



|              |                                                                           |
|--------------|---------------------------------------------------------------------------|
| Title        | On the free quadratic extensions of a commutative ring                    |
| Author(s)    | Kitamura, Kazuo                                                           |
| Citation     | Osaka Journal of Mathematics. 1973, 10(1), p. 15-20                       |
| Version Type | VoR                                                                       |
| URL          | <a href="https://doi.org/10.18910/3522">https://doi.org/10.18910/3522</a> |
| rights       |                                                                           |
| Note         |                                                                           |

*The University of Osaka Institutional Knowledge Archive : OUKA*

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Kitamura, K.  
Osaka J. Math.  
10 (1973), 15-20

## ON THE FREE QUADRATIC EXTENSIONS OF A COMMUTATIVE RING

KAZUO KITAMURA

(Received May 24, 1972)

Let  $R$  be a commutative ring with unit element 1. A quadratic extension of  $R$  is an  $R$ -algebra which is a finitely generated projective  $R$ -module of rank 2. Let  $Q(R)$  be the set of all  $R$ -algebra isomorphism classes of quadratic extensions of  $R$ , and  $Q_s(R)$  the set of all  $R$ -algebra isomorphism classes of separable quadratic extensions of  $R$ . In [2], it was shown that the product in  $Q_s(R)$ , in the sense of [1], [4] and [5], is extended to  $Q(R)$ , and  $Q(R)$  is an abelian semigroup with unit element. In this note, we study the quadratic extensions of  $R$  which are free  $R$ -modules. We shall call them the *free quadratic extensions* of  $R$ . Let  $Q_f(R)$  and  $Q_{fs}(R)$  be the sets of all classes which are free  $R$ -modules in  $Q(R)$  and  $Q_s(R)$ , respectively. We shall show that  $Q_f(R)$  is an abelian semigroup with unit element, and  $Q_{fs}(R)$  is an abelian group consisting of all invertible elements in  $Q_f(R)$ . For some special rings, we shall determine the structures of  $Q_f(R)$  and  $Q_{fs}(R)$ . We remark that  $Q_{fs}(R)$ ,  $Q_s(R)$  and  $\text{Pic}(R)_2$ ; the group of isomorphism classes  $[U]$  of  $R$ -module  $U$  such that  $U \otimes_R U \cong R$ , are closely related by the exact sequence  $0 \rightarrow Q_{fs}(R) \rightarrow Q_s(R) \rightarrow \text{Pic}(R)_2$ .

Let  $R$  be any commutative ring with unit element 1. For a free quadratic extension  $S$  of  $R$ , we can write  $S=R \oplus Rx$  and  $x^2=ax+b$  for some  $a, b$  in  $R$ , then we denote it by  $S=(R, a, b)$ , and by  $[R, a, b]$  the  $R$ -algebra isomorphism class containing  $(R, a, b)$ .

**Lemma 1.** *The following two conditions a) and b) are equivalent;*

- a)  $(R, a, b) \cong (R, c, d)$  as  $R$ -algebras,
- b) *there exist an invertible element  $\alpha$  in  $R$  and an element  $\beta$  in  $R$  such that  $c=\alpha(a-2\beta)$  and  $d=\alpha^2(\beta a+b-\beta^2)$ .*

*If  $(R, a, b)$  and  $(R, c, d)$  satisfy a) or b), then we have*

- c)  $c^2+4d=\alpha^2(a^2+4b)$  for some invertible element  $\alpha$  in  $R$ .

*Moreover, if 2 is invertible in  $R$ , then we have the converse.*

Proof. a)  $\rightarrow$  b): Let  $\sigma: (R, a, b)=R \oplus Rx \rightarrow (R, c, d)=R \oplus Ry$  be an  $R$ -algebra isomorphism, and set  $\sigma(x)=\alpha y+\beta$  and  $\sigma^{-1}(y)=\alpha' x+\beta'$ . Since  $y=\sigma \cdot \sigma^{-1}(y)=\alpha' \alpha y+\alpha' \beta+\beta'$ , we have  $\alpha' \alpha=1$ , that is,  $\alpha$  and  $\alpha'$  are invertible. The equalities  $(\sigma(x))^2=(\alpha y+\beta)^2=\alpha(\alpha c+2\beta)y+\alpha^2 d+\beta^2$  and  $\sigma(x^2)=\sigma(ax+b)=\alpha ay+\beta^2$

$+b+\beta a$  imply that  $\alpha c+2\beta=a$  and  $\alpha^2d+\beta^2=b+\beta a$ . Then we have  $c=\alpha'(a-2\beta)$  and  $d=\alpha'^2(\beta a+b-\beta^2)$ .

$b) \rightarrow a)$ : Define a mapping  $\sigma$ :  $(R, a, b)=R \oplus Rx \rightarrow (R, c, d)=R \oplus Ry$  by  $\sigma(x)=\alpha^{-1}y+\beta$ , then  $\sigma$  is an  $R$ -algebra isomorphism.

$b) \rightarrow c)$  is obvious. If 2 is invertible, setting  $\beta=\frac{1}{2}(a-\alpha^{-1}c)$ , we see that  $c)$  implies  $b)$ .

The following lemma is well known.

**Lemma 2.**  $(R, a, b)$  is  $R$ -separable if and only if  $a^2+4b$  is invertible in  $R$ .

We shall define a product in  $Q_f(R)$  by  $[R, a, b] \cdot [R, c, d]=[R, ac, a^2d+bc^2+4bd]$ . From the following Lemma 3, it is easily seen that  $Q_f(R)$  is an abelian semigroup with unit element  $[R, 1, 0]$ .

**Lemma 3.** (Lemma 3 in [2]). *If  $(R, a, b) \cong (R, a', b')$  and  $(R, c, d) \cong (R, c', d')$  are isomorphisms as  $R$ -algebras, then so is  $(R, ac, a^2d+bc^2+4bd) \cong (R, a'c', a'^2d'+b'c'^2+4b'd')$ .*

A separable quadratic extension  $S$  of  $R$  has a unique automorphism  $\sigma=\sigma(S)$  of  $S$  such that  $S^\sigma=\{x \in S; \sigma(x)=x\}=R$ . In [1], [4] and [5], the product  $S_1 \star S_2$  of separable quadratic extension  $S_1$  and  $S_2$  of  $R$  was defined as the fixed subalgebra  $(S_1 \otimes_R S_2)^{\sigma_1 \otimes \sigma_2}$ , where  $\sigma_i=\sigma(S_i)$ .

**Lemma 4** (Proposition 4 in [2]). *Let  $(R, a, b)$  and  $(R, c, d)$  be separable quadratic extensions of  $R$ . Then we have  $[R, a, b] \cdot [R, c, d]=[R, a, b] \star [R, c, d]$ .*

**Theorem 1.** *An element  $[R, a, b]$  of  $Q_f(R)$  is invertible if and only if  $[R, a, b]$  is contained in  $Q_{fs}(R)$ . Therefore,  $Q_{fs}(R)$  is the set of all invertible elements in  $Q_f(R)$ . It is an abelian group of exponent 2.*

**Proof.** Let  $[R, a, b]$  be any element of  $Q_{fs}(R)$ . By Lemma 2,  $a^2+4b$  is invertible in  $R$ . Set  $\alpha=(a^2+4b)^{-1}$  and  $\beta=-2b$ , then we have  $\alpha(a^2-2\beta)=1$  and  $\alpha^2(\beta a^2+(2a^2b+4b^2)-\beta^2)=0$ , hence we have  $(R, a^2, 2a^2b+4b^2) \cong (R, 1, 0)$  by Lemma 1. Since  $[R, a, b]^2=[R, a^2, 2a^2b+4b^2]$ , we have  $[R, a, b]^2=[R, 1, 0]$ , so  $[R, a, b]$  is invertible in  $Q_f(R)$ . Conversely, we assume  $[R, a, b] \cdot [R, c, d]=[R, 1, 0]$ , then we have  $1=\alpha^2\{(ac)^2+4(a^2d+bc^2+4bd)\}=\alpha^2(a^2+4b)(c^2+4d)$  for some invertible element  $\alpha$  in  $R$ . Thus,  $a^2+4b$  is invertible in  $R$ , therefore,  $[R, a, b]$  is contained in  $Q_{fs}(R)$ .

**Theorem 2.** *Let  $\{R_\lambda; \lambda \in \Lambda\}$  be a family of commutative rings with unit elements, and  $R=\prod_{\lambda \in \Lambda} R_\lambda$  a direct product of  $\{R_\lambda; \lambda \in \Lambda\}$ . Then we have isomorphisms  $Q_f(R) \cong \prod_{\lambda \in \Lambda} Q_f(R_\lambda)$  and  $Q_{fs}(R) \cong \prod_{\lambda \in \Lambda} Q_{fs}(R_\lambda)$  by correspondence  $[R, \prod_{\lambda \in \Lambda} a_\lambda, \prod_{\lambda \in \Lambda} b_\lambda] \mapsto \prod_{\lambda \in \Lambda} [R_\lambda, a_\lambda, b_\lambda]$ .*

**Proof.** Let  $(R, \prod_{\lambda \in \Lambda} a_\lambda, \prod_{\lambda \in \Lambda} b_\lambda) \cong (R, \prod_{\lambda \in \Lambda} c_\lambda, \prod_{\lambda \in \Lambda} d_\lambda)$ . Then, there exist  $\alpha=\prod_{\lambda \in \Lambda} \alpha_\lambda$

and  $\beta = \prod_{\lambda \in \Lambda} \beta_\lambda$  such that  $\alpha$  is invertible in  $R$ ,  $\prod c_\lambda = \alpha(\prod a_\lambda - 2\beta)$  and  $\prod d_\lambda = \alpha^2(\beta \prod a_\lambda + \prod b_\lambda - \beta^2)$ . It is equivalent to existence of  $\alpha_\lambda$  and  $\beta_\lambda$  in  $R_\lambda$  such that  $\alpha_\lambda$  is invertible,  $c_\lambda = \alpha_\lambda(a_\lambda - 2\beta_\lambda)$  and  $d_\lambda = \alpha_\lambda^2(\beta_\lambda a_\lambda + b_\lambda - \beta_\lambda^2)$  for all  $\lambda \in \Lambda$ , namely,  $\prod_{\lambda \in \Lambda} (R_\lambda, a_\lambda, b_\lambda) \cong \prod_{\lambda \in \Lambda} (R_\lambda, c_\lambda, d_\lambda)$ . Thus  $f$  is injective. It is clear that  $f$  is an epimorphism. Therefore, we have an isomorphism  $Q_f(R) \cong \prod_{\lambda \in \Lambda} Q_f(R_\lambda)$  as semigroups, so we have the isomorphism  $Q_{fs}(R) \cong \prod_{\lambda \in \Lambda} Q_{fs}(R_\lambda)$  as groups by Theorem 1.

Let  $U(R)$  be the unit group of a ring  $R$ , and  $U^2(R)$  the set  $\{u^2; u \in U(R)\}$ . We define a relation  $\sim$  in  $R$  as follows; for  $a$  and  $b$  in  $R$ ,  $a \sim b$  if there exist  $c$  and  $d$  in  $U^2(R)$  such that  $ac = bd$ . Then the relation  $\sim$  is an equivalence relation and we denote by  $R/U^2(R)$  the quotient  $R/\sim$ . The multiplication in  $R$  induces a multiplication in  $R/U^2(R)$ , and  $R/U^2(R)$  is an abelian semigroup with unit element  $[1]$ , where  $[a]$  denotes the class of  $a$  in  $R/U^2(R)$ . It is clear that the set of all invertible elements in  $R/U^2(R)$  is  $U(R)/U^2(R)$ . We define a mapping  $D: Q_f(R) \rightarrow R/U^2(R)$  by  $D([R, a, b]) = [a^2 + 4b]$ , and this is a homomorphism, which carries  $[R, 1, 0]$  and  $[R, 0, 0]$  to  $[1]$  and  $[0]$ , respectively. Indeed, by Lemma 1,  $D$  is well defined, and  $D([R, a, b] \cdot [R, c, d]) = [(ac)^2 + 4(a^2d + bc^2 + 4bd)] = [a^2 + 4b][c^2 + 4d]$ .

**Theorem 3.** *If 2 is invertible in  $R$ , then  $D$  is an isomorphism and this induces an isomorphism  $Q_{fs}(R) \cong U(R)/U^2(R)$  as groups. (cf. Proposition 3.3 in [1])*

Proof. By Lemma 1,  $[R, a, b] = [R, c, d]$  in  $Q_f(R)$  if and only if  $[a^2 + 4b] = [c^2 + 4d]$  in  $R/U^2(R)$ . Thus  $D$  is a monomorphism. For any element  $a$  in  $R$ ,  $D\left([R, 0, \frac{a}{4}]\right) = [a]$ , therefore  $D$  is surjective. Thus  $D$  is an isomorphism. Furthermore, by Theorem 1,  $D$  induces an isomorphism  $Q_{fs}(R) \cong U(R)/U^2(R)$  as groups.

In the case where 2 is not invertible in  $R$ , we give a sufficient condition such that  $D$  is a monomorphism;

**Theorem 4.** *If  $R$  is a unique factorization domain of characteristic  $\neq 2$ , or a ring such that  $2R$  is a prime ideal and 2 is a non-zero-divisor, then  $D$  is a monomorphism.*

Proof. In the first place, we remark that if  $a = a' + 2r$  then  $(R, a, b) \cong (R, a', ra + b - r^2)$  and  $a^2 + 4b = a'^2 + 4(ra + b - r^2)$ . Let  $D([R, a, b]) = D([R, c, d])$ , that is,  $a^2 + 4b = \alpha^2(c^2 + 4d)$  for some invertible element  $\alpha$  in  $R$ . Since  $(R, a, b) \cong (R, a/\alpha, b/\alpha^2)$ , we may assume that  $a^2 + 4b = c^2 + 4d$ . If  $a - c \in 2R$ , we may put  $a = c$ , and so we have  $b = d$ . Thus, if  $a - c \in 2R$ ,  $D$  is a monomorphism. Now, we remain only to show that  $a^2 + 4b = c^2 + 4d$  implies  $a - c \in 2R$ . Let  $R$  be a unique factorization domain. If  $b = d$ , the implication is clear. Let  $b \neq d$ . Put

$2 = p_1^{e_1} \cdot p_2^{e_2} \cdots p_n^{e_n}$  the prime factorization of 2. For each  $i$ ,  $(1 \leq i \leq n)$ , let  $f_i$  be an integer such that  $a+c = p_i^{f_i} \cdot s_i$  and  $p_i \nmid s_i$ . Then from  $4 \mid (a+c)(a-c)$ , we have  $p_i^{2e_i-f_i} \mid a-c$ . If  $f_i \leq e_i$ , we have  $p_i^{e_i} \mid a-c$  because of  $2e_i-f_i \geq e_i$ . On the other hand, if  $f_i > e_i$ , we have  $p_i^{e_i} \mid a-c$  because of  $a-c = p_i^{f_i} \cdot s_i - 2c$ . Thus we have  $p_i^{e_i} \mid a-c$  for every  $i$ ,  $(1 \leq i \leq n)$ . Therefore,  $a-c \in 2R$ . Let  $R$  be a ring such that  $2R$  is a prime ideal. Since  $(a+c)(a-c) = 4(d-b)$  is in  $2R$ , if  $a-c \notin 2R$  then  $a+c = 2r$  for some  $r$  in  $R$ , and so  $a-c = 2(r-c)$ . It is a contradiction. Thus,  $a-c \in 2R$ .

**Corollary 1.** *Let  $\mathbf{Z}$  be the ring of rational integers.  $Q(\mathbf{Z})$  is isomorphic to a multiplicative subsemigroup  $\{n; n=4r \text{ or } n=4r+1, r \in \mathbf{Z}\}$  of  $\mathbf{Z}$ . Therefore,  $Q_s(\mathbf{Z})$  is trivial. (cf. Proposition 4 in [3]).*

**Corollary 2.** *Let  $R = \mathbf{Z}[i]$  be the ring of Gaussian integers.  $Q(R) = Q_f(R)$  is isomorphic to the subsemigroup  $\{[\alpha] \in R/\{1, -1\}; \alpha = 4b, 4b+1, 4b+2i \text{ for all } b \in R\}$  of  $R/U^2(R) = \mathbf{Z}[i]/\{1, -1\}$ . And  $Q_s(R)$  is trivial.*

Proof. Since  $R/2R = \{\bar{0}, \bar{1}, \bar{i}, \bar{1+i}\}$ , we get  $Q(R) = \{[R, 0, b], [R, 1, b], [R, i, b], [R, 1+i, b]; b \in R\}$ . Therefore, we have  $Q(R) \cong \text{Im } D = \{[\alpha] \in R/\{1, -1\}; \alpha = 4b, 4b+1, 4b+2i \text{ for all } b \text{ in } R\}$ , hence  $Q_s(R)$  is trivial..

**REMARK 1.** In Theorem 4, we can not omit the condition that 2 is a non-zero-divisor. For example, let  $R = \mathbf{Z}/(4)$ , then we have  $Q(R) = \{[R, \bar{0}, \bar{0}], [R, \bar{0}, \bar{1}], [R, \bar{0}, \bar{2}], [R, \bar{0}, \bar{3}], [R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}$ ,  $Q_s(R) = \{[R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}$ ,  $D(Q(R)) = \{\bar{0}, \bar{1}\} \subset \mathbf{Z}/(4)$  and  $D(Q_s(R)) = \{\bar{1}\} \subset \mathbf{Z}/(4)$ . Then  $D$  is neither monomorphic nor epimorphic.

**REMARK 2.** In the case where  $R$  is not a unique factorization domain, we can not omit the condition in Theorem 4 that  $2R$  is a prime ideal. For example, let  $R = \mathbf{Z}[\sqrt{5}]$ . Then we have  $[R, \sqrt{5}, -1] \neq [R, 1, 0]$  but  $D([R, \sqrt{5}, -1]) = D([D, 1, 0]) = [1]$ .  $D$  is not a monomorphism.

**Theorem 5.** *Let  $K = GF(p^n)$  be finite field, then  $Q(K)$  is isomorphic to the multiplicative semigroup  $\mathbf{Z}/(3)$ . Further, the isomorphism induces an isomorphism  $Q_s(K) \cong \{\bar{1}, -\bar{1}\} = U(\mathbf{Z}/(3))$ .*

Proof. The case  $p \neq 2$ . In the first place, we note that  $(R, a, b) \cong (R, 0, a^2 + 4b)$  and  $U(K) = K^* = K - \{0\}$ . From Theorem 3 and  $(K^*: K^{*2}) = 2$ , we have  $Q(K) = \{[K, 0, 0], [K, 0, 1], [K, 0, \alpha]\}$ , where  $\alpha$  is an element  $K^*$  which is not contained in  $K^{*2}$ . By the correspondence  $[K, 0, 0] \mapsto \bar{0}$ ,  $[K, 0, 1] \mapsto \bar{1}$  and  $[K, 0, \alpha] \mapsto -\bar{1}$ , we have an isomorphism  $Q(K) \cong \mathbf{Z}/(3)$  as multiplicative semigroups, and it induces  $Q_s(K) \cong \{\bar{1}, -\bar{1}\} = U(\mathbf{Z}/(3))$  as groups.

The case  $p = 2$ . Since  $a^2 + a = a(a+1)$  for  $a$  in  $K$ , we have  $\#\{a^2 + a; a \in K\} = 2^{n-1} < \#(K)$ , where  $\#(K)$  denotes the number of elements in  $K$ . Then, there

exists  $\alpha$  in  $K$  such that  $\alpha \notin \{a^2 + a; a \in K\}$ , and the quadratic equation  $x^2 + x + \alpha = 0$  has no roots in  $K$ . Then, we can see the equalities  $\#\{a^2 + a; a \in K\} = \#\{a^2 + a + \alpha; a \in K\} = 2^{r-1}$  and  $\{a^2 + a; a \in K\} \cap \{a^2 + a + \alpha; a \in K\} = \emptyset$ . For, if  $c = a^2 + a$  and  $c = b^2 + b + \alpha$  for some  $a, b$  in  $K$ , then  $(a+b)^2 + (a+b) + \alpha = 0$ . It is a contradiction. Therefore, we have  $K = \{a^2 + a; a \in K\} \cup \{a^2 + a + \alpha; a \in K\}$ , (disjoint sum), namely, any element  $a$  in  $K$  verifies either  $\beta^2 + \beta + a = 0$  or  $\beta^2 + \beta + a + \alpha = 0$  for some  $\beta$  in  $K$ . On the other hand, by Lemma 1,  $(K, 1, 0) \cong (K, 1, a)$  if and only if there exists  $\beta$  in  $K$  such that  $\beta^2 + \beta + a = 0$ . And  $(K, 1, \alpha) \cong (K, 1, a)$  if and only if there exists  $\beta$  in  $K$  such that  $\beta^2 + \beta + a + \alpha = 0$ . Accordingly, we have  $Q_s(K) = \{[K, 1, 0], [K, 1, \alpha]\}$ . Furthermore, since  $U^2(K) = U(K)$ ,  $(K, 0, 0) \cong (K, 0, a)$  for all  $a$  in  $K$ , hence  $Q(K) = \{[K, 0, 0], [K, 1, 0], [K, 1, \alpha]\}$ . By the correspondence  $[K, 0, 0] \mapsto \bar{0}$ ,  $[K, 1, 0] \mapsto \bar{1}$  and  $[K, 1, \alpha] \mapsto -\bar{1}$  we have the isomorphism  $Q(K) \cong \mathbf{Z}/(3)$ , and it induces  $Q_s(K) \cong \{\bar{1}, -\bar{1}\} = U(\mathbf{Z}/(3))$ .

**REMARK 3.** Let  $\mathbf{Q}$ ,  $\mathbf{R}$  and  $\mathbf{C}$  be the fields of rational numbers, real numbers and complex numbers, respectively. By the same argument as the proof of Theorem 5 (in case  $p \neq 2$ ), we can see that  $Q(\mathbf{R}) = \{[\mathbf{R}, 0, 0], [\mathbf{R}, 0, 1], [\mathbf{R}, 0, -1]\}$ ,  $Q(\mathbf{C}) = \{[\mathbf{C}, 0, 0], [\mathbf{C}, 1, 0]\}$ . Further,  $Q_s(\mathbf{Q})$  is an infinite abelian group of exponent 2,  $Q_s(\mathbf{R})$  is a group of order 2 and  $Q_s(\mathbf{C})$  is trivial.

**REMARK 4.** In the case  $R = \text{GF}(2^r)$ , the homomorphism  $D$  is not a monomorphism but an epimorphism.

**Theorem 6.** Let  $R = \mathbf{Z}/(n)$ , and let  $n = p_1^{e_1} \cdot p_2^{e_2} \cdots p_r^{e_r}$  be the prime factorization of  $n$ . Then  $Q_{fs}(R)$  is the abelian group of type  $(2, 2, \dots, 2)$ ,  $r$ -times.

**Proof.** It is enough to prove that  $Q_s(\mathbf{Z}/(p^e))$  is the group of order 2 for any prime integer  $p$ . In the case  $p \neq 2$ , by Theorem 3,  $Q_s(\mathbf{Z}/(p^e))$  is isomorphic to the group  $U(\mathbf{Z}/(p^e))/U^2(\mathbf{Z}/(p^e))$ . The index  $(U(\mathbf{Z}/(p^e)) : U^2(\mathbf{Z}/(p^e)))$  is 2, since  $U(\mathbf{Z}/(p^e))$  is a cyclic group of order  $\varphi(p^e) = (p-1)p^{e-1}$ . Thus,  $Q_s(\mathbf{Z}/(p^e))$  is the group of order 2. In the case  $p=2$ , put  $\mathbf{Z}/(2^e) = R$ . We shall remark that  $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\} = 2R$ . In fact, let  $f: 2R \rightarrow \{\bar{a}^2 - \bar{a}; \bar{a} \in R\}$  be a mapping defined by  $f(\bar{a}) = \bar{a}^2 - \bar{a}$ . If  $f(\bar{a}) = f(\bar{b})$ , we have  $(a-b)(a+b-1) \equiv 0 \pmod{2^e}$ . Since  $2 \nmid a+b-1$ , we have  $2^e \mid a-b$ , hence  $\bar{a} = \bar{b}$ . Furthermore,  $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\}$  and  $2R$  are finite sets and  $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\} \subseteq 2R$ . Hence,  $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\} = 2R$ . Now, we shall show that  $(R, \bar{1}, \bar{a+2}) \cong (R, \bar{1}, \bar{a})$  for all integer  $a$ .  $(R, \bar{1}, \bar{a+2}) \cong (R, \bar{1}, \bar{a})$  if and only if there exist an odd integer  $\alpha$  and an integer  $\beta$  such that  $1 \equiv \alpha(1-2\beta)$  and  $a \equiv \alpha^2(\beta + a + 2 - \beta^2) \pmod{2^e}$ , namely, there exists an integer  $\beta$  such that  $(4a+1)\beta^2 - (4a+1)\beta - 2 \equiv 0 \pmod{2^e}$ . Since  $\{\bar{a}^2 - \bar{a}; \bar{a} \in R\} = 2R$ , we can take an integer  $\beta$  such that  $\bar{\beta}^2 - \bar{\beta} = 2(\bar{4a+1})^{-1}$ , and we have  $(4a+1)\beta^2 - (4a+1)\beta - 2 \equiv 0 \pmod{2^e}$ . Hence, we have  $(R, \bar{1}, \bar{a+2}) \cong (R, \bar{1}, \bar{a})$  for all integer  $a$ . Accordingly we have  $(R, \bar{1}, \bar{2a}) \cong (R, \bar{1}, \bar{0})$  and  $(R, \bar{1}, \bar{2a+1}) \cong (R, \bar{1}, \bar{1})$  for all integer  $a$ .

But  $[R, \bar{1}, \bar{0}] \neq [R, \bar{1}, \bar{1}]$ . Therefore,  $Q_s(R)$  is the group of order 2.

REMARK 5. Let  $R = \mathbf{Z}/(2^e)$ . Then we have following;

- i) if  $e=1$ ,  $Q(R) = \{[R, \bar{0}, \bar{0}], [R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}$ .
- ii) if  $e \geq 2$ ,  $Q(R) = \{[R, \bar{0}, \bar{a}_i]; i=1, 2, \dots, r\} \cup \{[R, \bar{1}, \bar{0}], [R, \bar{1}, \bar{1}]\}$ , (disjoint sum), where  $\{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_r\}$  is the representatives of  $R/U^2(R)$ .

Proof. i) is a special case of Theorem 5.

ii)  $(R, \bar{0}, \bar{a}) \cong (R, \bar{0}, \bar{b})$  if and only if there exist an odd integer  $\alpha$  and an integer  $\beta$  such that  $2\beta \equiv 0$  and  $b \equiv \alpha^2(a - \beta^2) \pmod{2^e}$ . Put  $\beta \equiv 2^{e-1}n \pmod{2^e}$  and  $2 \nmid n$ , then we have  $\beta^2 \equiv 0 \pmod{2^e}$ . Therefore,  $(R, \bar{0}, \bar{a}) \cong (R, \bar{0}, \bar{b})$  if and only if  $\bar{b} = \bar{\alpha}^2 \bar{a}$  for some  $\bar{\alpha}$  in  $U(R)$ , namely,  $[\bar{a}] = [\bar{b}]$  in  $R/U^2(R)$ .

REMARK 6. There is a commutative ring  $R$  with the homomorphism  $D: Q_f(R) \rightarrow R/U^2(R)$  which is not a monomorphism but the restriction  $D|_{Q_{fs}(R)}$  is a monomorphism. For example, if  $R = \mathbf{Z}/(2^e)$ , ( $e \geq 3$ ), then we have  $D([R, \bar{1}, \bar{0}]) = [\bar{1}]$ ,  $D([R, \bar{1}, \bar{1}]) = [\bar{5}]$  and  $[\bar{1}] \neq [\bar{5}]$  in  $U(R)/U^2(R)$ . Thus, the restriction  $D|_{Q_{fs}(R)}$  is a monomorphism. But, we have  $[R, \bar{0}, \bar{0}] \neq [R, \bar{0}, \bar{2}^{e-2}]$  and  $D([R, \bar{0}, \bar{0}]) = D([R, \bar{0}, \bar{2}^{e-2}]) = [\bar{0}]$ , Then  $D$  is not a monomorphism.

OSAKA KYOIKU UNIVERSITY

---

### References

- [1] H. Bass: *Lectures on Topics in Algebraic K-theory*, Tata Inst. Fund. Research, Bombay, 1967.
- [2] T. Kanzaki: *On the quadratic extensions and the extended Witt ring of a commutative ring*, Nagoya Math. J. **49** (1973), 127–141.
- [3] A. Micali et E. Villamayor: *Sur les algèbres de Clifford. II.*, J. Reine Angew. Math. **242** (1970), 61–90.
- [4] A. Micali et E. Villamayor: *Algèbres de Clifford et groupe de Brauer*, Ann. Sci. Ecole Norm. Sup. 4<sup>e</sup> ser. **4** (1971), 285–310.
- [5] P. Revoy: *Sur les deux premiers invariants d'une forme quadratique*, Ann. Sci. Ecole Norm. Sup. 4<sup>e</sup> ser. **4** (1971), 311–319.