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0. Introduction. Consider the Cauchy problem for a hyperbolic oper-
ator whose characteristic roots have variable multiplicities at most two. Then,
we often meet the operator such that, even if the coefficients are infinitely dif-
ferentiable, the characteristic roots are not infinitely differentiable. In this paper
we prove in the above case, by constructing the fundamental solution, that the
singularities of the solution propagate along the bicharacteristic curves.

Lax [13] constructed the asymptotic solution of the Cauchy problem for
a strictly hyperbolic operator and investigated the propagation of singularities
of the solution. For the operator with multiple characteristic roots many
papers have been published. For examples, Chazarain [1], [2], Kumano-go
[8], Ludwig [14] for operators with characteristics of constant multiplicity,
and Flaschka-Strang [3], Ludwig-Granoff [15], Hata [5] for those with charac-
teristics of variable multiplicity have constructed the fundamental solution or
the asymptotic solution and investigated the propagation of singularities.

In these papers they assumed that characteristic roots are infinitely dif-
ferentiable. In the present paper we treat hyperbolic operators such that
the coeflicients are infinitely differentiable, but the characteristic roots are not
so with respect to the space variable. One of examples is

0.1 L = 02— (x2*+x%%)(02 +82% )+ ‘“‘a lower order term”
( 1 2
on [0, T]X R} (k=4).

For such operators we study the Cauchy problem and investigate the propa-

gation of singularities.
The outline of the present paper is as follows. Let L be a differential

operator of second order in Q=[0, T] X R%:
02) L= 6§+I IZ_SZ a, (¢, %)3:07  (ay(t, ¥)EB~(Q)),

j=0,1

whose characteristic roots A(t, x,£) (=1, 2) are not infinitely differentiable
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with respect to . Then, we modify the principal part of L by using the ap-
proximation theory in Section 2 in order that the characteristic roots X, (Z, %, £)
(=1, 2) for the modified principal part are infinitely differentiable with respect
to x. Then, applying the method of the case where the characteristic roots
are infinitely differentiable, we can construct the fundamental solution. We
note that the modified principal part is no longer differential operator.

In Section 1 we give the several classes of pseudo-differential operators
and exhibit the results obtained by Kumano-go-Taniguchi-Tozaki [10] and
Kumano-go-Taniguchi [11] on the theory of Fourier integral operators. In
Section 2 we study the approximation theory for a non-regular symbol (Def-
inition 1.4). We define an approximation of a non-regular sybmol by modifying
that of Nagase [16], [17] and Kumano-go-Nagase [12]. In Section 3 we con-
sider the approximation A(t, x, £) for a non-regular characteristic root A(¢, x, &)

and define the phase function ¢(¢, s; x, £) as the solution of the eiconal equa-
tion

(0'3) atqs_i’(t: X, Vx¢) =0 ’ ¢|t=s = x'f .

Then, we investigate the wave front set of Py(X, D,)u(x) for a Fourier integral
operator P4(X, D,) with symbol p(x, &) and phase function ¢. In Section 4
we prove the main theorem for hyperbolic operators of second order (Theorem
4.5). In Section 5 we shall extend the result in Section 4 to hyperbolic opera-
tors of higher order whose each characteristic root has multiplicity at most two.

The author wishes to express his sincere gratitude to Professor H. Kumano-
go for his advices and encouragement.

1. Definitions and Fourier integral operators

For multi-indexes a=(a,, -, a,), 8=(8y, ***, B,) of non-negative integers,
and x=(x,, -+, x,) ER%, E=(&,, -+, £,) R}, we use the usual notation:

la|=ay++a, a'l=al-a,!, «°=ax"-x5",

af’:z a‘::...a::’ 61': _6._.’ Dz:D:i.--D:”:’ Dx,= —l’a
J axj J

<x>= (1+|x|2)1/2, Vz= (axl) °t% ax,,)’ x'E:xlfl+"'+xn§n'

x5

a<f3 denotes that a;=<g@; for all j and a#/3. Let S on R” denote the Schwartz
space of rapidly decreasing functions. &’ is the dual spade of S. For u€S,
the Fourier transform #(£)=F[u](§) is defined by

Flu] () = S e~ ixtu(x)dx |

Then, for #4(£)ES; the inverse transform F[#](£) is defined by
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Fli](x) = S eeHIE)dE | dE — (2m)"dE .

For real s we define the Sobolev space H, as the completion of & in the norm
lall={ [<eox ey 1 2agy e
For f(x)=(f(x), -+, fu(%)) (f;(x) € C'(R")) we denote

— — . z l 11 N
0. = Vuf = (0,5 L1 100,
We introduce the pseudo-differential operator. Definitions and notations

are due to [6].

DeriNiTION 1.1, We say that a C*-function a(», ) in R;", belongs to the
class A3, for —oo<m<<oo,0=<8<1and =0, when for any multi-indexes «, 3
we have

(1.1) [8705c(n, )| < Ca g™ P YD,
for a constant Cap>0, and set

A=U U U ..

0=58<1 0T —vlmL

It is clear that 3, is a Fréchet space with semi-norms

la]= max {inf Cpp of (1.1)}, I1=0,1,-.

le+BI<T
DerinNiTION 1.2, For a(n, y) € AF. we define the oscillatory integral
Os[e-iyma(.,],y)] by .
O.[¢"a(n, 3)] = O, {[ e a(n, y)dydn

— lim SX e~ X(&n, Ey)a(n, y)dydn ,

€8>0

where X(7, y) € S(R*) such that X(0, 0)=1.

DeriNtTION 1.3. i) We say that a C=-function p(x, £) in R* belongs to the
class S7y (—oco<m<<oco, 0<8=<p=1, 8<1), when for any a, @ we have

(1.2) | pSB(x, E)| < Cy pEDmPIoIH0IAL

for a constant C, >0, where p(g)(x, £)=0;Dsp(x, £).

ii) We say that a C-function p(x, £, x’, £’) in R* belongs to the class
Sm™ of the double symbols (—oo<m, m'<<oo, 0<8=<p=1, §<1), when for
any a, a’, 8, 8’ we have
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(1.3) | P A, £, &', )]
S Cy g g EDSTIBITPIOI s £SO g =0l

for a constant C,w e >0, where pEal(x, &, &', £')=0;0yDiDEp(x, £, %', E'),
EED=VI+IEFIET

We often write

Sy = Sie Sy =S, (h=p

A

1).

Then, the pseudo-differential operator P=p(X, D,) with symbol o(P)(x, )=
p(x, £) is defined by

(L4) Pu(x) = O~ “ e~ p(x, nu(x-+y)dydn, ucsS.

In the same way for the double symbol o(P)=p(x, &, ', £') we define
P(X’ Dn X’) Dx’) by

4 Puw) = O {[{erom e "0p(a, m, wty, )
u(x+y-+y"dydy'dndn’ .

It is known that P of (1.4) and (1.4)": S—& is continuous and if pi(x, £)E
oy (i=1, 2), we have

{ B, Bp', E)ESTE™,
P(X, D)P(X', DJu = P(X, D) {P{X, D)u} , u€S,

(see [6]). Here we give the definition of class of non-regular symbols.

DrriNiTION 1.4, Let p(x, £) be a function such that for any a and 8
(1B =110, 1=0) pig(x, &) is continuous, where [I] denotes the largest integer
which is not bigger than I. Then, we say that p(x, £) belongs to the class
STo;:1, when the following i) and ii) are satisfied.

i) When |B| <[{], for any o we have

(L.3) [pE(x, &) S Ca ogED"11.
if) When |B|=][], we have for any « and |x—y|=1
(1.6) [P (x, E)—pB(y, E)| SCapla—y | "UKEI™

where C, >0 is a constant.

DeriNiTION 1.5. Let p(x, £)eSy=S7,_, (=p=1). Then, we say that
p(x, &) belongs to the class S}'((1)) for the positive number /, when the following
i), ii) and iii) are satisfied.
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) pEM ST (letBI=[).

ii) We have for a constant C,, s>0

(1.7) | pE(x, £)—pR () £)] =Capla—y| TUKE1
(la+B1=[1], |x—y|=1).

i) PR, HESTHMCNED  ([+15 ot B).

RemARk 1. For any x& R} and yE R} we get the estimates (1.6) and (1.7)
by replacing C, g by another constant C} s, respectively.

Remark 2. 87, STo;, and S7*((/)) are Fréchet spaces provided with semi-
norms /

[p|§™ = max inf { Cyp of (1.2)},

v
[p] ﬁ"’):mg‘?ﬁ.’; inf { Cap of (1.5) and (1.6)}
and
= max inf | p{g|§" "0 (k<[1)),
1ol 1 = [ D11 am+ WX inf {C, s of (1.7)} (=11,

— (m) max ([11-PI®I+(1~P)(1BI-1)) k>
[Pt am+ m+1§|¢+mgk|P [0 k>0,

respectively.

Now we summarize below the definitions and the fundamental theorems of
of the theory of Fourier integral operators from Kumano-go [7], Kumano-go-
Taniguchi-Tozaki [10] and Kumano-go-Taniguchi [11]. The proofs would
be the given, only when the theorems are stated in extended forms.

DEerINITION 1.6. i) We say that a real valued C’-function ¢(x, £) in R*
belongs to the class P(7) (0=7<1) of phase functions, if we have for J(x, £)=

¢(‘x’ E)_x'g
(1.8) 1 ZWE sup {| J®B(x, £)|KEX =7

Bl=2

ii) We say that a phase function ¢(x, £) of class P(7) belongs to the
class Py(7) (1/2<p=1), if J(x, &) belongs to S3((2)).

The Fourier integral operator Py with a symbol o(P) (x, £)=p(x, E)E S
and a phase function ¢(x, £)EPy(7) is defined by
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(1.9) Pyu(x) = S O, EYA(E)dE
= 0, | evenrrop(e, Eu(y)iyde, ues.

DeriNITION 1.7.  Let ¢; belong to P(7;), j=1, 2, «++, v+1, -+, with 7, =
V41

TS =21 7;=7, (£1/8). Then, we define ®,(x, £"*)=cpHcp, "
By (2 V) by
(1.10) @, (=, &) = Z.:. {9,(Xi™, B —X{-Ei} +dvrn( X3, E)
(‘X3 = xo) ’
where {X7{, Ei}}_,(x°, £**') is defined as the solution of the equation
j— (xi~L Ei
(1.11) { Y=V ),
E’ = Vz¢j+l(xli E!-H) ] = 17 2) V.

Theorem A (Theorem1.8 and Theorem 1.9 in [10]). @) Let ¢; € P(7;),
J=1 w41, o, 7 <7 (£1/8).  Then, we have

Qv = if B e ELGT)  (Ten =25l 7)),
for a constant ¢,>0 independent of v and ,, and we have
Vao®yi(x, £ = Vg (&, B(s’, £77))
Vi@ (0, £71) = Vigya(X3(", £77), 7).
Furthermore, we obtain
(1.13) { 1) Dy Bbvir = Pysz,
i) (difide)Bds = di#i(dichs) = Pifihatiehs .
b) We assume in a) furthermore that {J;|/7;}7-1 is bounded in S;((2)). Then,

for Iy, ,=®,,,—a°-E** we have

(1.12) {

{Juss/Tysr} oy is bounded in S((2)).

DeFINITION 1.8. We say that a C'-function p(x, £) belongs to the class
STo;:y (I 1s an integer). When

[ @), E)| =Cap<EO" ™ (la+BI=)).

S¥0: (@ is a Banach space provided with a norm
l1pll = max sup {| p, £)1<E>™"'*"} .

We study a hyperbolic operator of the form
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(1.14) L=D,—\t, X, D,),

where (¢, x, £)eBY([0, T1; Si.0; «2n)=B%[0, T]; Si.0; «») and is real valued.
Consider the eiconal equation

(1.15) 6t¢_7\‘(t; X, Vx(»b) =0 ’
¢ll=s = x'f .

Then, we have

Proposition B (Theorem 3.2 in [7] and Proposition 2.2 in [10]). Let ¢=
B(t, s)=¢(t, 55 x, ) be the solution of (1.15) (0=s=<t=<T). Then, we have for a
constant ¢,>0 and a small Ty>0

) Bt NEPC(t—s) (0SsSt<T)
i) {J@, 9)/(t—5)}osssist, is bounded in St s
(1.16) i) Jt, )€ [] B8 Sto: )
= ,Do Bi(Ay; Stoice-p)  (Ag= {0=s=t<Ty}),
and

(1‘17) 6s¢+>\‘(s) V£¢(t’ S), ‘E) =0,

where J(t, s)=J(t, s; x, E)= (2, s; x, ) —«+E.  Particularly, if A, x,E)E
B([0, T1; S((2))), we have

1) ¢t )EP(eft—s) (0=s=t=T,),
(1.18) i) {J(, )/(t—9)}osssisr, 15 bounded in S;((2)),
iit) J(t, 5)€ ,-Do Bi(Aqg; SH((2—))) -

Proof. Let {Q(t: S), P(t’ S)} = {((11’ ) qn), (.pl) ""Pn)} be the solution of

(1 19) Z_? = -—ng(t, q, P) )
g‘f — Va0, {069 =1{»E.

Then, it is clear that
t
att, 533, 8=y = — [ o, a(r, 9), ptr, ar,

P, 53y, E)—E= S: V(T g(7, $), p(7, 8))dT,
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and for a small 7,>0 and a constant C>0 we have

(120)  CKE>S(, 533, EDSCE>  (0=s=<t=T).

Hence, we can see that

1 .
j q(t, )=y € [] B (Ao; Stosca-m) s
(1.21) ”

2,9 (| BIA; Stos o).
and
{(a(t, )=2)/(t—9)}osssesr,= (gt )—)/(E—5)}
(122) 9 is bounded in S‘l’,o 5 ()
{(p(t, )—E)|(z—s)} is bounded in S},0; () -

So we have for a constant 7;>0 and £>0

[10,g—I|SC(Ty—s)<(1—8&)  (0=s=t=T,),

,]’_{} 2%) we define the norm ||| by [|4lI=

{2314, ;132 Consequently, for the mapping: Ry 2y—>x=q(t, 5; y, £)ER; with
5

where for matrix Az(a

(¢, 5, £) as a parameter, there exists the inverse y=y(¢, s; x, £). Since q(t, s; y(¢,
§; x, ), £)=x, we have

¥, 55 %, E)—xe ,Do Bi(Ag; 8105 @-») >

{(5(t, 53 %, E)—x)/(t—s)} is bounded in S2o; (v -
Now setting

(126 ult 55,8 =y-E+ | (v—pVb(r, a(r, 9), p(r,

we have

at {ay,-u —P(t’ ,S) * a)’jQ(t} s)}
= 8}',' {X(t, q, P) —p- Vg)\,(t, q, P)} - {V,X(t, q, P) ‘ a}'jq_.p° ayj(vfh(t’ q, P))}

(1.23)

=0
and
0,u(s, $)—p(s, §)-0,9(s, ) = 0.
So we get
(125) 6'“ = 7\'(t’ q, P)—p'VQ\.(t, q, P) ’

0,u = p-0,,9 (G=1,mn).



PROPAGATION OF SINGULARITIES FOR A HYPERBOLIC EQUATION 711

Defining (1, 5)=g(z, 5; %, £) by
(1.26) o(t, s) = u(t, s; y(t, s; x, £), &),

we have
(1.27) 8,}.4) = Vyu(t, s; y(t, 5), £)-0,y
= p(tr S5 y(t: S), E)ayq'ax,y
= pi(t’ S5 y(t: S), E) .
So we get
(1.28) agqb = azu(t, s y(t: S), E)_{"Vyu(ty $5 y(t: s)v ‘f)'aty

= Mt, ¢, p)—p* VM2, ¢, p)+10,9-0,y

= 7\'(t: q, P)_'p'v£7\‘(t9 q, P)‘I‘P'Vé')\'(t: q P)
= M¢, (2, s; 9(2, 5), £), p(2, 55 ¥(2, 5), £))
=M, %, V.P) .

Consequently, ¢(2, s) defined by (1.26) is the solution of (1.15). Since

0/ (Ve(t, 55 9(2, 83 9, &), £)) y
= V.Veb(t: 53 4t 5), E)YVer+ VVed(t 53 (s 9), ) 2
=0,
and  V:d(s, 53 q(s, 53 3, &), E)=y, we have
¥ = Vep(t, 55 4(t, 53 9, £), £) -
Together with (1.27) we obtain

V.(2, 5; %, E) = p(2, s, ¥(2, 55 %, E), E),
(1.29) Vep(t, s; %, ) = y(t, 55 %, §) ,
¥ =Vp(t, s; 92,55, £), §) .

Since from (1.26) we have

Jt,5) = $lt, )=
= 0t =) £+ D—pTAI(, a(7, 9), BT, N7yt

we can see by (1.22) and (1.23) that
{J(2, 5)/(t—s)} is bounded in S, ; ) -

In the same way we obtain from (1.29)
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{J(t, 5)[(t—s)} is bounded in 81,0, -

We note that
(1.30) CRESV L ND=CE>  (0Ssst<T,),

where C>0 is a constant. From (1.15) and (1.29) we can see that 3,0,4(t, 5)
and 0,V,¢(2, s) are continuous. By the same techniques of the proof of Prop-
osition 2.2 in [10] we get

6s¢(t’ S)+7\,(S, V«‘Ed)(t: s)’ f) =0.

So we get

(131) { 6!] = 6t¢’ = 7\.(t, X, V,(f)) ’

as] = 6s¢ = '—7\’(3’ Vi, g) .

Hence, we obtain
1 :
Jt,9€ () B(A; Sho:camm) -
j=

By the similar way to the proof of (1.16) we obtain (1.18). Q.E.D.

Now take A ;€B([0, T1; Si.o: @) (=1, 2, *-,v+1, +++) as A of (1.14) and
let ¢,(t, s) be the solution of (1.15) corresponding to A;. We define &=®&,,,=
D, ..vsalty =+ tyirs 2% £V by

(1-32) q’wl(to: ) tv+1) = ¢‘1(to, tl)#"'#‘f’wl(tv: tv+1) .
Theorem C (Theorem 2.3 in [10]). (2, -+, tvyy) of (1.32) satisfies

. 0,8 — (e X B Nulty XEE)  (05jSv+1)
Mo = Ny =0, B = V,0®, XJ*! = Vp+1D).

2). If t;=t; .= for some j, we have
D vii(te o5 tjoyy Ty Ty Linay o7y ui)
= ¢l’...,j’j+2’m'y+1(to, sy tiigy Ty Eiagy ooy but)
3). If Ni(t, %, E)=n;1.(t, x, E) (therefore ¢p;=d;.,) for some j, we have
‘I)i,v~~.V+1(t: ey b)) = Dy,... ;-1 --~,v+1(t(;: ety tion B s bysy) -
RemMark 3. From Theorem C we have for @ of (1.32)

0;, ®—N(t, &°, Vo®@) =0,

(1.33)
@ | to=t; — q)2,3,-~,'v+1(tl) 1y, =+, tv+1) .
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Corollary D ([10]). Let \(t, x, &) fjo BI(0, T]; SX(2—))) (i=(1, 2)).
Assume that
A=y, A2} €BY([0, T1; S2) s
where {A—N\,, A—N\,} denotes the Poisson bracket for N—\, and \N—\,, which is
defined by
B A — O y— VA Veky - Ve s VA,

Then, for a small T,>0 we have
q')Z,l(tO) 1, ty; 2%, EZ)_(I’x,z(to: ty—1,-+1,, tz; 2, EZ)EBO(Al; Sﬁ) .

Proof. We shall prove in the similar way to the proof of Corollary of
Theorem 2.3 in [10]. Let {y(a), 7(c)} = {¥(o, t,, ;; &°, £%), n(o, t;, 13 %°, E?)}
be the solution of

Z—Jf = —Vi\(o, 3, 1),
ag

(1.34) @ _ 9o, y, 2,
do

{yr 77} |a'=t1 = {Xi(tm tl) tz), E}(to; tl; tz)} ’

where {X1, E1} is the solution of Xi=Vy,(t,, t,; *°, B1), El=V.ps(t;, t,; X}, £2).
Then, we have y(£,)=x° 7(t,)=V 0D, 5(%, t;, t,) and

(135) 9 {uler ¥(o), WD) =Ml (o), WD}

dy Cdn dy dn
-——6%“6)\, Vxx ¢ = V?\ -*—-V‘J\, °-——V7\, e —
t/\2 t 1+ 2 d + £ l 1 ] 12491 ]

= — {A =2, A2} (o, ¥(0), 2(a)) -
So we have
{7\'2(’50: x°, Vz"q)l,z)_xl(to: x°, onq)l,z)} — {7\z(t1, Xi, Ei
—N(t, X1, BN} = O(t, 1, 1)

t

where Q(f,, 1, t,)=0(ty, ), t,; x°, %)= — S to =1y A=} (o, ¥(a), 7(c))da. Con-
1

sequently, we can see by Theorem C that

6t0 {(I)l,z(to; to_tl‘l’tz; tz)} —7\'2(10; on Vx"q)l,z(to; to— t1+t2; tz))
(1.36) = —Q(ty ti—ty+tp, 1)
cI)1,2('30, to“t1+tz, tz) I to=t; — ¢1(11, tz) .

By Remark 3 we have
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atoq)Z,l(to: tl: tz)—xz(to’ xo: onq)Z,l) = 0 ’
D,,| to=t, = At 1) .

Hence, setting u==®, (t,, t,—t,+1;, t:)— D, (1o, 11, t;), We see that u is the solution
of

(1.37) {

(1.38) { Ougut+Hi(to, 1y, 1)+ Vou+ Hyfty, 1, 1) = 0,
“|:0=tl =0,
where
1
Hi(to, 1y, 1) = — So Vero(to, %°, V0D, 1(fo, 1, 1)
(1.39)

—I_e(vxoq)l Z(tox t{, tz)—vxoq)Z,l(tO) tl: tz)))de (t{ = to_tl+t2) ’
Hz(to, t,, tz) = Q(to: to_tl+f2: tz) .
Since from Proposition B and its proof we have
V0@, KED ™, n(t)<ED T, y(t)—a°€B(A;; SH(1))),
and for a small 7,>0 and a constant C>0
C_1<Ez>§ <Vx°®2,1(to: t, tz)—|—9(V,o<I>1’2(to, t, tz)_vz"q)z,l(to, t, tz))>SC<EZ> ’
we get

H1(to: t, tz)EBo(Al; Sg((l)) ’

1.40
T B 0 ) B 59).

We solve (1.38) along the characteristic curve. Let g=q(t,, t,, t;;y, E)=
(91 ***5 ¢,) With (2, 2, £%) as a parameter be the solution of

(1.41) Z—% = Hy(t,, t,, ts; ¢, &%), ‘1|to=t, =Y.
0

Then, we have for a small T;,>0 in the similar way to the proof of Proposition B

q(te, 1, 123 9, E)—yEBY(A, 35:((1)))

(N Hlto 3, ) — B B(AL; SYD),

where y(t,, t,, t;; x°, £%) is the inverse for the mapping x°=gq(t), t,,t,; y, £%):
R}> y—>x°€ R’ with (t, 1,1, E?) as a parameter. Then, the solution u of
(1.38) has the form

t
(1'43) u(t(h tl: t2) = - Sto HZ(T, tl; tZ’ 4(7'; tl: tz; y, ‘EZ)) EZ)dTI y=y(to_tl,t2)

Hence, we obtain Corollary D together with (1.40) and (1.42). Q.E.D.
Let 2\ (¢, x, &) (=1, 2) satisfy the condition of Corollary D. Then, for
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any p(t, 7, s; %, £)€B%(A,; Sp') we have
t
(1.44) S drPs_(t, 7,53 X, D,)u
x

= s‘ exp (iD, q(t, 7, )P, T, 83 %, EYU(E)dEdT

s

= s‘ exp (i@, o(t, t—7+s, H)P(L, t— 7+, SA(E)dEdT

_ S' drQs, (t, 7, 5; X, Du,

where

O'(Q)(t: T, $ %, g)
= exp ({®, 4(t, t—7+s, 5)—D, (8, 7, 9)))p(, t—7+s, $; %, E)
(eB(A; SD)).

Theorem E (Theorem 2.5 in [11]). Let p;,=p,x, &) S,’,”: and ¢;=
¢i(x, E)EP(7)) (j=1, =, v+1, ) (12<p=1). Assume that 3} |m;| < o,
Too= ﬁ ;< 70/8¢, with constants T, and c, of Theorem A, and {] ;|7 j}j}’::l is bounded
in S;(](=21)). We also assume that for any [ there exists a constant A, such that
(1.45) |p;|"<A4,  (j=1,2, -, v+1, ).

Then, we have a symbol g,=gq,(x°, £ S™+1 (M, = ilmj) which satisfies the
followings. For a constant C,>0 independent of v .

(1.46) I ™0 S C7 (v=1,2,-),

holds, and if we set

(1.47) Ry =P, 4 Pyg, Py 3,—Qo,,, >

R,: H_.—H_., is a smoothing operator in the sense: For any o and N we have for
a constant C, x>0 independent of v

(1’48) ||RV”H¢-->H¢-+N§CZ"N ’

where || +||y,>u,., 5 denotes the operator norm of the mapping: H,—~H,, '

2. Approximation theorems

Nagase in [16], [17] and Kumano-go-Nagase in [12] treat approximation
theory for non-regular symbols. In this section we develop it.

DerINITION 2.1. We say that p(x, &) (€S;';) belongs to the class S;'5(1)
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(!=0), when the followings are satisfied.

) pexE)esSy  (IBI=[),
ii)
(2.1) |PE(x, £)—PE(», )| < Caplx—y | TKEImM
(I81=11, lx—y|<1)

for any «,
iii) pe(x, £)ESHFE-D  ([+1=18]).

ReEmMARK 1. It is clear that for another constant Cj g (2.1) is equivalent to

@1 1 H—pE0, B Chplv—y| g
(181=11, % yeR).

Lemma 2.2. There exists a function \(x)E S(RY) such that
2.2) S v @dx=1, S W(@ady =0 (|a|=*0).

Proof. Take a function ¢(&) S(R?) such that
(2.3) $(0)=1, Dip(0)=0 (la|=*0),

and set

v = etaera
Then, noting that

[ w@sean = (—Di90),
we see that Jr(x) satisfies (2.2). Q.E.D.
Lemma 2.3. Let p(x, £)€ST0;:. By using \r(x) of Lemma 2.2 we set

@4) gl &) = [ty BIEO,

and we set for a multi-index w=0

(2.5) r(x, §) = S WLEPY)KEYY) p(x+y, E)dy<ED™.
Then, we get
Q(x) ‘E)ESI”,S(I) ’ r(x, ‘E)ES?.ESI .

Proof. First, we prove that g(x, £) belongs to S7s(/). We note that
g(x, £) has another expression
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@6 &) = [ WD -y, .
We have

@l &) = | SO+, BE™ .
= v o—pew, pae" (8IS

Hence, we get
qm(x, E)EST;  for |BI=[]].

When |B|=[I], we write
(2.7) 4y (%2, £)—qepr (%1, &)
= S VLE) (P (®aty, E)—pi(®ty, E)}dyE™ .

Then, noting that p(x, £) belongs to S, and
(28)  IKEWISCH™,
we get for any o
29) 1B B g B S Caplr—n | TR (18]=[1]).
Hence, we obtain ii) of Definition 2.1.
When | 8| 2[I]+1, we have
g, &) = | (—COPP ANy —2)pes (3, ENy<ES™,
where J®=P0)(y)=D,®Poy(y) and B, is a multi-index such that |8,|=[/] and
B,<pB. Since
Jwewmay =0 (18-6+0),
we have
210) gl B) = (<P | Y (y—a)
| X (P9, E)—piog(: E)}<EN™.

So we have
lg&(x, E)|=Cip S [ BB ED (y—2x)) | (KED* | y—| ) AdyEpmB-1Bh-1%1+om
écm B<§>m-81+813|—|“l .

Hence, we get
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gp(* E)ESTFE0 (181=[+1).

Thus we can see that g(x, £) belongs to SPs(J).
Next we prove that 7(x, £) belongs to S7'5%'. Set

(2.11) Yol9) = ¥()"  (0F0).
Then, from (2.2) we get

(2.12) s VvP(y)y'dy =0  forany Band v.

Now we write by the Taylor expansion

(2.13) by, &) = 23 " (y—%)"/(apw(*, £)

|| <2

+ 23 M(y—x)(7 ), 35 £)

IyIstn

where
@14 a8
_ { 11, A—00 (pen(r+0(y—), E)—pool 40 (A1),
20,025 (=0

Then, it is clear that
(2.15) lgs(x, ¥; )| = Cly—x|""HED".
From (2.12) and (2.13) we have

(%, &) = [ VKO-, By
— 31 i1 [ Y —Marl, 35 —dy<E

1v1=01

Similarly, we have for any B

216) T, &) = (<O | YOEA -y, BdyE
— (<P 33 i1 [ Y PO, 33 ©)
X (y—x)'dy<E™ .
Then, in the similar way to the proof for g(x, £) we have

2.17 |8, £) | < Cy g<EDm 81 H8IBI-101
@, £) :

Hence, we can see that 7(x, &) belongs to ST3%. Q.E.D.
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Lemma 2.4. For p(x,E)ESTo;, (0=0=2) set
(2'18) Q = Q(‘x; x’: y; 5) = P(x_y’ E)_P(xs E)'—P(x,_y; E)+P(x'> g) .

Then, we get
i) When 0= o<1, we have for any 7 (0=7=0)

(2.19) [QI=2pl{Ps|a"—2| "y |<ED™,
ii) When 1=0=2, we have for any 7 (c—1=7=1)
(2.20) [Q1=nlp|7|a"—x| [ y|<EX".
Proof. Set K=|p|§{,.
i) We have by the definition of S7'; ,
(2.21) [p(x, £)—p(, &) | =K |x—p|<E>".
So it is clear that
Q1 =2K &' —x|"CED", |QI=2K]|y|E>".
Hence, we have
[Q1=1Q1C7|QI""<S2K |&"—x |77 y | <EX" .
We obtain (2.19).
i) We write
(22) Q= (=) {Vpla'—y+0(—5"), ©)—V.plw'+0(x—"), E)} 40,
and
(2.23) 0 = —y-[, {V.p(x—0y, &)~ V.p(+'— 03, £)}d0 .
Then, we have
[0l =nK|x'—x||y|"KE", |Q|=nK]|x'—x|"7|y[<E".

We get (2.20) in the case ¢=2 (r=1). When 1=0<2, we also get for any
T (e—1=7<1)
|Q|=|Q|a-@=| Q| r+1-oye-7)

< nK|x'—x|77| y|ED".
Q.E.D.

Here, we shall define an approximation for p(x, £)&€ST,.,:;. As the ap-
proximation for p we define ps(x, £) by
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@28 B B = (W<, i,
where 0<8<<1. We shall often write p;=5.

Theorem 2.5. For p(x, £)ST,;, we define ps(x, E) by (2.24). Then, we
get

58(3"” E)ES?.S(I)) Z;S(xr S)_P(x: E)E ﬂ S’ln,;s;(:'-‘r)'

0TI

Proof. We can see from Lemma 2.3 that p(x, &) belongs to ST4(]). So we
have only to prove that r(x, £)= p(x, &) — p(x, &) belongs to ﬂ ST,
Setting s=[l—7], we write =

@2)  pwty &=, 3 UEpe )
+ 2 (Y Dalx, v £),
where
=5 [ (1=0) {pora+07, P, D} (s+0),
= plety, Bl &) (=0).

(226) g%, 3; 8)

By (2.2) we have
@27)  r(s B = | W) -ty H—pls, DY E

— 3 (<@ e, 33 Bdy<E

We devide the proof into two cases. First, we consider the case [[—7]+4
[7]=[l]. We see that the following I), II), III) are equivalent.

) - [=7+[71=11,
(2.28) I —[=r—[,
) [—[=l—T—[l—7].

By (2.26) we have for any « and B (| 8| =[7])

(2.29) [0°Dign(x, ¥; £)| < Cap( 3171+ [y [ )KED".
Then, from (2.27) we have
(2.30) |7, E)| = CopEXm2¢7771 (IBI=[7]).

Hence, r satisfies i) of Definition 1.4,

When s=0, for | 3| =[] we have from (2.26)
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(2.31) 0tD2gy(x, y; £)—0;Digv(z, ¥; £)
= s [ =0y (ol +02, )Rl )
‘ —pFra(3+0y, E)+pG e (2, £)}d0 .
Since |y+@|=[l—7]+[r]=[], we get
PFrm(x, E)ESTTY .
So we have by i) of Lemma 2.4

(2.32) |83 Digy(x, y; E)—03Digx(2, ¥; £)|
S Clax—z |7 y |- UTIEymm 1

When s=0, we also get (2.32). Since

233) o O—relE B = T, i) [W@rnx
yWW%ﬂDWymMW

we obtain by the similar way to the proof of Lemma 2.3

@34) 1 E)—rE(e, E)| = Capla—sz| IIE I

Hence, 7 satisfies ii) of Definition 1.4. Consequently, we see that 7 belongs to
ST

Next consider the case [[— 7]+ [r]=[l[] —1. We can also prove in the
similar way to the proof of the first case. We have for any o and 8 (| 8| =[7])

(2.35) |02D2gy(%, ; £)| < Cinp 3| <EX* 1.

Then, using (2.28), we obtain (2.30). Now fix B (|B|=[r]). Then, since
|v+R8|=[l—7]4+[r]=[l]—1, we have ‘

(%ﬂ)(% HeSt'vmn.
p(

Hence, using 7—[7]>1—[/] from (2.28), we have (2.32) by ii) of Lemma 2.4.
Thus we obtain (2.34). Q.E.D.

Theorem 2.6. For p,(x,£)e STh;: (i=1,2) consider the approximations
b; and p,p, defined by (2.24). Then, we get
B, OB, E)—pipol, HYEST™
where I'=21 ([[]=0), I'=I14+1 ([[]*0).

Proof. We prove only the case p;(x, £)=a,(x)=B'. Then, the general
case would be proved in the similar way. We write



722 ‘W. ICHINOSE

(2.36) 28— a,a5) (x, E)
= — [[vero—arer i —iai)

—a(y")} ay)—a(y")} dydy' <E>%" ,
and for k=1, 2

(2.37) a(y) = WZ 1*1(y—y")" (@ )as o (¥")

k<01

+ 2 M=y (Db (3, ¥
1v¥1=11
where
(2.38) bi v (3, ")
1
=[1] So (1= Haym(y'+0(y—y" ) —aram(y)}d0  ([[1+0),
= ay(y)—a(y’) | ((11=0).
We have
(2.39) {a(y)—a(y")} ay)—a(y')}
=3 i y—y)" e (s e (5)
+ 3 (y—y ) (Y ayan (3 Vb (3s ¥)
1<|el|<]
1Y21=01
+ 31 A y—y Y (o e )by (9, ¥ e (¥)
1g|e%1<0]
1vl=11
+ B =y Dby, 5 )b, )
vki=01
4
=2 1L0,y)-
and set

@40) L5 8 = [[ VeI — N0,y Yyl <.

Then, we note that when [[]=0, I, (j=1, 2, 3) disappears. Since

(2.41) [beyt(y, ¥V SCly—y' |11,

we have

(2.42) ;| =C(|y—y' [+ | y—y"|H1D) (j=2,3),
and

(2.43) IL|=Cly—y'|*.
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So by the similar way to the proof of Theorem 2.5 we can see that
LeSty¥v (j=2,3), LeSr¥'.

Hence, we have only to show that I, belongs to ST3'*.
By (2.2) we have for each term of I,

@4 ([ o—wEo—mm—yy
X @1 (¥ ) (¥ Ay dy ' <EDP"
= (__ 1)|w1+w2| S 1l,(<g>s(y/__‘x))(<g>3(y,___‘x_)),,;l_,,ﬂ,z
X al(wl)(y')aZ(uZ)(y')dy'<§>s”_5'“‘+“2' .

Since al(wl)(x)az(wz)(x)eS?,o ;1-x (k=max (|a'|, |a?|)), we can see by Lemma 2.3
that the right hand side of (2.44) belongs to S73/~"-81#"+%*l " Then, noting that

I—k+| i +a?| zl+min (o', [@?]) 21,
we get
L,e ST+, Q.E.D.

3. Wave front set
DEeFINITION 3.1. Let u (x)€H_..= | H,. 'Then, we say that (x,, £)E R} X

SER

(R;—{0}) dose not belong to the wave front set WF(u) of u, if there exists an €>0
such that for any a(x)EC7% (U,(x,)) and any N >0 we have

(1) sup [Flad®)|SCul+IEN™,
where C >0 is a constant depending on a(x) and N, and

{ Uxy) = {x; |x—x,| <&},
Pe(go): {f, IE/|§|_§O/|EOH<5; l£‘>1} .

Theorem 3.2. Let ¢(x, £)ePy(7) (1/2<p=1) and (x, E)EXP(7) such
that for a constant M >0 we have

(33)  wlm ) =Sw(nE)  (IE12M,5z1).

We assume that there exists a constant a (<1) such that for a constant C>0
3.4) |0508(p—)(x, E) | =C<EX'™  (la+BI=1).

Then, we have for any p(x, £)E Sy

(3.5) WF(Psu)c Conic {(x, Vr(x, £)); (Veye(x, ), E)e WF(u), |E| =M},

(3.2)
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where for a set ACR} % (R}—{0}) Conic A denotes the smallest conic set in-
cluding 4.

The proof will be given after Lemma 3.5. First, we state two corollaries.

Let real valued functions N, x, &) (k=1, 2) belong to B%([0, T']; Si,0:2)
and have the form for a constant a<1

(3.6) Nty %, E) = N2, %, E) NI, %, E)  (k=1,2)

( M x, E)EBYA0, TT; Si(2))  (12<p=1) :)
M, x, E)eBY([0, T]; Si0:1), real valued.

Assume that for a constant M >0 we have
3.7 Mi(t, %, SE) = (2, x, E) (1El=M, 6=1).

Let ¢u(t, s; x, £) and (2, s; x, £) be the solutions of the eiconal equations of
(1.15) corresponding to A; and A,, respectively. We define @, ;(t, 7,s;x, )
and W, ;(¢, 7, 5; %, &) (1=4,j<2) for a small T;>0, respectively by

D, i(t, 7, ) = dilt, T)§ Pi(7, 9) s

W, i(t, 7, 8) = it DBV, 5)

Then, for a constant M, >0 we can easily get

(3.9) W, it 7,85 %, 88) = 8, (¢, T, 85 %, 8)  (lE|=M,, 621).
We obtain

(3.8)

Corollary 3.3. For any p(x, £)E .S} we have
(3.10) WF(Po, u)C Conic {(x, V. ¥; (¢, 7, 55 %, £)); (VeWi (¢, 7, 85 %, &), E)
EWF(u), |E| =M.} O=ss7=<t=T).

Proof. If we can show (3.4) of Theorem 3.2 for @, ; and ¥, ;, the proof
is complete.

I) The case i=j. We have
(3‘11) q)i,i(t: T, S) = ¢i(t: S) ’ ‘I,i,i(t: T, S) = ‘l’i(t: S) .
In what follows we omit the suffix 7 of A;, A}, A?, ¢; and ;.

Then, we have

0= 61(¢—\1")(t’ s)——)\,l(t’ X, Vx¢)+7\’(t: X, Vx‘\!’)
= 0(p—V)(t, )L, %, V.p) (L, &, Vo) +AE, %, Vi)
= 8t(¢—“l’)(t: S)-—- So Vg)\.(t, X, Vz‘l"—l_a(vz(b_vx‘p))de'Vx((b_“l")(t) S)
+A(t, x, V.0) .



PROPAGATION OF SINGULARITIES FOR A HyperBoLIC EQUATION 725

Set

1
(3.12) { Ht, .3 8)= = | VM % Vbt 07,6~ V)0
Hyt, 5; %, §) = Nt %, Vo).

Then, we can get (p—) (¢, s; , &) as the solution of

Ou(t, s)+H,\(2, s %, £)-Vau(t, s)+Hy(t, 55 %,£) =0,

(3.13) { u(s,s)=0.

Since for a small T,>0 (2, 5) and (¢, s) belong to P(c(t—s)) and we have
CHRE=AVA+0(V.p— VA= CED,

it follows that
(3.14) |H,@(, )| SCEX™™,  [Hy(t, s)| = C<E>™
(la+BI=1,0=s=t=<T).

We can solve (3.13) in the explicit form along the characteristic curve by the
same method of the proof of Proposition B and Corollary D in Section 1. 'Then,
we can easily complete the proof.

II) The case i#i. By using Remark 3 in Section 1 we obtain (3.4) by
the similar way to the first case. Q.E.D.

Let ¢(x, &) P(7) and set F(E)=F(; x, n)= —V.p(x, E)+E+n. Then,
since ||V, Vip—I]|=7<1, we get

|F&)—F(E)|
=([, 19959, &40~ EN—1110) | £

=7|&—El.

So the mapping { =F(£): Ri€E—>{ ER} is a contraction. Defining §=§(x, 7) as
the fixed point, &(x, 1) satisfies

n= de’(x’ E('”? 77))5(61191)) Tty 6,"(1))(90, E) I £=E(x,m)

Hence, the mapping »=V,¢(x, £): R;2E—>n&E R} has the inverse £=§(x, 7)=
V.$ '(x,7). Similarly, the mapping y=Vp(x, £): R;Sx—yER; has the in-
verse x=Vip (y,&). Consequently, for any (x, £)=R* there exists a point
(y, 7)€ R? such that

(3.15) x=Vip(y, E), 7=V, d(y,E).

Conversely, for any (y, ») there exists a point (x, £) which satisfies (3.15).
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Now for N\ (¢ x, £) (k=1, 2) of Corollary 3.3 let {¢*, p*}(s, s; %, &)
(=1{(gt, -+, ¢&), (P, -+, p5)}) be the characteristic strip, that is, {¢*, p*} is the
solution of

d_qk = ko pk ‘ﬂ = V. Eoak
(3.16) el CUCY 80 SR ECE SV )R
g, ) =x, pHs,9)=E.
We set
(317 {0i Pij}(t, 7, 55%,8) = ¢, P} 75 ¢'(7, 53 %, £), p/(7, 55 %, §))

(1=4,j=2).
Then, we obtain

Corollary 3.4. Let @, (¢, 7,5) be the phase function defined by (3.8).
Then, we have for any p(x, £)Sy

(3.18)  WF(P,, u)CConic [{Q; ;, P; ;} (¢, 7, 5; %, E); (x, E)EWF(u), |E| ZM],
where M is a constant in (3.91).
Proof. I) The casei=j. We have
D, (t, 7, 5) = Pi(t, 5), Wit T,5) =L, 9),
{05 P}, 7, 9) = {¢, p'}(t, 9) .
We omit the suffix . By (3.15) we can define {g’,p'}(, )=1{q', p'}(t, 53 %, &)

as the solution of

(3.19) x=Vep(t,s;9'(t, 9. &), P'(t, 8) =Vt s; 9'(2,9), £) .
Then, we have

t 7.7
0= (VOt, 53 ¢, VT eb(t, 3 0, )9

= V.Vt 53 4 VN, ¢ p')+j—f} :

Since ||V, Vir—I||=<7<1, we have

&.

' _ _yot g, p).
It Mt g, P
Similarly we get

dq, Y dpl Y
_:‘-‘—V)\'t: ’ ’ _._:—szt’ > »
o Mt ¢ p) o t q', ")

q'(s,5)=x, P’(s’ s) =£.
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Consequently, we have ¢'(t, s)=q(2, s) and p'(¢, s)=p(¢,s). Then, we get
(3.20) %= Vep(t, 55 9(¢ 5), £), P2, 5) = Vp(t, 55 q(2, 5), &) .

Hence, we obtain (3.18) by Corollary 3.3.
IT) 'The case ;. In the similar way to the proof of the case I) we get

3.21) { X = Vﬁ\Pi,i(t: T, 85 Qi,i(t: 7, 5), £,
( ' Pi,j(t: T, S) = qu,i,j(t: 7, 8, Qi,j(tJ T, S), g) ’
which completes the proof. Q.E.D.

Lemma 3.5. Let ¢(x, ) and +p(x, E) satisfy the assumption of Theorem 3.2.
Let (%, &) € R X (Ri— {0} ) and define (y,, 1,) as in (3.15) by.
Yo = V(%o 1), Eo = V.hr(%, M),
where we assume that |&,| is sufficient large. For any €>0 and R>0 we set
(3.22) T:r= 1%, &); [V.p(x, £)/IV.p(x, £)| —Eif 1E,] | <€,
lx—x,| <€, |E| >R},
(3:23) T2 = {(x, &); 1E/1E]—n/Ime| I <€,
I Vep(x, E)—y0l <&, |EI >R} .
Then, for any €>0 (resp. & >0) there exist €,>0 (resp. £&>0) and M'>0 in-
dependent of (x,, &) such that
(3.24) T 2CTL, e (RZM') (resp. Ty zOT%, ).
Proof. Generally, if ¢(x, £) = P(r), we have.
[V.p—E|=7<E>.
So setting 7=V, p(x, £), we get
{ CKE=LV.p(x, E)>=CLED,
CHm>={V.p7!(x, m)>=C<mp,

for a constant C>0 depending only on 7. Consequently, for large R T ,
(1=1, 2) is well-defined.
We define I'} ; and I'Z ; by

(3.26) Lo r = {(x &); |Vl E)/IVab(x, §) | =&/ &l <,
Ix—xol <8’ Igl >R} ’

(327) T:,R = {('x: E)’ IE/,EI '_770”770' I<8’
[ Vi (x, &)—yol <&, |EI >R} .

(3.25)
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Then, noting (3.3), we can easily see that for any &>0 (resp. & >0) there exist
& >0 (resp. &>0) and R,>0 such that

(3.28) I :Cl%, 2 (R>R) (resp. I, 2T, ) -
We have from (3.4)

va¢(x1 E)/<§>_Vx‘l’(xa E)/<‘§>I §C<E>a—l .
Consequently, using (3.25), we get

S{Vip—VA | X VAP [+ [ V| = [V [ X VAR (VAR [V, 1)
=208

By (3.4) we have
(3.30) | Ve(x, £)—Ver(x, £)[=CE.
Fix €=§&, in (3.23). Then, by (3.30) we have for some R,

Sup I Veb(s, £)—Vewlw, )l <&z (RZR).

So for (x, £)el,, r (RZR,) we have

| Ved(x, £)—p0| = | Vegp(x, £)—Vide(®, &) |+ | Ve (x, £)—30] <&, .
Consequently, we get
(3.31) I2,,:CT%r (RZR).
By (3.28) we have for some &] and R{ (ZR,)
(3.32) Iy xCllne  (RZRY).
Next setting &€=¢&1/2, from (3.29) we have for some Ry’ (=Rg{)

sup [V, )/ V.o, )] — Vb, 81V, )] <6,

So for (x,£)ET,  (R=R;) we have

[Var(®, E)/ | Vb(x, E)| —Eof 18| | <E1.
Then, we get
T :CI% R (R=RY) .

Finally, for M’ (=R’ =R;=R,) we obtain

(3.33) T, RCI%, ,CT%,,CT% , (RZM).
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Convesely, for any &, there exist €7, &, &, and M’ >0 such that
(334)  TL oDy ol%,,oT, (R2M).
Thus the proof is complete. Q.E.D.
Proof of Theorem 3.2. For a constant M in (3.3) set
K = Conic {(x, V (%, £)); (Vevr(x, E), E)E WF(u), |E| =M} .

Then, we have only to prove that if (x,, &)&K, (%, &) does not belong to
WF(Pyu). Assume that

(%0 E)EK,
and define (y,, 7,) as the solution of
Vo= Ve (%, M), E = V(% 7)  (see (3.15)).

Then, we may assume from (3.25) that |£)| is a sufficient large in order that
|7, =M. Then, we can see that

(Yor o) E WF(u) .

Corresponding U,(y,) and T(n,) of (3.2), we choose d(x)E B~(R"), b(E)c S~
such that
(3 35) { d(x) = 1 on Uez(yo) y Supp ac UZsz(yO) ’
' 5(5) = 1 on 11!2(770) ’ Supp 5CP222(770) *
Then, if we take an & >0, we have

(3.36) D,)a(X"ueH. = [:] H,.

We also consider a(x)E3B~(R") and b(E)e S such that

supp a(x)C U, 1(oc(,) .
supp b()CT. (&) N {&; || =M},

where & and M are determined later. Then, if we get for any a(x) and b(£) of
(3.37)

(3.38) b(D,)a(X")PaucH.

(3.37)

we have
(%9, Eo) EE WEF (Pyu) .

Hence, we have only to prove (3.38).
We write for d@(x) and §(£) of (3.35)
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(3.39) b(D,)a(X")Psu
— B(D)a(X")Pob(D.)A(X Yut-b(D,)a(X )Py {I—H(D,)a(X Y}u
= Ju+Ju (I: identity map).

Then, since &(D,)d@(X"Ju€ H.., we get
(3.40) JueH. .

Consider the second term. We have by the expansion theorem in [7]

(3.41) o(J2) (%, E)~B(V.b(x, E))a(x)p(x, E)(1—B(E)E(Vedp(x, £))
+ S5V (%, E))aen(*)pi5H(x, £) {07 DY

’ X (1=b(E)a(Vid(x, E)far 1.0 62,02 02(%, &),
where o and §' (1=<1=<3) are multi-indexes and
Jat p1,02,02,08,3(%, ) ES” .
Now we define & and M by Lemma 3.4 such that
(3.42) T :CT%4L: (R=M).
If we have for some (x, &) (|&| =M)

b(V.p(*, £)a(x)*+0,
we have from (3.37)

| V.b(, E) | Ve, E) | —Eof |E] | <&, |a—x| <&, |E|=M.
So we can see that (x, £)€T? 5. Then, from (3.42) we get
EJIE]—malI7] | <&, | Ved(, E)—pol <&, |E|ZM.
Hence, from the definition of @(x) and b() we get
1-b(E)A(Vegp(, £) = 0.

Consequently, the first term vanishes for (x, &) (|€|=M). Similarly, we can
see that the each term vanishes for (x, £) (|| =M). Therefore, we get

o(J)(x, E)esS™™.
Finally, we get

JueH., .

Hence, we obtain (3.38) together with (3.40). 'This completes the proof. Q.E.D.
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4. Main theorems
Consider a hyperbolic operator

(41) L= D?"'Al(t’ X’ Dx)Dt"‘Az(t: X) Dx)
+By(t, X, D,)D+B,(t, X, D,)+Cyt, X, D,)
on [0, T](T>0) (At % &), B, %, 8),
C,(t, x, £)BY([0, T); Si), 1)2<p=<1).

We assume that the characteristic roots A,(z, x, £) (i=1, 2) of the principal part
of L (i.e. the roots of A*+A4,(2, x, E)A+A,(2, %, £)=0) are real valued.
In this section we shall consider the Cauchy problem

(P) Lu=0 on[0,T], D0, x)=gix) (j=0,1),
where g;(x)eH_.= |J H,. For simplicity, we set

P, =Pyt X, D,, D,) = Di+A,(t, X, D,)D,+A\t, X, D,),
(4.2) P, =P, X, D,,D,)= Byt, X, D,)D,+Bi(t, X, D,),
P,= Py, X,D,)=Cy(t, X, D,),
and
L =P, X, D,, D,) = Pyt, X, D, D,)+P+P,.

DEerFINITION 4.1.  Let p(x, £)€ST0;1. We say that p,(x, &) is the principal
symbol of p(x,E), if p,(x, &) and (p—p,) (¥, &) belong to ST,;; and Sy},
respectively.

DerFINITION 4.2. Let p(x, £)€ ST, and p,(x, £) be the principal symbol
of p(x, &). Then, we define the subprincipal symbol with respect to p,(x, &)

(43) 2 E) = (P B X0 0upa( ).

ot %, N, E) of (4.2) is the principal symbol of p(¢, x,\, £). Throughout
this section, when we define the subprincipal symbol of L of (4.1), we always
take p,(¢, ®, N, £) of (4.2) as the principal symbol.

We state the extension of the results obtained by M. Hata [5] (see also [4]
and [15]).

Lemma 4.3 (c.f. [5]). We assume that L of (4.1) satisfies the following con-
ditions i), ii) and iii).

i) Bit, s £)e [) B0, T1; SY(A—).-
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i) M@ E)E ;@o BI([0, T]; S7*(2—j—lal))  (lal=1).
i) There exists a symbol u(t, x, £) _ﬂlo Bi([0, T7; S((1—y))) such that
i=
(44)  pl N % E), B = DM A —pu =) B, T S).
Here, py(t, x, N, E) denotes the subprincipal symbol of p(t, x, N, E) in R***) and
{A =Ny, A—N;} denotes the Poisson bracket (see Corollary D in Section 1). Then,
there exist Ry(t, x, £) € ‘[jo Bi([0, TT; Sa((1—7) (=1, 2) and Ry(t, x, &) =
B([0, T; S3) such that
4.5) L = {D,—\y(t, X, D,)+Ryt, X, D)} {D,—\ (¢, X, D,)
+R1(t: XJ Dx)} ‘}Ro(t, X) Dx) .
Proof. If R,(f)e .fjo Bi([0, T; Sp((1—7))) and Ry(t)eBY([0, T1; S3), we

can write
{Di—2o(t, X, D,)+Ry(t, X, DD, —ny(t)+Ry(t)} +Ro(2)
=Di—(MHN)(E X, D)Di+(MN)(E, X, D) +H(R+Ry)
X (¢, X, D,)D;~4 (10,0 —1Vhys VA — N R, — R\
(mod. B([0, T]: S3)),
Where U()"1+k’2)(t) OC, 5)27\:10, x: E)—}-)\‘z(t) x: E)) U(XIXZ)(t: x} E)=7\'l(t) x) (S)xz(t: x: E)-
Comparing with (4.1), we have
Bo(t; x: g) = Rl(t) x.‘ £)+R2(t) x: ‘E) ’
Bi(t, x, &) = {{(0M—Vry VA)—NR— R} (8, 2, E)
(mod. B ([0, T1; SY).
So we get

(4-6) (7\'1_'7\'2)R1(t: X, E)
= 07\1+Bl—i(6;7\1—V57»2'V,7t1)

Eps(t: X, 7\'l(t,v X, 5)7 E)_% {7\'_’7\‘1, 7\'_7\‘2}

% ng (85,-6:;7\'1)(7\’1_ 7\'2)

= (u+ % 2 0,0, M)M—2y)  (mod. BY(O, T1; SY)).

+

Define Ry(t, x, £) (i=1, 2) by
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Rl = Il'+ %; 813;6’:,-7\1 ’
4.7) .
R, = Bo—(,u,—l— ‘;* ng 6£,~6x,~7\'1> .

Then, we can see that

Rt, % £)€ [| B0, T1; SY(A—7),
L=A{D;—n(t, %, D)+ Ry()} {D,—ny(2)+Ry(2)}
(mod. BY[0, T]; S3)).
We obtain Lemma 4.3. Q.E.D.

Let ¢,(¢,5;x,&) (=1, 2) be the solution of the eiconal equation (1.15)
corresponding to A,(Z, x, £) in Lemma 4.3. Then, we have

Theorem 4.4 (c.f. [5]). Let L be the operator which has the properties of
Lemma 4.3. We also assume that

V) AP EBY, TT; SY).
Then, the fundamental solution E(t,s) (k=0, 1) of the Cauchy problem (P) (i.e.
LE,=0 on [s, T], 8{E(s, s)=38; 4 (j, k=0, 1)) can be constructed for a small Ty>0
in the form
2 t
(4.8) Eyt,s) = 3 H! o(t, 53 X, D,) +$ HY 4 40,(ts 1, 53 X, D,)dt,
0=s=t<T,),

where

{ c(HH(, s; 2, E)eBINB} (Ay; S;7F)  (k=0,1, i=1,2),

O'(Hg)(t, t, §3 %, S)EB(t),t!,s(AI; S;_k)
Ay = {0=s=t, = ZH=<t,=1}).

Proof. The equality (4.5) is valid from Lemma 4.3. So setting for t&[0, T
4.9) vty ) = u(t, s), (¢, x) = (D,—N\(t, X, D)+ Ry(t))v,

we have the system for V(¢, x)="(v,(t, x), v,(¢, x))

(4.10) L= D,—(M’ 0 )(t, X, D,)+(R" _1)(1,; X,D,).
0, 7\,2 Roy RZ
Then, the initial data ¥V, for (4.10) becomes
(4.11) V,=G(, X, D,) (go) , G(s, x,8)= ( ! ’ 0)(3, %, E).
&1 —(Mm—Ry), 1
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Now we shall construct the fundamental solution E(t,s) for L by the
same method of the proof of Theorem 3.1 in Kumano-go-Taniguchi [11], where

LE(t,s)=0 onfs, T], E(s,s)=1 (unitmatrix).
Set

I (¢, ), 0
(+12) Tt 5) = ( ¢1(€) i Iy (t s)) ’

where I4(t,s) is Fourier integral operator with symbol 1 and phase function
¢i(t, s; %, ). Then, we have

(413) LI¢(t, S) = Fy(t, 5),

2
where Fy(t, s)= 21 F;4,(t,5) is a matrix of Fourier integral operators with
j=1

¢i(2, s; %, ) and symbols F,(¢,s; x, ) B? ((Ay; Sp). From (4.13) the funda-
mental solution for L, as the continuous operator from the Sobolev space H,
into itself for any fixed &, is constructed in the form:

414)  E@, ) = L{, s)+g' Ii(t, 0) 2 Wi(6, 5)d0 .
Here, {W,(t, s)};-:1 are defined by
Wi(t, s) = —iF4(t, s),

A1) e = S' Wit O)W,(0, $)d6  (v=1,2, -+, c.f. [6] and [11]).

We note that W,,,(¢, s) can be written in the form
(4.16) Wonlt, s) = St S'R..S'V" WO, 1, oo, ,, $)dtyedty
(WO.H) = Wl(t} tl)Wl(tlx tZ)'"Wl(t\u S), to = t) ’

and W®*D has the form

(4.17) Wt 8, oo 8y, 5)
2
- J. ? =1(_ .)v+le1'¢jl(t’ tl)“'Fjv+1¢fv+l(tv’ S) '
My 41

By Theorem A we have for a small ;>0

®;(te-1, 1) E LolCo(te-1—1)) (te=t, ty1=5),
{ b5, (L L) BB, (B, ) E Po(ci(t—s)) (O=s=<t=T),

for constants ¢,>0, ¢,>0 (see also Theorem A). Then, by Theorem E we

(4.18)
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can find the Fourier integral operators

Wil ) 4’ (t tl) R tw S) )

v+1°

with phase functions
q>i1-“,fv“(t’ tl’ oy by, S) = ¢f1(tJ tl)#qsfg(tl: t2)#“’#¢fy+1(t’b S) )

and symbols Wj, .. ; (¢, 8, -, t,5) of class BY(Ay; S3) (=B, 1,.....0,.,(Av; Sp)),
such that for any / we have semi-norm estimates with respect to the component

WU vy
(4.19) Wi .

Jyve1

=Cr,

for a constant C;>0 independent of v, and for any /, real ¢ and integer N >0
we have the estimates of the operator norm

(4.20) W,,...; [P oj"

dye1®igdy g i1%5 Fyerivas

for a constant C, y>0 independent of ».
Set

~ 2
(4‘.21) WV+1,°v+1(t) tl) RS S) :. Z (_Z)V-H'Wj v+1 ®j, jv l(t tl) tv, s) ’

Jyavadv1=1

#.22) W_(t,5) = S' 1, 9){5"; S" s "...S ‘”‘I(Wmu
)0, b, -+, by, S)dt,--dt}dO (1, = 0).

""'1 Pyiy

Then, we can see by (4.20) and Proposition 3.2 in [11] that
W_(t, s)EBNBL.(Do; ™).
Therefore, we obtain the fundamental solution E(z,s) for L in the form
t
4.23)  E(t, ) = Lt )+ S 1,(t, O)W,(0, 5)do

o (Ot t oy -
+ fv-":l S So _g 1"'& Iy(t, e)WVH,QVH(e: by ooy By, )
Xdt,-dt,d0+W_.(t,s) .

We note that we did not use the assumption iv) until now. If we use
iv), then, we can apply (1.44) to the right hand side of (4.23). For example,

S: Sj Id)l(t’ 0) Wq’l,z(o’ tl: S)dtldﬁ

- S | So L, (t, )W, (0, 1, 5)dt,d6
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t o
= g S W”(t) 0: t, 3)01.2(t,t,s)dt1d0

_ S'W'" &, 4, S)dt, ,

®1,2
where
w'(,t, )
= W(0, 0—1t,+s, 5) exp i {®,,(0, O—ti+s, §)—@1,.(0, t, 9}

t
Wt = W, 0,1,940.
4

By repeating this process, we obtain the expression
(4.24) E(t, s) = Wy (t, 53 X, D)+ Wyt 9)
t
+ [ Wsrats o 9t W_o(t,9),

where
{ Wit )EBINBL(Ay; S  (=1,2),
Wit, 1, ) EBY(A,; S9).

Then, we can see from (4.9) and (4.11) that the fundamental solution E,(z, s)
(k=0, 1) for L can be represented by

E(t, s) = “the first component of E(t, s)G(s, X, D,) (20-’:)” .
1,
We get (4.8). Q.E.D.

RemARk 1. The formal adjoint L* of L in Theorem 4.4 also satisfies the
assumption of Theorem 4.4. Then, we get the fundamental solution E¥(t, 7)
(k=0,1) (0=t=7=<T,) of the backward initial value problem

L¥E¥(t,7)=0 on[t,7], E¥(r, 7)=3;, G.k=0,1),

in the similar way to the proof of Theorem 4.4. Consequently, we can prove
the uniqueness of the Cauchy problem (P) (c.f. [7]).

ReMARK 2. We get the fundamental solution of the form (4.23) without
the condition iv) in Theorem 4.4. But, then, the statement for the propaga-
tion of singularities will not be simple (c.f. see [11]).

We consider L of (4.1) whose characteristic roots are non-regular. Here-
after, we always assume the following I) and II) for L in (4.1).

Condition I): Ay, x,&), B;t,x,&) and C,(t,x,&) in (4.1) belong to
B>([0, T]; Si,0), respectively.

Condition II): We have
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Ajt, x, 88) = §'4(t,x, &) (J=1,2),
Bi(t, x, 88) = &'By(t,x,£)  (j=0,1),
Ci(t, %, 08) = Cy(t, %, £) (1E1=M>0,58=1).

Let ¢,(t, s; %, £) (i=1, 2) be the solution of (1.15) corresponding to Az, x, £),
where A%, x, £) is the approximation of A,(t, x, £) defined by (2.24) in Section
2, that is,

(425) Mt x ) = [ DTN x+y, HAE”

For (8, %, £) (i=1, 2) we define {¢, p'}(¢, s) by (3.16) corresponding to A; and
define {Q, ,, P, ;} (¢, 7, s) by (3.17) corresponding to A, and A,. 'Then, we obtain

Theorem 4.5. Assume the conditions 1) and 1) for L of (4.1). We also
assume the following 1), ii) and iii).

i) Characteristic roots \(t, x, £) (=1, 2) belong to B'([0, T]; Si0;347)
(a>0).

ii)  The Poisson bracket {x—x;, A—n} =0.

iti) There exists a symbol u(t, x, £)B%([0, T]; S%.0; 1+s) N BY[0, T]; St.0;0)
such that

bilt, %, M(t, %, £), £)— n(M—2Ao) €BY([0, TT; S%.0:0)

where p(t, x, N, £) denotes the subprincipal symbol in Ri%3)) of L. Then, the
Jundamental solution E,(t,s) (k=0, 1) exists for some T,>0 and is constructed in
the form (4.8) by using p=(2+0)/(4+0). Moreover, the solution u(t,x) of the
Cauchy problem (P) is unique and then, we obtain

(4.26) WF(u(t))Cosus'Conic ({012, P, o)(2, 7, 0; %, E); (%, E)
EWF(G), |§|zM},
where WF(G)= O WF(g;) and M is a large constant.

Proof. In this proof, we always use the approximation (4.25) for fixed

p=(2+0)/(4+0).

We define the symbol A/(t, x, &) (j=1, 2), Bj(¢, x, &) (j=0, 1) and C{(¢, x, )
by
(4.27) { A= — (ot R)(t 2, 8), b= M(t 2, DMt %, £),

B(’) = Bo+A1_A{ s B{ = B1 ’ Ct; =C0+A2_A£ .
Then, it is cléar that we can write

(4.28) L = D3+ A(t, X, D,)D,+Ai(t, X, D,)
+Bi(t, X, D,)D,+Bi(t, X, D,)+Ci(t, X, D).
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We can see that
Ai(t, %, HEB(O, T1; Si,(3+0)  (=12),
(4.29) Bi(t, %, E)SB((0, T1; (1)) (=01,
Cift, %, E)E B, T]; S°).

In fact the relation (4.29) is clear for 4/ (j=1, 2) and B] by Theorem 2.5. Since
we have by Theorem 2.5

A—A;= A,—A4,€B([0, T]; ™),
we get By BY([0, T7; S3((1))). By Theorem 2.6 we have
Az"Ag = AZ_AZ—(XIXZ_)TJTZ)
€BY([0, T]; S57¢7"4+) (=BY([0, T1; S5)) -
So we get CoeBY([0, T1; S}).
Next set

pa(t, x, \, &) = N A1, x, E)N+-Az(t, %, £) ,
(4.30) pi(t, x, N, &) = Bi(t, %, )M+ Bi(t, %, £)

pot, %, &) = Ci(t, %, £) .

We can rewrite L in the form

(4.31) L = Di+4i(t, X, D,)D,+Ai(t, X, D,)+BsD,+Bi+Cs
= Pé(t.v X) Dt: Dz)—i'P{(t: X, Dt: Dx)+P(,)(t; X; Dz) .

We prove that L in the form (4.31) satisfies the assumption of Theorem 4.4.

We get Bi(¢, x, £)eBY([0, T]; S;((1))) from (4.29). It is clear from (4.27) that

the characteristic roots of L in the form (4.31) are A(¢, x, £) (1=1, 2)eBY([0, T];

S11-p(340)). So the condition i) and ii) in Lemma 4.3 are satisfied. Con-

sequently, we have only to prove the condition iii) and iv) in Theorem 4.4.
Since A(t, ®, £) (1=1, 2) belong to B([0, T1; S1.0:3+s), We get

32 { Vi, %, E) =V, v, B),

( . ) VEi‘i(t: X, E) :ﬁ(t: X, E)+Hi(t: X, ‘E) (l=1’ 2) ’
where

(4.33) Hit,x, &)

= [ 4O (e, 21<E>70, )V ).
From the assumption ii) we have

6;7\.,—6;7\2+V57\«1'V,7\2—V,7\q°V57\2 =0.
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Taking the approximation for the both sides, we get
(4.34) P=X, A=} (2, %, E)
= 0\ =02+ Vik VAo —V Ay Vi,
O el c < —~—
= (Ve VAo — Viky s Voho) —(Vhy Vedo— (VX - Vi)
A — T — — e —— N
= (ViM VAo — VN s VoAo) = (VA VER,— VA - Vi)
+H, -V N~V A H, .

Since Vgni(t, x, £) and V (2, %, £) belong to BY([0, T7; S1,0;34) and BY([0, T7;
S1,0:2+0), respectively, by Theorem 2.6 we can see that

— — e st —

VA Vi he—V e * Vidg VA Vik,— VA s VoA,
€BY[0, T]; S1-4-e+)c BY[0, T]; SY).

By Lemma 2.3 we also have
H(t, x, £)eBY([0, T7; S;¢+a-m),

Consequently, it follows that Hl-e,\{z(t, %, &) and Hz-a(t, x, £) belong to
BY([0, T]; S%). Hence, from (4.34) we can see that {A—X,, A—A;} belongs to
B[, T1; 9.

Next we can easily have

(4.35) Pt % M(t, %, ), E) —_’2'_ A A=}
- 07\1+B1-|—Co+%[8,6A(7»—>»1)(7»—7\2)
+ 3300, A= M)A—r)— =M A2} [aa
= Bput-Byt-Cy— i +iV M Ver,
— % ng (B8 Pe M) —20s) -

Then, by the similar way to the proof of the condition iv), we get

@36)  plt, % Mot 3, £), e:)——;'— %, A—T}
— (M —X)EBY0, T]; SY),

where pi(t, x, A, £) is the subprincipal symbol of L in the form (4.31). Hence,
we obtain

(4.37) i, % M(t, %, ), E)—H(M—X)EBY[0, T]; S3).
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Using (¢, x, &)= ﬂ Bi([0, T7; Sa((1—j))), we can see that L in the form (4.31)
satisfies iii) in Lemma 4.3. Finally, we obtain (4.8).

It is clear by Remark 1 that the solution u(z, x) of the Cauchy problem (P)
is unique. We shall show (4.26). We can easily see by Theorem 2.5 that
(M—X\,) (¢, %, ) belongs to BY([0, T]; Si5374+7). Hence, considering to-
gether with the Condition I), we obtain (4.26) by Corollary 3.4. Thus the
proof is complete. Q.E.D.

ReEmMARK 3. We can see from (4.36) and Remark 2 that we get the fun-
damental solution in the form (4.23) without the condition ii) in Theorem 4.5.

Remark 4. K. Taniguchi in [18] recently proved Theorem E in Section
1 when the case p=1/2. By using this we can also prove Theorem 4.5 when
o in assumption i) and iii) of Theorem 4.5 equals to zero.

ExampLE 1. For the differential operator in [0, T1X RZ
L = D}—(x}+a3)(D;,+D3,)+x3D. +x3D,,
we can see that L satisfies the condition of Theorem 4.5.
ExampLE 2. For the differential operator in [0, T X R}

L =D}—(xiD% +x3D3,)++3D, +43D., ,

we obtain
L= Df—(x?Dﬁl—l—ngﬁz)a(D,)—l—x?D,I—Fng,z—(x D: +42D%,) (I—a(Dy,)),
where a(£) belongs to C=(R?) such that
aB)=0 (EI<D), a@=1 (I&122).
Then, we can see that L satisfies the condition of Theorem 4.5.

ExampLE 3. Consider a hyperbolic operator in [0, T] X RZ

L = Di—2(D,,+D.)D,— {(s+ 6+ (3+ £ 1} (Dey+ D)
+a(t, x)D;—a(t, x)(D.,+D.,)+b(t, x),
where a(t, x), b(t, x)=B~(R},). Then, we obtain as the characteristic roots
Ay = (1:!:\/(xl—|—t)1°+(x2—|—t)1°)(§1+§2)EBI([O, T]; S}.0;4) .

We can see that L also satisfies the condition ii) and iii) of Theorem 4.5.

5. Hyperbolic operators of higher order

In this section we shall treat hyperbolic operators of higher order with
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non-regular characteristic roots, whose each multiplicity is at most two.
Consider a hyperbolic operator

(5.1) L=Dr+ i At X, D,)D;"-f+$é By(t, X, D,)D;~
on [0, T]
(4(t, x, §)eB=([0, T]; §%), B/(t, x, E)eB=([0, T]; $7)).

We assume that for a constant M >0 we have
(5.2) Aj(t, x, 8E) = §A (L, x, ) (1E1=M, 6=1).

Throughout this section let A"+ Z Aj(t, x, E)A""/ be the principal part of L.

We assume that the characteristic roots of the principal part of L are real valued
and that multiplicity of each characteristic root is at most two. That is, the
characteristic roots A{"?, 2§ and AP(1=<I<E, k+ 1< j<m—k) satisfy for a
constant C,>0

(5.3) inf APt x, E)—AGL, %, E)| 2Cy|E|

10,71 x B2
(i =1,2, 1=j+]'<m—Fk),
where AP=\{" (k+1=<j<m—k).

We study the Cauchy problem

®.2) { Lu=0 on [0, 7],

ulimg=gi®) (€H..) (=0,-,m=1).
First we state a proposition on the subprincipal symbol.

Proposition 5.1. Let p(x,£)&S™, q(x, £)&S™ and py(x, £), q(x, &) be
the principal symbols, respectively. ~Set h(x, £E)=o(P-Q)(x, £) where o(P-Q)(x, £)
denotes the single symbol of P(X, D,)-Q(X, D,) (i.e. H(X, D,)=P-Qu, ucS, c.f.
[6]). Then, we get

(5-4) hy(x, E)=p4(*, £)q(x, £)+p(x, E)qi(x, E)—% , (% £)
(mod. S™*"272)

where hy(x, £), p(x, &), q,(x,&) denote the subprincipal symbols with respect to

Po(%, E)qo(%, E), po(®, E), qolx, E), respectively and {p, q}(x, &) denotes the Poisson
bracket, that is,

{p, ¢} (x, &) = (Vep-V.g—V.p-VeEg)(, §) -
Proof. Set
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(5:5) i, £) = p(x, E)—po(®, £), (%, &) = q(x, E)—qo(x, £) -

By the expansion theorem of the double symbol (c.f. [6]), we have

(5.6) h(x, &)= po(x, £)qo(*, &)+ (peq1+D190—1V Do Vo) (%, £)

(mod. S™tme72)

Hence, noting that the principal symbol of % is p,g,, we get
s, E)= (0o +Pir—iVePo Vo 310500,
=Pt Dt iVpr Vot (Vebor Voo Vb Vo)
£ 3@ 0.,00p+ 404, 0:,00
= Pudo £u— 5 (Var Vo= V1 Vi)

=pgtpg—5 b gh  (mod. Smn).
We obtain (5.4). QE.D.

Corollary 5.2. Let p(x, £)S™, q(x, E)=S™:, r(x, E)ES™ and let py(x, £),
qo(%, £), ro(x, E) be the principal symbols, respectively. Set h(x,£)=a(P-Q-R)
(%, ), where o(P+-Q-R) (x, ) denotes the single symbol of P-Q+R. Then, we get

(5.7) hy(x, &)= p.qr+pq,r+pgr,— % ({p, }r+{g, 7} p—1{r. p}9)
(mOd. Sm1+m2+m3—2) R

where h, p, q, and r, denote the subprincipal symbols with respect to pyero, Po» 9o
and r,, respectively.

Proof. Since py(x, £)gy(x, E)ry(x, &) is the principal symbol of A(x, £), h,
is well defined.

Let h®(x, £) be the single symbol of P(X, D,)-QO(X, D,) and h{’(x, £) be
the subprincipal symbol of A®M(x, £) with respect to py(x, £)gy(x, £). Then, by
Proposition 5.1 we have

(2 E)Epsqﬂbq,—%{p, g} (mod. S™tm?),
and

hy(x, £)= hPr4+-hOr, — % {h®, r} (mod. Smitmztms=2)

Hence, we get
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(s, )=par-+par+h%r,— £ ({p, ahr+ G, 1})

=par-+p07 +p0r.— 5 ({0, dr+1g, 7hp— . 2a)
(mod. Smitmrtms=) Q.E.D.

Now consider L of (5.1). Noting the assumption (5.3), by the factorization
theorem in Kumano-go [8] we can write

(58) L= PyP(-PpPP+ 1R, X, D)Dr
(Rj(t: X, E)EBDO([O, T], S—“) ,

where

(5.9 P’ = P{(¢, X, D,, D,)

= Di+A{"(t, X, D,)D,+A48(t, X, D,)
+B{°(t, X, D.)D,+B{"(t, X, D,)
4, «, £), B¢, %, £)eB=([0, T]; S%), 1<I<k),
(5.10)  A2HAP(, %, EA+AD(E, %, £)
= (7\‘_7\'(11)0: X, E))O"‘)‘gl)(t: X, E)) ’
and
5.11) PP = Pt X, D, D,) = D,—\{(t, X, D,)+ Rz, X, D,)
@, =, £)eB=([0, T]; S*), R{(t, x, E)eB=([0, T]; S°),
k+1=<j=m—Fk).
Let Lt x, A, £) and p82(t, , 1, E) (1=I<Fk) be the subprincipal symbols
of o(L) (¢, %, \, £) and p§P(¢, x, A, £) with respect to the principal symbols

N 3T A8, % B,

and
N+AP(E, x, EAHAP(, %, E),
respectively. 'Then, we obtain in the same way as in Hata [5]

Lemma 5.3. We also assume for L of (5.1) that

(5.12) A, x, E)EB([0, T]; Stossse)  (6>0)
(=1,2,1<I<k).

Then, the following a) and b) are equivalent.
a) There exist symbols p(t, %, £)EB=([0, T]; ST5%1+0) (1=IZK) such that



744 W. IcHINOSE

(5°13) Ls(f) X, 7\'gl)(t.' X, E)) E)_ _12._ {7\'_7\'(11)) 7\'_7\'(21)}
X 02, %, MO(2, , £), &)— (M —MP)EB([0, T]; STs%o),

where

0t %%, £) = IT =206, % ENO—AL(, 3, 8) TT (A —2(t, %, ).
JF

b) There exist symbols v(t, x, £)€B=([0, T]; S%0:1+0) (1=I<E) such that

(5.14) L, %, AP, x, £), H-5 L=, A—a80)
—u,(xg’)—x§”)eB°°([0, T]; Sto:0).
Proof. Let S(¢, x, N, &) be the single symbol of
P{m=5... PED . P PYD
and let S,(¢, x, A, &) be the single symbol of
P%"”---Pé” .

Then, we consider the subprincipal symbols S;, and S, of S, and S, with
respect to the principal symbols

1L =M % E)A—AL(E % ) TT (-2, 3, 8))
and

T (00, % )AL, %, 8),

respectively. So we can apply Corollary 5.2 as p=3S;, g=p5" and r=S,. We
have
(5'15) Ls(t) (X«', 7\'1 E)ESlsp(zl)S2+S1P(ZIS)SZ+SIP(2”S25

— (8, PS8, SIS~ {5, S320)

(mod. S™HRi%1 V).
Hence, we get from (5.12)

(5.16) Ly(t, x, M (¢, , £), £)
=S,S,p50(¢, x, MP(2, x, E), g)_|_ Ss(t x, E) (AP —a)

(mod. B°°([O T]; ST3% 240(R%))
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where Sy(t, x, £)B>([0, T]; S7o%14s) -
First, we derive b) from a). Comparing (5.13) with (5.16), we have

(5.17) 0=.S5,S,(¢, =, A", E)pY(2, %, AP, §)+( ;L,)(x(”—xg”)
- ;; {7\,—7\,9), 7\._7\4(21)} Ql(t: x: 7\'51)7 E)
=206, %, 28", Ut 3, M, )+ (5 Si—m) L —28)

— —;- DA, A—A}OU(E, %, M2, §)
(mod. B=([0, T]; SI's%

It is easy to see that Q,(t, x, M{"(t, x, ), )" belongs to B=([0, T]; ST5"3%).
Hence, defining v,(¢, x, £) by

5.18)  w(t,x )= —Ot, &, A, £ (ésr,,,,)’

we can see that v/(t, x, £) satisfies b). We get b).

Convesely, assume b). Setting

it %, &) = (LSt 5, 90t 2,10, 8))

we get a) in the same way. Q.E.D.

Let ¢i(t, 53 %, &) (=1, 2, 1=<I<k) and ¢i(t, s; x, £) (k+1=j=m—Ek) be the
solution of (1.15) corresponding to A{y’ and A{{ which are the approximations
defined by (2.24) for A{"” and A{", respectively. The index § will be determin-
ed later. Let {¢/,p’}(t,s;%,&) (k+1=j=m—Fk) be the solutions of (3.16)
corresponding to A{’ and define {Qf'}, P{3} (¢, 7,s; %, E) (1=<1=<k) by (3.17)
corresponding to A{" and A{’. Then, we obtain

Theorem 5.4. We assume for L of (5.1) the following conditions i), ii) and
iii).
i) A, x, E) (i=1,2, 1ZI<k) belongs to B™([0, T1; Si,0;3+e) (c>0).
i) A, A=AY=0 (1=IZk).
iii) There exist symbols p(t, x, £)€B>([0, T]; ST} 2 14e) (IZIZE) such that

(5.19) Ly(t, 2, A", &)—p, (A —A)eB([0, T]; ST52o
Then, we have the unique solution u(t, x) of the Cauchy problem (P.2) in [0, T,] for
some T,>0. Setting WF(G)= ""l__J: WEF(g,), we have

i=
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(5200  WEu(t, %) ,U , 1) Conic {0113, P, 7, 05 =, £9);

(#, B)EWF(G), |#12M} U [ Conic {(¢) 27,
, 0; &%, £%); («°, E)EWF(G), |8°| =M},
for a large constant M >0. .
Proof. From (5.8) we may assume that L has the form
(5.21) L = P{" ... P+ ... PO |

we can see from the assumptions i), ii), iii) and Lemma 5.3 that p{" (1<I<k)
satisfies the conditions of Theorem 4.5. Hence, in the same way to the proof
of Theorem 4.5, we get

(5.22)  P$" = {D,—\{(t, X, D,)+R$(t, X, D)} {D,—\"(t, X, D,)
+R{O(t, X, D)} +R((t, X, D),

where
MO, %, 8) = | PN 5@y Bl (o= ),
and
R"(t, x, E)eB=([0, T]; Sy((1))) (=12,
{ R{(t, x, E)eB([0, T1; S7) -
Setting

(5.23) 8 = D,—\(¢, X, D,)+R"(t, X, D,)
(=12, 1<I<E),

we have
P = 00"+ RY) .
Then, set
Vo=1u, Vy_,=0i"PYD...Py (1=1k),
(5.24) vy = P PY~V... PPy (1=IZk),
v; = PY=R..p¢+D. PM... Py (2rt+1=j=m—1),
and set V

V= '(”o’ Uy "y 'vm—l) .

Then, from (5.24) we have for (P.2)

(5.25) { LV = (D—A(t, X, D,)+B(t, X, D,))V =0,

V]l=s = M(X: Dx)t(goy 8y gm—l) ’
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where
- 5.1
D, D 0 M s 0
D= |, A x &)= ‘..
O .Dt 0 x(lm—k) s
™ _1
(5.26) gu) R‘” 0
B(t, x, £) = R
0
Rgm—k)
and
(5.27) M(x, &) = ( e, £); ] k—>1 . )

(mj;=1, m;=0 (J<k), muESi (j>4)) .
Now it is clear from (5.3) and Theorem 2.5 that

inf [ MO(1, %, £) =M, x, E)| 2 G, lE],

[0,T1x R}

inf | M, %, £)—AP(, %, E)| =C, | €|

[0,T1x R%

(G,i=1,2, 1<I+I'sk, j=k+1,--,m—F),

(5.28)

where C,>0 is a constant. Hence, we can apply the perfect diagonaliser of
Kumano-go[9] to the block

A0
\ 2

Then, we have by using some matrix N(t)=N(t, X, D,):(nij(t, X, D,);
L™ e, x /S B0, T); S2)

]—)
(5.29) Q(t)LN(f)=D,— A(t, X, D,)+C(t, X, D,)
(mod. B([0, T]; S~*).

Here Q(t)=Q(t, X, D,) is the parametrix of N(t, X, D,) and

G
“ 0
ctup=| o%

Ch+1

Com—tk
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¢, = (et » ©); ]’ or %) (€t, x, £)eB=([0, T]; SY)

(<I<E), cit, x, £) (€B=(0, T]; SY); scalar
(k+1=<j<m—Fk).

Then, we get the fundamental solution Et,s) for Q(t)LN(t) in the similar
way to the proof of Theorem 4.5 in the form

E(t, s) 0
(5.30) E(t, 5= ..Ek(t, 5) (mod. B(Ay; S™),
0 ‘ Em—k(tr S)

where E\(t,s) (1=I<k) has the form (4.24) whose symbols are infinitely dif-
ferentiable with respect to (¢, 7, s), and we have

(5.31)  Ey(t,5) = Wuilt, 53 X, D)
(Wi, s; x, E)EB~(Ay; Sh), kH1<j<m—EF).
Then, we get the fundamental solution E(¢,s) for L
(5.32) E(t, s) = N(t)Eyt, 5)Q(s) .
Therefore, there exists the solution u(¢,x) which has the form
(5.33) u(t, x) = “the first row of E(¢, 0)M(X, D,)!(go, ***s &m-1)" -

Hence, in the similar way to the proof of Theorem 4.5 we obtain (5.20). Thus
the proof is complete. Q.E.D.

ReEMARK 1. Assume a) of Lemma 5.3 in stead of ii) and iii) in Theorem 5.4.
Then, the fundamental solution can be represented by the Fourier integral
operators (see Remark 3 in Section 4).
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