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Let R be a ring with identity element and (R), the ring of column-finite
matrices over R with infinite degree I. N. Jacobson proposed to determine the
Jacobson radical J((R),) of (R); in his book [5]. Many algebraists have been
working on this problem. P.M. Patterson [8], N.E. Sexauer and J.E. Warnock
[9] showed J((R),)=(J(R)); if and only if J(R) is right T-nilpotent (cf. [4],
Corollary 1 to Proposition 1). On the other hand, W. Liebert [6] gave an
exact form of J((R);) if R is domain and R. Slover [10,11] and R. Ware and
J. Zelmanowitz [12] obtained an exact form of elements in J((R),), which
involved all results above.

In this note, we shall first give all types of small submodules in a free R-
module M=?€Bu‘,R. Since J((R);) is determined by small submodules in

M, we can obtain their results similarly to [12] and give another forms by means
of locally, right semi-T-nilpotent sets of small submodules.

Finally, we shall give a characterization of right perfect module P by means
of a structure of (S);/J((S);), where S=End(P).

1 Jacobson radicals

Throughout we shall assume that R is a ring with identity element and
every module is a unitary right R-module. Let A be an R-module and B a
submodule of A. B is called small in A if a fact: A=B-T for a submodule T
of 4 implies A=T. Let {M,}, be a set of R-modules and M=§I] DM, We

put S;;=Endg(M). We assume the elements in S,, operate on M from the left
side. Furthermore, we can express them as the column-summable matrices
with entries in Homg(M,, M,). If M,=R for all &, S, is the ring (R); of

column-finite matrices over R.
Let M:?@umR and S a small submodule in M. Then SQZIEBua, (R).

In order to determine a type of S, we shall define a set of right semi-T-
nilpotent, right ideals. Let {4,}x be a set of right ideals in R and K an
infinite set. If {A4,} . satisfies the following condition, we call {4,}x a right
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semi-T-nilpotent set, (see a vanishing set of ideals in [12]).

For any countable subset {A,,}7-1 of {A,}x and {a;| €A4,,}7-1, there exists n,
depending on {a;}, such that a,a,_,---a,=0.

Let {b,} x be a set of elements in R. If {§,R} is a right semi-T-nilpotent
set, we call {b,}x a right semi-T-nilpotent set. If we allow a;=a; for i=j, we
call {4,} or {b,} a right T-nilpotent set. If A,—A for all ¢, then the above
concept coincides with one of the usual T-nilpotency.

If K is a finite set, we understand 4,=0 for almost all «, then {4,}x is always
a semi-T-nilpotent set, but not a T-nilpotent set. Now, we shall state the
theorem which is substantially due to [12].

Theorem 1 ([12], Theorem 1). Let M= Pu,R be a free R-module with
I

infinite basis u, and S a submodule of M. Then the following statements are
equivalent.

1) S is small in M.

2) Let p,: M—u,R be the projection of M onto u,R and A,=p,(S). Then
A, J(R) and {A,}, is a right semi-T-nilpotent set.

3) There exists a right semi-T-nilpotent set {A,}, of right ideals in J(R) such
that S< Y \Pu,4,.

We shall prove Theorem 1 in more general forms. First, we shall gene-
ralize the concept of right semi-T-nilpotent set of right ideals. Let {Q,}, be an
infinite set of R-modules and {Sg| € Qg}pcxc; an infinite set of R-submodules.
We take a countable subset {Q,.} of {Q,}x and a set of homomorphisms
fit Qu;—0Q,, ., such that f(Q,)SS,,,,. If for any element ¢ in Q, there exists
n, depending on ¢ and {f;}, such that f,f,_, - f,(#)=0, then we call {f;} alocally
(semi)-T-nilpotent set of homomorphisms. If for any countable subset {Q,}
and any set of homomorphisms f; as above, {f;} is always locally (semi-)7-
nilpotent, then we call {S,}x a locally (right) semi-T-nilpotent set of submodules.

The following lemma is obtained by [12].

Lemma 1. Let P be projective. Then J(Sp)={f &S| f(P) is small in P}.

Lemma 2 ([4], Proposition 1). Let P be R-projective and S an R-submodule
of P. If Homg(P, S)S J(S5), S is small in P, where Sp=Endy(P).

Proof. We assume P=S-+4T for some submodule 7. Then we have a
diagram:

0—>SAT— S>> S/SANT -0
K\\[l Rf

Lopir

N ’
\\})y
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Since P is projective, we have h: P— S such that vh=fv'. Hence, S=h(P)+-
SNT and so P=A(P)4T. On the other hand, A(P) is small in P from the
assumption and Lemma 1. Therefore, P=T.

The following proposition implies 1)—2)—3) in Theorem 1.

Proposition 1. Let {M,}, be a set of finitely generated R-modules and S a
small submodule of M=% PM,. Then {S,=p(S)}; is a right semi-T-nilpotent
I

set of submodules, where p,: M — M, is the projection.
Proof. We may assume [ is a well ordered, infinite set. Let {S,,}7 be

any subset of {S,}; and {f;: M,,—S,,, }7 agivenset. Let {m$’, mQP,---,m}a}
be a generator of M,. Then for m$ there exists s in S such that

[0 #38]
s = $etp0,0F 5660, +ﬂmé¥F +S660,m0 (),
where s, €S0, -
Hence, we may assume
s E%EBSB(M) for all k=1, 2, -+, n ().
1 Special case. First, we assume that {8(z, j)} 7=, ,Zi={1, 2, -+, m,-+-} in (%)

and a;<a,<m, <oz <m,<a,<--. We put M(f,l.z{m,,i%—f,.(mai)lmMEMm} c

M,®M,, , and M'= 3} M(,+ZM +S. We shall show M=M’. For

{aga;}
*»

mg,.) we have

M'o>M; +S 2md+fi(me))—s®
a;

N
1,k 1,k k 1,k 1,k
= —sg )_sg )_...+(m‘(,1)._s‘(”1 ) _..._0_..._35"1 ) .

Hence, m{") =s{» (mod M’) and s{'* €S,,. Therefore, (M, +M")|M'=(S,,+
M")M’. Since S, is small in M,, (S, +M')/M’ is small in (M, +M")/M'.
Accordingly, M, SM’. Repeating those arguments we have M=M’. Since
S is small in M, M= ZEBM,,EBZM Hence, there exists n such that

Safa-r fi(ma)=0 for m,,:EEM (see [1], Lemma 9).

2 General case. Since (3(7,j)’s in (¥%) are countable, we may assume
{a, BE, )} ={1=ay, 2, -, n-+-} after rearranging the order of indices. We
shall denote the new index of «; by o(«;), namely o(a;)=1. Then

O'(az)
SR =8y = ) s g f ) o SR
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Since {f} is infinite, there exists i;>7, such that n(a,, k’)> o(a;)>
Max (n(a;,, k). Repeating those arguments, we obtain o(a;) =1 <o(a;,) <
A .

1V£ax(n(a,-2, k) <o(a;,) <Max(n(a;,, ) <o(a;,)<-- and 1=7,<4,<i;<---. Put
k’

gi-1= ij—l"'fij_1: Ma,;, = Sa;,, (g1=f)) and consider a counta}'zlg h,s)ubset

{Sotaip}ir. Since g;-i(May, ) fiy-s(Mai, ), g-(mGey) ) Epotas)( 33 ©M)
NS). Hence, {Sa(a;)} and {g;_,} satisfy the conditions of Special case 1.
Accordingly, 0=g,g,-1"-"g&i(ma)=f;,. -1+ fi(m,,) for some n.

From a special type of the above proof, we have

Corollary 1." Let {N,}; be a set of R-modules and {T,| <N }, a set of
submodules. If SXDT, is a small submodule of >N, then {T',}; is a locally
I I

right semi-T-nilpotent set of submodules.

Proposition 2. Let {N,}, be a set of R-modules and {T,| N,},, We put
N= 12 DN, T= ;‘,EB T, and Sy=Endg(N). Then J(Sy)2HomgN, T) if

and only if {T,}, is a locally right semi-T-nilpotent set of submodules and
Homy(Na, To) < J(Sya)-

Proof. We assume J(Sy)2Homg(N, T). Let {N,,} and {f;: N,,—T,,,}
be given sets. We may assume o;=j for all j. Then

0 0
L0
f 0

f” 0

0
is in J(Sy) from the assumption. Hence, {f;} is locally right T-nilpotent.
It is clear that J(Sy,)= €, J(Sy)es=2es Homg(N, T)e,= Homg(N,, T,), where
e, is the projection of N onto N,. Conversely, we shall show that C,.=
Homg(N,, T,)’s satisfy the conditions 1)~3) in [4], Lemma 5. 1) and 3) are
clear from the assumptions and 2) is clear. We note that in the proof of [4],
Lemma 5 we only used a fact that C,, Homg(N,, N.)©C,.. Hence, J(Sy)2
Homg(N, T) from [4], Lemma 5.

The following corollary implies 3)—1) in Theorem 1 and is the converse
of Corollary 1 above in a restricted case.

Corollary 1 ([4], Theorem 3). Let {P}, be a set of R-projectives and
{Ss| SP,} a set of R-submodules. Then XS, is small in 3PP if and only if
I I

{S.}; is a locally, right semi-T-nilpotent set of small submodules S, in P, (see
Remark 2 below).
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Corollary 2. Let {P,}, and {S,},; be as above. Then for any set {Qg} g

such that QﬁgpP‘,(p)E {P} 1 2P ps'(Saw) s always small in > P Qg if and only
A K
if {Sa};is a locally right T-nilpotent set of submodules.

Proof. It is cnough to show that S, is small in P, if {S,}; is locally right
T-nilpotent. A,=Homg(P,, S,) is a right ideal in Sp,. Let f€4,, then

f’:if"ESpw from the assumption. Hence, (1—f)f'=1 and so 4,< J(Sp,)-

Therefore, S, is small in P, from Lemma 2.

Corollary 3 ([4,8,9,12,13]). Let M=>Pu,R. Then J(M) is small in
I
M if and only if J(R) is right T-nilpotent.

Corollary 4. Let M be an R-module. If {A,},cm, i a right semi-T-
nilpotent set of right ideals in J(R), then 2 mA, is a small submodule in M.
o

Conwversely, if M is projective and S is a small submodule in M, then there exists
a semi-T-nilpotent set {A,} , of right ideals in J(R) such that S <Y\ mA,, where

My

M, is any set of generators of M (see Remark 3).

Proof. Consider an epimorphism @: P=2Pu,R—M; ¢(u,)=m. Since
My

Pu,A4, is small in P from Corollary 2, o(3 Pu,A4,)=>2>3mA,, is small in M
(see [4]). Conversely, we assume M is projective. M is a direct summand of
P and so @i=1,, for monomorphism 7. #(S) is also small in P and hence, there
exists a right semi-T-nilpotent set {4,},, of right ideals in J(R) such that
i(S)=>Pu,A4, from Theorem 1. Therefore, S:¢i(S)QHE mA,,

0

Corollary 5. Let P be a projective R-module. Then the following statements
are equivalent.

1) {J(P)} is itself a locally, right T-nilpotent set of submodules.

2)  J(Sp) is locally right T-nilpotent.

3) Any set of small submodules in P is a locally, right T-nilpotent set.

Proof. 1)—2). Homg(P, J(P))< J(Sp) from the proof of Corollary 2.
Hence, Homg(P, J(P))=J(Sp) is locally right T-nilpotent.
2)—>3). Let {S}T be a set of small submodules in P. Then Homg(P, S;,)<
J(Sp) from Lemma 1. Hence, {S;} is a locally, right-T-nilpotent set.
3)—1). First, we shall show that the union of small submodules {S,}, is also
small in P. Consider the natural epimorphism: 269P0,—>P—>0, P,=P. Then

SIPS, is small in 3PP, from 3) and Corollary 1. Hence, U .S, is small in
I I I
P. Tt is easily seen that pR is small in P, where p& J(P). Therefore, J(P) is
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small in P from the above.

The proof above shows that if J(P) is not small in P, then there exists a
locally, right non-T-nilpotent set of small submodules {S’};.

Now, we shall give a general form of Theorem 1.

Theorem 1. Let {P,}, be a set of R-projectives. Let M= PP, and S a
I

submodule of M. Then the following statements are equivalent.

1) S is small in M.

2) Let py: M—P, be the projection of M onto P, and S,=p.S). Then
{S.}; is a locally, right semi-T-nilpotent set of small submodules.

3) There exists a locally, right semi-T-nilpotent set {S,} ; of small submodules
S, in P, such that SgIE@Sa.

Proof. 2)—3)—1). Itisis clear from Corollary 1 to Proposition 2.
1)—2). We shall prove it in a general form:

Lemma 3. In Proposition 1, we assume every M, is a summand of a direct
sum Q,, of finitely generated R-modules M,s. Then the statement in Proposition 1
is valid.

Proof. Put Q,=> P M, and M*= > PQ,. Then M is a summand of

BEIy 7
M*. Let 7 be the injection of M into M*. Then #.S) is small in M* and
232D Pas(i(8)) 2 21Di(Sa) and {(S) S XD Pas(d(S)).  Now, {pas(i(S))} 1.1, i

a locally semi-T-nilpotent set from Proposition 1. Let {M,}7 and f;: M,
Sa,;, }T be given sets. 'Then we can extend f; to f;/: Q,,—i(S,,,,) by sending a
direct complement to zero. We shall denote f;” by a column-finite matrix (a?),

where a{) €Homy(M,., pa,,,-(((S)). Let m be in M, and z(m)_z]m,,lg \
Myp, € Myp,. Then fy(m) fl’(z(m))—zxaf,kﬂ (mqp,), Where aélzf,j:O for

almost all k.

fofi(m) = ff/(i(m)) = 2 E 2 42,8508, (Map,)

Since pap(#(S)) is locally semi-T-nilpotent, we obtain z such that £, f,_;-+- fi(m)
=0 from Konig Graph Theorem.

Let M be an R-module. We can correspond (not necessarily unique) any
element in S;;=Endz(M) to a column-finite matrix (a,,) over R by making use
of generators.

Theorem 2. Let P be R-projective. Then f < J(S;) if and only if f corre-
sponds to a matrix above such that {Z} a,.R} , is a right semi-T-nilpotent set of right
ideals in J(R) (cf. [12]).
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It is clear from Corollary 4 to Proposition 2.

Theorem 2' Let {P,},; be a set of R-projective modules, P=2 PP, and
Sp=Endg(P). Then !

[P1) Sl][PZ: Sl] eos [Pa" Sl] Vs
](SP) = U [Pp Sz][Pz, SZ] e [Po_, Sz]"'

..................

[Py, SJ1[Pa, So) -+ [Py So] -+

..................

[

where matrices are column-summable, {S,| S P,} runs through all locally, right
semi-T-niplotent sets of small submodules S, in P, and [P,, S.]=HomP,, S.).

Proof. It is clear J(Sp)2([P,, S.]) from Lemma 1 and Corollary 1 to
Proposition 2. Let f€ J(S;) and f=(f.), for E[P- P,]. Then p (f(P))=
2 felP,) (=S,). Since f(P) is small in P, {S,}, is a right semi-T-nilpotent set

of submodules from Therom 1.

Corollary 1.

Alx Al: oot
J(Ry) =y | A2 e
\4, 4,

where {A,}; runs through all the right semi-T-nilpotent sets of right ideals in J(R)
and all permutations {A.»} of {4,}.

Corollary 2 ([10, 11, 12]). Let (a,.) be in (R);. Then the following state-

ments are equivalent.

1) (a-)EJ(R)))-

2) {&)a,.R}, is a right semi-T-nilpotent set.

3) Any set {a,.} is a right semi-T-nilpotent set, where almost all o’s are
distinct.

Proof. 3)—2) We can prove it from Konig Graph Theorem. Other im-
plications are clear from Corollary 1.
By J((R),) we shall denote the set of matrices in (J(R)), almost all of whose

rows are zero. On the other hand, we denote a small submodule Z"}@umi J(R)

in M=>YPu,R by J(ay, et;, *++, a,)(M). Then we have
I
Corollary 3. The following statements are equivalent.

1) J(R))=JA(R):)
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2) Every small submodule in M is contained in some J(at,, ctyy ++*, ot,)(M).
3) There are no non-trivial, infinite right semi-T-nilpotent sets of elements in

J(R) (cf. [6], Theorem 1).

Proof. 1)—2). We assume 2) is not satisfied. Then there exists a small
submodule .S in M which is not contained in any J(af, a3, -+, as)(M). Hence,
for a suitable sequence {a;, a;#a; for i= j}, there exist elements s;* in .S such
that

§¥ = Uy Syt S, F0E J(R) .
We define f in S, by setting
f(u;) = s;* and f(u,) = 0 for wu,e {u;}7.

Since f(M)< S, f€eJ(R))=J;((R),) from lemma 1. Therefore, f(M)C
J(By, Bay -+, B)(M), which is a contradiction. Other implications are clear.

Remarks 1. If {T,}; is locally, right T-nilpotent in Proposition 2,
J(Sy)2Homg(N, T) (see the proof of Corollary 2 to Proposition 2).

2. Let Z be the ring of integers and p prime. Put N,=Z,. for all @ in
Proposition 2. Then End,(Z,.)=Z,; the ring of p-adic completions and Sy
is the ring of column-summable matrices (a,,) over Z,. Furthermore, J(Sy)=
{(a.)|a,,.€pZ,} from [1], Theorem 9 and Proposition 10. Let 4,={aEZ,.|
ap"=0}. Then {T,} is a locally semi-T-nilpotent if and only if T',=A4,, for
almost all . On the other hand, Hom,(Z,.., 4,)=0. Hence, Hom,(N, T)=0
if T,=A, for all ¢ and so J(Sy) = ;JHomZ(N, T) (cf. Theorem 2’). Further-

more, let A:i@Ai and M:f_‘,@ A p«,i)Z - the natural epimorphism. Then

@p(A)=2Z,.. and so A is not small in M (cf. Corollary 1 to Proposition 2).
Hence, every small submodule in M is of a type A™={meM |mp"=0} (use
the similar argument above and the proof of Proposition 1).

3. Let O be the rationals. Then Q is an injective and flat Z-module. It

is clear that Z is a small submodule in Q. Put A:i@Qi: 0,=0 and

@: A—Q by setting @(q;)=(1/i)g;; ¢;€Q;. Since Hom,(Q, Z)=0, {Z} is a
locally T-nilpotent set of small submodules. However, (23BZ)=0 and so
D¥PZ is not small in A (see Corollary 1 to Proposition 2). Furthermore,
J(Z)=0 and so Z is not of a form in Corollary 4 to Proposition 2.

4. If R is a right perfect ring, MJ(R)=J(M) is a unique maximal one
among small submodules in an R-module M. Hence, every set of small sub-
modules is a locally, right semi-T-nilpotent set and so almost results above
are trivially valid without any assumptions:finitely generated and projective.

5. TItis clear that
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A, A
A,y Ayee-

J(R)) =

---------

for a right semi-7-nilpotent set of right ideals 4, if and only if 4,=J(R) for
all ¢ and J(R) is right T-nilpotent.

2 Perfect modules

We shall add here a characterization for a finitely generated projective
module to be perfect.

Theorem 3. Let P be a finitely generated projective module and M :iGBP.

Then P is perfect if and only if Sy[J(Sy) is a regular ring in the sense of Von
Neumann and every idempotent in S [J(S ) is lifted to Sy, (cf. [3], Theorem 1).

Proof. If P is perfect, the statements are obtained by [7]. Conversely,
Let Sp=Endy(P). Then S, =(Sp);. Letébe anidempotent in ( J(:S;));/J(Ss)-
We may assume e is idempotent in ( /(Sp)); from the assumtion. Since J(S;)=
Homg(P, J(P)) from Lemma 1, e(M) S 33D J(P)=2IDPJ(R)=MJ(R). Hence,
e(M)=e(M)J(R). Therefore, e=0. On the other hand, S,/J(S,) is regular
and so J(S,)=(J(Sp));- Accordingly, J(S,) is right T-nilpotent and S,/J(S)

is semi-simple artinian from [4], Corollary to Lemma 2. Thus, P:Z”]@Pi and
1
Endg(P;) is a local ring, which implies P is perfect from [2], Theorem 6.

Corollary 1. Let R be a semi-simple artinian ring if and only if J(R) contains
no non-trivial right semi-T-nilpotent sets and Sy[J(Sy) is a regular ring, where

M:Z@u,R.

Proof. If J(R) contains no right semi-T-nilpotent sets, then J(:S))=] (Sy).
For any elements (a,.), (b,.) in Sy, (a,.)=(b..) (mod J(S,)) implies a,.=b,, for
almost all &. Let aF be in S); and aER, where E is the identity matrix in .S,,.
Then there exists (b,,) in S, such that aE(b,,)aE=aE (mod J(S,)). Hence,
there exists o such that ab,,a=a from the above. Therefore, R is regular and

J(R)=0. Since (R),=(R),/(J(R)); is regular, R is artinian from [4], Corollary
to Lemma 2.
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