § > 2. ThehKs| is compose of pencils gn £ ) 2 accordind1p [
Thusg X )< 2 by [4]. U

Theorem 2.3. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularities If ¢s is not generically finitethen eitherP,(X) <1
or g(X) < 1.

Proof. We suppose®, X( 3 2.
The cased = 2. One can replage  with 5 in the corresponding mbdheo-
rem 2.1 and derive thaps is generically finite.
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The cased =1 and > 0. The proof of Theorem 2.2 implies thats generi-
cally finite since| Xx/| C | Kx/| .

The cased =1 and =0. We can write K{ )=aS E+ where PFX () 1
and
C [5Kx|.

’ r [

E
Ky + 4n*(Kx)— —
a

For the same reason, we consider the system

r /A

er + 47'[*([()()— —
a

r 1 il
‘Ks"‘ (4——>7T*(Kx)
a

S N

on surfaceS . IfP, ¥ > 3, then we have
and

f*a)i, /Pt > f*w‘,‘(,.

Thus ¢4 is generically finite for the same reason given in the prooffTb&orem 2.1.
SO is ¢s.
Next we suppose?, X ) =2 and then = 1. By [6],

O(l) —> f*a)xf
and

f*a)i, /Pt > f*wg,.

We assumeP, { > 2 and then denote &y the movable paftbiKs,)f, we have
67*(Kx)ls = 2G since| 2* Ky,)| is base-point-free fo?,  » 0. Furthermore, we
suppose|Ks| is composed of pencils otherwiseis generically finite. Then we can
write

U*(KSO) ~umbC +Z

whereC is a general fiber of the canonical mapSof &nd P, S « )> 1 1K¥
is composed of irrational pencils, thén> P, S (=) 2. DenoteMy thevahte part
of

|7Kx +S| 2 |Kx +"6m"(Kx) "+ S|.
Thus we haveM’|s > & by Lemma 2.7 in [3]. Now we consider the subsyste

|Kx + (7TKx +8) +S§| € [10Ky].
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From Theorem 2.1, we knowp; is generically finite. ThenM’ is nef and big.
By (1.1), we have surjective map

HOX', Kx + M +8)— HOS, Kg+ M'|s).

Then we see thaMg|s > 4G and thus 18* Kx |} > & . Pick up a general member
C of |G|. Then we can write

1
3r*(Kx)ls = C — H ~num ET[*(KX)
S

where H is an effective divisor or zero. Since
|Ks+"3n*(Kx)|s| 2 |Ks+ 3" (Kx)|s — HI,
by (1.1) we have a surjective map
HO(S, K5+ 37*(Kx)|s — H) = H%Kc + D)
where
D= ("3n"(Kx)'ls — H — C)lc.

Whether |Kg| is composed of rational pencils or irrational pksnave can reduce to
the curveC . SinceC is nefoS , dé&y> 0. Thusc D+  gives a finite map and
¢s is generically finite. Then we can derive thatdf is not generically finite then
P,(S) < 1 and thusg § )< 1. By virtue of Corollary 2.3 in [4], we hayeX (<) . 1
So we are done. O

3. Generic finiteness ofgn,

In this section we will keep the same notation as in (1.2) aedoted =
dimg1(X) andb =g B).

Corollary 3.1. Let X a projective minimal threefold of general type with only
Q-factorial terminal singularities If P,(X) > 2, then ¢,, is generically finite for all
integersm > 6.

Proof. This is a direct result from Theorem 2.1. [l
Corollary 3.2. Let X be a projective minimal threefold of general type witlyon

Q-factorial terminal singularities AssumeP,(X) > 3. Then ¢, is generically finite
whenm =4 or 5.
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Proof. The proof of Theorem 2.3 implies the case =5. Asiior =4.

The cased = 2. One can still derive it from the proof of Theorefy 2

The cased =1 and > 0. The proof of Theorem 2.1 also impligss generi-
cally finite as long as replacing  with 4 there.

The cased =1 anéd =0. From proof of Theorem 2.3, we know thisllenyois
true. U

In the following, we will study¢s and then present several probabilities.

Corollary 3.3. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularities AssumeP,(X) > 5. Then¢s is generically finite

Proof. The casel = 2. Denote I$f the general member df/;| where M; is
the movable part ofKy/| . We have

|Kx + " (Kx) "+ 81| € |3K x|
and
|Kx + " (Kx) "+ Sul |5, = |Ks, + L]

where L ="n*(Kx)'|s,. Since Kx» +'n*(Kx)" is effective, we can reduce to the
problem on the surfacé; by [10]. Obviously#°(L) > Py(X)—1> 4. Then|Kg +L|
gives a generically finite map by [2], so dogs.

The cased =1 and > 0. The proof of Theorem 2.2 implies this is. true

The cased =1 and =0. Then

0(4) — f*a)xf
and

2 3
f*wa/[Pl — f*wX’-

Thus ¢3 is generically finite for the same reason given in the prooffTb&orem 2.1.
U

Corollary 3.4. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularities AssumeP,(X) = 4 andd = 2. Thengs is generically
finite.

Proof. One can easily derive it from above sinc¥L) > 3 in this case. L]
Corollary 3.5. Let X be a projective minimal threefold of general type withyon

Q-factorial terminal singularities AssumeP,(X) > 2 andd =1 and b > 0. Then¢s
is generically finite
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Proof. This is just one part of the proof of Theorem 2.2. ]

Corollary 3.6. Let X be a projective minimal threefold of general type withyon
Q-factorial terminal singularities AssumeP,(X) = 3 andd = 2. Then¢s is generically
finite exceptg(S1) = 1 or 2 and |L| is composed of a rational pencil of gengis=
q(S1) + 1 where S, is the general member ¢M;| and L := "7*(Kx) s,

Proof. We only need to consider the systgkiy, + L|. One can easily derive this
result from Proposition 2.1 and 2.2 in [2]. ]

Proposition 3.7. Let X be a projective minimal threefold of general type with
only Q-factorial terminal singularities AssumeP,(X) =4 andd =1 and b = 0. Then

¢z is generically finite ifP,(S) > 2.

Proof. One can easily see that we only need to study the system

!—5 1 r 77
K5+ —N*(Kx) :‘Kxf"' ZJT*(Kx)——
3 N 3 S
since
ﬂ*(Kx) =0 3S+E'.
Because
0(3) — f*wX’,

we have

3 5
f*a)x,/]p1 — fuwy.

SupposeP, § )> 2 and denote iy  the movable parfodf Ks,Y|. Then we have
57*(Kx)ls > 3G since| 3* Ky,)| is base point free. Denote byl the movable part
of

[6Kx +S| 2 |Kx +™57"(Kx)"+ S].

We know M|s > 4G from Lemma 2.7 in [3]. Denote byl:/I the movable part of
|2(6Kx: +S) . Now we consider the subsystem

|Kx +2(6Kx +S§)+S| C | 14K x|
Since ¢12 is generically finite,ﬁ is nef and big. By (1.1), we have a surjective map

H0<X’, er+ﬁ+s) = H°<S, K5+ﬁ‘ )
S
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Obviously we haveﬁ|5 > 2M|s. SO Muls > 9G by Lemma 2.7 in [3]. Thus
14n*(Kx )ls = 9G . Then we can write

2 (k)

1 *
3 -G — H ~um 577 (Kx)

N N

where H is an effective divisor or zero. Pick up a general menthef |G|. Then we
have a surjective map

r B

5
H° <S, Kg+ én*(l(x)

— H) — HY%C, K¢ + D)
S

by (1.1) whereD =7(5/3*(Kx)'|s — C — H)|c. SinceC is nef onS |Kc +D|
gives a finite map. Thugs is generically finite. O

Proposition 3.8. Let X be a projective minimal threefold of general type with
only Q-factorial terminal singularities AssumeP,(X) =3 andd =1 and b = 0. Then
¢3 is generically finite wherP,(S) > 3.

Proof. In this case, we have
JT*(K)() =0 2S +E'.

Then one can reduce to the systéky " (3/2)r* (Kx)"s| since

r A

3 r E/T
K+ EN*(KX)

Ky + 2m*(Kx)— >

N S

by (1.1).

If |Ks|is not composed of pencils, theps is generically finite.

If |Ks|is composed of pencils, then we can writ& ~nm bC + Z” whereb >
Py(S)— 1> 2. Since

and
f*w?(f/]pl — f*a)?(’a

we have @* Kx s > & wheres is the movable part|ef Kg()|. By Lemma 2.7
in [3] and (1.1) considering the systefKy: "6x*(Kx)"' + S|, we haveM’'|s > &
where M’ is the movable part of Kix St . Then considering the suesyst

|Kx + (7Kx +S)+S| S |9K x|,
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by (1.1), we have a surjective map
HOX' Ky + M' +8)— HOS, Kg+ M'|s).

Denote byM” the movable part oKy +K& S )S$ . Thed”|s > G5 . So
9r*(Kx)ls = 5G. Then we can write

3 3
577*(KX) —C—H ~yum g”*(KX)
S S

where H is an effective divisor or zero. Thus we can reduce ¢éoptoblem on the
smooth curveC ofg > 2. Then we are done. ]

Proposition 3.9. Let X be a projective minimal threefold of general type with
only Q-factorial terminal singularities AssumeP,(X) =2 andd =1 and b = 0. Then
¢3 is generically finite wherp,(S) > 4.

Proof. We can writer* Kx ) g S+ E’ and reduce to the problem on the system
|Ks +"n*(Kx)7|s| on surfaceS .

If |Kg|is not composed of pencils, then we are done.

If |Ks|is composed of pencils, we can write* K{) ~nm bC + Z” whereb >
Py(S) — 1> 3. Now

O(l) —> f*(,()xf
and
f*win/]pl — f*w?('

Then we see thaM’|s > @ whe®d’ s the movable parf &y7 S|+ @&nd the
movable part ofo* Ks,). Then consider the subsystem

|Kx +(7TKx +8)+S| C [ 10K x|

Denote byM” the movable part of the left system above. By (1.4)have a surjec-
tive map

HO(X', Ky +M' +8)— HOS, Ks+M'|s)
and thenM”|s > & . Thus ¥ Kx |9> @G . We can write

1
7*(Kx)ls — C — H ~num éﬂ*(Kx)
s

where H is an effective divisor or zero. Then we can considerdystem| Kc +D|
on curveC whereD ~nym (T(1/6)r* (Kx ) '|s)|c. So we are done. O
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