
Title オクトツリーに基づいた空間的情報の入力法と利用法

Author(s) 登尾, 啓史

Citation 大阪大学, 1987, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/35377

rights

© 1988 / © 1987 IEEE. Personal use of this
material is permitted. Permission from IEEE must
be obtained for all other uses, in any current
or future media, including
reprinting/republishing this material for
advertising or promotional purposes, creating
new collective works, for resale or
redistribution to servers or lists, or reuse of
any copyrighted component of this work in other
works.

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

INPUT AND USAGE OF SPATIAL INFORMATION

BASED ON THE OCTREE REPRESENTATION

Hiroshi NOBORIO

Department of Mechanical Engineering

Faculty of Engineering Science

Osaka University

19 87

INPUT AND USAGE OF SPATIAL INFORMATION

BASED ON

THE OCTREE REPRESENTATION

A DISSERTATION

SUBMITTED TO OSAKA UNIVERSITY

FOR THE DEGREE OF

DOCTOR OF ENGINEERING

by

Hiroshi NOBORIO

January 1987

ABSTRACT

This dissertation is concerned with solid models

focusing its attention on input and retrieval of

geographic and spatial information in a real space.

Among such solid models, the octree proposed in

computer graphics is the most adequate for this

purpose. It has a hierarchical structure in

positioning and an inherent feature that spatial

information resources on a selected portion of the

space can be efficiently enrolled and retrieved.

Hence, the goal of this research is to construct the

octree representation for solid objects in computer

memory and to use the representation in robotic

applications.

Construction of the

following two cases;

already defined by one

octree is treated in the

1) shape" of the object is

solid model, 2) the shape is

not known at all. Then, in each case, an efficient

algorithm that constructs the octree for the object

is proposed.

Next, as an application of the octree

representation to robotics, a fast interference

checking algorithm between the octree and the B-reps.

is considered. This algorithm is useful in graphics

simulator for off-line robot teaching.

In Chapter 2, some solid models investigated in

computer graphics are explained and discussed. In

Chapter 3, a conversion algorithm from the B-reps.

to the octree is described. Since the B-reps.

(polyhedron) is the most general solid model, this

algorithm can be applied to many application fields.

In Chapter 4, a construction algorithm of the octree

approximating a real solid object by using multiple

views is discussed. The algorithm is useful in case

that the object is unknown. This is regarded as one

application of the above conversion algorithm for

computer vision. Chapter 5 presents a fast and

general interference checking algorithm. This

algorithm is also regarded as one application of the

conversion algorithm to robotics.

ACKNOWLEDGMENT

I am very grateful to

S. Arimoto for his persistent

Prof. S.Tsuji and Prof.

the supervisor Prof~

encouragement, and to

Y.Seguchi for their

invaluable advice to improve the thesis.

I would also like to express my thanks to

Associate Prof. F.Miyazaki, Dr.S.Kawamura,

Dr.S.Takegaki, and Mr.T.Ohi for their invaluable

contribution to my studying the robotics.

I also wish to thank Associate Prof. T. Hashimoto

and Associate Prof. N.Ishimura for valuable

discussions on tree searching.

This work presented here is an outcome of

collaboration with graduate student£; Mr. A.Noda and

Mr. S.Fukuda. Without their efforts made in

experiments, the development would not have been

accomplished.

Finally, I would like to thank my family for their

unconditional support, without which I could not have

accomplished this work.

1. INTRODUCTION

1.1 The beginning

CONTENTS

1.2 Dissertation outline

2. MODEL DEFINITIONS

2 .1 Introduction

2.2 Octree representation

2.3 DF-representation

2.4 Boundary-representation (B-reps.)

2.5 -Simple sweeps

2.6 Constructive solid geometry (CSG)

3. CONVERSION ALGORITHM FROM THE B-REPS. TO THE

1

2

7

9

10

13

1 5

15

17

19

OCTREE REPRESENTATION AND ITS COMPLEXITY 21

3.1 Introduction 22

3.2 Conversion algorithm 25

3.2.1 MESH procedure 27

3.2.2 PLURAL procedure 31

3.2.3 SINGLE procedure 53

3.3 Computational complexity of the algorithm and

the storage of the resolution ~ctree 55

3.4 Experimental results 58

3.5 Conclusion 62

4. CONSTRUCTION OF THE OCTREE APPROXIMATING

A THREE-DIMENSIONAL OBJECT BY USING

MULTIPLE VIEWS 63

4.1 Introduction 64

4.2 Volume intersection method 70

4.3 Definition 74

4.4 Algorithm for constructing the octree 75

4.4.1 Classification of eight subcubes 75

4.4.2 Making the DF-representation 78

4.5 Computational complexity

of the algorithm

4.5.1 Comparison among expressions

of the model

81

81

4.5.2 Comparison among methods for checking the

intersection between a cube and a cone 83

4.6 Experimental results

4.6.1 Evaluation for properties

of the algorithm

4.6.2 Efficiency of the algorithm

4.6.3 Approximating precision of the octree

88

88

88

for the object 92

4.7 Discussions 95

4.8 Conclusion 96

5. A NEW INTERFERENCE CHECK ALGORITHM

USING OCTREE

5.1 Introduction

5.2 Definitions

5.2.1 Environment model

5.2.2 Robot model

5.3 Interference check algorithm

5.3.1 Judgment of interference and

non-interference

5.3.2 Classification of 'intersection' cube

into three scenes

5.3.3 Three CHECK procedures

5.4 Computational complexity

of the algorithm

5.5 Experimental results

5.5.1 Experiment A

5.5.2 Experiment B

5.6 Conclusion

6. DISCUSSION AND SUMMARY

97

98

102

102

102

105

105

106

109

114

117

117

121

123

125

APPENDIX A EFFICIENT METHOD FOR CALCULATING

FUNCTIONS OF SEVEN VERTEXES 130

APPENDIX B NUMBER OF BLOCK REGIONS INTERSECTING

A PROJECTION 132

APPENDIX C NUMBER OF CUBES INTERSECTING

A PLANE ON THE BLOCK REGION 133

APPENDIX D NUMBER OF CUBES INTERSECTING A POLYGON

UNDER THE THREE-DIMENSIONAL SPACE 134

BIBLIOGRAPHY 136

PAPERS RELATED TO THIS DISSERTATION 149

CHAPTER 1

INTRODUCTION

1

1.:.1 The beginning

In many fields such as computer graphics, computer

vision, and computer-aided design, much attention has

been focused on the representation problem of three

dimensional objects, which is called the computer-based

three-dimensional geometrical modeling. The main

proposed models are Simple Sweep, Boundary

Representation, and CSG [1]-[J]. Whereas these

models are mainly investigated for retrieving the

topological information of an solid object, they are

not suitable for preserving the geographical

information of one whole space including many objects.

The octree representation proposed by Jackins and

Tanimoto [4] has such a structure as underpinning for

Warno_ck 1 s algorithm [5] , planning [6], and pyramid

data structure [7]. This tree is one of the

hierarchical representations whose structures are

described in various ways [8]-[14]. It has been

already used for investigating the ray-tracing

[15]-[17] in computer graphics and the pattern

recognition [18]-[20] in computer vision. This is

based on the property that spatial information

resources on a selected portion of a three-dimensional

object can be efficiently retrieved because of the

convenient hierarchical structure for top-down,

2

bottom-up,

addition to

and

this

split-and-merge

property, since

operations. In

the octree is a

solid model that integrates all objects in one whole

space, it can deal with some objects in the space

simultaneously. These properties meet several

requirements in robotics and contribute to the

decisive reason for adopting the octree as a model of

robot's environment.

Then, in this dissertation, some effective

algorithms concerning the octree are devised by using

those properties and applied to some important

problem in robotics.

The first one is a conversion algorithm from the

B-reps., which is the most general solid model, to

the octree. Similar conversion algorithms from other

models, for example, CSG, and Simple Sweep, etc., to

the octree have been proposed in several researches

[21],[22]. Thus, if shape of a solid object has been

defined by a set of solid models including the

B-reps., the corresponding octree can be surely

constructed.

The second one is to construct an approximating

region for some real object with the octree using

multiple two-dimensional images. This algorithm is

useful in case that shape of the object is unknown.

Several algorithms for this purpose have been studied

3

in many fields (Computer Vision, Computer Graphics,

and Robotics) and many important technical methods

(Stereo vision, Shape from shading, etc.) have been

presented [23]-[27]. However, some methods can not

build an accurate solid model for the object if

degraded images are only obtained, and others require

enormous calculation time. To solve those problems,

we propose a fast and general algorithm based upon a

so-called volume intersection method and a

hierarchical property of the octree.

The proposed two algorithms are considered to be

fundamental in a sense that they construct an

environment model necessary to accomplish various

requirements for decision making in robot motion

planning. For that reason, an interference check

algorithm between a robot model and its environment

model in graphics simulator (off-line teaching) is

treated here as one of such requirements.

On-line robot teaching which is mostly used in the

field of robot teaching is useful if a robot is of a

simple shape and its environment is a mere space.

However, this teaching needs much time if the robot

structure is complicated and its environment is

cluttered, and thereby a production line in factory

must be stopped for a long period. In that case,

off-line teaching with graphics simulator would be

4

used. Then, performance of the simulator depends on

the efficiency of the interference check and therefore

the fast interference check algorithm between the

robot model with the B-reps. and the environment

model with the octree is proposed. Owing to the

hierarchical structure of the octree, the algorithm

can select regions such that the robot model probably

intersects an obstacle in its environment model by

adaptively changing the resolution level of the

octree, and therefore discuss the interference for

only some parts of obstacles around the robot model.

Consequently, this algorithm does not depend on the

complexity of shape of the robot and its environment

and therefore is even fast in the complex robot and

cluttered environment.

Not only the robot simulator but also a so-called

intelligent robot requires an environment model. For

example, automatic decision of the robot motion

avoiding obstacles is investigated in this research

field and is called "mover's problem" or "find pa th

problem". As compared with some data structures

which have been proposed for representing an

environment model in this problem, the octree is

promising enough for such a data structure in the

following reason: Due to indexing a three-dimensional

space hierarchically, the octree is capable of

5

determining whether a part of obstacles exists or not

in a region easily. Hence, it can fast search for a

free region in path-planning of the robot. In

addition to this, the octree is easily modified with

respect to a movement of the obstacle [28] [69].

Thus, the octree with capability of representing the

spatial information is suitable for a model of

robot's environment.

6

1.2 Dissertation outline

The rest of the dissertation is organized into six

chapters:

Chapter 2 discusses some solid models that have

been mainly proposed in computer graphics. Especially

in that chapter, the octree representation that is

adopted as an environment model is explained in

detail.

Chapter 3 proposes a conversion algorithm from the

B-reps. to the octree.

other algorithms, the

In contraposition to similar

proposed algorithm is fast

because it is a one-pass method in the sense that it

can deal with all nodes (cubes) of the octree

simultaneously, whenever they are inside, outside, or

intersecting for the B-reps. Furthermore, since it

has the property that building a subtree of the

octree in some region is independent of building

subtrees of it in other regions, it can be used in

many application fields.

Chapter 4 is concerned with an algorithm for

constructing a real object in memory of the computer

by using the octree as one application of the above

conversion algorithm in computer vision field. This

algorithm should be used for such a case that shape

7

of the real object is not known at all.

Chapter 5 is concerned with an interference check

algorithm in graphics simulator as one application of

the conversion algorithm in robotics. The efficiency

of off-line robot teaching with the simulator depend

on the efficiency of the algorithm. This algorithm

can run fast even in a cluttered environment and a

complicated

regions that

obstacles in

robot since it

intersect both

the environment

can fast select only

the robot model and

with the aid of the

hierarchical structure of the octree.

Some concluding remarks and further developments

of the research are to be given in Chapter 6.

8

CHAPTER 2

MODEL DEFINITIONS

9

2.1 Introduction

According to the literature on solid modeling,

some methods for representing solid objects have been

proposed for many purposes [1]-[3]. For constructing

a solid model, Simple Sweep is mostly used. To

evaluate integral properties of a solid, CSG

(Constructive Solid Geometry) is a natural

representation.

model, B-reps.

extensively used.

For the purpose of display

(Boundary representation)

of a

is

Octree representation [4],[14],[28],[29] proposed

recently is a natural hierarchical solid model that

can change the resolution in positioning adaptively

in reference to a region_ in the world space and

retrieve efficiently the geometric information. This

adaptability is useful in ray-tracing and pattern

recognition, and many application algorithms in the

fields have been proposed [15]-[20]. Also, the

greater part [30]-[35] of valuable algorithms based

on the quadtree whose hierarchical structure in two

dimension is equivalent to the structure of the

octree in three dimension is applicable to the

octree. Further, the view-transformation algorithm

[36], [37] for displaying on a screen 3-D pictures

represented by the octree and other application

10

I Black node

D White node

(a)

0 Mix node (b)

(1(10000000)1(0011001(10100000))00(10100011)0)

(c)

Fig.1. An object (a) and its corresponding octree (b)
and DF-representation (c).

11

c

z

"'----~x

I I

I 2 I
I)-c. ,,

I -"'9 - -
/

I
I

5

I
-1-~-----
-J.~J. __ _
""' I I

I
I I

- r- -.)­,.
-.k--
/

0"-----&.-----~

Fig.2. The order of octants.

12

6

algorithms [38]-[40] using the octree are presented.

2.2 Octree representation

Octree is a solid model that hierarchically

represents a three dimensional space as shown in

Fig. 1 • In octree, a region (cube C) that intersects

a given object is represented by a mix node and a

region (cube C) inside [outside] the object is

represented by a black [white] node. A region (cube

C) corresponds to a mix node is decomposed into eight

subregions (subcubes Ci) and its subregions are

represented by eight child nodes of the mix node.

The order of octants is shown in Fig.2.

The decomposition is recursively processed by the

depth-first search until the finest resolution level

(n) of the octree. At the finest resolution level,

all mix nodes are converted to black nodes. And if

these are complete eight black child nodes who have

the same parent node, then the set of these child

nodes is merged into the parent black node.

Several advantages of this octree representation

are summarized below:

(1) Calculation of mass properties (volume, weight,

center of gravity, and moment, etc.) is easy.

(2) Due to the hierarchical property, the search of

13

geometric information can be carried out rapidly (ray

tracing, etc.).

(3) Since most algorithms that use the octree

possess generally a recursive property, hardware

implementation of those is simple and easy (41].

(4) Set operations (intersection, complement, and

union etc.) can be processed fast.

2.3 DF-representation

A DF (Depth-First) representation (42),(43] is a

linear encoding of the octree as shown in Fig .1 (c)

and is made by pre-order scanning on the octree.

Here, symbol 1 (1 indicates a mix node and yields an

increment of one tree level, and symbol 1) 1 yields a

decrement of one tree level. Sy~bols 1 0 1 and 1 1 1

imply a black and white node, respectively. The

DF-representation is useful in condensing the storage

of the octree.

2.4 Boundary representation (B-reps.)

B-reps. is the most general solid model that is

represented by a set of patches. In this

dissertation, a patch of the B-reps. is represented

by a sequence of vertexes which are clockwise ordered

14

P
at

ch

i n
fo

rr
n

a
tio

n

V4

1
6

5
1

2-
.

L.
 .

 ~
V

1
/

I
2

V2
1

I
3

3
4

8
7

1
4

3
2

4
5

6
7

8

/
51

yv

a
5 6

V5

l
5

8
4

2
3

7
6

I-
'

U
l

F
ig

.3
.

B
o

u
n

d
ar

y

re
p

re
s
e
n

ta
ti

o
n

(B

-r
e
p

s
.)

.

1 2 3 4 5 6 7 8

V
e

rt
e

x

in
fo

rm
at

io
n

Xl

Y1
 z

l

X2
 Y

2
z2

x3

 Y
3

Z3

•
•

•
..

•
•

•
•

•

•
•

•
•

•
•

for the normal vector of the plane that includes the

patch as shown in Fig.J.

Not only some algorithms to display the solid

object but also several algorithms [44],[45] for the

set operation using this model are presented.

2.5 Simple sweeps

Sweep representation [2],[21],[46] is represented

as an occupying volume of an region guided by a given

motion. In general, the motion is defined as a

combination of translation and rotation. Contrary to

this, the sweep representation is called "Simple

sweep" if and only if the motion is defined as

translation or rotation illustrated in Fig.4. Using

this simple sweep, one solid object is easily

constructed in computer because only decision of both

shape of the region and one motion is necessary and

sufficient for the construction. Further, the

integral properties of some simple sweep may be

computed by exploiting dimensional separability to

convert a triple (volume) integral into a double

(surface) integral over a planar set [21]. Needless

to say, this model is not capable of the construction

of one complicated object.

16

Ul - P.. .c Q)
Q)

~
Ul

..........
,..0 ..__,

s::
0

•r-l
+.J
al

-P
0
H

"d
s::
al

..........
al ..__,

s::
0

•r-l
-P
al
rl
Ul
s::
al
H

E-i

-...:t
b.O

•r-l
Iii -·co -

17

2.6 Constructive solid geometry (CSG)

Constructive solid geometry (CSG) [2], [3], [47] is

based on the notion of 11 addi tion" and "subtraction"

of several

Fig. 5. The

properties

primitive solid

natural method

of solids with

objects illustrated in

for evaluating

CSG is to

integral

apply a

"divide-and-conquer" strategy to each primitive solid

object [21]. Furthermore, many algorithms for

reporting and counting geometric intersection between

two different CSG models are proposed [48]-[50].

This CSG model is also unfit for the representing a

complicated object because the computational load for

constructing the representation is enormous with

increasing the number of primitive objects.

The first two models are suitable for retrieving

the geographical information for a set of objects in

one whole space. On the contrary, the other models

are suitable for doing the topological information of

a three-dimensional object. In robotics, a data

structure for retrieving effectively the geographical

information of a Cartesian space including many

obstacles is especially needed in an environment

model that represents the whole space. As a result,

the former models are useful for many applications to

18

I
I
I
I
I
I
I ----tr

' __ _

Fig.5. Constructive solid geometry (CSG).

19

robotics. Therefore, we claim that the octree is

adequate as robot's environment model in order to

develop important application algorithms based on the

octree.

20

CHAPTER 3

CONVERSION ALGORITHM

FROM

THE BOUNDARY REPRESENTATION

TO THE OCTREE AND ITS COMPLEXITY

21

3.1 Introduction

To use the octree, a conversion from other solid

models proposed in computer graphics (Simple Sweep,

CSG, and B-reps., etc.) to the octree is necessary.

For this purpose, Lee and Requicha [22] presented an

algorithm that converts efficiently from the CSG

scheme into the octree. Franklin and Akman [51]

described a conversion algorithm

parallelepipeds to the octree.

from a set of

However, the

algorithm is not general because of the necessity of

elaborate calculation of a set of parallelepipeds,

which is an approximating region for a given object.

Yau and Shihari [52] gave an algorithm for

constructing a tree

from trees of its

of d-dimensional binary images

(d-1)-dimensional cross section.

Since trees of a two-dimensional cross section for a

given object are obtained easily, this algorithm is

general. On the contrary, it has a large

computational complexity that is proportional to gn

for parameter n (the finest resolution level of the

octree). Tamminen and Samet [53],[54] proposed a

conversion algorithm from the B-reps. to a linear

representation of a binary voxel tree (bintree),

which is like an octree. Since B-reps. is a primary

scheme used for representing a solid object, the

22

algorithm is general. However, there are some

defective points in the algorithm. First, the

algorithm is inefficient in calculation time because

it is based on a two-pass approach: It makes nodes in

the bintree, which correspond to the region

inter~ecting patches of the B-reps, and then it makes

other nodes in the bintree, which correspond to the

internal and external regions for the B-reps., using

the connected components labeling technique. In this

connection, the construction of nodes that represent

the region· intersecting patches of the B-reps. is

not complete. Second, due to the two-pass approach,

the algorithm can not execute any partial conversion

from a part of the B-reps. to the bintree.

Thus, we propose a conversion algorithm from the

B-reps. to the DF-representa ti on that is a linear

representation of the octree. First, capability of

building nodes of the octree, wh~ch correspond to the

region intersecting patches of the B-reps., is

assured in Theorem 1 and Theorem 2 in this chapter.

Second, by restricting the B-reps. to be of convex

shape, the proposed algorithm can deal with all nodes

pf the octree simultaneously, whenever they are

inside, outside, or intersecting for the B-reps.

Hence, the algorithm is composed by an one-pass

approach. In other words, it follows naturally from

23

this property that building a subtree of the octree

in some region is independent of building subtrees of

it in other regions. Using this fact, the algorithm

can convert a part of the B-reps. to the octree and

therefore it can be effectively used in many

applications in the fields of robotics and computer

vision. Finally, the computational complexity of the

algorithm and the storage of the octree with respect

to s (surface area of the B-reps.), N (number of

patches of the B-reps.) and n (the finest resolution

level of the octree) are analyzed and evaluated,

which is neglected in the literature on previous

research works.

The effectiveness of the algorithm is demonstrated

by implementing it in C language on the VAX 11 /?50

under UNIX. In an illustrative ex_ample for a set of

B-reps. data given by approximating a solid sphere,

it is shown that the actual conversion time from the

B-reps. to the DF-representa tion and the number of

nodes of the octree are coincident with the estimated

time-complexity

respectively.

and storage

24

of the octree,

Listing 1. Notations and basic functions

r : cube corresponding to a root node (the world space)
of an octree.

c, Ci = cube corresponding to a node, and cube corresponding
·to the i-th child node of that node.

n = finest resolution level of the octree.
n' =current resolution level of the octree.
CHILD(C,i) =i-th subcube Ci of cube c.
CENTER(C ,i) - x, Y, or Z-axis coordinate of the center

point of cube c. (i = 1, 2 or 3)
UPPER(obj,i) - upper coordinate for the parallelepiped

enclosing an object (B-reps.) in X, Y, or
Z-axis (i ~ 1, 2 or 3).

LOWER(obj,i) - lower coordinate for the parallelepiped
enclosing an object (B-reps.) in X, Y, or
Z-axis (i = 1, 2 or 3).

MARKED(map,i): this function is 'True' if the state of the
i-th subcube Ci in map is 1 intersection', else
is 'False'.

MARK (i) : Di vi de a cube C into two volumes by the plane
which is vertical to the x, Y, or z-axis (i= ±1,
±2, or !3) and proceed with one of the following
two processes:

(i > 0) This function gives information that states of four
cubes in the volume of positive direction with
respect to the axis are 'intersection' , and other
states are 'non-intersection' •

(i < 0) This function gives information that states of four
cubes in the volume of negative direction are
'intersectior,' and other states are 'non-intersection'.

Boundary map (map) =This map keeps current all states
('intersection' or 'non-intersection') of
eight subcubes.

25

J.2 Conversion algorithm

In this section, a conversion algorithm from a

given B-reps. to a DF-representation is proposed and

explained in detail. The basic process in the

algorithm is that eight subcubes of an 'intersection'

cube (a region including a part of the B-reps.) are

classified into 'inside', 'outside' or 'intersection'

for the B-reps. Here, we should note that the

1 inside 1 , 'outside 1 , and 1 intersection 1 subcubes are

considered to be the 1 black 1 , 'white', and 1 mix 1

nodes, respectively, and therefore are converted into

the symbol 1 0 1 , 1 1 1 , a pair of the symbol 1 (1 and

1) 1 , successively. This classification is managed by

the following three procedures (MESH, PLURAL and

SINGLE procedures). In accordance with a degree of

intersection when the B-reps. intersects a cube, one

of th& three procedures is selected to deal with the

cube. The classification is carried out using only

patch information of the B-reps. in the cube. Thus,

by adopting this basic process recursively, a subtree

of the octree (DF-representation), which corresponds

to one cube (region), can be completely built using

only partial information of the B-reps. in the

cube.

The basic process is recursively used for each

26

I
I
I

I ,...>,
I ,...
~~-L

,... /I I

I
I

I I
--;---71'

I ,...",, I
--:;;:~--t'
.,,." I I

Fig. 6. MESH procedure

27

Ci

'intersection' cube by the depth-first search on the

octree and therefore its DF-representation is

naturally made. Here, if the initial 'intersection'

cube r is the world space, then proposed algorithm

constructs the octree for the whole B-reps.

3.2.1 MESH Procedure

This procedure deals with a cube (region) that

encloses completely a given B-reps (See Fig.6). The

procedure determines only one subcube enclosing the

B-reps. at each level of the octree and considers it

the 'intersection' subcube for the given B-reps.

Other seven subcubes at the level are 'outside' for

it. If the subcube enclosing the B-reps. can be

uniquely determined, this procedure deals with the

subcube as an input cube anew. Otherwise, the

procedure is stopped and some subcubes intersecting a

part of the B-reps. are processed by the following

PLURAL procedure.

This procedure concretely consists of the

following two steps: The first step is to define the

minimum parallelepiped enclosing the B-reps. The

second step is to divide the 'intersection' cube into

eight subcubes and to search a subcube intersecting

the parallelepiped. The subcube is specified as the

28

Listing 2. MESH procedure.

procedure MESH(C,n')
begin

map + intersection;
for i +1 until 3 do

end;

if UPPER(obj, i) < CENTER(C, i) then
map +map n MARK(-i);

else if LOWER(obj, i) > CENTER(C, i) then
map ~ map n MARK(+i);

if COUNTER_MARK(map) > 1 then
PLURAL(C, list, n');

else if n'+1 ~ n then

WRITE (I (I) ;

begin
for i +O until 7 do

if MARKED(map, i) then
WRITE (I 1 I) ;

else
WRITE('O');

end;
else
begin

for i +O until 7 do

end;

if MARKED(map,i) then
MESH(CHILD(C, i), n'+1);

else
WRITE (I 0 I) ;

WRITE (I) I) ;

COUNT_MARK(map) :: count the number of states of 'intersection'
in map.

29

'intersection 1 one and other subcubes are specified

as the 'outside' one.

J.2.2 PLURAL Procedure

This procedure deals with a cube (region) that

intersects some patches of the B-reps. First, by

assigning each patch in the cube to some of eight

subcubes, the following three routines (BBOX, PLANE,

and PROJECTION routines) classify each subcube into

1 intersection 1 (a subregion including a part of the

B-reps.) or 'non-intersection' (a subregion which

does not include any part of the B-reps.) (Fig.7).

Next, the JUDGE routine classifies each

'non-intersection' subcube into being 'inside' or

'outside' for the B-reps. The first two routines

check necessary conditions so that a patch intersects

a subcube, and the third routine checks a sufficient

condition.

1) Bounding box routine (BBOX): This routine

selects subcubes that the minimum parallelepiped

enclosing a patch P intersects. Such subcubes are

considered to be a candidate for the 1 intersection 1

subcube.

Now, this routine is concretely described as

30

(J -

i--:1
c::x:
I)::!

:::::>
i--:1
11.. .
t-

b.D ·r-f

ca µ...

'-'

31

Listing 3. PLURAL procedure.

procedure PLURAL(C, list, n')
begin

end;

for i + 1 until LENGTH(list) do
begin

P +list[i];
map + BBOX(P,C);
map ~ map n PLANE(P,C);
PROJECT(P,C,map);
ENTRY(P,map);

end;

WRITE (I (I) ;

if n'+1 i:n then
begin

for i + 0 until 7 do

end;
else

begin

if LENGTH(lis [i]) #- 0 then
WRITE (1 1 I) ;

JUDGE(map);

for i +O until 7 do

end;

if LENGTH(lis[i]) = 1 then
SINGLE(CHILD(C,i),lis[i],n'+1);

else if LENGTH(lis[i]) > 0 then
PLURAL (CHILD (c, i) , 1i s [i] , n' + 1) ;

JUDGE (map) ;

WRITE (I) I) ;

list, lis[i] - patch lists correspond to cube C and
subcube Ci, respectively.

LENGTH(list)
ENTRY(P,map)

:length of the list (number of patches).
- append a patch P to the lis[i] of subcube Ci

whose state is 'intersection' in map.

32

a.
u

c
u

N

x+t

33

Ol
Ol
Q)
()

0
H

P-4 .
00

T
a
b

le

1
.

C
o

n
ju

n
c
ti

o
n

p

ro
c
e
ss

in

B

B
O

X

ro
u

ti
n

e

R
eg

io
n

P

la
n

e

tN

C
n

C
p

co

C1

C
2

C
3

C
4

cs

C
6

C
7

~

Z
Y

-P
la

n
e

1
0

1
1

0
0

1
1

0
0

Z
X

-P
la

n
e

1
1

1
1

1
1

1
1

1
1

X
Y

-P
la

n
e

1
0

1
1

1
1

0
0

0
0

C
o

n
ju

n
c
ti

o
n

-

-
1

1
0

0
0

0
0

0

1
:

In
te

rs
e
c
ti

o
n

0

:
N

o
n

-i
n

te
rs

e
c
ti

o
n

Listing 4. BBOX routine.

procedure BBOX(P,C)
begin

map + intersection;
for i +1 until 3 do

if UPPER(P, i) < CENTER(C, i) then
map - map (\ MARK(-i);

end;

else if LOWER(P, i)) CENTER(C, i) then
map - map n MARK(+i);

return map;

35

follows: It divides a cube C into two regions (Cn,

Cp) - each region includes four subcubes Ci - by the

plane that is vertical to each axis (X, Y, or Z axis)

and intersects the center point G of the cube, and

checks whether the above parallelepiped intersects

each region or not (See Fig.8). By processing these

three results for the X, Y and Z axes as shown in

Table 1, the routine can determine some subcubes

intersecting the parallelepiped.

2) PLANE routine: This routine selects subcubes

that intersect the plane including a patch P.

Denote the normal vector of the plane S including

a patch P by n=(nx,ny,nz)• For some given point

Po(po) on the plane Sand any point P: p =(px,Py•Pz),

define

d(S,P)
-+

= n • (!) - :Po)
= nx*Px+ ny*Py + nz*Pz-d• (d = n · pt,)

This function implies a distance from the plane S to

a point P. When the world space is divided into two

volumes by the plane, one volume that includes the

given B-reps is defined to be inside and another

volume that does not include it is defined to be

outside. Then, ~ point P is inside [outside] the

plane if the function defined above is negative

[positive].

36

I
I
I
I

A

I I / / I
'G •- / I ~ - - _, I

/ /Vs 1 I / /
I/ I ~ ----v~ ------f v4

I
I
I

I
) s

Fig.9. Intersection between plane S and subcube.

37

I

'G r---

I
I
I
I
I

/I
/ I

I / I -;JA I
/ y I

I ~ , I ,,)
- - - - - x - - - "'" - - -(B z Ax I

I
I

•

s

Fig .10. Classification of seven vertexes into three groups
A, B, and C, and relation between the groups and plane S.

38

-+
The vector i = (ro,r1,r2) is defined such that

the binary representation of a

decimal number i. The number i represents the

position of a subcube as shown in Fig.2.

We now explain an efficient way for finding some

subcubes that intersect the plane S. First,

calculate d (S, G) = dg for the center point G of

cube C and proceed with one of the following

processes:

(i) Function d(S, G) is negative [positive]

The point G is inside [outside] the plane S. In

this.case, the plane S intersects some subcubes which

are adjacent to the subcube maximizing

[minimizing] Ir -+
• i. Now, if the function d(S,vj) is

positive [negative] for some vertex Vj of the

subcube Ck, then Vj is outside [inside] the plane S

and therefore the plane S intersects a line Gvj

(Fig.9). Consequently, adjacent subcubes to the line

are considered to be a candidate for the

'intersection' subcube. Here, an efficient method is

used in calculation of the function d(S,vj). Seven

vertexes that are all the vertexes of subcube Ck

except for the vertex G are firstly classified into

three groups A (vertexes Ax, Ay, and Az), B (vertexes

Bx, By, and Bz) and C as shown in Fig.10. The value

39

of dg is already calculated. Therefore, once

calculating lldi = h * lnil (i=x,y and z), we obtain

the value of each function d(S,vj) easily (given in

Appendix A) by the following equations:

d(S, Ai) = d(S, G) ±h * lnil

= dg ± lldi (i = x, y or z).

d(S, Bi) = dg ± (fl dj+ Adk).

(i,j,k = x,y,z, i*j, i*k)

d (S, C) = dg ± (A dx + /J. dy + A dz) •

(h: a side length of a subcube.)

Moreover, since the plane S intersects four

subcubes adjacent to the line GAz if it intersects

the line while the functions for vertexes in the A

group are calculated (See Fig.10)~ calculation of the

function for only a vertex Bz is necessary and

sufficient in the B group. This geometric property

makes the algorithm run faster.

(ii) Function d(S,G) equals zero ..
A subcube minimizing [maximizing] n

~

• i is inside

[outside] the B~reps. Then, since the plane S

intersects other six subcubes exactly, these six

subcubes are considered to be a candidate for the

'intersection' subcube.

40

Listing 5. PLANE routine.

procedure PLANE(P,C)
begin

dg + d(P,CENTER(C));

map + outside;

for i +1 until 3 do
6dCiJ +h* I nv[i] I;

if dg < 0 then
for i + 1 until 7 do

if dg + SUM(i,~d) > 0 then
map ~ map U MARK_ROUND (+ i) ;

else if dg > 0 then
for i + 1 until 7 do

if dg - SUM(i,~d) < 0 then
map ~ map U MARK_ROUND(-i);

else

end;

begin
black
white
for i

if

+ :intersection;
+ :intersection;

+1 until 3 do
nv[i] > 0 then
begin

black ~
white ~

end;

black f'l MARK(+i);
white (l MARK(-i);

else if nv[i) <
begin

0 then

black ~
white ~

end;

black (l MARK(-i);
white (l MARK(+i);

map~- (black U white);
end;
return map;

nv[i] :normal vector of a patch P where (i = x, Y, Z).
SUM(i,~d) : summation of all terms but the first term in

the equations (See in Paragraph 3.2.2).
MARK_ROUND(i) = information that states of adjacent subcubes

to line Gvi are ':intersection' •

41

3) PROJECTION routine: The above two routines

still leave some subcubes which do not intersect a

patch P. This reason is that only a necessary

condition for a subcube to intersect the patch is

taken into consideration in the above two routines.

Thus, a sufficient condition is required, which

selects a subcube exactly intersecting a patch P.

This condition is obtained by the following property:

The shadows P(i) and C(i) (i=X, Y, and Z) are defined

as -projections of the patch P and a subcube Ci

respectively onto the planes· D(i) which are vertical

to the X, Y, and Z axes, respectively. The subcube

Ci intersect~ exactly the patch P if and only if the

shadow C(i) intersects the shadow P(i) in each of the

three planes D (i) and it is regarded as the actual

'intersection' subcube. This property is obtained by

the following Th.1 and Th.2.:

Defining notations (Fig.11)

R: intersecting region between a subcube Ci and a

plane S. (R = Ci () S)

R(i) lJ R: the region on S, whose projection onto the

plane D (i) is coincident with the shadow

C(i) (i=X, Y or Z).

42

Fig.11. Projecting region of cube onto the plane S.

43

~

~

C
i

N
o

n
-i

n
te

rs
e

c
ti

o
n

C

o
m

p
le

te

(O
n

e

p
a

tc
h

)

P
a

rt
ia

l

(S
o

m
e

 ·
p

a
tc

h
e

s
)

F
ig

.1
2

.
T

h
re

e

d
im

e
n

si
o

n
a
l

in
te

rs
e
c
ti

n
g

p

a
tt

e
rn

b

e
tw

e
e
n

p

a
tc

h

an
d

c
u

b
e
.

CCi)

D
Non-

i ntersection Partial

DC(i)
Complete

Fig .13. Two dimensional intersecting pattern between patch
and cube.

45

[3D information] (Fig.12)

[non-intersection] Ci () p = <P •

[partial] Ci () s ~ Ci () p =I= <P •
[complete] Ci () s = Ci () p =I= cp •

In three-dimensional space, a state

"non-intersection" implies that a subcube Ci does not

intersect any patch , a state "partial" does that a

subcube Ci intersects some patches, and a state

"complete" does that a subcube Ci intersects only one

patch. The subcube having one of the last two states

corresponds to the 'intersection' subcube.

[2D information] (Fig.13)

[non-intersection] C (i) () P (i)

[partial] C(i) ~ C(i) () P(i) =1=

[complete] C(i) = C(i) () P(i) =I=

= <P' •

cp • '
cp •

In two-dimensional space, a state "non-intersection"

implies that the shadow C (i) is outside the shadow

P(i), a state "partial" does that the shadow C(i)

intersects some edges of the shadow P(i), and a state

"complete" does that the shadow C(i) is inside the

shadow P(i). The last two states indicate that the

shadow C(i) intersects the shadow P(i).

46

[Theorem 1] For any plane D(i), C(i) 0 P(i)*<J>

~ Ci n Pq:c/>.
Proof: Direct part) For any plane D(i), · C(i) () P(i)1;.c/>

implies that each point Po(i) E R(i) U R (i=X, Y,

and Z) exists on a patch P. A triangle Q that

consists of those points Po(i) intersects the region

Ras shown in Fig.11. The triangle Q is inner for

the patch P because any patch P is assumed to be a

convex region in this dissertation. Therefore,

Ci rt P -/: c/> •

Converse part) A point P1(i) represents the

projection of a point p E Ci 0 P '/:. <P onto the D (i)

plane. Hence for any plane D (i) , P1 (i) EC (i) () P (i) * c/>.
The assertion follows. 0

[Theorem 2] For some plane D(i),C(i) () P(i) =<P

~ Ci () P = </:> •

Proof: Direct part) This part is given by the

contraposition of the converse part in Th. 1.

Converse part)· This part is given by the

contraposition of the direct part in Th. 1.

the assertion follows. 0
Hence,

When the projected plane is divided into two

regions by the line that includes an edge constructing

a shadow P(i), the region that includes the shadow

47

.,. 0
0

1
I

3

0
1

2

z
x

y

O
(x

)
D

(y
)

D
(z

)

I
>Y

I

>Z

I
~
x

F
ig

.1
4

.
(a

)
T

he

o
rd

e
r

o
f

q
u

a
d

ra
n

t
(b

)
S

e
le

c
ti

o
n

o

f
a

p
ro

je
c
ti

n
g

p

la
n

e
.

P(i) is defined to be inside for the edge and the

region that does not include it is defined to be

outside for it.

Since the subcube Ci intersects the minimum

parallelepiped B that encloses a patch P, shadow C(i)

intersects the region B(i) that is a projected region

of the parallelepiped B. Here, the shadow P(i) is a

convex region, and all angles of P(i) within the

region B(i) are obtuse. From those properties, it

follows that the shadow C(i) is "non-intersection''

for the shadow P(i) if it is outside for some edge of

P(i), and the shadow C(i) is "complete" for the

shadow P(i) if it is inside for all edges of P(i).

Otherwise, the shadow C(i) is "p~rtial"-for it. The

PROJECTION routine tises this classificati6n and the

Th.1 and Th.2.

A position OUT is defined as the position j that

maximizes k•j (k : the outer vector that is vertical
~

to an edge). The vector j=(ro,r1) is also defined

such that (ror1)2 denotes the binary representation

of a decimal number j. The number j represents the

position of the shadow C(i) in a projected region of

the cube illustrated in Fig.14.

4) JUDGE routine: This routine classifies each

'non-intersection' subcubes into being 'inside' or

49

·Listing 6. PROJECTION routine.

procedure PROJECTION(P, C, map)
begin

for i + 1 until 3 do
begin

while (EDGE(PROJ(P, i)) ¢NULL)
begin

case JUDGE(EDGE(PROJ(P, i)}, CENTER[i]) of
inside: break;
outside:
on:

end;
end;

end;

MAP(i, OUT, map);
break;

PROJ (P, i) = projected region of a patch P onto the plane
. D(i) •

ED.GE(P) = edge of a patch P
JUDGE(e, p) :: judging whether a point p is inside,

, intersecting, or outside.
CENTER[i] :: coordinates of the center point of cube C

except the i-axis component.
MAP(i, j, map) = changing states of two subcubes into

'non-intersection', whose projected region
onto the plane D(i) corresponds to the
position j as shown in Fig.14.

so

'outside' for the B-reps. By checking the position

of the point G for each plane including a patch in

the present 1 intersection 1 cube, i.e., inside,

intersect, or outside, which has been already

obtained through the PLANE routine, we proceed with

one of the following processes.

1) If the point G is outside some plane, then the

'non-intersection' subcubes are 'outside' for the

B-reps.

2) If the point G is inside all planes, then the

'non-intersection' subcubes are 'inside' for the

B-reps.

3). If neither of case 1) nor 2) occur, it is

possible

through

to determine by the information obtained

PLANE routine (ii) .whether each

'non-intersection' subcube is 'inside' or 1 outside 1

for the B-reps.

These processes are based on the following properties

that are acquired if and only if the B-reps. is

convex.

[Property 1] When the B-reps. does not intersect

the point G, all 'non-intersection' subcubes are of

the same state (1 inside 1 , or 'outside') and they are

1 inside 1 ('outside 1) if the point G is inside

(outside) the B-reps. When the B-reps. intersects

51

s

Fig.15 SINGLE procedure

52

• I
I
I
I
I
J p

the point G, whether each subcube is 1 inside 1 or

'outside 1 for the B-reps. can be determined by the

information obtained through the PLANE routine (ii).(]

[Property 2] The PLANE routine judges whether the

point G is inside, intersect, or outside for the

plane including a patch in the present 'intersection'

cube. Then, the point G is outside the B-reps. when

the function d(G,S) is positive for some plane S.

The point G intersects the B-reps. when the function

d(G,S) is zero for one plane S and d(G,S) is negative

for other planes. Otherwise the point is inside the

B-reps. D

3.2.3 SINGLE Procedure

An intersecting region between a patch P and a cube

C corresponds to only an intersecting region between

the plane S including the patch P and the cube C if

the cube C intersects only the patch P (See Fig.15).

Therefore in this procedure, the 'intersection'

subcubes intersecting a patch P can be· easily

obtained using only the PLANE routine. In addition,

the JUDGE routine also deals with 'non-intersection'

subcubes.

53

Listing 7. SINGLE procedure.

procedure SINGLE(C, P, n')
begin

map+ PLANE(P, C);
WRITE('(');
if n'+1 ~ n then

begin
for i + 0 until 7 do

if MARKED(map, i) then
WRITE (I 1 I) ;

end;
else

begin

JUDGE (map);

for i + 0 until 7 do
if MARKED(map, i) then
SINGLE(CHILD(C, i), P, n 1 +1);
JUDGE (map);

end;
WRITE(')');

end;

54

3.3 Computational complexity of the algorithm and

the storage of the resultant octree

The computational complexity of the algorithm can

be evaluated by a total number of cubes that

intersect at least one patch of the B-reps., and the

storage of the resultant octree can be also evaluated

by a total number of cubes that are built by the

algorithm.

For each patch P, consider a projection of the

patch P onto the plane D(i) for the i direction
maximizing ln•il (n : normal vector of the plane S ...
including a patch P, .i : unit vector of X, Y and Z

axes, respectively) and denote the projected region

by P 1 • Wh.en the area and periphery ·length of some

patch P are denoted by Sp and Sc, respectively, the

area Sp' and periphery length Lp 1 in the projected

region P' are obtained by Sp'= Sp*cosa, Lp'= Lp*cos 8 _.. -. _.
(cos8 = 1.n•il I lnl*lil :constant). Also, a cube C

at the level i is projected onto the plane ·n(i) and

the projecting region is called a BLOCK region.

Then, an area (Sc) and periphery length (Le) for the

BLOCK region are expressed by Sc=4nmax-i and

Lc=2nmax-i:

nmax ='log2{(a~ edge length of the world space)/ (an

edge length of a cube at the finest resolution

55

level)}.

In each level, a number of "complete" regions is

bounded by Sp'/Sc, and a number of "partial" region~

is also bounded by l2Lp'/Lc + 2a (a: number of edges

that construct the patch) (Appendix B). A number of

cubes is bounded by three, which intersects a plane S

and is on the BLOCK region (Appendix C).

Finally, the computational complexity of the

algorithm until PLANE routine is denoted by C1' and

that of PROJECTION routine is denoted by C2'· Until

the resolution level n, the computational complexity

of the algorithm for the patch Pk is denoted by Ck

and a number of nodes for it is also denoted by Nk. A

total calculation time (Cost) of the algorithm and a

total number (Storage) of nodes can be expressed as:

n-1
Ck ~ 3*E{C1 '*Sp'/4(nmax-i)+/2*C2'*Lp'/2(nmax-i)+2C2'*a)

i=O

= C1Sp*4n/4nmax + 312C2Lp2n;2nmax + 6C2'*n*a.

n-1
Nk ~ 24*E{Sp'/4(nmax-i)}

i=O

56

Storage ~ E Nk
p

Consequently, the computational complexity of the

algorithm and the storage of the resultant octree are

proportional to S or 4n for total surface area S of

the given B-reps., the resolution level n. The

computational complexity is also proportional to

number N of patches. However, in case that parameter

N is not large, the complexity is proportional to IN
because the length L is proportional to IN if the

area S is constant.

57

~ Experimental results

In this section, we report an actual calculating

time of our conversion algorithm and a node number in

the resultant octree for the area S, number N of

patches of the B-reps., and resolution level n of the

octree. We should note that the area is represented

as the unit pixel that is the projection of a cube at

the finest resolution level onto one plane D(i).

The conversion algorithm is implemented in C

language on the VAX 11/750 (without a floating point

accelerator) under Unix. An approximated sphere by

100 or 400 pat~hes is used for the investigation.

A sphere is said to be 1unit 1 if the diameter of

it is a side length of the world space, and also a

sphere is said to be 1 1/8 unit' if the diameter of it

is a half times as long as the diameter of the 'unit'

sphere. The finest level n represents the resolution

such that a world space is divided by an.

Figures 16, 17 and 18 show that evaluated

equations explained in the previous section are

reasonable.

58

1
5

0
 I

-

110
0 l

- ~
l

V
I

\D

5
0

- ...
s

:1
1

a
u

n
it

cu

.c

N

=
1

0
0

E

:J

c IV

"'D

0 z

)
J

cu C
)

tU
 ... 0 -f,/)

5
6

7
8

R
e

s
o

lu
ti

o
n

n.

(a
>

• 0 -)(10
 1

5

S
:

1
/8

 U
n

it

N
=

1
0

0

5
6

7
8

R
e

s
o

lu
ti

o
n

n

(b
)

F
ig

.1
6

.
(a

)
C

o
m

p
u

ta
ti

o
n

al

co
m

p
le

x
it

y

o
f

th
e

a
lg

o
ri

th
m

(b

)
N

um
be

r
o

f
n

o
d

es

in

th
e

o
c
tr

e
e

a
s

a
fu

n
c
ti

o
n

o

f
th

e

re
so

lu
ti

o
n

(n

).

1
5

0

,, c 0 CJ
 ., "'

1
0

0

" E t-
I

°'
5

0
 ~

0

~
 0

I
7

n
=

7

-
.....

n

=

.. ><

N
 =

1
0

0

.,
N

=
1

0
0

~
 E

1
0

:l

c ., 't
l 0 z

/
I

" C
)

5

..
./

-I

ca .. 0 .. (/
)

1
0

2

0

3
0

x

1
0

5

1
0

2

0

A
re

a

<
U

n
it

 p
ix

e
l

l

<a
>

A
re

a
 (

U
n

it
 p

ix
e

l>

(b
l

F
ig

.
1

7
.

(a
)

C
o

m
p

u
ta

ti
o

n
a
l

c
o

m
p

le
x

it
y

o

f
th

e

a
lg

o
ri

th
m

(b

)
N

um
be

r
o

f
n

o
d

e
s

in

th
e

o
c
tr

e
e

a
s

a
fu

n
c
ti

o
n

o

f
th

e

a
re

a

(S
).

3
0

x

1
0

5

"C
 c

20
0

0 u " "' ~ " E ·- I-
10

0

°'

~
 0)
(

~
10

.c

 E

:::>
 c " ,, 0

n
=

8

n
=

8

z
5

S
:

1
/8

 U
n

it

10
0

s:
 1

1
8

U
n

it

2
0

0

3
0

0

P
a

tc
h

n

u
m

b
e

r
N

(
a

)

4
0

0

" D> ca .. 0 ... "'
1

0
0

2

0
0

3

0
0

P
a

tc
h

n

u
m

b
e

r
N

(b

)

F
ig

 .1
8

.
(a

)
C

o
m

p
u

ta
ti

o
n

a
l

c
o

m
p

le
x

it
y

o

f
th

e

a
lg

o
ri

th
m

(b

)
N

um
be

r
o

f
n

o
d

e
s

in

th
e

o
c
tr

e
e

a
s

a
fu

n
c
ti

o
n

o

f
th

e

p
a
tc

h

n
u

m
b

er

(N
).

4
0

0

3.5 Conclusion

Using the one-pass approach, a fast conversion

algorithm from the B-reps. to the DF-representa ti on

is proposed. Since selection of a region (cube) in

which its corresponding octree (DF-representation)

should be built is adaptable, the conversion algorithm

can be easily applied to construction (See in Chapter

4) of a description of an real object by projecting

cones (B-reps.) of multiple two-dimensional views in

the field of computer vision and to interference

detection (See in Chapter 5) in the field of

robotics.

62

CHAPTER 4
CONSTRUCTION OF THE OCTREE

APPROXIMATING

A THREE-DIMENSIONAL OBJECT

BY USING MULTIPLE VIEWS

63

.4..!..1 Introduction

Reconstruction of a solid model that approximates

a three-dimensional object by using multiple

two-dimensional images has been investigated in many

fields (Computer Vision, Computer Graphics, and

Robotics). In relation to this, many important

technical methods (Stereo vision, Shape from shading,

etc.) have been proposed. However, some methods can

not build an accurate solid model for the object if

degraded images are only obtained, and others require

enormous calculation time.

To solve those problems, we propose a new algorithm

based upon a so-called volume intersection method

[55], which can be explained in the following way:

First, a cone that is defined by both a viewpoint and

a polygon approximating the contour of an image of

the object from the viewpoint is built. The cone

contains the object and is represented by a

polyhedron. Second, by constructing a common region

of the cones for multiple views, we obtain an

approximating region for the object. Since contours

in an image are the clearest information within the

whole image, the image degradation does not affect

the approximating precision of the octree for the

object.

64

To make this method run faster, we should first

construct the approximating polygon effectively.

Fortunately, this problem has been already

investigated in detail and fast algorithms have been

proposed in the literature [57]. Hence, we assume in

this chapter that a set of polygons for all views is

already obtained. Next, we should construct the

common region effectively. In case that a

polyhedron, which is the most general representation

for a solid object, is adopted as the solid model

[59], the model generated in the middle of the

construction is represented by a polyhedron with k*N

patches (k: number of views that have been already

used, N: average number of segments of the

approximating polygon). Then, the computational

complexity of the construction is proportional to at

least n2, or N2 because the intersection between one

cone and the model generated should be checked in all

views successively. Instead of this, we adopt the

octree representation as a solid model. The octree

represents a three-dimensional world space by

successive refinements that increase the resolution

of the object's details and keeps regions in the

world space as a set of nodes with a hierarchical

description in positioning. The computational

complexity of the construction is proportional to at

65

most n, or N, since the hierarchical description can

be effectively used in checking the intersection

between the cone and the model (See in Section 4.5).

Some algorithms have been proposed to construct

the octree from two dimensional images on the basis

of the volume intersection method. Kim and Aggarwal

[60] proposed a fast algorithm. However, there are

two difficulties in their algorithm: 1) a coordinate

system for the octree depends on the posture of the

object. That is, the system of the world coordinate

can not be flexibly selected, and 2) although an

actual contour photographed with a camera should be

defined by the perspective projection, their

algorithm deals with the given contour under the

parallel projection. Moreover, the number of views

used in the algorithm is limited to three. As a

result, the octree that approximates the object with

arbitrary accuracy can not be built.

In (61),(62], those difficulties have been solved.

Namely, 1) the octree can be constructed in an

arbitrary coordinate system, 2) since the cone is

defined in the perspective transformation and the

number of views is not limited at all, the resultant

octree can approximate the object with arbitrary

precision. However, their algorithm is slow. In

their paper, the approach that enrolls patch

66

information concerning a cone in a set of regions in

the octree is managed on an image plane. To put it

concretely, intersection between a cone and a region

is judged by that between the approxirna ting polygon

for the cone on the image plane and the hexagon that

is the projection of the region onto it.

Construction of the projection is need much time

because of

intersection

requires a

transformation. The perspective

checking on the image plane also

[56)-[58]. Besides, considerable work

since the projection becomes an unequal hexagon, the

algorithm can not smoothly as sign patch inf orma ti on

of cone in a region to eight subregions in division

of the region, which is the basic process of the

algorithm. Thus, the number of patches of cones in

one region does not decrease in progression of the

algorithm and therefore the calculation cost of

data-processing in it does not decrease in the

progression.

In addition, the algorithm builds an octree for a

cone and next does a final octree by means of cutting

successively the initial octree by other cones.

Consequently, it is inefficient in a sense that they

must deal with irrelevant regions which do not lie in

a neighborhood of the object.

The algorithm proposed in this chapter is capable

67

of constructing the same octree faster than Hong 1 s

algorithm. The reason is that an essential part of

the algorithm is not processed in an image plane but

is processed directly in the three-dimensional world

space. Though this approach is suggested in Section

2 of [61] , its thorough investigation did not be

carried out. Major reason of this abandonment is

considered that a conversion algorithm from arbitrary

part of the cone to the octree did not yet be

pre~ented. However, this problem is solved by the

conversion algorithm in Chapter 3. Using this

approach, the perspective transformation is not

necessary and a fast intersection checking under the

three-dimensional space is also attained. Moreover,

this algorithm can smoothly assign patch information

of cone in one region to eigbt subregions and

therefore the calculation cost of data-processing in

it also decreases in the progression of the algorithm

(See in Section 4.4 and 4.5).
Finally, since our algorithm deals with all cones

simultaneously using the hierarchical description of

the octree in positioning, it need not deal with

regions which do not lie in a neighborhood of the

object. In other words, it manages only regions at

the present resolution level of the octree, which

intersect the object.

68

'/\e'W po\nt

Fig.19· Volume intersection method·

69

lt..!1. Volume intersection method

When a three-dimensional object is seen from one

view, the object always exist within a cone that is

determined by an approximating polygon of an image of

the object and the center of the lens. Thus, a

common region of cones for multiple views represents

an approximating solid model for the original object

as shown in Fig.19.

rirst, certain advantages of this method, which is

compared with other methods (Stereo vision, CT

scanner, and Shape from shading), are described as

follows:

1) The algorithm can run fast because approximation

of a contour is simpler than solution of a matching

problem in Stereo vision [23]-[25].

2) Since a contour yields the clearest information

in an image, image degradation does not affect the

precision of approximation of the octree for the

object., in comparison with the Shape from shading

[26].

The disadvantage of the method is that a

non-convex part of the three-dimensional object,

which does not appear in any two-dimensional image in

principle, can not be constructed in the model.

70

Fig. 20. Cone model·

71

Patch
information

0

1

2

3

4

5

v5
vo
v1
v2
v3

v4

-VQ
-Vl
-V2
-VJ
-V4
-V5

Viewpoint

Non-convex

polygon

(NP)

Image plane (IP)

(a)

(b)

72

Non-convex
polyhedron

View
point

Fig.21.

----------+ Ip

(c)

Virtual
surface

(d)
Convex partition of the cone.
non-convex polygon, (b) view cone,
cones for the view cone.

73

Convex

polyhedron.

View
point

(a) Partition of
(c) and (d) convex

hl Definition

A cone, which is defined by an approximating·

polygon of an image of a three-dimensional object and

the center of the lens (viewpoint), is an infinite

cone whose patch P is represented by two vectors. A

vector is defined by one vertex of the polygon and

the viewpoint. It has an end point which is

coincident with the viewpoint. The direction of the

vector is defined from the viewpoint to one vertex.

Every two vectors representing a patch are arranged

in clockwise order for a normal vector of the plane

that includes the patch (See Fig.20).

By these definitions, this cone can be considered

to be the B-reps. defined in Chapter 2. Therefore,

the algorithm in Chapter 3 is als.o applicable to a

part (Cone making procedure) of the algorithm in this

chapter if the cone is of convex shape. Then with

the help of a partition of a non-convex approximating

polygon into some convex polygons, the non-convex

cone is parted

Fig.21. The

partition is

into some convex cones as shown in

computational complexity of this

O(N1+N23) [56]-[58] (N1: number of

vertexes in the approximating polygon, N2: number of

obtuse angles in the polygon).

74

~ Algorithm for constructing the octree

A basic_process of this algorithm consists of the

following two substeps.

4.4.1 Classification of eight subcubes

Using three procedures (Cone making, Cone

combining, Cone regulating procedures) successively,

this substep classifies eight subcubes Ci (subregions)

of an input cube C (region) into being of 'inside',

1 outside', or 'intersection 1 state for the

three-dimensional object. The produced states of

eight subcubes are kept as a classification. Here,

the first input cube is the world space.

1) Cone making procedure: The procedure makes

the classification for a convex cone that is a

component of a cone for one view. One of the

following two procedures (PLURAL, or SINGLE procedure)

takes part in the above classification. If the

number of patches of the convex cone

cube equals one, then the SINGLE

selected.

selected.

Otherwise, the PLURAL

75

in the input

procedure is

procedure is

PLURAL procedure: This procedure deals with an

input cube C that intersects some patches of the

convex cone. By considering the cone as the B-reps.

defined in Chapter 2, the way proposed in the PLURAL

procedure in Chapter 3 is useful in processing this

procedure.

SINGLE procedure: This procedure deals with an

input cube C that intersects only a patch P of the

convex cone. Since the cone is considered to be the

B-reps. defined in Chapter 2, the SINGLE procedure

in Chapter 3 can be adopted as this procedure.

Using one of these procedures, eight subcubes is

classified into begin of 'inside', 'outside', and

'intersection' state for the convex cone.

2) Cone combining procedure: This

makes the classification for a cone,

cone, which is defined for one view

procedure

named a view

and is not

convex. The view cone consists of some convex cones

(See in Section 4.3). A subcube is 'outside' for the

view cone if it is outside all the convex cones. A

subcube is 1 inside 1 for the view cone if it is inside

one convex cone. ~he other subcubes are 'intersection'

for it. Thus, applying the rules in Table 2 to the

classification for each convex cone successively, we

76

"1

"1

T
ab

le

2
.

C
on

e
co

m
b

in
in

g

ru

le
s
.

P
re

v
io

u
s

s
ta

te

C
on

e
co

m
b

in
in

g

ru

le
s

o
u

ts
id

e

in
te

rs
e
c
ti

o
n

in

si
d

e

o
u

ts
id

e

o
u

ts
id

e

in
te

rs
e
c
ti

o
n

in

si
d

e

P
re

se
n

t
in

te
rs

e
c
ti

o
n

in

te
rs

e
c
ti

o
n

in

te
rs

e
c
ti

o
n

in

si
d

e

s
ta

te

in
si

d
e

in
si

d
e

in
si

d
e

in
si

d
e

T
ab

le

3
.

C
on

e
re

g
u

la
ti

n
g

ru

le
s
.

P
re

v
io

u
s

s
ta

te

C
on

e
re

g
u

la
ti

n
g

ru

le
s

o
u

ts
id

e

in
te

rs
e
c
ti

o
n

in

si
d

e

o
u

ts
id

e

o
u

ts
id

e

o
u

ts
id

e

o
u

ts
id

e

P
re

se
n

t
in

te
rs

e
c
ti

o
n

o

u
ts

id
e

in
te

rs
e
c
ti

o
n

in

te
rs

e
c
ti

o
n

s
ta

te

in
si

d
e

o
u

ts
id

e

in
te

rs
e
c
ti

o
n

in

si
d

e

obtain the classification for the view cone. Then,

the algorithm is capable of maintaining calculative

efficiency by only overlooking the virtual patches

generated by the convex partition. Namely, a

1 intersection 1 subcube that intersects only some of

the virtual patches is converted to an 'inside' one

there and then.

3) Cone regulating procedure: This procedure

makes the classification for a common region of all

the view cones (an approximating region for the

three-dimensional object). A subcube is 'outside' if

it is outside some view cone. A subcube is 'inside'

if it is inside all the view cones. The other

subcubes are 'intersection•. Thus, applying the

rules in Table 3 to the classific~tion -for each view

cone successively, we obtain the classification for

the common region.

4.4.2 Making the DF-representation

Using the classification for the common region

obtained by the above substep, this substep makes the

DF-representation for eight subcubes. The substep

assigns firstly the symbol 1 (1 to the input cube C as

the DF-representation because the basic_process deals

78

with a cube corresponding to a mix node. Then, one

of the following three processes deals with a subcube

in the order of octant (See Fig.2).

1) The subcube is 'inside': This process assigns the

symbol 1 1 1 to it as the DF-representa ti on of the

subcube.

2) The subcube is 1 outside 1 : This process assigns

the symbol '0 1 to it as the DF-representation of the

subcube.

3) The subcube is 1 intersection 1 : It corresponds to

a region at the present resolution level, which

intersects the common region. Then, a geometric

structure for the object within this subcube must be

examined further and be expressed by the

DF-representation. Thus in this process, the

basic_yrocess deals with this subcube as an input

cube anew. We should note that only • the patch

information of cones, which the above substep assigns

to the subcube, is turned over to the new processing.

Due to this recursive processing, the algorithm is

accomplished by the depth-first search on the octree

and therefore its DF-representation is naturally

made. Exceptionally, if the level of the ·subcube

that is presently managed by this process agrees with

the finest resolution level, this process assigns the

symbol 1 0 1 to the subcube as the DF-representa ti on

79

instead of using the basic_process.

When eight subcubes have been dealt with by the

above processes, this substep assigns lastly the

symbol I) I to the input subcube c as the

DF-representation and then the substep and the

present basic_process are completed.

Since the algorithm deals with only regions

('intersection' cubes) at the present resolution

level, which are neither inside nor outside the

comµion region, the processing of irrelevant regions

at the level, which do not intersect the object, can

be prevented in the algorithm.

80

~ Computational complexity of the algorithm

Computational complexities of several algorithms

for constructing a common region that approximates an

object are evaluated in regard to parameters N

(average number of segments of the approximating

polygon), L (length of the polygon), n (number of

views), or r (finest resolution level of the octree).

The evaluation is neglected in the literature on

previous research works.

4.5.1 Comparison among expressions of the model

a) Polyhedron model: The model generated in the

middle of constructing the common region is represented

by the polyhedron with k*N patches (k: number of

views that have been already used). For constructing

the common region with a polyhedron, the intersection

between one view cone (polyhedron) with N patches and

the model generated must be checked in all viewpoints

successively. Hence, the computational complexity

for this construction is obtained by

n-1

r Co*kN * N = Co*(n-1)(n-2)*N2/2 (Co: constant).

k=O

The equation indicates that the complexity is

81

proportional to n2 or N2.

b) Octree model: Due to the hierarchical structure

in positioning of the octree, the algorithm for

constructing the region with the octree can deal with

only cubes that intersect the cone exactly. In other

words, it deals with a set Sc of cubes that intersect

the contour in a section of the object. Here, we

should note that this contour in the world $pace

corresponds to the previous contour in the image

plane. The number of the cubes is denoted by Sn =

C*2j1/2nmax (Appendix D) (nmax=log2 {(an edge length

of the world space)/(an edge length of cube at the

finest resolution level: unit length)}, j: level of

the cube in the octree).

When we assume that calculation cost of a

data-processing in one cube is uniformly proportional

to N, which is "pessimistic" assumption· for the

complexity, the complexity for construction of the

common region with the octree is given by

n-1

L C1* NSn = C1 * nNSn• (C1: co~stant)
k=O

The equation also indicates that the complexity is

proportional to n or N.

82

If an intersection between two patches happens in

the former, then the algorithm must calculate lines,

or a point where two patches intersect each other and

arrange them in company with adjacent connection of

the patches. On the other hand, if an intersection

between a cube and a patch happens in the latter,

then the algorithm only registers the patch number to

the cube. Thus in general, the cost C1 is smaller

than the cost Co. Moreover, the better the

approximating precision of the common region for the

object, the larger the parameters n and N. To obtain

the region that approximates the object exactly, the

octree model is advantageous in point of the

calculation time.

4.5.2 Comparison among methods for checking the

intersection between a cube and a cone

In general, the computational complexity of

algorithms for constructing the common region with

the octree can be evaluated as the summation of [unit

processing cost] * [calculation cost for a

data-processing in one cube] * [number of cubes

intersecting the cone] for each view and each level

of the octree.

83

a) The check in the image plane [61], [62): A

perspective projection of a cube onto the image plane

is represented by an unequal hexagon. Then, the

intersection between one cube and a view cone

corresponds to the intersection between the hexagon

and the approximating polygon in the image plane, and

therefore the calculation cost of data-processing in

one cube is assumed to be N+6 [56]-[58], which is

"optimistic" assumption for the computational

complexity. (This cost is assumed to be 6N in

"pessimistic" assumption.) Thus in this case, the

computational complexity for construction of the

common region with the octree is evaluated by

n r

Co L L Sn(N+6)

i=1 j =1

(Co': unit processing cost)

The unit processing cost is defined as che~king the

intersection between two segments.

b) The check within the three-dimensional space:
..

In this case, it is possible to assign patches of a

view cone to a set Sc of cubes ·.easily. Then, our

algorithm assigns N patches of the cone to the set of

the Sn cubes at each level of the octree, and

therefore the calculation cost of da ta-proc.essing in

84

one cube is evaluated to be 1+N/Sn, which is

estimated as the average number of patches in one

cube. Accordingly, the computational complexity for

construction of the region is also evaluated by

n r-1

C1' r r Sn(1+N/Sn)

i=1 j=O

(C1 1 : unit processing cost)

In general, since the finest resolution level is

fixed at not a little value, the unit processing cost

is defined as checking the intersection between one

cube and a plane and thereby is equivalent to the

calculation cost of the SINGLE procedure. Then, this

cost C1' is nearly equal to the cost Co'·

In addition, the former algorithm deal with cubes

until the finest resolution level r, on the contrary,

the latter one deal with cubes until r-1 level

because of the assignment of patches.

Now, we make a comparison between the two cases.

1) The perspective projection of the cube is

necessary in the former, on the other hand, it is

unnecessary in the latter. The perspective projection

of all cubes needs much time.

2) In division of a cube into eight subcubes, the

eight subcubes whose shape are the same do not

overlap at all and the position of each subcube is

85

recursively calculated. Then the latter algorithm

can assign the patch information into the subcubes

smoothly. In contrast to this, since eight hexagons

that are produced from one hexagon in the for mer

algorithm overlap one another and are not of the same

shape, it is difficult to assign segments of the

approximating polygon to the unequal hexagons, which

is not considered in [61] • As a result, the latter

is faster than the former in a sense that the

calculation cost of data-processing in one cube

decreases in progression of the algorithm.

Consequently, the check within the three-dimensional

space is advantageous in point of the calculation

time.

86

0
0

-.

...
]

x

z <a
>

G
e

o
d

e
s

ic

d
o

m
e

F
ig

.2
2

.
G

e
o

d
e
si

c

do
m

e
{

a
)

an
d

v

ie
w

p

o
in

ts

{
b

).
 _ .

k:
V

ie
w

 p
o

in
t

• Cb
>

~ Experimental results

A sphere (R: radius; O: the center point), named

geodesic dome, and all viewpoints on the geodesic

dome are defined. Both a given object and the world

space are placed in such a way that the center of

gravity G for them are coincident with the point 0

(See Fig. 22). The length of an edge of the world

space is 1024 times as long as the unit length, i.e.,

an edge length of cube at the finest resolution

level. In the following A and C paragraphs, some

spheres are adopted as a given object in order to

investigate actual tendencies of the algorithm.

4.6.1 Evaluation for properties of the algorithm

To ascertain the evaluation of the computational

complexity of the algorithm in Section · 4.5, we

investigate the calculation time of the algorithm for

some parameters n, N, r, or L as shown in Fig.23.

Here, the radius of the geodesic dome is defined by
..

550, i.e., R=550, and the twenty-six viewpoints on

the geodesic dome are prepared.

88

N
=

2
3

;;

2

0
 I

r
:S

R

=
5

5
0

.,

L
=

4
0

0

E
 - m c ·- -ca - :1

1

0

0
0

~

~

ca u

5
1

0

1
5

2

0

2
5

V
ie

w
 n

u
m

b
e

r
n

ta
>

~
40~

cu E

·- ... m

c ·- -2

0

ca

:J

u - CV

CJ

n
=

2
6

r=

B

L
=

40
0

R
=

55
0

1
0

2

0

3
0

4

0

5
0

S
e

g
m

e
n

t
n

u
m

b
e

r
N

(
b

)

4
0

I-

-
I

en
 ., E
 - m c

'-
0

 ·
-

0
- ca

2

0

:I

u as u

I

6
0

 I

n
 =

2
6

n
 =

2
6

N

=
4

6

N
=

2
3

L

 =
4

0
0

R

=
5

5
0

: s

or
r=

a

R
 =

1
0

6
E

~

4
0

C>

c ·-!

3
0

:l

u CV

(J

2
0

/
I

1
0

1
0

0

2
0

0

3
0

0

4

0
0

so

o
eo

o
1

0
0

ao

o·

P
o

ly
g

o
n

le

n
g

th

(u
n

it
 l

en
g

th
 >

5
6

7

R
e

s
o

lu
ti

o
n

r

F
ig

.2
3

.

(C
)

(d
)

C
a
lc

u
la

ti
n

g

ti
m

e

o
f

th
e

a
lg

o
ri

th
m

,
v

ie
w

n

u
m

b
er

n

(a
),

n

u
m

b
er

N

o

f
se

g
m

e
n

ts

fo
r

th
e

p
o

ly
g

o
n

(b

),

le
n

g
th

L

o

f
th

e

p
o

ly
g

o
n

(c

),

th
e

fi
n

e
s
t

re
s
o

lu
ti

o
n

le

v
e
l

r
o

f
th

e

o
c
tr

e
e

(d
).

8
9

(1850, 1160,30)
......;.

VP

[3 ,1460,1090]

VP

ca>
Vi~w (VP)
point [55o,400.1s30J

t

z

(b>
Fig.24. An parallelepiped (a) and its corresponding octree (b)•

91

4.6.2 Efficiency of the algorithm

We compare experimental results of our algorithm

with those of Hong's algorithm, which is similar to

our proposed algorithm in a sense that the cone is

defined as the perspective transformation and the

octree can be constructed in an arbitrary coordinate

syste~. It is shown that the calculation time of the

proposed algorithm is smaller than that of their

algorithm. The algorithm proposed in this chapter

needs only one hundred milli-second (Melcom 350-60:

3. ?MIPS) for constructing the octree (n=5) for the

parallelepiped [220,75,60] with three viewpoints

(R=1500) (See Fig.24). On the other hand, their

algorithm needs three minutes (Vax 11/780: 1.8MIPS)

to construct a similar octree, though it uses a

custom hardware being constructed to perform matrix

manipulations for the perspective projection.

4.6.3 Approximating precision of the octree for the

object

With regard to the parameter n or N, the ..
approximating precision of the octree Ov, which the

proposed algorithm constructs, for the octree Oo that

approximates directly the original object is

evaluated as shown in Fig. 25. We use the following

notations in this paragraph:

92

Vo: Volume of the octree Oo.

D: Volume of the difference between the octree Oo

and the octree Ov.

El: Approximating precision of the octree Ov for

the octree Oo (El= 100*D/Vo).

93

*
C

o
m

p
a
ra

ti
v

e

e
x

p
e
ri

m
e
n

ta
ti

o
n

w

it
h

K

im
's

m

et
h

o
d

[6

0
].

(n
=

J;

th
re

e

im
ag

e
p

la
n

e
s

w
h

ic
h

a
re

v

e
r
ti

c
a
l

to
g

e
th

e
r,

R

=
1

0
6

)

•

R
 =

 5
5

0

1
0

 I
-

\
L

 =
 4

0
0

I
4
r

~
R

=
5

5
0

r
=

8

L
 =

4
0

0

N
 =

 4
6

r=

8

-
I

\
n

=
2

6

w

- w

c:
3

0
c

·-
0

tO

en

·-
..,,.

·-

C
l)

~
5

·- u
2

...
41

Q

.
... 0.
.

..
1

5
1

0

15
·

2
P

2

5

1
0

2

0

3
0

4

0

5
0

V

ie
w

n

u
m

b
e

r
n

S

e
g

m
e

n
t

n
u

m
b

e
r

N

(a
>

(b
)

F
ig

.2
5

.
A

p
p

ro
x

im
a
ti

n
g

p

re
c
is

io
n

o

f
th

e

o
c
tr

e
e

fo
r

th
e

o
b

je
c
t,

v

ie
w

N

u
m

b
er

n

(a
),

n

u
m

b
er

N

 o
f

se
g

m
e
n

ts

fo
r

th
e

p
o

ly
g

o
n

(b

).

4.7 Discussions

In data processing for one view, the volume

intersection method approximates the model in only

the contour part of a section for the object. The

area of the part is smaller than that of the surface

for the object. To obtain the octree that

approximates the object with high precision, we

should prepare many pairs of a viewpoint and its

approximating polygon with high precision. This

indicates that the parameters n and N must be kept

large. Thus, to make the method run faster, the

processing for one view should be efficient. In

addition to this, we should pay attention to

selection for a position of a viewpoint such that

many shapes of the object can be received from one

image. That is, if the object is a polyhedron, we

must select a position of a viewpoint such that the

projection of a patch of the polyhedron onto one

image plane becomes a line. This problem must be

investigated further.

95

4.8 Conclusion

A fast algorithm that constructs an approximating

octree for a given object in an arbitrary coordinate

system is proposed. On the basis of· simple

pre-processing (convex partition of a polygon), the

algorithm is also useful in construction of an octree

model for an non-convex object. Moreover, the

computational complexity of the algorithm with

respect to n, N, r, or L are evaluated and analyzed.

Even if several real objects exist in one space,

this algorithm can construct the octree that keeps

all approximating regions of the objects. That is,

when there are some contours of these objects in an

image, the corresponding cones are managed by the

Cone combining procedure. Also, when there is a

contour that is represented by overlapping some

objects, the contour is considered to be a contour of

an object and is managed by the Cone making

procedure. Further, if an image of each object is

distinguished from one another in some image planes, ..
then the algorithm becomes run faster using this

distinction of the object.

96

CHAPTER 5

A NEW INTERFERENCE CHECK

ALGORITHM USING OCTREE

97

~ Introduction

Current researches on interference check are

divided generally into two categories; one [63]-[65]

is to search an intersection region occupied commonly

by a robot model and obstacles in an environment

model, and another [66]-[68] is to calculate the

minimum distance between them. In those researches,

components of the robot and obstacle are

approximately represented by some simple shaped solid

objects that are like a set of spheres and cylinders.

Then, since the number of components can be decreased

by simplifying the shape and each component can be

further described in terms of a simple shape

function, it is possible to reduce the computational

cost for searching the common region and calculating

the distance between two components.

However, those methods pass over possible intricate

movements for a complicated robot in a cluttered

environment because of excessive interference check

with rough approximation. To solve this problem, a .•
more faithful approximation for a cluttered

environment and a complicated robot is required,

which needs an enormous number of solid objects, and

hence those methods need large calculation time. The

reason is that the computational complexity of the

98

methods depends on the complexity of shape of the

robot and environment model.

To overcome this drawback, we point out that

selection of only parts of obstacles is desirable,

which lie around the robot model, and only

interference check for those parts is necessary. In

other words, the longer the distance between the

robot model and its nearest obstacle, the less the

calculation time of the algorithm. This property is

desirable in the sense that it makes the algorithm

run faster since actual interference between the

robot and the obstacles happens rarely and therefore

non-interference between them must be preferably

ascertained in robot teaching.

The desired property is obtained by using the

octree as a robot model and its environment model,

which is a hierarchical solid model in positioning.

In general, robot motion includes rotation when the

robot must move flexibly. However, it is hard to

represent the rota ti on for some object within the

octree [69],[70]. Moreover, to represent each

component of the robot model by the octree, much

memory space is required in computer (See in Chapter

3, [28],[52]). Hayward [71] adopted the octree as an

environment model. Furthermore, he suggested

adoption of the B-reps. as a robot model but did not

99

pursue it further, because the adoption is considered

to lead to a complex interference checking algorithm.

Then, Boyes' s idea [63] is used in his paper when

boundaries intersect. However, he did not give any

obvious and concrete way to check the boundaries

intersection of the robot model for the environment

model and to check exactly the interfere.

In view of these points, we adopt the B-reps,

which is not a hierarchical representation but

preserves the topological information of an object,

in representation of each component of a robot, and

the octree, which preserves the geographic information

in a world space, as an environment model. By

assigning each patch of B-reps. to a set of cubes of

the octree fastly, we show that this combination of

different solid models leads to a relatively simple

algorithm. From this reason, the proposed algorithm

can fulfil the exact and fast interference checking.

To show how computation time of the algorithm

change with the distance between the robot model and

its nearest obstacle within the environment model, an ..
illustrative model set is given, which consists of

both a robot model represented· by one component

approximating a sphere and an environment model that

includes a single parallelepiped. Finally, to show

how the algorithm work in real-time in even a

100

cluttered environment and a complicated robot, a

model set is devised, which consists of both a robot

model represented by twelve components and an

environment model including twenty-four polyhedra.

As a result of the use of this set, it is shown that

the execution time of interference check is around

250 ms.

101

5.2 Definitions

5.2.1 Environment Model

Octree, which is adopted as an environment model

in this chapter, is a solid model that hierarchically

represents a three dimensional space including

several obstacles for a given robot as shown in Fig.1

and Fig.32(a).

5.2.2 Robot Model

B-reps. is adopted as a representation of each

component of a robot in this chapter as shown in

Fig.3 and Fig.32(b).

102

a>
.Q
::::J
0

Q)
"'C .

Q) ·- ,.c
(/) ::s t.)

:::J rel

0
i::
ro

+:>
0

,.c
0
H c

0
i::
Q) ·- Q) ~

0 +:>
Q)

C1>
,.c

(/) i::
~ 0

C1>
•rt
+:> ro

c r-l
Q) - i:c:

.
'° N

•
b.O

•rt
~

C1>
-c ·-"' c -

103

J-
1

0 +:>
-

T
a
b

le

4.

R
e
la

ti
o

n

b
e
tw

e
e
n

c
o

lo
r

o
f

cu
b

e
in

th

e

o
c
tr

e
e

an
d

s
ta

te

o
f

th
e

cu
b

e
fo

r
th

e

ro
b

o
t

m
o

d
e
l.

S
ta

te

C
o

lo
r

in
s
id

e

in
te

rs
e
ti

o
n

o

u
ts

id
e

b
la

c
k

in

te
rf

e
re

in

te
rf

e
re

n

o
n

-i
n

te
rf

e
re

m

ix

in
te

rf
e
re

u

n
d

e
c
id

e
d

n
e
ss

n

o
n

-i
n

te
rf

e
re

w

h
it

e

n
o

n
-i

n
te

rf
e
re

n

o
n

-i
n

te
rf

e
re

n

o
n

-i
n

te
rf

e
re

~

5.3 Interference check algorithm

5.3.1 Judgment of interference and non-interference

In connection with the environment model, a cube

is classified into three color; 'black' (obstacles),

'white' (free space), and 'mix' (obstacle and free

space). On the other hand, in connection with the

robot model, the cube is also classified into three

states; 'outside' (outside the robot model), 'inside'

(inside the robot model) and 'intersection'

(intersecting the robot model) as shown in Fig.26.

With the aid of these classifications, the cube is

again classified into three states 'interference',

'non-interference 1 , or 1 undecidedness 1 as shown in

Table 4. The 'interference' state indicates that the

robot model interferes some obstacle in the

environment model within the cube. The

1 non-interference 1 state indicates that the robot

model does not interfere any obstacle within it. The

1undecidedness 1 state does that interference or

non-interference between them can not be determined

within it. For example, 1 row 1 column in Table 4

indicates that the robot model interferes obstacles,

for a black cube that is a volume of obstacles is

inside the robot model.

105

Since a cube having the state 1 undecidedness 1 can

not be determined to be in 'interference' or in

1 non-interference 1 at the present resolution level i

the cube is divided into eight subcubes and then the

state of each subcube is also classified into one of

the three states. Using recursively this process

that is the basic process in the interference check

algorithm, only cubes (regions) that intersect both

the robot model and obstacles are checked at each

resolution level. Consequently, the algorithm deals

with only parts of obstacles which the robot model

approaches.

Finally, the initial 1undecidedness 1 cube in the

interference check algorithm is the cube (region)

corresponding to the root node of the octree.

5.3.2 Classification of 'intersection' cube into

three scenes

The basic process described above deals with a

1 undecidedness 1 cube having the color 1 mix 1 and the

state 'intersection•. Here, color of a cube is

originally defined in the octree~. On the contrary, a

state of it is changed in accordance with motion of

the robot. Then, it is necessary to classify

efficiently the state into 1 outside 1 , 1 inside 1 , or

106

107

~
Q)
c
Q)
CJ

en

N
Q)
c
Q)

u
en

,..
Q)
c
G>
0

CJ)

.
Q)

..0
::.:s
0

-s::
0

·r-1
~
0
Q)

Ol
J-4
Q)

~
s::

•r-1 -
l'H
0

Ol
Q)
p..
~
~

Q)
Q)

J-4
~
E-i

.
C"--
C\l .
bO

•r-1
""'4

Check 1

(b)

Check2

(c)

Check 3

(a) Scene 1
(b) Scene 2
(c) Scene 3

(a)

(b)

{c)

Fig.28. Process of 1 undecidedness 1 cube in the algorithm.

108

'intersection'.

To make this classification run faster, an

'intersection' cube is further classified into three

scenes: Scene 1 .2, and 3 (Fig.27), and in

accordance with the scene one of three procedures

(Procedure 1, 2 and 3) is selected for fulfilling the

basic process.

Scene 1 : The 'intersection' cube encloses a

component of the robot model completely.

The procedure CHECK1 deals with this cube.

Scene 2 The cube intersects some patches of· the

component. The procedure CHECK2 deals

with it.

Scene 3 The cube intersects only one patch of the

component. The procedure. CHECK3 deals

with it.

Since size of some 'intersection' cube is

decreased with increasing the resolution level of the

octree in progression of the algorithm, the type of

the 'intersection' cube changes from Scene 1 to Scene

3. In accordance with a block diagram as shown in

Fig.28, these three procedures properly dispose of

1 undecidedness 1 cubes in the interference

algorithm.

109

check

; I
i I
I
I ,, I
~ ,,
.r=---4 ,

,, I I

1

I
I

I I
---+---,.&, _

I _,,,." I
---..,-~ f­

,, l I

Fig.29. CHECK1 pro~edure.

110

5.3.3 Three CHECK procedures

In this paragraph, the three CHECK procedures

composing of the interference check algorithm are

explained in detail.

1) Procedure CHECKl: This procedure deals with

an 'intersection' cube enclosing a component of the

robot model (See Scene 1).

The method proposed in the MESH procedure in

Chapter 3 is used for processing in this procedure

(See Fig.29). Then, using this method for the

component, some subcubes specified as the

'intersection' subcube and the others specified as

the 1 outside' subcube are produced. Therefore, the

eight subcubes can be classified into .•interference',

'non-interference' or 'undecidedness' subcube with

the aid of the color of eight subcubes in connection

with the environment model (octree).

If the number of the 'intersection' subcube is

more than one, the procedure CHECK2 deals with

1 undecidedness' subcubes because they correspond to

the 1 intersection' cube of Scene 2. If it is one,

the procedure CHECK1 deals with the 'undecidedness'

subcube again because it corresponds to the

'intersection' cube of Scene 1.

111

2) Procedure CHECK2: This procedure deals with

an 'intersection' cube intersecting some patches of a

component of the robot model. By considering the

component as the B-reps. defined in Chapter 2, the

PLURAL procedure in Chapter 3 classifies the eight

subcubes of the cube into 'inside', 'outside' or

'intersection' subcube (Fig.?). Therefore, the

subcubes are also classified into 'interference',

'non-interference 1 or 'undecidedness 1 • Finally, the

'undecidedness 1 subcube that corresponds to Scene J

is 'processed by the procedure CHECKJ, and the subcube

corresponds to Scene 2 is processed by the procedure

CHECK2.

3) Procedure CHECK3: This procedure deals with

an 'intersection 1 cube that intersects only a patch

of a component of the robot model (Scene J). By

considering the component as the B-reps. defined in

Chapter 2, the SINGLE procedure in Chapter 3 is used

for processing .this procedure and eight subcubes of

the cube can be easily determined into 1 outside' ,
..

'inside' or 'intersection' subcube (Fig .1 5). Then,

the eight subcubes are naturally classified into

'interference', 'non-interference' or 'undecidedness'

with the aid of the color of eight subcubes.

Finally, the 'undecidedness' subcubes are processed

112

by the procedure CHECK3.

113

~ Computational complexity of the algorithm

To evaluate the computational complexity of the

algorithm, it is necessary to know the number of

cubes which intersect the robot model at all levels

of the octree. The number N· 1 of cubes that the

algorithm deals with at some level i can be evaluated

by the number N1 i-1 of mix cubes at the level i-1,

which intersect the robot model. That is, the number

Ni .is defined by 8>."N'i-1• Then, it is shown that a

number N'i at the level i is given as surface area Si

on the robot model within mix cubes (regions)

corresponding to the level i.

First, each patch P of the robot model is
-+-+

projected onto the plane maximizing li•nl (XY plane
...... ..

[i= (0' 0' 1)] ' YZ plane [i= (1 '0' 0)] ' ...
[i= (0' 1 '0)]) • The projecting area S 1 p

as the area Sp of the patch P; The ... ~
defined by Sp 1 =Sp*cos8 (cos8 = li•nl

ZX plane

is evaluated

area S 1 p is
... -+

I Ii I* In I
constant). Thus, the area Si' of the projection for

the area Si is obtained by Si'=C 1:si (IJ/JsC 1 s1, C':

constant). The area of projection (BLOCK) for a cube

at some level i is defined by SBi (=4nmax-i). As a

result, a number of BLOCK regions intersecting the

area S 1 i is represented by S' i/SBi. Furthermore, a

maximum number of cubes that intersect a plane on the

114

BLOCK region is three (Appendix C).

Accordingly, the total number of cubes which are

managed by the algorithm can be expressed as

Ni+1 = 8 * N'i

~ 8 * 3(C'*Si/SBi)

= C * 4i * Si/4nmax (C: constant).

nmax = log2[(the edge length of the world space)/

(the edge length of a cube at the finest

resolution level)]

n n-1

T r Ni ~ c I 4i J. si/4nmax. = ..,..

i=l i=O

Consequently, several properties that are

concerned with the computational complexity of this

algorithm are as follows:

(1) In general, the area Si is increased by letting a

robot approach obstacles. The complexity depends on

the area Si and increases with decreasing the

distance between the robot and its nearest obstacle.

(2) Since the algorithm can deal with only a surface

area Si on the robot model, which is within cubes

(regions) that intersect both the robot model and the

obstacles, a change in total calculation time is

relatively little even if the resolution level of the

115

environment model is increased.

116

5.5 Experimental results

To show how calculation time of the algorithm

change with the distance between a robot model and

its nearest obstacle in the environment model, we

present firstly an illustrative model set (Experiment

A). This consists of an environment model that

includes an obstacle representing a parallelepiped

and a robot model with a B-reps. approximating a

sphere. Secondly, to show how the algorithm work in

real-time in even a cluttered environment and a

complicated robot, we present a model set (Experiment

B). This consists of an environment model that

includes twenty-four polyhedra and a robot model with

components of twelve polyhedra.

From definition of the octree, the edge length of

the world space is 2n times as long as that of the

finest resolution cubes. In this example, the edge

length of finest resolution cube at the level n=7 is

about 2.3 cm (300cm/27) when the length of edge for

the world space is 3m.

The proposed algorithm is implemented in C

language on the Melcom 350-60 (3.?MIPS, 8MB) under

Unix.

117

118

-

+-'

~400 :::s
0 -ro300 u

200

100

L.: n= 8

O:n: 7

D=n=6

0 100 200
Distance (Unit length)

Fig.J1. Calculation time of the algorithm.

119

5.5.1 Experiment A

a) Environment Model: This model is the octree

that represents the world space [0-1024, 0-1024,

0-1024] including a parallelepiped [511-711 , 0-512,

0-512] at the resolution level n=7 (See Fig.30(a)).

b) Robot Model: This model is a B-reps. with

one hundred patches, which approximates a sphere

whose radius is fifty (See Fig.30(b)).

Figure 31 shows a transition in calculation time

when the robot model approaches the parallelepiped in

the environment model. It is seen from Fig. 31 that

the properties of the algorithm derived in Section

5.4 are reasonable.

5.5.2 Experiment B

a) Environment Model: This model with the octree

at the resolution level n=7 includes twenty-four

polyhedra having one hundred thirty-eight patches

(See Fig.32(a)).

b) Robot Model: This model represents a manipulator

and is composed of twelve components that are a set

of polyhedra. (See Fig.32(b)).

The calculation time of the algorithm is 258 ms in

the experiment of Fig. 33. As a result, it is shown

that this algorithm is still fast in a ·cluttered

120

r1

.......... Q)

.!l
'd
0

-...... s

-+"
i::
Q)

s
i::
0
F-t

•rl
:>
i::

r:.::I

ro__,.

• r1
i:q Q)

'd
-+" 0
i:: s
Q) -+"
s 0

•rl .n
F-t 0
Q) p::!
0..
>< ,,-....

r:.::I .n
....__,.

C\l
CV'\

.......... bD

cu •rl
~_

121

environment and a complicated robot.

1- ,
• • '

Fig.JJ. Manipulator in the experiment B.

122

5.6 Conclusion

We have proposed an interference check algorithm

which does not depend on the complexity of shape of

the robot and environment but on the distance between

the robot and its nearest obstacle in the

environment. If the number of patches for the

obstacles (or the number of obstacles) is N and the

number of patches (or objects) for the robot is M,

the complexity of most conventional algorithms is

O(NM). On the other hand, the proposed algorithm can

run fast as shown in Fig.31. The efficiency of the

algorithm is attained by fast selection of only

regions that intersect both the robot model and

obstacles with the aid of the hierarchical structure

of the octree representation. Though the proposed

interference checking algorithm is not a dynamic one

but a static one, the algorithm seldom pass over an

actual interference because the algorithm can run

fast and hence is applied dynamically to the

interference check every time updating coordinates

table in the B-reps. that follows the movement of

the robot.

By restricting each component of the robot model to

be of convex shape, the basic process of the proposed

algorithm classifies eight subcubes of an

123

'intersection' cube simultaneously, whenever they are

inside, outside, or intersecting for the component

(See in Chapter 3). Hence, the algorithm can be

composed by a one-pass approach. In other words, it

follows naturally from this property that processing

in some cube (region) is independent of that in other

cubes (regions). Using this fact, the algorithm can

deal with a part of the component within some cube

flexibly and therefore it can be effectively applied

to this interference detection in the field of

robotics.

124

CHAPTER 6

DISCUSSION AND SUMMARY

125

In this dissertation, three basic octree algorithms

in relation to robotics and computer vision are

proposed. In addition, the computational complexities

of these algorithms are evaluated and reasonableness

of each evaluation is ascertained by several

experiments.

In the present work, the depth-first search on

the octree is adopted. By virtue of the inherent

characteristics of the algorithm that a processing in

some cube (region) is independent of that in other

cubes, the breath-first search and parallel processing

can be used in implementation of the algorithm, which

makes it run faster.

In Chapter 3 and 5, it should be noted that if a

component is not convex then it must be divided into

some convex components. This may induce artifically

virtual patches. Even in that case, the algorithm is

capable of maintenance of calculative efficiency by

only overlooking those virtual patches generated by

the division. Namely, an 1 inte~section 1 cube that

intersects only some of the virtual patches is

converted to the 'inside' one there and then.

In development of intelligent robots, it is a

major theme for a robot manipulator and a mobile

robot to avoid their obstacles in the whole space

126

automatically [72]-[83]. This theme is called

"mover's problem" or "path-planning problem".

Principal methods investigated in path-planning are

distinguished into the following two ways:

1) The data structure in which a path-planning

algorithm searches is a mere model representing real

shape of obstacles in the world space. For example,

in the potential method proposed by Khatib [79], the

structure is defined as simple shaped objects, which

are like a parallelepiped or a cube. In this case,

though the data structure is easily constructed and

modified, this method can not be applied to some

complicated robot or environment because the

potential function corresponding to a complex object

can not be defined.

2) The data structure is defined by an elaborate

representation for generating efficiently some robot

motions. In this case, shape of a robot and

obstacles and position of an obstacle can not be

modified flexibly because the structure depends on

the shape and position. Furthermore, for example,

the configuration approach proposed by Lozano-Perez

and Brooks [72]-[77] can not be applied to a

manipulator in accordance with increasing the number

127

of freedom of the manipulator because the storage of

the data structure (configulation space) becomes

large.

Consequently, we should point out the importance

of a problem what path-planning must be a compromise

between these two ways [84]-[86]. In this respect,

roughly speaking, the level of a white node of the

octree expresses the distance from the node to the

nearest obstacle and therefore it is possible to

derive the minimum distance between two models. As a

matter of fact, this derivation makes use of a fast

algorithm that calculates a minimum distance from

some point to a set of black nodes in the octree and

presents the black node deriving the distance. This

result can be applied to the potential based

pa th-planning for a complex robot and a cluttered

environment. Under this direction, we have been

exploring a new method for automatic path planning of

the robot manipulator.

In Chapter 2, several solid models are explained
·'

and properties of them are discussed in relation to

applicable research problems.

In Chapter 3, a fast and general conversion

algorithm from the B-reps. to the octree is proposed.

Summarizing and reviewing previous research works, we

128

show the possibility of converting any solid model

including the B-reps. to the octree.

In Chapter 4, a fast algorithm that reconstructs

shape of a real object in computer with the aid of

the octree is proposed. The computational complexity

of this algorithm is proportional to some parameters

concerning the precision of the approximating octree

for the object. From the point of view of the

computational complexity, this property of the

algorithm is better than that of similar algorithms

with the aid of the B-reps.

In Chapter 5, a new interference check algorithm

between the robot model and the environment model in

graphics simulator is explained. Due to the

hierarchical structure of the environment model, this

algorithm can run faster in a cluttered environment

model and a complicated robot model than any other

known algorithms.

129

APPENDIX A

EFFICIENT METHOD FOR CALCULATING FUNCTIONS

OF SEVEN VERTEXES

We give the proof of the equation for the vertex

in the group C when the value dg is negative. The

vector that is defined from the center point G to the

vertex is represented by
~

CI = h * (nx/ I nx I ' ny/ I ny I' nz/ I nz I) •
Also, the vector that is defined from the origin 0 of

the world coordinate system to the center point G is
-+ denoted by g. Thus, the vector that is defined from

the origin 0 to the vertex is defined by

~ = i + a1 = g + h * (nx/lnxl' ny/lnyl' nz/lnzl).

Hence,

d(S,C) = n • c - d
-+ -+ -+

=n• (g+c 1) d

= n . g + n • c' d

= dg

+ h * (nx, ny, nz)•(nx/lnxl, ny/lnyl, nz/lnzl)
~

= dg

+ h * (lnxl 2/lnxl + lnyl 2flnyl + lnzl 2/lnzl)

= dg + h * (lnxl + lnyl + lnzl).

Similarly, the equations for vertexes in the groups

A and B are also given by selecting each term of the

130

• vector c. Moreover, by changing positive signs of

vector • c into negative signs, the proof of all

equations when the value dg is positive is easily

given. 0

131

APPENDIX B

NUMBER OF BLOCK REGIONS INTERSECTING A PROJECTION

Le is an edge length of the BLOCK region.

(number of BLOCK regions which intersect some edge

[length li] of a projected region pr)

~ f(1 +tanp) ,~ licosp/L~ + 1

~ li * (cosp + sinp)/Lc + 2 = li * sin(p + n/4)/Lc +2

~ 12 * li/Lc + 2 (p : the smaller angle of two angles

that are constructed when the line including the edge

crosses the two axes on the projecting plane).

Therefore,

(number of BLOCK regions which intersect all edges

of a projecting region pr)

~ E (/2li/Lc + 2) = /2Lpr/Lc + 2a

pr (a is a number of edges) a

132

APPENDIX C

NUMBER OF CUBES INTERSECTING A PLANE

ON THE BLOCK REGION

Without loss of generality, we define a plane

equation

f = nx*x + ny*Y + nz*z - d, and two vertexes (xo,yo)

and (x1 ,y1) of the opposite position in the BLOCK

region (nz ~ nx, ny).

O = nx*xo + ny*Yo +nz*zo -d

zo = (d-nx*xo - ny*Yo)/nz

0 = nx*x1 + ny*Y1 +nz*z1 -d

z1 = (d-nx*x1 - ny*Y1)/nz

o ~ I z1 - zo I
=

~

~

0 ~

1 ~

=

D

I (xo - x1)*nx + (yo - Y1)*ny I I lnzl

(lxo - x1 l*lnxl + !Yo - Y1 l*lnyl) I lnzl

Le* (lnxl + lnyl)/lnzl·

I z1 - zo I I Le~ (lnxl + lnyl)/lnzl·

(average number of cubes intersecting a plane S)

I z1 - zo I I Le + 1 ~ (I nx I + I ny I) I I nz I +1 ~ 3

133

APPENDIX D

NUMBER OF CUBES INTERSECTING A POLYGON

UNDER THREE-DIMENSIONAL SPACE

A polygon within the world space and its length are

denoted by P and L, respectively. Some segments of

the polygon and their lengths are also denoted by Pi

and Li (i=1,-··,n), respectively. ·Without loss of

generality, the straight line m including the segment
(nx, nz) ' (nz::iny Pi is given by m = P1 + n*t (n = ny,

::inx); -+ vector the straight line, t: n: on one

parameter) •

First, we assume that the line m intersects a

cube with one vertex p1=(xo, YO, zo) and another

point P2=(x1, Y1, z1) and then the parameter tin the

point P2 is denoted by t1. An edge length of the

cube can be represented by Le (Le= 2nmax-j; j: level

of the cube in the octree). Then, the following

equations are obtained:

Le = I xo - x1 I = I nx I* I t1 I , I t1 I = Le I I nx I •
~

0 :;i lz1 - zol = lnzl*lt1 I = lnzl *Le I lnxl·

Here, the projection of the cub& onto XI-plane is

called BLOCK region. The number of cubes

intersecting the segment Pi, whose projections agree

with the BLOCK region, can be represented by

134

lz1-zol/Lc+1. As a result, maximum of this number is

two.

Next, when a segment Pi is also projected onto

the XY-plane, the length 1 1 of the projecting segment

Pi' is denoted

(cos8=(nx2+ny2)/(nx2+ny2+nz2)).

Therefore,

by Li 1 =Li*cos8,

(Number of BLOCK regions intersecting the projection

Pi I)

:;ii IT1+tanp)*Li 1 cosp/L°J + 1 :;ii Li'*(cosp + sinp)/Lc+2

= Li 1 *sin(p+TI/4)/Lc+2 :;ii 12Li 1 /Lc+2 :;ii C'*Li/Lc

(p: the smaller angle of two angles that are

constructed when the line including the projection

Pi' crosses the X and Y axes).

As a result, number of cubes which intersect the

segment Pi is bounded by 2(C 1 *Li/Lc) and then number

of cubes which intersect the polygon P is also

bounded by C*2j1/2nmax (C, C': constant)J].

135

BIBLIOGRAPHY

[1] A. A. G. Requicha and H. B. Voelcker, "Solid

modeling: Current states and research directions," IEEE

Computer Gr a phi cs and Applications, vol. 3, no. 7,

pp.25-37, 1983.

[2] A. A. A. Requicha, "Representation for rigid

solids: Theory, methods and systems," Comput. Surveys,

vol.12, no.4, pp. 437-464, Dec. 1980.

[3] H. Voelcker and A. A. G. Requicha, "Geometric

modeling of mechanical parts and processes," IEEE

Computer, vol.C-10, no.12, pp.48-57, Dec. 1977.

[4] C. L. Jackins and S. L. Tanimoto, "Oct-trees

and their use in representing three-dimensional objects,"

Computer Vision, Graphics, Image Process., vol.14,

no.3, pp.249-270, Nov. 1980.

[5] J. K. Warnock, "A hidden surface algorithm for

computer generated half tone pictures," TR4-15, Computer

Science Dept., University of Utah, Salt Lake City, June

1969. ,•

[6] M. D. Kelly, "Edge detection

computer using planning, 11 Mach.-

pp.397-409, 1971.

in pictures by

Intell., vol.6,

[7] S. L. Tanimoto and T. Pavilidis, "A hierarchical

data structure for picture processing," Computer Vision,

136

Graphics, Image Process., vol.4, no.2, pp.104-119, June

1975.

[8] J. L.

-conqure,"

Bentley, "Multidimensional divided-and­

Commun. ACM, vol. 23, no. 4, April 1980.

[9] S. 1. Tanimoto and A. Klinger, Eds. , Structured

Computer Vision, Academic Press, New York 1980.

[10] M. M. Yau and S. N. Srihari, "Recursive

generation of hierarchical data structures for

multidimensional digital images," Technical Report

no.170, Dept. of Computer Science, State University of

New York at Buffalo, January 1981.

[11] S. N. Srihari, "Representation of three­

-dimensional digital images," ACM Comput. Surv., vol.13,

no.4, pp.400-424, 1981.

[12] N. Ahuja, "On approaches to polygonal decomposition

for hierarchical image representation," Computer Vision,

Graphics, Image Process., vol.24, pp.200-214, 1983.

[13] C. L. Jackins and S. L. Tanimoto, "Quadtrees,

Octrees, and K-trees: A generalized approach to recursive

decomposition of euclidian space," IEEE Trans. Pattern

Analysis Machine Intelligence, vol. PAMI-5, no.5,

pp.533-539, 1983.

[14] H. Samet, "The quadtree and related hierarchical

data-structures," ACM Computing Surveys, vol.16, no.2,

pp.187-260) June 1984.

[15] L. J. Doctor and J. G. Torborg, "Display

137

techniques for octree-encoded objects, 11 IEEE Computer

Graphics and Application, vol.1, no.1, pp.39-46, July

1981.

[16] J. T. Kajiya, "New techniques for ray-tracing

procedurally defined object," Computer Graphics, vol.17,

pp. 91-99' 1983.

[17] A. S. Glassner, 11 Space subdivision for fast ray

tracing," IEEE Computer Graphics and Application,

vol.4, pp.15-22, 1984.

[18] A. Rosenfeld, Tree structures for region

representation, Computer Vision Laboratory, University

of Maryland, 1979.

[19] A. Rosenfeld, "Quadtrees and pyramids for pattern

recognition and image processing, 11 Proceedings of the

5th International Conference on Pattern Recognition,

Dec. 1980.

[20] T. Pavlidis, Structural Pattern Recognition.

Berlin: Springer-Verlag, 1977.

[21] Y. T. Lee and A. A. G. Requicha, "Algorithms

for computing the volume and other integral properties

of solids. I. Known method and ope,n issues, 11 Commun.

ACM, vol.25, no.9, pp.635-641, Sept. 1982.

[22] Y. T. Lee and A. A. G. Re~uicha, "Algorithms

for computing the volume and other integral properties

of solids. II. A family of algorithms based on

representation conversion and cellular approximation,"

138

Commun. ACM, vol.25, no.9, pp.642-650, Sept. 1982.

[23] Y. Ohta and T. Kanade, "Stereo by two-level

dynamic programming considering inter-scanning

consistency," J. Information Pr9cessing Society of

Japan, vol.2, pp.1356-1363, 1985. (in Japanese)

[24] D.Marr, "Early processing of visual information,"

Phil. Trans. R. Soc. Lond., vol.B275, pp.483-524

1976.

[25] M.M.Thompson ed., Manual of photogrammetry (third

edition), American Society of Photogrammetry 1966.

[26] B. Horn, "Obtaining shape from shading

information," in The Psychology of Computer Vision, P.

H. Winston (ed.), McGraw-Hill, New York. 1975.

[27] A. Rosenfeld and A. C, Kak, Digital Picture

Processing, Academic Press, New York, 1982.

[28] D. Mergher, "Octree Encoding: A new technique for

the representation, manipulation and display of

arbitrary 3-D objects by computer," Technical Report

IPL-TR-80-111, Image Processing Laboratory, Rensselaer

Polytechnic Institute, October 1980.

[29] D. Mergher, "Geometric modeling using octree

encoding," Computer Vision, Graphics, Image Process.,

vol.19, no.2, pp.129-147, June 1982.

[30] G. M. Hunter and K. Steiglitz, "Operations on

images using quadtrees," IEEE Trans. Pattern Analysis

and Machine Intelligence, vol.PAMI-1. no.2, April

139

1979.

[31] G. M. Hunter, "Efficient computation and data

structure for graphics, 11 Ph.D. dissertation, Dept. of

Electrical Engineering and Computer Science, Prins ton

University, 1978.

[32] H. Samet, "A top-down quadtree traversal

algorithm," IEEE Trans. Pattern Analysis, Machine

Intelligence, vol.?, no.1, Jan. 1985.

[33] H. Samet, "Neighbor finding techniques for images

represented by quad trees, 11 Computer Vision, Graphics,

Image Process., vol.18, no.1, pp.37-57, Jan. 1982.

[34] H. Samet, "Connected component labeling using

quadtrees, 11 J. ACM, vol.28, no.3, pp.487-501, July

1981.

[35] H. Samet, "Distance transform from images

represented by quadtrees, 11 IEEE Trans. Pattern Anal.

Mach. Intell., vol.4, no.3, pp. 298-303, May 1982.

[36] K. Yamaguchi, T. L. Kunii, and K. Fujimura,

11 Octree-rela ted data structure and algorithms, 11 IEEE

Computer Graphics and Applications, vol. 4, no .1 ,

pp.53-59, Jan. 1984.

[37] I.Gargantini, T.R.Walsh,

transformations

octrees, 11

of voxel-based

Comput. Graph.

1986.

,•
and 0.1.Wu,

ebjects via

Appl., vol.6,

"Viewing

linear

no.10,

pp.12-21,

[38] T.

IEEE

Oct.

L. Kunii and T. Satoh, "Generation of

140

topological boundary representations

encoding," IEEE Computer Graphics and

vol.5, no.5, pp.29-38, March 1985.

from octree

Application,

[39] M. M. Yau, "Generating quadtrees of cross

sections from octrees," Comput. Vision, Graphics,

Image Process., vol.27, pp.211-238, Aug. 1984.

[40] M. Yau, "Hierarchical representation of three­

-dimensional digital objects," Ph.D. diss., Dept. of

Computer Science, State University of New York at

Buffalo, Jan. 1983.

[41] D. Meagher, "The solids engine : a processor for

interactive solid modeling," Proc. NICOGRAFH 1 84 Conf,

1984.

[42] E. Kawaguchi and T. Endo, "On a method of binary

picture representation and its application to data

compression," IEEE Trans. Pattern Analysis, Machine

Intelligence, vol. PAMI-2, no.1, pp.27-35, Jan.

1980.

[43] E. Kawaguchi, T.Endo, and J. Matsunaga, "Depth­

-first expression viewed from digital picture

precessing," IEEE Trans. Pattern Analysis, Machine

Intelligence, vol. PAMI-5, no.4, pp.27-35, July 1983.

[44] M. Mintyli and M. Tamminen, "Localized set

operations for solid modeling," Computer Graphics,

vol.17, no.3, 1983.

[45] M. Mintyli, "Inversion algorithm for geometric

141

models," Computer Graphics, vol.16, no.3, July 1982.

[46] H.B.Wilson and D.S.Farrior, "Computation of

geometrical and inertial properties for general areas

and volumes of revolution," Computer Aided Design,

vol.8, no.4, pp.257-263., 1976.

[47] N. Okino, Y. Kakazu, and H.

Technical information processing

Kubo, "TIPS-1:

system for

computer-aided design, drawing and manufacturing," In

Computer Languages for Numerical Control, J. Hatvany,

Ed., North-Holland, Amsterdam, pp.141-150, 1973.

[48] J.L.Bentley and T.A.Ottman, "Algorithms for

reporting and counting geometric intersections," IEEE

Trans. Computer, vol.C-28, no.9, pp.643-647, Sept.

1979.

[49] J.L.Bentley and D.Wood, " An optimal worst case

algorithm for reporting intersect"ions of rectangles,"

IEEE Trans. Computer, vol.C-29, no.7, pp.571-576, July

1980.

[50] R.B.Tilove, "A null-object detection algorithm for

constructive solid geometry," Commun. ACM, vol.27,

no.7, July 1984. ~

[51] W. R. Franklin and V. Akman, "Btiilding an

octree from a set of parallelepiped ,'11 IEEE Computer

Graphics and Application, vol. 5, no. 10, pp. 58-64,

1985.

[52] M. Yau and S. N. Srihari, "A hierarchical data

142

structure for multidimensional images," Comm. ACM,

vol.26, no.7, pp.504-515, July 1983.

[53] H. Samet and M. Tamminen, "Bintree, CSG trees

and time," Computer Graphics (Proc. SIGGRAPH 1 85

Conf.) vol.19, no.3, pp. 121-130, 1985.

[54] M. Tamminen and H. Samet, "Efficient octree

conversion by connectivity labeling," Computer Graphics

(Proc. SIGGRAPH 1 84 Conf.), vol.18, no.3, pp.43-51,

July 1984.

[55] W. N. Martin and J. K. Aggarwal, "Volumetic

descriptions of objects from multiple views," IEEE

Trans. Pattern Analysis Machine Intelligence,

vol.PAMI-5, pp.150-158, Mar. 1983.

[56] M. I. Shames, 11 Computational Geometry", Ph.D

Thesis, Yale University 1978.

[57] T. Pa vlidis, Algorithms for Gr a phi cs and Image

Processing. Rockville, MD: Computer Science Press,

Ch. 1 5 1982.

[58] T. Asano,

applications,"

11 Computational geometry

Journal of Information

Society, vol.25, no.3, pp.208-211, Mar.

Japanese)

and its

Processing

1984. (in

[59] T. Miyake and J. Doi, "Three-dimensional shape

approximation system with a polyhedron," Information

Processing Society of Japan, vol.25, pp.745-754, Sept.

1984. (in Japanese)

143

[60] Y. C. Kim and J. k. Aggarwal, "Rectangular

parallelepiped coding : A volumetric representation of

three-dimensional objects, 11 IEEE Journal of Robotics

and Automation, vol.RA-2, pp.127-134, 1986.

[61] Tsai-Hong Hong and M.O. Shneier, "Describing a

robot 1 s work space using a sequence of views from a

moving camera," IEEE Trans. Pattern Analysis, Machine

Intelligence, vol. PAMI-7, no. 6, pp.721-726, 1985.

[62] E.W.Kent, M.O.Shneier and T-H Hong, "Building

representations from fusions of multiple views, 11 IEEE

International Conf. on Robotics and Automation, San

Francisco, CA, pp.1634-1639, April 1986.

[63] J. W. Boyes, "Interference detection among

solids and patches," Commun. ACM, vol.22, no.1,

pp. 3-9. , Jan. 1 979.

[64] Y. Mizugaki, et al., "A simplified method for

collision detection based on geometric modeling",

Journal of the Japan Society of Precision Engineering,

vol. 50, no. 6, pp. 944-950, 1984. (in Japanese)

[65] Y. Shigematsu et. al., "Interference detection

algorithm by simplex method," Jqurnal of the Japan

Society of Precision Engineering, vol. 49, no .11,

pp.1561-1566, 1983. (in Japanese)·.

[66] H. Ozaki, et. al., "Planning of collision free

movement of manipulator considering its body space, 11

Journal of the Society of Instrument and Control

144

Engineers, vol.21, no.9, pp. 942-949, Sept. 1982.

(in Japanese)

[67] H. Ozaki, "Collision free movement of

manipulators, II Journal of the Robotics Society of

Japan, vol.2, no.6, pp.580-586, 1983. (in Japanese)

[68] K. Ozawa, et al., "A fast interference check

method in off-line robot teaching", Journal of the

Robotics Society of Japan, vol.4, no.2, pp.5-14, April

1986. (in Japanese)

[69] N. Ahuja and C. Nash, "Octree representation of

moving objects," Computer Vision, Graphics, Image

Process., vol.26, no.2, May 1984.

[70] J. Weng and N. Ahuja, "Octree representation of

objects in arbitrary motion," Proc. IEEE Conf. on

Computer Vision and Pattern Recognition, San Francisco,

CA, pp.524-529, June 1985.

[71] V. Hayward, "Fast collision detection scheme by

recursive decomposition of a manipulator workspace"

IEEE International Conf. on Robotics and Automation,

San Francisco, CA, vol. 2, pp.1044-1049, April 1986.
I

[72] T. Lozano-Perez, "Automatic planning of manipulator

transfer movements, 11 IEEE trans. on Systems, Man and

Cybernetics, vol. SMC-11 , pp. 681-698, 1981 •
I

[73] T. Lozano-Perez, "Spatial-planning: a configuration

space approach, 11 IEEE Trans. on Computers, vol. C-32,

no.2, Feb. 1983.

145

[74]
I

T.Lozano-Perez and M. A. Wesley, 11 An algorithm

for planning collision-free paths among polyhedral

objects," Commun. ACM, vol.22, no.10, pp.560-570, Oct.

1979.

[75] R. A. Brooks and T. Lozano-P~rez, "A subdivision

algorithm in configuration space for finding with

rotation," M.I.T. Artificial Intell. Lab., Rep.

AIM-684, Dec. 1982.

[76] R. A. Brooks, "Solving the find-path problem by

good representation of free space," IEEE Trans. on

Systems, Man amd Cybernetics, vol.SMC-13, no.3, April

1983.

[77] R. A. Brooks, "Planning collision-free motions

for pick-and place operations", International Journal

of Robotics Research, vol.2, no.4, Winter 1983.

[78] S. M. Udupa, "Collision detection and collision

avoidance in computer controlled

Proceedings of the Fifth IJCAI,

Massachusetts, August 1977.

manipulators,"

MIT, Cambridge

[79] O. Khatib and J.-F.Le Maitre, "Dynamic control of

Manipulators opera ting in a complex environment, 11 On ..
Theory and Practice of Robots and Manipulators, 3rd

CISM-IFToMM Symp., pp.267-282, 1978~

piano

rigid

[80] J. T. Schwartz and M. Sharir, "On the

mover's problem: I. The special case of a

polygonal body moving amidst polygonal borriers, 11

146

Commun. Pure Appl. Math., vol.36, pp.345-398, 1983.

[81] J. T. Schwartz and M. Sharir, "On the piano

mover's problem: II. General techniques for computing

topological properties of real algebraic maifolds,"

Adv. Appl. Math., in press, 1983.

[82] H.P.Moravec, "Obstacle avoidance and navigation in

the real world by a seeding robot rover.," Ph.D.

dissertation, Stanford University Re pt. no. AIM-340.

Stanford, Calif.: Stanford University Artificial

Intelligence Laboratory.

[83] J. Reif, 11 Complexity of the mover 1 s pro bl em and

generalizations," Proc. 20th IEEE Symp. Found.

Comput. Sci. New York: IEEE, pp.241-247, 1979.

[84] S.K.Kambhampati and L. S. Davis, 11 Multiresolution

path planning for mobile robots," IEEE Journal of

Robotics and Automation, vol.RA-2, no.3, Sept. 1986.

[85] M. Herman, "Fast path planning in unstructured

dynamic, 3-D worlds, 11 Procs. SPIE Applications of

Artificial Intelligence III, April. pp.505-512, 1986.

[86] M. Herman, "Fast three-dimensional collision-free

motion planning," IEEE International conf. on Robotics

and Automation, San Francisco, CA, pp.1056-1063, April

1986.

[87] N. J. Nillsson, Problem-solving methods in

artificial intelligence, New York: McGraw-Hill, 1971.

[88] B. Faver j on, "Obstacle avoidance using an octree

147

in the configuration space of a manipulator," IEEE

First Symposium on Robotics, Atlanta, June 1984.

148

PAPERS RELATED TO THIS DISSERTATION

[1] H. Noborio, s. Fukuda, and s. Arimoto, II A new

interference check algorithm using octree, II in the 1987

IEEE Int. Conf. Robotics and Automation, to be

appeared.

[2] H.Noborio, S.Fukuda, and S.Arimoto, II A new

interference check algorithm using octree, 11 submitted

to the Journal of the Robotics Society of Japan. (in

Japanese)

[3] H. Noborio, S. Fukuda, and S. Arimoto, "A new

interference check algorithm using octree, 11 submitted

to the IEEE Journal of Robotics and Automation.

[4] H.Noborio, S.Fukuda, and S.Arimoto, "Conversion

algorithm from the boundary representation to the

octree and its complexity," submitted to the CG

International 187.

[5] H.Noborio, S.Fukuda, and S.Arimoto, "Conversion

algorithm from the boundary representation to the

octree and its complexity," submitted to the IEEE

Trans. on Pattern Analysis and Machine Intelligence.

[6] H.Noborio, S.Fukuda, and S.Arimoto, "Conversion

algorithm from the boundary representation to the

octree and its complexity," submitted to the Information

Process. Society of Japan. (in Japanese)

149

[7] H.Noborio, S.Fukuda, and S. Arimoto, "Construction

of the octree approximating a three-dimensional object

by using multiple views," submitted to the Special

Issue on IEEE Trans. on Pattern Analysis and Machine

Intelligence on Industrial Machine Vision and Computer

Vision Technology.

[8] H.Noborio, S.Fukuda, and S. Arimoto, "Construction

of the octree approximating a three-dimensional object

by using multiple views," submitted to the Information

Process. Society of Japan. (in Japanese)

150

	001-150_ページ_01_2R
	001-150_ページ_02_2R
	001-150_ページ_03_2R
	001-150_ページ_04_1L
	001-150_ページ_04_2R
	001-150_ページ_05_1L
	001-150_ページ_05_2R
	001-150_ページ_06_1L
	001-150_ページ_06_2R
	001-150_ページ_07_2R
	001-150_ページ_08_2R
	001-150_ページ_09_1L
	001-150_ページ_09_2R
	001-150_ページ_10_1L
	001-150_ページ_10_2R
	001-150_ページ_11_1L
	001-150_ページ_11_2R
	001-150_ページ_12_2R
	001-150_ページ_13_2R
	001-150_ページ_14_1L
	001-150_ページ_14_2R
	001-150_ページ_15_1L
	001-150_ページ_15_2R
	001-150_ページ_16_1L
	001-150_ページ_16_2R
	001-150_ページ_17_1L
	001-150_ページ_17_2R
	001-150_ページ_18_1L
	001-150_ページ_18_2R
	001-150_ページ_19_2R
	001-150_ページ_20_2R
	001-150_ページ_21_1L
	001-150_ページ_21_2R
	001-150_ページ_22_1L
	001-150_ページ_22_2R
	001-150_ページ_23_1L
	001-150_ページ_23_2R
	001-150_ページ_24_1L
	001-150_ページ_24_2R
	001-150_ページ_25_1L
	001-150_ページ_25_2R
	001-150_ページ_26_1L
	001-150_ページ_26_2R
	001-150_ページ_27_1L
	001-150_ページ_27_2R
	001-150_ページ_28_1L
	001-150_ページ_28_2R
	001-150_ページ_29_1L
	001-150_ページ_29_2R
	001-150_ページ_30_1L
	001-150_ページ_30_2R
	001-150_ページ_31_1L
	001-150_ページ_31_2R
	001-150_ページ_32_1L
	001-150_ページ_32_2R
	001-150_ページ_33_1L
	001-150_ページ_33_2R
	001-150_ページ_34_1L
	001-150_ページ_34_2R
	001-150_ページ_35_1L
	001-150_ページ_35_2R
	001-150_ページ_36_1L
	001-150_ページ_36_2R
	001-150_ページ_37_1L
	001-150_ページ_37_2R
	001-150_ページ_38_1L
	001-150_ページ_38_2R
	001-150_ページ_39_1L
	001-150_ページ_39_2R
	001-150_ページ_40_1L
	001-150_ページ_40_2R
	001-150_ページ_41_2R
	001-150_ページ_42_2R
	001-150_ページ_43_1L
	001-150_ページ_43_2R
	001-150_ページ_44_1L
	001-150_ページ_44_2R
	001-150_ページ_45_1L
	001-150_ページ_45_2R
	001-150_ページ_46_1L
	001-150_ページ_46_2R
	001-150_ページ_47_1L
	001-150_ページ_47_2R
	001-150_ページ_48_1L
	001-150_ページ_48_2R
	001-150_ページ_49_1L
	001-150_ページ_49_2R
	001-150_ページ_50_1L
	001-150_ページ_50_2R
	001-150_ページ_51_1L
	001-150_ページ_51_2R
	001-150_ページ_52_1L
	001-150_ページ_52_2R
	001-150_ページ_53_1L
	001-150_ページ_53_2R
	001-150_ページ_54_1L
	001-150_ページ_54_2R
	001-150_ページ_55_1L
	001-150_ページ_55_2R
	001-150_ページ_56_1L
	001-150_ページ_56_2R
	001-150_ページ_57_1L
	001-150_ページ_57_2R
	001-150_ページ_58_1L
	001-150_ページ_58_2R
	001-150_ページ_59_2R
	001-150_ページ_60_1L
	001-150_ページ_60_2R
	001-150_ページ_61_1L
	001-150_ページ_61_2R
	001-150_ページ_62_1L
	001-150_ページ_62_2R
	001-150_ページ_63_1L
	001-150_ページ_63_2R
	001-150_ページ_64_1L
	001-150_ページ_64_2R
	001-150_ページ_65_1L
	001-150_ページ_65_2R
	001-150_ページ_66_1L
	001-150_ページ_66_2R
	001-150_ページ_67_1L
	001-150_ページ_67_2R
	001-150_ページ_68_1L
	001-150_ページ_68_2R
	001-150_ページ_69_1L
	001-150_ページ_69_2R
	001-150_ページ_70_1L
	001-150_ページ_70_2R
	001-150_ページ_71_1L
	001-150_ページ_71_2R
	001-150_ページ_72_1L
	001-150_ページ_72_2R
	001-150_ページ_73_1L
	001-150_ページ_73_2R
	001-150_ページ_74_2R
	001-150_ページ_75_2R
	001-150_ページ_76_1L
	001-150_ページ_76_2R
	001-150_ページ_77_1L
	001-150_ページ_77_2R
	001-150_ページ_78_1L
	001-150_ページ_78_2R
	001-150_ページ_79_1L
	001-150_ページ_79_2R
	001-150_ページ_80_1L
	001-150_ページ_80_2R
	001-150_ページ_81_1L
	001-150_ページ_81_2R
	001-150_ページ_82_1L
	001-150_ページ_82_2R
	001-150_ページ_83_1L
	001-150_ページ_83_2R
	001-150_ページ_84_1L
	001-150_ページ_84_2R
	001-150_ページ_85_1L
	001-150_ページ_85_2R
	001-150_ページ_86_1L
	001-150_ページ_86_2R
	001-150_ページ_87_1L
	001-150_ページ_87_2R

