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ABSTRACT 

This dissertation is concerned with solid models 

focusing its attention on input and retrieval of 

geographic and spatial information in a real space. 

Among such solid models, the octree proposed in 

computer graphics is the most adequate for this 

purpose. It has a hierarchical structure in 

positioning and an inherent feature that spatial 

information resources on a selected portion of the 

space can be efficiently enrolled and retrieved. 

Hence, the goal of this research is to construct the 

octree representation for solid objects in computer 

memory and to use the representation in robotic 

applications. 

Construction of the 

following two cases; 

already defined by one 

octree is treated in the 

1) shape" of the object is 

solid model, 2) the shape is 

not known at all. Then, in each case, an efficient 

algorithm that constructs the octree for the object 

is proposed. 

Next, as an application of the octree 

representation to robotics, a fast interference 

checking algorithm between the octree and the B-reps. 

is considered. This algorithm is useful in graphics 

simulator for off-line robot teaching. 



In Chapter 2, some solid models investigated in 

computer graphics are explained and discussed. In 

Chapter 3, a conversion algorithm from the B-reps. 

to the octree is described. Since the B-reps. 

(polyhedron) is the most general solid model, this 

algorithm can be applied to many application fields. 

In Chapter 4, a construction algorithm of the octree 

approximating a real solid object by using multiple 

views is discussed. The algorithm is useful in case 

that the object is unknown. This is regarded as one 

application of the above conversion algorithm for 

computer vision. Chapter 5 presents a fast and 

general interference checking algorithm. This 

algorithm is also regarded as one application of the 

conversion algorithm to robotics. 
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CHAPTER 1 

INTRODUCTION 

1 



1.:.1 The beginning 

In many fields such as computer graphics, computer 

vision, and computer-aided design, much attention has 

been focused on the representation problem of three 

dimensional objects, which is called the computer-based 

three-dimensional geometrical modeling. The main 

proposed models are Simple Sweep, Boundary 

Representation, and CSG [1]-[J]. Whereas these 

models are mainly investigated for retrieving the 

topological information of an solid object, they are 

not suitable for preserving the geographical 

information of one whole space including many objects. 

The octree representation proposed by Jackins and 

Tanimoto [4] has such a structure as underpinning for 

Warno_ck 1 s algorithm [ 5] , planning [ 6], and pyramid 

data structure [7]. This tree is one of the 

hierarchical representations whose structures are 

described in various ways [8]-[14]. It has been 

already used for investigating the ray-tracing 

[15]-[17] in computer graphics and the pattern 

recognition [18]-[20] in computer vision. This is 

based on the property that spatial information 

resources on a selected portion of a three-dimensional 

object can be efficiently retrieved because of the 

convenient hierarchical structure for top-down, 

2 



bottom-up, 

addition to 

and 

this 

split-and-merge 

property, since 

operations. In 

the octree is a 

solid model that integrates all objects in one whole 

space, it can deal with some objects in the space 

simultaneously. These properties meet several 

requirements in robotics and contribute to the 

decisive reason for adopting the octree as a model of 

robot's environment. 

Then, in this dissertation, some effective 

algorithms concerning the octree are devised by using 

those properties and applied to some important 

problem in robotics. 

The first one is a conversion algorithm from the 

B-reps., which is the most general solid model, to 

the octree. Similar conversion algorithms from other 

models, for example, CSG, and Simple Sweep, etc., to 

the octree have been proposed in several researches 

[21],[22]. Thus, if shape of a solid object has been 

defined by a set of solid models including the 

B-reps., the corresponding octree can be surely 

constructed. 

The second one is to construct an approximating 

region for some real object with the octree using 

multiple two-dimensional images. This algorithm is 

useful in case that shape of the object is unknown. 

Several algorithms for this purpose have been studied 

3 



in many fields (Computer Vision, Computer Graphics, 

and Robotics) and many important technical methods 

(Stereo vision, Shape from shading, etc.) have been 

presented [23]-[27]. However, some methods can not 

build an accurate solid model for the object if 

degraded images are only obtained, and others require 

enormous calculation time. To solve those problems, 

we propose a fast and general algorithm based upon a 

so-called volume intersection method and a 

hierarchical property of the octree. 

The proposed two algorithms are considered to be 

fundamental in a sense that they construct an 

environment model necessary to accomplish various 

requirements for decision making in robot motion 

planning. For that reason, an interference check 

algorithm between a robot model and its environment 

model in graphics simulator (off-line teaching) is 

treated here as one of such requirements. 

On-line robot teaching which is mostly used in the 

field of robot teaching is useful if a robot is of a 

simple shape and its environment is a mere space. 

However, this teaching needs much time if the robot 

structure is complicated and its environment is 

cluttered, and thereby a production line in factory 

must be stopped for a long period. In that case, 

off-line teaching with graphics simulator would be 
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used. Then, performance of the simulator depends on 

the efficiency of the interference check and therefore 

the fast interference check algorithm between the 

robot model with the B-reps. and the environment 

model with the octree is proposed. Owing to the 

hierarchical structure of the octree, the algorithm 

can select regions such that the robot model probably 

intersects an obstacle in its environment model by 

adaptively changing the resolution level of the 

octree, and therefore discuss the interference for 

only some parts of obstacles around the robot model. 

Consequently, this algorithm does not depend on the 

complexity of shape of the robot and its environment 

and therefore is even fast in the complex robot and 

cluttered environment. 

Not only the robot simulator but also a so-called 

intelligent robot requires an environment model. For 

example, automatic decision of the robot motion 

avoiding obstacles is investigated in this research 

field and is called "mover's problem" or "find pa th 

problem". As compared with some data structures 

which have been proposed for representing an 

environment model in this problem, the octree is 

promising enough for such a data structure in the 

following reason: Due to indexing a three-dimensional 

space hierarchically, the octree is capable of 
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determining whether a part of obstacles exists or not 

in a region easily. Hence, it can fast search for a 

free region in path-planning of the robot. In 

addition to this, the octree is easily modified with 

respect to a movement of the obstacle [28] [69]. 

Thus, the octree with capability of representing the 

spatial information is suitable for a model of 

robot's environment. 

6 



1.2 Dissertation outline 

The rest of the dissertation is organized into six 

chapters: 

Chapter 2 discusses some solid models that have 

been mainly proposed in computer graphics. Especially 

in that chapter, the octree representation that is 

adopted as an environment model is explained in 

detail. 

Chapter 3 proposes a conversion algorithm from the 

B-reps. to the octree. 

other algorithms, the 

In contraposition to similar 

proposed algorithm is fast 

because it is a one-pass method in the sense that it 

can deal with all nodes (cubes) of the octree 

simultaneously, whenever they are inside, outside, or 

intersecting for the B-reps. Furthermore, since it 

has the property that building a subtree of the 

octree in some region is independent of building 

subtrees of it in other regions, it can be used in 

many application fields. 

Chapter 4 is concerned with an algorithm for 

constructing a real object in memory of the computer 

by using the octree as one application of the above 

conversion algorithm in computer vision field. This 

algorithm should be used for such a case that shape 
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of the real object is not known at all. 

Chapter 5 is concerned with an interference check 

algorithm in graphics simulator as one application of 

the conversion algorithm in robotics. The efficiency 

of off-line robot teaching with the simulator depend 

on the efficiency of the algorithm. This algorithm 

can run fast even in a cluttered environment and a 

complicated 

regions that 

obstacles in 

robot since it 

intersect both 

the environment 

can fast select only 

the robot model and 

with the aid of the 

hierarchical structure of the octree. 

Some concluding remarks and further developments 

of the research are to be given in Chapter 6. 
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CHAPTER 2 

MODEL DEFINITIONS 
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2.1 Introduction 

According to the literature on solid modeling, 

some methods for representing solid objects have been 

proposed for many purposes [1]-[3]. For constructing 

a solid model, Simple Sweep is mostly used. To 

evaluate integral properties of a solid, CSG 

(Constructive Solid Geometry) is a natural 

representation. 

model, B-reps. 

extensively used. 

For the purpose of display 

(Boundary representation) 

of a 

is 

Octree representation [4],[14],[28],[29] proposed 

recently is a natural hierarchical solid model that 

can change the resolution in positioning adaptively 

in reference to a region_ in the world space and 

retrieve efficiently the geometric information. This 

adaptability is useful in ray-tracing and pattern 

recognition, and many application algorithms in the 

fields have been proposed [15]-[20]. Also, the 

greater part [30]-[35] of valuable algorithms based 

on the quadtree whose hierarchical structure in two 

dimension is equivalent to the structure of the 

octree in three dimension is applicable to the 

octree. Further, the view-transformation algorithm 

[36], [37] for displaying on a screen 3-D pictures 

represented by the octree and other application 

10 
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Fig.1. An object (a) and its corresponding octree (b) 
and DF-representation (c). 
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algorithms [38]-[40] using the octree are presented. 

2.2 Octree representation 

Octree is a solid model that hierarchically 

represents a three dimensional space as shown in 

Fig. 1 • In octree, a region (cube C) that intersects 

a given object is represented by a mix node and a 

region (cube C) inside [outside] the object is 

represented by a black [white] node. A region (cube 

C) corresponds to a mix node is decomposed into eight 

subregions (subcubes Ci) and its subregions are 

represented by eight child nodes of the mix node. 

The order of octants is shown in Fig.2. 

The decomposition is recursively processed by the 

depth-first search until the finest resolution level 

(n) of the octree. At the finest resolution level, 

all mix nodes are converted to black nodes. And if 

these are complete eight black child nodes who have 

the same parent node, then the set of these child 

nodes is merged into the parent black node. 

Several advantages of this octree representation 

are summarized below: 

(1) Calculation of mass properties (volume, weight, 

center of gravity, and moment, etc.) is easy. 

(2) Due to the hierarchical property, the search of 

13 



geometric information can be carried out rapidly (ray 

tracing, etc.). 

(3) Since most algorithms that use the octree 

possess generally a recursive property, hardware 

implementation of those is simple and easy (41]. 

( 4) Set operations (intersection, complement, and 

union etc.) can be processed fast. 

2.3 DF-representation 

A DF (Depth-First) representation (42),(43] is a 

linear encoding of the octree as shown in Fig .1 ( c) 

and is made by pre-order scanning on the octree. 

Here, symbol 1 ( 1 indicates a mix node and yields an 

increment of one tree level, and symbol 1 ) 1 yields a 

decrement of one tree level. Sy~bols 1 0 1 and 1 1 1 

imply a black and white node, respectively. The 

DF-representation is useful in condensing the storage 

of the octree. 

2.4 Boundary representation (B-reps.) 

B-reps. is the most general solid model that is 

represented by a set of patches. In this 

dissertation, a patch of the B-reps. is represented 

by a sequence of vertexes which are clockwise ordered 

14 
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for the normal vector of the plane that includes the 

patch as shown in Fig.J. 

Not only some algorithms to display the solid 

object but also several algorithms [44],[45] for the 

set operation using this model are presented. 

2.5 Simple sweeps 

Sweep representation [2],[21],[46] is represented 

as an occupying volume of an region guided by a given 

motion. In general, the motion is defined as a 

combination of translation and rotation. Contrary to 

this, the sweep representation is called "Simple 

sweep" if and only if the motion is defined as 

translation or rotation illustrated in Fig.4. Using 

this simple sweep, one solid object is easily 

constructed in computer because only decision of both 

shape of the region and one motion is necessary and 

sufficient for the construction. Further, the 

integral properties of some simple sweep may be 

computed by exploiting dimensional separability to 

convert a triple (volume) integral into a double 

(surface) integral over a planar set [21]. Needless 

to say, this model is not capable of the construction 

of one complicated object. 
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2.6 Constructive solid geometry (CSG) 

Constructive solid geometry (CSG) [2], [3], [47] is 

based on the notion of 11 addi tion" and "subtraction" 

of several 

Fig. 5. The 

properties 

primitive solid 

natural method 

of solids with 

objects illustrated in 

for evaluating 

CSG is to 

integral 

apply a 

"divide-and-conquer" strategy to each primitive solid 

object [21]. Furthermore, many algorithms for 

reporting and counting geometric intersection between 

two different CSG models are proposed [48]-[50]. 

This CSG model is also unfit for the representing a 

complicated object because the computational load for 

constructing the representation is enormous with 

increasing the number of primitive objects. 

The first two models are suitable for retrieving 

the geographical information for a set of objects in 

one whole space. On the contrary, the other models 

are suitable for doing the topological information of 

a three-dimensional object. In robotics, a data 

structure for retrieving effectively the geographical 

information of a Cartesian space including many 

obstacles is especially needed in an environment 

model that represents the whole space. As a result, 

the former models are useful for many applications to 

18 



I 
I 
I 
I 
I 
I 
I ----tr .... 

' ............ __ _ 

Fig.5. Constructive solid geometry (CSG). 

19 



robotics. Therefore, we claim that the octree is 

adequate as robot's environment model in order to 

develop important application algorithms based on the 

octree. 

20 



CHAPTER 3 

CONVERSION ALGORITHM 

FROM 

THE BOUNDARY REPRESENTATION 

TO THE OCTREE AND ITS COMPLEXITY 

21 



3.1 Introduction 

To use the octree, a conversion from other solid 

models proposed in computer graphics (Simple Sweep, 

CSG, and B-reps., etc.) to the octree is necessary. 

For this purpose, Lee and Requicha [22] presented an 

algorithm that converts efficiently from the CSG 

scheme into the octree. Franklin and Akman [51] 

described a conversion algorithm 

parallelepipeds to the octree. 

from a set of 

However, the 

algorithm is not general because of the necessity of 

elaborate calculation of a set of parallelepipeds, 

which is an approximating region for a given object. 

Yau and Shihari [52] gave an algorithm for 

constructing a tree 

from trees of its 

of d-dimensional binary images 

(d-1 )-dimensional cross section. 

Since trees of a two-dimensional cross section for a 

given object are obtained easily, this algorithm is 

general. On the contrary, it has a large 

computational complexity that is proportional to gn 

for parameter n (the finest resolution level of the 

octree). Tamminen and Samet [53],[54] proposed a 

conversion algorithm from the B-reps. to a linear 

representation of a binary voxel tree (bintree), 

which is like an octree. Since B-reps. is a primary 

scheme used for representing a solid object, the 

22 



algorithm is general. However, there are some 

defective points in the algorithm. First, the 

algorithm is inefficient in calculation time because 

it is based on a two-pass approach: It makes nodes in 

the bintree, which correspond to the region 

inter~ecting patches of the B-reps, and then it makes 

other nodes in the bintree, which correspond to the 

internal and external regions for the B-reps., using 

the connected components labeling technique. In this 

connection, the construction of nodes that represent 

the region· intersecting patches of the B-reps. is 

not complete. Second, due to the two-pass approach, 

the algorithm can not execute any partial conversion 

from a part of the B-reps. to the bintree. 

Thus, we propose a conversion algorithm from the 

B-reps. to the DF-representa ti on that is a linear 

representation of the octree. First, capability of 

building nodes of the octree, wh~ch correspond to the 

region intersecting patches of the B-reps., is 

assured in Theorem 1 and Theorem 2 in this chapter. 

Second, by restricting the B-reps. to be of convex 

shape, the proposed algorithm can deal with all nodes 

pf the octree simultaneously, whenever they are 

inside, outside, or intersecting for the B-reps. 

Hence, the algorithm is composed by an one-pass 

approach. In other words, it follows naturally from 

23 



this property that building a subtree of the octree 

in some region is independent of building subtrees of 

it in other regions. Using this fact, the algorithm 

can convert a part of the B-reps. to the octree and 

therefore it can be effectively used in many 

applications in the fields of robotics and computer 

vision. Finally, the computational complexity of the 

algorithm and the storage of the octree with respect 

to s (surface area of the B-reps.), N (number of 

patches of the B-reps.) and n (the finest resolution 

level of the octree) are analyzed and evaluated, 

which is neglected in the literature on previous 

research works. 

The effectiveness of the algorithm is demonstrated 

by implementing it in C language on the VAX 11 /?50 

under UNIX. In an illustrative ex_ample for a set of 

B-reps. data given by approximating a solid sphere, 

it is shown that the actual conversion time from the 

B-reps. to the DF-representa tion and the number of 

nodes of the octree are coincident with the estimated 

time-complexity 

respectively. 

and storage 

24 
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Listing 1. Notations and basic functions 

r : cube corresponding to a root node (the world space) 
of an octree. 

c, Ci = cube corresponding to a node, and cube corresponding 
·to the i-th child node of that node. 

n = finest resolution level of the octree. 
n' =current resolution level of the octree. 
CHILD(C,i) =i-th subcube Ci of cube c. 
CENTER(C ,i) - x, Y, or Z-axis coordinate of the center 

point of cube c. (i = 1, 2 or 3) 
UPPER(obj,i) - upper coordinate for the parallelepiped 

enclosing an object ( B-reps. ) in X, Y, or 
Z-axis (i ~ 1, 2 or 3). 

LOWER(obj,i) - lower coordinate for the parallelepiped 
enclosing an object (B-reps.) in X, Y, or 
Z-axis (i = 1, 2 or 3). 

MARKED(map,i): this function is 'True' if the state of the 
i-th subcube Ci in map is 1 intersection', else 
is 'False'. 

MARK ( i) : Di vi de a cube C into two volumes by the plane 
which is vertical to the x, Y, or z-axis (i= ±1, 
±2, or !3) and proceed with one of the following 
two processes: 

(i > 0) This function gives information that states of four 
cubes in the volume of positive direction with 
respect to the axis are 'intersection' , and other 
states are 'non-intersection' • 

(i < 0) This function gives information that states of four 
cubes in the volume of negative direction are 
'intersectior,' and other states are 'non-intersection'. 

Boundary map (map) =This map keeps current all states 
( 'intersection' or 'non-intersection' ) of 
eight subcubes. 

25 



J.2 Conversion algorithm 

In this section, a conversion algorithm from a 

given B-reps. to a DF-representation is proposed and 

explained in detail. The basic process in the 

algorithm is that eight subcubes of an 'intersection' 

cube (a region including a part of the B-reps.) are 

classified into 'inside', 'outside' or 'intersection' 

for the B-reps. Here, we should note that the 

1 inside 1 , 'outside 1 , and 1 intersection 1 subcubes are 

considered to be the 1 black 1 , 'white', and 1 mix 1 

nodes, respectively, and therefore are converted into 

the symbol 1 0 1 , 1 1 1 , a pair of the symbol 1 ( 1 and 

1 ) 1 , successively. This classification is managed by 

the following three procedures (MESH, PLURAL and 

SINGLE procedures). In accordance with a degree of 

intersection when the B-reps. intersects a cube, one 

of th& three procedures is selected to deal with the 

cube. The classification is carried out using only 

patch information of the B-reps. in the cube. Thus, 

by adopting this basic process recursively, a subtree 

of the octree (DF-representation), which corresponds 

to one cube (region), can be completely built using 

only partial information of the B-reps. in the 

cube. 

The basic process is recursively used for each 
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'intersection' cube by the depth-first search on the 

octree and therefore its DF-representation is 

naturally made. Here, if the initial 'intersection' 

cube r is the world space, then proposed algorithm 

constructs the octree for the whole B-reps. 

3.2.1 MESH Procedure 

This procedure deals with a cube (region) that 

encloses completely a given B-reps (See Fig.6). The 

procedure determines only one subcube enclosing the 

B-reps. at each level of the octree and considers it 

the 'intersection' subcube for the given B-reps. 

Other seven subcubes at the level are 'outside' for 

it. If the subcube enclosing the B-reps. can be 

uniquely determined, this procedure deals with the 

subcube as an input cube anew. Otherwise, the 

procedure is stopped and some subcubes intersecting a 

part of the B-reps. are processed by the following 

PLURAL procedure. 

This procedure concretely consists of the 

following two steps: The first step is to define the 

minimum parallelepiped enclosing the B-reps. The 

second step is to divide the 'intersection' cube into 

eight subcubes and to search a subcube intersecting 

the parallelepiped. The subcube is specified as the 
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Listing 2. MESH procedure. 

procedure MESH(C,n') 
begin 

map + intersection; 
for i +1 until 3 do 

end; 

if UPPER(obj, i) < CENTER(C, i) then 
map +map n MARK(-i); 

else if LOWER(obj, i) > CENTER(C, i) then 
map ~ map n MARK( +i); 

if COUNTER_MARK(map) > 1 then 
PLURAL(C, list, n'); 

else if n'+1 ~ n then 

WRITE ( I ( I ) ; 

begin 
for i +O until 7 do 

if MARKED(map, i) then 
WRITE ( I 1 I ) ; 

else 
WRITE('O'); 

end; 
else 
begin 

for i +O until 7 do 

end; 

if MARKED(map,i) then 
MESH(CHILD(C, i), n'+1); 

else 
WRITE ( I 0 I ) ; 

WRITE ( I ) I ) ; 

COUNT_MARK(map) :: count the number of states of 'intersection' 
in map. 
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'intersection 1 one and other subcubes are specified 

as the 'outside' one. 

J.2.2 PLURAL Procedure 

This procedure deals with a cube (region) that 

intersects some patches of the B-reps. First, by 

assigning each patch in the cube to some of eight 

subcubes, the following three routines (BBOX, PLANE, 

and PROJECTION routines) classify each subcube into 

1 intersection 1 (a subregion including a part of the 

B-reps.) or 'non-intersection' (a subregion which 

does not include any part of the B-reps.) (Fig.7). 

Next, the JUDGE routine classifies each 

'non-intersection' subcube into being 'inside' or 

'outside' for the B-reps. The first two routines 

check necessary conditions so that a patch intersects 

a subcube, and the third routine checks a sufficient 

condition. 

1) Bounding box routine (BBOX): This routine 

selects subcubes that the minimum parallelepiped 

enclosing a patch P intersects. Such subcubes are 

considered to be a candidate for the 1 intersection 1 

subcube. 

Now, this routine is concretely described as 
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Listing 3. PLURAL procedure. 

procedure PLURAL(C, list, n') 
begin 

end; 

for i + 1 until LENGTH( list) do 
begin 

P +list[i]; 
map + BBOX(P,C); 
map ~ map n PLANE(P,C); 
PROJECT(P,C,map); 
ENTRY(P,map); 

end; 

WRITE ( I (I ) ; 

if n'+1 i:n then 
begin 

for i + 0 until 7 do 

end; 
else 

begin 

if LENGTH( lis [ i]) #- 0 then 
WRITE ( 1 1 I ) ; 

JUDGE(map); 

for i +O until 7 do 

end; 

if LENGTH(lis[i]) = 1 then 
SINGLE(CHILD(C,i),lis[i],n'+1); 

else if LENGTH(lis[i]) > 0 then 
PLURAL (CHILD ( c, i) , 1i s [ i] , n' + 1 ) ; 

JUDGE (map) ; 

WRITE ( I ) I ) ; 

list, lis[i] - patch lists correspond to cube C and 
subcube Ci, respectively. 

LENGTH(list) 
ENTRY(P,map) 

:length of the list (number of patches). 
- append a patch P to the lis[i] of subcube Ci 

whose state is 'intersection' in map. 
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Listing 4. BBOX routine. 

procedure BBOX(P,C) 
begin 

map + intersection; 
for i +1 until 3 do 

if UPPER(P, i) < CENTER(C, i) then 
map - map (\ MARK(-i); 

end; 

else if LOWER(P, i) ) CENTER(C, i) then 
map - map n MARK(+i); 

return map; 
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follows: It divides a cube C into two regions ( Cn, 

Cp) - each region includes four subcubes Ci - by the 

plane that is vertical to each axis (X, Y, or Z axis) 

and intersects the center point G of the cube, and 

checks whether the above parallelepiped intersects 

each region or not (See Fig.8). By processing these 

three results for the X, Y and Z axes as shown in 

Table 1, the routine can determine some subcubes 

intersecting the parallelepiped. 

2) PLANE routine: This routine selects subcubes 

that intersect the plane including a patch P. 

Denote the normal vector of the plane S including 

a patch P by n=(nx,ny,nz)• For some given point 

Po(po) on the plane Sand any point P: p =(px,Py•Pz), 

define 

d(S,P) 
-+ 

= n • (!) - :Po) 
= nx*Px+ ny*Py + nz*Pz-d• (d = n · pt,) 

This function implies a distance from the plane S to 

a point P. When the world space is divided into two 

volumes by the plane, one volume that includes the 

given B-reps is defined to be inside and another 

volume that does not include it is defined to be 

outside. Then, ~ point P is inside [outside] the 

plane if the function defined above is negative 

[positive]. 
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-+ 
The vector i = (ro,r1,r2) is defined such that 

the binary representation of a 

decimal number i. The number i represents the 

position of a subcube as shown in Fig.2. 

We now explain an efficient way for finding some 

subcubes that intersect the plane S. First, 

calculate d ( S, G) = dg for the center point G of 

cube C and proceed with one of the following 

processes: 

(i) Function d(S, G) is negative [positive] 

The point G is inside [outside] the plane S. In 

this.case, the plane S intersects some subcubes which 

are adjacent to the subcube maximizing 

[minimizing] Ir -+ 
• i. Now, if the function d(S,vj) is 

positive [negative] for some vertex Vj of the 

subcube Ck, then Vj is outside [inside] the plane S 

and therefore the plane S intersects a line Gvj 

(Fig.9). Consequently, adjacent subcubes to the line 

are considered to be a candidate for the 

'intersection' subcube. Here, an efficient method is 

used in calculation of the function d(S,vj). Seven 

vertexes that are all the vertexes of subcube Ck 

except for the vertex G are firstly classified into 

three groups A (vertexes Ax, Ay, and Az), B (vertexes 

Bx, By, and Bz) and C as shown in Fig.10. The value 

39 



of dg is already calculated. Therefore, once 

calculating lldi = h * lnil (i=x,y and z), we obtain 

the value of each function d(S,vj) easily (given in 

Appendix A) by the following equations: 

d(S, Ai) = d(S, G) ±h * lnil 

= dg ± lldi (i = x, y or z). 

d(S, Bi) = dg ± ( fl dj+ Adk). 

(i,j,k = x,y,z, i*j, i*k) 

d ( S, C) = dg ± ( A dx + /J. dy + A dz) • 

(h: a side length of a subcube.) 

Moreover, since the plane S intersects four 

subcubes adjacent to the line GAz if it intersects 

the line while the functions for vertexes in the A 

group are calculated (See Fig.10)~ calculation of the 

function for only a vertex Bz is necessary and 

sufficient in the B group. This geometric property 

makes the algorithm run faster. 

(ii) Function d(S,G) equals zero .. 
A subcube minimizing [maximizing] n 

~ 

• i is inside 

[outside] the B~reps. Then, since the plane S 

intersects other six subcubes exactly, these six 

subcubes are considered to be a candidate for the 

'intersection' subcube. 

40 



Listing 5. PLANE routine. 

procedure PLANE(P,C) 
begin 

dg + d(P,CENTER(C)); 

map + outside; 

for i +1 until 3 do 
6dCiJ +h* I nv[i] I; 

if dg < 0 then 
for i + 1 until 7 do 

if dg + SUM(i,~d) > 0 then 
map ~ map U MARK_ROUND ( + i) ; 

else if dg > 0 then 
for i + 1 until 7 do 

if dg - SUM(i,~d) < 0 then 
map ~ map U MARK_ROUND(-i); 

else 

end; 

begin 
black 
white 
for i 

if 

+ :intersection; 
+ :intersection; 

+1 until 3 do 
nv[i] > 0 then 
begin 

black ~ 
white ~ 

end; 

black f'l MARK(+i); 
white (l MARK(-i); 

else if nv[i) < 
begin 

0 then 

black ~ 
white ~ 

end; 

black (l MARK(-i); 
white (l MARK(+i); 

map~- (black U white); 
end; 
return map; 

nv[i] :normal vector of a patch P where (i = x, Y, Z). 
SUM(i,~d) : summation of all terms but the first term in 

the equations (See in Paragraph 3.2.2). 
MARK_ROUND(i) = information that states of adjacent subcubes 

to line Gvi are ':intersection' • 
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3) PROJECTION routine: The above two routines 

still leave some subcubes which do not intersect a 

patch P. This reason is that only a necessary 

condition for a subcube to intersect the patch is 

taken into consideration in the above two routines. 

Thus, a sufficient condition is required, which 

selects a subcube exactly intersecting a patch P. 

This condition is obtained by the following property: 

The shadows P(i) and C(i) (i=X, Y, and Z) are defined 

as -projections of the patch P and a subcube Ci 

respectively onto the planes· D(i) which are vertical 

to the X, Y, and Z axes, respectively. The subcube 

Ci intersect~ exactly the patch P if and only if the 

shadow C(i) intersects the shadow P(i) in each of the 

three planes D ( i) and it is regarded as the actual 

'intersection' subcube. This property is obtained by 

the following Th.1 and Th.2.: 

Defining notations (Fig.11) 

R: intersecting region between a subcube Ci and a 

plane S. (R = Ci () S) 

R(i) lJ R: the region on S, whose projection onto the 

plane D ( i) is coincident with the shadow 

C(i) (i=X, Y or Z). 
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Fig.11. Projecting region of cube onto the plane S. 
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CCi) 

D 
Non-

i ntersection Partial 

DC(i) 
Complete 

Fig .13. Two dimensional intersecting pattern between patch 
and cube. 
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[ 3D information ] (Fig.12) 

[ non-intersection ] Ci () p = <P • 

[ partial ] Ci () s ~ Ci () p =I= <P • 
[ complete ] Ci () s = Ci () p =I= cp • 

In three-dimensional space, a state 

"non-intersection" implies that a subcube Ci does not 

intersect any patch , a state "partial" does that a 

subcube Ci intersects some patches, and a state 

"complete" does that a subcube Ci intersects only one 

patch. The subcube having one of the last two states 

corresponds to the 'intersection' subcube. 

[ 2D information ] (Fig.13) 

[ non-intersection ] C ( i) () P ( i) 

[ partial ] C(i) ~ C(i) () P(i) =1= 

[ complete ] C(i) = C(i) () P(i) =I= 

= <P' • 

cp • ' 
cp • 

In two-dimensional space, a state "non-intersection" 

implies that the shadow C ( i) is outside the shadow 

P(i), a state "partial" does that the shadow C(i) 

intersects some edges of the shadow P(i), and a state 

"complete" does that the shadow C(i) is inside the 

shadow P(i). The last two states indicate that the 

shadow C(i) intersects the shadow P(i). 
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[ Theorem 1 ] For any plane D(i), C(i) 0 P(i)*<J> 

~ Ci n Pq:c/>. 
Proof: Direct part) For any plane D(i), · C(i) () P(i)1;.c/> 

implies that each point Po(i) E R(i) U R (i=X, Y, 

and Z) exists on a patch P. A triangle Q that 

consists of those points Po(i) intersects the region 

Ras shown in Fig.11. The triangle Q is inner for 

the patch P because any patch P is assumed to be a 

convex region in this dissertation. Therefore, 

Ci rt P -/: c/> • 

Converse part) A point P1(i) represents the 

projection of a point p E Ci 0 P '/:. <P onto the D ( i) 

plane. Hence for any plane D ( i) , P1 ( i) EC ( i) () P ( i) * c/>. 
The assertion follows. 0 

[Theorem 2 ] For some plane D(i),C(i) () P(i) =<P 

~ Ci () P = </:> • 

Proof: Direct part) This part is given by the 

contraposition of the converse part in Th. 1. 

Converse part)· This part is given by the 

contraposition of the direct part in Th. 1. 

the assertion follows. 0 
Hence, 

When the projected plane is divided into two 

regions by the line that includes an edge constructing 

a shadow P(i), the region that includes the shadow 
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P(i) is defined to be inside for the edge and the 

region that does not include it is defined to be 

outside for it. 

Since the subcube Ci intersects the minimum 

parallelepiped B that encloses a patch P, shadow C(i) 

intersects the region B(i) that is a projected region 

of the parallelepiped B. Here, the shadow P(i) is a 

convex region, and all angles of P(i) within the 

region B(i) are obtuse. From those properties, it 

follows that the shadow C(i) is "non-intersection'' 

for the shadow P(i) if it is outside for some edge of 

P(i), and the shadow C(i) is "complete" for the 

shadow P(i) if it is inside for all edges of P(i). 

Otherwise, the shadow C(i) is "p~rtial"-for it. The 

PROJECTION routine tises this classificati6n and the 

Th.1 and Th.2. 

A position OUT is defined as the position j that 

maximizes k•j (k : the outer vector that is vertical 
~ 

to an edge). The vector j=(ro,r1) is also defined 

such that (ror1)2 denotes the binary representation 

of a decimal number j. The number j represents the 

position of the shadow C(i) in a projected region of 

the cube illustrated in Fig.14. 

4) JUDGE routine: This routine classifies each 

'non-intersection' subcubes into being 'inside' or 
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·Listing 6. PROJECTION routine. 

procedure PROJECTION(P, C, map) 
begin 

for i + 1 until 3 do 
begin 

while (EDGE(PROJ(P, i)) ¢NULL) 
begin 

case JUDGE(EDGE(PROJ(P, i)}, CENTER[i]) of 
inside: break; 
outside: 
on: 

end; 
end; 

end; 

MAP(i, OUT, map); 
break; 

PROJ ( P, i) = projected region of a patch P onto the plane 
. D(i) • 

ED.GE(P) = edge of a patch P 
JUDGE(e, p) :: judging whether a point p is inside, 

, intersecting, or outside. 
CENTER[ i] :: coordinates of the center point of cube C 

except the i-axis component. 
MAP(i, j, map) = changing states of two subcubes into 

'non-intersection', whose projected region 
onto the plane D(i) corresponds to the 
position j as shown in Fig.14. 

so 



'outside' for the B-reps. By checking the position 

of the point G for each plane including a patch in 

the present 1 intersection 1 cube, i.e., inside, 

intersect, or outside, which has been already 

obtained through the PLANE routine, we proceed with 

one of the following processes. 

1) If the point G is outside some plane, then the 

'non-intersection' subcubes are 'outside' for the 

B-reps. 

2) If the point G is inside all planes, then the 

'non-intersection' subcubes are 'inside' for the 

B-reps. 

3). If neither of case 1) nor 2) occur, it is 

possible 

through 

to determine by the information obtained 

PLANE routine (ii) .whether each 

'non-intersection' subcube is 'inside' or 1 outside 1 

for the B-reps. 

These processes are based on the following properties 

that are acquired if and only if the B-reps. is 

convex. 

[ Property 1 ] When the B-reps. does not intersect 

the point G, all 'non-intersection' subcubes are of 

the same state ( 1 inside 1 , or 'outside') and they are 

1 inside 1 ('outside 1 ) if the point G is inside 

(outside) the B-reps. When the B-reps. intersects 
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Fig.15 SINGLE procedure 
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the point G, whether each subcube is 1 inside 1 or 

'outside 1 for the B-reps. can be determined by the 

information obtained through the PLANE routine (ii).(] 

[ Property 2 ] The PLANE routine judges whether the 

point G is inside, intersect, or outside for the 

plane including a patch in the present 'intersection' 

cube. Then, the point G is outside the B-reps. when 

the function d(G,S) is positive for some plane S. 

The point G intersects the B-reps. when the function 

d(G,S) is zero for one plane S and d(G,S) is negative 

for other planes. Otherwise the point is inside the 

B-reps. D 

3.2.3 SINGLE Procedure 

An intersecting region between a patch P and a cube 

C corresponds to only an intersecting region between 

the plane S including the patch P and the cube C if 

the cube C intersects only the patch P (See Fig.15). 

Therefore in this procedure, the 'intersection' 

subcubes intersecting a patch P can be· easily 

obtained using only the PLANE routine. In addition, 

the JUDGE routine also deals with 'non-intersection' 

subcubes. 
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Listing 7. SINGLE procedure. 

procedure SINGLE(C, P, n') 
begin 

map+ PLANE(P, C); 
WRITE('('); 
if n'+1 ~ n then 

begin 
for i + 0 until 7 do 

if MARKED(map, i) then 
WRITE ( I 1 I ) ; 

end; 
else 

begin 

JUDGE (map); 

for i + 0 until 7 do 
if MARKED(map, i) then 
SINGLE(CHILD(C, i), P, n 1 +1); 
JUDGE (map); 

end; 
WRITE(')'); 

end; 
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3.3 Computational complexity of the algorithm and 

the storage of the resultant octree 

The computational complexity of the algorithm can 

be evaluated by a total number of cubes that 

intersect at least one patch of the B-reps., and the 

storage of the resultant octree can be also evaluated 

by a total number of cubes that are built by the 

algorithm. 

For each patch P, consider a projection of the 

patch P onto the plane D(i) for the i direction .......... 
maximizing ln•il (n : normal vector of the plane S ... 
including a patch P, .i : unit vector of X, Y and Z 

axes, respectively) and denote the projected region 

by P 1 • Wh.en the area and periphery ·length of some 

patch P are denoted by Sp and Sc, respectively, the 

area Sp' and periphery length Lp 1 in the projected 

region P' are obtained by Sp'= Sp*cosa, Lp'= Lp*cos 8 _.. -. _. 
(cos8 = 1.n•il I lnl*lil :constant). Also, a cube C 

at the level i is projected onto the plane ·n(i) and 

the projecting region is called a BLOCK region. 

Then, an area (Sc) and periphery length (Le) for the 

BLOCK region are expressed by Sc=4nmax-i and 

Lc=2nmax-i: 

nmax ='log2{(a~ edge length of the world space)/ (an 

edge length of a cube at the finest resolution 
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level)}. 

In each level, a number of "complete" regions is 

bounded by Sp'/Sc, and a number of "partial" region~ 

is also bounded by l2Lp'/Lc + 2a (a: number of edges 

that construct the patch) (Appendix B). A number of 

cubes is bounded by three, which intersects a plane S 

and is on the BLOCK region (Appendix C). 

Finally, the computational complexity of the 

algorithm until PLANE routine is denoted by C1' and 

that of PROJECTION routine is denoted by C2'· Until 

the resolution level n, the computational complexity 

of the algorithm for the patch Pk is denoted by Ck 

and a number of nodes for it is also denoted by Nk. A 

total calculation time (Cost) of the algorithm and a 

total number (Storage) of nodes can be expressed as: 

n-1 
Ck ~ 3*E{C1 '*Sp'/4(nmax-i)+/2*C2'*Lp'/2(nmax-i)+2C2'*a) 

i=O 

= C1Sp*4n/4nmax + 312C2Lp2n;2nmax + 6C2'*n*a. 

n-1 
Nk ~ 24*E{Sp'/4(nmax-i)} 

i=O 
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Storage ~ E Nk 
p 

Consequently, the computational complexity of the 

algorithm and the storage of the resultant octree are 

proportional to S or 4n for total surface area S of 

the given B-reps., the resolution level n. The 

computational complexity is also proportional to 

number N of patches. However, in case that parameter 

N is not large, the complexity is proportional to IN 
because the length L is proportional to IN if the 

area S is constant. 
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~ Experimental results 

In this section, we report an actual calculating 

time of our conversion algorithm and a node number in 

the resultant octree for the area S, number N of 

patches of the B-reps., and resolution level n of the 

octree. We should note that the area is represented 

as the unit pixel that is the projection of a cube at 

the finest resolution level onto one plane D(i). 

The conversion algorithm is implemented in C 

language on the VAX 11/750 (without a floating point 

accelerator) under Unix. An approximated sphere by 

100 or 400 pat~hes is used for the investigation. 

A sphere is said to be 1unit 1 if the diameter of 

it is a side length of the world space, and also a 

sphere is said to be 1 1/8 unit' if the diameter of it 

is a half times as long as the diameter of the 'unit' 

sphere. The finest level n represents the resolution 

such that a world space is divided by an. 

Figures 16, 17 and 18 show that evaluated 

equations explained in the previous section are 

reasonable. 
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3.5 Conclusion 

Using the one-pass approach, a fast conversion 

algorithm from the B-reps. to the DF-representa ti on 

is proposed. Since selection of a region (cube) in 

which its corresponding octree (DF-representation) 

should be built is adaptable, the conversion algorithm 

can be easily applied to construction (See in Chapter 

4) of a description of an real object by projecting 

cones (B-reps.) of multiple two-dimensional views in 

the field of computer vision and to interference 

detection (See in Chapter 5) in the field of 

robotics. 

62 



CHAPTER 4 
CONSTRUCTION OF THE OCTREE 

APPROXIMATING 

A THREE-DIMENSIONAL OBJECT 

BY USING MULTIPLE VIEWS 
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.4..!..1 Introduction 

Reconstruction of a solid model that approximates 

a three-dimensional object by using multiple 

two-dimensional images has been investigated in many 

fields (Computer Vision, Computer Graphics, and 

Robotics). In relation to this, many important 

technical methods (Stereo vision, Shape from shading, 

etc.) have been proposed. However, some methods can 

not build an accurate solid model for the object if 

degraded images are only obtained, and others require 

enormous calculation time. 

To solve those problems, we propose a new algorithm 

based upon a so-called volume intersection method 

[55], which can be explained in the following way: 

First, a cone that is defined by both a viewpoint and 

a polygon approximating the contour of an image of 

the object from the viewpoint is built. The cone 

contains the object and is represented by a 

polyhedron. Second, by constructing a common region 

of the cones for multiple views, we obtain an 

approximating region for the object. Since contours 

in an image are the clearest information within the 

whole image, the image degradation does not affect 

the approximating precision of the octree for the 

object. 
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To make this method run faster, we should first 

construct the approximating polygon effectively. 

Fortunately, this problem has been already 

investigated in detail and fast algorithms have been 

proposed in the literature [57]. Hence, we assume in 

this chapter that a set of polygons for all views is 

already obtained. Next, we should construct the 

common region effectively. In case that a 

polyhedron, which is the most general representation 

for a solid object, is adopted as the solid model 

[59], the model generated in the middle of the 

construction is represented by a polyhedron with k*N 

patches (k: number of views that have been already 

used, N: average number of segments of the 

approximating polygon). Then, the computational 

complexity of the construction is proportional to at 

least n2, or N2 because the intersection between one 

cone and the model generated should be checked in all 

views successively. Instead of this, we adopt the 

octree representation as a solid model. The octree 

represents a three-dimensional world space by 

successive refinements that increase the resolution 

of the object's details and keeps regions in the 

world space as a set of nodes with a hierarchical 

description in positioning. The computational 

complexity of the construction is proportional to at 

65 



most n, or N, since the hierarchical description can 

be effectively used in checking the intersection 

between the cone and the model (See in Section 4.5). 

Some algorithms have been proposed to construct 

the octree from two dimensional images on the basis 

of the volume intersection method. Kim and Aggarwal 

[ 60] proposed a fast algorithm. However, there are 

two difficulties in their algorithm: 1) a coordinate 

system for the octree depends on the posture of the 

object. That is, the system of the world coordinate 

can not be flexibly selected, and 2) although an 

actual contour photographed with a camera should be 

defined by the perspective projection, their 

algorithm deals with the given contour under the 

parallel projection. Moreover, the number of views 

used in the algorithm is limited to three. As a 

result, the octree that approximates the object with 

arbitrary accuracy can not be built. 

In (61),(62], those difficulties have been solved. 

Namely, 1) the octree can be constructed in an 

arbitrary coordinate system, 2) since the cone is 

defined in the perspective transformation and the 

number of views is not limited at all, the resultant 

octree can approximate the object with arbitrary 

precision. However, their algorithm is slow. In 

their paper, the approach that enrolls patch 
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information concerning a cone in a set of regions in 

the octree is managed on an image plane. To put it 

concretely, intersection between a cone and a region 

is judged by that between the approxirna ting polygon 

for the cone on the image plane and the hexagon that 

is the projection of the region onto it. 

Construction of the projection is need much time 

because of 

intersection 

requires a 

transformation. The perspective 

checking on the image plane also 

[56)-[58]. Besides, considerable work 

since the projection becomes an unequal hexagon, the 

algorithm can not smoothly as sign patch inf orma ti on 

of cone in a region to eight subregions in division 

of the region, which is the basic process of the 

algorithm. Thus, the number of patches of cones in 

one region does not decrease in progression of the 

algorithm and therefore the calculation cost of 

data-processing in it does not decrease in the 

progression. 

In addition, the algorithm builds an octree for a 

cone and next does a final octree by means of cutting 

successively the initial octree by other cones. 

Consequently, it is inefficient in a sense that they 

must deal with irrelevant regions which do not lie in 

a neighborhood of the object. 

The algorithm proposed in this chapter is capable 
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of constructing the same octree faster than Hong 1 s 

algorithm. The reason is that an essential part of 

the algorithm is not processed in an image plane but 

is processed directly in the three-dimensional world 

space. Though this approach is suggested in Section 

2 of [ 61 ] , its thorough investigation did not be 

carried out. Major reason of this abandonment is 

considered that a conversion algorithm from arbitrary 

part of the cone to the octree did not yet be 

pre~ented. However, this problem is solved by the 

conversion algorithm in Chapter 3. Using this 

approach, the perspective transformation is not 

necessary and a fast intersection checking under the 

three-dimensional space is also attained. Moreover, 

this algorithm can smoothly assign patch information 

of cone in one region to eigbt subregions and 

therefore the calculation cost of data-processing in 

it also decreases in the progression of the algorithm 

(See in Section 4.4 and 4.5). 
Finally, since our algorithm deals with all cones 

simultaneously using the hierarchical description of 

the octree in positioning, it need not deal with 

regions which do not lie in a neighborhood of the 

object. In other words, it manages only regions at 

the present resolution level of the octree, which 

intersect the object. 
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Fig.19· Volume intersection method· 
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lt..!1. Volume intersection method 

When a three-dimensional object is seen from one 

view, the object always exist within a cone that is 

determined by an approximating polygon of an image of 

the object and the center of the lens. Thus, a 

common region of cones for multiple views represents 

an approximating solid model for the original object 

as shown in Fig.19. 

rirst, certain advantages of this method, which is 

compared with other methods (Stereo vision, CT 

scanner, and Shape from shading), are described as 

follows: 

1) The algorithm can run fast because approximation 

of a contour is simpler than solution of a matching 

problem in Stereo vision [23]-[25]. 

2) Since a contour yields the clearest information 

in an image, image degradation does not affect the 

precision of approximation of the octree for the 

object., in comparison with the Shape from shading 

[26]. 

The disadvantage of the method is that a 

non-convex part of the three-dimensional object, 

which does not appear in any two-dimensional image in 

principle, can not be constructed in the model. 
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Fig. 20. Cone model· 
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hl Definition 

A cone, which is defined by an approximating· 

polygon of an image of a three-dimensional object and 

the center of the lens (viewpoint), is an infinite 

cone whose patch P is represented by two vectors. A 

vector is defined by one vertex of the polygon and 

the viewpoint. It has an end point which is 

coincident with the viewpoint. The direction of the 

vector is defined from the viewpoint to one vertex. 

Every two vectors representing a patch are arranged 

in clockwise order for a normal vector of the plane 

that includes the patch (See Fig.20). 

By these definitions, this cone can be considered 

to be the B-reps. defined in Chapter 2. Therefore, 

the algorithm in Chapter 3 is als.o applicable to a 

part (Cone making procedure) of the algorithm in this 

chapter if the cone is of convex shape. Then with 

the help of a partition of a non-convex approximating 

polygon into some convex polygons, the non-convex 

cone is parted 

Fig.21. The 

partition is 

into some convex cones as shown in 

computational complexity of this 

O(N1+N23) [56]-[58] (N1: number of 

vertexes in the approximating polygon, N2: number of 

obtuse angles in the polygon). 
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~ Algorithm for constructing the octree 

A basic_process of this algorithm consists of the 

following two substeps. 

4.4.1 Classification of eight subcubes 

Using three procedures (Cone making, Cone 

combining, Cone regulating procedures) successively, 

this substep classifies eight subcubes Ci (subregions) 

of an input cube C (region) into being of 'inside', 

1 outside', or 'intersection 1 state for the 

three-dimensional object. The produced states of 

eight subcubes are kept as a classification. Here, 

the first input cube is the world space. 

1) Cone making procedure: The procedure makes 

the classification for a convex cone that is a 

component of a cone for one view. One of the 

following two procedures (PLURAL, or SINGLE procedure) 

takes part in the above classification. If the 

number of patches of the convex cone 

cube equals one, then the SINGLE 

selected. 

selected. 

Otherwise, the PLURAL 
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PLURAL procedure: This procedure deals with an 

input cube C that intersects some patches of the 

convex cone. By considering the cone as the B-reps. 

defined in Chapter 2, the way proposed in the PLURAL 

procedure in Chapter 3 is useful in processing this 

procedure. 

SINGLE procedure: This procedure deals with an 

input cube C that intersects only a patch P of the 

convex cone. Since the cone is considered to be the 

B-reps. defined in Chapter 2, the SINGLE procedure 

in Chapter 3 can be adopted as this procedure. 

Using one of these procedures, eight subcubes is 

classified into begin of 'inside', 'outside', and 

'intersection' state for the convex cone. 

2) Cone combining procedure: This 

makes the classification for a cone, 

cone, which is defined for one view 

procedure 

named a view 

and is not 

convex. The view cone consists of some convex cones 

(See in Section 4.3). A subcube is 'outside' for the 

view cone if it is outside all the convex cones. A 

subcube is 1 inside 1 for the view cone if it is inside 

one convex cone. ~he other subcubes are 'intersection' 

for it. Thus, applying the rules in Table 2 to the 

classification for each convex cone successively, we 
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obtain the classification for the view cone. Then, 

the algorithm is capable of maintaining calculative 

efficiency by only overlooking the virtual patches 

generated by the convex partition. Namely, a 

1 intersection 1 subcube that intersects only some of 

the virtual patches is converted to an 'inside' one 

there and then. 

3) Cone regulating procedure: This procedure 

makes the classification for a common region of all 

the view cones (an approximating region for the 

three-dimensional object). A subcube is 'outside' if 

it is outside some view cone. A subcube is 'inside' 

if it is inside all the view cones. The other 

subcubes are 'intersection•. Thus, applying the 

rules in Table 3 to the classific~tion -for each view 

cone successively, we obtain the classification for 

the common region. 

4.4.2 Making the DF-representation 

Using the classification for the common region 

obtained by the above substep, this substep makes the 

DF-representation for eight subcubes. The substep 

assigns firstly the symbol 1 ( 1 to the input cube C as 

the DF-representation because the basic_process deals 
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with a cube corresponding to a mix node. Then, one 

of the following three processes deals with a subcube 

in the order of octant (See Fig.2). 

1) The subcube is 'inside': This process assigns the 

symbol 1 1 1 to it as the DF-representa ti on of the 

subcube. 

2) The subcube is 1 outside 1 : This process assigns 

the symbol '0 1 to it as the DF-representation of the 

subcube. 

3) The subcube is 1 intersection 1 : It corresponds to 

a region at the present resolution level, which 

intersects the common region. Then, a geometric 

structure for the object within this subcube must be 

examined further and be expressed by the 

DF-representation. Thus in this process, the 

basic_yrocess deals with this subcube as an input 

cube anew. We should note that only • the patch 

information of cones, which the above substep assigns 

to the subcube, is turned over to the new processing. 

Due to this recursive processing, the algorithm is 

accomplished by the depth-first search on the octree 

and therefore its DF-representation is naturally 

made. Exceptionally, if the level of the ·subcube 

that is presently managed by this process agrees with 

the finest resolution level, this process assigns the 

symbol 1 0 1 to the subcube as the DF-representa ti on 
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instead of using the basic_process. 

When eight subcubes have been dealt with by the 

above processes, this substep assigns lastly the 

symbol I ) I to the input subcube c as the 

DF-representation and then the substep and the 

present basic_process are completed. 

Since the algorithm deals with only regions 

('intersection' cubes) at the present resolution 

level, which are neither inside nor outside the 

comµion region, the processing of irrelevant regions 

at the level, which do not intersect the object, can 

be prevented in the algorithm. 
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~ Computational complexity of the algorithm 

Computational complexities of several algorithms 

for constructing a common region that approximates an 

object are evaluated in regard to parameters N 

(average number of segments of the approximating 

polygon), L (length of the polygon), n (number of 

views), or r (finest resolution level of the octree). 

The evaluation is neglected in the literature on 

previous research works. 

4.5.1 Comparison among expressions of the model 

a) Polyhedron model: The model generated in the 

middle of constructing the common region is represented 

by the polyhedron with k*N patches (k: number of 

views that have been already used). For constructing 

the common region with a polyhedron, the intersection 

between one view cone (polyhedron) with N patches and 

the model generated must be checked in all viewpoints 

successively. Hence, the computational complexity 

for this construction is obtained by 

n-1 

r Co*kN * N = Co*(n-1)(n-2)*N2/2 (Co: constant). 

k=O 

The equation indicates that the complexity is 
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proportional to n2 or N2. 

b) Octree model: Due to the hierarchical structure 

in positioning of the octree, the algorithm for 

constructing the region with the octree can deal with 

only cubes that intersect the cone exactly. In other 

words, it deals with a set Sc of cubes that intersect 

the contour in a section of the object. Here, we 

should note that this contour in the world $pace 

corresponds to the previous contour in the image 

plane. The number of the cubes is denoted by Sn = 

C*2j1/2nmax (Appendix D) (nmax=log2 {(an edge length 

of the world space)/(an edge length of cube at the 

finest resolution level: unit length)}, j: level of 

the cube in the octree). 

When we assume that calculation cost of a 

data-processing in one cube is uniformly proportional 

to N, which is "pessimistic" assumption· for the 

complexity, the complexity for construction of the 

common region with the octree is given by 

n-1 

L C1* NSn = C1 * nNSn• (C1: co~stant) 
k=O 

The equation also indicates that the complexity is 

proportional to n or N. 
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If an intersection between two patches happens in 

the former, then the algorithm must calculate lines, 

or a point where two patches intersect each other and 

arrange them in company with adjacent connection of 

the patches. On the other hand, if an intersection 

between a cube and a patch happens in the latter, 

then the algorithm only registers the patch number to 

the cube. Thus in general, the cost C1 is smaller 

than the cost Co. Moreover, the better the 

approximating precision of the common region for the 

object, the larger the parameters n and N. To obtain 

the region that approximates the object exactly, the 

octree model is advantageous in point of the 

calculation time. 

4.5.2 Comparison among methods for checking the 

intersection between a cube and a cone 

In general, the computational complexity of 

algorithms for constructing the common region with 

the octree can be evaluated as the summation of [unit 

processing cost] * [ calculation cost for a 

data-processing in one cube] * [number of cubes 

intersecting the cone] for each view and each level 

of the octree. 
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a) The check in the image plane [ 61], [ 62): A 

perspective projection of a cube onto the image plane 

is represented by an unequal hexagon. Then, the 

intersection between one cube and a view cone 

corresponds to the intersection between the hexagon 

and the approximating polygon in the image plane, and 

therefore the calculation cost of data-processing in 

one cube is assumed to be N+6 [ 56 ]-[ 58], which is 

"optimistic" assumption for the computational 

complexity. (This cost is assumed to be 6N in 

"pessimistic" assumption.) Thus in this case, the 

computational complexity for construction of the 

common region with the octree is evaluated by 

n r 

Co L L Sn(N+6) 

i=1 j =1 

(Co': unit processing cost) 

The unit processing cost is defined as che~king the 

intersection between two segments. 

b) The check within the three-dimensional space: 
.. 

In this case, it is possible to assign patches of a 

view cone to a set Sc of cubes ·.easily. Then, our 

algorithm assigns N patches of the cone to the set of 

the Sn cubes at each level of the octree, and 

therefore the calculation cost of da ta-proc.essing in 
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one cube is evaluated to be 1+N/Sn, which is 

estimated as the average number of patches in one 

cube. Accordingly, the computational complexity for 

construction of the region is also evaluated by 

n r-1 

C1' r r Sn(1+N/Sn) 

i=1 j=O 

(C1 1 : unit processing cost) 

In general, since the finest resolution level is 

fixed at not a little value, the unit processing cost 

is defined as checking the intersection between one 

cube and a plane and thereby is equivalent to the 

calculation cost of the SINGLE procedure. Then, this 

cost C1' is nearly equal to the cost Co'· 

In addition, the former algorithm deal with cubes 

until the finest resolution level r, on the contrary, 

the latter one deal with cubes until r-1 level 

because of the assignment of patches. 

Now, we make a comparison between the two cases. 

1) The perspective projection of the cube is 

necessary in the former, on the other hand, it is 

unnecessary in the latter. The perspective projection 

of all cubes needs much time. 

2) In division of a cube into eight subcubes, the 

eight subcubes whose shape are the same do not 

overlap at all and the position of each subcube is 
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recursively calculated. Then the latter algorithm 

can assign the patch information into the subcubes 

smoothly. In contrast to this, since eight hexagons 

that are produced from one hexagon in the for mer 

algorithm overlap one another and are not of the same 

shape, it is difficult to assign segments of the 

approximating polygon to the unequal hexagons, which 

is not considered in [ 61 ] • As a result, the latter 

is faster than the former in a sense that the 

calculation cost of data-processing in one cube 

decreases in progression of the algorithm. 

Consequently, the check within the three-dimensional 

space is advantageous in point of the calculation 

time. 
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~ Experimental results 

A sphere (R: radius; O: the center point), named 

geodesic dome, and all viewpoints on the geodesic 

dome are defined. Both a given object and the world 

space are placed in such a way that the center of 

gravity G for them are coincident with the point 0 

(See Fig. 22). The length of an edge of the world 

space is 1024 times as long as the unit length, i.e., 

an edge length of cube at the finest resolution 

level. In the following A and C paragraphs, some 

spheres are adopted as a given object in order to 

investigate actual tendencies of the algorithm. 

4.6.1 Evaluation for properties of the algorithm 

To ascertain the evaluation of the computational 

complexity of the algorithm in Section · 4.5, we 

investigate the calculation time of the algorithm for 

some parameters n, N, r, or L as shown in Fig.23. 

Here, the radius of the geodesic dome is defined by 
.. 

550, i.e., R=550, and the twenty-six viewpoints on 

the geodesic dome are prepared. 
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Fig.24. An parallelepiped (a) and its corresponding octree (b)• 
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4.6.2 Efficiency of the algorithm 

We compare experimental results of our algorithm 

with those of Hong's algorithm, which is similar to 

our proposed algorithm in a sense that the cone is 

defined as the perspective transformation and the 

octree can be constructed in an arbitrary coordinate 

syste~. It is shown that the calculation time of the 

proposed algorithm is smaller than that of their 

algorithm. The algorithm proposed in this chapter 

needs only one hundred milli-second (Melcom 350-60: 

3. ?MIPS) for constructing the octree ( n=5) for the 

parallelepiped [220,75,60] with three viewpoints 

(R=1500) (See Fig.24). On the other hand, their 

algorithm needs three minutes (Vax 11/780: 1.8MIPS) 

to construct a similar octree, though it uses a 

custom hardware being constructed to perform matrix 

manipulations for the perspective projection. 

4.6.3 Approximating precision of the octree for the 

object 

With regard to the parameter n or N, the .. 
approximating precision of the octree Ov, which the 

proposed algorithm constructs, for the octree Oo that 

approximates directly the original object is 

evaluated as shown in Fig. 25. We use the following 

notations in this paragraph: 
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Vo: Volume of the octree Oo. 

D: Volume of the difference between the octree Oo 

and the octree Ov. 

El: Approximating precision of the octree Ov for 

the octree Oo (El= 100*D/Vo). 
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4.7 Discussions 

In data processing for one view, the volume 

intersection method approximates the model in only 

the contour part of a section for the object. The 

area of the part is smaller than that of the surface 

for the object. To obtain the octree that 

approximates the object with high precision, we 

should prepare many pairs of a viewpoint and its 

approximating polygon with high precision. This 

indicates that the parameters n and N must be kept 

large. Thus, to make the method run faster, the 

processing for one view should be efficient. In 

addition to this, we should pay attention to 

selection for a position of a viewpoint such that 

many shapes of the object can be received from one 

image. That is, if the object is a polyhedron, we 

must select a position of a viewpoint such that the 

projection of a patch of the polyhedron onto one 

image plane becomes a line. This problem must be 

investigated further. 
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4.8 Conclusion 

A fast algorithm that constructs an approximating 

octree for a given object in an arbitrary coordinate 

system is proposed. On the basis of· simple 

pre-processing (convex partition of a polygon), the 

algorithm is also useful in construction of an octree 

model for an non-convex object. Moreover, the 

computational complexity of the algorithm with 

respect to n, N, r, or L are evaluated and analyzed. 

Even if several real objects exist in one space, 

this algorithm can construct the octree that keeps 

all approximating regions of the objects. That is, 

when there are some contours of these objects in an 

image, the corresponding cones are managed by the 

Cone combining procedure. Also, when there is a 

contour that is represented by overlapping some 

objects, the contour is considered to be a contour of 

an object and is managed by the Cone making 

procedure. Further, if an image of each object is 

distinguished from one another in some image planes, .. 
then the algorithm becomes run faster using this 

distinction of the object. 
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CHAPTER 5 

A NEW INTERFERENCE CHECK 

ALGORITHM USING OCTREE 
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~ Introduction 

Current researches on interference check are 

divided generally into two categories; one [63]-[65] 

is to search an intersection region occupied commonly 

by a robot model and obstacles in an environment 

model, and another [66]-[68] is to calculate the 

minimum distance between them. In those researches, 

components of the robot and obstacle are 

approximately represented by some simple shaped solid 

objects that are like a set of spheres and cylinders. 

Then, since the number of components can be decreased 

by simplifying the shape and each component can be 

further described in terms of a simple shape 

function, it is possible to reduce the computational 

cost for searching the common region and calculating 

the distance between two components. 

However, those methods pass over possible intricate 

movements for a complicated robot in a cluttered 

environment because of excessive interference check 

with rough approximation. To solve this problem, a .• 
more faithful approximation for a cluttered 

environment and a complicated robot is required, 

which needs an enormous number of solid objects, and 

hence those methods need large calculation time. The 

reason is that the computational complexity of the 
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methods depends on the complexity of shape of the 

robot and environment model. 

To overcome this drawback, we point out that 

selection of only parts of obstacles is desirable, 

which lie around the robot model, and only 

interference check for those parts is necessary. In 

other words, the longer the distance between the 

robot model and its nearest obstacle, the less the 

calculation time of the algorithm. This property is 

desirable in the sense that it makes the algorithm 

run faster since actual interference between the 

robot and the obstacles happens rarely and therefore 

non-interference between them must be preferably 

ascertained in robot teaching. 

The desired property is obtained by using the 

octree as a robot model and its environment model, 

which is a hierarchical solid model in positioning. 

In general, robot motion includes rotation when the 

robot must move flexibly. However, it is hard to 

represent the rota ti on for some object within the 

octree [69],[70]. Moreover, to represent each 

component of the robot model by the octree, much 

memory space is required in computer (See in Chapter 

3, [28],[52]). Hayward [71] adopted the octree as an 

environment model. Furthermore, he suggested 

adoption of the B-reps. as a robot model but did not 
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pursue it further, because the adoption is considered 

to lead to a complex interference checking algorithm. 

Then, Boyes' s idea [ 63] is used in his paper when 

boundaries intersect. However, he did not give any 

obvious and concrete way to check the boundaries 

intersection of the robot model for the environment 

model and to check exactly the interfere. 

In view of these points, we adopt the B-reps, 

which is not a hierarchical representation but 

preserves the topological information of an object, 

in representation of each component of a robot, and 

the octree, which preserves the geographic information 

in a world space, as an environment model. By 

assigning each patch of B-reps. to a set of cubes of 

the octree fastly, we show that this combination of 

different solid models leads to a relatively simple 

algorithm. From this reason, the proposed algorithm 

can fulfil the exact and fast interference checking. 

To show how computation time of the algorithm 

change with the distance between the robot model and 

its nearest obstacle within the environment model, an .. 
illustrative model set is given, which consists of 

both a robot model represented· by one component 

approximating a sphere and an environment model that 

includes a single parallelepiped. Finally, to show 

how the algorithm work in real-time in even a 
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cluttered environment and a complicated robot, a 

model set is devised, which consists of both a robot 

model represented by twelve components and an 

environment model including twenty-four polyhedra. 

As a result of the use of this set, it is shown that 

the execution time of interference check is around 

250 ms. 
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5.2 Definitions 

5.2.1 Environment Model 

Octree, which is adopted as an environment model 

in this chapter, is a solid model that hierarchically 

represents a three dimensional space including 

several obstacles for a given robot as shown in Fig.1 

and Fig.32(a). 

5.2.2 Robot Model 

B-reps. is adopted as a representation of each 

component of a robot in this chapter as shown in 

Fig.3 and Fig.32(b). 
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5.3 Interference check algorithm 

5.3.1 Judgment of interference and non-interference 

In connection with the environment model, a cube 

is classified into three color; 'black' (obstacles), 

'white' (free space), and 'mix' (obstacle and free 

space). On the other hand, in connection with the 

robot model, the cube is also classified into three 

states; 'outside' (outside the robot model), 'inside' 

(inside the robot model) and 'intersection' 

(intersecting the robot model) as shown in Fig.26. 

With the aid of these classifications, the cube is 

again classified into three states 'interference', 

'non-interference 1 , or 1 undecidedness 1 as shown in 

Table 4. The 'interference' state indicates that the 

robot model interferes some obstacle in the 

environment model within the cube. The 

1 non-interference 1 state indicates that the robot 

model does not interfere any obstacle within it. The 

1undecidedness 1 state does that interference or 

non-interference between them can not be determined 

within it. For example, 1 row 1 column in Table 4 

indicates that the robot model interferes obstacles, 

for a black cube that is a volume of obstacles is 

inside the robot model. 
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Since a cube having the state 1 undecidedness 1 can 

not be determined to be in 'interference' or in 

1 non-interference 1 at the present resolution level i 

the cube is divided into eight subcubes and then the 

state of each subcube is also classified into one of 

the three states. Using recursively this process 

that is the basic process in the interference check 

algorithm, only cubes (regions) that intersect both 

the robot model and obstacles are checked at each 

resolution level. Consequently, the algorithm deals 

with only parts of obstacles which the robot model 

approaches. 

Finally, the initial 1undecidedness 1 cube in the 

interference check algorithm is the cube (region) 

corresponding to the root node of the octree. 

5.3.2 Classification of 'intersection' cube into 

three scenes 

The basic process described above deals with a 

1 undecidedness 1 cube having the color 1 mix 1 and the 

state 'intersection•. Here, color of a cube is 

originally defined in the octree~. On the contrary, a 

state of it is changed in accordance with motion of 

the robot. Then, it is necessary to classify 

efficiently the state into 1 outside 1 , 1 inside 1 , or 
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Check 1 

(b) 

Check2 

(c) 

Check 3 

(a) Scene 1 
(b) Scene 2 
(c) Scene 3 

(a) 

(b) 

{c) 

Fig.28. Process of 1 undecidedness 1 cube in the algorithm. 
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'intersection'. 

To make this classification run faster, an 

'intersection' cube is further classified into three 

scenes: Scene 1 .2, and 3 (Fig.27), and in 

accordance with the scene one of three procedures 

(Procedure 1, 2 and 3) is selected for fulfilling the 

basic process. 

Scene 1 : The 'intersection' cube encloses a 

component of the robot model completely. 

The procedure CHECK1 deals with this cube. 

Scene 2 The cube intersects some patches of· the 

component. The procedure CHECK2 deals 

with it. 

Scene 3 The cube intersects only one patch of the 

component. The procedure. CHECK3 deals 

with it. 

Since size of some 'intersection' cube is 

decreased with increasing the resolution level of the 

octree in progression of the algorithm, the type of 

the 'intersection' cube changes from Scene 1 to Scene 

3. In accordance with a block diagram as shown in 

Fig.28, these three procedures properly dispose of 

1 undecidedness 1 cubes in the interference 

algorithm. 
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5.3.3 Three CHECK procedures 

In this paragraph, the three CHECK procedures 

composing of the interference check algorithm are 

explained in detail. 

1) Procedure CHECKl: This procedure deals with 

an 'intersection' cube enclosing a component of the 

robot model (See Scene 1). 

The method proposed in the MESH procedure in 

Chapter 3 is used for processing in this procedure 

(See Fig.29). Then, using this method for the 

component, some subcubes specified as the 

'intersection' subcube and the others specified as 

the 1 outside' subcube are produced. Therefore, the 

eight subcubes can be classified into .•interference', 

'non-interference' or 'undecidedness' subcube with 

the aid of the color of eight subcubes in connection 

with the environment model (octree). 

If the number of the 'intersection' subcube is 

more than one, the procedure CHECK2 deals with 

1 undecidedness' subcubes because they correspond to 

the 1 intersection' cube of Scene 2. If it is one, 

the procedure CHECK1 deals with the 'undecidedness' 

subcube again because it corresponds to the 

'intersection' cube of Scene 1. 
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2) Procedure CHECK2: This procedure deals with 

an 'intersection' cube intersecting some patches of a 

component of the robot model. By considering the 

component as the B-reps. defined in Chapter 2, the 

PLURAL procedure in Chapter 3 classifies the eight 

subcubes of the cube into 'inside', 'outside' or 

'intersection' subcube (Fig.?). Therefore, the 

subcubes are also classified into 'interference', 

'non-interference 1 or 'undecidedness 1 • Finally, the 

'undecidedness 1 subcube that corresponds to Scene J 

is 'processed by the procedure CHECKJ, and the subcube 

corresponds to Scene 2 is processed by the procedure 

CHECK2. 

3) Procedure CHECK3: This procedure deals with 

an 'intersection 1 cube that intersects only a patch 

of a component of the robot model (Scene J). By 

considering the component as the B-reps. defined in 

Chapter 2, the SINGLE procedure in Chapter 3 is used 

for processing .this procedure and eight subcubes of 

the cube can be easily determined into 1 outside' , 
.. 

'inside' or 'intersection' subcube (Fig .1 5). Then, 

the eight subcubes are naturally classified into 

'interference', 'non-interference' or 'undecidedness' 

with the aid of the color of eight subcubes. 

Finally, the 'undecidedness' subcubes are processed 
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by the procedure CHECK3. 
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~ Computational complexity of the algorithm 

To evaluate the computational complexity of the 

algorithm, it is necessary to know the number of 

cubes which intersect the robot model at all levels 

of the octree. The number N· 1 of cubes that the 

algorithm deals with at some level i can be evaluated 

by the number N1 i-1 of mix cubes at the level i-1, 

which intersect the robot model. That is, the number 

Ni .is defined by 8>."N'i-1• Then, it is shown that a 

number N'i at the level i is given as surface area Si 

on the robot model within mix cubes (regions) 

corresponding to the level i. 

First, each patch P of the robot model is 
-+-+ 

projected onto the plane maximizing li•nl (XY plane 
...... .. 

[ i= ( 0' 0' 1 ) ] ' YZ plane [ i= ( 1 '0' 0) ] ' ... 
[ i= ( 0' 1 '0) ] ) • The projecting area S 1 p 

as the area Sp of the patch P; The ... ~ 
defined by Sp 1 =Sp*cos8 (cos8 = li•nl 

ZX plane 

is evaluated 

area S 1 p is 
... -+ 

I Ii I* In I 
constant). Thus, the area Si' of the projection for 

the area Si is obtained by Si'=C 1:si (IJ/JsC 1 s1, C': 

constant). The area of projection (BLOCK) for a cube 

at some level i is defined by SBi ( =4nmax-i). As a 

result, a number of BLOCK regions intersecting the 

area S 1 i is represented by S' i/SBi. Furthermore, a 

maximum number of cubes that intersect a plane on the 
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BLOCK region is three (Appendix C). 

Accordingly, the total number of cubes which are 

managed by the algorithm can be expressed as 

Ni+1 = 8 * N'i 

~ 8 * 3(C'*Si/SBi) 

= C * 4i * Si/4nmax (C: constant). 

nmax = log2[(the edge length of the world space)/ 

(the edge length of a cube at the finest 

resolution level)] 

n n-1 

T r Ni ~ c I 4i J. si/4nmax. = ..,.. 

i=l i=O 

Consequently, several properties that are 

concerned with the computational complexity of this 

algorithm are as follows: 

(1) In general, the area Si is increased by letting a 

robot approach obstacles. The complexity depends on 

the area Si and increases with decreasing the 

distance between the robot and its nearest obstacle. 

(2) Since the algorithm can deal with only a surface 

area Si on the robot model, which is within cubes 

(regions) that intersect both the robot model and the 

obstacles, a change in total calculation time is 

relatively little even if the resolution level of the 
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environment model is increased. 
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5.5 Experimental results 

To show how calculation time of the algorithm 

change with the distance between a robot model and 

its nearest obstacle in the environment model, we 

present firstly an illustrative model set (Experiment 

A). This consists of an environment model that 

includes an obstacle representing a parallelepiped 

and a robot model with a B-reps. approximating a 

sphere. Secondly, to show how the algorithm work in 

real-time in even a cluttered environment and a 

complicated robot, we present a model set (Experiment 

B). This consists of an environment model that 

includes twenty-four polyhedra and a robot model with 

components of twelve polyhedra. 

From definition of the octree, the edge length of 

the world space is 2n times as long as that of the 

finest resolution cubes. In this example, the edge 

length of finest resolution cube at the level n=7 is 

about 2.3 cm (300cm/27) when the length of edge for 

the world space is 3m. 

The proposed algorithm is implemented in C 

language on the Melcom 350-60 (3.?MIPS, 8MB) under 

Unix. 
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5.5.1 Experiment A 

a) Environment Model: This model is the octree 

that represents the world space [0-1024, 0-1024, 

0-1024] including a parallelepiped [ 511-711 , 0-512, 

0-512] at the resolution level n=7 (See Fig.30(a)). 

b) Robot Model: This model is a B-reps. with 

one hundred patches, which approximates a sphere 

whose radius is fifty (See Fig.30(b)). 

Figure 31 shows a transition in calculation time 

when the robot model approaches the parallelepiped in 

the environment model. It is seen from Fig. 31 that 

the properties of the algorithm derived in Section 

5.4 are reasonable. 

5.5.2 Experiment B 

a) Environment Model: This model with the octree 

at the resolution level n=7 includes twenty-four 

polyhedra having one hundred thirty-eight patches 

(See Fig.32(a)). 

b) Robot Model: This model represents a manipulator 

and is composed of twelve components that are a set 

of polyhedra. (See Fig.32(b)). 

The calculation time of the algorithm is 258 ms in 

the experiment of Fig. 33. As a result, it is shown 

that this algorithm is still fast in a ·cluttered 
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environment and a complicated robot. 

1- .. . ... , 
• • ' 

Fig.JJ. Manipulator in the experiment B. 
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5.6 Conclusion 

We have proposed an interference check algorithm 

which does not depend on the complexity of shape of 

the robot and environment but on the distance between 

the robot and its nearest obstacle in the 

environment. If the number of patches for the 

obstacles (or the number of obstacles) is N and the 

number of patches (or objects) for the robot is M, 

the complexity of most conventional algorithms is 

O(NM). On the other hand, the proposed algorithm can 

run fast as shown in Fig.31. The efficiency of the 

algorithm is attained by fast selection of only 

regions that intersect both the robot model and 

obstacles with the aid of the hierarchical structure 

of the octree representation. Though the proposed 

interference checking algorithm is not a dynamic one 

but a static one, the algorithm seldom pass over an 

actual interference because the algorithm can run 

fast and hence is applied dynamically to the 

interference check every time updating coordinates 

table in the B-reps. that follows the movement of 

the robot. 

By restricting each component of the robot model to 

be of convex shape, the basic process of the proposed 

algorithm classifies eight subcubes of an 
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'intersection' cube simultaneously, whenever they are 

inside, outside, or intersecting for the component 

(See in Chapter 3). Hence, the algorithm can be 

composed by a one-pass approach. In other words, it 

follows naturally from this property that processing 

in some cube (region) is independent of that in other 

cubes (regions). Using this fact, the algorithm can 

deal with a part of the component within some cube 

flexibly and therefore it can be effectively applied 

to this interference detection in the field of 

robotics. 
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CHAPTER 6 

DISCUSSION AND SUMMARY 
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In this dissertation, three basic octree algorithms 

in relation to robotics and computer vision are 

proposed. In addition, the computational complexities 

of these algorithms are evaluated and reasonableness 

of each evaluation is ascertained by several 

experiments. 

In the present work, the depth-first search on 

the octree is adopted. By virtue of the inherent 

characteristics of the algorithm that a processing in 

some cube (region) is independent of that in other 

cubes, the breath-first search and parallel processing 

can be used in implementation of the algorithm, which 

makes it run faster. 

In Chapter 3 and 5, it should be noted that if a 

component is not convex then it must be divided into 

some convex components. This may induce artifically 

virtual patches. Even in that case, the algorithm is 

capable of maintenance of calculative efficiency by 

only overlooking those virtual patches generated by 

the division. Namely, an 1 inte~section 1 cube that 

intersects only some of the virtual patches is 

converted to the 'inside' one there and then. 

In development of intelligent robots, it is a 

major theme for a robot manipulator and a mobile 

robot to avoid their obstacles in the whole space 
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automatically [72]-[83]. This theme is called 

"mover's problem" or "path-planning problem". 

Principal methods investigated in path-planning are 

distinguished into the following two ways: 

1) The data structure in which a path-planning 

algorithm searches is a mere model representing real 

shape of obstacles in the world space. For example, 

in the potential method proposed by Khatib [79], the 

structure is defined as simple shaped objects, which 

are like a parallelepiped or a cube. In this case, 

though the data structure is easily constructed and 

modified, this method can not be applied to some 

complicated robot or environment because the 

potential function corresponding to a complex object 

can not be defined. 

2) The data structure is defined by an elaborate 

representation for generating efficiently some robot 

motions. In this case, shape of a robot and 

obstacles and position of an obstacle can not be 

modified flexibly because the structure depends on 

the shape and position. Furthermore, for example, 

the configuration approach proposed by Lozano-Perez 

and Brooks [72]-[77] can not be applied to a 

manipulator in accordance with increasing the number 
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of freedom of the manipulator because the storage of 

the data structure (configulation space) becomes 

large. 

Consequently, we should point out the importance 

of a problem what path-planning must be a compromise 

between these two ways [84]-[86]. In this respect, 

roughly speaking, the level of a white node of the 

octree expresses the distance from the node to the 

nearest obstacle and therefore it is possible to 

derive the minimum distance between two models. As a 

matter of fact, this derivation makes use of a fast 

algorithm that calculates a minimum distance from 

some point to a set of black nodes in the octree and 

presents the black node deriving the distance. This 

result can be applied to the potential based 

pa th-planning for a complex robot and a cluttered 

environment. Under this direction, we have been 

exploring a new method for automatic path planning of 

the robot manipulator. 

In Chapter 2, several solid models are explained 
·' 

and properties of them are discussed in relation to 

applicable research problems. 

In Chapter 3, a fast and general conversion 

algorithm from the B-reps. to the octree is proposed. 

Summarizing and reviewing previous research works, we 
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show the possibility of converting any solid model 

including the B-reps. to the octree. 

In Chapter 4, a fast algorithm that reconstructs 

shape of a real object in computer with the aid of 

the octree is proposed. The computational complexity 

of this algorithm is proportional to some parameters 

concerning the precision of the approximating octree 

for the object. From the point of view of the 

computational complexity, this property of the 

algorithm is better than that of similar algorithms 

with the aid of the B-reps. 

In Chapter 5, a new interference check algorithm 

between the robot model and the environment model in 

graphics simulator is explained. Due to the 

hierarchical structure of the environment model, this 

algorithm can run faster in a cluttered environment 

model and a complicated robot model than any other 

known algorithms. 
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APPENDIX A 

EFFICIENT METHOD FOR CALCULATING FUNCTIONS 

OF SEVEN VERTEXES 

We give the proof of the equation for the vertex 

in the group C when the value dg is negative. The 

vector that is defined from the center point G to the 

vertex is represented by 
~ 

CI = h * ( nx/ I nx I ' ny/ I ny I' nz/ I nz I ) • 
Also, the vector that is defined from the origin 0 of 

the world coordinate system to the center point G is 
-+ denoted by g. Thus, the vector that is defined from 

the origin 0 to the vertex is defined by 

~ = i + a1 = g + h * (nx/lnxl' ny/lnyl' nz/lnzl). 

Hence, 

d(S,C) = n • c - d 
-+ -+ -+ 

=n• (g+c 1 ) d 

= n . g + n • c' d 

= dg 

+ h * (nx, ny, nz)•(nx/lnxl, ny/lnyl, nz/lnzl) 
~ 

= dg 

+ h * ( lnxl 2/lnxl + lnyl 2flnyl + lnzl 2/lnzl) 

= dg + h * ( lnxl + lnyl + lnzl). 

Similarly, the equations for vertexes in the groups 

A and B are also given by selecting each term of the 
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• vector c. Moreover, by changing positive signs of 

vector • c into negative signs, the proof of all 

equations when the value dg is positive is easily 

given. 0 
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APPENDIX B 

NUMBER OF BLOCK REGIONS INTERSECTING A PROJECTION 

Le is an edge length of the BLOCK region. 

(number of BLOCK regions which intersect some edge 

[length li] of a projected region pr) 

~ f(1 +tanp) ,~ licosp/L~ + 1 

~ li * (cosp + sinp)/Lc + 2 = li * sin(p + n/4)/Lc +2 

~ 12 * li/Lc + 2 (p : the smaller angle of two angles 

that are constructed when the line including the edge 

crosses the two axes on the projecting plane). 

Therefore, 

(number of BLOCK regions which intersect all edges 

of a projecting region pr ) 

~ E (/2li/Lc + 2) = /2Lpr/Lc + 2a 

pr (a is a number of edges) a 
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APPENDIX C 

NUMBER OF CUBES INTERSECTING A PLANE 

ON THE BLOCK REGION 

Without loss of generality, we define a plane 

equation 

f = nx*x + ny*Y + nz*z - d, and two vertexes (xo,yo) 

and (x1 ,y1) of the opposite position in the BLOCK 

region ( nz ~ nx, ny). 

O = nx*xo + ny*Yo +nz*zo -d 

zo = (d-nx*xo - ny*Yo)/nz 

0 = nx*x1 + ny*Y1 +nz*z1 -d 

z1 = (d-nx*x1 - ny*Y1)/nz 

o ~ I z1 - zo I 
= 

~ 

~ 

0 ~ 

1 ~ 

= 

D 

I (xo - x1)*nx + (yo - Y1)*ny I I lnzl 

(lxo - x1 l*lnxl + !Yo - Y1 l*lnyl) I lnzl 

Le* (lnxl + lnyl)/lnzl· 

I z1 - zo I I Le~ (lnxl + lnyl)/lnzl· 

(average number of cubes intersecting a plane S) 

I z1 - zo I I Le + 1 ~ (I nx I + I ny I) I I nz I +1 ~ 3 
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APPENDIX D 

NUMBER OF CUBES INTERSECTING A POLYGON 

UNDER THREE-DIMENSIONAL SPACE 

A polygon within the world space and its length are 

denoted by P and L, respectively. Some segments of 

the polygon and their lengths are also denoted by Pi 

and Li (i=1,-··,n), respectively. ·Without loss of 

generality, the straight line m including the segment .... .... 
(nx, nz) ' (nz::iny Pi is given by m = P1 + n*t (n = ny, 

::inx); -+ vector the straight line, t: n: on one 

parameter) • 

First, we assume that the line m intersects a 

cube with one vertex p1=(xo, YO, zo) and another 

point P2=(x1, Y1, z1) and then the parameter tin the 

point P2 is denoted by t1. An edge length of the 

cube can be represented by Le (Le= 2nmax-j; j: level 

of the cube in the octree). Then, the following 

equations are obtained: 

Le = I xo - x1 I = I nx I* I t1 I , I t1 I = Le I I nx I • 
~ 

0 :;i lz1 - zol = lnzl*lt1 I = lnzl *Le I lnxl· 

Here, the projection of the cub& onto XI-plane is 

called BLOCK region. The number of cubes 

intersecting the segment Pi, whose projections agree 

with the BLOCK region, can be represented by 

134 



lz1-zol/Lc+1. As a result, maximum of this number is 

two. 

Next, when a segment Pi is also projected onto 

the XY-plane, the length 1 1 of the projecting segment 

Pi' is denoted 

(cos8=(nx2+ny2)/(nx2+ny2+nz2)). 

Therefore, 

by Li 1 =Li*cos8, 

(Number of BLOCK regions intersecting the projection 

Pi I) 

:;ii IT1+tanp)*Li 1 cosp/L°J + 1 :;ii Li'*(cosp + sinp)/Lc+2 

= Li 1 *sin(p+TI/4)/Lc+2 :;ii 12Li 1 /Lc+2 :;ii C'*Li/Lc 

(p: the smaller angle of two angles that are 

constructed when the line including the projection 

Pi' crosses the X and Y axes). 

As a result, number of cubes which intersect the 

segment Pi is bounded by 2(C 1 *Li/Lc) and then number 

of cubes which intersect the polygon P is also 

bounded by C*2j1/2nmax (C, C': constant)J]. 
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